2018届高考数学(理)专题复习:增分练5-1-10 含答案

合集下载

2018年高考数学二轮复习组合增分练5解答题组合练A理20171018176

2018年高考数学二轮复习组合增分练5解答题组合练A理20171018176

组合增分练5解答题组合练A1.(2017河北保定二模,理17)已知数列{a n}是等差数列,且a1,a2(a1<a2)分别为方程x2-6x+5=0 的两根.(1)求数列{a n}的前n项和S n;푆푛1(2)在(1)中,设b n=,求证:当c=-时,数列{b n}是等差数列.푛+푐2(1)解解方程x2-6x+5=0得其两根分别为1和5,∵a1,a2(a1<a2)分别为方程x2-6x+5=0的两根,∴a1=1,a2=5,∴等差数列{a n}的公差为4,푛(푛-1)∴S n=n·1+×4=2n2-n.212푛2-푛푆푛(2)证明当c=-时,b n==2n,∴b n+1-b n=2(n+1)-2n=2,∴{b n}是以2为首项,公差为2푛+푐=21푛-2的等差数列.2.数列{a n}的前n项和为S n,且a1=1,a n+1=2S n+1,数列{b n}为等差数列,且b3=3,b5=9.(1)求数列{a n},{b n}的通项公式;1(2)若对任意的n∈N*,(푆푛+2)·k≥b n恒成立,求实数k的取值范围.解(1)由a n+1=2S n+1,①可知当n≥2时,a n=2S n-1+1,②①-②得a n+1-a n=2(S n-S n-1),∴a n+1=3a n(n≥2).又a2=3,a1=1也满足上式,∴a n=3n-1.由b5-b3=2d=6,可得d=3,∴b n=3+(n-3)×3=3n-6.푎1(1-푞푛)1-3푛3푛-1(2)S n=,1-푞=1-3=23푛-11∴(2)k≥3n-6对n∈N*恒成立,2+6푛-12∴k≥对n∈N*恒成立.3푛3푛-63푛-63푛-9-2푛+7令c n=,c n-c n-1=3푛―=,3푛3푛-13푛-1当n≤3时,c n>c n-1,当n≥4时,c n<c n-1,1∴(c n)max=c3=,912∴k≥2×9=.92 ∴实数k的取值范围是[9,+∞).3.(2017河北石家庄二中模拟,理19)已知五边形ABCDE是由直角梯形ABCD和等腰直角三角形ADE构成,如图所示,AB⊥AD,AE⊥DE,AB∥CD,且AB=2CD=2DE=4,将五边形ABCDE沿着AD折起,且使平面ABCD⊥平面ADE.1퐵푁(1)若M为DE中点,边BC上是否存在一点N,使得MN∥平面ABE?若存在,求的值;若不存在,퐵퐶说明理由;(2)求二面角A-BE-C的平面角的余弦值.(1)证明取BC中点为N,AD中点为P,连接MN,NP,MP.∵MP∥AE,AE⊂平面ABE,MP⊄平面ABE,∴MP∥平面ABE,同理NP∥平面ABE.又MP∩NP=P,∴MN∥平面ABE.퐵푁1∴边AB上存在这样的点N,且.퐵퐶=2(2)解以A为原点,以AD为y轴,以AB为z轴建立空间直角坐标系.则A(0,0,0),B(0,0,4),C(0,2 2,2),D(0,2 2,0),E( 2,2,0).∵DE⊥AE,DE⊥AB,∴DE⊥平面ABE.∴平面ABE的一个法向量为퐷퐸=( 2,-2,0).设平面BCE的一个法向量为n=(x,y,z),∵퐵퐶=(0,2 2,-2),퐵퐸=( 2,2,-4),푛·퐵퐶=22푦-2푧=0,∴{푛·퐵퐸=2푥+2푦-4푧=0,令y=1,则x=3,z=2,∴n=(3,1, 2),퐷퐸·푛226∴cos<퐷퐸,n>=2×23=,=6|퐷퐸||푛|6∴由图知二面角A-BE-C的平面角的余弦值为-.64.(2017吉林三模,理19)已知在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=BC=1,AB=2,M为PC中点.2(1)在图中作出平面ADM与PB的交点N,并指出点N所在位置(不要求给出理由).10(2)在线段CD上是否存在一点E,使得直线AE与平面ADM所成角的正弦值为,若存在,请说10明点E的位置;若不存在,请说明理由.(3)求二面角A-MD-C的余弦值.解(1)过M作MN∥BC,交PB于点N,连接AN,如图,则点N为平面ADM与PB的交点(在图中画出).由M为PC中点,得N为PB的中点.(2)因为在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,以A为坐标原点,以直线AB,AD,AP所在直线建立空间直角坐标系如图所示.11 则A(0,0,0),P(0,0,1),D(0,1,0),C(2,1,0),M(1,2).2,设在线段CD上存在一点E(x,1,0),则퐴퐸=(x,1,0),设直线AE与平面AMD所成角为θ,平面AMD的法向量为u=(x,y,z),11则u⊥퐴푀,u⊥퐴퐷,即{푥+令z=2,2푦+2푧=0, 푦=0,则u=(-1,0,2).10因为直线AE与平面ADM所成角的正弦值为,10|퐴퐸·푢|10所以sin θ=,所以x=1.=10|퐴퐸||푢|10所以在线段CD上存在中点E,使得直线AE与平面AMD所成角的正弦值为.10 (3)设平面CMD的法向量v=(x',y',z'),푦'푧'则v⊥퐶푀,v⊥퐶퐷,即{令z'=-1,-푥'-2+2푥'=0,2=0,则y'=-1,所以v=(0,-1,-1).푣·푢10所以cos φ==-,|푣||푢|5由图形知二面角A-MD-C的平面角是钝角,310所以二面角A-MD-C的平面角的余弦值为- .55.设λ>0,点A的坐标为(1,1),点B在抛物线y=x2上运动,点Q满足퐵푄=λ푄퐴,经过点Q与x轴垂直的直线交抛物线于点M,点P满足푄푀=λ푀푃,求点P的轨迹方程.解由푄푀=λ푀푃知Q、M、P三点在同一条垂直于x轴的直线上,故可设P(x,y),Q(x,y0),M(x,x2),则x2-y0=λ(y-x2),即y0=(1+λ)x2-λy, ①再设B(x1,y1),由퐵푄=λ푄퐴,即(x-x1,y0-y1)=λ(1-x,1-y0),푥1=(1+휆)푥-휆,解得{②푦1=(1+휆)푦0-휆,푥1=(1+휆)푥-휆,将①式代入②式,消去y0,得{③푦1=(1+휆)2푥2-휆(1+휆)푦-휆.又点B在抛物线y=x2上,所以y1=푥21.再将③式代入y1=푥12,得(1+λ)2x2-λ(1+λ)y-λ=((1+λ)x-λ)2,(1+λ)2x2-λ(1+λ)y-λ=(1+λ)2x2-2λ(1+λ)x+λ2,2λ(1+λ)x-λ(1+λ)y-λ(1+λ)=0.因λ>0,两边同除以λ(1+λ),得2x-y-1=0.故所求点P的轨迹方程为y=2x-1. 〚导学号16804245〛6.已知抛物线C1:x2=y,圆C2 :x2+(y-4)2=1的圆心为点M.(1)求点M到抛物线C1的准线的距离;(2)已知点P是抛物线C1上一点(异于原点),过点P作圆C2的两条切线,交抛物线C1于A,B两点,若过M,P两点的直线l垂直于AB,求直线l的方程.1解(1)由题意可知,抛物线的准线方程为:y=- ,417所以圆心M(0,4)到准线的距离是.44(2)设P(x0,푥02),A(x1,푥21),B(x2,푥2),由题意得x0≠0,x0≠±1,x1≠x2.设过点P的圆C2的切线方程为y-x02=k(x-x0),即y=kx-kx0+푥02. ①|푘푥0+4-푥02|则=1,1+푘2即(푥20-1)k2+2x0(4-푥02)k+(푥20-4)2-1=0.2푥0(푥02-4)设PA,PB的斜率为k1,k2(k1≠k2),则k1,k2是上述方程的两根,所以k1+k2= ,k1k2=푥20-1(푥20-4)2-1.푥20-1将①代入y=x2,得x2-kx+kx0-푥20=0,由于x0是此方程的根,故x1=k1-x0,x2=k2-x0,푥21-푥22푥0(푥20-4)푥20-4所以k AB= =x1+x2=k1+k2-2x0= -2x0,k MP= .푥1-푥2푥20-1푥0 2푥0(푥20-4)푥20-423由MP⊥AB,得k AB·k MP=[0]·(푥0)=-1,解得푥,푥20-1-2푥0=2523233115(±5),所以直线l的方程为y=±x+4.即点P的坐标为5,1155。

2018版高考数学复习升级增分训练导数的综合应用一文

2018版高考数学复习升级增分训练导数的综合应用一文

升级增分训练 导数的综合应用(一)1.设函数f (x )=ln x +ax 2+x -a -1(a ∈R). (1)当a =-12时,求函数f (x )的单调区间;(2)证明:当a ≥0时,不等式f (x )≥x -1在[1,+∞)上恒成立. 解:(1)当a =-12时,f (x )=ln x -12x 2+x -12,且定义域为(0,+∞),因为f ′(x )=1x-x +1=-⎝⎛⎭⎪⎫x -1-52⎝ ⎛⎭⎪⎫x -1+52x,(x >0)当x ∈⎝⎛⎭⎪⎫0,1+52时,f ′(x )>0;当x ∈⎝⎛⎭⎪⎫1+52,+∞时,f ′(x )<0,所以f (x )的单调增区间是⎝⎛⎦⎥⎤0,1+52;单调减区间是⎣⎢⎡⎭⎪⎫1+52,+∞.(2)证明:令g (x )=f (x )-x +1=ln x +ax 2-a , 则g ′(x )=1x +2ax =2ax 2+1x,所以当a ≥0时,g ′(x )>0在[1,+∞)上恒成立, 所以g (x )在[1,+∞)上是增函数,且g (1)=0, 所以g (x )≥0在[1,+∞)上恒成立,即当a ≥0时,不等式f (x )≥x -1在[1,+∞)上恒成立. 2.(2016·海口调研)已知函数f (x )=mx -m x,g (x )=3ln x . (1)当m =4时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)若x ∈(1,e](e 是自然对数的底数)时,不等式f (x )-g (x )<3恒成立,求实数m 的取值范围.解:(1)当m =4时,f (x )=4x -4x ,f ′(x )=4+4x2,f ′(2)=5,又f (2)=6,∴所求切线方程为y -6=5(x -2), 即y =5x -4.(2)由题意知,x ∈(1,e]时,mx -mx-3ln x <3恒成立,即m (x 2-1)<3x +3x ln x 恒成立, ∵x ∈(1,e],∴x 2-1>0, 则m <3x +3x ln x x 2-1恒成立.令h (x )=3x +3x ln xx 2-1,x ∈(1,e],则m <h (x )min . h ′(x )=-x 2+x -6x 2-2=-x 2+x +6x 2-2,∵x ∈(1,e], ∴h ′(x )<0,即h (x )在(1,e]上是减函数. ∴当x ∈(1,e]时,h (x )min =h (e)=9e -.∴m 的取值范围是⎝⎛⎭⎪⎫-∞,9e 2e -2.3.(2017·广西质检)设函数f (x )=c ln x +12x 2+bx (b ,c ∈R ,c ≠0),且x =1为f (x )的极值点.(1)若x =1为f (x )的极大值点,求f (x )的单调区间(用c 表示); (2)若f (x )=0恰有两解,求实数c 的取值范围.解:f ′(x )=c x +x +b =x 2+bx +cx(x >0),又f ′(1)=0,所以f ′(x )=x -x -cx(x >0)且c ≠1,b +c +1=0.(1)因为x =1为f (x )的极大值点,所以c >1, 当0<x <1时,f ′(x )>0; 当1<x <c 时,f ′(x )<0; 当x >c 时,f ′(x )>0,所以f (x )的单调递增区间为(0,1),(c ,+∞);单调递减区间为(1,c ). (2)①若c <0,则f (x )在(0,1)上单调递减,在(1,+∞)上单调递增.f (x )=0恰有两解,则f (1)<0,即12+b <0,所以-12<c <0;②若0<c <1,则f (x )极大值=f (c )=c ln c +12c 2+bc ,f (x )极小值=f (1)=12+b ,因为b =-1-c ,则f (x )极大值=c ln c +c 22+c (-1-c )=c ln c -c -c 22<0,f (x )极小值=-12-c <0,从而f (x )=0只有一解;③若c >1,则f (x )极小值=c ln c +c 22+c (-1-c )=c ln c -c -c 22<0,f (x )极大值=-12-c <0,则f (x )=0只有一解.综上,使f (x )=0恰有两解的c 的取值范围为⎝ ⎛⎭⎪⎫-12,0. 4.(2017·福建省质检)已知函数f (x )=ax -ln(x +1),g (x )=e x-x -1.曲线y =f (x )与y =g (x )在原点处的切线相同.(1)求f (x )的单调区间;(2)若x ≥0时,g (x )≥kf (x ),求k 的取值范围. 解:(1)因为f ′(x )=a -1x +1(x >-1),g ′(x )=e x-1, 依题意,f ′(0)=g ′(0),即a -1=0,解得a =1, 所以f ′(x )=1-1x +1=x x +1, 当-1<x <0时,f ′(x )<0;当x >0时,f ′(x )>0. 故f (x )的单调递减区间为(-1,0),单调递增区间为(0,+∞). (2)由(1)知,当x =0时,f (x )取得最小值0, 所以f (x )≥0,即x ≥ln(x +1),从而e x≥x +1.设F (x )=g (x )-kf (x )=e x+k ln(x +1)-(k +1)x -1, 则F ′(x )=e x+k x +1-(k +1)≥x +1+kx +1-(k +1), (ⅰ)当k =1时,因为x ≥0,所以F ′(x )≥x +1+1x +1-2≥0(当且仅当x =0时等号成立),此时F (x )在[0,+∞)上单调递增, 从而F (x )≥F (0)=0,即g (x )≥kf (x ).(ⅱ)当k <1时,因为f (x )≥0,所以f (x )≥kf (x ). 由(ⅰ)知g (x )-f (x )≥0,所以g (x )≥f (x )≥kf (x ), 故g (x )≥kf (x ).(ⅲ)当k >1时,令h (x )=e x+kx +1-(k +1),则h ′(x )=e x-k x +2,显然h ′(x )在[0,+∞)上单调递增, 又h ′(0)=1-k <0,h ′(k -1)=ek -1-1>0,所以h ′(x )在(0,k -1)上存在唯一零点x 0, 当x ∈(0,x 0)时,h ′(x )<0, 所以h (x )在[0,x 0)上单调递减, 从而h (x )<h (0)=0,即F ′(x )<0, 所以F (x )在[0,x 0)上单调递减, 从而当x ∈(0,x 0)时,F (x )<F (0)=0, 即g (x )<kf (x ),不合题意.综上,实数k 的取值范围为(-∞,1].5.(2016·石家庄质检)已知函数f (x )=-x 3+ax -14,g (x )=e x-e(e 为自然对数的底数).(1)若曲线y =f (x )在(0,f (0))处的切线与曲线y =g (x )在(0,g (0))处的切线互相垂直,求实数a 的值;(2)设函数h (x )=⎩⎪⎨⎪⎧f x ,f xg x ,gx ,f x <g x ,试讨论函数h (x )零点的个数.解:(1)由已知,f ′(x )=-3x 2+a ,g ′(x )=e x, 所以f ′(0)=a ,g ′(0)=1, 由题意,知a =-1.(2)易知函数g (x )=e x-e 在R 上单调递增,仅在x =1处有一个零点,且x <1时,g (x )<0,又f ′(x )=-3x 2+a ,①当a ≤0时,f ′(x )≤0,f (x )在R 上单调递减,且过点⎝ ⎛⎭⎪⎫0,-14,f (-1)=34-a >0,即f (x )在x ≤0时必有一个零点, 此时y =h (x )有两个零点;②当a >0时,令f ′(x )=-3x 2+a =0, 两根为x 1=-a3<0,x 2= a3>0, 则- a3是函数f (x )的一个极小值点,a3是函数f (x )的一个极大值点, 而f ⎝⎛⎭⎪⎫- a 3=-⎝⎛⎭⎪⎫- a 33+a ⎝⎛⎭⎪⎫- a 3-14=-2a3a 3-14<0; 现在讨论极大值的情况:fa3=-a 33+aa 3-14=2a3a 3-14, 当fa3<0,即a <34时, 函数y =f (x )在(0,+∞)上恒小于零, 此时y =h (x )有两个零点; 当fa3=0,即a =34时, 函数y =f (x )在(0,+∞)上有一个零点x 0= a 3=12,此时y =h (x )有三个零点; 当fa3>0,即a >34时, 函数y =f (x )在(0,+∞)上有两个零点,一个零点小于a3,一个零点大于a3, 若f (1)=-1+a -14<0,即a <54时,y =h (x )有四个零点;若f (1)=-1+a -14=0,即a =54时,y =h (x )有三个零点;若f (1)=-1+a -14>0,即a >54时,y =h (x )有两个零点.综上所述:当a <34或a >54时,y =h (x )有两个零点;当a =34或a =54时,y =h (x )有三个零点;当34<a <54时,y =h (x )有四个零点. 6.已知函数f (x )=ax +b ln x +1,此函数在点(1,f (1))处的切线为x 轴. (1)求函数f (x )的单调区间和最大值; (2)当x >0时,证明:1x +1<ln x +1x <1x; (3)已知n ∈N *,n ≥2,求证:12+13+…+1n <ln n <1+12+…+1n -1.解:(1)由题意得⎩⎪⎨⎪⎧f =0,f=0,因为f ′(x )=a +bx,所以⎩⎪⎨⎪⎧a +1=0,a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =1,所以f (x )=-x +ln x +1. 即f ′(x )=-1+1x=1-xx,又函数f (x )的定义域为(0,+∞),所以当0<x <1时,f ′(x )>0,当x >1时,f ′(x )<0. 故函数f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞), 函数f (x )的最大值为f (1)=0.(2)证明:由(1)知f (x )=-x +ln x +1, 且f (x )≤0(当且仅当x =1时取等号), 所以ln x ≤x -1(当且仅当x =1时取等号).当x >0时,由x +1x ≠1,得ln x +1x <x +1x -1=1x; 由xx +1≠1,得ln x x +1<x x +1-1=-1x +1⇒-ln x x +1>1x +1⇒ln x +1x >1x +1. 故当x >0时,1x +1<ln x +1x <1x. (3)证明:由(2)可知, 当x >0时,1x +1<ln x +1x <1x. 取x =1,2,…,n -1,n ∈N *,n ≥2, 将所得各式相加,得12+13+…+1n <ln 21+ln 32+…+ln n n -1<1+12+…+1n -1, 故12+13+…+1n <ln n <1+12+…+1n -1.。

2018年高考大题增分专项1 函数与导数

2018年高考大题增分专项1  函数与导数
考情分析 典例突破
高考中的函数与导数
专题总结 策略一 策略二
-7策略三
(2) 证明 由(1)知,a=1 时,
2������-1 1 2 2 − 1 + ������2 ������ ������2 ������3 3 1 2 =x-ln x+ + 2 − 3 -1,x∈[1,2]. ������ ������ ������ 3 1 2 设 g(x)=x-ln x,h(x)= + 2 − 3 -1,x∈[1,2]. ������ ������ ������
高考大题增分专项一
考情分析 典例突破
高考中的函数与导数
专题总结 策略一 策略二
-8策略三
设 φ(x)=-3x2-2x+6, 则 φ(x)在 x∈[1,2]单调递减, 因为 φ(1)=1,φ(2)=-10, 所以∃x0∈(1,2),使得 x∈(1,x0)时,φ(x)>0,x∈(x0,2)时,φ(x)<0. 所以 h(x)在(1,x0)内单调递增,在(x0,2)内单调递减. 由 h(1)=1,h(2)=2,可得 h(x)≥h(2)=2, 当且仅当 x=2 时取得等号.
2 ,+∞ ������ 2 ������
内单调递减,在
内单调递增;
2 ������ 2 ,1 ������
当 a=2 时,f(x)在(0,+∞)内单调递增; 当 a>2 时,f(x)在 0, (1,+∞)内单调递增. 内单调递增,在 内单调递减,在
高考大题 增分专项
题型一 题型二 题型三
高考大题增分专项一
=
(������������2 -2)(������-1) . ������3

高考数学(理)二轮专题复习:增分练5-1-5 Word版含答案

高考数学(理)二轮专题复习:增分练5-1-5 Word版含答案

小题提速练(五)(满分80分,押题冲刺,45分钟拿下客观题满分)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.“lg x >lg y ”是“10x>10y”的() A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A.∵lg x >lg y ,∴x >y >0,∵10x>10y,∴x >y ,∴lg x >lg y 能推出10x>10y,反之则不能,∴lg x >lg y 是“10x>10y”的充分不必要条件.2.已知集合M ={y |y =x +1x -1,x ∈R ,x ≠1},集合N ={x |x 2-2x -3≤0},则( ) A .M ∩N =∅ B .M ⊆∁R N C .M ⊆∁R MD .M ∪N =R解析:选D.由题意,y =x +1x -1=(x -1)+1x -1(x ≠1), 当x >1时,y ≥2x -1x -1+1=3,当x <1时,y =x +1x -1=-⎣⎢⎡⎦⎥⎤-x +11-x +1≤-1,则函数y =x +1x -1(x ≠1)的值域为{y |y ≤-1或y ≥3},集合M 为函数y =x +1x -1(x ≠1)的值域,则M ={y |y ≤-1或y ≥3},x 2-2x -3≤0⇔-1≤x ≤3,则N ={x |-1≤x ≤3}.分析选项可得M ∩N ={-1,3},A 项错误;∁R N ={x |x <-1或x >3},有∁R N ⊆M ,B 项错误;M ≠∅,则M ⊆∁R M 不成立,C 项错误;M ∪N =R 成立,D 项正确.3.设z =1+i(i 是虚数单位),则在复平面内,z 2+2z对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选 D.因为z =1+i(i 是虚数单位),则在复平面内z 2+2z =(1-i)2+21-i=-2i +++-=-2i ++2=1-i ,所以在复平面内,z 2+2z对应的点位于第四象限.4.下表是某工厂1~4月份用电量(单位:万度)的一组数据:由散点图可知,用电量y 与月份x 间有较好的线性相关关系,其线性回归直线方程是y ^=-0.7x +a ^,则a ^=( )A .10.5B .5.25C .5.2D .5.15解析:选B.x =1+2+3+44=2.5,y =4.5+4+3+2.54=3.5,∴3.5=-0.7×2.5+a ^,解得a ^=5.25.5.将函数y =sin 2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是( )A .y =2cos 2xB .y =2sin 2x C .y =1+sin ⎝⎛⎭⎪⎫2x +π4 D .y =cos 2x解析:选A.函数y =sin 2x 的图象向左平移π4个单位得y =sin ⎝ ⎛⎭⎪⎫2x +π2,再向上平移1个单位得y =sin ⎝⎛⎭⎪⎫2x +π2+1=1+cos 2x =2cos 2x .6.已知一个空间几何体的三视图如图所示,其中正视图、侧视图都是由半圆和矩形组成,根据图中标出的尺寸,得这个几何体的表面积是( )A .4πB .7πC .6πD .5π解析:选D.由三视图知,该几何体是一个简单的组合体,上面是一个半球,半球的直径是2,下面是一个圆柱,圆柱的底面直径是2,圆柱的高是1,∴几何体的表面积由三部分组成,一个半球面,一个圆和一个圆柱的侧面,∴S =12×4π×12+π×12+2π×1×1=5π.7.函数y =x ln|x ||x |的图象可能是( )解析:选B.令f (x )=x ln|x ||x |,则f (-x )=-x ln|-x ||-x |=-f (x ),所以f (x )是奇函数,排除A 、C ;当x >0时,y =x ln xx=ln x 为增函数,排除D. 8.已知数列{a n }的各项均为正数,其前n 项和为S n ,若{log 2a n }是公差为-1的等差数列,且S 6=38,则a 1等于( )A.421B.631C.821D.1231解析:选A.∵{log 2a n }是公差为-1的等差数列, ∴log 2a n +1-log 2a n =-1,即log 2a n +1a n =log 212,∴a n +1a n =12,∴{a n }是公比为12的等比数列,又∵S 6=a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1261-12=38, ∴a 1=421.9.已知函数f (x )=⎝ ⎛⎭⎪⎫13-log 2x ,实数a ,b ,c 满足f (a )·f (b )·f (c )<0(0<a <b <c ),若实数x 0为方程f (x )=0的一个解,那么下列不等式中,不可能成立的是( )A .x 0<aB .x 0>bC .x 0<cD .x 0>c解析:选D.∵y =⎝ ⎛⎭⎪⎫13是R 上的减函数,y =log 2x 是(0,+∞)上的增函数,∴f (x )=⎝ ⎛⎭⎪⎫13-log 2x 是(0,+∞)上的减函数,又∵f (a )f (b )f (c )<0,且0<a <b <c ,∴f (a )<0,f (b )<0,f (c )<0或f (a )>0,f (b )>0,f (c )<0,故f (c )<f (x 0)=0,故c >x 0,故x 0>c 不可能成立.10.设第一象限内的点(x ,y )满足约束条件⎩⎪⎨⎪⎧2x -y -6≤0,x -y +2≥0目标函数z =ax +by (a >0,b>0)的最大值为40,则5a +1b的最小值为( )A.256B.94C .1D .4解析:选B.作出不等式表示的平面区域如图阴影部分所示,当直线ax +by =z (a >0,b >0)过直线x -y +2=0与直线2x -y -6=0的交点A (8,10)时,目标函数z =ax +by (a >0,b >0)取得最大值40,即8a +10b =40,即4a +5b =20,则5a +1b =⎝ ⎛⎭⎪⎫5a +1b 4a +5b 20=54+⎝ ⎛⎭⎪⎫5b 4a +a 5b ≥54+1=94.当且仅当5b 4a =a 5b 时取等号,则5a +1b 的最小值为94.11.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件:①f (x )=a x·g (x )(a >0,a ≠1);②g (x )≠0;③f (x )·g ′(x )>f ′(x )·g (x ).若f g+f -g -=52,则a 等于( ) A.12 B .2 C.54D .2或12解析:选A.由f g+f -g -=52得a 1+a -1=52,所以a =2或a =12.又由f (x )·g ′(x )>f ′(x )·g (x ),即f (x )g ′(x )-f ′(x )g (x )>0,也就是⎣⎢⎡⎦⎥⎤f x g x ′=-f x gx -g x f xg 2x <0,说明函数f xg x =a x是减函数,即0<a <1,故a =12.12.椭圆x 2a 2+y 2b2=1(a >b >0)上一点A 关于原点的对称点为B ,F 为其右焦点,若AF ⊥BF ,设∠ABF =α,且α∈⎣⎢⎡⎦⎥⎤π12,π4,则该椭圆离心率的取值范围为( )A.⎣⎢⎡⎭⎪⎫22,1B.⎣⎢⎡⎦⎥⎤22,63C.⎣⎢⎡⎭⎪⎫63,1 D.⎣⎢⎡⎦⎥⎤22,32 解析:选B.∵B 和A 关于原点对称,∴B 也在椭圆上,设左焦点为F ′,根据椭圆定义|AF |+|AF ′|=2a ,又∵|BF |=|AF ′|,∴|AF |+|BF |=2a ①,O 是Rt△ABF 的斜边中点,∴|AB |=2c ,又|AF |=2c sin α②,|BF |=2c cos α③,把②③代入①得:2c sin α+2c cos α=2a ,∴c a =1sin α+cos α,即e =1sin α+cos α=12sin ⎝⎛⎭⎪⎫α+π4,∵α∈⎣⎢⎡⎦⎥⎤π12,π4,∴π3≤α+π4≤π2,∴32≤sin ⎝⎛⎭⎪⎫α+π4≤1,∴22≤e ≤63. 二、填空题(本题共4小题,每小题5分;共20分)13.设函数f (x )=⎩⎪⎨⎪⎧3x,x ≤0,log 3x ,x >0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-12=________.解析:∵函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤0,log 3x ,x >0,∴f ⎝ ⎛⎭⎪⎫-12=3-12>0,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫3-12=log 33-12=-12.答案:-1214.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则sin C =________.解析:由A +C =2B ,且A +B +C =π,得到B =π3,所以cos B =12,又a =1,b =3,根据余弦定理得b 2=a 2+c 2-2ac ·cos B ,即c 2-c -2=0,因式分解得(c -2)(c +1)=0,解得c =2,c =-1(舍去),又sin B =32,b =3,根据正弦定理b sin B =c sin C 得sin C =c sin Bb =2×323=1.答案:115.向量V →=⎝ ⎛⎭⎪⎫a n +1-a n 2,a 2n +12a n 为直线y =x 的方向向量,a 1=1,则数列{a n }前2018项的和为________.解析:因为V →是直线y =x 的方向向量,得a n +1-a n 2=a 2n +12a n,化简得a n +1=a n ,根据数列的递推式发现,此数列各项都相等,都等于第一项a 1,而a 1=1,则数列{a n }的前2018项和为S 2018=1×2018=2018.答案:201816.若点P 在直线l 1:x +y +3=0上,过点P 的直线l 2与曲线C :(x -5)2+y 2=16只有一个公共点M ,则|PM |的最小值为________.解析:(x -5)2+y 2=16的圆心为(5,0),半径为4,则圆心到直线的距离为|5+3|2=42,点P 在直线l 1:x +y +3=0上,过点P 的直线l 2与曲线C :(x -5)2+y 2=16只有一个公共点M ,则|PM |的最小值为22-42=4.答案:4。

【精品】2018届高三数学(理)高考总复习:升级增分训练 函数与方程含解析

【精品】2018届高三数学(理)高考总复习:升级增分训练 函数与方程含解析

升级增分训练(一)函数与方程1.在⎝ ⎛⎭⎪⎫π2+2k π,π+2k π,k ∈Z 上存在零点的函数是( )A .y =sin 2xB .y =cos 2xC .y =tan 2xD .y =sin 2x解析:选B 当x ∈⎝ ⎛⎭⎪⎫π2+2k π,π+2k π,k ∈Z 时,sin 2x <0,sin 2x >0恒成立.故排除A ,D ,若tan 2x =0, 则2x =k π,x =k π2,k ∈Z ,所以y =tan 2x 在x ∈⎝ ⎛⎭⎪⎫π2+2k π,π+2k π,k ∈Z 上不存在零点,当x =3π4+2k π,k ∈Z 时,cos 2x =0,故选B . 2.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )、(b ,c )内B .(-∞,a )、(a ,b )内C .(b ,c )、(c ,+∞)内D .(-∞,a )、(c ,+∞)内解析:选A f (a )=(a -b )(a -c ),f (b )=(b -c )(b -a ),f (c )=(c -a )(c -b ),∵a <b <c ,∴f (a )>0,f (b )<0,f (c )>0,即f (a )·f (b )<0,f (b )·f (c )<0,又∵f (x )在R 上是连续函数,∴两零点分别位于区间(a ,b ),(b ,c )内.3.在下列区间中,函数f (x )=3x -x 2有零点的是( ) A .0,1] B .1,2] C .-2,-1]D .-1,0]解析:选D ∵f (0)=1,f (1)=2, ∴f (0)f (1)>0;∵f (2)=5,f (1)=2,∴f (2)f (1)>0; ∵f (-2)=-359,f (-1)=-23,∴f (-2)f (-1)>0;∵f (0)=1,f (-1)=-23,∴f (0)f (-1)<0.易知-1,0]符合条件,故选D .4.(2017·皖江名校联考)已知函数f (x )=e x -2ax ,函数g (x )=-x 3-ax 2.若不存在x 1,x 2∈R ,使得f ′(x 1)=g ′(x 2),则实数a 的取值范围为( )A .(-2,3)B .(-6,0)C .-2,3]D .-6,0]解析:选D 易得f ′(x )=e x -2a >-2a ,g ′(x )=-3x 2-2ax ≤a 23,由题意可知a 23≤-2a ,解得-6≤a ≤0.5.函数y =12ln x +x -1x -2的零点所在的区间为( )A .⎝ ⎛⎭⎪⎫1e ,1B .(1,2)C .(2,e)D .(e,3)解析:选C 由题意,求函数y =12ln x +x -1x -2(x >0)的零点,即为求曲线y =12ln x 与y =-x +1x +2的交点,可知y =12ln x 在(0,+∞)上为单调递增函数,而y =-x +1x+2在(0,+∞)上为单调递减函数,故交点只有一个,当x=2时,12ln x <-x +1x +2,当x =e 时,12ln x >-x +1x +2,因此函数y =12ln x+x -1x-2的零点在(2,e)内.故选C .6.已知定义在R 上的函数f (x )满足:①对任意x ∈R ,有f (x +2)=2f (x );②当x ∈-1,1]时,f (x )=1-x 2.若函数g (x )=⎩⎨⎧e x ,x ≤0,ln x ,x >0,则函数y =f (x )-g (x )在区间(-4,5)上的零点个数是( )A .7B .8C .9D .10解析:选C 函数f (x )与g (x )在区间-5,5]上的图象如图所示,由图可知,函数f (x )与g (x )的图象在区间(-4,5)上的交点个数为9,即函数y =f (x )-g (x )在区间(-4,5)上零点的个数是9.7.(2017·昆明两区七校调研)若f (x )+1=1fx +,当x ∈0,1]时,f (x )=x ,在区间(-1,1]内,g (x )=f (x )-mx -m2有两个零点,则实数m 的取值范围是( )A .⎣⎢⎡⎭⎪⎫0,13B .⎝ ⎛⎦⎥⎤0,23C .⎝ ⎛⎦⎥⎤0,13D .⎣⎢⎡⎭⎪⎫23,+∞解析:选B 依题意,f (x )=1fx +-1,当x ∈(-1,0)时,x +1∈(0,1),f (x )=1fx +-1=1x +1-1,由g (x )=0得f (x )=m ⎝ ⎛⎭⎪⎫x +12.在同一坐标系上画出函数y =f (x )与y =m ⎝ ⎛⎭⎪⎫x +12在区间(-1,1]内的图象,结合图象可知,要使g (x )有两个零点,只需函数y =f (x )与y =m ⎝ ⎛⎭⎪⎫x +12⎝ ⎛⎭⎪⎫该直线斜率为m ,过点⎝ ⎛⎭⎪⎫-12,0在区间(-1,1]内的图象有两个不同的交点, 故实数m 的取值范围是⎝ ⎛⎦⎥⎤0,23,选B .8.(2017·海口调研)若关于x 的方程|x 4-x 3|=ax 在R 上存在4个不同的实根,则实数a 的取值范围为( )A .⎝ ⎛⎭⎪⎫0,427B .⎝ ⎛⎦⎥⎤0,427C .⎝ ⎛⎭⎪⎫427,23D .⎝ ⎛⎦⎥⎤427,23解析:选A 依题意,注意到x =0是方程|x 4-x 3|=ax 的一个根. 当x >0时,a =|x 3-x 2|,记f (x )=x 3-x 2, 则有f ′(x )=3x 2-2x ,易知f (x )=x 3-x 2在区间⎝ ⎛⎭⎪⎫0,23上单调递减,在区间(-∞,0),⎝ ⎛⎭⎪⎫23,+∞上单调递增.又f (1)=0, 因此g (x )=|x 4-x 3|x=⎩⎨⎧|f x ,x >0,-|f x,x <0的图象如图所示,由题意得直线y =a 与函数y =g (x )的图象有3个不同的交点时,a ∈⎝⎛⎭⎪⎫0,427,选A .9.对于函数f (x )和g (x ),设α∈{x |f (x )=0},β∈{x |g (x )=0},若存在α,β,使得|α-β|≤1,则称f (x )与g (x )互为“零点相邻函数”.若函数f (x )=e x -1+x -2与g (x )=x 2-ax -a +3互为“零点相邻函数”,则实数a 的取值范围是( )A .2,4]B .⎣⎢⎡⎦⎥⎤2,73C .⎣⎢⎡⎦⎥⎤73,3D .2,3]解析:选D 函数f (x )=e x -1+x -2的零点为x =1, 设g (x )=x 2-ax -a +3的零点为b ,若函数f (x )=e x -1+x -2与g (x )=x 2-ax -a +3互为“零点相邻函数”, 则|1-b |≤1,∴0≤b ≤2.由于g (x )=x 2-ax -a +3必经过点(-1,4), ∴要使其零点在区间0,2]上, 则⎩⎨⎧g ,g ⎝ ⎛⎭⎪⎫a 2≤0,即⎩⎨⎧-a +3≥0,⎝ ⎛⎭⎪⎫a 22-a ·a2-a +3≤0,解得2≤a ≤3.10.已知在区间-4,4]上g (x )=-18x 2-x +2,f (x )=⎩⎨⎧log 2x ++43x +,-4≤x ≤-1,2|x -1|-2,-1<x ≤4,给出下列四个命题:①函数y =fg (x )]有三个零点; ②函数y =gf (x )]有三个零点; ③函数y =ff (x )]有六个零点; ④函数y =gg (x )]有且只有一个零点. 其中正确命题的个数是( ) A .1 B .2 C .3D .4解析:选D 画出函数f (x ),g (x )的草图,如图,①设t =g (x ),则由fg (x )]=0,得f (t )=0,则t =g (x )有三个不同值,由于y =g (x )是减函数,所以fg (x )]=0有3个解,所以①正确;②设m =f (x ),若gf (x )]=0,即g (m )=0, 则m =x 0∈(1,2),所以f (x )=x 0∈(1,2), 由图象知对应f (x )=x 0∈(1,2)的解有3个, 所以②正确;③设n =f (x ),若ff (x )]=0,即f (n )=0,n =x 1∈(-3,-2)或n =0或n =x 2=2,而f (x )=x 1∈(-3,-2)有1个解,f (x )=0对应有3个解,f (x )=x 2=2对应有2个解,所以ff (x )]=0共有6个解,所以③正确;④设s =g (x ),若gg (x )]=0,即g (s )=0, 所以s =x 3∈(1,2),则g (x )=x 3,因为y =g (x )是减函数,所以方程g (x )=x 3只有1个解,所以④正确,故四个命题都正确.11.已知函数f (x )=⎩⎨⎧2x 3+3x 2+m ,0≤x ≤1,mx +5,x >1.若函数f (x )的图象与x 轴有且只有两个不同的交点,则实数m 的取值范围为________.解析:当x ∈0,1]时,f ′(x )=6x 2+6x ≥0, 则f (x )=2x 3+3x 2+m 在0,1]上单调递增,因为函数f (x )的图象与x 轴有且只有两个不同的交点, 所以在区间0,1]和(1,+∞)内分别有一个交点, 则m <0,且f (1)=m +5>0,解得-5<m <0. 答案:(-5,0)12.设函数f (x )=⎩⎨⎧2x,x ≤0,log 2x ,x >0,则函数y =f (f (x ))-1的零点个数为________.解析:①当x ≤0时,y =f (f (x ))-1=f (2x )-1=log 22x -1=x -1, 令x -1=0,则x =1, 显然与x ≤0矛盾, 所以此情况无零点. ②当x >0时,分两种情况: 当x >1时,log 2x >0,y =f (f (x ))-1=f (log 2x )-1=log 2(log 2x )-1, 令log 2(log 2x )-1=0,得log 2x =2, 解得x =4;当0<x ≤1时,log 2x ≤0,y =f (f (x ))-1=f (log 2x )-1=2log 2x -1=x -1, 令x -1=0,解得x =1.综上,函数y =f (f (x ))-1的零点个数为2. 答案:213.(2017·湖北优质高中联考)函数f (x )=⎝ ⎛⎭⎪⎫12|x -1|+2cos πx (-4≤x ≤6)的所有零点之和为________.解析:原问题可转化为求y =⎝ ⎛⎭⎪⎫12|x -1|与y =-2cos πx 在-4,6]内的交点的横坐标的和,因为上述两个函数图象均关于x =1对称, 所以x =1两侧的交点关于x =1对称, 那么两对应交点的横坐标的和为2,分别画出两个函数在-4,6]上的图象(如图), 可知在x =1两侧分别有5个交点, 所以所求和为5×2=10.答案:1014.已知函数f (x )=⎩⎨⎧-x x +1,-1<x ≤0,x ,0<x ≤1与g (x )=a (x +1)的图象在(-1,1]上有2个交点,若方程x -1x=5a 的解为正整数,则满足条件的实数a 的个数为________.解析:在同一坐标系中作出函数f (x )与g (x )的图象,如图,结合图象可知,实数a 的取值范围是⎝⎛⎦⎥⎤0,12.由x -1x=5a ,可得x 2-5ax -1=0,设h (x )=x 2-5ax -1,当x =1时,由h (1)=1-5a -1=0, 可得a =0,不满足题意;当x =2时,由h (2)=4-10a -1=0, 可得a =310≤12,满足题意;当x =3时,由h (3)=9-15a -1=0可得a=815>1 2,不满足题意.又函数y=x-1x在(0,+∞)上单调递增,故满足条件的实数a的个数为1.答案:1。

2018届高考数学(理)专题复习:增分练5-1-8 含答案

2018届高考数学(理)专题复习:增分练5-1-8 含答案

小题提速练(八)(满分80分,押题冲刺,45分钟拿下客观题满分)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={(x ,y)|x +y =0,x ,y ∈R},B ={(x ,y)|x -y =0,x ,y ∈R},则集合A ∩B 中的元素个数是( )A .0B .1C .2D .3解析:选B.集合的交集问题转化为直线x +y =0和x -y=0的交点问题,作出直线x +y =0和x -y =0,观察它们的图象的交点只有一个,故选B.2.已知i 是虚数单位,5-izz =1+i ,则|z|=( )A .5 B. 5 C .2 5D .10解析:选B.由题知,5-iz =(1+i)z ,(1+2i)z =5, z =51+2i, |z|=⎪⎪⎪⎪⎪⎪51+2i =5|1+2i|=55=5,故选B. 3.已知命题p :若a =0.30.3,b =1.20.3,c =log 1.20.3,则a <c <b ;命题q :“x 2-x -6>0”是“x >4”的必要不充分条件,则下列命题正确的是( )A .p ∧qB .p ∧(﹁q)C .(﹁p)∧qD .(﹁p)∧(﹁q)解析:选C.因为0<a =0.30.3<0.30=1,b =1.20.3>1.20=1,c =log 1.20.3<log 1.21=0,所以c <a <b ,故命题p 为假命题,﹁p 为真命题;由x 2-x -6>0可得x <-2或x >3,故“x 2-x -6>0”是“x >4”的必要不充分条件,q 为真命题,故(﹁p)∧q 为真命题,选C.4.在△ABC 中,已知向量AB →=(2,2),|AC →|=2,AB →²AC →=-4,则∠A =( )A.5π6B.π4C.2π3D.3π4解析:选D.∵AB →=(2,2),∴|AB →|=22+22=22,∴cos A =AB →²AC →|AB →||AC →|=-422³2=-22,∵0<A <π,∴∠A =3π4,故选D.5.已知正项等比数列{a n }的首项a 1=1,a 2²a 4=16,则a 8=( ) A .32 B .64 C .128D .256解析:选C.因为a 2²a 4=16=(a 3)2,所以a 3=4,因为a 3=a 1q 2=4,a 1=1,所以q 2=4,即q =±2,q =-2舍去,所以q =2,所以a 8=a 3q 5=4³25=27=128,故选C.6.定义在[-2,2]的函数f(x)对于任意的x 1<x 2,x 1,x 2∈[-2,2],都有f(x 1)<f(x 2),且f(a 2-a)>f(2a -2),则实数a 的范围是( )A .[-1,2)B .[0,2)C .[0,1)D .[-1,2)解析:选C.∵函数f(x)满足对于任意的x 1,x 2∈[-2,2]都有f(x 1)<f(x 2),所以函数f(x)在[-2,2]上单调递增,∴⎩⎨⎧-2≤a 2-a ≤2,-2≤2a -2≤2,2a -2<a 2-a ,∴⎩⎨⎧-1≤a ≤2,0≤a ≤2,a <1或a >2,∴0≤a <1,故选C.7.过球O 的一条半径的中点且与该半径垂直的截面圆的面积是4π,则球O 的表面积是( )A.163π3 B.323π3 C.32π3D.64π3解析:选D.设该球的半径为R ,由条件可得截面圆的半径为2,且⎝ ⎛⎭⎪⎫R 22+4=R 2,。

2018届高考数学(理)二轮专题复习:增分练5-1-4 Word版含答案

2018届高考数学(理)二轮专题复习:增分练5-1-4 Word版含答案

小题提速练(四)(满分80分,押题冲刺,45分钟拿下客观题满分)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a ,b ∈R ,i 是虚数单位,若a -i 与2+b i 互为共轭复数,则(a +b i)2=( ) A .5-4i B .5+4i C .3-4iD .3+4i解析:选D.因为a ,b ∈R ,i 是虚数单位,若a -i 与2+b i 互为共轭复数,所以a =2,b =1,所以(a +b i)2=(2+i)2=3+4i.2.若全集U =R ,集合A ={x |1<2x<4},B ={x |x -1>0},则A ∩(∁U B )=( ) A .{x |0<x ≤1} B .{x |1<x <2} C .{x |0<x <1}D .{x |1≤x <2}解析:选A.A ={x |1<2x<4}={x |0<x <2},B ={x |x -1>0}={x |x >1},则∁U B ={x |x ≤1},则A ∩(∁U B )={x |0<x ≤1}.3.已知命题p :∀x ≥0,2x ≥1;命题q :若x >y ,则x 2>y 2,则下列命题为真命题的是( ) A .p ∧q B .p ∧﹁q C .﹁p ∧﹁qD .﹁p ∨q解析:选B.命题p :∀x ≥0,2x≥1为真命题,命题q :若x >y ,则x 2>y 2为假命题(如x =0,y =-3),故﹁q 为真命题,则p ∧﹁q 为真命题.4.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( )A .2B .-2C .-98D .98解析:选B.∵f (x +4)=f (x ),∴函数的周期是4,∵f (x )在R 上是奇函数,且当x ∈(0,2)时,f (x )=2x 2,∴f (7)=f (7-8)=f (-1)=-f (1)=-2.5.一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为2的直角三角形,俯视图是半径为1的四分之一圆周和两条半径,则这个几何体的体积为( )A.312π B.36πC.34π D.33π 解析:选A.由三视图可知几何体为圆锥的14,圆锥的底面半径为1,母线长为2,∴圆锥的高度为3,∴V =14×13×π×12×3=3π12.6.在区间[-2,4]上随机地抽取一个实数x ,若x 满足x 2≤m 的概率为56,则实数m 的值为( )A .2B .3C .4D .9解析:选D.如图区间长度是6,区间[-2,4]上随机取一个数x ,若x 满足x 2≤m 的概率为56,所以m =9.7.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .4B .-14C .2D .-12解析:选A.f ′(x )=g ′(x )+2x ,∵y =g (x )在点(1,g (1))处的切线方程为y =2x +1,∴g ′(1)=2,∴f ′(1)=g ′(1)+2×1=2+2=4,∴y =f (x )在点(1,f (1))处切线的斜率为4.8.如图程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a ,b ,i 的值分别为6,8,0,则输出a 和i 的值分别为( )A .0,4B .0,3C .2,4D .2,3解析:选C.模拟执行程序框图,可得a =6,b =8,i =0,i =1,不满足a >b ,不满足a =b ,b =8-6=2,i =2,满足a >b ,a =6-2=4,i =3,满足a >b ,a =4-2=2,i =4,不满足a>b ,满足a =b ,输出a 的值为2,i 的值为4.9.已知sin φ=35,且φ∈⎝ ⎛⎭⎪⎫π2,π,函数f (x )=sin(ωx +φ)(ω>0)的图象的相邻两条对称轴之间的距离等于π2,则f ⎝ ⎛⎭⎪⎫π4的值为( ) A .-35B .-45C.35D.45解析:选B.根据函数f (x )=sin(ωx +φ)(ω>0)的图象的相邻两条对称轴之间的距离等于π2,可得T 2=πω=π2, ∴ω=2.由sin φ=35,且φ∈⎝ ⎛⎭⎪⎫π2,π,可得cos φ=-45,则f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π2+φ=cos φ=-45.10.已知△ABC 的三个顶点A ,B ,C 的坐标分别为(0,1),(2,0),(0,-2),O 为坐标原点,动点P 满足|CP →|=1,则|OA →+OB →+OP →|的最小值是( )A.3-1B.11-1C.3+1D.11+1解析:选 A.由|CP →|=1及C (0,-2)可得点P 的轨迹方程为x 2+(y +2)2=1,即⎩⎪⎨⎪⎧x =cos θ,y =sin θ-2,∴OA →+OB →+OP →=(2+cos θ,sin θ-1),|OA →+OB →+OP →|2=(2+cos θ)2+(sin θ-1)2=2+22cos θ+cos 2θ+sin 2θ-2sin θ+1=4+23cos(θ+φ)≥4-23⎝⎛⎭⎪⎫cos φ=63,sin φ=33,∴|OA →+OB →+OP →|≥3-1.11.过双曲线x 2a -y 2b=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条渐近线交于点B ,若FB →=2FA →,则此双曲线的离心率为( )A. 2B. 3 C .2D. 5解析:选C.如图,因为FB →=2FA →,所以A 为线段FB 的中点,∴∠2=∠4,又∠1=∠3,∠2+∠3=90°,所以∠1=∠2+∠4=2∠2=∠3,故∠2+∠3=90°=3∠2⇒∠2=30°⇒∠1=60°⇒b a =3.∴e 2=1+⎝ ⎛⎭⎪⎫b a 2=4⇒e =2.12.已知三棱锥S ­ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26B.36C.23D.22解析:选A.根据题意作出图形,设球心为O ,过ABC 三点的小圆的圆心为O 1,则OO 1⊥平面ABC ,延长CO 1交球于点D ,则SD ⊥平面ABC .∵CO 1=23×32=33, ∴OO 1=63,∴SD =2OO 1=263, ∵△ABC 是边长为1的正三角形,∴S △ABC =34,∴V =13×34×263=26. 二、填空题(本题共4小题,每小题5分;共20分)13.某中学高中一年级、二年级、三年级的学生人数比为5∶4∶3,现要用分层抽样的方法抽取一个容量为240的样本,则所抽取的高中二年级学生的人数是________.解析:用分层抽样的方法从该校高中三个年级的学生中抽取容量为240的样本,则应从所抽取的高中二年级学生的人数45+4+3×240=80.答案:8014.若实数x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y -2≤0,2x +y -4≥0,y ≤2,则xy的取值范围是________.解析:作出不等式组对应的平面区域如图中阴影部分,则由图象知x >0,则设k =y x,则z=x y =1k,则k 的几何意义是区域内的点到原点的斜率,由图象知,OA 的斜率最大,OC 的斜率最小,由⎩⎪⎨⎪⎧y =2,2x +y -4=0得⎩⎪⎨⎪⎧x =1,y =2,即A (1,2),由⎩⎪⎨⎪⎧2x -y -2=0,2x +y -4=0,得⎩⎪⎨⎪⎧x =32,y =1,即C ⎝ ⎛⎭⎪⎫32,1,则OA 的斜率k =2,OC 的斜率k =132=23,则23≤k ≤2,则12≤1k ≤32,则12≤x y ≤32,即x y 的取值范围是⎣⎢⎡⎦⎥⎤12,32. 答案:⎣⎢⎡⎦⎥⎤12,32 15.设数列{a n }的各项都是正数,且对任意n ∈N *,都有4S n =a 2n +2a n ,其中S n 为数列{a n }的前n 项和,则数列{a n }的通项公式为a n =________.解析:当n =1时,由4S 1=a 21+2a 1,a 1>0,得a 1=2,当n ≥2时,由4a n =4S n -4S n -1=(a 2n +2a n )-(a 2n -1+2a n -1),得(a n +a n -1)(a n -a n -1-2)=0,因为a n +a n -1>0,所以a n -a n -1=2,故a n =2+(n -1)×2=2n ,代入n =1得a 1=2符合上式,所以数列{a n }的通项公式为a n =2n .答案:2n16.已知以F 为焦点的抛物线y 2=4x 上的两点A ,B 满足AF →=2FB →,则弦AB 中点到抛物线准线的距离为________.解析:令A (x 1,y 1),B (x 2,y 2),其中点D (x 0,y 0),F (1,0),由AF →=2FB →得,⎩⎪⎨⎪⎧1-x 1=2 x 2-1 ,-y 1=2y 2,∴⎩⎪⎨⎪⎧x 1+2x 2=3,y 1+2y 2=0,故⎩⎪⎨⎪⎧x 0=x 1+x 22=3-x 22,y 0=y 1+y 22=-y 22,∵⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,两式相减得(y 1-y 2)(y 1+y 2)=4(x 1-x 2),故k AB =y 1-y 2x 1-x 2=4y 1+y 2,又k FB =y 2x 2-1,∴k AB =k FB ,∴4y 1+y 2=y 2x 2-1, ∴y 2(y 1+y 2)=4(x 2-1),即-y 22=4(x 2-1),又-y 22=-4x 2,∴4(x 2-1)=-4x 2,得x 2=12,∴x 0=3-x 22=54,AB 中点到抛物线准线距离d =x 0+1=94.答案:94。

2018届高考数学(理)二轮专题复习:增分练5-1-3 Word版含答案

2018届高考数学(理)二轮专题复习:增分练5-1-3 Word版含答案

小题提速练(三)(满分80分,押题冲刺,45分钟拿下客观题满分)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M ={x |x 2-2x -3<0},N ={x |log 2x <0},则M ∩N 等于( ) A .(-1,0) B .(-1,1) C .(0,1)D .(1,3)解析:选C.由题干条件可知,M ={x |-1<x <3},N ={x |0<x <1},所以M ∩N ={x |0<x <1}.2.若复数z 的实部为1,且|z |=2,则复数z 的虚部是( ) A .- 3 B .± 3 C .±3iD.3i解析:选B.复数z 的实部为1,设z =1+b i ,|z |=2,可得1+b 2=2,解得b =±3,复数z 的虚部是± 3.3.若命题p :∃α∈R ,cos(π-α)=cos α;命题q :∀x ∈R ,x 2+1>0,则下面结论正确的是( )A .p 是假命题B .﹁q 是真命题 C .p ∧q 是假命题D .p ∨q 是真命题解析:选D.当α=π2时,cos ⎝⎛⎭⎪⎫π-π2=cos π2=0, ∴命题p :∃α∈R ,cos(π-α)=cos α是真命题,∵∀x ∈R ,x 2+1≥1>0,∴命题q 是真命题,∴A 中p 是假命题是错误的;B 中﹁q 是真命题是错误的;C 中p ∧q 是假命题是错误的;D 中p ∨q 是真命题是正确的.4.如图是某班50位学生期中考试数学成绩的频率分布直方图,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则图中x 的值等于( )A .0.120B .0.180C .0.012D .0.018解析:选D.由30×0.006+10×0.01+10×0.054+10x =1,解得x =0.018.5.若一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为( )A .1B .2C .3D .4解析:选 D.由题意可知,该几何体是三棱锥,其放置在长方体中形状如图所示,利用长方体模型可知,此三棱锥的四个面中,全部是直角三角形.6.若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,ln x ,x >1,则f (f (e))=(其中e 为自然对数的底数)( )A .0B .1C .2D .(e 2+1)解析:选C.由题意得,f (e)=ln e =1,所以f (f (e))=f (1)=1+1=2.7.函数f (x )=⎝ ⎛⎭⎪⎫1-2x1+2x cos x 的图象大致为( )解析:选C.依题意,注意到f (-x )=1-2-x1+2-x cos(-x )=2x-2-x 2x+2-xcos x =2x-12x +1cos x =-f (x ),因此函数f (x )是奇函数,其图象关于原点对称,结合各选项知,选项A ,B 均不正确;当0<x <1时,1-2x1+2x <0,cos x >0,f (x )<0,因此结合选项知,C 正确,选C.8.已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值范围为( )A.⎝ ⎛⎭⎪⎫13,+∞B.⎣⎢⎡⎭⎪⎫13,+∞C.⎝ ⎛⎭⎪⎫23,+∞ D.⎣⎢⎡⎭⎪⎫23,+∞ 解析:选D.依题意得,当n ≥2时,a n =a 1a 2a 3…a na 1a 2a 3…a n -1=2n 22n -2=2n 2-(n -1)2=22n -1,又a 1=21=22×1-1,因此a n =22n -1,1a n =122n -1,数列{1a n }是以12为首项,14为公比的等比数列,等比数列{1a n }的前n 项和等于12⎝ ⎛⎭⎪⎫1-14n 1-14=23⎝ ⎛⎭⎪⎫1-14n <23,因此实数t 的取值范围是⎣⎢⎡⎭⎪⎫23,+∞,选D.9.若函数f (x )=2sin ⎝ ⎛⎭⎪⎫π8x +π4(-2<x <14)的图象与x 轴交于点A ,过点A 的直线l 与函数的图象交于B ,C 两点,则(OB →+OC →)·OA →=(其中O 为坐标原点)( )A .-32B .32C .-72D .72解析:选D.由f (x )=2sin ⎝ ⎛⎭⎪⎫π8x +π4=0可得π8x +π4=k π,∴x =8k -2,k ∈Z ,∵-2<x<14,∴x =6即A (6,0),设B (x 1,y 1),C (x 2,y 2),∵过点A 的直线l 与函数的图象交于B ,C 两点,∴B ,C 两点关于点A 对称即x 1+x 2=12,y 1+y 2=0,则(OB →+OC →)·OA →=(x 1+x 2,y 1+y 2)·(6,0)=6(x 1+x 2)=72.10.双曲线C 1的中心在原点,焦点在x 轴上,若C 1的一个焦点与抛物线C 2:y 2=12x 的焦点重合,且抛物线C 2的准线交双曲线C 1所得的弦长为43,则双曲线C 1的实轴长为( )A .6B .2 6 C. 3D .2 3解析:选D.由题意可得双曲线C 1的一个焦点为(3,0),∴c =3,可设双曲线C 1的标准方程为x 2a 2-y 29-a 2=1,由⎩⎪⎨⎪⎧x =-3,x 2a 2-y 29-a2=1,解得y =±9-a2a,∴2×9-a 2a=43,解得a =3,∴双曲线C 1的实轴长为2a =2 3.11.已知点P 是椭圆x 216+y 28=1上非顶点的动点,F 1,F 2分别为椭圆的左、右焦点,O 是坐标原点,若M 是∠F 1PF 2的角平分线上一点,且F 1M →·MP →=0,则|OM →|的取值范围是( )A .[0,3)B .(0,22)C .[22,3)D .(0,4]解析:选B.如图,当点P 在椭圆与y 轴交点处时,点M 与原点O 重合,此时|OM →|取最小值0.当点P 在椭圆与x 轴交点时,点M 与焦点F 1重合,此时|OM →|取大值22.∵xy ≠0,∴|OM →|的取值范围是(0,22).12.已知函数f (x )=⎩⎪⎨⎪⎧x 2+x +a ,x <0,ln x ,x >0,若函数f (x )的图象在A ,B 两点处的切线重合,则实数a 的取值范围是( )A .(-2,-1)B .(1,2)C .(-1,+∞)D .(-ln 2,+∞)解析:选C.当x <0时,f (x )=x 2+x +a 的导数为f ′(x )=2x +1;当x >0时,f (x )=ln x 的导数为f ′(x )=1x,设A (x 1,f (x 1)),B (x 2,f (x 2))为该函数图象上的两点,且x 1<x 2,当x 1<x 2<0,或0<x 1<x 2时,f ′(x 1)≠f ′(x 2),故x 1<0<x 2,当x 1<0时,函数f (x )在点A (x 1,f (x 1))处的切线方程为y -(x 21+x 1+a )=(2x 1+1)(x -x 1);当x 2>0时,函数f (x )在点B (x 2,f (x 2))处的切线方程为y -ln x 2=1x 2(x -x 2),两直线重合的充要条件是1x 2=2x 1+1①,ln x 2-1=-x 21+a②,由①及x 1<0<x 2得0<1x 2<1,由①②得a =ln x 2+14⎝ ⎛⎭⎪⎫1x 2-12-1,令t =1x 2,则0<t <1,且a =-ln t +14t 2-12t -34,设h (t )=-ln t +14t 2-12t -34(0<t <1),则h ′(t )=-1t +12t -12<0,即h (t )在(0,1)为减函数,则h (t )>h (1)=-ln 1-1=-1,则a >-1,可得函数f (x )的图象在点A ,B 处的切线重合,a 的取值范围是(-1,+∞).二、填空题(本题共4小题,每小题5分;共20分)13.若直线ax -by +1=0平分圆C :x 2+y 2+2x -4y +1=0的周长,则ab 的取值范围是________.解析:∵直线ax -by +1=0平分圆C :x 2+y 2+2x -4y +1=0的周长, ∴直线ax -by +1=0过圆C 的圆心(-1,2),∴有a +2b =1,∴ab =(1-2b )b =-2⎝ ⎛⎭⎪⎫b -142+18≤18,∴ab 的取值范围是⎝⎛⎦⎥⎤-∞,18.答案:⎝⎛⎦⎥⎤-∞,18 14.若某程序框图如图所示,则该程序运行后输出的i 值为________.解析:由程序框图知:程序第一次运行n =10,i =2;第二次运行n =5,i =3;第三次运行n =3×5+1=16,i =4;第四次运行n =8,i =5;第五次运行n =4,i =6;第六次运行n =2,i=7;第七次运行n =1,i =8.满足条件n =1.程序运行终止,输出i =8.答案:815.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y +4≤0,y ≥2,x -4y +k ≥0,且目标函数z =3x +y 的最小值为-1,则实常数k =________.解析:由题意作出目标函数的平面区域如图所示,结合图象可知,当过点A (x,2)时,目标函数z =3x +y 取得最小值-1,故3x +2=-1,解得x =-1,故A (-1,2),故-1=4×2-k ,故k =9.答案:916.在一个棱长为4的正方体内,最多能放入________个直径为1的球.解析:根据球体的特点,最多应该是放5层,第一层能放16个;第2层放在每4个小球中间的空隙,共放9个;第3层继续往空隙放,可放16个;第4层同第2层放9个;第5层同第1、3层能放16个,所以最多可以放入小球的个数:16+9+16+9+16=66(个).答案:66。

2018-高考近5年全国卷一理科数学含(详细答案)

2018-高考近5年全国卷一理科数学含(详细答案)

绝密★启用前2018年普通高等学校招生全国统一考试(新课标Ⅰ卷)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设,则()A.0B.C.D.2.已知集合,则()A.B.C.D.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记为等差数列的前项和.若,,则()A.B.C.D.125.设函数.若为奇函数,则曲线在点处的切线方程为()A.B.C.D.6.在中,为边上的中线,为的中点,则()A.B.C.D.7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A.B.C.D.28.设抛物线的焦点为,过点且斜率为的直线与交于,两点,则()A.5B.6C.7D.89.已知函数,,若存在2个零点,则的取值范围是()A.B.C.D.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则()A.B.C.D.11.已知双曲线,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为,.若为直角三角形,则()A.B.3C.D.412.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题(本题共4小题,每小题5分,共20分)13.若满足约束条件,则的最大值为________.14.记为数列的前项和.若,则________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数,则的最小值是________.三、解答题(共70分。

2018-2019学年高考数学(理)二轮专题复习:增分练5-1-10-含答案

2018-2019学年高考数学(理)二轮专题复习:增分练5-1-10-含答案

小题提速练(十)(满分80分,押题冲刺,45分钟拿下客观题满分)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知z 为复数,且2z +z =6-4i ,则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选D.设z =x +y i ,则有3x +y i =6-4i ,x =2,y =-4,故z 在复平面内对应的点是(2,-4),该点位于第四象限,选D.2.设集合A ={x |-2<x <3},B ={x ∈Z|x 2-5x <0},则A ∩B =( )A .{1,2}B .{2,3}C .{1,2,3}D .{2,3,4} 解析:选A.依题意得A ={-1,1,2},B ={x ∈Z|0<x <5}={1,2,3,4},故A ∩B ={1,2},选A.3.cos 80°cos 130°-sin 100°sin 130°=( ) A.32 B.12C .-12D .-32 解析:选D.cos 80°cos 130°-sin 100°sin 130°=cos 80°cos 130°-sin 80°sin 130°=cos(80°+130°)=cos 210°=-cos 30°=-32,选D. 4.已知向量a =(1,3),|b |=1,且向量a 与b 的夹角为60°,则(a -b )·b =( )A .0B .-1C .2D .-2解析:选A.(a -b )·b =|a ||b |cos 60°-b 2=0,选A.5.设实数x ,y 满足约束条件⎩⎪⎨⎪⎧ x -y ≥0x +y ≤1x +2y ≥1,则z =2x -y 的最大值为( ) A .5B .4C .3D .2解析:选D.如图,画出不等式组表示的平面区域(阴影部分)及直线2x -y =0,平移该直线,当平移到经过平面区域内的点(1,0)时,相应直线在y 轴上的截距达到最小,此时z 取得最大值2,选D.。

2018届高考数学(理)二轮专题复习:增分练5-1-1

2018届高考数学(理)二轮专题复习:增分练5-1-1

小题提速练(一)(满分80分,押题冲刺,45分钟拿下客观题满分)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={0,1,2},N ={x |-1≤x ≤1,x ∈Z },则M ∩N 为( ) A .(0,1) B .[0,1] C .{0,1}D .∅解析:选C.N ={-1,0,1},故M ∩N ={0,1}.2.已知复数z =3-b ii (b ∈R )的实部和虚部相等,则|z |=( )A .2B .3C .2 2D .3 2解析:选D.令3-b ii =-b -3i ,解得b =3故|z |=3 2.3.“log 2(2x -3)<1”是“x >32”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A.log 2(2x -3)<1,化为0<2x -3<2,解得32<x <52.∴“log 2(2x -3)<1”是“x>32”的充分不必要条件. 4.函数y =x 2+ln|x |的图象大致为( )解析:选A.∵f (x )为偶函数,故排除B ,C ,当x →0时,y →-∞,故排除D ,或者根据当x >0时,y =x 2+ln x 为增函数,故排除D.5.函数f (x )=A cos(ωx +φ)(A >0,ω>0,-π<φ<0)的部分图象如图所示,为了得到g (x )=A cos ωx 的图象,只需将函数y =f (x )的图象( )A .向左平移2π3个单位长度B .向左平移π3个单位长度C .向右平移2π3个单位长度D .向右平移π3个单位长度解析:选B.由图象知A =2,T 2=π3-⎝ ⎛⎭⎪⎫-π6=π2,∴T =π,ω=2,f (x )=2cos(2x +φ),将⎝⎛⎭⎪⎫π3,2代入得cos ⎝⎛⎭⎪⎫2π3+φ=1,-π<φ<0,∴φ=-2π3,f (x )=2cos ⎝ ⎛⎭⎪⎫2x -2π3=2cos 2⎝ ⎛⎭⎪⎫x -π3,故可将函数y =f (x )的图象向左平移π3个单位长度得到g (x )的图象. 6.圆x 2+y 2+4x -2y -1=0上存在两点关于直线ax -2by +2=0(a >0,b >0)对称,则1a +4b的最小值为( )A .8B .9C .16D .18解析:选B.由圆的对称性可得,直线ax -2by +2=0必过圆心(-2,1),所以a +b =1.所以1a +4b =⎝ ⎛⎭⎪⎫1a +4b (a +b )=5+b a +4a b ≥5+4=9,当且仅当b a =4ab,即2a =b 时取等号,故选B.7.已知变量x ,y 满足:⎩⎪⎨⎪⎧2x -y ≤0,x -2y +3≥0,x ≥0,则z =(2)2x +y的最大值为( )A. 2 B .2 2 C .2D .4解析:选D.作出不等式组对应的平面区域如图阴影部分所示:设m =2x +y 得y =-2x +m ,平移直线y =-2x +m ,由图象可知当直线y =-2x +m 经过点A 时,直线y =-2x +m 的截距最大,此时m 最大.由⎩⎪⎨⎪⎧2x -y =0x -2y +3=0,解得⎩⎪⎨⎪⎧x =1,y =2.即A (1,2),代入目标函数m =2x +y 得m =2×1+2=4.即目标函数z =(2)2x +y的最大值为z max =(2)4=4.故选D.8.如图所示的程序框图的算法思想源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“m MOD n ”表示m 除以n 的余数),若输入的m ,n 分别为495,135,则输出的m =( )A .0B .5C .45D .90解析:选C.该程序框图是求495与135的最大公约数,由495=135×3+90,135=90×1+45,90=45×2,所以495与135的最大公约数是45,所以输出的m =45,故选C.9.在[-2,2]上随机地取两个实数a ,b ,则事件“直线x +y =1与圆(x -a )2+(y -b )2=2相交”发生的概率为( )A.1116B.916C.34D.14解析:选 A.如图,由已知基本事件空间Ω={(a ,b )|⎩⎪⎨⎪⎧-2≤a ≤2-2≤b ≤2},为图中正方形内及边界上的点,事件“直线x+y =1与圆(x -a )2+(y -b )2=2相交”为A =⎩⎨⎧⎭⎬⎫a ,b |f(|a +b -1|2<2)=错误!,为图中阴影部分上的点(不含正方形内的虚线段).所以P (A )=μAμΩ=16-⎝ ⎛⎭⎪⎫12×1×1+12×3×316=1116.10.已知一个几何体的三视图如图所示,则该几何体的表面积为( )A.52π+2+19 B.32π+19 C.32π+2+19 D .2π+2+19解析:选C.由该几何体的三视图可知,该几何体是一个组合体,左边是底面半径为1、高为3、母线长为2的半圆锥,右边是底面为等腰三角形(底边为2、高为2)、高为3的三棱锥.所以此组合体左边的表面积S 左=S 左底面+S 左侧面=12π×12+12π×1×2=32π,组合体右边的侧面是两个全等的三角形(其中三角形的三边分别为2,5,7), 设长为5的边所对的角为α, 则cos α=22+72-522×2×7=3714,所以sin α=13314,则S 右侧面=12×2×7×13314×2=19,所以该几何体右边的表面积S 右=S 右底+S 右侧面=12×2×2+19=2+19,故S 表面积=32π+2+19,故选C.11.已知O 为坐标原点,F 是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左焦点,A ,B 分别为双曲线C 的左、右顶点,P 为双曲线C 上的一点,且PF ⊥x 轴,过点A 的直线l 与线段PF 交于M ,与y 轴交于点E ,直线BM 与y 轴交于点N ,若|OE |=3|ON |,则双曲线C 的离心率为( )A.43B.32 C .2D .3解析:选C.因为PF ⊥x 轴,所以设M (-c ,t ).则A (-a,0),B (a,0),AE 的斜率k =ta -c,则AE 的方程为y =ta -c(x +a ),令x =0,则y=ta a -c ,即E ⎝ ⎛⎭⎪⎫0,ta a -c ,BN 的斜率k =-t a +c ,则BN 的方程为y =-t a +c (x -a ),令x =0,则y =ta a +c ,即N ⎝ ⎛⎭⎪⎫0,ta a +c ,因为|OE |=3|ON |,所以3⎪⎪⎪⎪⎪⎪ta a +c =⎪⎪⎪⎪⎪⎪ta a -c ,即3a +c =1c -a ,则3(c -a )=a +c ,即c =2a ,则离心率e =ca=2.故选C.12.设函数f (x )=⎩⎪⎨⎪⎧2xx ≤,log 2x x >,则函数y =f (f (x ))-1的零点个数为( )A .2B .4C .6D .12解析:选A.①当x ≤0时,y =f (f (x ))-1=f (2x )-1=log 22x-1=x -1,令x -1=0,则x =1,显然与x ≤0矛盾,所以当x ≤0时,y =f (f (x ))-1无零点.②当x >0时,分两种情况:当x >1时,log 2x >0,y =f (f (x ))-1=f (log 2x )-1=log 2(log 2x )-1,令log 2(log 2x )-1=0,得log 2x =2,解得x =4;当0<x ≤1时,log 2x ≤0,y =f (f (x ))-1=f (log 2x )-1=2log 2x -1=x -1,令x -1=0,解得x =1.综上,函数y =f (f (x ))-1的零点个数为2.故选A. 二、填空题(本题共4小题,每小题5分;共20分)13.函数f (x )=ax 2+(b -2a )x -2b 为偶函数,且在(0,+∞)上单调递增,则f (x )>0的解集为________.解析:由已知f (x )为二次函数且对称轴为y 轴,∴-b -2a 2a=0,a ≠0,即b =2a ,∴f (x )=ax 2-4a . 再根据函数在(0,+∞)单调递增,可得a >0.令f (x )=0,求得x =2或x =-2,故由f (x )>0,可得x <-2或x >2,故解集为{x |x <-2或x >2}.答案:{x |x <-2或x >2}14.现有一半球形原料,若通过切削将该原料加工成一正方体工件,则所得工件体积与原料体积之比的最大值为________.解析:设该球半径为R ,正方体边长为a ,由题意得当正方体体积最大时a 2+⎝⎛⎭⎪⎫2a 22=R 2, ∴R =6a2,∴所得工件体积与原料体积之比的最大值为: a 312×4πR33=a 312×4π3×⎝ ⎛⎭⎪⎫6a 23=63π.答案:63π15.有下列各式:1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,…,则按此规律可猜想此类不等式的一般形式为:________.解析:观察各式左边为1n的和的形式,项数分别为:3,7,15,故可猜想第n 个式子中应有2n+1-1项,不等式右边分别写成22,32,42故猜想第n 个式子中应为n +12,按此规律可猜想此不等式的一般形式为:1+12+13+…+12n +1-1>n +12(n ∈N *). 答案:1+12+13+…+12n +1-1>n +12(n ∈N *)16.已知向量a ,b ,c ,满足|a |=4,|b |=22,〈a ·b 〉=π4,(c -a )·(c -b )=-1,则|c -a |的最大值为________.解析:如图,设OA →=a ,OB →=b ,OC →=c ,以OA 所在的直线为x 轴,O 为坐标原点建立平面直角坐标系,∵|a |=4,|b |=22,a 与b 的夹角为π4,则A (4,0),B (2,2),设C (x ,y ),∵(c -a )·(c -b )=-1,∴x 2+y 2-6x -2y +9=0,即(x -3)2+(y -1)2=1表示以(3,1)为圆心,1为半径的圆,|c -a |表示点A ,C 的距离,即圆上的点与A (4,0)的距离,因为圆心到A 的距离为2,所以|c -a |的最大值为2+1.答案:2+1。

【高考复习】2018年 高考数学(理数) 课后练习卷(含答案解析)

【高考复习】2018年 高考数学(理数) 课后练习卷(含答案解析)

导数在函数中的应用1.已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求实数a的取值范围.2.已知a∈R,函数f(x)=(-x2+ax)e x(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)若函数f(x)在(-1,1)上单调递增,求实数a的取值范围.3.设函数f(x)=ln x +xm ,m ∈R .(1)当m=e(e 为自然对数的底数)时,求f(x)的极小值; (2)讨论函数g(x)=f ′(x)-3x 零点的个数.4.函数f(x)=(ax2+x)e x,其中e是自然对数的底数,a∈R.(1)当a>0时,解不等式f(x)≤0;(2)当a=0时,求整数t的所有值,使方程f(x)=x+2在[t,t+1]上有解.5.设函数f(x)=e 2x-aln x.(1)讨论f(x)的导函数f ′(x)零点的个数; (2)证明:当a >0时,f(x)≥2a +aln a2.6.已知函数f(x)=ax+ln x(a∈R).(1)若a=2,求曲线y=f(x)在x=1处的切线方程;(2)求f(x)的单调区间;(3)设g(x)=x2-2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1]使得f(x1)<g(x2),求a的取值范围.7.已知等差数列{a n }的前n 项和为S n ,且a 3=5,S 3=9. (1)求数列{a n }的通项公式;(2)设等比数列{b n }的前n 项和为T n ,若q>0且b 3=a 5,T 3=13,求T n ; (3)设11+=n n n a a c ,求数列{c n }的前n 项和S n .8.设数列{a n}的前n项之积为T n,且2)1( log2-=n nTn,n∈N*.(1)求数列{a n}的通项公式;(2)设b n=λa n-1(n∈N*),数列{b n}的前n项之和为S n.若对任意的n∈N*,总有S n+1>S n,求实数λ的取值范围.9.已知双曲线12222=-by ax (a >0,b >0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为( ) A.113922=-yxB.191322=-yx=1 C.1322=-yxD.1322=-yx10.已知椭圆12422=+yx的左、右焦点分别为F 1,F 2,过F 1且倾斜角为45°的直线l 交椭圆于A ,B两点,以下结论:①△ABF 2的周长为8;②原点到l 的距离为1;③|AB|=38.其中正确结论的个数为( )A.3B.2C.1D.011.若点M(2,1),点C 是椭圆171622=+yx的右焦点,点A 是椭圆的动点,则|AM|+|AC|的最小值为________. 12.已知椭圆12222=+by ax (a >b >0)与抛物线y 2=2px(p >0)有相同的焦点F ,P ,Q 是椭圆与抛物线的交点,若直线PQ 经过焦点F ,则椭圆12222=+by ax 1(a >b >0)的离心率为________.13.已知抛物线C :y 2=2px(p>0)的焦点F(1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点.(1)求抛物线C 的方程; (2)若直线OA ,OB 的斜率之积为-21,求证:直线AB 过x 轴上一定点.参考答案1.解:2.解:3.解:4.解:5.6.解:7.解:8.解:9.答案为:D ;10.答案为:A ;解析:①由椭圆的定义,得|AF 1|+|AF 2|=4,|BF 1|+|BF 2|=4,又|AF 1|+|BF 1|=|AB|,所以△ABF 2的周长为|AB|+|AF 2|+|BF 2|=8,故①正确;②由条件,得F 1(-2,0), 因为过F 1且倾斜角为45°的直线l 的斜率为1,所以直线l 的方程为y=x +2, 则原点到l 的距离d=22=1,故②正确;③设A(x 1,y 1),B(x 2,y 2),由⎪⎩⎪⎨⎧=++=124222yx x y , 得3x 2+42x=0,解得x 1=0,x 2=-324,所以|AB|=1+1·|x 1-x 2|=38,故③正确.11.答案为:8-26; 解析:设点B 为椭圆的左焦点,点M(2,1)在椭圆内,那么|BM|+|AM|+|AC|≥|AB|+|AC|=2a , 所以|AM|+|AC|≥2a -|BM|,而a=4,|BM|=26,所以(|AM|+|AC|)最小=8-26.12.答案为:2-1;解析:因为抛物线y 2=2px(p >0)的焦点F 为(2p ,0),设椭圆另一焦点为E.如图所示,将x=p 2代入抛物线方程得y=±p ,又因为PQ 经过焦点F ,所以P(2p ,2p)且PF ⊥OF.所以|PE|=2p ,|PF|=p ,|EF|=p.故2a=2p +p ,2c=p ,e=ac 22=2-1.13.(1)解:因为抛物线y 2=2px(p>0)的焦点坐标为(1,0),所以2p =1,所以p=2.所以抛物线C 的方程为y 2=4x. (2)证明:①当直线AB 的斜率不存在时,设A(42t,t),B(42t,-t).因为直线OA ,OB 的斜率之积为-21,所以214422-=-⋅tt tt ,化简得t 2=32.所以A(8,t),B(8,-t),此时直线AB 的方程为x=8.②当直线AB 的斜率存在时,设其方程为y=kx +b ,A(x A ,y A ),B(x B ,y B ),联立得⎩⎨⎧+==bkx y x y 42,化简得ky 2-4y +4b=0.根据根与系数的关系得y A y B =kb 4,因为直线OA ,OB 的斜率之积为-21,所以BB AA x y x y ⋅=-21,即x A x B +2y A y B =0.即4422B A y y ⋅+2y A y B =0,解得y A y B =0(舍去)或y A y B =-32.所以y A y B =4bk=-32,即b=-8k ,所以y=kx -8k ,即y=k(x -8).综上所述,直线AB 过定点(8,0).。

2018年高考数学(理)二轮复习 考前增分集训:大题规范练 10附答案

2018年高考数学(理)二轮复习 考前增分集训:大题规范练 10附答案

大题规范练(十) “20题、21题”24分练(时间:30分钟 分值:24分)解答题(本大题共2小题,共24分.解答应写出文字说明、证明过程或演算步骤)20.设A ,B 分别是x 轴,y 轴上的动点,点P 在直线AB 上,且AP →=32PB →,|AB →|=2+ 3.(1)求点P 的轨迹E 的方程;(2)已知曲线E 上的定点K (-2,0)及动点M ,N 满足KM →·KN→=0,试证:直线MN 必过x 轴上的定点.[解] (1)设P (x ,y ),A (x A,0),B (0,y B ),则AP →=(x -x A ,y ),PB →=(-x ,y B-y ),由AP →=32PB →,得x A =x +32x ,y B =y +23y ,由|AB →|=2+3,即可求得点P 的轨迹E 的方程为x 24+y 23=1.(2)证明:设直线KM :y =k (x +2)(k ≠0)与x 24+y 23=1联立,消去y ,得(3+4k 2)x 2+16k 2x +16k 2-12=0.设M (x 1,y 1),则-2+x 1=-16k 23+4k 2,x 1=-16k 23+4k 2+2=6-8k 23+4k 2, y 1=k (x 1+2)=12k 3+4k 2,∴M ⎝ ⎛⎭⎪⎫6-8k 23+4k 2,12k 3+4k 2, 设直线KN :y =-1k (x +2)(k ≠0),同理可得N ⎝ ⎛⎭⎪⎫6k 2-83k 2+4,-12k 3k 2+4, k MN =y M -y N x M -x N =-7k 4(k 2-1)(k 2≠1), 则MN :y -12k 3+4k 2=-7k 4(k 2-1)(x -6-8k 23+4k 2), 化简可得y =-7k 4(k 2-1)⎝ ⎛⎭⎪⎫x +27, 即直线MN 过定点⎝ ⎛⎭⎪⎫-27,0,另MN 斜率不存在时,也过定点⎝ ⎛⎭⎪⎫-27,0,∴直线MN 必过定点⎝ ⎛⎭⎪⎫-27,0. 21.已知函数f (x )=(x -1)e x +ax 2有两个零点.(1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,求证:x 1+x 2<0.[解] (1)f ′(x )=x e x +2ax =x (e x +2a ).(ⅰ)当a >0时,e x +2a >0,函数f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.因为f (0)=-1<0,f (2)=e 2+4a >0,取实数b 满足b <-2且b <ln a ,则f (b )>a (b -1)+ab 2=a (b 2+b -1)>a (4-2-1)>0,所以f (x )有两个零点.(ⅱ)若a =0,则f (x )=(x -1)e x ,故f (x )只有一个零点,不满足题意.(ⅲ)若a <0,当a ≥-12,则f (x )在(0,+∞)上单调递增,又当x ≤0时,f (x )<0,故f (x )不存在两个零点,不满足题意;当a <-12,则函数f (x )在(ln(-2a ),+∞)上单调递增;在(0,ln(-2a ))上单调递减.又当x ≤1时,f (x )<0,故不存在两个零点.综上所述,a 的取值范围是(0,+∞).(2)证明:不妨设x 1<x 2.由(1),知x 1∈(-∞,0),x 2∈(0,+∞),-x 2∈(-∞,0),则x 1+x 2<0等价于x 1<-x 2.因为函数f (x )在(-∞,0)上单调递减,所以x 1<-x 2等价于f (x 1)>f (-x 2),即f (-x 2)<0.由f (x 2)=(x 2-1)e x 2+ax 22=0,得ax 22=(1-x 2)e x 2,f (-x 2)=(-x 2-1)e -x 2+ax 22=(-x 2-1)e -x 2+(1-x 2)e x2,令g (x )=(-x -1)e -x +(1-x )e x ,x ∈(0,+∞).则g ′(x )=-x (e x -e -x )<0,故g (x )在(0,+∞)上单调递减,又g (0)=0,所以g (x )<0.所以f (-x 2)<0,即原命题成立,x 1+x 2<0.。

2018届高考数学(理)二轮专题复习:增分练5-1-9 Word版含答案

2018届高考数学(理)二轮专题复习:增分练5-1-9 Word版含答案

小题提速练(九)(满分80分,押题冲刺,45分钟拿下客观题满分)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x ∈N |0≤x ≤5},B ={x |2-x <0},则A ∩(∁R B )=( ) A .{1} B .{0,1} C .{1,2}D .{0,1,2}解析:选D.∵A ={0,1,2,3,4,5},B ={x |x >2},∁R B ={x |x ≤2},∴A ∩(∁R B )={0,1,2},故选D.2.在复平面内,复数z =-1+i2-i (i 为虚数单位)的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 解析:选C.∵z =-1+i2-i =-1++-+=-3+i 5=-35+i 5,∴z =-35-i 5,故z 对应的点在第三象限.3.设某中学的高中女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据样本数据(x i ,y i )(i =1,2,3,…,n ),用最小二乘法近似得到回归直线方程为y ^=0.85x -85.71,则下列结论中不正确的是( )A .y 与x 具有正线性相关关系B .回归直线过样本点的中心(x -,y -)C .若该中学某高中女生身高增加1 cm ,则其体重约增加0.85 kgD .若该中学某高中女生身高为160 cm ,则可断定其体重必为50.29 kg解析:选D.因为回归直线方程y ^=0.85x -85.71中x 的系数为0.85>0,因此y 与x 具有正线性相关关系,所以选项A 正确;由最小二乘法及回归直线方程的求解可知回归直线过样本点的中心(x -,y -),所以选项B 正确;由于用最小二乘法得到的回归直线方程是估计值,而不是具体值,若该中学某高中女生身高增加1 cm ,则其体重约增加0.85 kg ,所以选项C 正确,选项D 不正确.4.执行如图所示的程序框图,若输入的x =2 017,则输出的i =( )A .2B .3C .4D .5解析:选B.执行框图得a =2 017,i =1,b =11-2 017=-12 016≠2 017,∴i =2,a =-12 016,b =11+12 016=2 0162 017≠2 017, ∴i =3,a =2 0162 017,b =11-2 0162 017=2 017=x ,∴输出的i =3.5.已知函数f (x )=2ax -a +3,若∃x 0∈(-1,1),使得f (x 0)=0,则实数a 的取值范围是( )A .(-∞,-3)∪(1,+∞)B .(-∞,-3)C .(-3,1)D .(1,+∞)解析:选A.依题意可得f (-1)·f (1)<0,即(-2a -a +3)(2a -a +3)<0,解得a <-3或a >1,故选A.6.中国古代数学名著《九章算术》中记载了公元前344年商鞅监制的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(单位:立方寸),则图中的x 为()A .1.2B .1.6C .1.8D .2.4解析:选B.该几何体是一个组合体,左边是一个底面半径为12的圆柱,右边是一个长、宽、高分别为5.4-x 、3、1的长方体,∴组合体的体积V =V 圆柱+V 长方体=π·⎝ ⎛⎭⎪⎫122×x +(5.4-x )×3×1=12.6(其中π=3),解得x =1.6.故选B.7.若⎝ ⎛⎭⎪⎫3x -3x n的展开式中所有项系数的绝对值之和为 1 024,则该展开式中的常数项是( )A .-270B .270C .-90D .90解析:选C.⎝ ⎛⎭⎪⎫3x -3x n的展开式中所有项系数的绝对值之和等于⎝ ⎛⎭⎪⎫3x +3x n的展开式中所有项系数之和.令x =1,得4n=1 024,∴n =5.⎝ ⎛⎭⎪⎫3x-3xn 的通项T r +1=C r 5⎝ ⎛⎭⎪⎫3x 5-r·(-3x )r =C r 5·35-r·(-1)r·xr -52+r3,令r -52+r 3=0,解得r =3,∴展开式中的常数项为T 4=C 35·32·(-1)3=-90,故选C.8.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( )A .甲B .乙C .丙D .丁解析:选B.由题可知,乙、丁两人的观点一致,即同真同假,假设乙、丁说的是真话,那么甲、丙两人说的是假话,由乙说的是真话,推出丙是罪犯,由甲说假话,推出乙、丙、丁三人不是罪犯,显然两个结论相互矛盾,所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙供述可得,乙是罪犯.9.已知函数f (x )的部分图象如图所示,则f (x )的解析式可以是( )A .f (x )=2-x22xB .f (x )=cos xx2C .f (x )=-cos 2xxD .f (x )=cos xx解析:选D.A 中,当x →+∞时,f (x )→-∞,与题图不符,故不成立;B 为偶函数,与题图不符,故不成立;C 中,当x →0+时,f (x )<0,与题图不符,故不成立.故选D.10.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-3解析:选B.根据约束条件画出可行域如图1中阴影部分所示:图1可知可行域为开口向上的V 字型.在顶点处z 有最小值,顶点为⎝⎛⎭⎪⎫a -12,a +12,则a -12+a ⎝⎛⎭⎪⎫a +12=7,解得a =3或a =-5.当a =-5时,如图2所示:图2虚线向上移动时z 减小,故z →-∞时,没有最小值,故只有a =3满足题意.选B.11.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别为l 1,l 2,经过右焦点F 垂直于l 1的直线分别交l 1,l 2于A ,B 两点.若|OA |,|AB |,|OB |成等差数列,且AF →与FB →反向,则该双曲线的离心率为( )A.52B. 3C. 5D.52解析:选C.如图,设实轴长为2a ,虚轴长为2b ,令∠AOF =α,则由题意知tan α=b a,在△AOB 中,∠AOB =180°-2α,tan∠AOB =-tan 2α=AB OA,∵|OA |,|AB |,|OB |成等差数列, ∴设|OA |=m -d ,|AB |=m ,|OB |=m +d , ∵OA ⊥BF ,∴(m -d )2+m 2=(m +d )2,整理,得d =14m ,∴-tan 2α=-2tan α1-tan 2α=AB OA =m 34m =43, 解得b a =2或b a =-12(舍去),∴b =2a ,c = 4a 2+a 2=5a ,∴e =c a= 5.12.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若a =2b sin C ,则tan A +tan B +tan C 的最小值是( )A .4B .3 3C .8D .6 3解析:选C.a =2b sin C ⇒sin A =2sin B sin C ⇒sin(B +C )=2sin B sin C ⇒1tan C +1tan B=2⇒tan B +tan C =2tan B tan C ,又根据三角形中的三角恒等式tan A +tan B +tan C =tan A tanB tanC (注:tan A =tan(π-B -C )=-tan(B +C )=-tan B +tan C1-tan B ·tan C,即tan A +tan B +tanC =tan A ·tan B ·tan C )⇒tan A +2tan B tan C =tan A tan B tan C ⇒tan B tan C =tan Atan A -2,∴tan A tan B tan C =tan A ·tan A tan A -2=m 2m -2(tan A =m ),由△ABC 为锐角三角形知m2m -2>0,∴m -2>0令m -2=t (t >0)⇒t +2t=t +4t +4≥8,当且仅当t =4t,即t =2,tan A =4时,取等号.二、填空题(本题共4小题,每小题5分;共20分)13.已知直线l 将圆C :x 2+y 2+x -2y +1=0平分,且与直线x +2y +3=0垂直,则l 的方程为________.解析:依题意可知,直线l 过圆心C ⎝ ⎛⎭⎪⎫-12,1且斜率k =2,故直线l 的方程为y -1=2⎝ ⎛⎭⎪⎫x +12,即2x -y +2=0.答案:2x -y +2=014.小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点不相同”,事件B =“小赵独自去一个景点”,则P (A |B )等于________.解析:小赵独自去一个景点共有4×3×3×3=108种可能性,4个人去的景点不同的可能性有A 44=4×3×2×1=24种,∴P (A |B )=24108=29.答案:2915.设等差数列{a n }的前n 项和为S n ,已知a 1=9,a 2为整数,且S n ≤S 5,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前9项和为________.解析:由S n ≤S 5得⎩⎪⎨⎪⎧a 5≥0a 6≤0,即⎩⎪⎨⎪⎧a 1+4d ≥0a 1+5d ≤0,得-94≤d ≤-95,又a 2为整数,∴d =-2,a n =9+(n -1)×(-2)=11-2n , 1a n ·a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和T n =1d ⎝ ⎛⎭⎪⎫1a 1-1a 2+1a 2-1a 3+…+1a n -1a n +1=1d ⎝ ⎛⎭⎪⎫1a 1-1a n +1,∴T 9=-12×⎣⎢⎡⎦⎥⎤19-⎝ ⎛⎭⎪⎫-19=-19.答案:-1916.在矩形ABCD 中,AB <BC ,现将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折的过程中,给出下列结论:①存在某个位置,使得直线AC 与直线BD 垂直; ②存在某个位置,使得直线AB 与直线CD 垂直; ③存在某个位置,使得直线AD 与直线BC 垂直.其中正确结论的序号是________.(写出所有正确结论的序号) 解析:①假设AC 与BD 垂直,过点A 作AE ⊥BD 于E ,连接CE .则⎭⎪⎬⎪⎫AE ⊥BD BD ⊥AC ⇒BD ⊥平面AEC⇒BD ⊥CE ,而在平面BCD 中,EC 与BD 不垂直,故假设不成立,①错.②假设AB⊥CD,∵AB⊥AD,∴AB⊥平面ACD,∴AB⊥AC,由AB<BC可知,存在这样的等腰直角三角形,使AB⊥CD,故假设成立,②正确.③假设AD⊥BC,∵DC⊥BC,∴BC⊥平面ADC,∴BC⊥AC,即△ABC为直角三角形,且AB为斜边,而AB<BC,故矛盾,假设不成立,③错.综上,填②.答案:②。

2018年高考大题增分专项5 解析几何

2018年高考大题增分专项5 解析几何
高考大题增分专项五 高考中的解析几何
高考大题 增分专项
高考大题增分专项五
考情分析 典例突破
高考中的解析几何
专题总结
-2-
从近五年的高考试题来看,圆锥曲线问题在高考中属于必考内容, 并且常常在同一份试卷上多题型考查.对圆锥曲线的考查在解答题 部分主要体现以下考法:第一问一般是先求圆锥曲线的方程或离心 率等较基础的知识;第二问往往涉及定点、定值、最值、取值范围 等探究性问题,解决此类问题的关键是通过联立方程来解决.
������ ������-������ 3������ 2������-������
������ ������
������ �����
������ ������
1 2
1 2
(2)由(1)知,a=2c,b= 3c,可得椭圆方程为 3x2+4y2=12c2, 由点 P(a,b),F2(c,0)可知直线 PF2 的斜率为 = = 3,
高考大题 增分专项
题型一 题型二 题型三
高考大题增分专项五
考情分析 题型四 题型五 典例突破 题型六
高考中的解析几何
专题总结
-4-
例 1 在平面直角坐标系 xOy 中,点 P(a,b)(a>b>0)为动点,F1,F2
������2 ������2 分别为椭圆 2 + 2 =1 ������ ������
故直线 PF2 的方程为 y= 3(x-c). 3������ 2 + 4������ 2 = 12������ 2 , 由 A,B 两点的坐标满足方程组 消去 y 并整 ������ = 3(������-������), 理,得 5x2-8cx=0. 解得 x1=0,x2=5c,

2018届高考数学(理)二轮专题复习:增分练5-1-6 Word版含答案

2018届高考数学(理)二轮专题复习:增分练5-1-6 Word版含答案

小题提速练(六)(满分80分,押题冲刺,45分钟拿下客观题满分)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A ={y |y =lg x ,x >1},集合B ={x |y =4-x 2},则A ∪(∁R B )=( ) A .(-∞,-2)∪(0,+∞) B .(2,+∞) C .(0,2]D .∅解析:选A.A ={y |y >0},B ={x |-2≤x ≤2},∁R B ={x |x >2或x <-2},∴A ∪(∁R B )={x |x <-2或x >0},故选A.2.已知m ,n ∈R ,i 为虚数单位,若m -1+n i =2i1+i,则m ·n =( ) A .2 B .3 C .4D .5解析:选A.m -1+n i =2i1+i=1+i ,则m -1=1,n =1,所以m ·n =2,故选A. 3.已知log 12a >1,⎝ ⎛⎭⎪⎫12b>1,2c=π,则( )A .a >b >cB .c >b >aC .a >c >bD .c >a >b解析:选D.由log 12a >1⇒0<a <12,⎝ ⎛⎭⎪⎫12b>1⇒b <0.2c=π,c =log 2π>log 22=1,∴c >a>b ,故选D.4.已知点A (3,4),B (-3,-2),若过点P (2,1)的直线l 与线段AB 不相交,则直线l 的斜率k 的取值范围是( )A .k ≤3 B.35<k <3 C .k ≥35D .k ≥3或k ≤35解析:选B.直线PA 的斜率k 1=4-13-2=3,直线PB 的斜率k 2=-2-1-3-2=35,因此可知直线l 的斜率k 的取值范围是35<k <3,故选B.5.一几何体的三视图如图所示,则该几何体的表面积为( )A .240+21πB .208+15πC .240+33πD .196+33π解析:选B.由三视图还原后的直观图下面是一个长、宽、高依次为10,4,5的长方体,其表面积为2(10×4+4×5+5×10)-6×2=208,上面是半径为3高为2的半个圆柱,其表面积为π×32+π×3×2=15π,故选B.6.如图是计算S =1+14+17+…+137的值的一个程序框图,则图中执行框内①处,判断框中的②处应填的语句是( )A .n =n +1,i >13?B .n =n +1,i =13?C .n =n +3,i >13?D .n =n +3,i =13?解析:选C.由题意S =1+14+17+…+137时,恰有n =40,i =14,这时输出S ,故选C.7.在△CAB 中,P 为线段AB 上的中点,Q 为线段CP 的中点,过点Q 的直线分别交CA ,CB 于M ,N 两点,且CM →=mCA →,CN →=nCB →(n >0,m >0),若n =35,则m =( )A.38B.37C.12D.13解析:选 B.由题可知CP →=12(CB →+CA →),又CM →=mCA →,CN →=nCB →,CP →=2CQ →,所以CQ →=12CP →=14⎝ ⎛⎭⎪⎫1nCN →+1m CM →=14m CM →+14n CN →,由M ,Q ,N 三点共线,14m +14n =1,∵n =35,可知m =37,故选B.8.在△ABC 中,已知a ,b ,c 分别是角A ,B ,C 的对边,A ,B ,C 成等差数列,且a cos A =b cos B ,则三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .等边三角形或直角三角形解析:选D.因为A ,B ,C 成等差数列,所以A +C =2B ,所以B =π3.又sin A cos A =sin B cosB ,即sin 2A =sin 2B ,所以2A =2B 或2A +2B =π,所以A =B =C =π3或A +B =π2,故选D.9.设x ,y 满足约束条件M =⎩⎪⎨⎪⎧-2≤x -y ≤2,-2≤x +y ≤2,在M 内任取一点P (x ,y ),则使得事件x2+y 2≤2发生的概率为( )A.π4B.π2C .1-π4D .1-π2解析:选A.如图,由题意知,满足条件的x ,y 构成的点(x ,y )在边长为22的正方形及其内部,其面积为8,事件x 2+y 2≤2对应的图形为半径为2,圆心在坐标原点的圆及其内部,其面积为2π,故使得x 2+y 2≤2发生的概率为P =2π8=π4,故选A.10.函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫其中A >0,|φ|<π2的图象如图所示,将f (x )的图象向右平移m 个单位得到g (x )的图象关于y 轴对称,则正数m 的最小值为( )A.π6B.5π6C.π3D.2π3解析:选C.由图象可知,A =1,T =43⎝ ⎛⎭⎪⎫11π12-π6=π,故ω=2πT =2,由于⎝ ⎛⎭⎪⎫π6,1为五点作图的第二点,∴2×π6+φ=π2,解得φ=π6,所以f (x )=sin ⎝⎛⎭⎪⎫2x +π6,由y =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π3+π6=-cos 2x =g (x ),故选C.11.已知f (x )=sin 2x +4t cos 2x2+t 3-3t ,-1≤t ≤1,f (x )的最大值记为g (t ),则函数g (t )的单调递减区间为( )A .(-∞,-1]和⎣⎢⎡⎭⎪⎫-13,+∞ B.⎣⎢⎡⎭⎪⎫13,+∞C.⎣⎢⎡⎦⎥⎤-1,13D.⎣⎢⎡⎦⎥⎤-13,1 解析:选C.因为f (x )=1-cos 2x +2t (1+cos x )+t 3-3t =-cos 2x +2t cos x +t 3-t +1=-(cos x -t )2+t 3+t 2-t +1,f (x )的最大值g (t )=t 3+t 2-t +1.对g (t )求导即得其单调递减区间为⎣⎢⎡⎦⎥⎤-1,13,故选C.12.已知直三棱柱ABC ­A 1B 1C 1的外接球表面积为100π,且AC ⊥BC ,AC =3,BC =4,则该三棱柱的体积等于( )A .30 3B .15 3C .10 3D .5 3解析:选A.因为AC ⊥BC ,所以AB 是三角形ABC 的外接圆直径,圆心为O 1,A 1B 1是三角形A 1B 1C 1的外接圆直径,圆心为O 2,可知球心为O 1O 2的中点O ,三棱柱的高为O 1O 2.由S =4πR 2=100π,可得球半径OB =5,在直角三角形OO 1B 中,OB 2=O 1B 2+⎝⎛⎭⎪⎫O 1O 222,即52=⎝ ⎛⎭⎪⎫522+⎝ ⎛⎭⎪⎫O 1O 222,所以O 1O 2=53,V =⎝ ⎛⎭⎪⎫12×3×4×53=303,故选A. 二、填空题(本题共4小题,每小题5分;共20分)13.函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递减,若实数a 满足f (log 2a )+f (log 12a )≤2f (2),则a 的取值范围是________.解析:由偶函数的性质得已知不等式可化为f (log 2a )+f (-log 2a )≤2f (2),即f (log 2a )+f (log 2a )≤2f (2),所以f (log 2a )≤f (2),∴f (|log 2a |)≤f (2),又f (x )在[0,+∞)上单调递减,所以|log 2a |≥2,即a 的取值范围是⎝ ⎛⎦⎥⎤0,14∪[4,+∞).答案:⎝ ⎛⎦⎥⎤0,14∪[4,+∞) 14.设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,4x -y -2≤0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为4,则ab 的最大值为________.解析:画出约束条件⎩⎪⎨⎪⎧x -y +1≥0,4x -y -2≤0,x ≥0,y ≥0的可行域(如图),因为a >0,b >0,所以目标函数z =ax +by 在点A (1,2)处取得最大值4,代入得a +2b =4,又因为a +2b ≥22ab ,由4≥22ab ,得ab ≤2,当且仅当a =2b =2时取等号,所以ab 的最大值为2.答案:215.给出下列五个命题:①“若a +b ≥2,则a ,b 中至少有一个不小于1”的逆命题;②△ABC 中,2A =2B 是sin 2A =sin 2B 成立的充要条件;③当x >0且x ≠1时,有ln x +1ln x ≥2;④若函数y =f (x -1)为R上的奇函数,则函数y =f (x )的图象一定关于点F (1,0)成中心对称;⑤存在正实数a ,b ,使得lg(a +b )=lg a +lg b .其中错误命题的序号为________.解析:对于①,“若a +b ≥2,则a ,b 中至少有一个不小于1”的逆命题为“若a ,b 中至少有一个不小于1,则a +b ≥2”,错误,如a =3≥1,b =-2,但a +b =1<2;对于②,在△ABC 中,必要条件不成立,还可能有2A +2B =π,故错误;对于③,只有x >1时才成立,故错误;对于④,将函数y =f (x -1)的图象向左平移1个单位可得到函数y =f (x )的图象,y =f (x )的图象关于点M (-1,0)成中心对称,故错误;对于⑤,存在正实数a =2,b =2,使得lg(2+2)=lg 22=2lg 2=lg 2+lg 2成立,故⑤正确.答案:①②③④16.已知双曲线x 2a 2-y 2b2=1(a >0,b >0),F 1,F 2分别为双曲线的左、右焦点,M 为双曲线的右支上的动点,当|MF 1|2|MF 2|最小值取8a 时双曲线的离心率的取值范围为________.解析:由双曲线的定义得|MF 1|=|MF 2|+2a ,所以|MF 1|2|MF 2|=MF 2|+2a 2|MF 2|=4a +|MF 2|+4a2|MF 2|≥4a +2|MF 2|×4a2|MF 2|=8a ,当且仅当|MF 2|=2a 时等号成立,此时|MF 1|=4a ,|MF 2|=2a ,在△MF 1F 2中,由|MF 1|+|MF 2|≥2c 有4a +2a ≥2c ,即c a≤3,所以1<e ≤3.答案:1<e ≤3。

2018届高三数学(理)高考总复习:升级增分训练 数 列含解析

2018届高三数学(理)高考总复习:升级增分训练 数 列含解析

升级增分训练 数 列1.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 016=( )A .8B .6C .4D .2 解析:选B 由题意得:a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8,…,所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 016=a 335×6+6=a 6=6.2.已知数列{a n }的前n 项和为S n ,点(n ,S n )在函数f (x )=x 2+x -2的图象上,则数列{a n }的通项公式为( )A .a n =2n -2B .a n =n 2+n -2C .a n =⎩⎨⎧ 0,n =12n -1,n ≥2D .a n =⎩⎨⎧0,n =12n ,n ≥2 解析:选D 由于点(n ,S n )在函数f (x )的图象上,则S n =n 2+n -2,当n =1时,得a 1=S 1=0,当n ≥2时,得a n =S n -S n -1=n 2+n -2-(n -1)2+(n -1)-2]=2n .故选D .3.若数列{b n }的通项公式为b n =-⎝ ⎛⎭⎪⎫n +12n +13,则数列{b n }中的最大项的项数为( )A .2或3B .3或4C .3D .4解析:选B 设数列{b n }的第n 项最大.由⎩⎨⎧ b n +1≤b n ,b n ≥b n -1,即⎩⎪⎨⎪⎧ -⎣⎢⎡⎦⎥⎤(n +1)+12n +1+13≤-⎝ ⎛⎭⎪⎫n +12n +13,-⎝ ⎛⎭⎪⎫n +12n +13≥-⎣⎢⎡⎦⎥⎤(n -1)+12n -1+13, 整理得⎩⎪⎨⎪⎧ 1+12n +1≥12n ,1+12n ≤12n -1,即⎩⎨⎧n 2+n -12≥0,n 2-n -12≤0, 解得n =3或n =4.又b 3=b 4=6,所以当n =3或n =4时,b n 取得最大值.4.设数列{a n }的前n 项和为S n ,且a 1=a 2=1,{nS n +(n +2)a n }为等差数列,则a n =( )A .n 2n -1 B .n +12n -1+1 C .2n -12n -1 D .n +12n +1解析:选A 设b n =nS n +(n +2)a n ,则b 1=4,b 2=8,又{b n }为等差数列,所以b n =4n ,所以nS n +(n +2)a n =4n ,所以S n +⎝ ⎛⎭⎪⎫1+2n a n =4. 当n ≥2时,S n -S n -1+⎝ ⎛⎭⎪⎫1+2n a n -⎝ ⎛⎭⎪⎫1+2n -1a n -1=0, 所以2(n +1)n a n =n +1n -1a n -1, 即2·a n n =a n -1n -1.又因为a 11=1, 所以⎩⎨⎧⎭⎬⎫a n n 是首项为1, 公比为12的等比数列, 所以a n n =⎝ ⎛⎭⎪⎫12n -1(n ∈N *), 所以a n =n2n -1(n ∈N *).5.(2017·山西省质检)记S n 为正项等比数列{a n }的前n 项和,若S 12-S 6S 6-7·S 6-S 3S 3-8=0,且正整数m ,n 满足a 1a m a 2n =2a 35,则1m +8n 的最小值是( ) A .157 B .95C .53D .75 解析:选C ∵{a n }是等比数列,设{a n }的公比为q ,∴S 12-S 6S 6=q 6,S 6-S 3S 3=q 3, ∴q 6-7q 3-8=0,解得q =2,又a 1a m a 2n =2a 35,∴a 31·2m +2n -2=2(a 124)3=a 31213,∴m +2n =15,∴1m +8n =115⎝ ⎛⎭⎪⎫1m +8n (m +2n ) =115⎝ ⎛⎭⎪⎫17+2n m +8m n ≥115⎝ ⎛⎭⎪⎫17+2 2n m ×8m n =53,当且仅当2n m =8m n ,n =2m , 即m =3,n =6时等号成立,∴1m +8n 的最小值是53,故选C . 6.对于数列{x n },若对任意n ∈N *,都有x n +x n +22<x n +1成立,则称数列{x n }为“减差数列”.设b n =2t -tn -12n -1,若数列b 3,b 4,b 5,…是“减差数列”,则实数t 的取值范围是( )A .(-1,+∞)B .(-∞,-1]C .(1,+∞)D .(-∞,1]解析:选C 由数列b 3,b 4,b 5,…是“减差数列”,得b n +b n +22<b n +1(n ≥3), 即t -tn -12n +t -t (n +2)-12n +2<2t -t (n +1)-12n ,即tn -12n +t (n +2)-12n +2>t (n +1)-12n , 化简得t (n -2)>1.当n ≥3时,若t (n -2)>1恒成立,则t >1n -2恒成立, 又当n ≥3时,1n -2的最大值为1, 则t 的取值范围是(1,+∞).7.设等比数列{a n }的公比为q ,前n 项和S n >0(n =1,2,3,…).则q 的取值范围为________.解析:因为{a n }为等比数列,S n >0,可以得到a 1=S 1>0,q ≠0,当q =1时,S n =na 1>0;当q ≠1时,S n =a 1(1-q n )1-q>0, 即1-q n1-q>0(n =1,2,3,…), 上式等价于不等式组⎩⎨⎧ 1-q <0,1-q n <0(n =1,2,3,…),① 或⎩⎨⎧ 1-q >0,1-q n >0(n =1,2,3,…).② 解①式得q >1,解②式,由于n 可为奇数,可为偶数,得-1<q <1.综上,q 的取值范围是(-1,0)∪(0,+∞).答案:(-1,0)∪(0,+∞)8.(2016·河南六市一联)数列{a n }的通项a n =n 2·⎝ ⎛⎭⎪⎫cos 2n π3-sin 2n π3,其前n 项和为S n ,则S 30=________.解析:由题意可知,a n =n 2·cos2n π3, 若n =3k -2,则a n =(3k -2)2·⎝ ⎛⎭⎪⎫-12=-9k 2+12k -42(k ∈N *); 若n =3k -1,则a n =(3k -1)2·⎝ ⎛⎭⎪⎫-12=-9k 2+6k -12(k ∈N *); 若n =3k ,则a n =(3k )2·1=9k 2(k ∈N *),∴a 3k -2+a 3k -1+a 3k =9k -52,k ∈N *, ∴S 30=∑k =110 ⎝ ⎛⎭⎪⎫9k -52=9-52+90-522×10=470. 答案:4709.已知数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,n ∈N *,且a 1,a 2+5,a 3成等差数列,则a n =________.解析:由a 1,a 2+5,a 3成等差数列可得a 1+a 3=2a 2+10,由2S n =a n +1-2n +1+1,得2a 1+2a 2=a 3-7,即2a 2=a 3-7-2a 1,代入a 1+a 3=2a 2+10,得a 1=1,代入2S 1=a 2-22+1,得a 2=5.由2S n =a n +1-2n +1+1, 得当n ≥2时,2S n -1=a n -2n +1,两式相减,得2a n =a n +1-a n -2n ,即a n +1=3a n +2n ,当n =1时,5=3×1+21也适合a n +1=3a n +2n ,所以对任意正整数n ,a n +1=3a n +2n .上式两端同时除以2n +1,得a n +12n +1=32×a n 2n +12, 等式两端同时加1,得a n +12n +1+1=32×a n 2n +32=32⎝ ⎛⎭⎪⎫a n 2n +1, 所以数列⎩⎨⎧⎭⎬⎫a n 2n +1是首项为32, 公比为32的等比数列,所以a n 2n +1=⎝ ⎛⎭⎪⎫32n , 所以a n 2n =⎝ ⎛⎭⎪⎫32n -1, 所以a n =3n -2n .答案:3n -2n10.已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的图象经过点⎝ ⎛⎭⎪⎫π12,-2,⎝ ⎛⎭⎪⎫7π12,2,且在区间⎝ ⎛⎭⎪⎫π12,7π12上为单调函数. (1)求ω,φ的值;(2)设a n =nf ⎝ ⎛⎭⎪⎫n π3(n ∈N *),求数列{a n }的前30项和S 30. 解:(1)由题可得ωπ12+φ=2k π-π2,k ∈Z , 7ωπ12+φ=2k π+π2,k ∈Z , 解得ω=2,φ=2k π-2π3,k ∈Z , ∵|φ|<π,∴φ=-2π3. (2)由(1)及题意可知a n =2n sin ⎝ ⎛⎭⎪⎫2n π3-2π3(n ∈N *), 数列⎩⎨⎧⎭⎬⎫2sin ⎝ ⎛⎭⎪⎫2n π3-2π3(n ∈N *)的周期为3,前三项依次为0,3,-3, ∴a 3n -2+a 3n -1+a 3n=(3n -2)×0+(3n -1)×3+3n ×(-3) =-3(n ∈N *),∴S 30=(a 1+a 2+a 3)+…+(a 28+a 29+a 30)=-103.11.已知△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,其面积S =43,B =60°,且a 2+c 2=2b 2;等差数列{a n }中,a 1=a ,公差d =b .数列{b n }的前n 项和为T n ,且T n -2b n +3=0,n ∈N *.(1)求数列{a n },{b n }的通项公式;(2)设c n =⎩⎨⎧a n ,n 为奇数,b n ,n 为偶数,求数列{c n }的前2n +1项和P 2n +1.解:(1)∵S =12ac sin B =43, ∴ac =16,又a 2+c 2=2b 2,b 2=a 2+c 2-2ac cos B , ∴b 2=ac =16,∴b =4,从而(a +c )2=a 2+c 2+2ac =64,a +c =8, ∴a =c =4.故可得⎩⎨⎧ a 1=4,d =4,∴a n =4n .∵T n -2b n +3=0,∴当n =1时,b 1=3,当n ≥2时,T n -1-2b n -1+3=0, 两式相减,得b n =2b n -1(n ≥2), ∴数列{b n }为等比数列,∴b n =3·2n -1.(2)依题意,c n =⎩⎨⎧ 4n ,n 为奇数,3·2n -1,n 为偶数. P 2n +1=(a 1+a 3+…+a 2n +1)+(b 2+b 4+…+b 2n )=[4+4(2n +1)](n +1)2+6(1-4n )1-4=22n +1+4n 2+8n +2.12.(2017·广州模拟)设S n 为数列{a n }的前n 项和,已知a 1=2,对任意n ∈N *,都有2S n =(n +1)a n .(1)求数列{a n }的通项公式;(2)若数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫4a n (a n +2)的前n 项和为T n ,求证:12≤T n <1. 解:(1)因为2S n =(n +1)a n ,当n ≥2时,2S n -1=na n -1,两式相减,得2a n =(n +1)a n -na n -1, 即(n -1)a n =na n -1,所以当n ≥2时,a n n =a n -1n -1, 所以a n n =a 11. 因为a 1=2,所以a n =2n .(2)证明:因为a n =2n , 令b n =4a n (a n +2),n ∈N *, 所以b n =42n (2n +2)=1n (n +1)=1n -1n +1. 所以T n =b 1+b 2+…+b n=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=n n +1. 因为1n +1>0, 所以1-1n +1<1. 因为f (n )=1n +1在N *上是递减函数, 所以1-1n +1在N *上是递增的, 所以当n =1时,T n 取最小值12. 所以12≤T n <1.。

2018届高考数学(理)二轮专题复习:增分练5-1-2 Word版含答案

2018届高考数学(理)二轮专题复习:增分练5-1-2 Word版含答案

小题提速练(二)(满分80分,押题冲刺,45分钟拿下客观题满分)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A ={x |x 2-4x +3≤0},B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫1x -1≥1,则A ∩B =( )A .[1,2]B .(1,2]C .[1,3]D .(1,3]解析:选B.解不等式x 2-4x +3≤0,得1≤x ≤3,∴A =[1,3],解不等式1x -1≥1,得1<x ≤2,∴B =(1,2],∴A ∩B =(1,2].2.复数1+2i1-i 的共轭复数为( )A .-12+32iB .-12-32iC .-1+3iD .-1-3i解析:选B.∵1+2i 1-i = 1+2i 1+i 1-i 1+i =1-2+3i 2=-12+32i.∴1+2i 1-i 的共轭复数为-12-32i. 3.函数f (x )=cos ⎝⎛⎭⎪⎫2x -π3,x ∈[0,π]的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤0,π6B.⎣⎢⎡⎦⎥⎤π6,2π3C.⎣⎢⎡⎦⎥⎤0,π6,⎣⎢⎡⎦⎥⎤2π3,πD.⎣⎢⎡⎦⎥⎤π3,π 解析:选C.由2k π-π≤2x -π3≤2k π,k ∈Z ,得k π-π3≤x ≤k π+π6,k ∈Z .∴函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3,x ∈[0,π]的单调递增区间是⎣⎢⎡⎦⎥⎤0,π6,⎣⎢⎡⎦⎥⎤2π3,π. 4.在区间[-π,π]上随机取一个数x ,使cos x ∈⎣⎢⎡⎦⎥⎤12,32的概率为( )A.16B.14C.13D.12解析:选A.∵y =cos x 是偶函数,∴只研究[0,π]上的情况即可,解12≤cos x ≤32,得π6≤x ≤π3,∴所求概率P =π3-π6π=16.5.已知双曲线的中心在原点,一条渐近线方程为y =12x ,且它的一个焦点与抛物线y 2=85x 的焦点重合,则此双曲线的方程为( )A.x 264-y 216=1 B.y 264-x 216=1 C.x 216-y 24=1 D.y 216-x 24=1 解析:选C.由已知,双曲线的焦点在x 轴上,设其方程为x 2a 2-y 2b2=1(a >0,b >0),∵双曲线的一条渐近线方程为y =12x ,∴b a =12.又∵抛物线y 2=85x 的焦点为(25,0),∴c =25,a =4,b =2,∴此双曲线的方程为x 216-y 24=1. 6.一个空间几何体的三视图如图所示,则该几何体的体积为( )A.143B.163 C .6D.193解析:选D.根据三视图可知,几何体是由棱长为2的正方体切去两个三棱锥得到的几何体,如图所示,∴该几何体的体积为2×2×2-13×⎝ ⎛⎭⎪⎫12×2×2+12×1×1×2=193. 7.若2cos 2⎝⎛⎭⎪⎫π6-α2=53,则cos ⎝ ⎛⎭⎪⎫π3+2α=( )A.19 B .-23C.53D .-53解析:选A.∵cos ⎝ ⎛⎭⎪⎫π3-α=2cos 2⎝ ⎛⎭⎪⎫π6-α2-1=23,∴cos ⎝⎛⎭⎪⎫2π3-2α=2cos 2⎝ ⎛⎭⎪⎫π3-α-1=-19,∴cos ⎝ ⎛⎭⎪⎫π3+2α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫2π3-2α=-cos ⎝ ⎛⎭⎪⎫2π3-2α=19.8.执行如图所示的程序框图,若输入n =11,则输出的S =( )A.511B.613C.1011D.1213解析:选 A.∵1i i -2 =12⎝ ⎛⎭⎪⎫1i -2-1i (i ≥3),∴执行程序框图,输出的结果是数列⎩⎨⎧⎭⎬⎫1i i -2 (i ≥3)的前n 项中所有奇数项的和,即 S =0+12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫1i -2-1i =12⎝ ⎛⎭⎪⎫1-1i ,若n =11,则输出的S =0+12×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫19-111=12×⎝ ⎛⎭⎪⎫1-111=511.9.数列{a n }中,满足a n +2=2a n +1-a n ,且a 1,a 4 035是函数f (x )=13x 3-4x 2+6x -6的极值点,则log 2a 2 018的值是( )A .2B .3C .4D .5解析:选A.根据题意,可知a n +2-a n +1=a n +1-a n ,即数列{a n }是等差数列.又f ′(x )=x 2-8x +6,所以a 1+a 4 035=8=2a 2 018,所以log 2a 2 018=log 24=2.10.如图为2016年春节文艺晚会初审中五名评委对甲、乙两个节目的综合评分,其中a >0,b >0,已知甲、乙两个节目的平均得分之和为179,则1a +9b的最小值为( )A .1B .2C .4D .8解析:选C.甲的得分分别为88,89,90,90+a,92 乙的得分分别为83,83,87,90+b,99由题意得15[88+89+90+90+a +92]+15[83+83+87+90+b +99]=179.解得a +b =4,故1a +9b =⎝ ⎛⎭⎪⎫1a +9b ×a +b 4=14+94+b 4a +9a 4b =52+b 4a +9a 4b ≥52+2b 4a ×9a 4b =52+2×34=4,当且仅当b 4a =9a4b,即3a =b =3时,等号成立, 所以1a +9b的最小值为4.11.已知向量a ,b 满足a ·(a +2b )=0,|a |=|b |=1,且|c -a -2b |=1,则|c |的最大值为( )A .2B .4 C.5+1D.3+1解析:选D.解法一:因为a ·(a +2b )=0,所以2a ·b =-|a |2,又|a |=|b |=1,所以|a +2b |=|a |2+4|b |2+4a·b =4|b |2-|a |2=3,所以|c |max =|OB →|+1=|a +2b |+1=3+1.解法二:如图,连接AB ,设a =OA →,a +2b =OB →,c =OC →,且设点A 在x 轴上,则点B 在y 轴上,由|c -a -2b |=1,可知|c -(a +2b )|=|OC →-OB →|=|BC →|=1,所以点C 在以B 为圆心,1为半径的圆上.因为OB →=OA →+AB →=a +2b ,所以AB →=2b .因为|a |=|b |=1,所以|AB →|=2,|OA →|=1,所以|OB →|=|AB →|2-|OA →|2=3,所以|c |max =|OB →|+1=3+1.12.对于函数f (x )和g (x ),设a ∈{x |f (x )=0},b ∈{x |g (x )=0},若存在a ,b 使得|a -b |≤1,则称f (x )与g (x )互为“零点相邻函数”.若函数f (x )=e x+x -e -1与g (x )=x 2-mx -2m +5互为“零点相邻函数”,则实数m 的取值范围是( )A.⎣⎢⎡⎦⎥⎤94,4B.⎣⎢⎡⎦⎥⎤52,4C.⎣⎢⎡⎦⎥⎤2,52 D.⎣⎢⎡⎦⎥⎤2,94 解析:选C.∵函数y =e x,y =x -e -1均为单调递增函数,∴函数f (x )为单调递增函数,∵f (1)=0,∴函数f (x )的零点为1,设g (x )的零点为b ,则|1-b |≤1,∴0≤b ≤2.∵g (x )=x 2-mx -2m +5的图象必过点(-2,9),要使g (x )在[0,2]上有零点,则g (0)·g (2)≤0或⎩⎪⎨⎪⎧g 0 ≥0,g 2 ≥0,Δ=m 2-4 -2m +5 ≥0,0≤m 2≤2,解得2≤m ≤52.二、填空题(本题共4小题,每小题5分;共20分)13.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,则z =2x +y 的最大值为________.解析:作出可行域如图中阴影部分所示,结合目标函数可知,当直线y =-2x +z 经过点A 时,z 取得最大值.由⎩⎪⎨⎪⎧y =-1,x +y =1得⎩⎪⎨⎪⎧x =2,y =-1,则z max =2×2-1=3.答案:314.某学校组织学生参加数学测试,成绩的频率分布直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是________.解析:成绩低于60分的频率为(0.010+0.005)×20=0.3,故所求的人数为150.3=50.答案:5015.在△ABC 中,AC →=2AD →,△ABC 的面积为66,若AP →=12AC →+56AB →,则△ABP 的面积为________.解析:如图,在AB 上取点E 使AE →=56AB →∵AC →=2AD →,D 是AC 的中点, ∴12AC →=AD →. 以AD ,AE 为邻边作平行四边形ADPE则AP →=AD →+AE →=12AC →+56AB →,又△ABP 与△ABD 同底AB 且等高,∴S △ABP =S △ABD∴S △ABP =S △ABD =12S △ABC =3 6.答案:3 616.对于函数f (x )和g (x ),设α∈{x |f (x )=0},β∈{x |g (x )=0},若存在α,β,使得|α-β|≤1,则称f (x )与g (x )互为“零点相邻函数”.若函数f (x )=ex -1+x -2与g (x )=x 2-ax -a +3(a >0)互为“零点相邻函数”,则实数a 的取值范围是________.解析:函数f (x )=e x -1+x -2的零点为x =1.设g (x )=x 2-ax -a +3的零点为b ,若函数f (x )=ex -1+x -2与g (x )=x 2-ax -a +3互为“零点相邻函数”,则|1-b |≤1,所以0≤b ≤2.由于g (x )=x 2-ax -a +3必经过点(-1,4),所以要使其零点在区间[0,2]上,则g (0)≥0⇒-a +3≥0,即a ≤3,则对称轴a 2≤32,从而可得g ⎝ ⎛⎭⎪⎫a 2=⎝ ⎛⎭⎪⎫a 22-a ·a 2-a +3≤0,即a 2+4a -12≥0,解得,a ≥2或a ≤-6,又a >0,则a ≥2,所以2≤a ≤3.答案:[2,3]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小题提速练(十)
(满分80分,押题冲刺,45分钟拿下客观题满分)
一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知z 为复数,且2z +z =6-4i ,则z 在复平面内对应的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
解析:选D.设z =x +yi ,则有3x +yi =6-4i ,x =2,y =-4,故z 在复平面内对应的点是(2,-4),该点位于第四象限,选D.
2.设集合A ={x|-2<x <3},B ={x ∈Z|x 2-5x <0},则A ∩B =( )
A .{1,2}
B .{2,3}
C .{1,2,3}
D .{2,3,4}
解析:选A.依题意得A ={-1,1,2},B ={x ∈Z|0<x <5}={1,2,3,4},故A ∩B ={1,2},选A.
3.cos 80°cos 130°-sin 100°sin 130°=( ) A.32 B.12
C .-12
D .-32 解析:选D.cos 80°cos 130°-sin 100°sin 130°=cos 80°cos 130°-sin 80°sin 130°=cos(80°+130°)=cos 210°=-cos 30°=-32
,选D. 4.已知向量a =(1,3),|b|=1,且向量a 与b 的夹角为60°,则(a -b)·b =( )
A .0
B .-1
C .2
D .-2
解析:选A.(a -b)·b =|a||b|cos 60°-b 2=0,选A.
5.设实数x ,y 满足约束条件⎩⎨⎧ x -y ≥0
x +y ≤1
x +2y ≥1,则z =2x -y 的最大值为( )
A .5
B .4
C .3
D .2
解析:选D.如图,画出不等式组表示的平面区域(阴影部
分)及直线2x -y =0,平移该直线,当平移到经过平面区域内
的点(1,0)时,相应直线在y 轴上的截距达到最小,此时z
取得最大值2,选D.
6.如图所示,墙上挂有一块边长为π的正方形木板,上面画有正弦函数y =sin x 半个周期的图象.某人向此木板投镖,假设每次都能击中木板并且击中木板上每个点的可能性都相同,则他击中阴影部分的概率是( )
A.12
B.14
C.2π2
D.12π
解析:选C.阴影部分的面积为⎠⎛0
πsin xdx =-cosx ⎪⎪⎪π0=2,因此所求的概率为2π2,选C.
7.公元263年左右,我国数学家刘徽发现,当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的程序框图,则输出的n 的值为( )。

相关文档
最新文档