【精品】2016-2017年四川省广元市利州区嘉陵一中初三上学期数学期末试卷与答案
广元市九年级上学期期末数学试卷
广元市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·焦作模拟) 下列关于x的一元二次方程中,有两个相等实数根的是()A . x2+1=0B . x2+x﹣1=0C . x2+2x﹣3=0D . 4x2﹣4x+1=02. (2分)(2017·通州模拟) 剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A .B .C .D .3. (2分)某几何体的三视图如图所示,则这个几何体是()A . 圆柱B . 正方体C . 球D . 圆锥4. (2分)(2019·广西模拟) 下列说法中正确的是()A . “任意画出一个等边三角形,它是轴对称图形”是随机事件B . “任意画出一个平行四边形,它是中心对称图形”是必然事件C . “概率为0.0001的事件”是不可能事件’D . 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次5. (2分) (2017九上·和平期末) 如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O 为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点B的对应点D的坐标为()A . (3,3)B . (1,4)C . (3,1)D . (4,1)6. (2分)(2019·南京模拟) 如图,在一张长方形纸条上画一条截线AB,将纸条沿截线AB折叠,则△ABC 一定是()A . 等腰三角形B . 直角三角形C . 等边三角形D . 等腰直角三角形7. (2分)若圆锥的母线长为4cm,底面半径为3cm,则圆锥的侧面展开图的面积是()A . 6B .C .D .8. (2分)已知二次函数y=2x2-9x-34,当自变量x取两个不同的值x1 , x2时,函数值相等,则当自变量x取x1+x2时的函数值应当与()A . x=1时的函数值相等B . x=0时的函数值相等C . x=的函数值相等D . x=时,函数值相等9. (2分)如图,锐角△ABC的高CD和BE相交于点O ,图中与△ODB相似的三角形有()A . 1个B . 2个C . 3个D . 4个10. (2分)小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反应当天爷爷离家的距离y(米)与时间t(分钟)之间的大致图象是()A .B .C .D .二、填空题 (共8题;共8分)11. (1分)三角形的每条边的长都是方程的根,则三角形的周长是________.12. (1分) (2019八下·重庆期中) 函数自变量的取值范围是________.13. (1分)(2012·宿迁) 在平面直角坐标系中,若一条平行于x轴的直线l分别交双曲线y=﹣和y= 于A,B两点,P是x轴上的任意一点,则△ABP的面积等于________14. (1分)一个圆形转盘平均分成红.黄.蓝.白4个扇形区域,向其投掷一枚飞镖,飞镖落在红色区域的概率是________ .15. (1分) (2018九上·大石桥期末) 如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD= ,则图中阴影部分的面积为________.16. (1分)已知抛物线y1=(x+2)2﹣4与抛物线y2=﹣(x+2)2+4在同一坐标系中的图象如图所示.直线y=k(k>0)与两条抛物线分别交于点A、B、C、D.有以下结论:①当﹣4<x<0时,y1<y2;②当y1=y2时,x=﹣4;③若线段AC、AB、BD满足AC+BD=AB,则k= ;④若直线y=k与两条抛物线有3个交点时,则k=4;以上结论正确的序号是________.17. (1分)方程(x+1)2﹣2(x﹣1)2=6x﹣5的一般形式是________18. (1分)如图,△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=________ .三、解答题 (共8题;共78分)19. (10分) (2015九上·宜昌期中) 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向右平移3个单位后得到的△A1B1C1,再画出将△A1B1C1绕点B1按逆时针方向旋转90°后所得到的△A2B1C2;(2)求线段B1C1旋转到B1C2的过程中,点C1所经过的路径长.20. (5分)计算(1);(2)21. (15分)(2012·义乌) 如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.22. (5分)(2016·新化模拟) 数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图,老师测得升旗台前斜坡FC的坡比为iFC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为α.已知tanα= ,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度.23. (10分) (2019九上·灵石期中) 如图所示,甲、乙两人在玩转盘游戏时,分别把转盘A,B分成3等份和1等份,并在每一份内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所在区域的数字之积为奇数时,甲获胜;当数字之积为偶数时,乙获胜.如果指针恰好在分割线上时,则需重新转动转盘.(1)利用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲、乙双方公平吗?若公平,请说明理由;若不公平,请你在转盘A上只修改一个数字使游戏公平(不需要说明理由).24. (10分)(2014·徐州) 某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx﹣75.其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?25. (10分) (2018八下·乐清期末) 如图1,在矩形ABCD中,AB=4,AD=5,E为射线BC上一点,DF⊥AE 于F,连结DE.(1)当E在线段BC上时①若DE=5,求BE的长;②若CE=EF,求证:AD=AE;(2)连结BF,在点E的运动过程中:①当△ABF是以AB为底的等腰三角形时,求BE的长;②记△ADF的面积为S1,记△DCE的面积为S2,当BF∥DE时,请直接写出S1:S2的值.26. (13分)(2017·洪泽模拟) 已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.例如:如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;(2)若某函数是反比例函数y= (k>0),他的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标________,写出符合题意的其中一条抛物线解析式________,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数________.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共78分)19-1、19-2、20-1、21-1、21-2、21-3、22-1、23-1、23-2、24-1、24-2、25-1、26-1、26-2、26-3、。
四川省广元市九年级上学期期末数学试卷
四川省广元市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)在下列二次函数中,其图象的对称轴是直线x=﹣1的是()A . y=2(x+1)2B . y=2(x﹣1)2C . y=﹣2x2﹣1D . y=2x2﹣12. (2分)(2019·汇川模拟) 下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D .3. (2分) (2019八上·随县月考) 某地质学家预测:在未来的20年内,F市发生地震的概率是 .以下叙述正确的是()A . 从现在起经过13至14年F市将会发生一次地震B . 可以确定F市在未来20年内将会发生一次地震C . 未来20年内,F市发生地震的可能性比没有发生地震的可能性大D . 我们不能判断未来会发生什么事,因此没有人可以确定何时会有地震发生4. (2分)(2018·亭湖模拟) 设方程的两实根分别为、,且,则、满足()A .B .C .D .5. (2分)(2011·杭州) 在平面直角坐标系xOy中,以点(﹣3,4)为圆心,4为半径的圆()A . 与x轴相交,与y轴相切B . 与x轴相离,与y轴相交C . 与x轴相切,与y轴相交D . 与x轴相切,与y轴相离6. (2分) (2020九上·南昌期末) 二次函数的图象如图所示,则下列判断中错误的是()A . 图象的对称轴是直线B . 当时,随的增大而减小C . 一元二次方程的两个根是,D . 当时,二、填空题 (共8题;共8分)7. (1分)(2017·奉贤模拟) 如果抛物线y=ax2﹣3的顶点是它的最低点,那么a的取值范围是________.8. (1分) (2017八下·柯桥期中) 已知关于x的方程x2﹣6x+k=0的两根分别是x1 , x2 ,则x1+x2的值是________.9. (1分) (2017八下·常州期末) 如图,矩形ABCD的边分别与两坐标轴平行,对角线AC经过坐标原点,点D在反比例函数y= (x>0)的图象上.若点B的坐标为(﹣2,﹣2),则k=________.10. (1分)一个不透明的布袋中分别标着数字1,2,3,4的四个乒乓球,先从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于4的概率为________ .11. (1分)在平面直角坐标系中,已知点A(﹣4,2),B(﹣2,﹣2),以原点O为位似中心,把△ABO放大为原来的2倍,则点A的对应点A′的坐标是________12. (1分)(2017·桂平模拟) 如图,将一块含30°角的直角三角版和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=4,则图中阴影部分的面积为________.(结果保留π)13. (1分)综合实践课上,小宇设计用光学原理来测量公园假山的高度,把一面镜子放在与假山AC距离为21米的B处,然后沿着射线CB退后到点E,这时恰好在镜子里看到山头A,利用皮尺测量BE=2.1米.若小宇的身高是1.7米,则假山AC的高度为________ 米14. (1分)(2011·茂名) 给出下列命题:命题1.点(1,1)是双曲线与抛物线y=x2的一个交点.命题2.点(1,2)是双曲线与抛物线y=2x2的一个交点.命题3.点(1,3)是双曲线与抛物线y=3x2的一个交点.…请你观察上面的命题,猜想出命题n(n是正整数):________.三、解答题 (共8题;共75分)15. (10分) (2016九上·岳池期中) 已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.16. (5分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.17. (10分) (2018八上·许昌期末) 如图,在平面直角坐标系第一象限中有一点B. 要求:用尺规作图作一条直线AC,使它与x轴和y轴的正半轴分别交于点A和点C,且使∠ABC=90°,△ABC与△AOC全等.(1)小明的作法是:过B点分别向x 轴、y 轴作垂线,垂足为A、C,连接A、C,则直线AC即为所求.请你帮助小明在图 中完成作图(保留作图痕迹);(2)请在图 中再画出另一条满足条件的直线AC,并说明理由.18. (15分)(2016·南通) 平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过(﹣1,m2+2m+1)、(0,m2+2m+2)两点,其中m为常数.(1)求b的值,并用含m的代数式表示c;(2)若抛物线y=x2+bx+c与x轴有公共点,求m的值;(3)设(a,y1)、(a+2,y2)是抛物线y=x2+bx+c上的两点,请比较y2﹣y1与0的大小,并说明理由.19. (5分)为培养学生的创造性思维,学校举行科技小制作比赛.对公开征集到的科技小制作作品的数量进行了分析统计,并制作了如下统计图.(1)学校共征集到作品多少件?(2)经过评选后,有2名男生和2名女生获得一等奖.现要从这4位同学中抽两人去参加表彰座谈会,请用树状图或列表法求出恰好抽中一男一女的概率.20. (10分)在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.(1)若点B的坐标是(﹣4,0),请在图中画出△AEF,并写出点E、F的坐标;(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.21. (10分)(2018·平南模拟) 如图,在矩形中,点在对角线上,以的长为半径的圆与分别交于点,且.(1)求证:是圆所在圆的切线;(2)若,,求⊙O的半径.22. (10分)小亮在广场上乘凉,如图所示的线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.(1)请在图中画出小亮在照明灯P照射下的影子;(2)如果灯杆长PO=12 m,小亮身高AB=1.6 m,小亮与灯杆的距离BO=13 m,请求出小亮影子的长度.四、大题 (共2题;共25分)23. (10分) (2017八下·蚌埠期中) 今年初,“合肥百大”商场在滨湖新区隆重开业,某服装经销商发现某款新型运动服市场需求较大,该服装的进价为200元/件,每年支付员工工资和场地租金等其它费用总计40000元.经过市场调查发现如果销售单价为x元/件,则年销售量为(800﹣x)件.(1)用含x的代数式表示年获利金额w;注:年获利=(销售单价﹣进价)×年销售量﹣其它费用(2)若经销商希望该服装一年的销售获利达40000元,且要使产品销售量较大,你认为销售单价应定为多少元?24. (15分) (2019九下·桐乡月考) 如图,抛物线y=ax2+bx经过点A(7,0),B(-1,4),经过点B的直线与抛物线的另一个交点C在第四象限.已知△ABC的面积为14.(1)求抛物线的函数关系式;(2)求点C的坐标#(3)设P是线段BC延长线上的点,作直线PD∥x轴,交抛物线于点D、E(点D在点E的左侧).若DE=PE,求点P的横坐标.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共8题;共8分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共8题;共75分)15-1、15-2、16-1、17-1、17-2、18-1、18-2、18-3、19-1、20-1、20-2、21-1、21-2、22-1、22-2、四、大题 (共2题;共25分) 23-1、23-2、24-1、24-2、24-3、。
四川省广元市九年级上学期期末数学试卷(b卷)
四川省广元市九年级上学期期末数学试卷(b卷)姓名:________ 班级:________ 成绩:________一、填空题: (共6题;共7分)1. (1分)(2019·萧山模拟) 有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,不放回,再抽出一张卡片,以第一次抽取的数字为十位数,第二次抽取的数字为个位数,则组成的两位数是6的倍数的概率是________.2. (1分)(2018·东胜模拟) 方程x2+4x﹣1=0的解是:________.3. (1分)如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为________ cm2 .(结果保留π)4. (1分) (2017九上·巫溪期末) 如图,▱ABCD的顶点A,B的坐标分别是A(﹣1,0),B(0,﹣3),顶点C,D在双曲线y= 上,边AD交y轴于点E,且▱ABCD的面积是△ABE面积的8倍,则k=________.5. (2分)如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且点B(3,1),B′(6,2).请你根据位似的特征并结合点B的坐标变化回答下列问题:①若点A(, 3),则A′的坐标为________②△ABC与△A′B′C′的相似比为________6. (1分) (2019九上·栾城期中) 如图,已知△ABC中D为AC中点,AB=5,AC=7,∠AED=∠C,则BE=________.二、选择题: (共8题;共16分)7. (2分)下列图形中,是轴对称图形的是()A .B .C .D .8. (2分)以下说法正确的是()A . 在367人中至少有两个人的生日相同B . 一次摸奖活动的中奖率是1%,那么摸100次必然会中一次奖C . 一副扑克牌中,随意抽取一张是红桃K,这是必然事件D . 一个不透明的袋中装有3个红球,5个白球,搅匀后想中任意摸出一个球,摸到红球的可能性大于摸到白球的可能性9. (2分) (2017九上·抚宁期末) 若反比例函数y=(2m﹣1)的图象在第二,四象限,则m的值是()A . ﹣1或1B . 小于的任意实数C . ﹣1D . 不能确定10. (2分)小明从一副扑克牌中取出3张红桃、2张黑桃共5张牌与弟弟做游戏,把这5张牌背面朝上洗匀后放在桌子上,小明与弟弟同时各抽一张,两人抽到花色相同的概率是()A .B .C .D .11. (2分)若△ABC~△DEF,它们的面积比为4︰1,则△ABC与△DEF的相似比为()A . 2︰1B . 1︰2C . 4︰1D . 1︰412. (2分)如图,EF是△ABC的中位线,将△AEF沿中线AD方向平移到△A1E1F1的位置,使E1F1与BC边重合,已知△AEF的面积为7,则图中阴影部分的面积为()A . 7B . 14C . 21D . 2813. (2分)如图,△P1OA1、△P2A1A2是等腰直角三角形,点P1、P2在函数y=(x>0)的图象上,斜边OA1、A1A2都在x轴上,则点A2的坐标是()A . (2-2,0)B . (2+2,0)C . (4, 0)D . (2, 0)14. (2分)直线y=ax+b经过第二、三、四象限,那么下列结论正确的是()A . =a+bB . 点(a,b)在第一象限内C . 反比例函数y=,当x>0时,函数值y随x增大而减小D . 抛物线y=ax2+bx+c的对称轴过二、三象限三、解答题: (共7题;共67分)15. (7分)(2017·广陵模拟) 在一个不透明的袋子中装有除颜色外其余均相同的5个小球,其中红球3个(记为A1 , A2 , A3),黑球2个(记为B1 , B2).(1)若先从袋中取出m(m>0)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,填空:①若A为必然事件,则m的值为________②若A为随机事件,则m的取值为________(2)若从袋中随机摸出2个球,正好红球、黑球各1个,用树状图或列表法求这个事件的概率.16. (5分)如图,四边形中ABCD中,E,F分别是AB,CD的中点,P为对角线AC延长线上的任意一点,PF 交AD于M,PE交BC于N,EF交MN于K.求证:K是线段MN的中点.17. (15分)(2018·濠江模拟) 如图,一次函数(k≠0)的图象与反比例函数(m≠0,x<0)的图象交于点A(-3,1)和点C,与y轴交于点B,△AO B的面积是6.(1)求一次函数与反比例函数的解析式;(2)求sin∠ABO的值;(3)当x<0时,比较与的大小.18. (10分)(2016·兴化模拟) 一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.19. (10分)(2017·丰台模拟) 如图,在平面直角坐标系xOy中,直线y=﹣3x+m与双曲线y= 相交于点A(m,2).(1)求双曲线y= 的表达式;(2)过动点P(n,0)且垂直于x轴的直线与直线y=﹣3x+m及双曲线y= 的交点分别为B和C,当点B位于点C下方时,求出n的取值范围.20. (10分)(2020·北京模拟) 如图,已知,,反比例函数的图象过点,反比例函数的图象过点.(1)求和的值;(2)过点作轴,与双曲线交于点.求的面积.21. (10分) (2017九上·上蔡期末) 已知二次函数 .(1)求函数图象的顶点坐标及对称轴;(2)求函数图象与x轴的交点坐标.参考答案一、填空题: (共6题;共7分)1-1、2-1、3-1、4-1、5-1、6-1、二、选择题: (共8题;共16分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、三、解答题: (共7题;共67分)15-1、15-2、16-1、17-1、17-2、17-3、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、。
四川省广元市九年级上学期数学期末试卷
四川省广元市九年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·武邑月考) 下图是某物体的直观图,它的俯视图是()A .B .C .D .2. (2分)已知,将如图的三角板的直角顶点放置在直线AB上的点O处,使斜边CD∥AB.则∠α的余弦值为()A .B .C .D . 13. (2分)(2019·广西模拟) 下列说法中正确的是()A . “任意画出一个等边三角形,它是轴对称图形”是随机事件B . “任意画出一个平行四边形,它是中心对称图形”是必然事件C . “概率为0.0001的事件”是不可能事件’D . 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次4. (2分) (2018九上·平顶山期末) 已知反比例函数y= 的图象过点A(1,﹣2),则k的值为()A . 1B . 2C . ﹣2D . ﹣15. (2分)已知方程x2-5x+2=0的两个解分别为x1、x2 ,则x1+x2-x1•x2的值为()A . -7B . -3C . 7D . 36. (2分)如图,不能判定△ABC与△ACD相似的是()A . ∠1=∠ACBB . ∠2=∠BC . AC2=AD·ABD . DB2=AB·AD7. (2分)下列命题中正确的是()A . 函数的自变量x的取值范围是x>3B . 菱形是中心对称图形,但不是轴对称图形C . 一组对边平行,另一组对边相等四边形是平行四边形D . 三角形的外心到三角形的三个顶点的距离相等8. (2分) (2019九上·金凤期中) 已知关于x的方程x2﹣(2k﹣1)x+k2=0有两个实数根,那么k的最大整数值是()A . ﹣2B . ﹣1C . 0D . 19. (2分)(2018·烟台) 如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以lcm/s的速度沿A→D→C 方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是()A .B .C .D .10. (2分)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE交AD于点F ,连结BD交CE于点G ,连结BE. 下列结论中:① CE=BD;② △ADC是等腰直角三角形;③ ∠ADB=∠AEB;④ CD·AE=EF·CG;一定正确的结论有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共7题;共9分)11. (1分)(2020·宜城模拟) 一个菱形的边长是方程x2﹣7x+10=0的一个根,其中一条对角线长为6,则该菱形的面积为________.12. (1分)如图,AB是斜靠在墙角的长梯,梯角B距墙0.8m,长梯上一点D距墙0.7m,BD长0.55m,则梯子的长度是________ m.13. (1分)(2018·灌南模拟) 如图,在Rt△ABC中,∠ABC=90°,点B在x轴上,且B(﹣,0),A点的横坐标是1,AB=3BC,双曲线y= (m>0)经过A点,双曲线y=﹣经过C点,则m的值为________.14. (1分)原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为________.15. (2分)在△ABC中,∠ABC和∠ACB的平分线交于点I,若∠A=60°,则∠BIC=________.16. (2分) (2016八下·防城期中) 如图,长方体长、宽、高分别为4cm,3cm,12cm,则BD′=________.17. (1分)(2019·福田模拟) 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CB于点F.交CD于点E.若AC=6,sinB=,则DE的长为________.三、解答题 (共8题;共74分)18. (5分) (2020九上·东莞月考) 解方程:x2﹣3x﹣2=0.19. (7分)(2020·宁夏) 在平面直角坐标系中,的三个顶点的坐标分别是 .①画出关于x轴成轴对称的;②画出以点O为位似中心,位似比为1∶2的 .20. (10分) (2019九下·梁子湖期中) 随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了________人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为________;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“________”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.21. (2分)(2017·于洪模拟) 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A 的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,链接BM(1)菱形ABCO的边长________(2)求直线AC的解析式;(3)动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,①当0<t<时,求S与t之间的函数关系式;②在点P运动过程中,当S=3,请直接写出t的值.22. (10分) (2017九下·简阳期中) 每年的农历三月初一为通州风筝节.这天,小刘同学正在江海明珠广场上放风筝,如图风筝从A处起飞,几分钟后便飞达C处,此时,在AQ延长线上B处的小宋同学,发现自己的位置与风筝和广场边旗杆PQ的顶点P在同一直线上.(1)已知旗杆高为10米,若在B处测得旗杆顶点P的仰角为30°,A处测得点P的仰角为45°,试求A、B 之间的距离;(2)此时,在A处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC为多少米?(结果可保留根号)23. (10分) (2019九上·福田期中) 如图,是小亮晚上在广场散步的示意图,图中线段AB表示站立在广场上的小亮,身高为1.6m,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置.(1)在小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度越来越________(用“长”或“短”填空);请你在图中分别画出小亮站在B处、D处的影子;(2)当小亮离开灯杆的距离OB=3.6m时,小亮的影长为1.2m,灯杆的高度为多少m?(3)当小亮离开灯杆的距离OD=6m时,小亮的影长变为多少m?24. (15分) (2019八下·湖北期末) 已知一次函数的图像经过点(3,5)与(,).(1)求这个一次函数的解析式;(2)点A(2,3)是否在这个函数的图象上,请说明理由.25. (15分)(2014·南京) 【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据________,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若________,则△ABC≌△DEF.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共7题;共9分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:三、解答题 (共8题;共74分)答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、。
四川省广元市九年级数学上册期末检测卷
四川省广元市九年级数学上册期末检测卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)某反比例函数的图象经过点(-2,3),则此函数图象也经过点()A . (-3,-2)B . (3,2)C . (2,-3)D . (2,3)2. (2分)(2020·湛江模拟) 下列图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .3. (2分)下列事件是随机事件的是()A . 太阳绕着地球转B . 小明骑车经过某个十字路口时遇到红灯C . 地球上海洋面积大于陆地面积D . 李刚的生日是2月30日4. (2分)(2020·烟台) 如图,正比例函数y1=mx,一次函数y2=ax+b和反比例函数y3=的图象在同一直角坐标系中,若y3>y1>y2 ,则自变量x的取值范围是()A . x<﹣1B . ﹣0.5<x<0或x>1C . 0<x<1D . x<﹣1或0<x<15. (2分)(2016·鸡西模拟) 如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,已知DE=6,∠BAC+∠EAD=180°,则弦BC的长等于()A .B .C . 8D . 66. (2分)(2020·菏泽) 如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是()A . 互相平分B . 相等C . 互相垂直D . 互相垂直平分7. (2分) (2020七下·武昌期中) 下列哪些图形是通过平移可以得到的()A .B .C .D .8. (2分) (2016九上·防城港期中) 抛物线y=﹣x2向右平移1个单位,再向上平移2个单位得到()A . y=﹣(x﹣1)2+2B . y=﹣(x+1)2+2C . y=﹣(x﹣1)2﹣2D . y=﹣(x+1)2﹣29. (2分)下列各式中,y是x的二次函数的是()A . y=B . y=2x+1C . y=x2+x-2D . y2=x2+3x10. (2分) (2020九上·海珠期末) 已知:是的直径,,是的切线,是上一动点,若,,,则的面积的最小值是()A . 36B . 32C . 24D . 10.411. (2分)(2020·兰州模拟) 如图,已知E、F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③MD=2AM=4EM;④AM= MF.其中正确结论的个数是()A . 4个B . 3个C . 2个D . 1个12. (2分) (2019九上·巴南期末) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下结论同时成立的是A .B .C .D .二、填空题 (共6题;共6分)13. (1分)(m﹣1)x2+(m+1)x+3m+2=0,当m=________时,方程为关于x的一元一次方程;当m________时,方程为关于x的一元二次方程.14. (1分)(2018·阳新模拟) 质地均匀的正四面体骰子的四个面上分别写有数字:2,3,4,5.投掷这个正四面体两次,则第一次底面上的数字能够整除第二次底面上的数字的概率是________15. (1分)(2017·广州模拟) 如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为________ cm2 .16. (1分)(2017·徐州模拟) 如果关于x的方程x2﹣6x+m=0有两个相等的实数根,那么m=________.17. (1分)(2019·孝感模拟) 如图,已知△ABO顶点A(-3,6),以原点O为位似中心,把△ABO缩小到原来的,则与点A对应的点A'的坐标是________.18. (1分)(2016·东营) 如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5 cm,且tan∠EFC= ,那么矩形ABCD的周长为________cm.三、解答题(一) (共4题;共20分)19. (5分)用适当的方法解下列一元二次方程(1)(3x+2)2=25(2) 4x2﹣12x+9=0(3)(2x+1)2=3(2x+1)(4) 2x2﹣3x+2=0.20. (5分) (2019九上·淮阴期末) 如图,弦CD垂直于⊙O的直径AB,垂足为P,且CD=2 ,BP=1,求⊙O的半径.21. (5分) (2017九上·萝北期中) 如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1 ,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2 .(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.22. (5分)如图,在平面直角坐标系中,二次函数y=+bx+c的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POP’C,那么是否存在点P,使四边形POP’C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形 ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.四、解答题(二) (共5题;共65分)23. (10分)(2017·内江) 小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:(1)这项被调查的总人数是多少人?(2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.24. (10分)(2016·江汉模拟) 如图,一次函数y1=﹣x+5的图象与反比例函数y2= (k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式;(2)当y2>y1>0时,写出自变量x的取值范围.25. (15分) (2018九上·桐乡期中) 如图,⊙O的直径AB=26,P是AB上(不与点A,B重合)的任一点,点C,D为⊙O上的两点.若∠APD=∠BPC,则称∠DPC为直径AB的“回旋角”.(1)若∠BPC=∠DPC=60°,则∠DPC是直径AB的“回旋角”吗?并说明理由;长.(2)猜想回旋角”∠DPC的度数与弧CD的度数的关系,给出证明(提示:延长CP交⊙O于点E);长.(3)若直径AB的“回旋角”为120°,且△PCD的周长为24+13 ,直接写出AP的长.26. (10分)在菱形ABCD中,∠ADC=60°,BD是一条对角线,点P在边CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,在BD上取一点H,使HQ=HD,连接HQ,AH,PH.(1)依题意补全图1;(2)判断AH与PH的数量关系及∠AH P的度数,并加以证明;(3)若∠AHQ=141°,菱形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)27. (20分)(2012·营口) 如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:AE=DF;(2)如图2,若AB=2,过点M作MG⊥EF交线段BC于点G,判断△GEF的形状,并说明理由;(3)如图3,若AB= ,过点M作MG⊥EF交线段BC的延长线于点G.①直接写出线段AE长度的取值范围;②判断△GEF的形状,并说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题(一) (共4题;共20分)19-1、19-2、19-3、19-4、20-1、21-1、21-2、22-1、四、解答题(二) (共5题;共65分)23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、27-1、27-2、27-3、。
四川省广元市九年级上学期期末数学试卷
四川省广元市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题:相信你一定能选对! (共10题;共20分)1. (2分)用刻度尺分别画下列图形的对称轴,可以不用刻度尺上的刻度画的是()A . ①③④B . ②③C . ③④D . ①②2. (2分)△ABC与△DEF满足下列条件,其中能使△ABC∽△DEF的是()A . AB=1,BC=1.5,AC=2,DE=8,EF=12,DF=16B . AB=,BC=,AC=,DE=,EF=3,DF=3C . AB=3,BC=4,AC=6,DE=6,EF=8,DF=16D . AB=3,BC=4,AC=5,DE=,EF=2,DF=3. (2分)下列命题中,正确的是()①平分弦的直径垂直于弦;②圆内接平行四边形必为矩形;③90°的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤相等的圆周角所对的弧相等.A . ①②③B . ②③④C . ②③④⑤D . ①②③④⑤4. (2分)下列说法正确的是()A . 要了解一批灯泡的使用寿命,应采用普查的方式B . 若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖C . 甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定D . “掷一枚硬币,正面朝上”是必然事件5. (2分)(2018·淮安) 如图,点A,B,C都在⊙O上,若∠AOC=140°,则∠B的度数是()。
A . 70°B . 80°C . 110°D . 140°6. (2分) (2017九上·顺德月考) 方程的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 以上说法都不对7. (2分)如果点P1(a,3)和P2(﹣4,b)关于原点对称,则a+b的值为()A . 1B . -1C . 7D . -78. (2分)已知二次函数 y=ax2+bx+c 的图象如图所示,下列结论正确的是()A . a>0B . c0C . b2-4ac0D . a+b+c>09. (2分)下列命题正确的是()A . 三点可以确定一个圆B . 以定点为圆心,定长为半径可确定一个圆C . 顶点在圆上的三角形叫圆的外接三角形D . 等腰三角形的外心一定在这个三角形内10. (2分)如图,已知点A是一次函数y=x的图象与反比例函数的图象在第一象限内的交点,点B在x轴的负半轴上,且OA=OB,那么△AOB的面积为()A . 2B .C .D .二、填空题。
四川省广元市九年级上学期期末数学试卷
四川省广元市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共15题;共30分)1. (2分)函数 y=(a为常数)的图象上有三点(﹣4,y1),(﹣1,y2),(2,y3),则函数值y1 , y2 ,y3的大小关系是()A . y3<y1<y2B . y3<y2<y1C . y1<y2<y3D . y2<y3<y12. (2分) (2017八下·曲阜期末) 已知:如图,折叠矩形ABCD,使点B落在对角线AC上的点F处,若BC=4,AB=3,则线段CE的长度是()A .B .C . 3D . 2.83. (2分)某县地震牵动着全国人民的心,某单位开展了“一方有难,八主支援”赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元,如果第二天、第三天、第四天的平均增长率相同,则第四天收到的捐款为()A . 13150元B . 13310元C . 13400元D . 14200元4. (2分)(2017·黑龙江模拟) 2017年某市中考体育考试包括必考和选考两项.必考项目:男生1000米跑;女生800米跑;选考项目(五项中任选两项):A.掷实心球、B.篮球运球、C.足球运球、D.立定跳远、E.一分钟跳绳.那么小丽同学考“800米跑、立定跳远、一分钟跳绳”的概率是()A .B .C .D .5. (2分)(2018·绍兴模拟) α为锐角,当无意义时,sin(α+15°)+cos(α﹣15°)的值为()A .B .C .D .6. (2分)在△ABC中,∠C=90°如果tanA= ,那么sinB的值是().A .B .C .D .7. (2分)(2018·德阳) 如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是()A . 16πB . 12πC . 10πD . 4π8. (2分) (2019九上·福田期中) 如图,正方形ABCD中,E为BC的中点,CG⊥DE于G,BG延长交CD于点F,CG延长交BD于点H,交AB于N.下列结论:①DE=CN;② ;③S△DEC=3S△BNH;④∠BGN=45°;⑤ .其中正确结论的个数有()A . 2个B . 3个C . 4个D . 5个9. (2分)(2017·徐汇模拟) 在△ABC中,点D、E分别在边AB、AC上,联结DE,那么下列条件中不能判断△ADE和△ABC相似的是()A . DE∥BCB . ∠AED=∠BC . AE:AD=AB:ACD . AE:DE=AC:BC10. (2分)(2017·玉林) 如图,一艘轮船在A处测得灯塔P位于其北偏东60°方向上,轮船沿正东方向航行30海里到达B处后,此时测得灯塔P位于其北偏东30°方向上,此时轮船与灯塔P的距离是()A . 15 海里B . 30海里C . 45海里D . 30 海里11. (2分)(2017·泸州模拟) 如图,点A(3,m)在双曲线上,过点A作AC⊥x轴于点C,线段OA 的垂直平分线交OC于点B,则△ABC的周长的值为()A . 6B . 5C . 4D . 312. (2分)小明、小亮、小梅、小花四人共同探究代数式x2-4x+5的值的情况,他们作了如下分工:小明负责找值为1时的x值,小亮负责找值为0时的x值,小梅负责找最小值,小花负责找最大值。
四川省广元市九年级上学期数学期末考试试卷
四川省广元市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)二次函数y=(x-1)2+2,y的最小值是()A . -2B . 2C . 1D . -12. (2分)(2017·鄞州模拟) 若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是()A . 1B . 0C . ﹣1D . 23. (2分)△DEF(三角形)是由△ABC平移得到的,点A(﹣1,﹣4)的对应点为D(1,﹣1),则点B(1,1)的对应点E,点C(﹣1,4)的对应点F的坐标分别为()A . (2,2),(3,4)B . (3,4),(1,7)C . (﹣2,2),(1,7)D . (3,4),(2,﹣2)4. (2分)在一次同学聚会上,同学之间每两人都握了一次手,聚会所有人共握手45次,则参加这次聚会的同学共有()A . 11人B . 10人C . 9人D . 8人5. (2分)如图,已知点C,D是半圆上的三等分点,连接AC,BC,CD,OD,BC和OD相交于点E.则下列结论:①∠CBA=30°,②OD⊥BC,③OE=AC,④四边形AODC是菱形.正确的个数是()A . 1B . 2C . 3D . 46. (2分) (2015七上·海南期末) 若代数式3x﹣2的值为7,则x等于()A . ﹣2B . ﹣3C . 3D . 17. (2分)甲盒子中有编号为1、2、3的3个白色乒乓球,乙盒子中有编号为4、5、6的3个黄色乒乓球.现分别从每个盒子中随机地取出1个乒乓球,则取出乒乓球的编号之和大于6的概率为().A .B .C .D .8. (2分) (2019八下·江城期中) 已知等腰三角形的一条腰长是15,底边长是18,则它底边上的高为()A . 9B . 12C . 15D . 189. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc<0;②b2﹣4ac>0;③3a+c<0;④16a+4b+c>0.其中正确结论的个数是()A . 1个B . 2个C . 3个D . 4个10. (2分) (2019七上·郑州月考) 观察下列算式:观察下列算式:21-2=0,22-2=2,23-2=6,24-2=14,25-2=30,26-2=62,27-2=126,28-2=254,…根据上述算式中的规律,你认为22017-2的末位数字是()A . 6B . 0C . 2D . 8二、填空题 (共6题;共6分)11. (1分)已知x=﹣2是方程20x+|k﹣1|=﹣40的解,则k的值是________.12. (1分) (2019九上·江山期中) 如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A 重合,射线CP从CA处出发沿顺时针方向旋转,CP与量角器的半圆弧交于点E,当∠ACP=20°时,点E在量角器上对应的读数是________度.13. (1分)如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=25°,则∠ADE=________°.14. (1分) (2016九上·营口期中) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则不等式ax2+bx+c <0的解集是________.15. (1分)(2015·衢州) 如图,已知直线y=﹣ x+3分别交x轴、y轴于点A、B,P是抛物线y=﹣ x2+2x+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣ x+3于点Q,则当PQ=BQ时,a的值是________.16. (1分)已知直线l1∥l2 , BC=3cm,S△ABC=3cm2 ,则S△A1BC的高是________.三、解答题 (共7题;共56分)17. (5分) (2016九上·长春期中) 如图,四边形OABC是平行四边形,点A,B,C在⊙O上,P为上一点,连接AP,CP,求∠P的度数.18. (6分)在不透明的袋子中装有3个红球和6个黄球,每个球除颜色外都相同;(1)从中任意摸出一个球,摸到________球的可能性大.(2)如果另外拿5个球放入袋中,你认为怎样放才能让摸到红球和黄球的可能性相同?19. (5分)如图.已知四边形ABCD和BC边上一点O.求作:四边形A′B′C′D′,使它与四边形ABCD关于点O成中心对称.20. (10分) (2018九上·杭州期末) 已知二次函数y= x2﹣x+m的图象经过点A(1,﹣2)(1)求此函数图像与坐标轴的交点坐标;(2)若P(-2,y1),Q(5,y2)两点在此函数图像上,试比较y1,y2的大小21. (10分) (2016八下·费县期中) 如图,在四边形ABCD中,AB=AD=8,∠A=60°,∠ADC=150°,四边形ABCD的周长为32.(1)求∠BDC的度数;(2)四边形ABCD的面积.22. (5分)已知,求一元二次方程bx2﹣x+a=0的解.23. (15分) (2016九上·南充开学考) 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共56分)17-1、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、23-1、23-2、23-3、。
四川省广元市九年级上学期数学期末考试试卷
四川省广元市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·商丘模拟) 在下面的四个有理数中,最小的数是()A . ﹣1B . 0C . ﹣2D . ﹣1.92. (2分)(2019·成都) 2019年4月10日,人类首张黑洞图片问世,该黑洞位于室女座一个巨椭圆星系的中心,距离地球万光年.将数据万用科学计数法表示为()A .B .C .D .3. (2分)(2016·南沙模拟) 如图,一个透明的玻璃正方体表面嵌有一根黑色的铁丝.这根铁丝在正方体俯视图中的形状是()A .B .C .D .4. (2分) (2019八上·建邺期末) 在平面直角坐标系中,点P(2,-3)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分) (2016八上·扬州期末) 下列事件中,最适合使用普查方式收集数据的是()A . 了解扬州人民对建设高铁的意见B . 了解本班同学的课外阅读情况C . 了解同批次LED灯泡的使用寿命D . 了解扬州市八年级学生的视力情况6. (2分)一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是()A . k≥﹣1且k≠0B . k≥﹣1C . k≤﹣1且k≠0D . k≥﹣1或k≠07. (2分) (2020九上·兰考期末) 从 1 到 9这9个自然数中任取一个,是偶数的概率是()A .B .C .D .8. (2分) (2018·天水) 从一块正方形的木板上锯掉2 m宽的长方形木条,剩下的面积是48㎡,则原来这块木板的面积是()A . 100㎡B . 64㎡C . 121㎡D . 144㎡9. (2分)在相同时刻的物高与影长成正比.如果高为1.5m的竹竿的影长为2.5m,那么影长为30m旗杆的高是()A . 15mB . 16mC . 18mD . 20m10. (2分)在平面直角坐标系中,点(m﹣2,m﹣3)在第三象限,则m的取值范围是()A . m>3B . m<2C . 2<m<3D . m<3二、填空题 (共5题;共6分)11. (1分) (2016七下·黄陂期中) 9的算术平方根是________, =________,﹣ =________.12. (1分)(2017·长春模拟) 在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是________.13. (1分)(2018·驻马店模拟) 二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2 ,且x1<x2 ,则x1<﹣1<5<x2 .其中正确的结论是________.14. (1分) (2020九上·温州期末) 如图,AB是半圆O的直径,D是半圆O上一点,C是的中点,连结AC变BD于点E,连结AD,若BE=4DE,CE=6,则AB的长为________。
四川省广元市9年级数学期末测试卷
四川省广元市9年级数学期末测试卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共45分)1. (3分) (2018九上·港南期中) 方程2(2x+1)(x-3)=0的两根分别为()A . 和3B . 和3C . 和D . 和2. (3分)已知二次函数的解析式为y=3(x-1)2-3,则该二次函数图象的顶点坐标是()A . (-1,3)B . (1,-3)C . (-1,-3)D . (1,3)3. (3分) (2016九上·蓬江期末) 如图,二次函数y=ax2+bx+c的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A . x<﹣2B . ﹣2<x<4C . x>0D . x>44. (3分) (2018九上·库伦旗期末) 下列四个图形中,既是轴对称图形又是中心对称图形的有()B . 3个C . 2个D . 1个5. (3分)(2017·大庆模拟) 定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是()A . 方有两个相等的实数根B . 方程有一根等于0C . 方程两根之和等于0D . 方程两根之积等于06. (3分) (2017七下·港南期末) 如图所示的直角三角形ABC向右翻滚,下列说法:(1)①到②是旋转;(2)①到③是平移;(3)①到④是平移;(4)②到③是旋转,其中正确的有()A . 1个B . 2个C . 3个D . 4个7. (3分) (2019九上·东莞期中) 关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a的值为()A . 1B . -1C . 1或-1D . 28. (3分)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB 的长为()A .C .D .9. (3分)已知0≤x≤,则函数y=x2+x+1()A . 有最小值,但无最大值B . 有最小值,有最大值1C . 有最小值1,有最大值D . 无最小值,也无最大值10. (3分)(2017·自贡) 下列成语描述的事件为随机事件的是()A . 水涨船高B . 守株待兔C . 水中捞月D . 缘木求鱼11. (3分)小烈和小伟玩一种扑克版的游戏,若小烈手里有3张牌是K,小伟从小烈手中抽到K的概率为,则小烈手里共有扑克牌()A . 4张B . 9张C . 12张D . 15张12. (3分) (2018九上·林州期中) 如图,,是的直径,,若,则的度数是()A . 32°B . 60°C . 68°D . 64°13. (3分)(2019·云梦模拟) 如图,矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,连接BD交AF于H,AD=10 ,且tan∠EFC= ,那么AH的长为()A .B .C . 10D . 514. (3分)(2017·青山模拟) 如图,抛物线y=﹣ x2+ x+ 与x轴交于A,B两点,与y轴交于点C.若点P是线段AC上方的抛物线上一动点,当△ACP的面积取得最大值时,点P的坐标是()A . (4,3)B . (5,)C . (4,)D . (5,3)15. (3分) (2018九上·梁子湖期末) 如图,抛物线与轴交于点A(-1,0),顶点坐标(1,n)与轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:① ;② ;③对于任意实数m,a+b≥am2+bm总成立;④关于的方程有两个不相等的实数根.其中结论正确的个数为A . 1 个B . 2 个D . 4 个二、解答题 (共9题;共75分)16. (6分) (2018九上·华安期末) 如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米.求截去正方形的边长.17. (6分) (2016九上·夏津期中) 已知方程x2+2(m﹣2)x+m2+4=0有两个实数根,且两个根的平方和比两根的积大40,求m的值.18. (7分)三角形的两边长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,求这个三角形的周长.19. (7分)如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=120°,点E在上.(1)求∠E的度数;(2)连接OD、OE,当∠DOE=90°时,AE恰好为⊙O的内接正n边形的一边,求n的值20. (8分)设xi(i=1,2,3,…,n)为任意代数式,我们规定:y=max{x1 , x2 ,…,xn}表示x1 , x2 ,…,xn中的最大值,如y=max{1,2}=2.(1)求y=max{x,3};(2)借助函数图象,解不等式max{x+1,}≥2;(3)若y=max{|1﹣x|,x+a,x2﹣4x+3}的最小值为1,求实数a的值.21. (8分)已知当x=2时,二次函数有最大值8,且图象过点(0,4),求此函数的关系式.22. (10分)如图,已知点A、B、C、D在圆O上,AB=CD.求证:AC=BD.(1)求证:方程有两个不相等的实数根;(2)当方程有一个根为5时,求k的值.24. (12分)(2017·江苏模拟) 如图,已知抛物线y=ax2+bx+1经过点(2,6),且与直线相交于A,B两点,点A在y轴上,过点B作BC⊥x轴,垂足为点C(4,0).(1)求抛物线的解析式;(2)若P是直线AB上方该抛物线上的一个动点,过点P作PD⊥x轴于点D,交AB于点E,求线段PE的最大值;(3)在(2)的条件,设PC与AB相交于点Q,当线段PC与BE相互平分时,请求出点Q的坐标.参考答案一、单选题 (共15题;共45分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、解答题 (共9题;共75分)16-1、17-1、18-1、19-1、20-1、21-1、22-1、23-1、24-1、24-2、24-3、。
四川省广元市九年级上学期数学期末考试试卷
四川省广元市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共10分)1. (1分)(2013·茂名) 下列事件中为必然事件的是()A . 打开电视机,正在播放茂名新闻B . 早晨的太阳从东方升起C . 随机掷一枚硬币,落地后正面朝上D . 下雨后,天空出现彩虹2. (1分)如果|a+2|+(b-1)2=0,那么(a+b)2007的值是()A . -2007B . 2007C . -1D . 13. (1分) (2019九上·镇江期末) 将抛物线沿y轴翻折,所得抛物线的函数表达式是()A .B .C .D .4. (1分) (2018九上·天台月考) 同时掷两枚质地均匀的硬币,出现结果是“一正一反”的概率为()A .B .C .D .5. (1分) (2019九上·通州期末) 如图,PA,PB分别与相切于A,B两点,PO与AB相交于点C,,,则OC的长等于A .B . 3C .D .6. (1分)如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为()A . 6.5米B . 9米C . 13米D . 15米7. (1分)下列命题正确的有()个①40°角为内角的两个等腰三角形必相似;②若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为75°;③一组对边平行,另一组对边相等的四边形是平行四边形;④一个等腰直角三角形的三边是a、b、c ,(a>b=c),那么a2:b2:c2=2:1:1;⑤若△ABC的三边a、b、c满足a2+b2+c2+338=10a+24b+26c ,则此△为等腰直角三角形.A . 1个B . 2个C . 3个D . 4个8. (1分)(2019·高台模拟) 如图,AB与⊙O相切于点C,OA=OB,⊙O的直径为6cm,AB=6 cm,则阴影部分的面积为()A .B .C .D .9. (1分)某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y=x2(x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A . 40 m/sB . 20 m/sC . 10 m/sD . 5 m/s10. (1分)搬进新居后,小杰自己动手用彩塑纸做了一个如图所示的正方形的挂式小饰品ABCD,彩线BD.AN.CM 将正方形ABCD分成六部分,其中M是AB的中点,N是BC的中点,AN与CM交于O点.已知正方形ABCD的面积为576cm2 ,则被分隔开的△CON的面积为()A . 96cm2B . 48cm2C . 24cm2D . 以上都不对二、填空题 (共6题;共6分)11. (1分)如图,△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,点D为AC的黄金分割点(AD >CD),AC=6,则CD=________.12. (1分) (2015八下·绍兴期中) 同学们对公园的滑梯很熟悉吧!如图是某公园“六•一”前新增设的一台滑梯,该滑梯高度AC=2m,滑梯AB的坡比是1:2,则滑梯AB的长是________米.13. (1分) (2017九上·北海期末) 如图,⊙O的半径为2cm,弦BC与弦AD交于点E,且∠CED=75°,弦AB为cm,则CD的长为________cm.14. (1分)如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为________ cm15. (1分)(2017·昌平模拟) 已知二次函数y=x2+(2m﹣1)x,当x<0时,y随x的增大而减小,则m的取值范围是________.16. (1分) (2019九下·桐梓月考) AB是⊙O的直径,点E是弧BF的中点,连接AF交过E的切线于点D,AB的延长线交该切线于点C,若∠C=30°,⊙O的半径是2,则图形中阴影部分的面积是________.三、解答题 (共8题;共16分)17. (1分)计算:18. (1分) (2017九上·柘城期末) 如图,点H在平行四边形ABCD的边DC延长线上,连结AH分别交BC、BD于点E,F.求证:.19. (2分)已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.(1)求m、n的值(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P 的右侧,PA:PB=1:5,求一次函数的表达式.20. (2分)(2014·绍兴) 九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图1,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求护墙与地面的倾斜角α的度数.(2)如图2,第二小组用皮尺量的EF为16米(E为护墙上的端点),EF的中点离地面FB的高度为1.9米,请你求出E点离地面FB的高度.(3)如图3,第三小组利用第一、第二小组的结果,来测量护墙上旗杆的高度,在点P测得旗杆顶端A的仰角为45°,向前走4米到达Q点,测得A的仰角为60°,求旗杆AE的高度(精确到0.1米).备用数据:tan60°=1.732,tan30°=0.577,=1.732,=1.414.21. (2分)(2017·如皋模拟) 若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.(1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.22. (2分) (2019九上·海珠期末) 已知:如图,BC为⊙O的弦,点A为⊙O上一个动点,△OBC的周长为16.过C作CD∥AB交⊙O于D,BD与AC相交于点P,过点P作PQ∥AB交于Q,设∠A的度数为α.(1)如图1,求∠COB的度数(用含α的式子表示);(2)如图2,若∠ABC=90°时,AB=8,求阴影部分面积(用含α的式子表示);(3)如图1,当PQ=2,求的值.23. (3分)如图1,直线l⊥AB于点B,点C在AB上,且AC:CB=2:1,点M是直线l上的动点,作点B关于直线CM的对称点B′,直线AB′与直线CM相交于点P,连接PB.(1)如图2,若点P与点M重合,则∠PAB=________,线段PA与PB的比值为________(2)如图3,若点P与点M不重合,设过P,B,C三点的圆与直线AP相交于D,连接CD,求证:①CD=CB′;②PA=2PB(3)如图4,若AC=2,BC=1,则满足条件PA=2PB的点都在一个确定的圆上,在以下小题中选做一题:①如果你能发现这个确定的圆的圆心和半径,那么不必写出发现过程,只要证明这个圆上的任意一点Q,都满足QA=2QB;②如果你不能发现这个确定的圆的圆心和半径,那么请取出几个特殊位置的P点,如点P在直线AB上,点P 与点M重合等进行探究,求这个圆的半径.24. (3分)已知抛物线过点(,)和点(1,6),(1)求这个函数解析式;(2)当x为何值时,函数y随x的增大而减小;参考答案一、选择题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共16分)17-1、18-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、。
【中小学资料】四川省广元市利州区嘉陵2017届九年级数学上学期月考(一)(无答案)
2016年秋九年级数学定时作业(一)(总分:120分 时间:120分钟)初三学习生活紧张而内涵丰富,愿每位同学都有学习数学成功的喜悦! 一、耐心选选,你会开心。
(每题3分,共15分) 1.下列二次根式中,最高二次根式是( ) A B C D 2.实数、a b 在数轴上的位置如图:a b-+的结果是( )A.2a b - B .b C .b - D .2a b -+ 3.如果2是一元二次方程x2c =的一个根,则另一个根是( )A .2B .2-C .4D .4- 4.关于x 的方程x230x a ++=有实数根,则a 的取值范围是( )A .<94 B .94a ≤ C .a >94 D .94a ≥ 5.一块边长a 的正方形桌布,平铺在直径为(b a >)b 的圆桌上,若桌布四个角下垂最大长度相等,则其最大长度为 ( )B A b - B 2b-C .22b a - D .2a b - 二、精心填填,你会轻松。
(每题3分,共30分)61的相反数是 ,1的绝对值是 ,1的倒数是 。
7.函数y =x 的取值范围是 。
8.计算:200820081)1)∙= 。
9.已知2(3)x -x y = 。
10.m = 时,关于x 的方程21(1)310mm x x +-+-=是一元二次方程。
11.若24x mx ++是一个完全平方式,则m = 。
12.已知2是关于x 的方程2(3)120x k x -++=的一个根,则以2和k 为两边的等腰三角形的周长为 。
13.2007年女足世界杯成都赛区共进行了6场小组赛(每两个队比赛一场)。
则该小组共有个队。
14.广元市政府为了解决老百姓看病难的问题,决定下调药品价格,某种药品经过两次降价,由每盒72元调至56元,若每次平均降价的百分率为x ,由题意可列方程为 。
15.用“ , ”定义新运算,对于任意实数、a b ,都有a b b =和ab b =。
如3 23=、3 22=,则(2009 2008) (2007 2006)= 。
(完整word版)2016-2017学年四川省广元市利州区九年级(上)期末数学试卷
2016-2017学年四川省广元市利州区九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.观察下列图形,既是轴对称图形又是中心对称图形的有( )A.1个B.2个C.3个D.4个2.解方程2(5x﹣1)2=3(5x﹣1)的最适当的方法是()A.直接开平方法 B.配方法 C.公式法D.分解因式法3.二次函数y=(x+3)2+7的顶点坐标是()A.(﹣3,7)B.(3,7) C.(﹣3,﹣7)D.(3,﹣7)4.下列事件中,是不可能事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°5.如图,∠A是⊙O的圆周角,∠A=40°,则∠OBC=( )A.30°B.40°C.50°D.60°6.下列语句中,正确的有()A.在同圆或等圆中,相等的圆心角所对的弧相等B.平分弦的直径垂直于弦C.长度相等的两条弧相等D.圆是轴对称图形,任何一条直径都是它的对称轴7.如图,将△ABC绕点C旋转60°得到△A′B′C,已知AC=6,BC=4,则线段AB扫过的图形的面积为()A.πB.πC.6π D.π8.若函数y=2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()A.y1<y2 B.y1>y2C.y1=y2D.y1、y2、的大小不确定9.如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,OC=8cm,则BE+CG的长等于( )A.13 B.12 C.11 D.1010.已知:关于x的一元二次方程x2﹣(R+r)x+d2=0有两个相等的实数根,其中R、r分别是⊙O1、⊙O2的半径,d为两圆的圆心距,则⊙O1与⊙O2的位置关系是()A.外离B.外切C.相交D.内含二、填空题(每小题3分,共15分)11.方程kx2﹣9x+8=0的一个根为1,则k= .12.甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是.13.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染给个人.14.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.15.如图,是一个半径为6cm,面积为12πcm2的扇形纸片,现需要一个半径为R的圆形纸片,使两张纸片刚好能组合成圆锥体,则R等于cm.三、解答题:(本大题共8小题,共75分)16.解方程:(1)2x2=x(2)x2+4x﹣1=0(用配方法解)17.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,(除颜色外其余都相同),其中白球有两个,黄球有1个,现从中任意摸出一个球是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次摸到的球都是白球的概率.18.如图,点A的坐标为(3,3),点B的坐标为(4,0).点C的坐标为(0,﹣1).(1)请在直角坐标系中画出△ABC绕着点C逆时针旋转90°后的图形△A′B′C;(2)直接写出:点A′的坐标(,),点B′的坐标(,).19.已知:如图,抛物线y=ax2+bx+c与x轴相交于两点A(1,0),B(3,0),与y轴相交于点C(0,3).(1)求抛物线的函数关系式;(2)若点D(,m)是抛物线y=ax2+bx+c上的一点,请求出m的值,并求出此时△ABD的面积.20.如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D 为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.21.如图,在等边△ABC中,已知AB=8cm,线段AM为BC边上的中线.点N在线段AM上,且MN=3cm,动点D在直线AM上运动,连接CD,△CBE是由△CAD旋转得到的.以点C为圆心,以CN为半径作⊙C与直线BE相交于点P,Q两点.(1)填空:∠DCE= 度,CN= cm,AM= cm;(2)如图,当点D在线段AM上运动时,求出PQ的长.22.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?23.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=﹣.2016—2017学年四川省广元市利州区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.观察下列图形,既是轴对称图形又是中心对称图形的有( )A.1个B.2个C.3个D.4个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形不是轴对称图形,是中心对称图形,故本选项错误;第二个图形既是轴对称图形又是中心对称图形;第三个图形既是轴对称图形又是中心对称图形;第四个图形既是轴对称图形又是中心对称图形;所以,既是轴对称图形又是中心对称图形共有3个.故选C.2.解方程2(5x﹣1)2=3(5x﹣1)的最适当的方法是()A.直接开平方法 B.配方法 C.公式法D.分解因式法【考点】解一元二次方程﹣因式分解法.【分析】本题要选择适合的方法解方程,通过观察可知方程的左右两边都含有(5x﹣1),可将方程化简为[2(5x﹣1)﹣3](5x﹣1)=0即5(2x﹣1)(5x﹣1)=0,因此根据“两式相乘值为0,这两式中至少有一式值为0.”即可解出此题.因此用因式分解法解题最合适.【解答】解:方程可化为[2(5x﹣1)﹣3](5x﹣1)=0,即5(2x﹣1)(5x﹣1)=0,根据分析可知分解因式法最为合适.故选D.3.二次函数y=(x+3)2+7的顶点坐标是()A.(﹣3,7)B.(3,7) C.(﹣3,﹣7)D.(3,﹣7)【考点】二次函数的性质.【分析】因为顶点式y=a(x﹣h)2+k,其顶点坐标是(h,k),对照求二次函数y=(x+3)2+7的顶点坐标.【解答】解:∵二次函数y=(x+3)2+7是顶点式,∴顶点坐标为(﹣3,7).故选A.4.下列事件中,是不可能事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°【考点】随机事件.【分析】不可能事件是指在一定条件下,一定不发生的事件.【解答】解:A、买一张电影票,座位号是奇数,是随机事件,故A选项错误;B、射击运动员射击一次,命中9环,是随机事件,故B选项错误;C、明天会下雨,是随机事件,故C选项错误;D、度量一个三角形的内角和,结果是360°,是不可能事件,故D选项正确.故选:D.5.如图,∠A是⊙O的圆周角,∠A=40°,则∠OBC=()A.30°B.40°C.50°D.60°【考点】圆周角定理;三角形内角和定理;等腰三角形的性质.【分析】根据一条弧所对的圆周角等于它所对的圆心角的一半求得∠BOC,再根据三角形的内角和定理以及等腰三角形的两个底角相等进行计算.【解答】解:根据圆周角定理,得∠BOC=2∠A=80°∵OB=OC∴∠OBC=∠OCB==50°.故选C.6.下列语句中,正确的有( )A.在同圆或等圆中,相等的圆心角所对的弧相等B.平分弦的直径垂直于弦C.长度相等的两条弧相等D.圆是轴对称图形,任何一条直径都是它的对称轴【考点】圆心角、弧、弦的关系;垂径定理.【分析】根据圆心角、弧、弦的关系,垂径定理等相关知识进行解答即可.【解答】解:A、此题是圆心角、弧、弦的关系定理,故A正确;B、平分弦(不是直径)的直径垂直于弦,故B错误;C、在同圆或等圆中,能够重合的弧叫做等弧,故C错误;D、任何图形的对称轴都是直线,而圆的直径是线段,故D错误;故选A.7.如图,将△ABC绕点C旋转60°得到△A′B′C,已知AC=6,BC=4,则线段AB扫过的图形的面积为()A.πB.πC.6π D.π【考点】旋转的性质;扇形面积的计算.【分析】根据图形可以得出AB扫过的图形的面积=S扇形ACA′+S△ABC﹣S扇形BCB′﹣S△A′B′C,由旋转的性质就可以得出S△ABC=S△A′B′C就可以得出AB扫过的图形的面积=S扇形ACA′﹣S扇形BCB′求出其值即可.【解答】解:∵△ABC绕点C旋转60°得到△A′B′C,∴△ABC≌△A′B′C,∴S△ABC=S△A′B′C,∠BCB′=∠ACA′=60°.∵AB扫过的图形的面积=S扇形ACA′+S△ABC﹣S扇形BCB′﹣S△A′B′C,∴AB扫过的图形的面积=S扇形ACA′﹣S扇形BCB′,∴AB扫过的图形的面积=×π×36﹣×π×16=π.故选B.8.若函数y=2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()A.y1<y2 B.y1>y2C.y1=y2D.y1、y2、的大小不确定【考点】二次函数图象上点的坐标特征.【分析】根据配方法把二次函数的一般式化为顶点式,求出抛物线的对称轴,根据二次函数的性质判断即可.【解答】解:y=2x2﹣8x+m=2(x﹣2)2+m﹣8,则抛物线开口向上,对称轴是x=2,∴当x<2时,y随x的增大而减小,∴x1<x2<﹣2时,y1>y2,故选:B.9.如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,OC=8cm,则BE+CG的长等于()A.13 B.12 C.11 D.10【考点】切线长定理;勾股定理.【分析】根据平行线的性质以及切线长定理,即可证明∠BOC=90°,再根据勾股定理即可求得BC 的长,再结合切线长定理即可求解.【解答】解:∵AB∥CD,∴∠ABC+∠BCD=180°,∵CD、BC,AB分别与⊙O相切于G、F、E,∴∠OBC=∠ABC,∠OCB=∠BCD,BE=BF,CG=CF,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∴BC==10,∴BE+CG=10(cm).故选D.10.已知:关于x的一元二次方程x2﹣(R+r)x+d2=0有两个相等的实数根,其中R、r分别是⊙O1、⊙O2的半径,d为两圆的圆心距,则⊙O1与⊙O2的位置关系是()A.外离B.外切C.相交D.内含【考点】圆与圆的位置关系;根的判别式.【分析】首先根据关于x的一元二次方程x2﹣(R+r)x+d2=0有两个相等的实数根确定r+R 与d的大小关系,从而判定两圆的位置关系.【解答】解:∵关于x的一元二次方程x2﹣(R+r)x+d2=0有两个相等的实数根,∴△=(r+R)2﹣d2=0,即(R+r+d)(R+r﹣d)=0,解得:r+R=﹣d(舍去)或R+r=d,∴两圆外切,故选B.二、填空题(每小题3分,共15分)11.方程kx2﹣9x+8=0的一个根为1,则k= 1 .【考点】一元二次方程的解.【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k的方程,从而求得k的值.【解答】解:把x=1代入方程得:k﹣9+8=0.解得k=1.12.甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙二人相邻的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,甲、乙二人相邻的有4种情况,∴甲、乙二人相邻的概率是:=.故答案为:.13.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染给9 个人.【考点】一元二次方程的应用.【分析】设每轮传染中平均每个人传染了x人,第一轮后有(1+x)人患了流感,第二轮后会传染给x(1+x)人,则两轮以后共有1+x+x(1+x)人得病,然后根据共有100人患了流感就可以列出方程求解.【解答】解:设每轮传染中平均每个人传染了x人.依题意得1+x+x(1+x)=100,∴x2+2x﹣99=0,∴x=9或x=﹣11(不合题意,舍去).所以,每轮传染中平均一个人传染给9个人.故填空答案:9.14.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是﹣3<x<1 .【考点】二次函数的图象.【分析】根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.【解答】解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.15.如图,是一个半径为6cm,面积为12πcm2的扇形纸片,现需要一个半径为R的圆形纸片,使两张纸片刚好能组合成圆锥体,则R等于 2 cm.【考点】圆锥的计算;弧长的计算;扇形面积的计算.【分析】能组合成圆锥体,那么扇形的弧长等于圆形纸片的周长.应先利用扇形的面积=圆锥的弧长×母线长÷2,得到圆锥的弧长=2扇形的面积÷母线长,进而根据圆锥的底面半径=圆锥的弧长÷2π求解.【解答】解:∵圆锥的弧长=2×12π÷6=4π,∴圆锥的底面半径=4π÷2π=2cm,故答案为2.三、解答题:(本大题共8小题,共75分)16.解方程:(1)2x2=x(2)x2+4x﹣1=0(用配方法解)【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法.【分析】(1)因式分解法求解可得;(2)配方法求解可得.【解答】解:(1)∵2x2﹣x=0,∴x(2x﹣1)=0,则x=0或2x﹣1=0,解得:x=0或x=0。
四川省广元市利州区2017届九年级上期末数学试卷含答案解析
第 1 页(共 24 页) Nhomakorabea19.已知:如图,抛物线 y=ax2+bx+c 与 x 轴相交于两点 A(1,0),B(3,0), 与 y 轴相交于点 C(0,3). (1)求抛物线的函数关系式; (2)若点 D( ,m)是抛物线 y=ax2+bx+c 上的一点,请求出 m 的值,并求出 此时△ABD 的面积.
2016-2017 学年四川省广元市利州区九年级(上)期末数学试 卷
一、选择题(每小题 3 分,共 30 分) 1.观察下列图形,既是轴对称图形又是中心对称图形的有( )
A.1 个 B.2 个 C.3 个 D.4 个 2.解方程 2(5x﹣1)2=3(5x﹣1)的最适当的方法是( ) A.直接开平方法 B.配方法 C.公式法 D.分解因式法 3.二次函数 y=(x+3)2 +7 的顶点坐标是( ) A.(﹣3 ,7) B.(3,7) C.(﹣3 ,﹣7 ) D.(3,﹣7 ) 4.下列事件中,是不可能事件的是( ) AB..射买击一运张动电员影射票击,一座次位,号命是中奇数9 环 C.明天会下雨 D.度量三角形的内角和,结果是 360° 5.如图,∠A 是⊙O 的圆周角,∠A=40°,则∠OBC=( )
第 4 页(共 24 页)
20.如图,在 Rt△ABC 中,∠B=90°,∠A 的平分线交 BC 于 D,E 为 AB 上一 点,DE=DC,以 D 为圆心,以 DB 的长为半径画圆. 求证:(1)AC 是⊙D 的切线; (2)AB+EB=AC.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年四川省广元市利州区嘉陵一中初三上学期期末数学试卷一、选择题(每小题3分,共30分)1.(3分)观察下列图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个2.(3分)解方程2(5x﹣1)2=3(5x﹣1)的最适当的方法是()A.直接开平方法B.配方法C.公式法D.分解因式法3.(3分)二次函数y=(x+3)2+7的顶点坐标是()A.(﹣3,7)B.(3,7)C.(﹣3,﹣7)D.(3,﹣7)4.(3分)下列事件中,是不可能事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°5.(3分)如图,∠A是⊙O的圆周角,∠A=40°,则∠OBC=()A.30°B.40°C.50°D.60°6.(3分)下列语句中,正确的有()A.在同圆或等圆中,相等的圆心角所对的弧相等B.平分弦的直径垂直于弦C.长度相等的两条弧相等D.圆是轴对称图形,任何一条直径都是它的对称轴7.(3分)如图,将△ABC绕点C旋转60°得到△A′B′C,已知AC=6,BC=4,则线段AB扫过的图形的面积为()A.πB.πC.6πD.π8.(3分)若函数y=2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()A.y1<y2B.y1>y2C.y1=y2D.y1、y2、的大小不确定9.(3分)如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,OC=8cm,则BE+CG的长等于()A.13B.12C.11D.1010.(3分)已知:关于x的一元二次方程x2﹣(R+r)x+d2=0有两个相等的实数根,其中R、r分别是⊙O1、⊙O2的半径,d为两圆的圆心距,则⊙O1与⊙O2的位置关系是()A.外离B.外切C.相交D.内含二、填空题(每小题3分,共15分)11.(3分)方程kx2﹣9x+8=0的一个根为1,则k=.12.(3分)甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是.13.(3分)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染给个人.14.(3分)抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.15.(3分)如图,是一个半径为6cm,面积为12πcm2的扇形纸片,现需要一个半径为R的圆形纸片,使两张纸片刚好能组合成圆锥体,则R等于cm.三、解答题:(本大题共8小题,共75分)16.(8分)解方程:(1)2x2=x(2)x2+4x﹣1=0(用配方法解)17.(8分)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,(除颜色外其余都相同),其中白球有两个,黄球有1个,现从中任意摸出一个球是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次摸到的球都是白球的概率.18.(7分)如图,点A的坐标为(3,3),点B的坐标为(4,0).点C的坐标为(0,﹣1).(1)请在直角坐标系中画出△ABC绕着点C逆时针旋转90°后的图形△A′B′C;(2)直接写出:点A′的坐标(,),点B′的坐标(,).19.(10分)已知:如图,抛物线y=ax2+bx+c与x轴相交于两点A(1,0),B(3,0),与y轴相交于点C(0,3).(1)求抛物线的函数关系式;(2)若点D(,m)是抛物线y=ax2+bx+c上的一点,请求出m的值,并求出此时△ABD的面积.20.(10分)如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB 上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.21.(10分)如图,在等边△ABC中,已知AB=8cm,线段AM为BC边上的中线.点N在线段AM上,且MN=3cm,动点D在直线AM上运动,连接CD,△CBE 是由△CAD旋转得到的.以点C为圆心,以CN为半径作⊙C与直线BE相交于点P,Q两点.(1)填空:∠DCE=度,CN=cm,AM=cm;(2)如图,当点D在线段AM上运动时,求出PQ的长.22.(12分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)(x>50)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?23.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=﹣.2016-2017学年四川省广元市利州区嘉陵一中初三上学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)观察下列图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个【解答】解:第一个图形不是轴对称图形,是中心对称图形,故本选项错误;第二个图形既是轴对称图形又是中心对称图形;第三个图形既是轴对称图形又是中心对称图形;第四个图形既是轴对称图形又是中心对称图形;所以,既是轴对称图形又是中心对称图形共有3个.故选:C.2.(3分)解方程2(5x﹣1)2=3(5x﹣1)的最适当的方法是()A.直接开平方法B.配方法C.公式法D.分解因式法【解答】解:方程可化为[2(5x﹣1)﹣3](5x﹣1)=0,即5(2x﹣1)(5x﹣1)=0,根据分析可知分解因式法最为合适.故选:D.3.(3分)二次函数y=(x+3)2+7的顶点坐标是()A.(﹣3,7)B.(3,7)C.(﹣3,﹣7)D.(3,﹣7)【解答】解:∵二次函数y=(x+3)2+7是顶点式,∴顶点坐标为(﹣3,7).故选:A.4.(3分)下列事件中,是不可能事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°【解答】解:A、买一张电影票,座位号是奇数,是随机事件,故A选项错误;B、射击运动员射击一次,命中9环,是随机事件,故B选项错误;C、明天会下雨,是随机事件,故C选项错误;D、度量一个三角形的内角和,结果是360°,是不可能事件,故D选项正确.故选:D.5.(3分)如图,∠A是⊙O的圆周角,∠A=40°,则∠OBC=()A.30°B.40°C.50°D.60°【解答】解:根据圆周角定理,得∠BOC=2∠A=80°∵OB=OC∴∠OBC=∠OCB==50°.故选:C.6.(3分)下列语句中,正确的有()A.在同圆或等圆中,相等的圆心角所对的弧相等B.平分弦的直径垂直于弦C.长度相等的两条弧相等D.圆是轴对称图形,任何一条直径都是它的对称轴【解答】解:A、此题是圆心角、弧、弦的关系定理,故A正确;B、平分弦(不是直径)的直径垂直于弦,故B错误;C、在同圆或等圆中,能够重合的弧叫做等弧,故C错误;D、任何图形的对称轴都是直线,而圆的直径是线段,故D错误;故选:A.7.(3分)如图,将△ABC绕点C旋转60°得到△A′B′C,已知AC=6,BC=4,则线段AB扫过的图形的面积为()A.πB.πC.6πD.π【解答】解:∵△ABC绕点C旋转60°得到△A′B′C,∴△ABC≌△A′B′C,∴S△ABC=S△A′B′C,∠BCB′=∠ACA′=60°.∵AB扫过的图形的面积=S扇形ACA′+S△ABC﹣S扇形BCB′﹣S△A′B′C,∴AB扫过的图形的面积=S扇形ACA′﹣S扇形BCB′,∴AB扫过的图形的面积=×π×36﹣×π×16=π.故选:B.8.(3分)若函数y=2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()A.y1<y2B.y1>y2C.y1=y2D.y1、y2、的大小不确定【解答】解:y=2x2﹣8x+m=2(x﹣2)2+m﹣8,则抛物线开口向上,对称轴是x=2,∴当x<2时,y随x的增大而减小,∴x1<x2<﹣2时,y1>y2,故选:B.9.(3分)如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,OC=8cm,则BE+CG的长等于()A.13B.12C.11D.10【解答】解:∵AB∥CD,∴∠ABC+∠BCD=180°,∵CD、BC,AB分别与⊙O相切于G、F、E,∴∠OBC=∠ABC,∠OCB=∠BCD,BE=BF,CG=CF,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∴BC==10,∴BE+CG=10(cm).故选:D.10.(3分)已知:关于x的一元二次方程x2﹣(R+r)x+d2=0有两个相等的实数根,其中R、r分别是⊙O1、⊙O2的半径,d为两圆的圆心距,则⊙O1与⊙O2的位置关系是()A.外离B.外切C.相交D.内含【解答】解:∵关于x的一元二次方程x2﹣(R+r)x+d2=0有两个相等的实数根,∴△=(r+R)2﹣d2=0,即(R+r+d)(R+r﹣d)=0,解得:r+R=﹣d(舍去)或R+r=d,∴两圆外切,故选:B.二、填空题(每小题3分,共15分)11.(3分)方程kx2﹣9x+8=0的一个根为1,则k=1.【解答】解:把x=1代入方程得:k﹣9+8=0.解得k=1.12.(3分)甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是.【解答】解:画树状图得:∵共有6种等可能的结果,甲、乙二人相邻的有4种情况,∴甲、乙二人相邻的概率是:=.故答案为:.13.(3分)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染给9个人.【解答】解:设每轮传染中平均每个人传染了x人.依题意得1+x+x(1+x)=100,∴x2+2x﹣99=0,∴x=9或x=﹣11(不合题意,舍去).所以,每轮传染中平均一个人传染给9个人.故填空答案:9.14.(3分)抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是﹣3<x<1.【解答】解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.15.(3分)如图,是一个半径为6cm,面积为12πcm2的扇形纸片,现需要一个半径为R的圆形纸片,使两张纸片刚好能组合成圆锥体,则R等于2cm.【解答】解:∵圆锥的弧长=2×12π÷6=4π,∴圆锥的底面半径=4π÷2π=2cm,故答案为2.三、解答题:(本大题共8小题,共75分)16.(8分)解方程:(1)2x2=x(2)x2+4x﹣1=0(用配方法解)【解答】解:(1)∵2x2﹣x=0,∴x(2x﹣1)=0,则x=0或2x﹣1=0,解得:x=0或x=0.5;(2)∵x2+4x=1,∴x2+4x+4=1+4,即(x+2)2=5,则x+2=±,∴x=﹣2±.17.(8分)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,(除颜色外其余都相同),其中白球有两个,黄球有1个,现从中任意摸出一个球是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次摸到的球都是白球的概率.【解答】解:(1)设蓝球个数为x个,则由题意得=,解得:x=1,答:蓝球有1个;(2)故两次摸到都是白球的概率==.18.(7分)如图,点A的坐标为(3,3),点B的坐标为(4,0).点C的坐标为(0,﹣1).(1)请在直角坐标系中画出△ABC绕着点C逆时针旋转90°后的图形△A′B′C;(2)直接写出:点A′的坐标(﹣4,2),点B′的坐标(﹣1,3).【解答】解:(1)如图所示:;(2)由(2)可得,点A′的坐标(﹣4,2),点B′的坐标(﹣1,3).故答案为:﹣4,2,﹣1,3.19.(10分)已知:如图,抛物线y=ax2+bx+c与x轴相交于两点A(1,0),B(3,0),与y轴相交于点C(0,3).(1)求抛物线的函数关系式;(2)若点D(,m)是抛物线y=ax2+bx+c上的一点,请求出m的值,并求出此时△ABD的面积.【解答】解:(1)由已知得,解之得,∴y=x2﹣4x+3;(2)∵是抛物线y=x2﹣4x+3上的点,∴;∴.20.(10分)如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB 上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.【解答】证明:(1)过点D作DF⊥AC于F;(1分)∵AB为⊙D的切线,AD平分∠BAC,∴BD=DF,(3分)∴AC为⊙D的切线.(4分)(2)∵AC为⊙D的切线,∴∠DFC=∠B=90°,在Rt△BDE和Rt△FCD中;∵BD=DF,DE=DC,∴Rt△BDE≌Rt△FCD(HL),(6分)∴EB=FC.(8分)∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC.(10分)21.(10分)如图,在等边△ABC中,已知AB=8cm,线段AM为BC边上的中线.点N在线段AM上,且MN=3cm,动点D在直线AM上运动,连接CD,△CBE 是由△CAD旋转得到的.以点C为圆心,以CN为半径作⊙C与直线BE相交于点P,Q两点.(1)填空:∠DCE=60度,CN=5cm,AM=4cm;(2)如图,当点D在线段AM上运动时,求出PQ的长.【解答】解:(1)由旋转知,∠BCE=∠ACD,∵△ABC是等边三角形,∴∠ACB=60°,∴∠DCE=∠DCB+∠BCE=∠DCB+∠ACD=∠ACB=60°,在等边三角形ABC中,AM为BC边上的中线,∴AM⊥BC,CM=BC=4,在Rt△MCN中,MN=3,CM=4,根据勾股定理得,CN==5,在Rt△ACM中,AC=8,CM=4,根据勾股定理得,AM==4,故答案为:60,5,4;(2)如图,∵等边△ABC中,AM是BC边上的中线,∴AM⊥BC,∠ACB=60°,∠CAD=30°,由旋转可知:∠CBE=∠CAD=30°,作CH⊥BE于点H,则PQ=2HQ,连结CQ,则CQ=CN=5.在Rt△CBH中,∠CBH=30°,∴CH=BC=4,在Rt△CHQ中,由勾股定理得,HQ==3,∴PQ=2HQ=6.22.(12分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)(x>50)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?【解答】解:(1)由题意得:y=90﹣3(x﹣50)化简得:y=﹣3x+240;(3分)(2)由题意得:w=(x﹣40)y(x﹣40)(﹣3x+240)=﹣3x2+360x﹣9600;(3分)(3)w=﹣3x2+360x﹣9600∵a=﹣3<0,∴抛物线开口向下.当时,w有最大值.又x<60,w随x的增大而增大.∴当x=55元时,w的最大值为1125元.∴当每箱苹果的销售价为55元时,可以获得1125元的最大利润.(4分)23.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=﹣.【解答】解:(1)∵OA=2,OC=3,∴A(﹣2,0),C(0,3),∴c=3,将A(﹣2,0)代入y=﹣x2+bx+3得,﹣×(﹣2)2﹣2b+3=0,解得b=,可得函数解析式为y=﹣x2+x+3;(2)存在,理由如下:如图:连接AD,与对称轴相交于P,由于点A和点B关于对称轴对称,则即BP+DP=AP+DP,当A、P、D共线时BP+DP=AP+DP最小.设AD所在直线的解析式为y=kx+b,将A(﹣2,0),D(2,2)分别代入解析式得,,解得,,故直线解析式为y=x+1,(﹣2<x<2),由于二次函数的对称轴为x=﹣=,则当x=时,y=×+1=,故P(,).初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。