2017_2018学年高中数学课下能力提升(含答案)六北师大版必修3
2017_2018学年高中数学课下能力提升十七北师大版必修3
得分
17
26
25
33
22
12
31
38
(1)将得分在对应区间内的人数填入相应的空格:
区间
[10,20)
[20,30)
[30,40]
人数
(2)从得分在区间[20,30)内的运动员中随机抽取2人,
①用运动员编号列出所有可能的抽取结果;
②求这2人得分之和大于50的概率.
答 案
1.解析:选D把抽到每一台电脑看成一个大体事件,实验的所有大体事件数是100,任取5台这一事件含5个大体事件,所求概率为 = .
4.解析:选A随机掏出2个小球有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种情形,和为3只有1种情形(1,2),和为6有(1,5),(2,4)两种情形.
∴P= .
5.解析:选D设Ω={(a,b)|a∈{1,2,3,4,5},b∈{1,2,3}},包括的大体事件总数n=15,事件“b>a”为{(1,2),(1,3),(2,3)},包括的大体事件数m=3.其概率P= = .
答案:
7.解析:∵4种公共汽车先到站共有4个结果,且每种结果显现的可能性相等,因此“第一到站的车正好是所搭车”的结果有2个,∴P= = .
答案:
8.解析:如图每层分成9个小正方体,共分成了三层,其中8个极点处的小正方体三个面涂有颜色,概率为 .
答案:
9.解:5个人仅有3人被录用,结果共有10种,如下图,由于5个人被录用的机遇相等,因此这10种结果显现的可能性相同.
(1)女孩K被录用的结果有6种,因此她取得一个职位的概率为 .
(2)女孩K和S各取得一个职位的结果有3种,因此K和S各自取得一个职位的概率为 .
2017-2018学年高中数学北师大版必修三习题:课下能力提升(十六)
一、选择题1.下面是古典概型的是( )A .任意抛掷两粒骰子,所得的点数之和作为基本事件B .为求任取一个正整数,该正整数平方值的个位数字是1的概率,将取出的正整数作为基本事件C .从甲地到乙地共有n 条路线,求某人正好选中最短路线的概率D .抛掷一枚均匀硬币至首次出现正面为止2.下列对古典概型的说法中正确的是( )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件总数为n ,随机事件A 若包含k 个基本事件,则P (A )=kn. A .②④ B .①③④ C .①④ D .③④3.在5张卡片上分别写上数字1,2,3,4,5,然后将它们混合后,再任意排成一行,则得到的五位数能被2或5整除的概率是( )A .0.2B .0.4C .0.6D .0.84.从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为( )A.12B.13C.14D.155.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A.13B.12C.23D.34二、填空题6.三张卡片上分别写上字母E ,E ,B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为________.7.(江苏高考)从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.7.(江苏高考)从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.8.将一枚质地均匀的硬币先后抛掷三次,恰好出现一次正面向上的概率是________.三、解答题9.设b 和c 分别是先后抛掷一枚骰子得到的点数,求方程x 2+bx +c =0有实根的概率.10.(山东高考)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.答 案1. 解析:选C 对于A ,所得点数之和为基本事件,个数虽有限但不是等可能发生的;对于B ,D ,基本事件的个数都是无限的;只有C 是古典概型.2. 解析:选B ②中所说的事件不一定是基本事件,所以②不正确;根据古典概型的特点及计算公式可知①③④正确.3. 解析:选C 一个五位数能否被5整除关键看其个位数字,而由1,2,3,4,5组成的五位数中,1,2,3,4,5出现在个位是等可能的.所以个位数字的基本事件有1,2,3,4,5,“能被2或5整除”这一事件中含有基本事件2,4,5,概率为35=0.6. 4. 解析:选 A 从1,2,3,4这四个数字中,任取两个不同的数字,可构成12个两位数:12, 13, 14, 21, 23, 24, 31, 32, 34, 41, 42, 43,其中大于30的有:31,32,34,41,42,43共6个,所以所得两位数大于30的概率为P =612=12. 5. 解析:选C 从4张卡片中随机抽取2张,对应的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),故基本事件总数n =6.且每个基本事件发生的可能性相等.设事件A =“取出的2张卡片上的数字之和为奇数”,则A 中所含的基本事件为:(1,2),(1,4),(2,3),(3,4),故m=4,综上可知所求事件的概率P (A )=m n =23. 6. 解析:三张卡片的排列方法有EEB ,EBE ,BEE ,共3种.且等可能出现,则恰好排成英文单词BEE 的概率为13. 答案:137. 解析:采用枚举法:从1,2,3,4这四个数中一次随机取两个数,基本事件为:{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,符合“一个数是另一个数的两倍”的基本事件有{1,2},{2,4},共2个,所以所求的概率为13. 答案:138. 解析:所有的基本事件为(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反),共8组.设“恰好出现1次正面向上”为事件A ,则A 包含(正,反,反),(反,正,反),(反,反,正),共3个基本事件,所以P (A )=38. 答案:389. 解:设事件A 为“方程x 2+bx +c =0有实根”,则 A ={(b ,c )|b 2-4c ≥0,b ,c =1,2,…,6}.而(b ,c )共有(1,1)(1,2)(1,3)(1,4)(1,5)(1,6),(2,1)(2,2)(2,3)(2,4)(2,5)(2,6),(3,1)(3,2)(3,3)(3,4)(3,5)(3,6),(4,1)(4,2)(4,3)(4,4)(4,5)(4,6),(5,1)(5,2)(5,3)(5,4)(5,5)(5,6),(6,1)(6,2)(6,3)(6,4)(6,5)(6,6),共36组.其中,可使事件A 成立的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共19组.故事件A 的概率为P (A )=1936. 10. 解:(1)标号为1,2,3的三张红色卡片分别记为A ,B ,C ,标号为1,2的两张蓝色卡片分别记为D ,E ,从五张卡片中任取两张的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ),共10种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),共3种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为310. (2)记F 为标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),(A ,F ),(B ,F ),(C ,F ),(D ,F ),(E ,F ),共8种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为815.。
2017-2018学年高二数学北师大版必修三习题:课下能力提升(九) Word版
一、选择题1.想泡茶喝,当时的情况是:火已经生起了,凉水和茶叶也有了,开水没有,开水壶要洗,茶壶和茶杯要洗,下面给出了四种不同形式的算法过程,你认为最好的一种算法是( )A .洗开水壶,灌水,烧水,在等待水开时,洗茶壶、茶杯、拿茶叶,等水开了后泡茶喝B .洗开水壶,洗茶壶和茶杯,拿茶叶,一切就绪后,灌水,烧水,坐等水开后泡茶喝C .洗开水壶,灌水,烧水,坐等水开,等水开后,再拿茶叶,洗茶壶、茶杯,泡茶喝D .洗开水壶,灌水,烧水,再拿茶叶,坐等水开,洗茶壶、茶杯,泡茶喝3.下列叙述能称为算法的个数为( )①植树需要运苗、挖坑、栽苗、浇水这些步骤.②顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100.③从枣庄乘火车到徐州,从徐州乘飞机到广州.④3x >x +1.⑤求所有能被3整除的正数,即3,6,9,12,….A .2B .3C .4D .54.下列所给问题中:①二分法解方程x 2-3=0(精确到0.01);②解方程⎩⎪⎨⎪⎧ x +y +5=0,x -y +3=0;③求半径为2的球的体积;④判断y =x 2在R 上的单调性.其中可以设计一个算法求解的个数是( )A .1B .2C .3D .45.已知算法:1.输入n ;2.判断n 是否是2,若n =2,则n 满足条件;若n >2,则执行第3步;3.依次检验从2到n -1的整数能不能整除n ,若不能整除n ,满足条件.上述满足条件的数是( )A .质数B .奇数C .偶数D .4的倍数二、填空题6.下列关于算法的说法,正确的个数有________.①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.7.给出下列算法:1.输入x 的值.2.当x >4时,计算y =x +2;否则执行下一步.3.计算y =4-x .4.输出y .当输入x =10时,输出y =__________.8.已知直角三角形的两条直角边长分别为a ,b ,写出求斜边c 的算法步骤.1.________________________________________________________________________;2.________________________________________________________________________;3.________________________________________________________________________.三、解答题9.请设计求18的所有正约数的算法.10.已知函数y =⎩⎪⎨⎪⎧ 2x -1 x ≤-,log 2x +-1<x ,x 2 x,试设计一个算法,输入x 的值,求对应的函数值.答 案1. 解析:选A 解决一个问题可以有多种算法,可以选择其中最优、最简单、步骤尽可能少的算法.选项中的四种算法中都符合题意,但算法A 运用了统筹法原理,因此这个算法要比其余的三种算法科学.2. 解析:选C 算法指的是解决一类问题的方法或步骤,选项C只是一个纯数学问题,没有解问题的步骤,不属于算法.3. 解析:选 B 根据算法的含义和特征:①②③都是算法.④⑤不是算法.其中④,3x>x +1不是一个明确的逻辑步骤,不符合逻辑性;⑤的步骤是无穷的,与算法的有穷性矛盾.4. 解析:选C 由算法的特征可知①②③都能设计算法.对于④,当x>0或x<0时,函数y=x2是单调递增或单调递减函数,但当x∈R时,由函数的图像可知在整个定义域R上不是单调函数,因此不能设计算法求解.5. 解析:选A 由质数的定义知,满足条件的是质数.6. 解析:由算法的特征(有限性、确定性、有序性等)可知②③④正确,但解决某一类问题的算法不一定是唯一的,故①错.答案:37. 解析:∵x=10>4,∴计算y=x+2=12.答案:128. 解析:先输入a、b的值,再根据勾股定理算出斜边c的长,最后输出c的结果.答案:输入两直角边长a、b的值计算c=a2+b2输出斜边长c的值9. 解:1.18=2×9;2.18=2×32;3.列出18的所有正约数:1,2,3,32,2×3,2×32.10. 解:算法如下:1.输入x的值.2.当x≤-1时,计算y=2x-1;否则执行第三步.3.当x<2时,计算y=log2(x+1),否则执行第四步.4.计算y=x2.5.输入y.。
2017-2018学年高中数学北师大版四习题:课下能力提升(六)含答案
课下能力提升(六)正弦函数的性质一、选择题1.函数y=4sin x,x∈[-π,π]的单调性是( )A.在[-π,0]上是增加的,在[0,π]上是减少的B.在错误!上是增加的,在错误!和错误!上是减少的C.在[0,π]上是增加的,在[-π,0]上是减少的D.在错误!∪错误!上是增加的,在错误!上是减少的2.函数y=|sin x|的最小正周期是()A.2πB.πC。
错误! D.错误!3.下列关系式中正确的是()A.sin 11°<cos 10°<sin 168°B.sin 168°<sin 11°<cos 10°C.sin 11°<sin 168°<cos 10°D.sin 168°<cos 10°<sin 11°4.定义在R上的函数f(x)既是偶函数又是周期函数.若f(x)的最小正周期是π,且当x∈错误!时,f(x)=sin x,则f错误!的值为( )A.-错误! B.错误!C.-错误!D。
错误!二、填空题5.y=a+b sin x的最大值是错误!,最小值是-错误!,则a=________,b=________.6.函数y=错误!的定义域是________.7.函数f(x)=x3+sin x+1,(x∈R).若f(a)=2,则f(-a)的值为________.8.函数f(x)=3sin x-x的零点个数为________.三、解答题9.求函数y=2sin错误!,x∈错误!的值域.10.已知函数y=错误!sin x+错误!|sin x|.(1)画出这个函数的图像;(2)这个函数是周期函数吗?如果是,求出它的最小正周期;(3)指出这个函数的单调增区间.答案1.解析:选B 由正弦函数y=4sin x,x∈[-π,π]的图像,可知它在错误!上是增加的,在错误!和错误!上是减少的.2.解析:选B 画出函数y =|sin x |的图像,易知函数y =|sin x |的最小正周期是π。
2017-2018学年高二数学北师大版必修三习题:课下能力提升(八) Word版
一、选择题1.设有一个回归方程y =2-1.5x ,当x 增加1个单位时( ) A .y 平均增加1.5个单位 B .y 平均减少1.5个单位 C .y 平均增加2个单位 D .y 平均减少2个单位2.对有线性相关关系的两个变量建立的线性回归方程y =a +bx 中,回归系数b ( ) A .可以小于0 B .只能大于0 C .只能等于0 D .只能小于03.由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到线性回归方程y =bx +a ,那么下面说法不.正确的是( ) A .直线y =bx +a 必经过点(x ,y )B .直线y =bx +a 至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点C .直线y =bx +a 的斜率为D .直线y =bx +a 与各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的接近程度[y i -(bx i +a )]2是该坐标平面上所有直线与这些点的最接近的直线4.(湖南高考)设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg 5.(山东高考)某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y=bx+a中的b为9.4,据此模型预报广告费用为6万元时销售额为( )A.63.6万元 B.65.5万元C.67.7万元 D.72.0万元二、填空题6.(辽宁高考改编)调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元).调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:y=0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.7.对一质点的运动过程观测了4次,得到如表所示的数据,则刻画y与x的关系的线性回归方程为________.8.(广东高考)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y之间的关系:小李这5天的平均投篮命中率为________;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为________.三、解答题9.在7块并排、形状大小相同的试验田上进行施化肥量对水稻产量(单位:千克)影响的试验,得到如下一组数据:(1)作出这些数据的散点图;(2)由(1)分析两变量关系得出什么结论?(3)求出回归直线方程.10.(福建高考改编)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =bx +a ,其中b =-20,a =y --b x -;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)答 案1. 解析:选B y ′=2-1.5(x +1)=2-1.5x -1.5=y -1.5,即x 增加1个单位,y 平均减少1.5个单位.2. 解析:选A ∵b =x 1y 1+x 2y 2+…+x n y n -n x -y-x 21+x 22+…+x 2n -n x-2,∴b 的取值是任意的. 3. 解析:选B 直线y =bx +a 一定过点(x ,y ),但不一定要过样本点.4. 解析:选D 当x =170时,y ^=0.85×170-85.71=58.79,体重的估计值为58.79 kg ,故D 不正确.5. 解析:选B 容易计算得x -=3.5,y -=42,故a =y --b x -=42-9.4×3.5=9.1,所以当广告费用为6万元时销售额为9.4×6+9.1=65.5(万元).6. 解析:由回归直线方程的意义知,x 每增加1万元,y 平均增加0.254万元. 答案:0.2547. 解析:x -=2.5,y -=3.75,∑4i =1x i y i =46,∑4i =1x 2i =30, b =46-4×2.5×3.7530-4×2.52=1.7,a =y --b x -=-0.5, 所以所求的线性回归方程为:y =1.7x -0.5. 答案:y =1.7x -0.58. 解析:小李这5天的平均投篮命中率为(0.4+0.5+0.6+0.6+0.4)÷5=0.5. 又x -=3,y -=0.5, 由表中数据,得b =0.01,a =y --b x -=0.47,故回归直线方程为y =0.01x +0.47. 令x =6,则有y =0.01×6+0.47=0.53. 答案:0.5 0.53 9. 解:(1)如图所示.(2)由(1)可看出,各点散布在从左下角到右上角的区域内,为正相关,也可以说在适量限制范围内水稻产量随施肥量的增大而增大,但不是直线递增.(3)用科学计算器可求得x -=30,y -=399.3,∑7i =1x 2i =7 000,∑7i =1x i y i =87 175.于是b =∑7i =1x i y i -7x - y -∑7i =1x 2i -7x -2=87 175-7×30×399.37 000-7×302≈4.75.a =y --b x -=399.3-4.75×30≈257.因此所求回归直线方程为y =4.75x +257.10. 解:(1)由于x =16(x 1+x 2+x 3+x 4+x 5+x 6)=8.5,y =16(y 1+y 2+y 3+y 4+y 5+y 6)=80.所以a =y -b x =80-(-20)×8.5=250,从而回归直线方程为y =-20x +250. (2)设工厂获得的利润为L 元,依题意得L =x (-20x +250)-4(-20x +250)=-20x 2+330x -1 000 =-20(x -334)2+361.25.当且仅当x=8.25时,L取得最大值.故当单价定为8.25元时,工厂可获得最大利润.。
2017_2018学年高中数学课下能力提升十二北师大版必修3
1.解析:选C①是顺序结构,②是选择结构,③④是循环结构.
2.解析:选C程序执行情形为S=31-30=2,n=2;S=2+32-31=8,n=3;S=8+33-32=26,n=4≥4,跳出循环.故输出26.
3.解析:选C框图的功能为计算S=1·20·21·22的值,计算结果为8.
4.解析:选A依题意当i≤99时,S=1+2+…+99,当i=100时,S= .
5.解析:选B第1次循环,S=1,不知足判定框内的条件,x=2;第2次循环,S=9,不知足判定框内的条件,x=4;第3次循环,S=73,知足判定框内的条件,跳出循环,输出S=73.
6.解析:由算法框图可知,当a=m×i=4×i能被n=3整除时输出a和i并终止程序.显然,当i=3时,a能够被3整除,故i=3,现在a=4×3=12.
8.假设算法框图所给的程序运行的结果为S=90,那么判定框中应填入的关于k的判定条件是________.
三、解答题
9.设计求1+4+7+10+…+40的一个算法,并画出相应的算法框图.
10.以下是某次考试中某班15名同窗的数学成绩:72,91,58,63,84,88,90,55,61,73,64,77,82,94,60.要求将80分以上的同窗的平均分求出来,画出算法框图.
∴条件应为k≤8或k<9.
答案:k≤8或k<9
9.解:算法:
1.令S=0,i=1.
2.S=S+i.
3.i=i+3.
4.假设i≤40,返回第2步;从头执行第二、3、4步;假设i>40,执行第5步.
5.输出S的值.
算法框图如下图:
法一: 法二:
10.解:算法框图如下所示:
答案:12 3
7.解析:此框图依次执行如下循环:
2017-2018学年高中数学北师大版必修三习题 课下能力提升(十九) Word版 含答案
一、选择题1.在区间[0,3]上任取一点,则此点落在区间[2,3]上的概率是( ) A.13 B.12 C.23 D.342.如图,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为( )A.43B.83C.23D .无法计算 3.有四个游戏盘,如果撒一粒黄豆落在阴影部分,则可中奖.小明希望中奖,他应当选择的游戏盘为( )4.A 是圆上的一定点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,则它的长度大于等于半径长度的概率为( )A.12B.23C.32D.145.在区间[0,1]内任取两个数,则这两个数的平方和也在[0,1]内的概率是( ) A.π4 B.π10 C.π20 D.π40二、填空题6.函数f (x )=x -2,x ∈[-5,5],那么任取一点x 0∈[-5,5],使f (x 0)≤0的概率是________. 7.圆上的任意两点间的距离大于圆的内接正三角形边长的概率是________.8.已知点P 是边长为4的正方形内任一点,则P 到四个顶点的距离均大于2的概率是________.三、解答题9.在△ABC 内任取一点P ,求△ABP 与△ABC 的面积之比大于23的概率.10.甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到应等乙半小时,而乙还有其他安排,若他早到则不需等待.求甲、乙两人能见面的概率.答 案1. 解析:选A 区间[2,3]长度为1,总区间[0,3]的长度为3,∴P =13.2. 解析:选B 由几何概型的公式知:S 阴影S 正方形=23,又:S 正方形=4,∴S 阴影=83. 3. 解析:选A A 游戏盘的中奖概率为38,B 游戏盘的中奖概率为13,C 游戏盘的中奖概率为2r 2-πr 22r 2=4-π4,D 游戏盘的中奖概率为r 2πr 2=1π,A 游戏盘的中奖概率最大. 4. 解析:选B 如图,当取点落在B 、C 两点时,弦长等于半径;当取点落在劣弧上时,弦长小于半径;当取点落在优弧上时,弦长大于半径.所以弦长超过半径的概率P =360°-120°360°=23.5. 解析:选A 设在[0,1]内取出的数为a ,b ,若a 2+b 2也在[0,1]内,则有0≤a 2+b 2≤1.如图,试验的全部结果所构成的区域为边长为1的正方形,满足a 2+b 2在[0,1]内的点在14单位圆内(如阴影部分所示),故所求概率为14π1=π4.6. 解析:由f (x 0)≤0得x 0-2≤0,x 0≤2,又x 0∈[-5,5],∴x 0∈[-5,2].设使f (x 0)≤0为事件A ,则事件A 构成的区域长度是2-(-5)=7,全部结果构成的区域长度是5-(-5)=10,则P (A )=710.答案:7107. 解析:如图所示,从点A 出发的弦中,当弦的另一个端点落在劣弧B C 上的时候,满足已知条件,当弦的另一个端点在劣弧A B 或劣弧A C 上的时候不能满足已知条件.又因为△ABC是正三角形,所以弦长大于正三角形边长的概率是13.答案:138. 解析:如图所示,边长为4的正方形ABCD ,分别以A 、B 、C 、D 为圆心,并以2为半径画圆截正方形ABCD 后剩余部分是阴影部分.则阴影部分的面积是42-4×14×π×22=16-4π,所以所求概率是16-4π16=1-π4.答案:1-π49. 解:设P 点、C 点到AB 的距离分别为d P 、d C , 则S △ABP =12AB ·d P ,S △ABC =12AB ·d C ,所以S △ABP S △ABC =d P d C ,要使d P d C >23, 只需使P 点落在某条与AB 平行的直线的上方,当然P 点应在△ABC 之内,而这条与AB 平行的直线EF 与AB 的距离要大于d C 的23.由几何概率公式,得P =S △CEF S △ABC =⎝ ⎛⎭⎪⎫3-232=19. 10. 解:用x 轴、y 轴分别表示甲、乙两人到达约定地点的时间.若甲早到,当y -x ≤30时,两人仍可见面;若乙早到,则两人不可能见面,因此,必须有x ≤y . 如图,事件A “两人可以见面”的可能结果是阴影部分的区域.故P (A )=12×602-12×302602=38.。
2017-2018学年高中数学 课下能力提升(三)北师大版必修3
课下能力提升3一、选择题1.某牛奶生产线上每隔30分钟抽取一袋进行检验,该抽样方法记为①;从某中学的30名数学爱好者中抽取3人了解学业负担情况,该抽样方法记为②.那么( )A.①是系统抽样,②是简单随机抽样B.①是简单随机抽样,②是简单随机抽样C.①是简单随机抽样,②是系统抽样D.①是系统抽样,②是系统抽样2.(四川高考)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( )A.101 B.808 C.1 212 D.2 0123.(湖南高考)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( )A.9 B.10 C.12 D.134.下列抽样中不是系统抽样的是( )A.从标有1~15号的15个球中,任选3个作为样本.将15个球按从小号到大号排序,随机选i0号作为起始号码,以后选i0+5,i0+10(超过15则从1再数起)号入样B.工厂生产的产品,在用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽取一件产品进行检验C.进行某一市场调查时,规定在商场门口随机抽取一个人进行询问调查,直到调查到事先规定的调查人数为止D.在报告厅对与会听众进行调查,通知每排(每排人数相等)座位号为14的听众留下来座谈5.某学校有职工140人,其中教师91人,教辅行政人员28人,总务后勤人员21人.为了了解职工的某种情况,要从中抽取一个容量为20的样本.以下的抽样方法中,依次为简单随机抽样、系统抽样、分层抽样顺序的是( )方法1:将140人从1~140编号,然后制作出编号1~140的形状、大小相同的号签,并将号签放入同一箱子里均匀搅拌,然后从中依次抽取20个号签,编号与号签相同的20个人被选出;方法2:将140人分成20组,每组7人,并将每组7人按1~7编号,在第一组采用抽签法抽出k 号(1≤k ≤7),其余各组k 号也被抽出,20个人被选出;方法3:按20∶140=1∶7的比例,从教师中抽出13人,从教辅行政人员中抽出4人,从总务后勤人员中抽出3人.从各类人员中抽取所需人员时,均采用随机数法,可抽到20人.A .方法2,方法1,方法3B .方法2,方法3,方法1C .方法1,方法2,方法3D .方法3,方法1,方法2二、填空题6.(浙江高考)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.7.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为________.8.一个总体中有100个个体,随机编号为0、1、2、…、99,依编号顺序平均分成10个小组,组号依次为1、2、3、…、10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同.若m =6,则在第7组中抽取的号码是________.三、解答题9.为了调查某路口一个月的车流量情况,交警采用系统抽样的方法,样本距为7,从每周中随机抽取一天,他正好抽取的是星期日,经过调查后做出报告.你认为交警这样的抽样方法有什么问题?应当怎样改进?如果是调查一年的车流量情况呢?10.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同的年龄层的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取容量为200的样本.试求:(1)游泳组中,青年人、中年人、老年人分别所占的比例;(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.答 案1. 解析:选A 对于①,因为每隔30分钟抽取一袋,是等间距抽样,故①为系统抽样;对于②,总体数量少,样本容量也小,故②为简单随机抽样.2. 解析:选B 依题意得知,甲社区驾驶员的人数占总人数的1212+21+25+43=12101,因此有96N =12101,解得N =808. 3. 解析:选D 由分层抽样可得,360=n 260,解得n =13. 4. 解析:选C 分析各选项中抽样的特点,与系统抽样的概念、特点进行比较.A 、D 显然是系统抽样.B 项中,传送带的速度是恒定的,实际上是将某一段时间内生产的产品分成一组,且可以认为这些产品已经排好,又总在某一位置抽取样品,这正好符合系统抽样的概念.选项C 因事先不知道总体的个数,而且抽样时不能保证每个个体等可能入样,因此它不是系统抽样.5. 解析:选C 结合简单随机抽样、系统抽样、分层抽样的定义判断.6. 解析:由分层抽样得,此样本中男生人数为560×280560+420=160. 答案:1607. 解析:若设高三学生数为x ,则高一学生数为x 2,高二学生数为x 2+300,所以有x +x 2+x 2+300=3 500,解得x =1 600.故高一学生数为800,因此应抽取高一学生数为800100=8. 答案:88. 解析:第k 组的号码为(k -1)10,(k -1)10+1,…,(k -1)·10+9,当m =6、k =7时,第k 组抽取的号码m +k 的个位数字为3,所以(7-1)×10+3=63.答案:639. 解:交警所统计的数据以及由此所推断出来的结论,只能代表星期日的交通流量.由于星期日是休息时间,很多人不上班,不能代表其他几天的情况.改进方法可以将所要调查的时间段的每一天先随机地编号,再用系统抽样方法来抽样,或者使用简单随机抽样来抽样亦可.如果是调查一年的交通流量,使用简单随机抽样法显然已不合适,比较简单可行的方法是把样本距改为8.10. 解:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人各占比例分别为a ,b ,c ,则有x ·40%+3xb 4x =47.5%,x ·10%+3xc 4x=10%. 解得b =50%,c =10%.故a =1-50%-10%=40%.即游泳组中,青年人、中年人、老年人各占比例分别为40%、50%、10%.(2)游泳组中,抽取的青年人人数为200×34×40%=60; 抽取的中年人人数为200×34×50%=75; 抽取的老年人人数为200×34×10%=15.。
2017-2018学年高二数学北师大版必修三习题:课下能力提升(十一) Word版
一、选择题1.赋值语句描述的算法如下:a=3;a=5;输出a.则运行结果是( )A.5 B.3C.a D.82.将两个数a=1,b=2交换,使a=2,b=1,下面语句正确的是( )A.a=b,b=aB.b=a,a=bC.a=c,c=b,b=aD.c=b,b=a,a=c3.阅读如图所示的算法框图,若输入的a,b,c分别为21,32,75,则输出的a,b,c分别是( )A.75,21,32 B.21,32,75 C.32,21,75 D.75,32,214.下列算法语句执行后的结果是( )i=2;j=5;i=i+j;j=i+j;输出i,j.A.i=12,j=7 B.i=12,j=4C.i=7,j=7 D.i=7,j=125.如图所示的算法框图中,如果输入三个实数a,b,c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( )A.c>x B.x>cC.c>b D.b>c二、填空题6.执行下列赋值语句后,变量A=________.A=1A=A+1A=2A7.下列语句执行完后,A、B、C的值分别为________.A=1B=2C=A-BB=A+C-B8.阅读如图所示的算法框图,若输入a=12,则输出a=________.三、解答题9.下列语句运行后,a,b,c的值各等于什么?(1)a=3 (2) a=3b=-5 b=-5c=8 c=8a=b a=bb=c b=c输出a,b,c. c=a输出a,b,c10.已知一个正三棱柱的底面边长为a,高为h,写出求正三棱柱的表面积和体积的一个算法,并画出框图.答案1. 解析:选A 此算法中用到了赋值语句.虽然a=3是把3赋予a,但是接下来的语句a =5,又把5赋予a,所以输出a的值为5.2. 解析:选D “a=b”的含义是把b的值赋给a.选项A得到的结果是a=2,b=2;选项B得到的结果是a=1,b=1;选项C中c的值不明确;选项D正确.3. 解析:选A 算法框图的运行过程是:a=21;b=32;c=75;x=21;a=75;c=32;b=21;则输出75,21,32.4. 解析:选D 算法中i=i+j是2+5=7赋值给i,j=i+j是7+5=12赋值给j,两处的i+j取值不同.5. 解析:选A 该算法框图执行空白处的判断框时,x是a,b的最大值,空白处的判断框内的条件不成立时x大于c,则输出最大值x,所以空白处的判断框内应填入c>x.6. 答案:47. 解析:阅读程序,由语句C=A-B及A=1、B=2得C=-1,又根据B=A+C-B得B=-2,所以语句执行完后,A、B、C的值分别为1,-2,-1.答案:1,-2,-18. 解析:输入a=12,该算法框图的执行过程是:a=12,b=12-6=6,a=12-6=6,输出a=6.答案:69. 解:(1)把b的值-5赋予a(取代a原来的值),把c的值8赋予b(取代b原来的值),c 的值不变.所以最后结果为a=-5,b=8,c=8;(2)把b的值-5赋予a,c的值8赋予b,又把a的新值-5赋予c,所以最后结果为a=-5,b=8,c=-5.10. 解:根据正三棱柱的表面积及体积公式来完成,算法如下:第一步,输入a,h.第二步:计算正三棱柱的表面积:S=34a2,C=3a,T=Ch,P=T+2S;体积为V=Sh.第三步:输出表面积P和体积V,算法结束.算法框图如图所示:。
精选2017_2018学年高中数学课下能力提升十北师大版必修3
课下能力提升10一、选择题1.如图所示的选择结构,下列说法错误的是( )A .当条件为假时,执行步骤甲B .当条件为真时,执行步骤乙C .无论条件是真是假,只能执行步骤甲和步骤乙中的一个D .可能同时执行步骤甲和步骤乙2.已知函数y =⎩⎪⎨⎪⎧x -1,x <0,0,0≤x ≤6,3x ,x >6,输入自变量x 的值,求对应的函数值,设计算法框图时所含有的基本逻辑结构是( )A .顺序结构B .选择结构C .顺序结构、选择结构D .以上都不是3.如图所示的算法框图,输入x =2,则输出的结果是( )A .1B .2C .3D .44.如图所示,算法框图运行的结果为s =( )A.25B.52C .1D .2 5.如图所示的算法框图中,当输入a 1=3时,输出的b =7,则a 2的值是( ) A .11 B .17 C .0.5 D .12二、填空题6.如图所示的算法功能是____________________________________________________.7.已知函数y =⎩⎪⎨⎪⎧x -2,x >0,0, x =0,x +2, x <0,如图是计算函数值y 的算法框图,则在空白的判断框中应填________.8.阅读算法框图(如图所示),若a =50.6,b =0.65,c =log 0.65,则输出的数是________.三、解答题9.已知函数y =⎩⎪⎨⎪⎧-1 x >,0 x =,x <,写出求函数值的算法并画出算法框图.10.阅读如图所示的算法框图,根据该图和各问题的条件回答下面几个小题:(1)该算法框图解决一个什么问题?(2)若当输入的x 值为0和4时,输出的值相等.问当输入的x 值为3时,输出的值为多大? (3)依据(2)的条件,要想使输出的值最大,输入x 的值为多大?答 案1. 解析:选D 步骤甲和乙不能同时执行.2. 解析:选C 任何算法框图中都有顺序结构,由于自变量在不同的范围内,有不同的对应法则,用选择结构.3. 解析:选B 输入x =2;则x =2>1,∴y =2+2=2,输出y =2.4. 解析:选B 由框图可知s =a b +b a =24+42=12+2=52.5. 解析:选A b =a 1+a 22=3+a 22=7,∴a 2=11.6. 答案:求两个实数a 、b 差的绝对值7. 解析:由函数y =⎩⎪⎨⎪⎧x -2,x >0,0, x =0,x +2, x <0,可知第一个判断框的否定条件为x ≤0,第二个判断框的肯定条件的结果为y =0,因此空白判断框内应填“x =0”.8. 解析:算法框图的功能是输出a ,b ,c 中最大的数,又因为a >1,0<b <1,c <0,所以输出的数为50.6.答案:50.69. 解:算法如下: 1.输入x ;2.如果x >0,那么y =-1;如果x =0,那么y =0;如果x <0,那么y =1; 3.输出函数值y . 算法框图如图所示:10. 解:(1)该算法框图是求二次函数y =-x 2+mx 的函数值.(2)当输入的x 值为0和4时,输出的值相等,即f (0)=f (4),可得m =4.∴f (x )=-x 2+4x .∴f (3)=3.(3)由(2),知f (x )=-x 2+4x =-(x -2)2+4, ∴当输入的x 值为2时,函数输出最大值4.。
2017_2018学年高中数学课下能力提升一北师大版必修3
课下能力提升1一、选择题1.现从80件产品中随机抽出10件进行质量查验,以下说法正确的选项是( ) A.80件产品是整体B.10件产品是样本C.样本容量是80D.样本容量是102.以下调查时,必需采纳“抽样调查”的是( )A.调查某城市今年7月份的温度转变情形B.调查某一品牌5万瓶化妆品是不是符合质量标准C.调查我国所有城市中哪些是第一批沿海开放城市D.了解全班50名学生100米短跑的成绩3.以下哪个问题不宜用普查( )A.为了减缓城市的交通情形,某市预备出台限制私家车的政策,为此要进行民意调查B.对你所在学校的学生最喜爱的体育活动情形的调查C.某轮胎厂要对一个批次轮胎的寿命进行调查D.对上海市常住人口家庭收入情形的调查4.为了调查北京市2015年家庭的收入情形,在该问题中整体是( )A.北京市B.北京市的所有家庭的收入C.北京市的所有人口D.北京市的工薪阶级5.以下调查中属于抽样调查的是( )①每隔5年进行一次人口普查;②某商品的质量好坏;③某报社对某个事件进行舆论调查;④高考考生的躯体检查.A.②③B.①④C.③④D.①②6.下面的各事件中,适合抽样调查的有________.①调查除夕之夜我国有多少人观看中央电视台春节联欢晚会;②调查某工厂生产的一万件西服中有无不合格产品;③评判一个班级升学考试的成绩;④调查现今中学生中,对交通法规的了解情形;⑤调查山东省初中生每人每周的零花钱数.7.随着人们健康意识的提高,有色食物的质量引发消费者的专门关注,查验员为了检查彩色豆腐是不是具有染色现象,应采纳__________的方式查验.8.某地域发觉了新型流感病毒,在病毒发作区,对与病毒携带者亲热接触的人要进行检查,所采纳的方式是________.三、解答题9.有人说“若是抽样方式设计得好,用样本进行视力调查与对24 300名学生进行视力普查的结果会差不多,而且关于教育部门把握学生视力状况来讲,因为节省了人力、物力和财力,抽样调查更可取”,你以为这种说法有道理吗?什么缘故?10.为了了解高一一班语文教师的教学情形,从全班50名同窗中抽取了成绩在前10名的10名同窗进行问卷调查,这种抽样方式合理吗?什么缘故?答案1. 解析:选D 在该问题中,80件产品的质量是整体,因此A错误;所抽取的10件产品的质量是样本,因此B错误;整体容量是80,因此C错误;样本容量是10,因此D正确.2. 解析:选B 调查化妆品是不是符合质量标准,具有“破坏性”,必需利用抽样调查.3. 答案:C4. 答案:B5. 解析:选A ①④为普查,②③为抽样调查.6. 答案:①②④⑤7. 解析:这是破坏性的查验,不可能进行普查,应当采取抽样调查的方式进行查验,对随机抽取的部份产品进行查验,依照取得的查验结果,就能够够取得这批产品是不是具有染色现象,因为同一批豆腐,从中随机抽取一部份代表全部产品的质量是合理的.答案:抽样调查8. 答案:普查9. 解:这种说法有道理,因为一个好的抽样方式能够保证调查结果接近于普查的结果,因此只要依照误差的要求取适合的样本进行调查会和普查的结果差不多,而且抽样调查还能够节省人力、物力和财力.10. 解:这种抽样方式不合理,它不具有随机性,不能保证每一个个体被抽到的机遇相等,而且成绩的好坏也可能会阻碍到对教师印象的成见.在抽样时,必然要做到随机性,尽可能幸免人为的主观因素的阻碍.。
2017-2018学年高二数学北师大版必修三习题:课下能力提升(五) Word版含答案
一、选择题1.在某项体育比赛中,七位裁判为一选手打出的分数为:90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.92,2 B.92,2.8 C.93,2 D.93,2.82.已知一组数据为-3,5,7,x,11,且这组数据的众数为5,那么数据的中位数是( ) A.7 B.5 C.6 D.113.如图所示,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x A和x B,样本标准差分别为s A和s B,则( )A.x A>x B,s A>s BB.x A<x B,s A>s BC.x A>x B,s A<s BD.x A<x B,s A<s B4.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e,众数为m0,平均数为x,则( )A.m e=m0=x B.m e=m0<x C.m e<m0<x D.m0<m e<x5.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )A.57.2 3.6 B.57.2 56.4 C.62.8 63.6 D.62.8 3.6二、填空题6.一个样本按从小到大的顺序排列为10,12,13,x,17,19,21,24,其中位数为16,则x=________.7.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如表所示:则以上两组数据的方差中较小的一个为s2=________.8.(湖北高考)某学员在一次射击测试中射靶10次,命中环数如下:7, 8,7,9,5,4,9,10,7,4 则(1)平均命中环数为________;(2)命中环数的标准差为________.三、解答题9.为了了解市民的环保意识,某校高一(1)班50名学生在6月5日(世界环境日)这一天调查了各自家庭丢弃旧塑料袋的情况,有关数据如下表:(1)求这50户居民每天丢弃旧塑料袋的平均数、众数和中位数;(2)求这50户居民每天丢弃旧塑料袋的标准差.10.某校甲班、乙班各有49名学生,两班在一次数学测验中的成绩(满分100分)统计如下表:(1)请你对下面的一段话给予简要分析:甲了85分,在班里算是上游了!”(2)请你根据表中数据,对这两个班的测验情况进行简要分析,并提出教学建议.答 案1. 解析:选B 去掉最高分95和最低分89后,剩余数据的平均数为x =90+90+93+94+935=92,方差为s 2=15×[(92-90)2+(92-90)2+(93-92)2+(94-92)2+(93-92)2]=15×(4+4+1+4+1)=2.8.2. 解析:选B 这组数据的众数为5,则5出现的次数最多,∴x =5,那么这组数据按从小到大排列为-3,5,5,7,11,则中位数为5.3. 解析:选B A 中的数据都不大于B 中的数据,所以x A <x B ,但A 中的数据比B 中的数据波动幅度大,所以s A >s B .4. 解析:选D 易知中位数的值m e =5+62=5.5,众数m 0=5,平均数x =130×(3×2+4×3+5×10+6×6+7×3+8×2+9×2+10×2)≈6,所以m 0<m e <x .5. 解析:选D 设该组数据为x 1,x 2,…,x n ,则1n(x 1+x 2+…+x n )=2.8,1n[(x 1-2.8)2+(x 2-2.8)2+…+(x n -2.8)2]=3.6,所以,所得新数据的平均数为1n [(x 1+60)+(x 2+60)+…+(x n +60)]=1n(x 1+x 2+…+x n )+60=2.8+60=62.8.所得新数据的方差为1n[(x 1+60-62.8)2+(x 2+60-62.8)2+…+(x n +60-62.8)2]=1n[(x 1-2.8)2+(x 2-2.8)2+…+(x n -2.8)2]=3.6.6. 解析:由中位数的定义知x +172=16,∴x =15.答案:157. 解析:计算可得两组数据的平均数均为7, 甲班的方差s 2甲=-2+02+02+-2+025=25; 乙班的方差s 2乙=-2+02+-2+02+-25=65.则两组数据的方差中较小的一个为s 2甲=25.答案:258. 解析:(1)由公式知,平均数为110(7+8+7+9+5+4+9+10+7+4)=7;(2)由公式知,s 2=110(0+1+0+4+4+9+4+9+0+9)=4⇒s =2.答案:(1)7 (2)2 9. 解:(1)平均数x =150×(2×6+3×16+4×15+5×13)=18550=3.7. 众数是3,中位数是4.(2)这50户居民每天丢弃旧塑料袋的方差为s 2=150×[6×(2-3.7)2+16×(3-3.7)2+15×(4-3.7)2+13×(5-3.7)2]=150×48.5=0.97,所以标准差s ≈0.985.10. 解:(1)由中位数可知,85分排在第25名之后,从名次上讲,85分不算是上游.但也不能单以班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得名次来判断学习成绩的好坏,小刚得了85分,说明他对这阶段的学习内容掌握较好.(2)甲班学生成绩的中位数为87分,说明高于或等于87分的学生占一半以上,而平均分为79分,标准差很大,说明低分也多,两极分化严重,建议对学习有困难的同学多给一些帮助;乙班学生成绩的中位数和平均分均为79分,标准差小,说明学生成绩之间差别较小,成绩很差的学生少,但成绩优异的学生也很少,建议采取措施提高优秀率.。
2017-2018学年高二数学北师大版必修三习题:课下能力提升(十八) Word版含答案
一、选择题1.抽查10件产品,记事件A 为“至少有2件次品”,则A 的对立事件为( ) A .至多有2件次品 B .至多有1件次品 C .至多有2件正品 D .至少有2件正品2.同时掷三枚硬币,那么互为对立事件的是( ) A .至少有1枚正面向上和最多有1枚正面向上 B .最多1枚正面向上和恰有2枚正面向上 C .不多于1枚正面向上和至少有2枚正面向上 D .至少有2枚正面向上和恰有1枚正面向上3.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03、丙级品的概率为0.01,则对成品抽查一件,抽得正品的概率为( )A .0.09B .0.98C .0.97D .0.964.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为( )A .60%B .30%C .10%D .50%5.如果事件A 与B 是互斥事件,则( ) A .A ∪B 是必然事件 B.A -与B -一定是互斥事件 C.A -与B -一定不是互斥事件 D.A -∪B -是必然事件 二、填空题6.某战士射击一次中靶的概率为0.95,中靶环数大于5的概率为0.75,则中靶环数大于0且小于6的概率为________.(只考虑整数环数)7.盒中有大小、形状相同的黑球、白球和黄球,从中摸出一个球,摸出黑球的概率为0.42,摸出黄球的概率为0.18,则摸出白球的概率为________,摸出的球不是黄球的概率为________,摸出的球是黄球或黑球的概率为________.8.事件A ,B 互斥,它们都不发生的概率为25,且P (A )=2P (B ),则P (A -)=________.三、解答题9.某医院一天内派出医生下乡医疗,派出医生的人数及其概率如下:(1)求派出至多2名医生的概率; (2)求派出至少3名医生的概率.10.在数学考试中(满分100分),小明的成绩在90分以上(包括90分)的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09.(1)求小明在数学考试中成绩在80分以上(包括80分)的概率; (2)求小明考试不及格(低于60分)的概率.答 案1. 解析:选B 至少有2件次品包含2,3,4,5,6,7,8,9,10件.共9种结果,故它的对立事件为含有1或0件次品,即至多有1件次品.2. 答案:C3. 解析:选D 设“抽得正品”为事件A ,“抽得乙级品”为事件B ,“抽得丙级品”为事件C ,由题意,事件B 与事件C 是互斥事件,而事件A 与并事件(B +C )是对立事件;所以P (A )=1-P (B +C )=1-[P (B )+P (C )]=1-0.03-0.01=0.96. 4. 解析:选D 甲不输,包含两个事件:甲获胜,甲、乙和棋. ∴甲、乙和棋概率P =90%-40%=50%.5. 解析:选D A 、B 可以都不发生,∴选项A 错,A -、B -可以同时发生,即A 、B 可以都不发生,∴选项B 错.当A 与B 是对立事件时A -与B -是互斥事件,∴选项C 错,因为A 、B 互斥,所以A -、B -中至少有一个发生,故选项D 正确.6. 解析:因为某战士射击一次“中靶的环数大于5”事件A 与“中靶的环数大于0且小于6”事件B 是互斥事件,故P (A +B )=0.95.∴P (A )+P (B )=0.95,∴P (B )=0.95-0.75=0.2. 答案:0.27. 解析:P {摸出白球}=1-0.42-0.18=0.4.P {摸出的球不是黄球}=1-0.18=0.82. P {摸出的球是黄球或黑球}=0.42+0.18=0.6.答案:0.4 0.82 0.68. 解析:由题意知P (A +B )=1-25,即P (A )+P (B )=35.又P (A )=2P (B ),联立方程组解得P (A )=25,P (B )=15,故P (A -)=1-P (A )=35.答案:359. 解:记派出医生的人数为0,1,2,3,4,5及其以上分别为事件A 0,A 1,A 2,A 3,A 4,A 5,显然它们彼此互斥.(1)至多2名医生的概率为P (A 0+A 1+A 2)=P (A 0)+P (A 1)+P (A 2)=0.18+0.25+0.36=0.79. (2)法一:至少3名医生的概率为P (C )=P (A 3+A 4+A 5)=P (A 3)+P (A 4)+P (A 5) =0.1+0.1+0.01=0.21.法二:“至少3名医生”的反面是“至多2名医生”,故派出至少3名医生的概率为 1-P (A 0+A 1+A 2)=1-0.79=0.21.10. 解:分别记小明的考试成绩“在90分以上(包括90分)”“在80~89分”“在70~79分”“在60~69分”为事件B ,C ,D ,E .由题意知,这4个事件彼此互斥.(1)小明的考试成绩在80分以上(包括80分)的概率为P (B +C )=P (B )+P (C )=0.18+0.51=0.69.(2)小明考试及格的概率,即成绩在60分以上(包括60分)的概率为P (B +C +D +E )=P (B )+P (C )+P (D )+P (E )=0.18+0.51+0.15+0.09=0.93.而小明考试不及格与小明考试及格为对立事件,所以小明考试不及格(低于60分)的概率为1-P (B +C +D +E )=1-0.93=0.07.。
2017-2018学年高中数学北师大2:课下能力提升(三)含解析
一、选择题1.下列说法中正确的个数是( )①相等的角在直观图中对应的角仍然相等②相等的线段在直观图中对应的线段仍然相等③平行的线段在直观图中对应的线段仍然平行④线段的中点在直观图中仍然是线段的中点A.1 B.2C.3 D.42.利用斜二测画法画边长为1 cm的正方形的直观图,正确的是如图所示中的( )3.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积是( )A.16 B.64 C.16或64 D.都不对4.如图,直观图所表示(A′C′∥O′y′,B′C′∥O′x′)的平面图形是( )A.正三角形B.锐角三角形C.钝角三角形D.直角三角形5.一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于()A。
错误!a2 B.错误!a2C.错误!a2D.2错误!a2二、填空题5.如图所示,为一个水平放置的正方形ABCO,它在直角坐标系xOy中,点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为________.6.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为________.8.如图所示是水平放置的△ABC在直角坐标系中的直观图,其中D是AC的中点,原△ACB中,∠ACB≠30°,则原图形中与线段BD的长相等的线段有________条.三、解答题9.画出一个正三棱台的直观图(尺寸:上、下底面边长分别为1 cm、2 cm,高为2 cm).10.用斜二测画法得到一水平放置的三角形为直角三角形ABC,AC=1,∠ABC=30°,如图所示,试求原图的面积.答案1. 解析:选B 只有③④正确.2。
解析:选D 正方形的直观图应是平行四边形,且相邻两边的边长之比为2∶1.3。
解析:选C 当其中在x′轴上的边长为4时,正方形面积为16;当其中在y′轴上的边长为4时,正方形面积为64.4。
高中数学 课下能力提升(六)北师大版必修3
课下能力提升6一、选择题1.下列说法不.正确的是( )A.频率分布直方图中每个小矩形的高就是该组的频率B.频率分布直方图中各个小矩形的面积之和等于1C.频率分布直方图中各个小矩形的宽一样大D.频率分布折线图是依次连接频率分布直方图的每个小矩形上端中点得到的2.样本容量为100的频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在[6,10)内的频数为a,样本数据落在[2,10)内的频率为b,则a,b分别是( )A.32,0.4 B.8,0.1 C.32,0.1 D.8,0.43.将一个容量为50的样本数据分组后,分组与频数如下:[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),6;[30.5,33.5),3.则估计小于30的数据大约占总体的( )A.94% B.6% C.92% D.12%4.为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图所示).已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为12,则抽取的学生人数为( )A.46 B.48 C.50 D.605.设矩形的长为a,宽为b,其比满足b:a=5-12≈0.618,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( ) A.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定二、填空题6.(广东高考)由正整数组成的一组数据x1,x2,x3,x4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)7.《中华人民共和国道路交通安全法》规定;车辆驾驶员血液酒精浓度在20~80 mg/100 mL(不含80)之间,属于酒后驾车;血液酒精浓度在80 mg/100 mL(含80)以上时,属醉酒驾车.据《法制晚报》报道,2011年2月15日至2月28日,全国查处酒后驾车和醉酒驾车共28 800人,如图是对这28 800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为________.8.一组数据中的每一个数据都减去80,得一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是________,________.三、解答题9.有一个容量为50的样本,数据的分组及各组的频数如下:[25,30),3;[30,35),8;[35,40),9;[40,45),11;[45,50),10;[50,55),5;[55,60],4.(1)列出样本的频率分布表;(2)画出频率分布直方图及频率分布折线图.10.某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分):甲班:82 84 85 89 79 80 91 89 79 74 乙班:90 76 86 81 84 87 86 82 85 83 (1)求两个样本的平均数; (2)求两个样本的方差和标准差; (3)试分析比较两个班的学习情况.答 案1. 解析:选A 频率分布直方图的每个小矩形的高=频率组距. 2. 解析:选A 由于样本数据落在[6,10)内的频率为0.08×4=0.32,则a =100×0.32=32;由于样本数据落在[2,6)内的频率为0.02×4=0.08,则样本数据落在[2,10)内的频率b =0.08+0.32=0.4.3. 解析:选C 由样本的频率分布估计总体的分布.小于30.5的样本频数为3+8+9+11+10+6=47,所以其频率为4750=94%.小于27.5的样本频数为3+8+9+11+10=41,所以其频率为4150=82%.因此小于30的样本频率应在82%~94%之间,满足条件的只有92%.4. 解析:选B 前3个小组的频率和为1-0.037 5×5-0.012 5×5=0.75.又因为前3个小组的频率之比为1∶2∶3,所以第2小组的频率为26×0.75=0.25.又知第2小组的频数为12,则120.25=48,即为所抽样本的人数. 5. 解析:选A x 甲=0.598+0.625+0.628+0.595+0.6395=0.617,x 乙=0.618+0.613+0.592+0.622+0.6205=0.613,∴x 甲与0.618更接近.6. 解析:设x 1≤x 2≤x 3≤x 4,根据已知条件得到x 1+x 2+x 3+x 4=8,且x 2+x 3=4,所以x 1+x 4=4,又因为14x 1-2+x 2-2+x 3-2+x 4-2]=1,所以(x 1-2)2+(x 2-2)2=2,又因为x 1,x 2,x 3,x 4是正整数,所以(x 1-2)2=(x 2-2)2=1,所以x 1=1,x 2=1,x 3=3,x 4=3.答案:1,1,3,37. 解析:(0.01×10+0.005×10)×28 800=4 320.答案:4 3208. 解析:由题意得原来数据的平均数是80+1.2=81.2,方差不变,仍是4.4. 答案:81.2 4.49. 解:(1)频率分布表如下:(2)频率分布直方图、频率分布折线图如下图所示:10. 解:(1)x甲=110(82+84+85+89+79+80+91+89+79+74)=83.2,x乙=110(90+76+86+81+84+87+86+82+85+83)=84.(2)s2甲=110[(82-83.2)2+(84-83.2)2+(85-83.2)2+(89-83.2)2+(79-83.2)2+(80-83.2)2+(91-83.2)2+(89-83.2)2+(79-83.2)2+(74-83.2)2]=26.36,s2乙=110[(90-84)2+(76-84)2+(86-84)2+(81-84)2+(84-84)2+(87-84)2+(86-84)2+(82-84)2+(85-84)2+(83-84)2]=13.2,∴s甲=26.36≈5.13,s乙=13.2≈3.63.(3)由于x甲<x乙,则甲班比乙班平均水平低.由于s甲>s乙,则甲班没有乙班稳定.∴乙班的总体学习情况比甲班好.。
2017-2018学年高二数学北师大版必修三习题:课下能力提升(十五) Word版
一、选择题1.“某彩票的中奖概率为1100”意味着( )A .买100张彩票就一定能中奖B .买100张彩票能中一次奖C .买100张彩票一次奖也不中D .购买彩票中奖的可能性为11002.抛掷一枚骰子两次,用随机模拟方法估计上面的点数和为7的概率,共进行了两次试验,第一次产生了60组随机数,第二次产生了200组随机数,那么这两次估计的结果相比较( )A .第一次准确B .第二次准确C .两次的准确率相同D .无法比较 3.下列结论正确的是( )A .事件A 发生的概率P (A )满足0<P (A )<1B .事件A 发生的概率P (A )=0.999,则事件A 是必然事件C .用某种药物对患有胃溃疡的500 名病人进行治疗,结果有380人有明显的疗效,现有胃溃疡的病人服用此药,则估计有明显疗效的可能性为76%D .某奖券的中奖率为50%,则某人购买此奖券10张,一定有5张中奖 4.给出下列三个命题,其中正确命题的个数为( )①设有一批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面朝上,则硬币出现正面朝上的概率是37;③随机事件发生的频率就是这个随机事件发生的概率.A .0B .1C .2D .35.在给病人动手术之前,外科医生会告知病人或家属一些情况,其中有一项是说这种手术的成功率大约是99%,下列解释正确的是( )A .100个手术有99个手术成功,有1个手术失败B .这个手术一定成功C .99%的医生能做这个手术,另外1%的医生不能做这个手术D .这个手术成功的可能性是99% 二、填空题6.一个口袋装有除颜色外其他均相同的白球、红球共100个,若摸出一个球为白球的概率为34,则估计这100个球内,有白球________个. 7.在200件产品中,有192件一级品,8件二级品,则下列事件:①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是二级品;④在这200件产品中任意选出9件,其中不是一级品的件数小于10;其中________是必然事件;________是不可能事件;________是随机事件.8.下列说法:①一年按365天计算,两名学生的生日相同的概率是1 365;②甲乙两人做游戏:抛一枚骰子,向上的点数是奇数,甲胜,向上的点数是偶数,乙胜,这种游戏是公平的;③乒乓球比赛前,决定谁先发球,抽签方法是从1~10共10个数字中各抽取1个,再比较大小,这种抽签方法是公平的;④昨天没有下雨,则说明昨天气象局的天气预报“降水概率为90%”是错误的.其中正确的有________(填序号).三、解答题9.高一(2)班有50名同学,其中男、女各25人,今有这个班的一个学生在街上碰到一位同班同学,试问:碰到异性同学的概率大还是碰到同性同学的概率大?有人说可能性一样大,这种说法对吗?10.某公司在过去几年内使用某种型号的灯管1 000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:(1)将各组的频率填入表中;(2)根据上述统计结果,估计灯管使用寿命不足1 500小时的概率.答案1. 答案:D2. 解析:选B 用随机模拟方法估计概率时,产生的随机数越多,估计的结果越准确.3. 解析:选C A不正确,因为0≤P(A)≤1;B不正确,若事件A是必然事件,则P(A)=1;D 不正确,某奖券的中奖率为50%,10张奖券可能会有5张中奖,但不一定会发生.4. 解析:选A ①②③均不正确.5. 解析:选D 成功率大约是99%,说明手术成功的可能性是99%.6. 解析:100×34=75.答案:757. 解析:200件产品中,8件是二级品,现从中任意选出9件,当然不可能全是二级品,不是一级品的件数最多为8,小于10.答案:③④ ② ①8. 解析:对于②,甲胜、乙胜的概率都是12,是公平的;对于④,降水概率为90%只说明下雨的可能性很大,但也可能不下雨,故④错误.答案:①②③9. 解:这种说法不正确.这个同学在街上碰到的同班同学是除了自己以外的49个人中的一个,其中碰到同性同学有24种可能,碰到异性同学有25种可能,每碰到一个同学相当于做了一次试验,因为每次试验的结果是随机的,所以碰到异性同学的可能性大,碰到同性同学的可能性小.10. 解:(1)频率依次是0.048,0.121,0.208,0.223,0.193,0.165,0.042. (2)样本中寿命不足1 500小时的频数是 48+121+208+223=600,所以样本中寿命不足1 500小时的频率是6001 000=0.6,即灯管使用寿命不足1 500小时的概率约为0.6.。
2017-2018学年高中数学北师大版必修三习题:课下能力提升(二)
一、选择题1.抽签法中确保样本代表性的关键是( )A.抽签B.搅拌均匀 C.逐一抽取 D.抽取不放回2.下列问题中,最适合用简单随机抽样的是( )A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人.教育部门为了了解学校机构改革意见,要从中抽取一个容量为20的样本D.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量3.从10个篮球中任取一个,检查其质量,用随机数法抽取样本,则应编号为( )A.1,2,3,4,5,6,7,8,9,10B.-5,-4,-3,-2,-1,0,1,2,3,4C.10,20,30,40,50,60,70,80,90,100D.0,1,2,3,4,5,6,7,8,94.在简单随机抽样中,某一个个体被抽到的可能是( )A.与第n次抽样有关,第一次被抽中的可能性大些B.与第n次抽样有关,最后一次被抽中的可能性较大C.与第n次抽样无关,每次被抽中的可能性相等D.与第n次抽样无关,每次都是等可能被抽取,但各次被抽取的可能性不一样5.某中学高一年级有400人,高二年级有320人,高三年级有280人,若每人被抽到的可能性都为20%,用随机数表法在该中学抽取容量为n的样本,则n=( )A.80 B.160 C.200 D.280二、填空题6.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 3990 84 60 79 80 24 36 59 87 38 82 07 53 89 35 96 35 23 79 18 05 98 90 07 3546 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 7920 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 3071 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 607.为了检验某种产品的质量,决定从1 001件产品中抽取10件进行检查,用随机数法抽取样本的过程中,所编的号码的位数是________.8.从一群玩游戏的小孩中随机抽出k人,一人分一个桃子后,让他们返回继续玩游戏,一会儿后,再从中任意抽出m人,发现其中有n个小孩曾分过桃子,估计一共有小孩子________人.三、解答题9.从90件产品中抽取12件进行质检,写出用随机数表法抽取这一样本的过程.10.公共汽车管理部门要考察一下其所管辖的30辆公共汽车的卫生状况,现决定从中抽取10辆进行检查.如果以抽签法做实验,请叙述具体的做法;如果该管理部门管辖的是70辆车,利用随机数法抽取一个简单随机样本,样本容量为30.答 案1. 解析:选B 逐一抽取,抽取不放回是简单随机抽样的特点,但不是确保样本代表性的关键,一次抽取与有放回抽取(个体被重复取出可不算,再放回)也不影响样本的代表性,抽签也一样.2. 解析:选B 根据简单随机抽样的特点进行判断.A 的总体容量较大,用简单随机抽样比较麻烦;B 的总体容量较小,用简单随机抽样比较方便;C 中,由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样;D 中,总体容量较大,且各类田地的产量差别很大,也不宜采用简单随机抽样法.3. 解析:选D 用随机数法抽取样本,为了方便读数,所编的号码的位数尽量少,且所有号码的位数相同.4. 解析:选C 在总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等.5. 解析:选C 由n400+320+280=0.2, 解得n =200.6. 解析:由随机数法的抽取规则可得.答案:18,00,38,58,32,26,25,397. 解析:由于所编号码的位数和读数的位数要一致,因此所编号码是四位数,从0000到1 000,或者从0001到1001等等.答案:四 8. 解析:估计一共有小孩x 人,则有k x =n m ,∴x =km n. 答案:km n9. 解:第一步 对90件产品按00,01,02,…,89进行编号.第二步 在随机数表中随机地确定一个数作为开始,如第6行第3列的数3.第三步从数3开始向右读下去,每次读两位,若遇到不在00到89中的数则跳过去,遇到已读过的数也跳过去,便可依次得到35,79,00,33,70,60,16,20,38,82,77,57.第四步取与这12个数相对应的产品组成样本.10. 解:(1)抽签法的步骤:第一步编号.给所管辖的30辆车编号;第二步定签.可以用各种不同的签,最简单的可以用纸条,将30辆车的编号写在纸条上;第三步抽取.将纸条混合均匀,依次随机地抽取10个;第四步调查.调查抽出的纸条所对应的车辆.(2)随机数法的步骤:第一步编号.将70辆车编上号:00,01,02, (69)第二步选数.由于总体是一个两位数的编号,所以从随机数表中随机选取一个位置开始,向某一方向依次选取两位数字,大于69的舍去,重复的舍去,直到取满30个数为止;第三步调查.调查抽出的数所对应的车辆.。
2017-2018学年高二数学北师大版必修三习题:课下能力提升(三) Word版
一、选择题1.某牛奶生产线上每隔30分钟抽取一袋进行检验,该抽样方法记为①;从某中学的30名数学爱好者中抽取3人了解学业负担情况,该抽样方法记为②.那么( )A.①是系统抽样,②是简单随机抽样B.①是简单随机抽样,②是简单随机抽样C.①是简单随机抽样,②是系统抽样D.①是系统抽样,②是系统抽样2.(四川高考)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( )A.101 B.808 C.1 212 D.2 0123.(湖南高考)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( )A.9 B.10 C.12 D.134.下列抽样中不是系统抽样的是( )A.从标有1~15号的15个球中,任选3个作为样本.将15个球按从小号到大号排序,随机选i0号作为起始号码,以后选i0+5,i0+10(超过15则从1再数起)号入样B.工厂生产的产品,在用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽取一件产品进行检验C.进行某一市场调查时,规定在商场门口随机抽取一个人进行询问调查,直到调查到事先规定的调查人数为止D.在报告厅对与会听众进行调查,通知每排(每排人数相等)座位号为14的听众留下来座谈5.某学校有职工140人,其中教师91人,教辅行政人员28人,总务后勤人员21人.为了了解职工的某种情况,要从中抽取一个容量为20的样本.以下的抽样方法中,依次为简单随机抽样、系统抽样、分层抽样顺序的是( )方法1:将140人从1~140编号,然后制作出编号1~140的形状、大小相同的号签,并将号签放入同一箱子里均匀搅拌,然后从中依次抽取20个号签,编号与号签相同的20个人被选出;方法2:将140人分成20组,每组7人,并将每组7人按1~7编号,在第一组采用抽签法抽出k 号(1≤k ≤7),其余各组k 号也被抽出,20个人被选出;方法3:按20∶140=1∶7的比例,从教师中抽出13人,从教辅行政人员中抽出4人,从总务后勤人员中抽出3人.从各类人员中抽取所需人员时,均采用随机数法,可抽到20人.A .方法2,方法1,方法3B .方法2,方法3,方法1C .方法1,方法2,方法3D .方法3,方法1,方法2二、填空题6.(浙江高考)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.7.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则1100应抽取高一学生数为________.8.一个总体中有100个个体,随机编号为0、1、2、…、99,依编号顺序平均分成10个小组,组号依次为1、2、3、…、10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同.若m =6,则在第7组中抽取的号码是________.三、解答题9.为了调查某路口一个月的车流量情况,交警采用系统抽样的方法,样本距为7,从每周中随机抽取一天,他正好抽取的是星期日,经过调查后做出报告.你认为交警这样的抽样方法有什么问题?应当怎样改进?如果是调查一年的车流量情况呢?10.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组14不同的年龄层的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取容量为200的样本.试求:(1)游泳组中,青年人、中年人、老年人分别所占的比例;(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.答 案1. 解析:选A 对于①,因为每隔30分钟抽取一袋,是等间距抽样,故①为系统抽样;对于②,总体数量少,样本容量也小,故②为简单随机抽样.2. 解析:选B 依题意得知,甲社区驾驶员的人数占总人数的=,因此1212+21+25+4312101有=,解得N =808.96N 121013. 解析:选D 由分层抽样可得,=,解得n =13.360n 2604. 解析:选C 分析各选项中抽样的特点,与系统抽样的概念、特点进行比较.A 、D 显然是系统抽样.B 项中,传送带的速度是恒定的,实际上是将某一段时间内生产的产品分成一组,且可以认为这些产品已经排好,又总在某一位置抽取样品,这正好符合系统抽样的概念.选项C 因事先不知道总体的个数,而且抽样时不能保证每个个体等可能入样,因此它不是系统抽样.5. 解析:选C 结合简单随机抽样、系统抽样、分层抽样的定义判断.6. 解析:由分层抽样得,此样本中男生人数为560×=160.280560+420答案:1607. 解析:若设高三学生数为x ,则高一学生数为,高二学生数为+300,所以有x 2x 2x +++300=3 500,解得x =1 600.故高一学生数为800,因此应抽取高一学生数为=8.x 2x 2800100答案:88. 解析:第k 组的号码为(k -1)10,(k -1)10+1,…,(k -1)·10+9,当m =6、k =7时,第k 组抽取的号码m +k 的个位数字为3,所以(7-1)×10+3=63.答案:639. 解:交警所统计的数据以及由此所推断出来的结论,只能代表星期日的交通流量.由于星期日是休息时间,很多人不上班,不能代表其他几天的情况.改进方法可以将所要调查的时间段的每一天先随机地编号,再用系统抽样方法来抽样,或者使用简单随机抽样来抽样亦可.如果是调查一年的交通流量,使用简单随机抽样法显然已不合适,比较简单可行的方法是把样本距改为8.10. 解:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人各占比例分别为a ,b ,c ,则有=47.5%,=10%.x ·40%+3xb 4x x ·10%+3xc4x 解得b =50%,c =10%.故a =1-50%-10%=40%.即游泳组中,青年人、中年人、老年人各占比例分别为40%、50%、10%.(2)游泳组中,抽取的青年人人数为200××40%=60;34抽取的中年人人数为200××50%=75;34抽取的老年人人数为200××10%=15.34。
2017-2018学年高二数学北师大版必修三习题:课下能力提升(四) Word版含答案
一、选择题1.下面哪种统计图没有数据信息的损失,所有的原始数据都可以从该图中得到( ) A.条形统计图 B.茎叶图C.扇形统计图 D.折线统计图2.某班学生在课外活动中参加文娱、美术、体育小组的人数之比为3∶1∶6,则在扇形统计图中表示参加体育小组人数的扇形圆心角是( )A.108° B.216° C.60° D.36°3.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为( )A.0.2 B.0.4 C.0.5 D.0.64.某同学对高一(1)班和高一(2)班两个班级今年的获奖情况进行了统计,制成两个统计图(如图所示),你认为哪个图比较恰当( )A.①恰当 B.②恰当 C.①②都恰当 D.①②都不恰当5.2013年某学科能力测试共有12万考生参加,成绩采用15级分,测试成绩分布图如下:试估计成绩高于11级分的人数为( )A.8 000 B.10 000 C.20 000 D.60 000二、填空题6.某校高一(1)班有50名学生,综合素质评价“运动与健康”方面的等级统计如图所示,则该班“运动与健康”评价等级为A的人数是________.7.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是________,________.8.某校为了了解学生的睡眠情况,随机调查了50名学生,得到他们在某一天各自的睡眠时间的数据,结果用如图所示的条形图表示.根据条形图可得这50名学生这一天平均每人的睡眠时间为________ h.三、解答题9.某赛季甲、乙两名篮球运动员每场比赛得分原始记录如下:甲运动员的得分:13,23,8,26,38,16,33,14,28,39;乙运动员的得分:49,24,12,31,50,44,15,25,36,31.用茎叶图将甲、乙运动员的成绩表示出来.10.某地农村某户农民年收入如下(单位:元):土地收入打工收入养殖收入其他收入4 320 3 600 2 357 843请用不同的统计图来表示上面的数据.答案1. 解析:选B 所有的统计图中,仅有茎叶图完好无损地保存着所有的数据信息.2. 解析:选B 参加体育小组人数占总人数的63+1+6=60%,则扇形圆心角是360°×60%=216°.3. 解析:选B 由茎叶图可知数据落在区间[22,30)内的频数为4,所以数据落在区间[22,30)内的频率为410=0.4.4. 解析:选 B 图②较恰当.由图②我们可以很清楚地看出运动类的获奖次数(1)班比(2)班多一些,而学习类的获奖次数(1)班比(2)班少一些.5. 解析:选B 由题意结合条形图分析得成绩高于11级分的考生数的百分比大约为(2.3+3+0.9+1.7)%=7.9%,所以考生大约为:7.9%×120 000=9480(人).故最接近的人数为10 000.6. 解析:由扇形图可知:评价等级为A的人数占总人数的38%,由此可知高一(1)班的50名学生中有50×38%=19人在该等级中.答案:197. 解析:甲组数据为:28,31,39,42,45,55,57,58,66,中位数为45;乙组数据为:29,34,35,42,46,48,53,55,67,中位数为46.答案:45 468. 解析:法一:要确定这50名学生的平均睡眠时间,就必须计算其总睡眠时间.总睡眠时间为5.5×0.1×50+6×0.3×50+6.5×0.4×50+7×0.1×50+7.5×0.1×50=27.5+90+130+35+37.5=320.故平均睡眠时间为320÷50=6.4 (h).法二:根据图形得平均每人的睡眠时间为t=5.5×0.1+6×0.3+6.5×0.4+7×0.1+7.5×0.1=6.4(h).答案:6.49. 解:制作茎叶图的方法是:将所有的两位数的十位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出.甲、乙运动员的得分茎叶图如图.10. 解:用条形统计图表示,如图所示.用折线统计图表示,如图所示.用扇形统计图表示,如图所示.。
2017-2018学年高二数学北师大版必修三习题:课下能力提升(二) Word版
一、选择题1.抽签法中确保样本代表性的关键是( )A.抽签 B.搅拌均匀 C.逐一抽取 D.抽取不放回2.下列问题中,最适合用简单随机抽样的是( )A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人.教育部门为了了解学校机构改革意见,要从中抽取一个容量为20的样本D.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量3.从10个篮球中任取一个,检查其质量,用随机数法抽取样本,则应编号为( )A.1,2,3,4,5,6,7,8,9,10B.-5,-4,-3,-2,-1,0,1,2,3,4C.10,20,30,40,50,60,70,80,90,100D.0,1,2,3,4,5,6,7,8,94.在简单随机抽样中,某一个个体被抽到的可能是( )A.与第n次抽样有关,第一次被抽中的可能性大些B.与第n次抽样有关,最后一次被抽中的可能性较大C.与第n次抽样无关,每次被抽中的可能性相等D.与第n次抽样无关,每次都是等可能被抽取,但各次被抽取的可能性不一样5.某中学高一年级有400人,高二年级有320人,高三年级有280人,若每人被抽到的可能性都为20%,用随机数表法在该中学抽取容量为n的样本,则n=( )A.80 B.160 C.200 D.280二、填空题6.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 3990 84 60 79 80 24 36 59 87 38 82 07 53 89 35 96 35 23 79 18 05 98 90 07 3546 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 7920 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 3071 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 607.为了检验某种产品的质量,决定从1 001件产品中抽取10件进行检查,用随机数法抽取样本的过程中,所编的号码的位数是________.8.从一群玩游戏的小孩中随机抽出k人,一人分一个桃子后,让他们返回继续玩游戏,一会儿后,再从中任意抽出m人,发现其中有n个小孩曾分过桃子,估计一共有小孩子________人.三、解答题9.从90件产品中抽取12件进行质检,写出用随机数表法抽取这一样本的过程.10.公共汽车管理部门要考察一下其所管辖的30辆公共汽车的卫生状况,现决定从中抽取10辆进行检查.如果以抽签法做实验,请叙述具体的做法;如果该管理部门管辖的是70辆车,利用随机数法抽取一个简单随机样本,样本容量为30.答案1. 解析:选B 逐一抽取,抽取不放回是简单随机抽样的特点,但不是确保样本代表性的关键,一次抽取与有放回抽取(个体被重复取出可不算,再放回)也不影响样本的代表性,抽签也一样.2. 解析:选B 根据简单随机抽样的特点进行判断.A的总体容量较大,用简单随机抽样比较麻烦;B的总体容量较小,用简单随机抽样比较方便;C中,由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样;D中,总体容量较大,且各类田地的产量差别很大,也不宜采用简单随机抽样法.3. 解析:选D 用随机数法抽取样本,为了方便读数,所编的号码的位数尽量少,且所有号码的位数相同.4. 解析:选C 在总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等.5. 解析:选C 由=0.2,n400+320+280解得n =200.6. 解析:由随机数法的抽取规则可得.答案:18,00,38,58,32,26,25,397. 解析:由于所编号码的位数和读数的位数要一致,因此所编号码是四位数,从0000到1 000,或者从0001到1001等等.答案:四8. 解析:估计一共有小孩x 人,则有=,∴x =.k x n m km n 答案:km n9. 解:第一步 对90件产品按00,01,02,…,89进行编号.第二步 在随机数表中随机地确定一个数作为开始,如第6行第3列的数3.第三步 从数3开始向右读下去,每次读两位,若遇到不在00到89中的数则跳过去,遇到已读过的数也跳过去,便可依次得到35,79,00,33,70,60,16,20,38,82,77,57.第四步 取与这12个数相对应的产品组成样本.10. 解:(1)抽签法的步骤:第一步 编号.给所管辖的30辆车编号;第二步 定签.可以用各种不同的签,最简单的可以用纸条,将30辆车的编号写在纸条上;第三步 抽取.将纸条混合均匀,依次随机地抽取10个;第四步 调查.调查抽出的纸条所对应的车辆.(2)随机数法的步骤:第一步 编号.将70辆车编上号:00,01,02, (69)第二步 选数.由于总体是一个两位数的编号,所以从随机数表中随机选取一个位置开始,向某一方向依次选取两位数字,大于69的舍去,重复的舍去,直到取满30个数为止;第三步 调查.调查抽出的数所对应的车辆.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课下能力提升6
一、选择题
1.下列说法不.正确的是( )
A.频率分布直方图中每个小矩形的高就是该组的频率
B.频率分布直方图中各个小矩形的面积之和等于1
C.频率分布直方图中各个小矩形的宽一样大
D.频率分布折线图是依次连接频率分布直方图的每个小矩形上端中点得到的
2.样本容量为100的频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在[6,10)内的频数为a,样本数据落在[2,10)内的频率为b,则a,b分别是( )
A.32,0.4 B.8,0.1 C.32,0.1 D.8,0.4
3.将一个容量为50的样本数据分组后,分组与频数如下:[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),6;[30.5,33.5),3.
则估计小于30的数据大约占总体的( )
A.94% B.6% C.92% D.12%
4.为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图所示).已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为12,则抽取的学生人数为( )
A.46 B.48 C.50 D.60
5.设矩形的长为a,宽为b,其比满足b:a=5-1
2
≈0.618,这种矩形给人以美感,称为
黄金矩形.黄金矩形常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:
甲批次:0.598 0.625 0.628 0.595 0.639
乙批次:0.618 0.613 0.592 0.622 0.620
根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( ) A.甲批次的总体平均数与标准值更接近
B.乙批次的总体平均数与标准值更接近
C.两个批次总体平均数与标准值接近程度相同
D.两个批次总体平均数与标准值接近程度不能确定
二、填空题
6.(广东高考)由正整数组成的一组数据x1,x2,x3,x4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)
7.《中华人民共和国道路交通安全法》规定;车辆驾驶员血液酒精浓度在20~80 mg/100 mL(不含80)之间,属于酒后驾车;血液酒精浓度在80 mg/100 mL(含80)以上时,属醉酒驾车.据《法制晚报》报道,2011年2月15日至2月28日,全国查处酒后驾车和醉酒驾车共28 800人,如图是对这28 800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为________.
8.一组数据中的每一个数据都减去80,得一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是________,________.
三、解答题
9.有一个容量为50的样本,数据的分组及各组的频数如下:
[25,30),3;[30,35),8;[35,40),9;[40,45),11;
[45,50),10;[50,55),5;[55,60],4.
(1)列出样本的频率分布表;
(2)画出频率分布直方图及频率分布折线图.
10.某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分):
甲班:82 84 85 89 79 80 91 89 79 74
乙班:90 76 86 81 84 87 86 82 85 83
(1)求两个样本的平均数;
(2)求两个样本的方差和标准差;
(3)试分析比较两个班的学习情况.
答 案
1. 解析:选A 频率分布直方图的每个小矩形的高=频率组距
. 2. 解析:选A 由于样本数据落在[6,10)内的频率为0.08×4=0.32,则a =100×0.32=32;由于样本数据落在[2,6)内的频率为0.02×4=0.08,则样本数据落在[2,10)内的频率b =0.08+0.32=0.4.
3. 解析:选C 由样本的频率分布估计总体的分布.小于30.5的样本频数为3+8+9+11+10+6=47,所以其频率为4750
=94%.小于27.5的样本频数为3+8+9+11+10=41,所以其频率为4150
=82%.因此小于30的样本频率应在82%~94%之间,满足条件的只有92%. 4. 解析:选B 前3个小组的频率和为1-0.037 5×5-0.012 5×5=0.75.又因为前3个
小组的频率之比为1∶2∶3,所以第2小组的频率为26
×0.75=0.25.又知第2小组的频数为12,则120.25
=48,即为所抽样本的人数. 5. 解析:选A x 甲=0.598+0.625+0.628+0.595+0.6395
=0.617, x 乙=0.618+0.613+0.592+0.622+0.6205
=0.613, ∴x 甲与0.618更接近.
6. 解析:设x 1≤x 2≤x 3≤x 4,根据已知条件得到x 1+x 2+x 3+x 4=8,且x 2+x 3=4,所以x 1+x 4=4,又因为
14[ x 1-2 2+ x 2-2 2+ x 3-2 2+ x 4-2 2]=1,所以(x 1-2)2+(x 2-2)2=2,又因为x 1,x 2,x 3,x 4是正整数,所以(x 1-2)2=(x 2-2)2=1,所以x 1=1,x 2=1,x 3=3,x 4=3.
答案:1,1,3,3
7. 解析:(0.01×10+0.005×10)×28 800=4 320.。