高考数学一轮复习第三章三角函数解三角形课时达标21两角和与差的正弦余弦和正切公式理
高考数学一轮复习第三章三角函数、解三角形3.5两角和与差的正弦、余弦和正切公式
【步步高】(浙江通用)2017版高考数学一轮复习 第三章 三角函数、解三角形 3.5 两角和与差的正弦、余弦和正切公式1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β (C (α-β)) cos(α+β)=cos_αcos_β-sin_αsin_β (C (α+β)) sin(α-β)=sin_αcos_β-cos_αsin_β (S (α-β)) sin(α+β)=sin_αcos_β+cos_αsin_β (S (α+β)) tan(α-β)=tan α-tan β1+tan αtan β (T (α-β))tan(α+β)=tan α+tan β1-tan αtan β (T (α+β))2.二倍角公式sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α. 3.公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tanαtan β),且对任意角α,β都成立.( × )(4)存在实数α,使tan 2α=2tan α.( √ )(5)两角和与差的正弦、余弦公式中的角α,β是任意的.( √)1.化简cos 40°cos 25°1-sin 40°等于( )A .1 B. 3 C. 2 D .2 答案 C解析 原式=cos 40°cos 25°1-cos 50°=cos 40°cos 25°·2sin 25°=cos 40°22sin 50°= 2.2.已知α∈R ,sin α+2cos α=102,则tan 2α等于( ) A.43 B.34 C .-34 D .-43 答案 C解析 ∵si n α+2cos α=102,又sin 2α+cos 2α=1, 联立解得⎩⎪⎨⎪⎧sin α=-1010,cos α=31010或⎩⎪⎨⎪⎧sin α=31010,cos α=1010,故tan α=sin αcos α=-13或tan α=3,代入可得tan 2α=2tan α1-tan 2α=2×⎝ ⎛⎭⎪⎫-131-⎝ ⎛⎭⎪⎫-132=-34, 或tan 2α=2tan α1-tan 2α=2×31-32=-34.3.(2015·重庆)若tan α=13,tan(α+β)=12,则tan β等于( )A.17B.16C.57D.56 答案 A解析 tan β=tan[(α+β)-α]=α+β-tan α1+α+βα=12-131+12×13=17.4.(教材改编)sin 347°cos 148°+sin 77°cos 58°=________. 答案22解析 sin 347°cos 148°+sin 77°cos 58°=sin(270°+77°)cos(90°+58°)+sin 77°cos 58° =(-cos 77°)·(-sin 58°)+sin 77°cos 58° =sin 58°cos 77°+cos 58°sin 77° =sin(58°+77°)=sin 135°=22. 5.(2015·青岛质量检测)设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为________.答案17250解析 ∵α为锐角,cos(α+π6)=45,∴α+π6∈⎝ ⎛⎭⎪⎫π6,2π3,∴sin(α+π6)=35,∴sin(2α+π3)=2sin(α+π6)cos(α+π6)=2425,∴cos(2α+π3)=2cos 2(α+π6)-1=725,∴sin(2α+π12)=sin(2α+π3-π4)=22[sin(2α+π3)-cos(2α+π3)]=17250.题型一 三角函数公式的基本应用例1 (1)已知sin α=35,α∈(π2,π),则cos 2α2α+π4=________.(2)设sin 2α=-sin α,α∈⎝ ⎛⎭⎪⎫π2,π,则tan 2α的值是________. 答案 (1)-75 (2) 3解析 (1)cos 2α2sin ⎝⎛⎭⎪⎫α+π4=cos 2α-sin 2α2⎝ ⎛⎭⎪⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α=-45.∴原式=-75.(2)∵sin 2α=2sin αcos α=-sin α, ∴cos α=-12,又α∈⎝ ⎛⎭⎪⎫π2,π, ∴sin α=32,tan α=-3, ∴tan 2α=2tan α1-tan 2α=-231--32= 3.思维升华 (1)使用两角和与差的三角函数公式,首先要记住公式的结构特征.(2)使用公式求值,应先求出相关角的函数值,再代入公式求值.(1)若α∈(π2,π),tan(α+π4)=17,则sin α等于( )A.35B.45 C .-35 D .-45(2)已知sin α=35,且α∈⎝⎛⎭⎪⎫0,π2,f (x )=2sin ⎝ ⎛⎭⎪⎫x +π4,则f ⎝⎛⎭⎪⎫α-π12=________________________. 答案 (1)A (2)36+4210解析 (1)∵tan(α+π4)=tan α+11-tan α=17,∴tan α=-34=sin αcos α,∴cos α=-43sin α.又∵sin 2α+cos 2α=1,∴sin 2α=925.又∵α∈(π2,π),∴sin α=35.(2)∵sin α=35,且α∈⎝ ⎛⎭⎪⎫0,π2,∴cos α=45,f ⎝ ⎛⎭⎪⎫α-π12=2sin ⎝⎛⎭⎪⎫α-π12+π4=2sin ⎝ ⎛⎭⎪⎫α+π6=2⎝ ⎛⎭⎪⎫sin αcos π6+cos αsin π6=36+4210.题型二 三角函数公式的灵活应用例2 (1)sin(65°-x )cos(x -20°)+cos(65°-x )·cos(110°-x )的值为( ) A. 2B.22C.12D.32(2)(2015·重庆)若tan α=2tan π5,则cos ⎝⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5等于( )A .1B .2C .3D .4答案 (1)B (2)C解析 (1)原式=sin(65°-x )·cos(x -20°)+cos(65°-x )cos[90°-(x -20°)]=sin(65°-x )cos(x -20°)+cos(65°-x )sin(x -20°)=sin[(65°-x )+(x -20°)] =sin 45°=22.故选B.(2)cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫π2+α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsinπ5sin αcos π5-cos αsin π5=tan αtan π5+1tan αtanπ5-1=2+12-1=3.思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力.(1)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为( ) A.π4 B.π3 C.π2D.3π4(2)函数f (x )=2sin 2(π4+x )-3cos 2x 的最大值为( )A .2B .3C .2+ 3D .2- 3答案 (1)A (2)B解析 (1)由题意知:sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sin C ,在等式-2cos B ·cos C =sin B ·cos C +cos B ·sin C 两边同除以cos B ·cos C 得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C =-1=-tan A ,所以A =π4.(2)f (x )=1-cos 2(π4+x )-3cos 2x =sin 2x -3cos 2x +1=2sin ⎝⎛⎭⎪⎫2x -π3+1,可得f (x )的最大值是3.题型三 角的变换问题例3 (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A.2525 B.255C.2525或255 D.55或525(2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是________.答案 (1)A (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin2α+β=±45.又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β). 因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525.(2)∵cos(α-π6)+sin α=453,∴32cos α+32sin α=453, 3(12cos α+32sin α)=453, 3sin(π6+α)=453,∴sin(π6+α)=45,∴sin(α+7π6)=-sin(π6+α)=-45.思维升华 (1)解决三角函数的求值问题的关键是把“所求角”用“已知角”表示:①当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝⎛⎭⎪⎫α+β2等于( )A.33 B .-33 C.539 D .-69答案 C解析 cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2,∵0<α<π2,∴π4<π4+α<3π4,∴sin ⎝ ⎛⎭⎪⎫π4+α=223.又-π2<β<0,则π4<π4-β2<π2,∴sin ⎝ ⎛⎭⎪⎫π4-β2=63. 故cos ⎝⎛⎭⎪⎫α+β2=13×33+223×63=539.4.三角函数求值忽视角的范围致误典例 (1)已知0<β<π2<α<π,且cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,则cos(α+β)的值为________.(2)已知在△ABC 中,sin(A +B )=23,cos B =-34,则cos A =________.易错分析 (1)角α2-β,α-β2的范围没有确定准确,导致开方时符号错误.(2)对三角形中角的范围挖掘不够,忽视隐含条件,B 为钝角. 解析 (1)∵0<β<π2<α<π,∴-π4<α2-β<π2,π4<α-β2<π,∴cos ⎝ ⎛⎭⎪⎫α2-β= 1-sin 2⎝⎛⎭⎪⎫α2-β=53, sin ⎝⎛⎭⎪⎫α-β2=1-cos 2⎝⎛⎭⎪⎫α-β2=459,∴cos α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β =cos ⎝ ⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫α2-β+sin ⎝ ⎛⎭⎪⎫α-β2sin ⎝ ⎛⎭⎪⎫α2-β=⎝ ⎛⎭⎪⎫-19×53+459×23=7527,∴cos(α+β)=2cos2α+β2-1 =2×49×5729-1=-239729.(2)在△ABC 中,∵cos B =-34,∴π2<B <π,sin B =1-cos 2B =74. ∵π2<B <A +B <π,sin(A +B )=23, ∴cos(A +B )=-1-sin2A +B =-53, ∴cos A =cos[(A +B )-B ]=cos(A +B )cos B +sin(A +B )sin B =⎝ ⎛⎭⎪⎫-53×⎝ ⎛⎭⎪⎫-34+23×74=35+2712. 答案 (1)-239729 (2)35+2712温馨提醒 在解决三角函数式的求值问题时,要注意题目中角的范围的限制,特别是进行开方运算时一定要注意所求三角函数值的符号.另外,对题目隐含条件的挖掘也是容易忽视的问题,解题时要加强对审题深度的要求与训练,以防出错.[方法与技巧] 1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,配方变形:1±sin α=⎝ ⎛⎭⎪⎫sin α2±cos α22,1+cos α=2cos2α2,1-cos α=2sin 2α2.2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形. [失误与防范]1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在三角函数求值时,一定不要忽视题中给出的或隐含的角的范围.A 组 专项基础训练 (时间:30分钟)1. cos 85°+sin 25°cos 30°cos 25°等于( )A .-32B.22C.12D .1答案 C解析 原式=sin 5°+32sin 25°cos 25°=-+32sin 25°cos 25°=12cos 25°cos 25°=12.2.若θ∈[π4,π2],sin 2θ=378,则sin θ等于( )A.35 B.45 C.74D.34答案 D解析 由sin 2θ=378和sin 2θ+cos 2θ=1得(sin θ+cos θ)2=378+1=(3+74)2,又θ∈[π4,π2],∴sin θ+cos θ=3+74.同理,sin θ-cos θ=3-74,∴sin θ=34.3.若tan θ=3,则sin 2θ1+cos 2θ等于( )A. 3 B .- 3 C.33D .-33答案 A 解析sin 2θ1+cos 2θ=2sin θcos θ1+2cos 2θ-1=tan θ= 3. 4.若sin(π+α)=35,α是第三象限角,则sin π+α2-cosπ+α2sin π-α2-cosπ-α2等于( )A.12 B .-12C .2D .-2答案 B解析 sin π+α2-cos π+α2sin π-α2-cos π-α2=cos α2+sinα2cos α2-sinα2=⎝ ⎛⎭⎪⎫cos α2+sin α2⎝ ⎛⎭⎪⎫cos α2+sin α2⎝⎛⎭⎪⎫cos α2-sin α2⎝ ⎛⎭⎪⎫cos α2+sin α2=cos 2α2+2sin α2cos α2+sin 2α2cos 2α2-sin2α2=1+sin αcos α.∵sin(π+α)=-sin α=35,∴sin α=-35.∵α是第三象限角,∴cos α=-45,故原式=1+⎝ ⎛⎭⎪⎫-35-45=-12.5.已知tan(α+β)=25,tan ⎝ ⎛⎭⎪⎫β-π4=14,那么tan ⎝⎛⎭⎪⎫α+π4等于( )A.1318B.1322C.322D.16 答案 C解析 因为α+π4+β-π4=α+β,所以α+π4=(α+β)-⎝ ⎛⎭⎪⎫β-π4,所以tan ⎝ ⎛⎭⎪⎫α+π4=tan ⎣⎢⎡⎦⎥⎤α+β-⎝⎛⎭⎪⎫β-π4=α+β-tan ⎝⎛⎭⎪⎫β-π41+α+β⎝⎛⎭⎪⎫β-π4=322. 6.sin 250°1+sin 10°=________. 答案 12解析 sin 250°1+sin 10°=1-cos 100°+=1-++=1+sin 10°+=12. 7.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α=________. 答案 1解析 根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β, cos β(cos α-sin α)+sin β(cos α-sin α)=0, 即(cos β+sin β)(cos α-sin α)=0. 又α、β为锐角,则sin β+cos β>0, ∴cos α-sin α=0, ∴tan α=1.8.函数f (x )=2cos x sin ⎝⎛⎭⎪⎫x -π3的最大值为__________.答案 1-32解析 ∵f (x )=2cos x sin ⎝⎛⎭⎪⎫x -π3=2cos x ⎝ ⎛⎭⎪⎫12sin x -32cos x=12sin 2x -32cos 2x -32 =sin ⎝ ⎛⎭⎪⎫2x -π3-32,∴f (x )的最大值为1-32. 9.已知cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈⎝ ⎛⎭⎪⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值. 解 (1)cos ⎝⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫π6+α =12sin ⎝ ⎛⎭⎪⎫2α+π3=-14,即sin ⎝ ⎛⎭⎪⎫2α+π3=-12. ∵α∈⎝⎛⎭⎪⎫π3,π2,∴2α+π3∈⎝ ⎛⎭⎪⎫π,4π3 ∴cos ⎝ ⎛⎭⎪⎫2α+π3=-32, ∴sin 2α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π3-π3=sin ⎝ ⎛⎭⎪⎫2α+π3cos π3-cos ⎝ ⎛⎭⎪⎫2α+π3sin π3=12. (2)∵α∈⎝ ⎛⎭⎪⎫π3,π2,∴2α∈⎝ ⎛⎭⎪⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32.∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.10.如图,已知单位圆上有四点E (1,0),A (cos θ,sin θ),B (cos 2θ,sin 2θ),C (cos 3θ,sin 3θ),0<θ≤π3,分别设△OAC ,△ABC 的面积为S 1和S 2.(1)用sin θ,cos θ表示S 1和S 2; (2)求S 1cos θ+S 2sin θ的最大值及取最大值时θ的值.解 (1)根据三角函数的定义,知∠xOA =θ,∠xOB =2θ,∠xOC =3θ,所以∠xOA =∠AOB =∠BOC =θ,所以S 1=12·1·1·sin(3θ-θ)=12sin 2θ.因为S 1+S 2=S 四边形OABC=12·1·1·sin θ+12·1·1·sin θ=sin θ, 所以S 2=sin θ-12sin 2θ=sin θ(1-cos θ).(2)由(1)知S 1cos θ+S 2sin θ=sin θcos θcos θ+sin θ-cos θsin θ=sin θ-cos θ+1=2sin ⎝ ⎛⎭⎪⎫θ-π4+1. 因为0<θ≤π3,所以-π4<θ-π4≤π12,所以-22<sin ⎝⎛⎭⎪⎫θ-π4≤sin π12=6-24,所以S 1cos θ+S 2sin θ的最大值为3+12,此时θ的值为π3. B 组 专项能力提升 (时间:15分钟)11.已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αα-π4等于( )A .-255B .-3510C .-31010D.255答案 A解析 由tan(α+π4)=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010.故2sin 2α+sin 2αα-π4=2sin αα+cos α22α+cos α=22sin α=-255.12.若α∈⎝ ⎛⎭⎪⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于( )A.22B.33C. 2D. 3答案 D解析 ∵α∈⎝ ⎛⎭⎪⎫0,π2,且sin 2α+cos 2α=14,∴sin 2α+cos 2α-sin 2α=14,∴cos 2α=14,∴cos α=12或-12(舍去),∴α=π3,∴tan α= 3.13.已知cos 4α-sin 4α=23,且α∈⎝ ⎛⎭⎪⎫0,π2,则cos ⎝ ⎛⎭⎪⎫2α+π3=________.答案2-156解析 ∵cos 4α-sin 4α=(sin 2α+cos 2α)(cos 2α-sin 2α) =cos 2α=23,又α∈⎝⎛⎭⎪⎫0,π2,∴2α∈(0,π), ∴sin 2α=1-cos 22α=53, ∴cos ⎝ ⎛⎭⎪⎫2α+π3=12cos 2α-32sin 2α =12×23-32×53=2-156. 14.设f (x )=1+cos 2x 2sin ⎝ ⎛⎭⎪⎫π2-x +sin x +a 2sin ⎝ ⎛⎭⎪⎫x +π4的最大值为2+3,则常数a =________.答案 ± 3解析 f (x )=1+2cos 2x -12cos x +sin x +a 2sin ⎝⎛⎭⎪⎫x +π4=cos x +sin x +a 2sin ⎝ ⎛⎭⎪⎫x +π4=2sin ⎝ ⎛⎭⎪⎫x +π4+a 2sin ⎝⎛⎭⎪⎫x +π4=(2+a 2)sin ⎝ ⎛⎭⎪⎫x +π4.依题意有2+a 2=2+3, ∴a =± 3.15.(2015·嘉兴一模)已知函数f (x )=1-2sin ⎝ ⎛⎭⎪⎫x +π8·⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫x +π8-cos ⎝⎛⎭⎪⎫x +π8.(1)求函数f (x )的最小正周期;(2)当x ∈⎣⎢⎡⎦⎥⎤-π2,π12,求函数f ⎝⎛⎭⎪⎫x +π8的值域.解 (1)函数f (x )=1-2sin ⎝ ⎛⎭⎪⎫x +π8[sin ⎝ ⎛⎭⎪⎫x +π8-cos ⎝⎛⎭⎪⎫x +π8] =1-2sin 2⎝ ⎛⎭⎪⎫x +π8+2sin ⎝ ⎛⎭⎪⎫x +π8cos ⎝ ⎛⎭⎪⎫x +π8=cos ⎝ ⎛⎭⎪⎫2x +π4+sin ⎝ ⎛⎭⎪⎫2x +π4=2sin ⎝ ⎛⎭⎪⎫2x +π2 =2cos 2x ,所以f (x )的最小正周期T =2π2=π.(2)由(1)可知f ⎝ ⎛⎭⎪⎫x +π8=2cos ⎝ ⎛⎭⎪⎫2x +π4.由于x ∈⎣⎢⎡⎦⎥⎤-π2,π12,所以2x +π4∈⎣⎢⎡⎦⎥⎤-3π4,5π12,所以cos ⎝ ⎛⎭⎪⎫2x +π4∈⎣⎢⎡⎦⎥⎤-22,1,则f ⎝ ⎛⎭⎪⎫x +π8∈[-1,2],所以f ⎝ ⎛⎭⎪⎫x +π8的值域为[-1,2].。
高考数学一轮复习 第三章 三角函数、解三角形 第21讲 两角和与差的正弦、余弦和正切公式实战演练 理
的正弦、余弦和正切公式实战演练理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考数学一轮复习第三章三角函数、解三角形第21讲两角和与差的正弦、余弦和正切公式实战演练理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考数学一轮复习第三章三角函数、解三角形第21讲两角和与差的正弦、余弦和正切公式实战演练理的全部内容。
与差的正弦、余弦和正切公式实战演练理1.(2016·全国卷Ⅱ)若cos错误!=错误!,则sin 2α=(D) A.错误!B.错误!C.-错误!D.-错误!解析:sin 2α=cos错误!=cos 错误!=2cos2错误!-1=2×错误!2-1=-错误!。
2.(2016·四川卷)cos2π8-sin2错误!=错误!.解析:cos2错误!-sin2错误!=cos 错误!=错误!。
3.(2016·浙江卷)已知2cos2x+sin 2x=A sin(ωx+φ)+b(A>0),则A=错误!,b=1。
解析:2cos2x+sin 2x=1+cos 2x+sin 2x=错误!sin错误!+1,故A=错误!,b=1。
4.(2016·江苏卷),在△ABC中,AC=6,cos B=错误!,C=错误!.(1)求AB的长;(2)求cos错误!的值.解析:(1)因为cos B=错误!,0〈B〈π,所以sin B=错误!=错误!=错误!,由正弦定理知错误!=错误!,所以AB=错误!=错误!=5错误!.(2)在△ABC中,A+B+C=π,所以A=π-(B+C),于是cos A=-cos(B+C)=-cos错误!=-cos B cos 错误!+sin B sin 错误!,又cos B=错误!,sin B=错误!,故cos A=-错误!×错误!+错误!×错误!=-错误!。
高考数学一轮复习 第三章 三角函数、解三角形 第3讲 两角和与差的正弦、余弦和正切公式课件 文
12/11/2021
第十八页,共四十五页。
2cos 1.
10°-sin sin 70°
20°的值是___3_____.
[解析] 原式=2cos(30°-sin207°0°)-sin 20°
=2(cos
30°·cos
20°+sin 30°·sin sin 70°
20°)-sin
20°
= c3ocsos202°0°= 3.
12/11/2021
第二十二页,共四十五页。
三角函数的给值求值、给值求角(高频考点)
(1)已 知
0
<
β<
π 2
<
α
<
π
,
且
cos
α-β2
=
-
1 9
,
sinα2-β=23,求 cos(α+β)的值;
(2)已知 α,β∈(0,π),且 tan(α-β)=12,tan β=-17,求 2α
-β 的值.
12/11/2021
12/11/2021
第十九页,共四十五页。
2.已知函数 f(x)=2sin13x-π6,x∈R. (1)求 f54π的值; (2)设 α,β∈0,π2,f3α+π2=1103,f(3β+2π)=65,
求 cos(α+β)的值.
12/11/2021
第二十页,共四十五页。
[解] (1)f54π=2sin 13×54π-π6=2sinπ4= 2. (2)由 f3α+π2=2sin α=1130,
12/11/2021
第二十四页,共四十五页。
=-19× 35+4 9 5×23=7275,
所以 cos(α+β)=2cos2α+2 β-1=2×497×295-1=-722399.
(浙江专版)高考数学一轮复习 第3章 三角函数、解三角形 第5节 两角和与差的正弦、余弦和正切公式教
第五节 两角和与差的正弦、余弦和正切公式1.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin_αcos_β±cos _αsin_β; (2)cos(α±β)=cos_αcos_β∓sin_αsin_β; (3)tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α;(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)tan 2α=2tan α1-tan 2α. 3.有关公式的变形和逆用 (1)公式T (α±β)的变形:①tan α+tan β=tan(α+β)(1-tan_αtan_β); ②tan α-tan β=tan(α-β)(1+tan_αtan_β). (2)公式C 2α的变形: ①sin 2α=12(1-cos 2α);②cos 2α=12(1+cos 2α).(3)公式的逆用:①1±sin 2α=(sin α±cos α)2; ②sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. 4.辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)⎝⎛⎭⎪⎫其中tan φ=b a .1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )(4)公式a sin x +b cos x =a 2+b 2sin(x +φ)中φ的取值与a ,b 的值无关.( ) [答案] (1)√ (2)× (3)× (4)×2.(教材改编)sin 20°cos 10°-cos 160°sin 10°=( ) A .-32B.32C .-12D.12D [sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.]3.若tan θ=-13,则cos 2θ=( )A .-45B .-15C.15D.45D [∵cos 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ. 又∵tan θ=-13,∴cos 2θ=1-191+19=45.]4.(2017·某某二次统一检测)函数 f (x )=3sin x +cos x 的最小值为________.-2 [函数f (x )=2sin ⎝⎛⎭⎪⎫x +π6的最小值是-2.]5.若锐角α,β满足(1+3tan α)(1+3tan β)=4,则α+β=________. π3[由(1+3tan α)(1+3tan β)=4, 可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3.又α+β∈(0,π),∴α+β=π3.]三角函数式的化简(1)化简:sin 2α-2cos 2αsin ⎝ ⎛⎭⎪⎫α-π4=________. 【导学号:51062114】(2)化简:2cos 4x -2cos 2x +122tan ⎝ ⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x .(1)22cos α [原式=2sin αcos α-2cos 2α22sin α-cos α=22cos α.](2)原式=-2sin 2x cos 2x +122sin ⎝ ⎛⎭⎪⎫π4-x cos 2⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x=121-sin 22x2sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x =12cos 22x sin ⎝ ⎛⎭⎪⎫π2-2x =12cos 2x .[规律方法] 1.三角函数式的化简要遵循“三看”原则(1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式.(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,最常见的是“切化弦”.(3)三看“结构特征”,分析结构特征,找到变形的方向. 2.三角函数式化简的方法弦切互化,异名化同名,异角化同角,降幂或升幂.[变式训练1] (2017·某某镇海中学测试卷一)已知tan ⎝ ⎛⎭⎪⎫α+π4=12,且-π2<α<0,则2sin 2α+sin 2αcos ⎝⎛⎭⎪⎫α-π4=( )A .-255B .-3510C .-31010D.255A [2sin 2α+sin 2αcos ⎝ ⎛⎭⎪⎫α-π4=2sin αsin α+cos α22sin α+cos α=22sin α,由tan ⎝ ⎛⎭⎪⎫α+π4=12,得tan α=tan ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π4-π4=tan ⎝ ⎛⎭⎪⎫α+π4-tanπ41+tan ⎝⎛⎭⎪⎫α+π4tanπ4=-13,即3sin α=-cos α,又sin 2α+cos 2α=1,所以sin α=±1010, 而-π2<α<0,所以sin α=-1010,故2sin 2α+sin 2αcos ⎝⎛⎭⎪⎫α-π4=-255.]三角函数式的求值☞角度1 给角求值(1)2cos 10°-sin 20°sin 70°=( )A.12B.32C. 3D. 2(2)sin 50°(1+3tan 10°)=________. (1)C (2)1[(1)原式=2cos 30°-20°-sin 20°sin 70°=2cos 30°·cos 20°+sin 30°·sin 20°-sin 20°sin 70°=3cos 20°c os 20°= 3.(2)sin 50°(1+3tan 10°)=sin 50°⎝⎛⎭⎪⎫1+3·sin 10°cos 10°=sin 50°×cos 10°+3sin 10°cos 10°=sin 50°×2⎝ ⎛⎭⎪⎫12cos 10°+32sin 10°cos 10°=2sin 50°·cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.]☞角度2 给值求值(1)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin 2α=( )A.725B.15 C .-15D .-725(2)(2017·某某某某十校联考)已知α为锐角,且7sin α=2cos 2α,则sin ⎝ ⎛⎭⎪⎫α+π3=( )A.1+358 B.1+538 C.1-358D.1-538(1)D (2)A [(1)∵cos ⎝ ⎛⎭⎪⎫π4-α=35,∴sin 2α=cos ⎝⎛⎭⎪⎫π2-2α=cos 2⎝ ⎛⎭⎪⎫π4-α=2cos 2⎝ ⎛⎭⎪⎫π4-α-1=2×925-1=-725. (2)由7sin α=2cos 2α得7sin α=2(1-2sin 2α),即4sin 2α+7sin α-2=0,∴sin α=-2(舍去)或sin α=14.∵α为锐角,∴cos α=154,∴sin ⎝ ⎛⎭⎪⎫α+π3=14×12+154×32=1+358,故选A.] ☞角度3 给值求角已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( )A.5π12 B.π3 C.π4D.π6C [∵α,β均为锐角,∴-π2<α-β<π2.又sin(α-β)=-1010,∴cos(α-β)=31010. 又sin α=55,∴cos α=255, ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=55×31010-255×⎝ ⎛⎭⎪⎫-1010=22. ∴β=π4.][规律方法] 1.“给角求值”中一般所给出的角都是非特殊角,应仔细观察非特殊角与特殊角之间的关系,结合公式将非特殊角的三角函数转化为特殊角的三角函数求解.2.“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.3.“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的X 围,最后确定角.三角变换的简单应用已知函数f (x )=sin 2x -sin 2⎝ ⎛⎭⎪⎫x -π6,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值和最小值.[解] (1)由已知,有f (x )=1-cos 2x 2-1-cos ⎝⎛⎭⎪⎫2x -π32=12⎝ ⎛⎭⎪⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝⎛⎭⎪⎫2x -π6.所以f (x )的最小正周期T =2π2=π.6分 (2)因为f (x )在区间⎣⎢⎡⎦⎥⎤-π3,-π6上是减函数,在区间⎣⎢⎡⎦⎥⎤-π6,π4上是增函数,且f ⎝ ⎛⎭⎪⎫-π3=-14,f ⎝ ⎛⎭⎪⎫-π6=-12,f ⎝ ⎛⎭⎪⎫π4=34, 所以f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值为34,最小值为-12.14分[规律方法] 1.进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.2.把形如y =a sin x +b cos x 化为y =a 2+b 2sin(x +φ),可进一步研究函数的周期、单调性、最值与对称性.[变式训练2] (1)(2016·某某高考)函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( )A.π2 B .π C.3π2D .2π(2)(2014·全国卷Ⅱ)函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________.【导学号:51062115】(1)B (2)1 [(1)法一:∵f (x )=(3sin x +cos x )(3cos x -sin x ) =4⎝⎛⎭⎪⎫32sin x +12cos x ⎝ ⎛⎭⎪⎫32cos x -12sin x=4sin ⎝ ⎛⎭⎪⎫x +π6cos ⎝ ⎛⎭⎪⎫x +π6=2sin ⎝ ⎛⎭⎪⎫2x +π3, ∴T =2π2=π.法二:∵f (x )=(3sin x +cos x )(3cos x -sin x ) =3sin x cos x +3cos 2x -3sin 2x -sin x cos x =sin 2x +3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π3, ∴T =2π2=π.故选B.(2)f (x )=sin(x +φ)-2sin φcos x =sin x cos φ+cos x sin φ-2sin φcos x =sin x cos φ-cos x sin φ=sin(x -φ). ∴f (x )max =1.][思想与方法]三角恒等变换的三种变换角度(1)变角:设法沟通所求角与已知角之间的关系.常用的拆角、拼角方法是:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β.(2)变名:尽可能减少函数名称,其方法是“弦切互化”,“升幂与降幂”“1”的代换等.(3)变式:对式子变形要尽可能有理化、整式化、降低次数等. [易错与防X]1.三角函数是定义域到值域的多对一的映射,时刻关注角的X 围是防止增解的有效措施.求角的某一三角函数值时,应选择在该X 围内是单调函数,若已知正切函数值,则选正切函数;否则,若角的X 围是(0,π),选余弦较好;若角的X 围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.2.计算形如y =sin(ωx +φ),x ∈[a ,b ]形式的函数最值时,不要将ωx +φ的X 围和x 的X 围混淆.课时分层训练(十九)两角和与差的正弦、余弦和正切公式A 组 基础达标 (建议用时:30分钟)一、选择题1.已知sin 2α=23,则cos 2⎝ ⎛⎭⎪⎫α+π4等于( ) A.16B.13 C.12D.23A [因为cos 2⎝⎛⎭⎪⎫α+π4=1+cos 2⎝ ⎛⎭⎪⎫α+π42=1+cos ⎝⎛⎭⎪⎫2α+π22=1-sin 2α2=1-232=16,故选A.]2.cos 85°+sin 25°cos 30°cos 25°等于( )A .-32B.22C.12D .1C [原式=sin 5°+32sin 25°cos 25°=sin 30°-25°+32sin 25°cos 25°=12cos 25°cos 25°=12.]3.(2017·某某二次质检)函数f (x )=3sin x 2cos x2+4cos 2x2(x ∈R )的最大值等于( )A .5 B.92 C.52D .2B [由题意知f (x )=32sin x +4×1+cos x 2=32sin x +2cos x +2≤94+4+2=92,故选B.]4.(2017·某某模拟训练卷(三))若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( ) 【导学号:51062116】A.35B.45C.74D.34D [由θ∈⎣⎢⎡⎦⎥⎤π4,π2,得sin θ≥cos θ>0,则sin θ+cos θ=1+sin 2θ=9+67+716=3+74,sin θ-cos θ=1-sin 2θ=9-67+716=3-74,两式相加得sin θ=34.]5.定义运算⎪⎪⎪⎪⎪⎪ab cd =ad -bc .若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于( )A.π12 B.π6 C.π4D.π3D [依题意有sin αcos β-cos αsin β=sin(α-β)=3314,又0<β<α<π2,∴0<α-β<π2,故cos(α-β)=1-sin2α-β=1314,而cos α=17,∴sin α=437,于是sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =437×1314-17×3314=32.故β=π3.] 二、填空题6.sin 250°1+sin 10°________. 12 [sin 250°1+sin 10°=1-cos 100°21+sin 10° =1-cos 90°+10°21+sin 10°=1+sin 10°21+sin 10°=12.]7.(2017·某某模拟训练卷(四))已知函数f (x )=4cos 2x +(sin x +3cos x )2,则函数f (x )的最小正周期为________,当x ∈⎣⎢⎡⎦⎥⎤0,π4时,函数f (x )的值域为________. 【导学号:51062117】π [4+3,4+23] [f (x )=7cos 2x +sin 2x +23sin x cos x =1+3(1+cos 2x )+3sin 2x =4+23sin ⎝⎛⎭⎪⎫2x +π3,故函数f (x )的最小正周期为π. ∵x ∈⎣⎢⎡⎦⎥⎤0,π4,∴2x +π3∈⎣⎢⎡⎦⎥⎤π3,5π6, ∴12≤sin ⎝⎛⎭⎪⎫2x +π3≤1, ∴4+3≤f (x )≤4+23,故函数f (x )的值域为[4+3,4+23].] 8.化简2+2cos 8+21-sin 8=________.-2sin 4 [2+2cos 8+21-sin 8=21+cos 8+21-2sin 4cos 4 =2×2cos 24+2sin 4-cos 42=-2cos 4+2(cos 4-sin 4)=-2sin 4.]三、解答题9.已知α∈⎝ ⎛⎭⎪⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝ ⎛⎭⎪⎫π2,π,求cos β的值. [解] (1)因为sin α2+cos α2=62,两边同时平方,得sin α=12.又π2<α<π,所以cos α=-32.6分 (2)因为π2<α<π,π2<β<π, 所以-π<-β<-π2,故-π2<α-β<π2.10分 又sin(α-β)=-35,得cos(α-β)=45. cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝ ⎛⎭⎪⎫-35=-43+310.14分10.已知函数f (x )=1-2sin ⎝ ⎛⎭⎪⎫2x -π4cos x. (1)求函数f (x )的定义域;(2)设α是第四象限的角,且tan α=-43,求f (α)的值. 【导学号:51062118】 [解] (1)要使f (x )有意义,则需cos x ≠0,∴f (x )的定义域是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π+π2,k ∈Z .6分 (2)f (x )=1-2⎝ ⎛⎭⎪⎫22sin 2x -22cos 2x cos x=1+cos 2x -sin 2x cos x =2cos 2x -2sin x cos x cos x=2(cos x -sin x ).10分由tan α=-43,得sin α=-43cos α. 又sin 2α+cos 2α=1,且α是第四象限角,∴cos 2α=925,则cos α=35,sin α=-45. 故f (α)=2(cos α-sin α)=2⎝ ⎛⎭⎪⎫35+45=145.14分B 组 能力提升(建议用时:15分钟)1.若cos 2αsin ⎝⎛⎭⎪⎫α-π4=-22,则cos α+sin α的值为( ) A .-72 B .-12 C.12D.72 C [∵cos 2αsin ⎝⎛⎭⎪⎫α-π4=cos 2α-sin 2α22sin α-cos α =-2(sin α+cos α)=-22,∴sin α+cos α=12.]2.(2017·某某名校(柯桥中学)交流卷三)若cos ⎝ ⎛⎭⎪⎫α-π3=13,则sin ⎝ ⎛⎭⎪⎫π6+α的值是________;cos ⎝⎛⎭⎪⎫2α+π3的值是________. 1379 [sin ⎝ ⎛⎭⎪⎫π6+α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6+α =cos ⎝ ⎛⎭⎪⎫π3-α=cos ⎝⎛⎭⎪⎫α-π3=13; cos ⎝ ⎛⎭⎪⎫2α+π3=-cos ⎝⎛⎭⎪⎫2α-2π3=1-2· cos 2⎝⎛⎭⎪⎫α-π3=79.] 3.已知函数f (x )=2sin x sin ⎝⎛⎭⎪⎫x +π6. (1)求函数f (x )的最小正周期和单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求函数f (x )的值域. 【导学号:51062119】 [解] (1)f (x )=2sin x ⎝⎛⎭⎪⎫32sin x +12cos x =3×1-cos 2x 2+12sin 2x =sin ⎝ ⎛⎭⎪⎫2x -π3+32. 所以函数f (x )的最小正周期为T =π.3分由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z , 解得-π12+k π≤x ≤5π12+k π,k ∈Z , 所以函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π12+k π,5π12+k π,k ∈Z .8分 (2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3, sin ⎝ ⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-32,1,12分 f (x )∈⎣⎢⎡⎦⎥⎤0,1+32. 故f (x )的值域为⎣⎢⎡⎦⎥⎤0,1+32.15分。
高考数学一轮复习专题22两角和与差的正弦、余弦和正切公式(含解析)
专题22两角和与差的正弦、余弦和正切公式最新考纲1.会用向量的数量积推导出两角差的余弦公式.2.会用两角差的余弦公式推导出两角差的正弦、正切公式.3.会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,推导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).基础知识融会贯通1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β(C (α-β)) cos(α+β)=cos αcos β-sin αsin β(C (α+β)) sin(α-β)=sin αcos β-cos αsin β(S (α-β)) sin(α+β)=sin αcos β+cos αsin β(S (α+β)) tan(α-β)=tan α-tan β1+tan αtan β(T (α-β))tan(α+β)=tan α+tan β1-tan αtan β(T (α+β))2.二倍角公式sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α. 【知识拓展】1.降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.2.升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.3.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ),其中sin φ=b a 2+b2,cos φ=a a 2+b 2.重点难点突破【题型一】和差公式的直接应用【典型例题】求值:sin24°cos54°﹣cos24°sin54°等于()A.B.C.D.【解答】解:sin24°cos54°﹣cos24°sin54°=sin(24°﹣54°)=sin(﹣30°)=﹣sin30°,故选:C.【再练一题】若sinα,α∈(),则cos()=()A.B.C.D.【解答】解:∵sinα,α∈(),∴cosα,∴cos()(cosα﹣sinα).故选:A.思维升华 (1)使用两角和与差的三角函数公式,首先要记住公式的结构特征.(2)使用公式求值,应先求出相关角的函数值,再代入公式求值.【题型二】和差公式的灵活应用命题点1 角的变换【典型例题】已知tan(α)=﹣2,则tan()=()A.B.C.﹣3 D.3【解答】解:∵tan(α)=﹣2,则tan()=tan[(α)],故选:A.【再练一题】若sin()=2cos,则()A.B.C.2 D.4【解答】解:∵sin()=2cos,∴sinαcos cosαsin2cos,即 sinαcos3cosαsin,∴tanα=3tan,则,故选:B.命题点2 三角函数式的变换【典型例题】若,且,则()A.B.C.D.【解答】解:∵α,∴π<2α,又,∴cos2α.∴,解得cosα,则sinα.∴.故选:D.【再练一题】已知sinα+3cosα,则tan(α)=()A.﹣2 B.2 C.D.【解答】解:∵(sinα+3cosα)2=sin2α+6sinαcosα+9cos2α=10(sin2α+cos2α),∴9sin2α﹣6sinαcosα+cos2α=0,则(3tanα﹣1)2=0,即.则tan(α).故选:B.思维升华 (1)解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.①当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系.(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β等.基础知识训练1.【辽宁省辽阳市2019届高三下学期一模】已知α∈(22ππ-,),tan α=sin76°cos46°﹣cos76°sin46°,则sin α=( )A B . C D . 【答案】A 【解析】解:由tan α=sin76°cos46°﹣cos76°sin46°=sin (76°﹣46°)=sin30°12=, 且α∈(22ππ-,),∴α∈(0,2π),联立,解得sin α=. 故选:A .2.【福建省2019年三明市高三毕业班质量检查测试】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边过点(3,4)P .若角β满足,则tan β=( )A .-2B .211 C .613D .12【答案】B 【解析】因为角α的终边过点()3,4P ,所以4tan 3α=,又,所以,即,解得2tan 11β=. 故选B3.【福建省宁德市2019届高三毕业班第二次(5月)质量检查考试】( )A .B .C .D .【答案】B 【解析】,故选:B4.【河南名校联盟2018-2019学年高三下学期2月联考】已知,则=( )A .35B .45C D 【答案】D 【解析】∵,∴12tan θ=.∴.故选D .5.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟考试】已知,则sin α= ( )A B C .45D .35【答案】A 【解析】因为,所以,所以,且0,2πα⎛⎫∈ ⎪⎝⎭解得,故选A.6.若,则tan α= ( )A .17 B .17-C .1D .1-【答案】D 【解析】tan (α-β)=3,tan β=2, 可得3,∴,解得tan α1=-. 故选:D .7.【福建省三明市2019的是( ) A . B . C .D .【答案】D 【解析】 解:选项A :;选项B :;选项C :; 选项D :,经过化简后,可以得出每一个选项都具有的形式,, 故只需要sin α接近于sin 45︒,根据三角函数图像可以得出sin 46︒最接近sin 45︒,故选D.8.【广西桂林市、崇左市2019届高三下学期二模联考】已知,则( )A .B .C .D .【答案】C 【解析】 由题得.当在第一象限时,.当在第三象限时,.故选:C9.【湖南省长沙市长郡中学2019届高三下学期第一次适应性考试(一模)】已知为锐角,则()sin αβ+的值为( )A .12B .312- C .12D .312+ 【答案】D 【解析】 因为为锐角因为()cos 2β=所以2αβ+大于90°由同角三角函数关系,可得所以 =所以选D10.【山东省菏泽市2019届高三下学期第一次模拟考试】若,且α是钝角,则( )A .46B .46- C .46D .46-【答案】D 【解析】 因为α是钝角,且,所以,故,故选:D11.【安徽省黄山市2019届高三毕业班第三次质量检测】________.【答案】2 【解析】 因为,又,所以,所以.故答案为212.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考卷(六)】函数的最大值为_______【答案】1【解析】,所以,因此()f x的最大值为1.13.【吉林省2019届高三第一次联合模拟考试】已知,则m=______.【答案】【解析】由得:整理得:m=本题正确结果:14.【山东省泰安市教科研中心2019届高三考前密卷】已知,则=_____.【答案】1 7 -【解析】,则3cos5α=-,所以4tan3α=-,则:,故答案为:17-. 15.【江西省新八校2019届高三第二次联考】在锐角三角形ABC ∆中,角,,A B C 的对边分别为,,a b c ,若3sin c b A =,则的最小值是_______.【答案】12 【解析】 由正弦定理可得:得:,即又令,得:ABC ∆为锐角三角形得:,即1t > 10t ∴->当且仅当,即时取等号本题正确结果:1216.【安徽省合肥市2019届高三第三次教学质量检测】已知函数,若对任意实数x ,恒有,则______.【答案】14- 【解析】对任意实数x ,恒有,则()1fα为最小值,()2f α为最大值.因为,而,所以当sin =1x -时,()f x 取得最小值;当1sin 4x =时,()f x 取得最大值. 所以.所以1cos 0α=.所以.17.【江苏省徐州市2018-2019学年高三考前模拟检测】在ABC ∆中,已知3AC =,cos B =,3A π=.(1)求AB 的长; (2)求的值.【答案】(1)2AB =(2)【解析】(1)在ABC ∆中,因为cos B =,所以02B π<<,所以,又因为,所以,由正弦定理,,所以.(2)因为,所以,所以.18.【天津市北辰区2019届高考模拟考试】在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知45B =,b =cos C =. (1)求边a ;(2)求()sin 2A B -.【答案】(1)(2)【解析】(1)由题意得:cos C =,,0C π<<,∴,∵45B =︒,,∴,∴由正弦定理,得a =.(2)由(1)得,,∴,,∴.19.【2019年塘沽一中、育华中学高三毕业班第三次模拟考试】在ABC △中,角,,A B C 的对边分别为,,a b c ,已知,.(1)求ABC △的面积; (2)若2c =,求的值.【答案】(1)4;(2) 【解析】 解:,,,,易得sin 0A ≠,3cos 5A ∴=,,又,可得,10bc =,可得ABC △的面积;(2),5b ∴=,由余弦定理可得,,a ∴=,,20.【天津市河北区2019届高三一模】已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,满足,.(1)求cos A 的值; (2)求的值。
高考数学一轮复习第三章三角函数解三角形3.5两角和与差的正弦余弦和正切公式课件文
1 2.[2018· 全国卷Ⅲ]若 sinα=3,则 cos2α=( 8 7 A.9 B.9 7 8 C.-9 D.-9
)
12 7 1 2 解析:∵sinα=3,∴cos2α=1-2sin α=1-2×3 =9.故选 B. 答案:B
3 1 3.已知 tanα=-4,tan(π-β)=2,则 tan(α-β)的值为( 2 2 A.-11 B.11 11 11 C. 2 D.- 2 1 1 解析:因为 tan(π-β)=2=-tanβ,所以 tanβ=-2, tanα-tanβ 2 则 tan(α-β)= =-11. 1+tanαtanβ 答案:A
4.角的变换技巧 2α=(α+β)+(α-β); α+β α-β α=(α+β)-β;β= 2 - 2 ; α-β β α α+ - +β. 2 2 2 =
二、必明 2 个易误点 1.在使用两角和与差的余弦或正切公式时运算符号易错. 2 2.在(0,π)范围内,sin(α+β)= 2 所对应的角 α+β 不是唯一 的.
【小题热身】 1.判断下列说法是否正确(请在括号中打“√”或“×”). (1)两角和与差的正弦、余弦公式中的角 α,β 是任意的.( √ ) (2)存在实数 α,β,使等式 sin(α+β)=sinα+sinβ 成立.( √ ) tanα+tanβ (3)公式 tan(α+β)= 可以变形为 tanα+tanβ=tan(α+ 1-tanαtanβ β)(1-tanαtanβ),且对任意角 α,β 都成立.( × ) (4)存在实数 α,使 tan2α=2tanα.( √ )
)
5.[教材改编]sin15° +sin75° 的值是________.
解析:sin15° + sin75° =sin15° + cos15° = 2sin(15° + 45° )= 2 6 sin60° =2. 6 答案: 2
高考数学大一轮复习 第三章 三角函数、解三角形 课下层级训练20 两角和与差的正弦、余弦和正切公式(
课下层级训练(二十) 两角和与差的正弦、余弦和正切公式[A 级 基础强化训练]1.(2019·某某某某月考)计算-sin 133°cos 197°-cos 47°cos 73°的结果为( )A .12 B .33 C .22D .32A [-sin 133°cos 197°-cos 47°cos 73°=-sin 47°(-cos 17°)-cos 47°sin 17°=si n(47°-17°)=sin 30°=12.]2.若2sin ⎝ ⎛⎭⎪⎫θ+π3=3sin(π-θ),则tan θ等于( ) A .-33B .32C .233D .2 3B [由已知得sin θ+3cos θ=3sin θ, 即2sin θ=3cos θ,所以tan θ=32.] 3.已知sin 2α=23,则cos 2⎝ ⎛⎭⎪⎫α+π4=( ) A .16 B .13 C .12D .23A [法一:cos 2⎝ ⎛⎭⎪⎫α+π4=12⎣⎢⎡⎦⎥⎤1+cos ⎝ ⎛⎭⎪⎫2α+π2 =12()1-sin 2α=16. 法二:cos ⎝ ⎛⎭⎪⎫α+π4=22cos α-22sin α,所以cos 2⎝⎛⎭⎪⎫α+π4=12(cos α-sin α)2=12(1-2sin αcos α)=12(1-sin 2α)=16.] 4.(2019·某某六市联考)设a =12cos 2°-32sin 2°,b =2tan 14°1-tan 214°,c = 1-cos 50°2,则有( ) A .a <c <b B .a <b <c C .b <c <aD .c <a <bD [由题意可知,a =sin 28°,b =tan 28°,c =sin 25°,∴c <a <b .]5.(2019·某某某某模拟)若tan(α+80°)=4sin 420°,则tan(α+20°)的值为( )A .-35B .335C .319D .37D [由tan(α+80°)=4sin 420°=4sin 60°=23,得 tan(α+20°)=tan[(α+80°)-60°] =tan α+80°-tan 60°1+tan α+80°tan 60°=23-31+23×3=37.]6.sin 250°1+sin 10°=__________. 12[sin 250°1+sin 10°=1-cos 100°21+sin 10°=1-cos 90°+10°21+sin 10° =1+sin 10°21+sin 10°=12.]7.已知cos ⎝ ⎛⎭⎪⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎪⎫x -π3=__________.-1[cos x +cos ⎝ ⎛⎭⎪⎫x -π3=cos x +12cos x +32sin x =32cos x +32sin x =3cos ⎝ ⎛⎭⎪⎫x -π6=3×⎝ ⎛⎭⎪⎫-33=-1.] 8.(2019·某某某某统考)若sin ⎝ ⎛⎭⎪⎫π3-α=14,则cos ⎝ ⎛⎭⎪⎫π3+2α=________. -78 [依题意得cos ⎝ ⎛⎭⎪⎫π3+2α=-cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3+2α=-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3-α =2sin 2⎝ ⎛⎭⎪⎫π3-α-1=2×⎝ ⎛⎭⎪⎫142-1=-78.]9.已知tan α=2. (1)求tan ⎝⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解 (1)tan ⎝⎛⎭⎪⎫α+π4=tan α+tanπ41-tan αtanπ4=2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α-1-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.10.(2019·某某六校联考)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π12,x ∈R . (1)求f ⎝ ⎛⎭⎪⎫-π4的值; (2)若cos θ=45,θ∈⎝ ⎛⎭⎪⎫0,π2,求f ⎝ ⎛⎭⎪⎫2θ-π3的值.解 (1)f ⎝ ⎛⎭⎪⎫-π4=sin ⎝ ⎛⎭⎪⎫-π4+π12=sin ⎝ ⎛⎭⎪⎫-π6=-12.(2)f ⎝ ⎛⎭⎪⎫2θ-π3=sin ⎝ ⎛⎭⎪⎫2θ-π3+π12=sin ⎝ ⎛⎭⎪⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝ ⎛⎭⎪⎫0,π2,所以sin θ=35,所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝⎛⎭⎪⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝ ⎛⎭⎪⎫2425-725=17250. [B 级 能力提升训练]11.(2017·全国卷Ⅲ)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A .65 B .1 C .35D .15A [因为cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π3-π2=sin ⎝ ⎛⎭⎪⎫x +π3,所以f (x )=65sin ⎝ ⎛⎭⎪⎫x +π3,于是f (x )的最大值为65.]12.已知sin α=35且α为第二象限角,则tan ⎝ ⎛⎭⎪⎫2α+π4=( ) A .-195B .-519C .-3117D .-1731D [由题意得cos α=-45,则sin 2α=-2425,cos 2α=2cos 2α-1=725. ∴tan 2α=-247,∴tan ⎝ ⎛⎭⎪⎫2α+π4=tan 2α+tan π41-tan 2αtan π4=-247+11-⎝ ⎛⎭⎪⎫-247×1=-1731.] 13.(2017·卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则cos(α-β)=__________.-79 [由题意知α+β=π+2k π(k ∈Z ), ∴β=π+2k π-α(k ∈Z ), sin β=sin α,cos β=-cos α.又sin α=13,∴cos(α-β)=cos αcos β+sin αsin β =-cos 2α+sin 2α=2sin 2α-1 =2×19-1=-79.]14.设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=35,则sin ⎝ ⎛⎭⎪⎫α-π12=__________.210 [∵α为锐角,cos ⎝ ⎛⎭⎪⎫α+π6=35为正数, ∴α+π6是锐角,sin ⎝⎛⎭⎪⎫α+π6=45. ∴sin ⎝ ⎛⎭⎪⎫α-π12=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π6-π4=sin ⎝ ⎛⎭⎪⎫α+π6cos π4-cos ⎝ ⎛⎭⎪⎫α+π6sin π4=45×22-35×22=210.] 15.已知α∈⎝ ⎛⎭⎪⎫π2,π,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝ ⎛⎭⎪⎫π2,π,求cos β的值.解 (1)已知sin α2+cos α2=62,两边同时平方,得1+2sin α2cos α2=32,则sin α=12.又π2<α<π,所以cos α=-1-sin 2α=-32.(2)因为π2<α<π,π2<β<π,所以-π2<α-β<π2.又sin(α-β)=-35,所以cos(α-β)=45.则cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×⎝ ⎛⎭⎪⎫-35=-43+310. 16.(2019·某某枣庄质检)已知sin α+cos α=355,α∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫β-π4=35,β∈⎝ ⎛⎭⎪⎫π4, π2(1)求sin2α和tan2α的值; (2)求cos (α+2β)的值.解 (1)由题意得(sin α+cos α)2=95,∴1+sin2α=95,∴sin2α=45.又2α∈⎝ ⎛⎭⎪⎫0,π2,∴cos 2α=1-sin 22α=35,∴tan 2α=sin 2αcos 2α=43.(2)∵β∈⎝ ⎛⎭⎪⎫π4,π2,∴β-π4∈⎝ ⎛⎭⎪⎫0,π4,又sin ⎝ ⎛⎭⎪⎫β-π4=35,∴cos ⎝ ⎛⎭⎪⎫β-π4=45,∴sin 2⎝ ⎛⎭⎪⎫β-π4=2sin ⎝ ⎛⎭⎪⎫β-π4cos ⎝ ⎛⎭⎪⎫β-π4=2425. 又sin 2⎝ ⎛⎭⎪⎫β-π4=-cos 2β, ∴cos 2β=-2425,又2β∈⎝ ⎛⎭⎪⎫π2,π,∴sin 2β=725, ∵cos 2α=1+cos 2α2=45⎝ ⎛⎭⎪⎫α∈⎝ ⎛⎭⎪⎫0,π4,∴cos α=255,∴sin α=55.∴cos(α+2β)=cos αcos 2β-sin αsin 2β=255×⎝ ⎛⎭⎪⎫-2425-55×725=-11525.。
高考数学一轮复习 第三章 三角函数、解三角形 33 两角和与差的正弦、余弦和正切公式课件 理
2021/12/11
第三页,共四十五页。
2019 考纲考题考情
2021/12/11
第四页,共四十五页。
微知识·小题练
教材回扣 基础自测
2021/12/11
第五页,共四十五页。
1.两角和的正弦、余弦、正切公式 (1)sin(α+β)= sinαcosβ+cosαsinβ 。 (2)cos(α+β)= cosαcosβ-sinαsinβ 。
答案
1 2
2021/12/11
第十页,共四十五页。
2.(必修 4P137A 组 T5 改编)已知 sinα-π3=1157,α∈π2,56π,则 sinα 的 值为( )
A.187
B.15
3+8 34
C.15-348 3
D.15+348 3
解析 因为 α∈π2,56π,所以 α-π3∈π6,π2,cosα-π3>0,cosα-π3=
其中 cosφ=
a2a+b2,sinφ=
b a2+b2
或 asinx+bcosx= a2+b2cos(x-θ),
其中 cosθ=
a2b+b2,sinθ=
a。 a2+b2
(2)tanα+tanβ=tan(α+β)(1-tanαtanβ)。
(3)11- +ttaannαα=tanπ4-α。
(4)11+ -ttaannαα=tanπ4+α。
答案 (1)2
2021/12/11
第二十六页,共四十五页。
(2)(2019·四省八校双教研联盟联考)f(x)=1-2ssiinn22x2x-4π×(1+ 3tanx) 的最小正周期为______。
(2)f(x)
=
sin2x 1-2sin22x-4π
高考数学一轮复习 第3章 三角函数、解三角形 3.5 两角和与差的正弦、余弦与正切公式课件 文
差异角,注意观察角与角之间的和、差、倍、互补、互余等
关系,运用角的变换,化多角为单角或减少未知角的数目,
连接条件角与待求角,使问题顺利获解.对角变换时:①可
以通过诱导公式、两角和与差的三角公式等;②注意倍角的
相对性;③注意拆角、拼角技巧,例如,2α=(α+β)+(α-
β),α=(α+β)-β=(α-β)+β,β=α+2 β-α-2 β=(α+2β)-(α
12/11/2021
第二十页,共四十七页。
冲关针对训练
(2018·通辽模拟)已知锐角 α,β 满足 sinα= 55,cosβ=
31010,则 α+β 等于( )
3π A. 4
B.π4或34π
π C.4
D.2kπ+π4(k∈Z)
12/11/2021
第二十一页,共四十七页。
解析 由 sinα= 55,cosβ=31010,且 α,β 为锐角,可
限角,则 tan4π+α等于(
A.7
B.-7
1 C.7
) D.-17
12/11/2021
第十四页,共四十七页。
解析 ∵sin(α-β)sinβ-cos(α-β)cosβ=54, ∴cosα=-45. 又 α 是第二象限角,∴sinα=35,则 tanα=-34. ∴tanπ4+α=1t-an4πta+nπ4ttaannαα=11+-4433=71.故选 C.
第3章 三角函数(sānjiǎhánshù)、解三角形
3.5 两角和与差的正弦、余弦(yúxián)与正切公 式
12/11/2021
第一页,共四十七页。
12/11/2021
第二页,共四十七页。
基础知识过关(guò〃guān)
12/11/2021
2020版高考数学第三章三角函数、解三角形课时作业22两角和与差的正弦、余弦和正切公式课件理新人教版
②当 0≤λ≤1 时,当且仅当 sin2x-π6=λ 时,f(x)取得最小值,最小值为 -1-2λ2,由已知得-1-2λ2=-32,解得 λ=-12(舍)或 λ=12;
③当 λ>1 时,当且仅当 sin2x-π6=1 时,f(x)取得最小值,最小值为 1-4λ, 由已知得 1-4λ=-32,解得 λ=58,这与 λ>1 矛盾。
答案 C
14 . (2019·豫 南 九 校 联 考 ) 已 知 函 数 f(x) = sin 56π-2x - 2sin x-π4 cosx+34π。
(1)求函数 f(x)的最小正周期和单调递增区间;
(2)若 x∈1π2,π3,且 F(x)=-4λf(x)-cos4x-π3的最小值是-32,求实 数 λ 的值。
答案 D
解析:因为
cos15°=
6+ 4
2 ,sin15°=
6- 4
2,所以
3 cos15°-
4sin215°cos15°=
3×
6+ 4
2
-
4×
6- 4
2
2×
6+ 4
2=
6+ 2 4
×
3-8-44
3=
6+ 4
2×(2
3-2)=
2。故选 D。
5.(2019·湖南湘东五校联考)已知 sin(α+β)=12,sin(α-β)=13,则 log 5
答案 C
6.若 tan20°+msin20°= 3,则 m 的值为( ) A.1 B.3 C.6 D.4
解 析 因 为 tan20°+ msin20°= csoins2200°°+ msin20°= 3 , 所 以 msin20°cos20°= 3cos20°-sin20°=2cos(20°+30°)=2cos50°=2sin40°,所 以m2 sin40°=2sin40°,所以 m=4。故选 D。
2023年高考数学一轮复习讲义——两角和与差的正弦、余弦和正切公式
§4.3 两角和与差的正弦、余弦和正切公式 考试要求 1.会推导两角差的余弦公式.2.会用两角差的余弦公式推导出两角差的正弦、正切公式.3.掌握两角和与差的正弦、余弦、正切公式,并会简单应用. 知识梳理1.两角和与差的余弦、正弦、正切公式(1)公式C (α-β):cos(α-β)=cos αcos β+sin αsin β; (2)公式C (α+β):cos(α+β)=cos αcos β-sin αsin β;(3)公式S (α-β):sin(α-β)=sin αcos β-cos αsin β;(4)公式S (α+β):sin(α+β)=sin αcos β+cos αsin β;(5)公式T (α-β):tan(α-β)=tan α-tan β1+tan αtan β; (6)公式T (α+β):tan(α+β)=tan α+tan β1-tan αtan β. 2.辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ),其中sin φ=b a 2+b 2,cos φ=a a 2+b 2. 知识拓展两角和与差的公式的常用变形:(1)sin αsin β+cos(α+β)=cos αcos β.(2)cos αsin β+sin(α-β)=sin αcos β.(3)tan α±tan β=tan(α±β)(1∓tan αtan β).tan αtan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ )(2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )(4)32sin α+12cos α=sin ⎝⎛⎭⎫α+π3.( × ) 教材改编题1.若cos α=-45,α是第三象限角,则sin ⎝⎛⎭⎫α+π4等于( ) A .-210 B.210C .-7210 D.7210答案 C解析 ∵α是第三象限角,∴sin α=-1-cos 2α=-35, ∴sin ⎝⎛⎭⎫α+π4=sin αcos π4+cos αsin π4=-35×22+⎝⎛⎭⎫-45×22=-7210. 2.计算:sin 108°cos 42°-cos 72°sin 42°= . 答案 12解析 原式=sin(180°-72°)cos 42°-cos 72°sin 42°=sin 72°cos 42°-cos 72°sin 42°=sin(72°-42°)=sin 30°=12. 3.若tan α=13,tan(α+β)=12,则tan β= . 答案 17解析 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12×13=17.题型一 两角和与差的三角函数公式例1 (1)(2022·包头模拟)已知cos α+cos ⎝⎛⎭⎫α-π3=1,则cos ⎝⎛⎭⎫α-π6等于() A.13 B.12C.22D.33 答案 D解析 ∵cos α+cos ⎝⎛⎭⎫α-π3=1,∴cos α+12cos α+32sin α=32cos α+32sin α=3⎝⎛⎭⎫32cos α+12sin α=3cos ⎝⎛⎭⎫α-π6=1,∴cos ⎝⎛⎭⎫α-π6=33.(2)化简:①sin x +3cos x = .答案 2sin ⎝⎛⎭⎫x +π3解析 sin x +3cos x =2⎝⎛⎭⎫12sin x +32cos x=2sin ⎝⎛⎭⎫x +π3. ②24sin ⎝⎛⎭⎫π4-x +64cos ⎝⎛⎭⎫π4-x = .答案 22sin ⎝⎛⎭⎫7π12-x解析 原式=22⎣⎡⎦⎤12sin ⎝⎛⎭⎫π4-x +32cos ⎝⎛⎭⎫π4-x=22sin ⎝⎛⎭⎫π4-x +π3 =22sin ⎝⎛⎭⎫7π12-x . 教师备选1.(2020·全国Ⅲ)已知sin θ+sin ⎝⎛⎭⎫θ+π3=1,则sin ⎝⎛⎭⎫θ+π6等于( ) A.12 B.33 C.23 D.22答案 B解析 因为sin θ+sin ⎝⎛⎭⎫θ+π3 =sin ⎝⎛⎭⎫θ+π6-π6+sin ⎝⎛⎭⎫θ+π6+π6 =sin ⎝⎛⎭⎫θ+π6cos π6-cos ⎝⎛⎭⎫θ+π6sin π6+sin ⎝⎛⎭⎫θ+π6cos π6+cos ⎝⎛⎭⎫θ+π6sin π6=2sin ⎝⎛⎭⎫θ+π6cos π6=3sin ⎝⎛⎭⎫θ+π6=1. 所以sin ⎝⎛⎭⎫θ+π6=33. 2.已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan(π-β)=12,则tan(α-β)的值为( ) A .-211 B.211 C.112 D .-112答案 A解析 ∵α∈⎝⎛⎭⎫π2,π,∴cos α=-45,tan α=-34, 又tan(π-β)=12, ∴tan β=-12, ∴tan(α-β)=tan α-tan β1+tan α·tan β=-34+121+⎝⎛⎭⎫-34×⎝⎛⎭⎫-12=-211. 思维升华 两角和与差的三角函数公式可看作是诱导公式的推广,可用α,β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.跟踪训练1 (1)函数y =sin ⎝⎛⎭⎫2x +π4+sin ⎝⎛⎭⎫2x -π4的最小值为( ) A. 2B .-2C .- 2 D. 3答案 C解析 y =sin ⎝⎛⎭⎫2x +π4+sin ⎝⎛⎭⎫2x -π4 =sin 2x cos π4+cos 2x sin π4+sin 2x cos π4-cos 2x sin π4=2sin 2x . ∴y 的最小值为- 2.(2)已知cos ⎝⎛⎭⎫α+π6=3cos α,tan β=33,则tan(α+β)= . 答案 -33 解析 因为cos ⎝⎛⎭⎫α+π6=32cos α-12sin α=3cos α,所以-sin α=3cos α,故tan α=-3, 所以tan(α+β)=tan α+tan β1-tan αtan β=-3+331+3×33 =-2332=-33.题型二 两角和与差的三角函数公式的逆用与变形例2 (1)(多选)已知α,β,γ∈⎝⎛⎭⎫0,π2,sin α+sin γ=sin β,cos β+cos γ=cos α,则下列说法正确的是( ) A .cos(β-α)=12B .cos(β-α)=13C .β-α=-π3D .β-α=π3答案 AD解析 由题意知,sin γ=sin β-sin α,cos γ=cos α-cos β,将两式分别平方后相加,得1=(sin β-sin α)2+(cos α-cos β)2=2-2(sin βsin α+cos βcos α),∴cos(β-α)=12,即选项A 正确,B 错误;∵γ∈⎝⎛⎭⎫0,π2,∴sin γ=sin β-sin α>0,∴β>α,而α,β∈⎝⎛⎭⎫0,π2,∴0<β-α<π2,∴β-α=π3,即选项D 正确,C 错误.(2)在△ABC 中,C =120°,tan A +tan B =233,则tan A tan B 的值为( )A.14 B.13C.12 D.53答案 B解析 ∵C =120°,∴tan C =- 3.∵A +B =π-C ,∴tan(A +B )=-tan C .∴tan(A +B )=3,tan A +tan B =3(1-tan A tan B ),又∵tan A +tan B =233,∴tan A tan B =13.延伸探究 若将本例(2)的条件改为tan A tan B =tan A +tan B +1,则C 等于() A .45° B .135°C .150°D .30°答案 A解析 在△ABC 中,因为tan A tan B =tan A +tan B +1, 所以tan(A +B )=tan A +tan B1-tan A tan B =-1=-tan C , 所以tan C =1,所以C =45°.教师备选1.若α+β=-3π4,则(1+tan α)(1+tan β)= . 答案 2解析 tan ⎝⎛⎭⎫-3π4=tan(α+β)=tan α+tan β1-tan αtan β=1,所以1-tan αtan β=tan α+tan β, 所以1+tan α+tan β+tan αtan β=2,即(1+tan α)·(1+tan β)=2.2.已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)= .答案 -12解析 ∵sin α+cos β=1,①cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1,∴sin αcos β+cos αsin β=-12, ∴sin(α+β)=-12. 思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形.公式的逆用和变形应用更能开拓思路,增强从正向思维向逆向思维转化的能力. 跟踪训练2 (1)设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b答案 D 解析 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°) =22sin 56°-22cos 56° =sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x 在x ∈⎣⎡⎦⎤0,π2上单调递增, 所以sin 13°>sin 12°>sin 11°,所以a >c >b .(2)(1+tan 20°)(1+tan 21°)(1+tan 24°)(1+tan 25°)= .答案 4解析 (1+tan 20°)(1+tan 25°)=1+tan 20°+tan 25°+tan 20°tan 25°=1+tan(20°+25°)(1-tan 20°tan 25°)+tan 20°tan 25°=2,同理可得(1+tan 21°)(1+tan 24°)=2,所以原式=4. 题型三 角的变换问题例3 (1)已知α,β∈⎝⎛⎭⎫π3,5π6,若sin ⎝⎛⎭⎫α+π6=45,cos ⎝⎛⎭⎫β-5π6=513,则sin(α-β)的值为( ) A.1665B.3365C.5665D.6365答案 A解析 由题意可得α+π6∈⎝⎛⎭⎫π2,π, β-5π6∈⎝⎛⎭⎫-π2,0, 所以cos ⎝⎛⎭⎫α+π6=-35, sin ⎝⎛⎭⎫β-5π6=-1213, 所以sin(α-β)=-sin ⎣⎡⎦⎤⎝⎛⎭⎫α+π6-⎝⎛⎭⎫β-5π6 =-45×513+⎝⎛⎭⎫-35×⎝⎛⎭⎫-1213 =1665. (2)(2022·青岛模拟)若tan(α+2β)=2,tan β=-3,则tan(α+β)= ,tan α= .答案 -1 12解析 ∵tan(α+2β)=2,tan β=-3,∴tan(α+β)=tan(α+2β-β)=tan (α+2β)-tan β1+tan (α+2β)tan β=2-(-3)1+2×(-3) =-1.tan α=tan(α+β-β)=-1-(-3)1+(-1)×(-3)=12.教师备选(2022·华中师范大学第一附属中学月考)已知α,β为锐角,tan α=43,cos(α+β)=-55. (1)求cos 2α的值;(2)求tan(α-β)的值.解 (1)因为tan α=43, tan α=sin αcos α, 所以sin α=43cos α. 因为sin 2α+cos 2α=1,所以cos 2α=925, 因此,cos 2α=2cos 2α-1=-725. (2)因为α,β为锐角,所以α+β∈(0,π).又因为cos(α+β)=-55, 所以sin(α+β)=1-cos 2(α+β)=255, 因此tan(α+β)=-2. 因为tan α=43, 所以tan 2α=2tan α1-tan 2α=-247, 因此,tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β) =-211. 思维升华 常用的拆角、配角技巧:2α=(α+β)+(α-β);α=(α+β)-β=(α-β)+β;β=α+β2-α-β2=(α+2β)-(α+β);α-β=(α-γ)+(γ-β);15°=45°-30°;π4+α=π2-⎝⎛⎭⎫π4-α等.跟踪训练3 (1)已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则β= . 答案 π4 解析 因为α,β均为锐角, 所以-π2<α-β<π2. 又sin(α-β)=-1010, 所以cos(α-β)=31010. 又sin α=55, 所以cos α=255, 所以sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=55×31010-255×⎝⎛⎭⎫-1010=22. 所以β=π4. (2)已知0<α<π2<β<π,tan α=43,cos(β-α)=210,则sin α= ,cos β= . 答案 45 -22解析 因为0<α<π2,且tan α=43, 所以sin α=45,cos α=35, 由0<α<π2<β<π, 则0<β-α<π,又因为cos(β-α)=210, 则sin(β-α)=7210, 所以cos β=cos[(β-α)+α]=cos(β-α)cos α-sin(β-α)sin α =210×35-7210×45=-22. 课时精练1.(2022·北京模拟)tan 105°等于( )A .2- 3B .-2- 3C.3-2 D .- 3答案 B解析 tan 105°=tan(60°+45°)=tan 60°+tan 45°1-tan 60°·tan 45°=3+11-3=(3+1)2(1-3)(1+3)=4+23-2=-2- 3.2.已知点P (x ,22)是角α终边上一点,且cos α=-13,则cos ⎝⎛⎭⎫π6+α等于() A .-3+226 B.3+226C.3-226D.22-36答案 A解析 因为点P (x ,22)是角α终边上一点,则有cos α=x x 2+(22)2=x x 2+8,而cos α=-13,于是得x x 2+8=-13,解得x =-1,则sin α=22x 2+8=223,因此,cos ⎝⎛⎭⎫π6+α=cos π6cos α-sin π6sin α=32×⎝⎛⎭⎫-13-12×223=-3+226,所以cos ⎝⎛⎭⎫π6+α=-3+226.3.sin 10°1-3tan 10°等于( )A .1 B.14C.12 D.32 答案 B解析 sin 10°1-3tan 10°=sin 10°cos 10°cos 10°-3sin 10° =2sin 10°cos 10°4⎝⎛⎭⎫12cos 10°-32sin 10°=sin 20°4sin (30°-10°)=14.4.已知锐角α,β满足sin α=55,cos β=31010,则α+β等于() A.3π4 B.π4或3π4C.π4 D .2k π+π4(k ∈Z )答案 C解析 由sin α=55,cos β=31010, 且α,β为锐角,可知cos α=255,sin β=1010, 故cos(α+β)=cos αcos β-sin αsin β =255×31010-55×1010 =22, 又0<α+β<π,故α+β=π4. 5.(多选)下列四个选项中,化简正确的是( )A .cos(-15°)=6-24B .cos 15°cos 105°+sin 15°sin 105°=cos(15°-105°)=0C .cos(α-35°)cos(25°+α)+sin(α-35°)sin(25°+α)=cos[(α-35°)-(25°+α)]=cos(-60°)=cos 60°=12D .sin 14°cos 16°+sin 76°cos 74°=12答案 BCD解析 对于A ,方法一 原式=cos(30°-45°)=cos 30°·cos 45°+sin 30°sin 45°=32×22+12×22=6+24. 方法二 原式=cos 15°=cos(45°-30°)=cos 45°cos 30°+sin 45°sin 30°=22×32+22×12=6+24,A 错误. 对于B ,原式=cos(15°-105°)=cos(-90°)=cos 90°=0,B 正确.对于C ,原式=cos[(α-35°)-(25°+α)]=cos(-60°)=cos 60°=12,C 正确.对于D ,原式=cos 76°cos 16°+sin 76°sin 16°=cos(76°-16°)=cos 60°=12,D 正确. 6.(多选)已知cos(α+β)=-55,cos 2α=-513,其中α,β为锐角,以下判断正确的是( ) A .sin 2α=1213B .cos(α-β)=19565C .cos αcos β=8565D .tan αtan β=118答案 AC解析 因为cos(α+β)=-55, cos 2α=-513,其中α,β为锐角, 所以sin 2α=1-cos 22α=1213,故A 正确; 因为sin(α+β)=255, 所以cos(α-β)=cos [2α-(α+β)]=cos 2αcos(α+β)+sin 2αsin(α+β)=⎝⎛⎭⎫-513×⎝⎛⎭⎫-55+1213×255=29565,故B 错误; cos αcos β=12[cos(α+β)+cos(α-β)] =12⎝⎛⎭⎫-55+29565=8565, 故C 正确;sin αsin β=12[cos(α-β)-cos(α+β)] =12⎣⎡⎦⎤29565-⎝⎛⎭⎫-55=21565, 所以tan αtan β=218,故D 错误. 7.化简:sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)= .答案 sin(α+γ)解析 sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)=sin(α+β)cos(β-γ)-cos(α+β)sin(β-γ)=sin[(α+β)-(β-γ)]=sin(α+γ).8.已知α,β∈⎝⎛⎭⎫3π4,π,sin(α+β)=-35,sin ⎝⎛⎭⎫β-π4=1213,则cos ⎝⎛⎭⎫α+π4= . 答案 -5665解析 因为α,β∈⎝⎛⎭⎫3π4,π,所以3π2<α+β<2π, π2<β-π4<3π4, 因为sin(α+β)=-35, sin ⎝⎛⎭⎫β-π4=1213, 所以cos(α+β)=45, cos ⎝⎛⎭⎫β-π4=-513, 所以cos ⎝⎛⎭⎫α+π4 =cos ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =cos(α+β)cos ⎝⎛⎭⎫β-π4+sin(α+β)sin ⎝⎛⎭⎫β-π4 =45×⎝⎛⎭⎫-513+⎝⎛⎭⎫-35×1213=-5665. 9.已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值. 解 ∵0<β<π2<α<π, ∴-π4<α2-β<π2, π4<α-β2<π, ∴cos ⎝⎛⎭⎫α2-β=1-sin 2⎝⎛⎭⎫α2-β=53,sin ⎝⎛⎭⎫α-β2=1-cos 2⎝⎛⎭⎫α-β2=459, ∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos 2α+β2-1=2×49×5729-1=-239729. 10.已知α,β均为锐角,且sin α=35,tan(α-β)=-13. (1)求sin(α-β)的值;(2)求cos β的值.解 (1)∵α,β∈⎝⎛⎭⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0, ∴-π2<α-β<0. ∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45. ∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=45×31010+35×⎝⎛⎭⎫-1010=91050.11.已知cos ⎝⎛⎭⎫π2-α=2cos(π-α),则tan ⎝⎛⎭⎫π4+α等于( ) A .-3 B.13C .-13D .3答案 C解析 由cos ⎝⎛⎭⎫π2-α=2cos(π-α)得sin α=-2cos α,即tan α=-2,∴tan ⎝⎛⎭⎫π4+α=tan π4+tan α1-tan π4tan α =1-21-1×(-2)=-13. 12.(多选)下列结论正确的是( )A .sin(α-β)sin(β-γ)-cos(α-β)cos(γ-β)=-cos(α-γ)B .315sin x +35cos x =35sin ⎝⎛⎭⎫x +π6 C .f (x )=sin x 2+cos x 2的最大值为2 D .tan 12°+tan 33°+tan 12°tan 33°=1答案 AD解析 对于A ,左边=-[cos(α-β)cos(β-γ)-sin(α-β)·sin(β-γ)]=-cos[(α-β)+(β-γ)]=-cos(α-γ),故A 正确;对于B , 315sin x +35cos x =65⎝⎛⎭⎫32sin x +12cos x =65sin ⎝⎛⎭⎫x +π6,故B 错误; 对于C ,f (x )=sin x 2+cos x 2=2sin ⎝⎛⎭⎫x 2+π4, 所以f (x )的最大值为2,故C 错误;对于D ,tan 12°+tan 33°+tan 12°tan 33°=tan(12°+33°)·(1-tan 12°tan 33°)+tan 12°tan 33°=1,故D 正确.13.已知方程x 2+3ax +3a +1=0(a >1)的两根分别为tan α,tan β,且α,β∈⎝⎛⎭⎫-π2,π2,则α+β= .答案 -3π4解析 依题意有⎩⎪⎨⎪⎧ tan α+tan β=-3a ,tan α·tan β=3a +1, 所以tan(α+β)=tan α+tan β1-tan α·tan β =-3a 1-(3a +1)=1. 又⎩⎪⎨⎪⎧tan α+tan β<0,tan α·tan β>0, 所以tan α<0且tan β<0,所以-π2<α<0且-π2<β<0, 即-π<α+β<0,结合tan(α+β)=1,得α+β=-3π4. 14.(2022·阜阳模拟)设α,β∈[0,π],且满足sin αcos β-cos αsin β=1,则sin(2α-β)+sin(α-2β)的取值范围为 .答案 [-1,1]解析 由sin αcos β-cos αsin β=1,得sin(α-β)=1,又α,β∈[0,π],∴-π≤α-β≤π,∴α-β=π2, ∴⎩⎪⎨⎪⎧0≤α≤π,0≤β=α-π2≤π,即π2≤α≤π, ∴sin(2α-β)+sin(α-2β)=sin ⎝⎛⎭⎫2α-α+π2+sin(α-2α+π) =cos α+sin α=2sin ⎝⎛⎭⎫α+π4. ∵π2≤α≤π, ∴3π4≤α+π4≤5π4, ∴-1≤2sin ⎝⎛⎭⎫α+π4≤1,即sin(2α-β)+sin(α-2β)的取值范围为[-1,1].15.(2022·河北五校联考)已知x ,y ∈⎝⎛⎭⎫0,π2,sin(x +y )=2sin(x -y ),则x -y 的最大值为( ) A.π3 B.π6 C.π4 D.π8 答案 B解析 由sin(x +y )=2sin(x -y )得sin x cos y +cos x sin y=2sin x cos y -2cos x sin y ,则tan x =3tan y ,所以tan(x -y )=tan x -tan y 1+tan x tan y=2tan y 1+3tan 2y =21tan y+3tan y ≤33, 当且仅当tan y =33时等号成立, 由于f (x )=tan x 在x ∈⎝⎛⎭⎫0,π2上单调递增, 又x ,y ∈⎝⎛⎭⎫0,π2, 则x -y 的最大值为π6. 16.如图,在平面直角坐标系Oxy 中,顶点在坐标原点,以x 轴非负半轴为始边的锐角α与钝角β的终边与单位圆O 分别交于A ,B 两点,x 轴的非负半轴与单位圆O 交于点M ,已知S △OAM=55,点B 的纵坐标是210.(1)求cos(α-β)的值;(2)求2α-β的值.解 (1)由题意知,|OA |=|OM |=1,因为S △OAM =12|OA |·|OM |sin α=55, 所以sin α=255, 又α为锐角,所以cos α=55. 因为点B 是钝角β的终边与单位圆O 的交点,且点B 的纵坐标是210, 所以sin β=210,cos β=-7210, 所以cos(α-β)=cos αcos β+sin αsin β=55×⎝⎛⎭⎫-7210+255×210=-1010. (2)因为sin α=255,cos α=55, cos(α-β)=-1010, sin(α-β)=sin αcos β-cos αsin β=255×⎝⎛⎭⎫-7210-55×210=-31010, 所以sin(2α-β)=sin[α+(α-β)]=sin αcos(α-β)+cos αsin(α-β)=-22, 因为α为锐角,sin α=255>22, 所以α∈⎝⎛⎭⎫π4,π2,所以2α∈⎝⎛⎭⎫π2,π, 又β∈⎝⎛⎭⎫π2,π, 所以2α-β∈⎝⎛⎭⎫-π2,π2,所以2α-β=-π4.。
高考数学一轮总复习第3章三角函数解三角形3.5两角和与差的正弦余弦和正切公式课件文
例 1 (1)[2017·衡水中学二调]cos130°-sin1170°=(
)
A.4
B.2
C.-2
D.-4
[解析]
3- 1 =
3- 1 =
cos10° sin170° cos10° sin10°
3ssiinn1100°°c-osc1o0s°10°=2sin110°-30°=-12sin20°=-4.
3 2
,1,f(x)∈0,1+
23.
故
f(x)的值域为0,1+
23.
核心规律 重视三角函数的“三变”:“三变”是指“变角、变名、变式”; 变角:对角的拆分要尽可能化成同名、同角、特殊角;变名: 尽可能减少函数名称;变式:对式子变形一般要尽可能有理 化、整式化、降低次数等.在解决求值、化简、证明问题时, 一般是观察角度、函数名、所求(或所证明)问题的整体形式 中的差异,再选择适当的三角公式恒等变形.
2sin20°
2sin20°
(2)4cos50°-tan40°=(
)
A. 2
B.
2+ 2
3
C. 3 [解析]
D.2 2-1
4cos50°-
tan40°=
4sin40°cos40°-sin40°= cos40°
2sin80°-sin40°
=
cos40°
2sin100°-sin40°
=
cos40°
2sin60°+ cos4400°°-sin40°=2×
23cos10°+12sin10° cos20°
考向 三角函数的条件求值
命题角度 1 给值求值问题
例 2 [2016·全国卷Ⅱ]若 cosπ4-α=35,则 sin2α=(
届数学一轮复习第三章三角函数解三角形第五节两角和与差的正弦余弦和正切公式教师文档教案文
第五节两角和与差的正弦、余弦和正切公式授课提示:对应学生用书第64页[基础梳理]1.两角和与差的正弦、余弦、正切公式(1)S(α+β):sin(α+β)=sin αcos β+cos αsin β.(2)S(α-β):sin(α-β)=sin αcos β-cos αsin β.(3)C(α+β):cos(α+β)=cos αcos β-sin αsin β.(4)C(α-β):cos(α-β)=cos αcos β+sin αsin β.(5)T(α+β):tan(α+β)=错误!.(6)T(α-β):tan(α-β)=错误!.2.倍角公式(1)S2α:sin 2α=2sin αcos α.(2)C2α:cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.(3)T2α:tan 2α=错误!.1.和、差、倍公式的转化2.公式的重要变形(1)降幂公式:cos2α=错误!,sin2α=错误!。
(2)升幂公式:1+cos 2α=2cos2α,1-cos 2α=2sin2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).(4)辅助角公式:a sin x+b cos x=错误!sin(x+φ)错误!.[四基自测]1.(基础点:构造和角公式)已知sin错误!=错误!,α∈错误!,则sin α的值为()A.错误!B.错误!C.错误!D.错误!答案:D2.(基础点:逆用公式)化简cos 15°cos 45°-cos 75°sin 45°的值为()A。
错误!B.错误!C.-错误!D.-错误!答案:A3.(基础点:倍角公式)若sin α=错误!,则cos 2α=________.答案:错误!4.(基础点:正切倍角公式)若α是第二象限角,且sin(π-α)=错误!,则tan 2α=________.答案:-错误!授课提示:对应学生用书第64页考点一两角和、差及倍角公式的直接应用挖掘1给值(角)求值/ 互动探究[例1](1)(2019·高考全国卷Ⅰ)tan 255°=()A.-2-错误!B.-2+错误!C.2-错误!D.2+错误![解析]tan 255°=tan(180°+75°)=tan 75°=tan(45°+30°)=错误!=错误!=2+错误!.故选D。
高考数学一轮复习 第三章 三角函数、解三角形 课时达标21 两角和与差的正弦、余弦和正切公式
第21讲 两角和与差的正弦、余弦和正切公式[解密考纲]三角恒等变换是三角函数变形的工具.主要考查利用两角和与差的三角公式、二倍角公式进行三角函数的化简与求值,可单独考查,也可与三角函数的知识综合考查.一、选择题1.已知sin 2α=13,则cos 2⎝ ⎛⎭⎪⎫α-π4=( D )A .-13B .-23C .13D .23解析 ∵cos 2⎝ ⎛⎭⎪⎫α-π4=1+cos ⎝ ⎛⎭⎪⎫2α-π22=1+sin 2α2, ∴cos 2⎝ ⎛⎭⎪⎫α-π4=23. 2.若α∈⎝⎛⎭⎪⎫π2,π,且3cos 2α=sin ⎝ ⎛⎭⎪⎫π4-α,则sin 2α的值为( D )A .118 B .-118C .1718 D .-1718解析 cos 2α=sin ⎝ ⎛⎭⎪⎫π2-2α=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-α=2sin ⎝⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-α,代入原式,得 6sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-α=sin ⎝ ⎛⎭⎪⎫π4-α, ∵α∈⎝⎛⎭⎪⎫π2,π,∴π4-α∈⎝ ⎛⎭⎪⎫-34π,-π4,∴sin ⎝ ⎛⎭⎪⎫π4-α<0,∴cos ⎝ ⎛⎭⎪⎫π4-α=16,∴sin 2α=cos ⎝⎛⎭⎪⎫π2-2α=2cos 2⎝ ⎛⎭⎪⎫π4-α-1=-1718,故选D .3.(2018·河南八市质检)已知α∈⎝ ⎛⎭⎪⎫π4,π2,tan ⎝ ⎛⎭⎪⎫2α+π4=17,那么sin 2α+cos2α的值为( A )A .-15B .75C .-75D .34解析 由tan ⎝⎛⎭⎪⎫2α+π4=17,知tan 2α+11-tan 2α=17, ∴tan 2α=-34.∵2α∈⎝ ⎛⎭⎪⎫π2,π,∴sin 2α=35,cos 2α=-45, ∴sin 2α+cos 2α=-15,故选A .4.(2018·安徽十校联考)已知α为锐角,且7sin α=2cos 2α,则sin ⎝ ⎛⎭⎪⎫α+π3=( A )A .1+358B .1+538C .1-358D .1-538解析 由7sin α=2cos 2α得7sin α=2(1-2sin 2α),即4sin 2α+7sin α-2=0,解得sin α=-2(舍去)或sin α=14,又由α为锐角,可得cos α=154, ∴sin ⎝ ⎛⎭⎪⎫α+π3=12sin α+32cos α=1+358,故选A . 5.函数f (x )=12sin 2x +12tan π3cos 2x 的最小正周期为( B )A .π2B .πC .2πD .4π解析 因为f (x )=12sin 2x +32cos 2x =sin ⎝ ⎛⎭⎪⎫2x +π3,所以函数f (x )的最小正周期T =2π2=π,故选B . 6.(2018·贵州贵阳检测)已知sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是( D )A .-235B .235C .45D .-45解析 sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435⇒sin π3cos α+cos π3sin α+sin α=435⇒32sin α+32cos α=435⇒32sin α+12cos α=45, 故sin ⎝ ⎛⎭⎪⎫α+7π6=sin αcos 7π6+cos αsin 7π6=-⎝⎛⎭⎪⎫32sin α+12cos α=-45.二、填空题7.tan ⎝ ⎛⎭⎪⎫π4+α·cos 2α2cos 2⎝ ⎛⎭⎪⎫π4-α的值为 1 .解析 原式=sin ⎝ ⎛⎭⎪⎫π4+α·cos 2α2sin 2⎝ ⎛⎭⎪⎫π4+αcos ⎝⎛⎭⎪⎫π4+α=cos 2α2sin ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4+α=cos 2αsin 2⎝ ⎛⎭⎪⎫π4+α=cos 2αsin ⎝⎛⎭⎪⎫π2+2α=cos 2αcos 2α=1.8.若锐角α,β满足(1+3tan α)(1+3tan β)=4,则α+β=π3. 解析 由(1+3tan α)(1+3tan β)=4,可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3.又α+β∈(0,π),所以α+β=π3.9.(2018·山东济宁一模)已知α,β∈⎝⎛⎭⎪⎫0,π2,tan(α+β)=9tan β,则tan α的最大值为 43.解析 ∵α,β∈⎝⎛⎭⎪⎫0,π2,∴tan α>0,tan β>0,∴tan α=tan(α+β-β)=tan (α+β)-tan β1+tan (α+β)·tan β=8tan β1+9tan 2β=81tan β+9tan β≤82×3=43⎝ ⎛⎭⎪⎫当且仅当1tan β=9tan β时等号成立,即(tan α)max =43.三、解答题10.已知函数f (x )=cos 2x +sin x cos x ,x ∈R .(1)求f ⎝ ⎛⎭⎪⎫π6的值; (2)若sin α=35,且α∈⎝ ⎛⎭⎪⎫π2,π,求f ⎝ ⎛⎭⎪⎫α2+π24. 解析 (1)f ⎝ ⎛⎭⎪⎫π6=cos 2π6+sin π6cos π6=⎝⎛⎭⎪⎫322+12×32=3+34. (2)因为f (x )=cos 2x +sin x cos x =1+cos 2x 2+12sin 2x =12+12(sin 2x +cos 2x )=12+22sin ⎝⎛⎭⎪⎫2x +π4, 所以f ⎝⎛⎭⎪⎫α2+π24=12+22sin ⎝ ⎛⎭⎪⎫α+π12+π4=12+22sin ⎝ ⎛⎭⎪⎫α+π3=12+22⎝ ⎛⎭⎪⎫12sin α+32cos α.又因为sin α=35,且α∈⎝ ⎛⎭⎪⎫π2,π,所以cos α=-45, 所以f ⎝ ⎛⎭⎪⎫α2+π24=12+22⎝ ⎛⎭⎪⎫12×35-32×45=10+32-4620.11.已知0<α<π2<β<π,cos ⎝ ⎛⎭⎪⎫β-π4=13,sin(α+β)=45. (1)求sin 2β的值; (2)求cos ⎝ ⎛⎭⎪⎫α+π4的值.解析 (1)sin 2β=cos ⎝ ⎛⎭⎪⎫π2-2β=2cos 2⎝⎛⎭⎪⎫β-π4-1=-79. (2)∵0<α<π2<β<π,∴π4<β-π4<34π,π2<α+β<3π2,∴sin ⎝ ⎛⎭⎪⎫β-π4>0,cos(α+β)<0. ∵cos ⎝ ⎛⎭⎪⎫β-π4=13,sin(α+β)=45, ∴sin ⎝ ⎛⎭⎪⎫β-π4=223,cos(α+β)=-35. ∴cos ⎝ ⎛⎭⎪⎫α+π4=cos ⎣⎢⎡⎦⎥⎤(α+β)-⎝⎛⎭⎪⎫β-π4 =cos(α+β)·cos ⎝ ⎛⎭⎪⎫β-π4+sin(α+β)sin ⎝ ⎛⎭⎪⎫β-π4=-35×13+45×223=82-315.12.(2018·湖南常德模拟)已知函数f (x )=2sin ωx +m cos ωx (ω>0,m >0)的最小值为-2,且图象上相邻两个最高点的距离为π.(1)求ω和m 的值;(2)若f ⎝ ⎛⎭⎪⎫θ2=65,θ∈⎝ ⎛⎭⎪⎫π4,3π4,求f ⎝⎛⎭⎪⎫θ+π8的值.解析 (1)易知f (x )=2+m 2sin(ωx +φ)(φ为辅助角),∴f (x )min =-2+m 2=-2,∴m = 2.由题意知函数f (x )的最小正周期为π,∴2πω=π,∴ω=2.(2)由(1)得f (x )=2sin 2x +2cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4, ∴f ⎝ ⎛⎭⎪⎫θ2=2sin ⎝ ⎛⎭⎪⎫θ+π4=65,∴sin ⎝ ⎛⎭⎪⎫θ+π4=35.∵θ∈⎝⎛⎭⎪⎫π4,3π4,∴θ+π4∈⎝ ⎛⎭⎪⎫π2,π,∴cos ⎝⎛⎭⎪⎫θ+π4=-1-sin 2⎝⎛⎭⎪⎫θ+π4=-45,∴sin θ=sin ⎝ ⎛⎭⎪⎫θ+π4-π4=sin ⎝ ⎛⎭⎪⎫θ+π4·cos π4-cos ⎝ ⎛⎭⎪⎫θ+π4·sin π4=7210,∴f ⎝ ⎛⎭⎪⎫θ+π8=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫θ+π8+π4=2sin ⎝ ⎛⎭⎪⎫2θ+π2= 2cos 2θ=2(1-2sin 2θ)=2⎣⎢⎡⎦⎥⎤1-2×⎝ ⎛⎭⎪⎫72102=-4825.。
高考数学统考一轮复习 第三章 三角函数、解三角形 第五节 两角和与差的正弦、余弦和正切公式课时规范
学习资料第三章 三角函数、解三角形第五节 两角和与差的正弦、余弦和正切公式课时规范练A 组-—基础对点练1.计算:cos (α+β)cos β+sin(α+β)sin β=( )A .sin (α+2β)B .sin αC .cos (α+2β)D .cos α解析:原式=cos [(α+β)-β]=cos α。
答案:D2.(2020·成都模拟)计算:sin 20°cos 10°-cos 160°·sin 10°=( )A.错误!B .-错误!C .-错误!D .错误!解析:原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=错误!.答案:D3.已知sin 错误!=错误!,则sin 2θ=( )A .-错误!B .-错误!C 。
错误!D .错误!解析:因为sin 错误!=错误!,所以错误!(sin θ+cos θ)=错误!,两边平方得错误!(1+sin 2θ)=错误!,解得sin 2θ=-错误!。
答案:A4.(2020·洛阳质检)已知tan(α-π4)=错误!,则错误!的值为( ) A.错误!B .2C .2 2D .-2解析:由tan (α-π4)=tan α-11+tan α=错误!,解得tan α=3,所以错误!=错误!=错误!=2,故选B 。
答案:B5.(2020·大庆模拟)已知 α,β都是锐角,且sin αcos β =cos α(1+sin β),则( )A .3α-β=错误!B .2α-β=错误!C .3α+β=错误!D .2α+β=错误!解析:因为sin αcos β=cos α(1+sin β),所以sin(α-β)=cos α=sin错误!,所以α-β=错误!-α,即2α-β=错误!。
高考数学一轮复习第三章三角函数、解三角形第五节两角和与差的正弦、余弦和正切公式课件理
答案:A
π 3 1 2.已知sin α= ,α∈ 2,π ,tan(π-β)= ,则tan(α-β)的 5 2
值为 2 A.- 11 2 B. 11 11 C. 2 11 D.- 2
(
)
π 3 解析:因为sin α= ,α∈2 ,π, 5
4 sin α 3 所以cos α=- 1-sin α=- ,所以tan α= =- . 5 cos α 4
第
五
节
两角和与差的正弦、余弦和正切公式
课前·双基落实
知识回扣,小题热身,基稳才能楼高
课堂·考点突破
练透基点,研通难点,备考不留死角
课后·三维演练
分层训练,梯度设计,及时查漏补缺
课 前 双 基落实
知识回扣,小题热身,基稳才能楼高
过
基
础
知
识
1.两角和与差的正弦、余弦和正切公式
cos αsin β ; sin(α± β)= sin αcos β± sin αsin β ; cos(α∓β)= cos αcos β±
答案:(1)√
(2)√
(3)×
(4)√
2.sin 20°cos 10°-cos 160°sin 10°= 3 A.- 2 1 C.- 2 3 B. 2 1 D. 2
(
)
解析:原式=sin 20°cos 10°+cos 20°sin 10°= 1 sin(20°+10°)=sin 30°= ,故选D. 2
答案:D
π 3.设角θ的终边过点(2,3),则tanθ-4=
(
)
1 A. 5 C:由于角θ的终边过点(2,3),因此tan θ= ,故tanθ-4 2
3 tan θ-1 2-1 1 = = = ,选A. 3 5 1+tan θ 1+ 2 答案:A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年高考数学一轮复习 第三章 三角函数、解三角形 课时达标21
两角和与差的正弦、余弦和正切公式 理
[解密考纲]三角恒等变换是三角变换的工具.主要考查利用两角和与差的三角公式、二倍角公式进行三角函数的化简与求值,可单独考查,也可与三角函数的知识综合考查.
一、选择题
1.(2016·河南洛阳统考)已知sin 2α=13,则cos 2⎝ ⎛⎭⎪⎫α-π4=( D )
A .-13
B .-23
C .13
D .2
3
解析:∵cos 2⎝ ⎛⎭⎪⎫α-π4=1+cos ⎝ ⎛⎭⎪⎫2α-π22=1+sin 2α2,
∴cos 2⎝ ⎛⎭⎪⎫α-π4=23. 2.若α∈⎝
⎛⎭⎪⎫π2,π,且3cos 2α=sin ⎝ ⎛⎭
⎪
⎫π4-α,则sin 2α的值为( D )
A .118
B .-118
C .1718
D .-17
18 解析:cos 2α=sin ⎝ ⎛⎭⎪⎫π2-2α=sin ⎣⎢⎡⎦
⎥
⎤2⎝ ⎛⎭⎪⎫π4-α
=2sin ⎝
⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭
⎪⎫π4-α,代入原式,得 6sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-α=sin ⎝ ⎛⎭
⎪⎫π4-α, ∵α∈⎝
⎛⎭⎪⎫π2,π,∴π4-α∈⎝ ⎛⎭⎪⎫-34π,-π4,∴sin ⎝ ⎛⎭
⎪⎫π4-α<0,
∴cos ⎝ ⎛⎭⎪⎫π4-α=1
6
,
∴sin 2α=cos ⎝
⎛⎭⎪⎫π2-2α=2cos 2⎝ ⎛⎭
⎪⎫π4-α-1=-1718,故选D .
3.(2017·河南八市质检)已知α∈⎝ ⎛⎭⎪⎫π4,π2,tan ⎝
⎛⎭⎪⎫2α+π4=17,
那么sin 2α+cos 2α的值为( A )
A .-15
B .75
C .-75
D .34
解析:由tan ⎝
⎛⎭⎪⎫2α+π4=17,知tan 2α+11-tan 2α=17,
∴tan 2α=-3
4
.
∵2α∈⎝ ⎛⎭⎪⎫π2,π,∴sin 2α=35,cos 2α=-45, ∴sin 2α+cos 2α=-1
5
,故选A .
4.(2017·安徽十校联考)已知α为锐角,且7sin α=2cos 2α,则sin ⎝ ⎛⎭⎪⎫α+π3=( A )
A .1+358
B .1+53
8
C .1-358
D .1-53
8
解析:由7sin α=2cos 2α得7sin α=2(1-2sin 2
α),
即4sin 2
α+7sin α-2=0,解得sin α=-2(舍去)或sin α=14,
又由α为锐角,可得cos α=
154
, ∴sin ⎝
⎛⎭⎪⎫α+π3=12sin α+32cos α=1+358,故选A . 5.(2016·河南中原名校3月联考)函数f (x )=12sin 2x +12tan π
3cos 2x 的最小正周期
为( B )
A .π
2
B .π
C .2π
D .4π
解析:因为f (x )=12sin 2x +32cos 2x =sin ⎝ ⎛⎭⎪⎫2x +π3,所以函数f (x )的最小正周期T =2π
2
=π,故选B . 6.(2017·贵州贵阳检测)已知sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是( D )
A .-235
B .23
5
C .45
D .-4
5
解析:sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435⇒sin π3cos α+cos π3sin α+sin α=435⇒32sin
α+
32cos α=435⇒32sin α+12cos α=45,故sin ⎝
⎛⎭⎪⎫α+7π6=sin αcos 7π6+cos
αsin 7π6=-⎝ ⎛⎭
⎪⎫
32sin α+12cos α=-45.
二、填空题
7.tan ⎝ ⎛⎭⎪⎫π4+α·cos 2α2cos 2⎝ ⎛⎭⎪⎫π4-α的值为______1.
解析:原式=
sin ⎝ ⎛⎭
⎪⎫π
4
+α·cos 2α2sin 2⎝ ⎛⎭⎪⎫π4
+α
cos ⎝
⎛⎭
⎪⎫π4+α
=
cos 2α
2sin ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4+α=
cos 2αsin 2⎝ ⎛⎭⎪⎫π4+α=
cos 2αsin ⎝
⎛⎭
⎪⎫
π2+2α
=
cos 2α
cos 2α
=1.
8.若锐角α,β满足(1+3tan α)(1+3tan β)=4,则α+β=π
3.
解析:由(1+3tan α)(1+3tan β)=4,可得tan α+tan β
1-tan αtan β
=3,即tan(α
+β)= 3.又α+β∈(0,π),所以α+β=π
3
.
9.(2017·山东济宁一模)已知α,β∈⎝
⎛⎭⎪⎫0,π2,tan(α+β)=9tan β,则tan α
的最大值为4
3
.
解析:∵α,β∈⎝
⎛⎭⎪⎫0,π2,∴tan α>0,tan β>0,
∴tan α=tan(α+β-β)=tan α+β -tan β1+tan α+β ·tan β=8tan β
1+9tan 2
β
=8
1
tan β
+9tan β≤
82×3=43⎝ ⎛⎭
⎪⎫当且仅当1tan β=9tan β时等号成立,即(tan α)max =43. 三、解答题
10.已知函数f (x )=cos 2
x +sin x cos x ,x ∈R .
(1)求f ⎝ ⎛⎭
⎪⎫π6的值;
(2)若sin α=35,且α∈⎝ ⎛⎭⎪⎫π2,π,求f ⎝ ⎛⎭⎪⎫α2+π24. 解析:(1)f ⎝ ⎛⎭
⎪⎫π6=cos 2π
6+sin π6cos π6
=⎝
⎛⎭
⎪⎫322+1
2×32=3+34. (2)因为f (x )=cos 2
x +sin x cos x =1+cos 2x 2+12sin 2x =12+12(sin 2x +cos 2x )=12+
22sin ⎝ ⎛
⎭⎪⎫2x +π4,
所以f ⎝
⎛⎭⎪⎫α2+π24=12+22sin ⎝
⎛⎭⎪⎫α+π12+π4
=12+22sin ⎝ ⎛⎭⎪⎫α+π3=12+22⎝ ⎛⎭⎪⎫
12sin α+32cos α.
又因为sin α=35,且α∈⎝ ⎛⎭⎪⎫π2,π,所以cos α=-45, 所以f ⎝ ⎛⎭⎪⎫α2+π24=12+22⎝ ⎛⎭
⎪⎫12×35-32×45
=
10+32-46
20
.
11.已知,0<α<π2<β<π,cos ⎝ ⎛⎭⎪⎫β-π4=13,sin(α+β)=45. (1)求sin 2β的值; (2)求cos ⎝
⎛⎭⎪⎫α+π4的值.
解析:(1)sin 2β=cos ⎝ ⎛⎭⎪⎫π2-2β=2cos 2⎝ ⎛⎭⎪⎫β-π4-1=-79.
(2)∵0<α<π2<β<π,∴π4<β-π4<34π,π2<α+β<3π
2,
∴sin ⎝ ⎛⎭⎪⎫β-π4>0,cos(α+β)<0. ∵cos ⎝ ⎛⎭⎪⎫β-π4=13,sin(α+β)=45, ∴sin ⎝ ⎛⎭⎪⎫β-π4=223,cos(α+β)=-35. ∴cos ⎝ ⎛⎭⎪⎫α+π4=cos ⎣⎢⎡⎦⎥⎤ α+β -⎝
⎛⎭⎪⎫β-π4 =cos(α+β)·cos ⎝ ⎛⎭⎪⎫β-π4+sin(α+β)sin ⎝ ⎛⎭⎪⎫β-π4
=-35×13+45×223=82-3
15
.
12.(2017·湖南常德模拟)已知函数f (x )=2sin ωx +m cos ωx (ω>0,m >0)的最小
值为-2,且图象上相邻两个最高点的距离为π.
(1)求ω和m 的值;
(2)若f ⎝ ⎛⎭⎪⎫θ2=65,θ∈⎝ ⎛⎭⎪⎫π4,3π4,求f ⎝
⎛⎭⎪⎫θ+π8的值.
解析:(1)易知f (x )=2+m 2
sin(ωx +φ)(φ为辅助角),∴f (x )min =-2+m 2
=-2,∴m = 2.
由题意知函数f (x )的最小正周期为π,∴2π
ω=π,∴ω=2.
(2)由(1)得f (x )=2sin 2x +2cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4, ∴f ⎝ ⎛⎭⎪⎫θ2=2sin ⎝ ⎛⎭⎪⎫θ+π4=65,∴sin ⎝ ⎛⎭⎪⎫θ+π4=35.
∵θ∈⎝
⎛⎭⎪⎫π4,3π4,∴θ+π4∈⎝ ⎛⎭
⎪⎫π2,π, ∴cos ⎝
⎛⎭⎪⎫θ+π4=-
1-sin 2⎝
⎛⎭⎪⎫θ+π4=-45,
∴sin θ=sin ⎝ ⎛⎭⎪⎫θ+π4-π4=sin ⎝ ⎛⎭⎪⎫θ+π4·cos π4-cos ⎝ ⎛⎭⎪⎫θ+π4·sin π4=7210,
∴f ⎝ ⎛⎭⎪⎫θ+π8=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫θ+π8+π4=2sin ⎝ ⎛⎭⎪⎫2θ+π2=2cos 2θ=2(1-2sin 2
θ)=
2⎣⎢⎡
⎦
⎥⎤
1-2×⎝ ⎛⎭⎪⎫72102=-4825.。