八年级数学一次函数同步练习题
八年级数学一次函数同步练习题
人教新课标八年级数学(上)一、填空题(每题2分,共32分)1.已知一个正比例函数的图象经过点(-1,3),则这个正比例函数的表达式是 .2.函数y =x 的取值范围是_______________.3.已知一次函数y =2x +4的图像经过点(m ,8),则m =________.4.若函数y = -2x m +2 +n -2正比例函数,则m 的值是 ,n 的值为________. 5.一次函数113y x =-+的图象与x 轴的交点坐标是_________,与y 轴的交点坐标是__________. 6.若直线y =kx +b 平行于直线y =5x +3,且过点(2,-1),则k =______,b =______. 7.两直线1y x =-与3y x =-+的交点坐标 .8.某种储蓄的月利率为0.15%,现存入1000元,则本息和y (元)与所存月数x 之间的函数关系式是 . 9.某一次函数的图象经过点(1-,3),且函数y 随x 的增大而减小,请你写出一个符合条件的函数解析式______________________.10.现有笔记本500本分给学生,每人5本,则余下的本数y 和学生数x 之间的函数解析式为_________________,自变量x 的取值范围是______________. 11.若一次函数y =kx -4当x =2时的值为0,则k = . 12.一次函数12-=x y 一定不经过第 象限.13.已知直线6+=x y 与x 轴,y 轴围成一个三角形,则这个三角形面积为 . 14.如右图:一次函数y kx b =+的图象经过A 、B 两点,则△AOC 的面积为___________. 15.观察下列各正方形图案,每条边上有n (n >2)个圆点,每个图案中圆 点的总数是S .按此规律推断出S 与n 的关系式为 .二、解答题(共68分)17.(4分)已知一个一次函数,当3x =时,2y =-;当2x =时,3y =-,求这个一次函数的解析式已知,直线y kx b =+经过点A (3,8)和B (6-,4-).求: (1)k 和b 的值;(2)当3x =-时,y 的值.=4 S =12 n =2 S =4 n =3 S =818.(4分)已知正比例函数y kx =.(1)若函数图象经过第二、四象限,则k 的范围是什么? (2)点(1,-2)在它的图像上,求它的表达式.19.(4分)已知2y -与x 成正比,且当1x =时,6y =-.(1)求y 与x 之间的函数关系式; (2)若点(a ,2)在这个函数图象上,求a .21.(6分)已知函数(21)3y m x m =++-,(1)若函数图象经过原点,求m 的值;(2)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.22.(6分)作出函数24y x =-的图象,并根据图象回答下列问题:(1)当 -2≤x ≤4时,求函数y 的取值范围; (2)当x 取什么值时,y <0,y =0,y>0? (3)当x 取何值时,-4<y <2?23.(6分)图中折线ABC 表示从甲地向乙地打长途电话时所需付的电话费y (元)与通话时间t (分钟)之间的关系图像.(1)从图像知,通话2分钟需付的电话费是 元. (2)当t ≥3时求出该图像的解析式(写出求解过程). (3)通话7分钟需付的电话费是多少元?24.(6分)已知等腰三角形的周长为12cm ,若底边长为y cm ,一腰长为x cm.. (1)写出y 与x 的函数关系式; (2)求自变量x 的取值范围. 25.(6分)某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.(1)求出日销售量y (件)与销售价x (元)的函数关系式; (2)求销售价定为30元时,每日的销售利润. 26.(6分)某公司在A 、B 两地分别有库存机器16台和12台,现要运往甲、乙两地,其中甲地15台,乙地13台.从A 地运一台到甲地的运费为500元,到乙地为400元;从B 地运一台到甲地的运费为300元,到乙地为600元.公司应设计怎样的调运方案,能使这些机器的总运费最省?27.(8分)已知直线AB 与x ,y 轴分别交于A 、B (如图),AB =5,OA =3, (1)求直线AB 的函数表达式;(2)如果P 是线段AB 上的一个动点(不运动到A ,B ),过P 作x 轴的垂线,垂足是M ,连接PO ,设OM =x ,图中哪些量可以表示成x 的函数?试写出5个不同的量关于x 的函数关系式.(这里的量是指图中某些线段的长度或某些几何图形的面积等) 28.(8分)2007年5月,第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷幕.20日上午9时,参赛龙舟从黄陵庙同时出发.其中甲、乙两队在比赛时,路程y (千米)与时间x (小时)的函数关系如图所示.甲队在上午11时30分到达终点黄柏河港. (1)哪个队先到达终点?乙队何时追上甲队? (2)在比赛过程中,甲、乙两队何时相距最远?时间/时164020八年级数学(上)自主学习达标检测(五)一、填空题1.3y x =- 2.25x ≥ 3.2 4.1,2- 5.(3,0)(0,1)6.5,11- 7.(2,1)8.0.15%1000y x =+ 9.3y x =- 10.5005,100y x x =-≤ 11.2 12.Fg 13.18 14.9 15.1216.44S n =-二、解答题17.(1)1,5k b ==-;(2)8- 18.(1)k <0;(2)2y x =- 19.(1)82y x =-+;(2)0a = 20.14x y =-⎧⎨=-⎩21.(1)3m =;(2)m <12-22.(1)84y -≤≤;(2)x <2,x =2,x >2;(3)0<x <3 23.(1)2.4;(2) 1.52y x =-;(3)8.5 24.(1)122y x =-;(2)x <6 25.(1)40y x =-+;(2)200元 26.A 地运3台到甲地,运13台到乙地;B 地12台全部运往甲地 27.(1)334y x =-+;(2)23333,482POM PM x S x x =-+=-+13(4)(3)24PMB S x x =--+,34,2PAOBM x Sx =-=28.(1)乙队先达到终点,出发1小时40分钟后(或者上午10点40分)乙队追上甲队;(2)1小时之内,两队相距最远距离是4千米,比赛过程中,甲、乙两队在出发后1小时(或者上午10时)相距最远。
人教版数学2022-2023学年八年级下册第十九章一次函数同步练习题含答案
(3)当y=19.5时,求x的值.
参考答案:
1.D
【分析】先根据 ,且 判断出k的正负,然后根据一次函数的性质判断即可.
【详解】解:∵ ,且 ,
∴k<0,
∴一次函数图象经过一二四象限.
故先D.
【点睛】本题考查了一次函数的图象与性质,对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.当b>0,图象与y轴的正半轴相交,当b<0,图象与y轴的负半轴相交,当b=0,图象经过原点.
(3)每分钟的进水量根据前4分钟的图象求出,出水量根据后8分钟的水量变化求解.
(1)
解:设y=ax.
∵图象过(4,20),
∴4a=20,
∴a=5.
∴y随x变化的函数关系式为y=5x(0≤x≤4);
(2)
解:设y=kx+b.
∵图象过(4,20)、(12,30),
∴ ,解得: ,
∴y与x的函数解析式为y= x+15(4≤x≤12);
12.一次函数y=1-5x经过点(0,______)与点( ),0),y随x的增大而______.
三、解答题
13.有一进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量是两个常数,容器内的水量y.单位:L.与时间x.单位:分.之间的关系如图所示:
试题解析:∵函数 的图象过一、二、四象限,
解得-1<m<1.
15.(1)y=14+x(4<x<14)
(2)y=20
(3)x=5.5
【分析】(1)根据三角形的周长公式,可得函数关系式,根据三角形三边的关系,可得自变量的取值范围;
北师大版八年级数学上册第四章《一次函数》 同步练习题
第四章《一次函数》同步练习题一.选择题1.若一次函数y=kx+2的函数值y随x的增大而增大,则()A.k<0 B.k>0 C.k<﹣2 D.k>﹣22.下列选项中,坐标所表示的点在直线y=2x上的是()A.(1,1)B.(2,1)C.(1,2)D.(2,2)3.在函数y=+x﹣2中,自变量x的取值范围是()A.x≥﹣4 B.x≠0 C.x≥﹣4且x≠0 D.x>﹣4且x≠0 4.在平面直角坐标系中,若将一次函数y=﹣2x+6的图象向下平移n(n>0)个单位长度后恰好经过点(﹣1,﹣2),则n的值为()A.10 B.8 C.5 D.35.已知一次函数y=﹣x+5的图象,绕y轴上一点P(0,a)旋转180°,所得的图象经过点(0,﹣3),则a的值为()A.3 B.1 C.﹣3 D.66.直线y=kx+1沿着y轴向上平移b个单位后,经过点A(﹣2,0)和y轴上的一点B,若△ABO(O为坐标原点)的面积为4,则b的值为()A.4 B.2 C.3 D.17.正比例函数y=﹣(k+2)x(k常数,且k≠﹣2),当x的值减少1时,函数y的值减少3,则k的值为()A.5 B.3 C.﹣3 D.﹣58.按照如图所示的程序计算函数y的值时,若输入x的值是3,则输出y的值是﹣7,若输入x的值是1,则输出y的值是()A.﹣3 B.﹣2 C.0 D.29.已知a,b,c分别是Rt△ABC的三条边长,c为斜边长,∠C=90°,我们把关于x的形如y=x+的一次函数称为“勾股一次函数”.若点P(﹣1,)在“勾股一次函数”的图象上,且Rt△ABC的面积是4,则c的值是()A.2B.24 C.2D.1210.如图所示的函数图象反映的过程是:小明从家去书店选购学习资料,又到体育馆去锻炼身体,然后回家.其中x表示时间,y表示小明离他家的距离.下列结论中:①体育馆离小明家的距离是2千米;②小明从家里到书店的平均速度与从书店到体育馆的平均速度相等;③小明在体育馆锻炼身体的时间是18分;④小明从体育馆返回家的平均速度是0.08千米/小时.正确的结论有()A.①②B.②④C.①③D.①③④二.填空题11.一直线y=﹣x+2关于y轴对称的直线函数表达式是.12.购买单价为每支2元的圆珠笔,总金额y(元)与铅笔数n(支)的关系式可表示为,其中,是变量.13.若函数y=(3m﹣1)x|3m﹣2|是y关于x的正比例函数,则m=.14.当直线y=(2﹣2k)x+k﹣3经过第一、三、四象限时,则k的取值范围是.15.已知点P(x0,y)到直线y=kx+b的距离可表示为,例如:点(0,1)到直线y=2x+6的距离.据此进一步可得点(2,﹣1)到直线y =x﹣4之间的距离为.三.解答题16.画出直线y=﹣2x+3的图象,根据图象解决下列问题:(1)直线上找出横坐标是+2的点的坐标;(2)写出y>0时,x的取值范围;(3)写出直线上到x轴的距离等于4的点的坐标.17.琳琳通过新闻了解到,近来意大利“新冠肺炎”疫情愈发严重,决定给意大利的网友Carlo邮寄一批防疫用品.已知琳琳家、药店、邮局在同一直线上,琳琳从家出发,跑步去药店买了酒精和口罩,又步行到邮局把物品寄出,然后再走回家.琳琳离家的距离y 与时间x之间的关系如图所示,请根据图象解决下列问题:(1)琳琳家离药店的距离为km.(2)琳琳邮寄物品用了min.(3)琳琳两段步行的速度分别是多少?(4)图中点P的意义是.18.已知:如图,直线y=x+3与x轴,y轴分别交于点A和点B.(1)点A坐标是,点B的坐标是;(2)△AOB的面积=;(3)当y>0时,x的取值范围是.19.在平面直角坐标系xOy中,已知点A(0,4)、点B(2,0),函数y=2x+m的图象与直线AB交于点M,与y轴交于点C.(1)求直线AB的函数解析式;(2)当△ABC为直角三角形时,求m的值;(3)当点M在线段AB上时,求m的取值范围.20.用充电器给某手机充电时,其屏幕的起始画面如图①.经测试,在用快速充电器和普通充电器对该手机充电时,其电量E(单位:%)与充电时间t(单位:h)的函数图象分别为图②中的线段AB、AC.(1)求线段AB、AC对应的函数表达式;(2)已知该手机正常使用时耗电量为10%/h,在用快速充电器将其充满电后,正常使用ah,接着再用普通充电器将其充满电,其“充电﹣耗电﹣充电”的时间恰好是6h,求a 的值.参考答案一.选择题1.解:∵一次函数y=kx+2的函数值y随x的增大而增大,∴k>0.故选:B.2.解:当x=1时,y=2×1=2,∴点(1,1)不在直线y=2x上,点(1,2)在直线y=2x上;当x=2时,y=2×2=4,∴点(2,1)不在直线y=2x上,点(2,2)不在直线y=2x上.故选:C.3.解:由题意得,x+4≥0,x≠0,解得,x≥﹣4且x≠0,故选:C.4.解:∵若将一次函数y=﹣2x+6的图象向下平移n(n>0)个单位长度,∴平移后的函数解析式为:y=﹣2x+6﹣n,∵函数解y=﹣2x+6﹣n的图象经过点(﹣1,﹣2),∴﹣2=﹣2×(﹣1)+6﹣n,解得:n=10,故选:A.5.解:在一次函数y=﹣x+5中,令x=0,则y=5,即一次函数y=﹣x+5与y轴交点为(0,5).∵旋转后所得的图象经过点(0,﹣3),∴旋转后的函数与y轴交点为(0,﹣3),∵一次函数y=﹣x+5的图象,绕y轴上一点P(0,a)旋转180°,∴(0,5)和(0,﹣3)关于点(0,a)对称,∴a==1,故选:B.6.解:直线y=kx+1沿着y轴向上平移b个单位后,得到y=kx+b+1,∵直线y=kx+b+1经过点A(﹣2,0)和y轴正半轴上的一点B,∴B(0,b+1),∵△ABO的面积是:×2×(b+1)=4,解得b=3.故选:C.7.解:根据题意得y﹣3=﹣(k+2)(x﹣1),即y﹣3=﹣(k+2)x+k+2,而y=﹣(k+2)x,所以k+2=﹣3,解得k=﹣5.故选:D.8.解:∵输入x的值是3,则输出y的值是﹣7,∴﹣7=﹣2×3+b,解得:b=﹣1,∴当x<2时,y=﹣x﹣1,∴当x=1时,y=﹣1﹣1=﹣2,故选:B.9.解:∵点P(﹣1,)在“勾股一次函数”y=x+的图象上,∴=﹣+的一次函数,即a﹣b=﹣c,又∵a,b,c分别是Rt△ABC的三条变长,∠C=90°,Rt△ABC的面积是4,∴ab=4,即ab=8,又∵a2+b2=c2,∴(a﹣b)2+2ab=c2,即∴(﹣c)2+2×8=c2,解得c=2,故选:A.10.解:由图象可知:体育馆离小明家的距离是2千米,故①说法正确;小明从家里到书店的平均速度为:(千米/分), 从书店到体育馆的平均速度为:(千米/分),所以小明从家里到书店的平均速度与从书店到体育馆的平均速度不相等,故②说法错误; 小明在体育馆锻炼身体的时间是:55﹣37=18(分钟),故③说法正确;小明从体育馆返回家的平均速度是:2÷=(千米/小时),故④说法错误.所以正确的结论有①③.故选:C .二.填空题(共5小题)11.解:∵关于y 轴对称的点纵坐标不变横坐标互为相反数,∴直线y =﹣x +2关于y 轴对称的直线函数表达式为y =x +2.故答案为y =x +2.12.解:总金额y (元)与铅笔数n (支)的关系式可表示为y =2n ,其中y ,n 为变量,故答案为:y =2n ;n ,y .13.解:∵函数y =(3m ﹣1)x |3m ﹣2|是y 关于x 的正比例函数,∴, 解得:m =1.故答案为:1.14.解:∵y =(2﹣2k )x +k ﹣3经过第一、三、四象限,∴. 解得k <1.故答案是:k <1.15.解:∵已知点P (x 0,y 0)到直线y =kx +b 的距离可表示为, ∴点(2,﹣1)到直线y =x ﹣4之间的距离为:|2﹣4+1|÷=,故答案为:.三.解答题(共5小题)16.解:直线y=﹣2x+3过点(0,3)、(1.5,0),函数图象如右图所示;(1)当x=2时,y=﹣2×2+3=﹣1,即直线上横坐标是+2的点的坐标是(2,﹣1);(2)由图象可得,y>0时,x的取值范围是x<1.5;(3)当y=4时,4=﹣2x+3,解得,x=﹣0.5,当y=﹣4时,﹣4=﹣2x+3,解得,x=3.5,即直线上到x轴的距离等于4的点的坐标是(﹣0.5,4)或(3.5,﹣4).17.解:(1)由图象可知,琳琳家离药店的距离为2.5km.故答案为:2.5;(2)由图象可知,琳琳邮寄物品用了:65﹣45=20(分钟),故答案为:20;(3)从药店步行到邮局的路程为1km,时间为15min,所以速度为km/min;从邮局步行回家的路程为1.5km,时间为25min,所以速度为:(km/min);(4)图中点P的意义是:离家45min时,琳琳到达邮局,此时她离家的距离为1.5km.故答案为:离家45min时,琳琳到达邮局,此时她离家的距离为1.5km.18.解:(1)当y=0时,x+3=0,解得x=﹣6,则A(﹣6,0);当x=0时,y=x+3=3,则B(0,3);故答案为(﹣6,0),(0,3);(2)△AOB的面积=×6×3=9,故答案为9;(3)由图象得:当y>0时,x的取值范围是x>﹣6,故答案为x>﹣6.19.解:(1)∵点A(0,4)、点B(2,0),设直线AB的解析式为:y=kx+b则,解得∴直线AB的解析式为y=﹣2x+4;(2)当△ABC为直角三角形时,存在两种情况:①如图1,C与原点O重合,∠ACB=90°,此时m=0;②如图2,当∠ABC=90°时,C(0,m),由勾股定理得:AB2+BC2=AC2,∵点A(0,4),点B(2,0),∴22+42+22+m2=(4﹣m)2,解得:m=﹣1;综上,m的值是0或﹣1;(3)当直线y=2x+m经过点A时,m=4;当直线y=2x+m经过点B时,如图3,∴2×2+m=0,则m=﹣4,∴当点M在线段AB上时,m的取值范围是﹣4≤m≤4.word 版 初中数学11 / 11 20.解:(1)设线段AB 的函数表达式为E 1=k 1t +b 1,将(0,20),(2,100)代入E 1=k 1t +b 1,可得,∴线段AB 的函数表达式为:E 1=40t +20;设线段AC 的函数表达式为E 2=k 2t +b 2,将(0,20),(6,100)代入E 2=k 2t +b 2, 可得,∴线段AC 的函数表达式为:E 2=t +20; (2)根据题意,得×(6﹣2﹣a )=10a , 解得a =.答:a 的值为.。
八年级数学(下)第十九章《一次函数》同步练习题(含答案)
八年级数学(下)第十九章《一次函数》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数中,y 是x 的一次函数的是①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x .A .①②③B .①③④C .①②③④D .②③④ 【答案】C【解析】根据一次函数的定义,可知是一次函数的有①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x ,故选C . 2.如果23(2)2my m x -=-+是一次函数,那么m 的值是 A .2B .-2C .±2D .±1 【答案】B【解析】由题意得:22031m m -≠⎧⎨-=⎩,解得m =-2,故选B . 3.下列说法中正确的是A .一次函数是正比例函数B .正比例函数不是一次函数C .不是正比例函数就不是一次函数D .不是一次函数就不是正比例函数 【答案】D【解析】A .一次函数不一定是正比例函数,故本选项说法错误;B .正比例函数是一次函数,故本选项说法错误;C .不是正比例函数,但有可能是一次函数,故本选项说法错误;C .不是一次函数就不是正比例函数,故本选项说法正确,故选D .4.一次函数y =-2x +1的图象经过A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】B【解析】在一次函数y =-2x +1中,k =-2<0,b =1>0,∴一次函数y =-2x +1的图象经过第一、二、四象限,故选B .5.把直线3y x =-+向上平移m 个单位后,与直线24y x =+的交点在第一象限,则m 的取值范围是A .1<m <7B .3<m <4C .m >1D .m <4【答案】C 【解析】直线3y x =-+向上平移m 个单位后可得:3y x m =-++,联立两直线解析式得:324y x m y x =-++⎧⎨=+⎩,解得132103m x m y -⎧=⎪⎪⎨+⎪=⎪⎩,∴交点坐标为1210()33m m -+,, ∵交点在第一象限,∴10321003m m -⎧>⎪⎪⎨+⎪>⎪⎩,解得m >1,故选C . 6.如果函数y =3x +m 的图象一定经过第二象限,那么m 的取值范围是A .m >0B .m ≥0C .m <0D .m ≤0【答案】A【解析】图象一定经过第二象限,则函数一定与y 轴的正半轴相交,因而0m >,故选A . 7.关于函数y =-x +1,下列结论正确的是A .图象必经过点(-1,1)B .y 随x 的减小而减小C .当x >1时,y <0D .图象经过第二、三、四象限 【答案】C【解析】选项A ,∵当x =-1时,y =2,∴图象不经过点(-1,1),选项A 错误;选项B ,∵k =-1<0,∴y 随x 的增大而减小,选项B 错误;选项C ,∵y 随x 的增大而减小,当x =1时,y =0,∴当x >1时,y <0,选项C 正确;选项D ,∵k =-1<0,b =1>0,∴图象经过第一、二、四象限,选项D 错误.故选C .8.一次函数y =kx +b 的图象如图所示,则k 、b 的值分别为A .k =−12,b =1B .k =-2,b=1C.k=12,b=1 D.k=2,b=1【答案】B【解析】由图象可知:过点(0,1),(12,0),代入一次函数的解析式得:112bk b=⎧⎪⎨=+⎪⎩,解得:k=−2,b=1,故选B.二、填空题:请将答案填在题中横线上.9.已知一次函数y=(m-3)x-2的图象经过一、三、四象限,则m的取值范围为__________.【答案】m>3【解析】∵y=(m-3)x-2的图象经过一、三、四象限,∴m-3>0,解得m>3.故答案为:m>3.10.点(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1__________y2(填“>”或“=”或“<”).【答案】<【解析】∵k=2>0,y将随x的增大而增大,2>−1,∴y1<y2,故y1与y2的大小关系是:y1<y2,故答案为:<.11.已知一次函数的图象与直线y=12x+3平行,并且经过点(-2,-4),则这个一次函数的解析式为__________.【答案】y=12x-3【解析】∵一次函数的图象与直线y=12x+3平行,∴设一次函数的解析式为y=12x+b.∵一次函数经过点(-2,-4),∴12×(-2)+b=-4,解得b=-3,所以这个一次函数的表达式是:y=1 2x-3.故答案为:y=12x-3.12.若点M(x1,y1)在函数y=kx+b(k≠0)的图象上,当-1≤x1≤2时,-2≤y1≤1,则这条直线的函数解析式为__________.【答案】y=x-1或y=-x【解析】∵点M(x1,y1)在在直线y=kx+b上,-1≤x1≤2时,-2≤y1≤1,∴点(-1,-2)、(2,1)或(-1,1)、(2,-2)都在直线上,则有:221k bk b-+=-⎧⎨+=⎩,或122k bk b-+=⎧⎨+=-⎩,解得11kb=⎧⎨=-⎩或1kb=-⎧⎨=⎩,∴y=x-1或y=-x,故答案为:y=x-1或y=-x.三、解答题:解答应写出文字说明、证明过程或演算步骤.13.已知一次函数经过点A(3,5)和点B(-4,-9).(1)求此一次函数的解析式;(2)若点C(m,2)是该函数上一点,求C点坐标.【解析】(1)设其解析式为y=kx+b(k、b是常数,且k≠0),则5394k bk b=+⎧⎨-=-+⎩,∴k=2,b=−1.∴其解析式为y=2x-1,(2)∵点C(m,2)在y=2x-1上,∴2=2m-1,∴m=32,∴点C的坐标为(32,2).14.已知一次函数的图象经过点A(2,1),B(-1,-3).(1)求此一次函数的解析式;(2)求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.【解析】(1)根据一次函数解析式的特点,可得出方程组213 k bk b+=⎧⎨-+=-⎩,解得4353 kb⎧=⎪⎪⎨⎪=-⎪⎩,则得到y=43x-53.(2)根据一次函数的解析式y=43x-53,得到当y=0,x=54;当x=0时,y=-53.所以与x轴的交点坐标(54,0),与y轴的交点坐标(0,-53).(3)在y=43x-53中,令x=0,解得:y=-53,在y=43x-53中,令y=0,解得:x=54.因而此一次函数的图象与两坐标轴所围成的三角形面积是:15525 23424⨯⨯=.15.已知一次函数y=(4-k)x-2k2+32.(1)k为何值时,它的图象经过原点;(2)k为何值时,它的图象经过点(0,-2);(3)k为何值时,它的图象平行于直线y=-x;(4)k为何值时,y随x的增大而减小.【解析】(1)∵一次函数y=(4-k)x-2k2+32的图象经过原点,∴-2k2+32=0,解得:k=±4,∵4-k≠0,∴k=-4.(2)∵一次函数y=(4-k)x-2k2+32的图象经过(0,-2),∴-2k2+32=-2,解得:k.(3)∵一次函数y=(4-k)x-2k2+32的图象平行于直线y=-x,∴4-k=-1,∴k=5.(4)∵一次函数y=(4-k)x-2k2+32中y随x的增大而减小,∴4-k<0,∴k>4.16.已知一次函数图象经过(-4,-9)和(3,5)两点.(1)求一次函数解析式.(2)求图象和坐标轴交点坐标.并画出图象.(3)求图象和坐标轴围成三角形的面积.(4)若点(2,a)在函数图象上,求a的值.【解析】(1)设一次函数解析式为y=kx+b,把点(3,5),(-4,-9)分别代入解析式,则3549 k bk b+=⎧⎨-+=-⎩,解得21 kb=⎧⎨=-⎩,∴一次函数解析式为y=2x-1.(2)当x=0时,y=-1,当y=0时,2x-1=0,解得:x=0.5,∴与坐标轴的交点为A(0,-1)、B(0.5,0),图象如图,(3)S△AOB1122=⨯⨯|-1|=0.25.(4)∵点(2,a)在图象上,∴a=2×2-1=3,∴a=3.。
一次函数同步练习题
一次函数同步练习题一、选择题1、下列函数中,y 是x 的一次函数的是( )①y=x-6;②y= -3x –1;③y=-0.6x ;④y=7-xA 、①②③B 、①③④C 、①②③④D 、②③④2、一次函数y= -3x+2的图象经过第( ) 象限A 、一、二、三;B 、一、二、四;C 、一、三、四 ;D 、二、三、四。
3、若一次函数y=kx+b 的图象经过点(-2,-1 )和点(1,2),则这个函数的图象不经过( )A 、第一象限 ;B 、第二象限 ;C 、第三象限 ;D 、第四象限4、下列说法正确的是( )A 、正比例函数是一次函数;B 、一次函数是正比例函数;C 、正比例函数不是一次函数;;D 、不是正比例函数就不是一次函数。
5、当ab >0,ac <0,直线ax+by+c=0不通过的象限是( )、A 、第一象限 ;B 、第二象限;C 、第三象限 ;D 、第四象限6、若一次函数y=mx+1与y=nx -2的图象交于x 轴上一点,则m :n=( )、A 、1:2;B、-1:2;C、2:1;D、-2:17、如果一次函数y=kx+(k -1)的图像经过第一、三、四象限,则 k 的取值范围是( )、A 、k >0 ;B 、k <0 ;C 、0<k <1 ;D 、k >18、一次函数y=3x+p 和y=x+q 的图像都经过点A(-2,0),且与y 轴分别交于B 、C 两点,那么△ABC 的面积是( ) A 、2;B、4;C、6;D、89、直线y=kx +b 经过一、二、四象限,则k 、b 应满足( )A 、k>0, b<0; B 、k>0,b>0; C 、k<0,b<0; D 、k<0, b>0. 10、函数Y=4x -2与y=-4x -2的交点坐标为( )A 、(-2,0); B 、(0,-2);C 、(0,2);D 、(2,0)11、已知一次函数y kx k =+,其在直角坐标系中的图象大体是( )12、如图,表示一次函数y mx n =+与正比例函数y mnx =(m n ,为常数,且mn 0≠)图象的是( )13、直线y kx b =+经过一、二、四象限,则直线y bx k =-的图象只能是图4中的( ) 二、填空:14、函数的三种表示方法:_______,用描点法画函数图象的一般步骤是_____。
八年级数学上册第四章一次函数4.3一次函数的图象同步练习北师大版
4.3一次函数的图象同步检测一、选择题1.若正比例函数的图象经过点(2,—3),则这个图象必经过点()A.(-3,-2)B.(2,3)C.(3,—2)D.(—2,3)答案:D解析:解答:设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(2,—3),所以-3=2k,解得:k=3-,2所以y=3-x,2把这四个选项中的点的坐标分别代入y=3-x中,等号成立的点2就在正比例函数y=3-x的图象上,所以这个图象必经过点(—2,23).故选D.分析:求出函数解析式,然后根据正比例函数的定义用代入法计算.2.如果函数y=3x+m的图象一定经过第二象限,那么m的取值范围是()A.m>0 B.m≥0C.m<0 D.m≤0答案:A解析:解答:因为k=3所以图象经过一、三象限函数y=3x+m的图象一定经过第二象限所以m>0,故选A.分析:图象一定经过第二象限,则函数一定与y轴的正半轴相交,因而m>0.3.函数y=-x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限答案:C解析:解答:由已知得,k=-1<0,b=2>0,∴函数y=-x+2的图象经过一、二、四象限,不过第三象限.故选C.分析:一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.4。
设0<k<2,关于x的一次函数y=kx+2(1—x),当1≤x≤2时的最大值是()A.2k—2 B.k-1 C.k D.k+1答案:C解析:解答:原式可以化为:y=(k-2)x+2,∵0<k<2,∴k-2<0,则函数值随x的增大而减小.∴当x=1时,函数值最大,最大值是:(k-2)+2=k.故选:C.分析:首先确定一次函数的增减性,根据增减性即可求解.5.已知正比例函数y=kx(k≠0)的图象如图所示,则在下列选项中k值可能是()A.1 B.2 C.3 D.4答案:B解析:解答:解:根据图象,得2k<6且3k>5,<k<3.只有2符合.故选B.所以53分析: 根据图象,列出不等式求出k的取值范围,再结合选项解答.6.如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a答案:B解析:解答:∵y=ax,y=bx,y=cx的图象都在第一三象限,∴a>0,b>0,c>0,∵直线越陡,则|k|越大,∴c>b>a,故选:B.分析:根据所在象限判断出a、b、c的符号,再根据直线越陡,则|k|越大可得答案.7.在平面直角坐标系中,一次函数y=2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限答案:D解析:解答:当x=0时,y=1,当y=0时,x=1-,2∴A(0,1),B(1-,0),2∴y=2x+1的图象经过第一、二、三象限.故选D.分析:分别求出函数与x、y轴的交点,过两点作直线,根据直线即可求出答案.8.已知正比例函数y=kx (k≠0),当x=—1时,y=—2,则它的图象大致是()A.B.C.D.答案:C解析:解答:将x=-1,y=-2代入正比例函数y=kx(k≠0)得, -2=-k,k=2>0,∴函数图象过原点和一、三象限,故选C.分析:将x=—1,y=-2代入正比例函数y=kx(k≠0),求出k的值,即可根据正比例函数的性质判断出函数的大致图象.9.已知点P(m,n)在第四象限,则直线y=nx+m图象大致是下列的()A.B.C.D.答案:D解析:解答: 因为点P(m,n)在第四象限,所以m>0,n<0,所以图象经过一,二,四象限,故选D分析:根据第四象限的特点得出m>0,n<0,再判断图象即可.10。
4.2 一次函数与正比例函数 北师大版八年级数学上册同步练习1及答案
新版北师大版八年级数学上册第4章《一次函数》同步练习及答案—4.2一次函数与正比例函数(1)
专题一次函数探究题
1.用m根火柴可以拼成如图1所示的x个正方形,还可以拼成如图2所示的2y个正方形,那么用含x的代数式表示y,得______________.
2. 将长为38cm、宽为5cm的长方形白纸按如图所示的方法黏合在一起,黏合部分的白纸宽
为2cm.
(1)求5张白纸黏合的长度;
(2)设x张白纸黏合后的总长为ycm,写出y与x的函数关系式(标明自变量x的取值范围);
(3)用这些白纸黏合的总长能否为362cm?并说明理由.
参考答案:
1.y=x-【解析】由图1可知:一个正方形有4条边,两个正方形有4+3条边,
∴m=4+3(x-1)=1+3x;由图2可知:一组图形有7条边,两组图形有7+5条边,
∴m=7+5(y-1)=2+5y,所以1+3x=2+5y,即y=x-.
2.解:(1)5张白纸黏合,需黏合4次,重叠2×4=8cm.所以总长为38×5-8=182(cm).(2)x张白纸黏合,需黏合(x-1)次,重叠2(x-1)cm,所以总长y=38x-2(x-1)=36x+2(x≥1,且x为整数).
(3)能.当y=362时,得到36x+2=362,解得x=10,即10张白纸黏合的总长为362cm.3.解:(1)由图可以看出图形的周长=上下底的和+两腰长,∴l=3n+2.
(2)n=11时,图形周长为3×11+2=35.。
八年级数学(下)第十九章《一次函数——选择方案》同步练习题(含答案)
八年级数学(下)第十九章《一次函数——选择方案》同步练习题(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.若等腰△ABC的周长是50 cm,底边长为x cm,一腰长为y cm,则y与x的函数关系式及自变量x的取值范围是A.y=50-2x(0<x<50)B.y=50-2x(0<x<25)C.y=12(50-2x)(0<x<50)D.y=12(50-x)(0<x<25)【答案】D【解析】由题意得2y+x=50,所以y=12(50-x),且025x<<,故选D.2.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,若购买1000吨,每吨为800元;购买2000吨,每吨为700元,一客户购买400吨单价应该是A.820元B.840元C.860元D.880元【答案】C【解析】设购买量y吨与单价x元之间的一次函数关系式为y=kx+b,由题意,得1000800 2000700k bk b=+⎧⎨=+⎩,解得109000kb=-⎧⎨=⎩,解析式为:y=-10x+9000,当y=400时,400=-10x+9000,860x=,故选C.3.春节期间,某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开放海产品的运输业务,两货运公司的收费项目及收费标准如下表所示.已知运输路程为120千米,汽车和火车的速度分别为60千米/小时,100千米/小时,请你选择一种交通工具A.当运输货物重量为60吨,选择汽车B.当运输货物重量大于50吨,选择汽车C .当运输货物重量小于50吨,选择火车D .当运输货物重量大于50吨,选择火车 【答案】D【解析】(1)y 1=2×120x +5×(120÷60)x +200=250x +200, y 2=1.8×120x +5×(120÷100)x +1600=222x +1600; (2)若y 1=y 2,则x =50,∴当海产品不少于30吨但不足50吨时,选择汽车货运公司合算;当海产品恰好是50吨时选择两家公司都一样,没有区别;当海产品超过50吨时选择铁路货运公司费用节省一些,故选D .4.学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:如果获奖运动员李伟领取的奖品是43号(原鞋码)的运动鞋,则这双运动鞋的新鞋码是A .270B .255C .260D .265【答案】D【解析】由题中的表格知,y 是x 的一次函数,可设y 与x 的关系为y =kx +b , 由题意得22535k 24539b k b =+⎧⎨=+⎩,解得550k b =⎧⎨=⎩,∴y 与x 之间的函数关系式为y =5x +50,当x =43时,y =265,故选D .5.如图,小明从A 地前往B 地,到达后立刻返回,他与A 地的距离(y 千米)和所用时间(x 小时)之间的函数关系如图所示,则小明出发6小时后距A 地A .120千米B .160千米C .180千米D .200千米【答案】B【解析】设当46x ≤≤时,y 与x 的函数关系式为y kx b =+,4240100k b k b +=⎧⎨+=⎩,得40400k b =-⎧⎨=⎩, 即当46x ≤≤时,y 与x 的函数关系式为40400y x =-+, 当6x =时,406400160y =-⨯+=, 即小明出发6小时后距A 地160千米,故选B . 二、填空题:请将答案填在题中横线上.6.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400 m ,先到终点的人原地休息.已知甲先出发4 min ,在整个步行过程中,甲、乙两人的距离y (m )与甲出发的时间t (min )之间的关系如图所示,以下结论:①甲步行的速度为60 m /min ;②乙走完全程用了32 min ;③乙用16 min 追上甲;④乙到达终点时,甲离终点还有300 m ,其中正确的结论有___________(填序号).【答案】①【解析】由图可得,甲步行的速度为:240÷4=60米/分,故①正确; 乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误; 乙追上甲用的时间为:16-4=12(分钟),故③错误;乙到达终点时,甲离终点距离是:2400-(4+30)×60=360米,故④错误,故答案为:①. 7.某体育用品商场为推销某一品牌运动服,先做了市场调查,得到数据如下表:则P 与x 的函数关系式为___________,当卖出价格为60元时,销售量为___________件. 【答案】P =-10x +1000;400件【解析】(1)P 与x 成一次函数关系,设函数关系式为P =kx +b , 则5005049051k b k b=+⎧⎨=+⎩,解得101000k b =-=⎧⎨⎩ , ∴P =−10x +1000,经检验可知:当x =52,P =480,当x =53,P =470时也适合这一关系式, ∴所求的函数关系为P =−10x +1000.(2)当x=60时,P=−10×60+1000=400,故答案为:P=−10x+1000;400.三、解答题:解答应写出文字说明、证明过程或演算步骤.8.某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神州行”不缴月租费,每通话1 min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数解析式;(2)一个月内通话多少分钟,两种通讯业务费用相同;(3)某人估计一个月内通话300 min,应选择哪种移动通讯业务合算些?【解析】(1)y1=50+0.4x,y2=0.6x.(2)令y1=y2,则50+0.4x=0.6x,解之,得x=250.所以通话250分钟两种费用相同.(3)令x=300,则y1=50+0.4×300=170,y2=0.6×300=180,所以选择全球通合算.9.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?【解析】(1)根据甲、乙两个厂家推出各自销售的优惠方案:甲厂家所需金额为:3×800+80(x﹣9)=1680+80x;乙厂家所需金额为:(3×800+80x)×0.8=1920+64x.(2)由题意,得:1680+80x≥1920+64x,解得:x≥15.答:购买的椅子至少15张时,到乙厂家购买更划算.10.为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y (元)与骑行时间x (时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算. 【解析】(1)由题意和图象可设:手机支付金额y (元)与骑行时间x (时)的函数解析式为:1y kx b =+,由图可得:0.500.5k b k b +=⎧⎨+=⎩,解得10.5k b =⎧⎨=-⎩,∴手机支付金额y (元)与骑行时间x (时)的函数解析式为:10.5y x =-.(2)由题意和图象可设会员支付y (元)与骑行时间x (时)的函数解析式为:2y ax =, 由图可得:0.75a =,由0.750.5y x y x =⎧⎨=-⎩,可得21.5x y =⎧⎨=⎩, ∴图中两函数图象的交点坐标为(2,1.5), 又∵0x >,结合图象可得:当02x <<时,李老师用“手机支付”更合算; 当0x =时,李老师选择两种支付分式花费一样多; 当2x >时,李老师选择“会员支付”更合算.11.某工厂生产某种产品,每件产品的出厂价为1000元,其原材料成本价为550元,同时在生产过程中平均每生产一件产品有10千克的废渣产生.为达到国家环要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理10千克废渣所用的原料费为50元,并且每月设备维护及损耗费为2000元.方案二:工厂将废渣集中到废渣处理厂统一处理,每处理10千克废渣需付100元的处理费. (1)设工厂每月生产x 件产品.用方案一处理废渣时,每月利润为__________元;用方案二处理废渣时,每月利润为__________元(利润=总收入-总支出);(2)若每月生产30件和60件,用方案一和方案二处理废渣时,每月利润分别为多少元? (3)如何根据月生产量选择处理方案,既可达到环保要求又最划算?【解析】(1)由题意可得,用方案一处理废渣时,每月的利润为:x(1000-550)-50x-2000=400x-2000;用方案二处理废渣时,每月利润为:x(1000-550)-100x=350x,故答案为:400x-2000;350x.(2)当x=30时,用方案一处理废渣时,每月的利润为:400×30-2000=10000元;用方案二处理废渣时,每月利润为:350×30=10500元;x=60时,用方案一处理废渣时,每月的利润为:400×60-2000=22000;用方案二处理废渣时,每月利润为:350×60=21000.(3)令400x-2000=350x,解得x=40,即当生产产品数量少于40时,选择方案二;当生产产量大于40时,选择方案一.12.水果商贩小李去水果批发市场采购被誉为“果中之王”的泰顺猕猴桃,他了解到猕猴桃有精品盒与普通盒两种包装,精品盒的批发价格每盒60元,普通盒的批发价格每盒40元,现小李购得精品盒与普通盒共60盒,费用共为3100元。
人教版初中数学八年级下册第十九章《一次函数》19.2一次函数同步练习题(含答案)
故答案为:﹣3或6.
9.y=﹣x﹣1(答案不唯一)
【解析】试题解析:∵y随x的增大而减小,
∴
设一次函数的解析式为
②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,无选项符合;
③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,B选项符合;
④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.
9.某一次函数的图象经过点(﹣2,1),且y轴随x的增大而减小,则这个函数的表达式可能是_____.(只写一个即可)
10.已知直线 与直线 平行,且截距为5,那么这条直线的解析式为_______.
11.直线y=-8x-6可以由直线y=-8x向___平移___个单位得到.
12.如图,在平面直角坐标系中,函数y=2x﹣3和y=kx+b的图象交于点P(m,1),则关于x的不等式2x﹣3>kx+b的解集是_____.
故选B.
7.C
【解析】如图,作点D关于AB的对称点D′,连接CD′交AB于点E,则此时△CDE的周长最小,
∵点B的坐标为(3,4),四边形ABCO是矩形,D是OA的中点,
∴点C的坐标为(0,4),点D的坐标为(1.5,0),点D′的坐标为(4.5,0),点E的横坐标为3,
设直线CE的解析式为:y=kx+b,则有: ,解得 ,
∴直线CE的解析式为: ,
∴当 时, ,
∴点E的坐标为 .
故选C.
八年级数学(下)第十九章《一次函数》同步练习(含答案)
八年级数学(下)第十九章《一次函数》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.足球比赛时,守门员大脚踢出去的球的高度h随时间t变化而变化,下列各图中,能刻画h与t的关系的是A.B.C.D.【答案】A【解析】A、足球受力的作用后会升高,并向前运动,当足球动能减小后,足球不再升高,而逐渐下落.正确;B、球在飞行过程中,受重力的影响,不会一直保持同一高度,所以错误;C、球在飞行过程中,总是先上后下,不会一开始就往下,所以错误;D、受重力影响,球不会一味的上升,所以错误.故选A.2.某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快走了一段时间,最后他以较快的速度匀速前进达到学校.小明走路的速度v(米/分钟)是时间t(分钟)的函数,能正确反映这一函数关系的大致图象是A.B.C.D.【答案】A【解析】纵坐标表示的是速度、横坐标表示的是时间,由题意知:小明走路去学校应分为三个阶段:①匀速前进的一段时间,此时的函数是平行于横坐标的一条线段,可排除C、D选项;②加速前进的一段时间,此时的函数是一段斜率大于0的一次函数;③最后匀速前进到达学校,此时的函数是平行于横坐标的一条线段,可排除B选项,故选A.3.如图所示的是水滴入一个玻璃容器的示意图(滴水速度保持不变),下列图象能正确反映容器中水的高度(h)与时间(t)之间的关系的是A.B.C.D.【答案】C【解析】由于容器的形状是下宽上窄,所以水的深度上升是先慢后快.表现出的函数图形为先缓,后陡.故选C.4.某市春天经常刮风,给人们的出行带来很多不便,小明观测了4月6日连续12个小时风力变化的情况,并画出了风力随时间变化的图象如图所示,则下列说法正确的是A.在8时至14时,风力不断增大B.在8时至12时,风力最大为7级C.8时风力最小D.20时风力最小【答案】D【解析】A、11时至12时风力减小,选项A错误;B、在8时至12时,风力最大不超过4级,选项B错误;C、20时风力最小,选项C错误;D、20时风力最小,选项D正确.故选D.5.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走路程为s(米),s与t之间的函数关系如图所示,则下列说法中,错误的是A.小明中途休息用了20分钟B.小明休息前爬山的速度为每分钟60米C.小明在上述过程中所走路程为7200米D.小明休息前后爬山的平均速度相等【答案】C【解析】A、小明中途休息的时间是:60-40=20分钟,故本选项正确;B、小明休息前爬山的速度为240040=60(米/分钟),故本选项正确;C、小明在上述过程中所走路程为4800米,故本选项错误;D、因为小明休息后爬山的速度是4800240010060--=60(米/分钟),所以小明休息前后爬山的平均速度相等,故本选项正确,故选C.6.小明从家里出发到超市进行购物后返回,小明离开家的路程y(米)与所用时间x(分)之间的关系如图,则下列说法不正确的是A.小明家到超市的距离是1000米B.小明在超市的购物时间为30分钟C.小明离开家的时间共55分钟D.小明返回的速度比去时的速度快【答案】D【解析】A.观察图象发现:小明家距离超市1000米,故正确;B.小明在超市逗留了40−10=30分钟,故正确;C.小明离开家的时间共55分钟,故正确;D.小明去时用了10分钟,回时用了15分钟,所以小明从超市返回的速度慢,故错误,故选D.二、填空题:请将答案填在题中横线上.7.某型号汽油的数量与相应金额的关系如图所示,那么这种汽油的单价是每升__________元.【答案】5.22【解析】单价=522÷100=5.22元,故答案为:5.22.8.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是__________.【答案】-1<x<1或x>2【解析】y<0时,即x轴下方的部分,∴自变量x的取值范围分两个部分是−1<x<1或x>2,故答案为:-1<x<1或x>2.9.已知A、B两地相距4千米.上午8:00,甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A 地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为__________.【答案】8点40【解析】因为甲60分走完全程4千米,所以甲的速度是4千米/时,由图中看出两人在走了2千米时相遇,那么甲此时用了0.5小时,则乙用了(0.5−13)小时,所以乙的速度为:2÷16=12,所以乙走完全程需要时间为:4÷12=13(时)=20分,此时的时间应加上乙先前迟出发的20分,现在的时间为8点40,故答案为:8点40.三、解答题:解答应写出文字说明、证明过程或演算步骤.10.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的平面直角坐标系中,画出符合他们行驶的路程S(千米)与行驶时间t(时)之间的函数图象.【解析】如图,11.如图所示是某港口从8 h到20 h的水深情况,根据图象回答下列问题:(1)在8 h到20 h,这段时间内大约什么时间港口的水位最深,深度是多少米?(2)大约什么时候港口的水位最浅,是多少?(3)在这段时间里,水深是如何变化的?【解析】(1)根据函数图象可得:13时港口的水最深,深度约是7.5 m.(2)根据函数图象可得:8时港口的水最浅,深度约是2 m.(3)根据函数图象可得:8 h~13 h,水位不断上升;13 h~15 h,水位不断下降;15 h~20 h,水位又开始上升.12.一游泳池长90 m,甲、乙两人分别从两对边同时向所对的另一边游去,到达对边后,再返回,这样往复数次.图中的实线和虚线分别表示甲、乙与游泳池固定一边的距离随游泳时间变化的情况,根据图形回答:(1)甲、乙两人分别游了几个来回?(2)甲游了多长时间?游泳的速度是多少?(3)在整个游泳过程中,甲、乙两人相遇了几次?【解析】(1)观察图形甲游了三个来回,乙游了两个来回.(2)观察图形可得甲游了180 s,游泳的速度是90×6÷180=3米/秒.(3)在整个游泳过程中,两个图象共有5个交点,所以甲、乙两人相遇了5次.13.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s甲,s乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距__________千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为__________小时;(3)乙从出发起,经过__________小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?【解析】(1)由图象可知,乙出发时,乙与甲相距10千米.故答案为:10.(2)由图象可知,走了一段路程后,乙的自行车发生故障,停下来修车的时间为=1.5-0.5=1小时,故答案为:1.(3)图图象可知,乙从出发起,经过3小时与甲相遇.故答案为:3.(4)乙骑自行车出故障前的速度与修车后的速度不一样,理由如下:乙骑自行车出故障前的速度7.50.5=15千米/小时.与修车后的速度22.57.53 1.5--=10千米/小时.因为15>10,所以乙骑自行车出故障前的速度与修车后的速度不一样.。
人教版八年级数学同步练习题及答案:一次函数
人教版初中数学课堂教学资料设计人教版初中数学课堂教学资料设计 八年级数学同步练习题及答案:一次函数【模拟试题】(答题时间:20分钟)1. 一次函数123y x =-+的图像上有两点A (a 、3)和B (3、b ),则a +b 的值( )2. 两条直线y =px +1和y =3qx -4相交于x 轴上一点,则pq 的值是3. 当-1<x<3时,一次函数的函数值y 满足-2<y<6,则一次函数的解析式为A. y =2xB. y =-2x +4C. y =2x 或y =-2x +4D. y =-2x 或y =2x +44. 在同一直角坐标系中,对直线23411,1,1,2(1)x y x y x y x y =--=+=-+=-+以下正确的是( ) A. 过点(-1,0)的是1y ,3y B. 交点在y 轴上的是2y 、4yC. 互相平行的是1y 、3yD. 与x 轴对称的是2y 、3y5. 已知函数y =-x +n ,y =nx -4的图像的交点在x 轴的负半轴上,求n 的值。
6. 求两条直线y =-2x -2和y =2x -6与坐标轴所围成的三角形的面积。
7. 已知直线2y=(n+1) x-n 25n ++过点(0,-3),且它对应的函数值y 随x 的增大而减小,求n 的值。
8. 已知y 是x 的一次函数,它的图像过点P (-2、3),与x ,y 轴分别交于A 、B ,若S PAO ∆=6,求点B 的坐标。
【试题答案】1. -22. 34-3. C4. C5. n =-26. 87. n =-28. B (0,2)或B (0,6)。
北师大版八年级数学上册《4.3一次函数的图像》同步练习题(带答案)
北师大版八年级数学上册《4.3一次函数的图像》同步练习题(带答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.直线经过的点是()A.B.C.D.2.若点P在一次函数的图象上,则点P一定不在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,在平面直角坐标系中,一次函数的图象可能是()A.直线l1B.直线l2C.直线l3D.直线l44.在平面直角坐标系中,将直线沿轴向下平移2个单位后恰好经过原点,则的值为()A.B.2 C.4 D.5.将一次函数的图像向右平移5个单位后,所得的直线与两坐标轴围成的三角形的面积是()A.4 B.6 C.9 D.496.如图,一次函数与正比例函数(m,n为常数,且)的图象是()A. B. C. D.7.关于x的一次函数,当时,y的最大值是()A.B.C.D.8.点和都在正比例函数 (,且k为常数)的图象上,若,则k的值可能是( )A.B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.已知一次函数的图象不经过第一象限,则m,n的取值范围是. 10.如果将直线y=3x-1平移,使其经过点(0,2),那么平移后所得直线的表达式是.11.已知与成正比例关系,且当时,,则时,. 12.正比例函数的函数值随着增大而减小,则一次函数的图象大致是(画出草图).13.已知一次函数,当时,对应的函数的取值范围是,的值为.三、解答题:(本题共5题,共45分)14.一次函数y =kx+b()的图像经过点,B(1,1),求一次函数的表达式.15.已知一次函数的图象经过点,并且与轴相交于点,直线与轴相交于点,点恰与点关于轴对称,求这个一次函数的表达式.16.已知与成正比例,当时,y=2试求:(1)y与的函数关系式;(2)当时,求的值;(3)当时,求的值.17.已知关于x的一次函数y=mx+4m﹣2.(1)若这个函数的图象经过原点,求m的值;(2)若这个函数的图象不过第四象限,求m的取值范围;(3)不论m取何实数这个函数的图象都过定点,试求这个定点的坐标.18.如图,已知直线l1:y=-2x+4与x、y轴分别交于点N、C,与直线l2:y=kx+b(k≠0)交于点M,点M的横坐标为1,直线l2与x轴的交点为A(-2,0)(1)求k,b的值;(2)求四边形MNOB的面积.参考答案:1.C 2.C 3.C 4.B 5.C 6.A 7.A 8.B 9.m<0,n≤010.11.212.13.414.解:依题意得解得∴一次函数的表达式为.15.解:∵直线与轴相交于点当x=0时,y=-x+3=3∴Q(0,3)∵点恰与点关于轴对称∴P(0,-3)将(-2,5)、(0,-3)分别代入y=kx+b,得解得:所以一次函数解析式为:y=-4x-3.16.(1)解:由题意,可设把,代入,得,解得所以,即.所以与的函数关系式为(2)解:当时;(3)解:当时,解得.17.(1)解:∵这个函数的图象经过原点∴当x=0时,y=0,即4m﹣2=0解得m=(2)解:∵这个函数的图象不经过第四象限∴解得,m≥(3)解:一次函数y=mx+4m﹣2变形为:m(x+4)=y+2 ∵不论m取何实数这个函数的图象都过定点∴x+4=0,y+2=0解得,x=﹣4,y=﹣2则不论m取何实数这个函数的图象都过定点(﹣4,﹣2)18.(1)解:M为l1与l2的交点令M(1,y),代入y=2x+4中,解得y=2即M(1,2)将M(1,2)代入y=kx+b,得k+b=2①将A(-2,0)代入y=kx+b,得-2k+b=0②由①②解得k= ,b=(2)解:由(1)知l2:y= x+ ,当x=0时y= 即OB=∴S△AOB= OA·OB= ×2× =在y=-2x+4令y=0,得N(2,0)又因为A(-2,0),故AN=4所以S△AMN= ×AN×y m= ×4×2=4故SMNOB=S△AMN-S△AOB=4-=。
一次函数的图象和性质同步练习 2024-2025学年北师大版八年级数学上册
一次函数的图象和性质[时间: 60分钟分值: 100分]一、选择题(每题4分,共32分)中,自变量x的取值范围是( )1.函数y=√x−5A. x≥5B. x>5C. x>0D.0<x<52. 在平面直角坐标系中,一次函数y=-2x-6的图象经过下列哪一个点? ( )A.(-4,1)B.(-4,2)C.(-4,-1)D.(-4,-2)3.函数y=2x+1的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限4.已知一次函数y= kx—b的图象如图所示,则k,b的取值范围是( )A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<05.在平面直角坐标系中,将直线y= kx—6沿x轴向左平移3个单位长度后恰好经过原点,则k的值为( )A.-2B.2C.-3D.36.对于题目“△ABC在平面直角坐标系中的位置如图所示,点A(--1,1),B(2,1),C(1,3).若直线y= kx--2与△ABC 有交点,求k 的取值范围.”甲的结果是k≤-3,乙的结果是3≤k≤5,则( )2A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确7.下列关于x 的一次函数y= ax+b与一次函数y= bx+a的图象可能正确的是( )8. 如图,在平面直角坐标系中,在直线y=x+1和x轴之间由小到大依次画出若干个等腰直角三角形(图中所示的阴影部分),其中一条直角边在x轴上,另一条直角边与x轴垂直,则第100个等腰直角三角形的面积是( )A.2⁹⁸B.2⁹⁹C.2¹⁹⁷D.2¹⁹⁸二、填空题(每题5分,共20分)9.一个函数的图象过点(1,3),且y随x的增大而增大,请写出一个符合上述条件的函数表达式:.10.在平面直角坐标系中,已知一次函数y=3+2x的图象经过P₁(x₁,y₁),P₂(x₂,y₂)两点.若x₁<x₂,则y₁y₂.(填“>”“<”或“=”)11.按如图所示的程序计算函数y的值,若输入的x值为3,则输出y的结果为.12在“探索一次函数y= kx+b的系数k,b与图象的关系”活动中,老师给出了平面直角坐标系中的三个点(如图):A(0,2),B(2,3),C(3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数表达式y₁=k₁x +y b₁,y₂=k₂x+b₂,y₃=k₃x+b₃,分别计算k₁+b₁,k₂+b₂,k₃+b₃的值,其中最大的值等于.三、解答题(共48分)13.(10分)已知一次函数y=2x-1.(1)试判断点A(-1,3)和点B(13,−13)是否在此函数的图象上;(2)已知点C(a,a+1)在此函数的图象上,求a的值.14.(12分)已知一次函数y=-2x+4.(1)画出该函数的图象;(2)求图象与x轴、y轴的交点A,B的坐标;(3)求△AOB 的面积.15.(12 分)当我们将一条倾斜的直线进行上下平移时,直线的左右位置也发生着变化.下面是关于“一次函数图象平移的性质”的探究过程,请补充完整.(1)如图,将一次函数y=x+2的图象向下平移1 个单位长度,相当于将它向右平移了个单位长度;(2)将一次函数y=-2x+4的图象向下平移1个单位长度,相当于将它向(填“左”或“右”)平移了个单位长度;(3)综上可知,对一次函数y= kx-b(k≠0)的图象而言,将它向下平移m(m>0)个单位长度,相当于将它向(填“左”或“右”)(k>0时)或将它向(填“左”或“右”)(k<0时)平移了n(n>0)个单位长度,且m,n,k满足等式:.16.(14 分)如图,直线l₁:y=2x+1 与直线l₂:y= mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l₁,l₂分别交于点C,D,若线段CD的长为2,求a的值.一、1. B 2. B 3. D 4. D 5. B6. D 【点拨】当直线过点A 时,-k-2=1,解得k=-3;当直线过点 B 时,2k-2=1,解得 k =32. 所以k 的取值范围是k≤-3或 k ≥32.7. B 【点拨】当y= ax+b 的图象经过第一、二、三象限时,a>0,b>0,所以y= bx+a 的图象经过第一、二、三象限,故A ,C 错误;当y= ax+b 的图象经过第一、二、四象限时,a<0,b>0,所以y= bx+a 的图象经过第一、三、四象限,故B 正确,D 错误.故选 B.8. C 【点拨】当x=0时,y=x+1=1,所以第1个等腰直角三角形的直角边长为1.所以第1个等腰直角三角形的面积为 12×1×1=12;当x=1时,y=x+1=2,所以第2个等腰直角三角形的直角边长为2.所以第2个等腰直角三角形的面积为 12×2×2=2;;当x=3时,y=x+1=4,所以第3个等腰直角三角形的直角边长为4.所以第3个等腰直角三角形的面积为 12×4×4=8.依此规律,第100个等腰直角三角形的面积为 12×2100−1×2100−1=2197. 二、9. y=x+2(答案不唯一) 10.< 11.9 12.5三、13.【解】(1)当x=-1时,y=2×(-1)-1=-3.故点 A(-1,3)不在该函数的图象上.当 x =13时, y =2×13−1=−13.故点 B (13,−13)在该函数的图象上.(2)因为点 C(a,a+1)在函数 y=2x--1 的图象上,所以a+1=2a-1,解得a=2. 14.【解】(1)函数y=-2x+4的图象如图所示.(2)当x=0时,y=4,所以点B 的坐标为(0,4).当y=0时,-2x+4=0,解得x=2,所以点 A 的坐标为(2,0),(3)因为A(2,0),B(0,4),所以 OA=2,OB=4.所以 S AOB =12OA ⋅OB =12×2×4=4.15.(1)1 (2)左 12 (3)右;左;m=n|k| 16.【解】(1)因为点 P(1,b)在直线 l₁:y =2x +1上,所以b=2×1+1=3.所以点 P 的坐标为(1,3).因为点 P(1,3)在直线( l₂:y =mx +4上,所以3=m+4.所以m=-1.(2)由(1)知直线l ₂的表达式为y=-x+4.根据题意可知C ,D 的坐标可分别表示为(a ,2a+1),(a,4-a).因为CD=2,所以|2a+1-(4-a)|=2,解得 a =13或 a =53.。
一次函数的应用同步练习 2024-2025学年北师大版八年级数学上册
一次函数的应用[时间: 60分钟分值: 100分]一、选择题(每题4分,共32分)1. 已知正比例函数的图象如图所示,则这个函数的表达式为( )A.y=−12x B. y 12C. y=-2xD. y=2x2.如图,直线y= ax+b过点A(0,2),B(-3,0),则方程ax+b=0的解是( )A. x=2B. x=0C. x=-1D. x=-33.已知方程kx+b=0的解是x=3,则函数y= kx+b的图象可能是( )4.数形结合是解决数学问题常用的思想方法.如图,一次函数y= kx+b(k,b为常数,且k<0)的图象与直线y=13x都经过点A(3,1),当kx+b<13x时,根据图象可知,x的取值范围是( )A. x>3B. x<3C. x<1D. x>15. 小聪在画一次函数的图象时,他列表后,发现题中一次函数y=◆x+◆中的k和b看不清了,根据如下表格可知( )A. k=2,b=3B.k=−23,b=2x 0 3C. k=3,b=2D. k=1,b=-1 y 2 06. 身边的数学一辆汽车油箱中剩余的油量y(L)与已行驶的路程x( km)的对应关系如图所示,如果这辆汽车每千米耗油量相同,当油箱中剩余的油量为35 L时,该汽车已行驶的路程为( )A.150 kmB.165 kmC.125 kmD.350 km7.身体中的数据大拇指与小拇指尽量张开时,两指尖的距离称为“指距”,研究表明,一般情况下,人的身高h ( cm)与指距d( cm)之间的一次函数为h=9d+b,已知当d=20时,h=160,当某人的身高为178 cm时,他的指距约为( )A.21 cmB.22 cmC.23 cmD.24 cm8.甲、乙两车沿同一路线从A城出发前往B城,在整个行程中,汽车离A 城的距离y与时刻t的对应关系如图所示,关于下列结论:①A,B两城相距300 km;②甲车的平均速度是60 km/h,乙车的平均速度是100 km/h;③乙车先出发,先到达B 城;④甲车在9:30追上乙车.正确的有( )A.①②B.①③C.②④D.①④二、填空题(每题5分,共20分)9.如图,已知函数y=2x+b和y= ax-3的图象交于点(-2,-5),根据图象可得关于x 的方程2x+b= ax-3的解是.10.如图,一次函数y= kx+b的图象与正比例函数y=2x的图象互相平行,且经过点A,则一次函数y= kx+b 的表达式为.11.如图,在平面直角坐标系中,直线y=x-6分别与x轴、y轴交于点A,B,点P的坐标为(0,8).若点M在直线AB 上,则PM长的最小值为.12.生活应用快递员经常驾车往返于公司和客户之间.在快递员完成某次投递业务时,他与客户的距离s( km)与行驶时间t(h)之间的函数关系如图所示(因其他业务,曾在途中有一次折返,且快递员始终匀速行驶),那么快递员的行驶速度是km/h.三、解答题(共48分)13.(18 分)如图,在平面直角坐标系中,直线l经过点A(0,2),B(-3,0).(1)求直线l的函数表达式;(2)若点M(3,m)在直线l上,求m的值;(3)若y=-x+n的图象过点B,交y轴于点C,求△ABC的面积.14.(16 分)已知A,B两地之间有一条长440千米的高速公路,甲、乙两车分别从A,B两地同时出发,沿此公路相向而行,甲车先以100千米/小时的速度匀速行驶200 千米后与乙车相遇,再以另一速度继续匀速行驶4小时到达B地;乙车匀速行驶至A地,两车到达各自的目的地后停止,两车距A 地的路程y(千米)与各自的行驶时间x(小时)之间的函数关系如图所示.(1) m= ,n= ;(2)求两车相遇后,甲车距A地的路程y与x之间的函数关系式;(3)当乙车到达A地时,求甲车距A 地的路程.15.(14 分) 我国航天事业发展迅速,2024年4月25 日20时59分,神舟十八号载人飞船成功发射.某玩具店抓住商机,先购进了1 000件相关航天模型玩具进行试销,进价为50元/件.(1)设玩具售价为x元/件,全部售完的利润为y元,求利润y(元)关于售价x(元/件)的函数表达式;(2)当售价定为60元/件时,该玩具销售火爆,该店继续购进一批该种航天模型玩具,并从中拿出这两批玩具销售利润的20%用于支持某航模兴趣组开展活动,在成功销售完毕后,资助经费恰好为10 000元,请问该店继续购进了多少件航天模型玩具?一、1. A 2. D 3. C 4. A5. B 【点拨】将x=0,y=2;x=3,y=0分别代入y= kx+b中,得b=2,3k+b=0,解得k=−23.故选B.6. A7. B 【点拨】把d=20,h=160代入h=9d+b,得160=9×20+b,解得b=-20.所以h=9d-20.当h=178时,178=9d-20,解得d= 22.所以他的指距约为22 cm.8. D 【点拨】由图象可知,A,B 两城相距300 km,乙车先出发,甲车先到达B城,故①符合题意,③不符合题意;甲车的平均速度是300÷3=100( km/h),乙车的平均速度是300÷5=60( km/h),故②不符合题意;由图象知,甲车在9:3 0追上乙车,故④符合题意.综上所述,正确的有①④.故选D.二、9. x=-210. y=2x-4 【点拨】由一次函数y= kx+b的图象与正比例函数y=2x的图象互相平行可得k=2,然后把点(1,-2)的坐标代入y=2x+b即可求出b的值.11.√2【点拨】如图,过P点作PQ⊥y轴交直线AB 于Q,由垂线段最短可知,当PM⊥AB时,PM的长有最小值.在y=x-6中,当x=0时,y=-6;当y=8时,x=14,所以B(0,-6), Q(14,8).因为P(0,8),所以PQ=14,PB=14.所以BQ=√BP2+PQ2=14√2.因为S PQB=12BP⋅PQ=12BQ⋅PM,即14×14=14√2PM,所以PM=7√2,所以PM长的最小值为√212.35 【点拨】因为快递员始终匀速行驶,所以快递员的行驶速度是8.750.55−2×(0.35−0.2)=35(km/ℎ).三、13.【解】(1)设直线l的函数表达式为y= kx+b.把点A(0,2),B(-3,0)的坐标分别代入,得b=2,-3k+b=0,解得k=23.所以直线l的函数表达式为y=23x+2(2)当x=3时, 23×3+2=4.所以m=4.(3)因为y=-x+n的图象过点B,所以3+n=0,所以n=-3,所以y=-x-3. 所以当x=0时,y=-3.所以C(0,-3).所以AC=5.因为B(-3,0),所以OB=3.所以S ABC=12AC⋅OB=12×5×3=152.14.【解】(1)2;6(2)两车相遇后,甲车的速度是(440-200)÷(6-2)=60(千米/小时),所以两车相遇后,甲车距A地的路程y与x 之间的函数关系式为y=200+60(x-2)=60x+80(2<x≤6).(3)乙车的速度为(440-200)÷2=120(千米/小时).所以乙车到达A地所需时间为440÷120=113(小时).当x=113时,y=60×113+80=300,所以当乙车到达A地时,甲车距A地的路程为300千米.15.【解】(1)函数表达式为y=1000(x-50)=1000x-50 000.(2)设该店继续购进了m 件航天模型玩具,根据题意,得(60-50)(1000+m)×20%=10 000,解得m=4 000.答:该店继续购进了4 000件航天模型玩具.。
2023-2024学年沪科版八年级数学上册《第十二章 一次函数》同步练习题附有答案
2023-2024学年沪科版八年级数学上册《第十二章 一次函数》同步练习题附有答案学校:___________班级:___________姓名:___________考号:___________一、单选题(本大题共12小题,每小题3分,共36分)1.如图,在平面直角坐标系中,一次函数y x b =-+经过点(1,3)C ,与x 轴、y 轴分别交于点A 和点B ,在AOC 区域内(不含边界)的点有( )A .1,22⎛⎫ ⎪⎝⎭B .(1,2)C .(2,2)D .(3,2)2.函数y kx b =+(0k ≠)的图象如图所示,则函数y kx b =-的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限3.在平面直角坐标系中,将函数1y x =-的图象向下平移4个单位,平移后的图象与函数2y x b =-+的图象的交点恰好在第四象限,则b 的最大整数值为( )A .8B .9C .10D .114.已知点12(1,),(2,)A y B y -在函数91y x =-+的图像上,则( )A .12y y <B .12y y >C .12y y =D . 1y 与2y 的大小关系不能确定5.P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y=-0.4x 图象上的两点,则下列判断正确的是( ) A .y 1>y 2B .y 1<y 2C .当x 1<x 2时,y 1>y 2D .当x 1<x 2时,y 1<y 2 6.如图,是甲、乙两车在某时段速度随时间变化的图象,下列结论中错误的是( )A .在4到8秒内乙的速度都小于甲的速度B .在0到8秒内甲的速度每秒增加4米C .乙前4秒行驶的路程为48米D .两车到第3秒时行驶的路程相同A .①B .①C .①D .①8.如图,“漏壶”是一种古代计时器,在壶内盛一定量的水,水从壶下的小孔漏出,壶内壁有刻度,人们根据壶中水面的位置计算时间.若用x 表示漏水时间,y 表示壶底到水面的高度,下面的图象适合表示y 与x 的函数关系的是(不考虑水量变化对压力的影响)( )A .B .C .D .A .0x ≠B .3x ≠-C .1x ≠D .3x >-10.小明从家步行到学校需走的路程为1800米.图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图像提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行多少米.( )A .350B .355C .360D .37511.甲乙两车从A 城出发匀速驶向B 城,在整个行驶过程中,两车离开A 城的距离y (km )与甲车行驶的时间t (h )之间的函数关系如图,则下列结论错误的是( )A .A 、B 两城相距300千米B .乙车比甲车晚出发1小时,却早到1小时C .乙车出发后2.5小时追上甲车D .当甲乙两车相距50千米时,t 的值为56或 54或154或256 12.一次函数y kx b =+的图象如图所示,则不等式0kx+b <的解集是( )A .2x >-B .2x <-C .3x <-D .3x >-二、填空题(本大题共8小题,每小题3分,共24分)13.在同一坐标系内分别画出一次函数5y x =-和21y x =-的图像.(如图所示)则方程组521x y x y +=⎧⎨-=⎩的解为 .=+ y cx d20.如图,在平面直角坐标系中,若直线11y k x b =+与直线222y k x b =+相交于点A ,则方程组1122y k x b y k x b =+⎧⎨=+⎩的解是 .三、解答题(本大题共5小题,每小题8分,共40分)21.如图,直线1:1l y x =+与直线22:3l y x a =-+相交于点()1,P b .(1)求出a ,b 的值;(2)根据图象直接写出不等式2013x x a <+<-+的解集.22.为了增强公民的节水意识,某市制订了如下用水收费标准:用水量(吨)水费(元) 不超过10吨 每吨2.2元受条件限制,两种型号的家具不能同时生产,已知该企业能如期完成生产任务,设生产甲型家具x 套,生产这100套家具的总利润为y (万元).(1)求y 与x 之间的函数关系式;(2)求x 为何值时,y 最大,最大值是多少?25.如图,直线1:(0)l y kx b k =+≠与x 轴交于点(2,0)A -,与直线22:44l y x =-交于点(,4)P m ,直线1l 交y 轴于点B ,直线2l 交x 轴于点C .(1)求直线1l 的表达式;(2)请直接写出使得不等式44kx b x +<-成立的x 的取值范围.(3)在直线2l 上找点M ,使得MAC PBC S S =,求点M 的坐标.参考答案:1.B2.C3.B4.B5.C6.D7.A8.B9.B10.A11.C12.D。
沪科版八年级数学上册《12.2 一次函数》同步练习题及答案
沪科版八年级数学上册《12.2 一次函数》同步练习题及答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.已知正比例函数y=(k﹣2)x+k+2的k的取值正确的是( )A.k=2B.k≠2C.k=﹣2D.k≠﹣22.下列函数:(1)y=πx;(2)y=2x﹣1;(3)y=1x;(4)y=2﹣3x;(5)y=x2﹣1中,是一次函数的有( )A.4个B.3个C.2个D.1个3.在直角坐标系中,点M,N在同一个正比例函数图象上的是( )A.M(2,-3),N(-4,6)B.M(-2,3),N(4,6)C.M(-2,-3),N(4,-6)D.M(2,3),N(-4,6)4.若某正比例函数过(2,-3),则关于此函数的叙述不正确的是( ).A.函数值随自变量x的增大而增大B.函数值随自变量x的增大而减小C.函数图象关于原点对称D.函数图象过二、四象限5.关于直线y=-2x,下列结论正确的是( )A.图象必过点(1,2)B.图象经过第一、三象限C.与y=-2x+1平行D.y随x的增大而增大6.在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限7.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是( )A.k>3B.0<k≤3C.0≤k<3D.0<k<38.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是( )A.ab>0B.a﹣b>0C.a2+b>0D.a+b>09.在平面直角坐标系中,将直线l1:y=﹣3x﹣1平移后,得到直线l2:y=﹣3x+2,则下列平移方式正确的是( )A.将l1向左平移1个单位 B.将l1向右平移1个单位C.将l1向上平移2个单位 D.将l1向上平移1个单位10.把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是( )A.1<m<7B.3<m<4C.m>1D.m<4二、填空题11.当m=___________时,函数y=(m+3)x2m+1+4x﹣5(x≠0)是一次函数.12.若正比例函数y=(m﹣2)x∣m∣﹣2的图象在第一、三象限内,则m=_______.13.若一次函数y=(m﹣1)x﹣m+4的图象与y轴的交点在x轴的上方,则m的取值范围是________.14.如果一次函数y=mx+n的图象经过第一、二、四象限,则一次函数y=nx+m不经过第________象限.15.将直线y=2x﹣4向上平移5个单位后,所得直线的表达式是.那么将直线y=2x﹣4沿x轴向右平移3个单位得到的直线方程是.16.如图,把Rt△ABC放在平面直角坐标系内,其中∠CAB=90°,BC=5,点A(1,0),B(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC 扫过的面积为____cm2.三、解答题17.已知y-3与x成正比例,且当x=2时,y=7.(1)求y与x之间的函数表达式.(2)当x=-2时,求y的值.(3)当y=-3时,求x的值.18.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.19.已知函数y=(2m+1)x+m﹣3.(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限,求m的取值范围.20.已知一次函数y=kx﹣4,当x=2时,y=﹣3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x轴交点的坐标.21.如图,已知四边形ABCD是正方形,点B,C分别在直线y=2x和y=kx上,点A,D是x轴上两点.(1)若此正方形边长为2,k=_______.(2)若此正方形边长为a,k的值是否会发生变化?若不会发生变化,请说明理由;若会发生变化,求出a的值.22.已知直线y=23x-2分别交x轴,y轴于A,B两点,O是原点.(1)求△AOB的面积.(2)过△AOB的顶点能不能画出直线把△AOB的面积分成相等的两部分?如果能,可以画出几条?写出这样的直线所对应的函数表达式;如果不能,请说明理由.答案1.C2.B.3.A4.A5.C6.C7.A.8.C.9.B10.C11.答案为:﹣3,0,﹣1 2 .12.答案为:3.13.答案为:m<4且m≠114.答案为:二.15.答案为:y=2x+1;y=2x﹣7.16.答案为:16.17.解:(1)设y-3=kx.∵当x=2时,y=7∴7-3=2k,∴k=2.∴y=2x+3.(2)当x=-2时,y=-2×2+3=-1.(3)当y=-3时,-3=2x+3,∴x=-3.18.解:(1)∵点A的横坐标为3,且△AOH的面积为3 ∴点A的纵坐标为-2∴点A的坐标为(3,-2).∵正比例函数y=kx经过点A∴3k=-2,解得k=-2 3 .∴正比例函数的解析式为y=-23 x.(2)存在.∵△AOP的面积为5,点A的坐标为(3,-2) ∴OP=5.∴点P的坐标为(5,0)或(-5,0).19.解:(1)把(0,0)代入得m﹣3=0,m=3;(2)根据y随x的增大而减小说明k<0即2m+1<0,m<﹣1 2;(3)若图象经过第一、三象限,得m=3.若图象经过第一、二、三象限则,解得m>3综上所述:m≥3.20.解:(1)将x=2,y=﹣3代入y=kx﹣4得﹣3=2k﹣4,解得k=1 2 .故一次函数的解析式为y=12x-4.(2)将y=12x-4的图象向上平移6个单位得y=12x+2,当y=0时,x=﹣4故平移后的图象与x轴交点的坐标为(﹣4,0).21.解:(1)2 3∵正方形边长为2∴AB=2.在直线y=2x中当y=2时,x=1∴OA=1,OD=1+2=3∴C(3,2),将C(3,2)代入y=kx中得2=3k ,解得k=3. (2)k 的值不会发生变化理由:∵正方形边长为a∴AB=a在直线y=2x 中,当y=a 时,x=12a ∴OA=12a,OD=32a ∴C(32a,a). 将C(32a,a)代入y=kx 中,得a=k ×32a 解得k=23∴k 值不会发生变化.22.解:(1)令x =0,得y =-2;令y =0,得x =3.∴该直线与x 轴,y 轴的交点分别是A(3,0),B(0,-2)∴S △AOB =12×3×2=3. (2)过顶点能画出把△AOB 的面积分成相等两部分的直线,这样的直线共有3条. ①过点A(3,0)且过OB 的中点(0,-1)的直线.设此直线的函数表达式为y =k 1x +b 1(k 1≠0).把点(3,0),(0,-1)的坐标分别代入y =k 1x +b 1得⎩⎨⎧3k 1+b 1=0,b 1=-1,解得⎩⎨⎧k 1=13,b 1=-1.∴y =13x -1. ②过点B(0,-2)且过OA 的中点(32,0)的直线. 设此直线的函数表达式为y =k 2x +b 2(k 2≠0).把点(0,-2),(2,0)的坐标分别代入y =k 2x +b 2,得 ⎩⎨⎧b 2=-2,32k 2+b 2=0,解得⎩⎨⎧k 2=43,b 2=-2.∴y =43x -2. ③过点O 且过AB 的中点(32,-1)的直线. 设此直线的函数表达式为y =k 3x(k 3≠0).把点(32,-1)的坐标代入y =k 3x ,得 32k 3=-1,解得k 3=-23.∴y =-23x.。
八年级下册数学同步练习题库:一次函数(简答题:一般)
一次函数(简答题:一般)1、已知s是t的一次函数,且当t=1时,s=2;当t=-2时,s=23.(1)求这个一次函数的表达式.(2)求当t=2时,函数s的值.2、已知y﹣3与3x+1成正比例,且x=2时,y=6.5.(1)求y与x之间的函数关系式,并指出它是什么函数;(2)若点(a,2)在这个函数的图象上,求a.3、如图,直线的解析表达式为,且与轴交于点.直线经过点、,直线,交于点.(1)求点的坐标;(2)求直线的解析表达式;(3)求的面积;(4)在直线上存在异于点的另一个点,使得与的面积相等,求点的坐标.4、如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B(0,4),将直线AB 绕着点O顺时针旋转90°后,分别与x轴、y轴交于点D、C.且点C(0,3).(1)求直线AB的函数关系式;(2)连接BD,求△ABD的面积5、已知y与x-3成正比例,当x=4时,y=3.(1) 求出y与x之间的函数关系式;(2) y与x之间是什么函数关系?并在平面直角坐标系中画出该函数的图像;(3) 当x=2.5时,y的值为__________.6、已知与成正比例,且当时,.求:()与的函数关系.()当时,的值.7、已知直线y=-x+4.(1)直接写出直线与x轴、y轴的交点A、B的坐标;(2)画出图象;(3)求直线与坐标轴围成的三角形的面积.8、将函数的图像向上平移个单位长度,平移后的图像经过点.若点位于第一象限,求实数的取值范围.9、已知,直线在平面直角坐标系中与y轴交于点A,点B(﹣3,3)也在直线上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C也在直线上.求点A的坐标和直线的解析式;10、已知y与x+1.5成正比例,且x=2时,y="7."(1)求y与x之间的函数表达式;(2)若点P(-2,a)在(1)所得的函数图象上,求a.11、(12分)我们规定:若=(a,b), =(c,d),则·=ac+bd.如=(1,2), =(3,5),则·=1×3+2×5=13.(1)已知=(2,4), =(2,-3),求·;(2)已知=(x-1,1), =(x-1,x+1),求y=·;(3)判断y=·的函数图象与一次函数y=x-1的图象是否相交,请说明理由。
八年级数学上册试题 6.3一次函数的图象同步练习-苏科版(含答案)
6.3一次函数的图象一、选择题.1. 在平面直角坐标系x0y 中,函数y=-3x+1 的图象经过( ) A. 第一、二、 三象限 B. 第一、二、 四象限 C. 第一、三、 四象限 D. 第二、三 、四象限2. 已知一次函数y=kx+b 的图象如图所示,则y=-2kx-b 的图象可能是( )..C. D.3. 下列图象中,可以表示一次函数 y =kx+b 与正比例函数 y =kbx(k,b 为常数,且kb≠0) 的图象的是( )....4. 点 P (a,b) 在函数y=3x+2 的图象上,则代数式6a-2b+1 的值等于( ) A.5 B.3 C.-3 D.- 1D CB A B A5. 一次函数y=ax-a(a≠0) 的大致图象是( )....6. 如图,四个一次函数y=ax,y=bx,y=cx+1,y=dx-3 的图象如图所示,则 a,b,c,d 的大小关系是( )A. b>a>d>cB.a>b>c>dC. a>b>d>cD. b>a>c>d 7. 一次函数y=mx+n 与 y =mnx(mn ≠0), 在同一平面直角坐标系的图象是( )....8.1975年中国登山队成功登顶珠穆朗玛峰,如图是当年5月18~28日珠峰海拔8km,9km 处风速变化的真实记录,从图中可得到的正确结论是( ) ①同一天中,海拔越高,风速越大; ②从风速变化考虑,27日适合登山; ③海拔8km 处的平均风速约为20m/s.D B C A D C B AA.①②B.①③C.②③D.①②③9. 一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:①李师傅上班处距他家2000米;②李师傅路上耗时20分钟;③修车后李师傅骑车的速度是修车前的4倍;④李师傅修车用了5分钟,其中错误的是( )离家的时间(分钟)A.0 个B.1 个C.2 个D. 3 个10. 小明同学利用计算机软件绘制函数、b 为常数)的图象如图所示,由学习函数的经验,可以推断常数a 、b 的值满足 ( )A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0二、填空题11. 在平面直角坐标系中,函数 y=kx+b 的图象如图所示,则 kb 0(填“>”、“=” 或“<”).12.当直线 y =(2-2k)x+k-4 经过第二、三、四象限时,则 k 的取值范围是 13. 已知一次函数y=(2-2k)x+k-3 的图象经过第二、三、四象限,则k 的取值范围是 , 14. 匀速行驶的一列火车穿过一个隧道,车在隧道内的长度y(m) 与火车行驶时间 x (s) 之间的关系可用如图所示的图象描述,则该隧道的长度等于 .15. 一次函数 y =2x- 116. 一次函数 y=ax+b一定不经过第 象限 . 在直角坐标系中的图象如图所示,则化简a-b-|a+b|的是,17. 关 于x 的一次函数y=(k+2)x-2k+1, 其 中k 为常数且k≠-2 ①当k=0 时,此函数为正比例函数; ②无论k 取何值,此函数图象必经过(2,5);③若函数图象经过 (m,a),(m+3,a²-2)(m,a 为常数),则④无论 k 取何值,此函数图象都不可能同时经过第二、三、四象限. 上述结论中正确的序号有18. 已知一次函数 y =(11-a)x-7+a(a≠11) 的图象不经过第四象限,若关于 x 的不等式有且只有4个整数解,则满足条件的所有整数a 的和为三、解答题19. 已知,一次函数y=(1-3k)x+2k-1, 试回答:(1)k 为何值时,y 是x的正比例函数?(2)当函数图象不经过第一象限时,求k 的取值范围.20 .(1)直线y=2x-3 经过第象限;(2)若直线y=mx+n 经过第一、二、三象限,请直接写出m,n 的取值范围;(3)若直线y=mx+n 不经过第一象限,请直接写出m,n 的取值范围.21. (西丰县期末)已知一次函数y=3x+3 的图象与x 轴交于点A, 与y轴交于点B.( 1 )求A,B 两点的坐标;(2)在给定的直角坐标系中,画出一次函数y=3x+3 的图象.-3),C(-2,m) 三点,22. 如图,在平面直角坐标系中,一条直线经过A(1,1),B(3, (1 )求m的值;(2)设这条直线与y 轴相交于点D, 求△OCD的面积. Array23. 已知y-2 与x成正比例,当x=2 时,y=6. (1 )求y 与x之间的函数解析式.(2)在所给直角坐标系中画出函数图象.(3)此函数图象与x 轴交于点A, 与y 轴交于点B, 点C在x 轴上,若S=3, 请直接写出点C的坐标.24. 根据学习函数的经验,对经过点(0,1)和点(2,3)的函数y=- |kx-2 |+b 的图象与性质进行如下探究.(1)求函数的表达式;(2)用合理的方式画出函数图象,并写出这个函数的一条性质 ;(3)若关于x的方程- |kx-2 |+b=mx+4 有实数解,则m 的取值范围是,答案一、选择题,B. C. A.C.A.B.C.A.B.C.二、填空题11.<12. 1<k<4.13. 1<k<3.14. 900.15. 二 .16.-2b.17.②③④.18.27.三、解答题19. (1)∵y是x的正比例函数,∴2k- 1=0,解得:,∴当时,y 是x 的正比例函数.(2)当函数图象经过第二、四象限时,解得:;当函数图象经过第二、三、四象限时,解得:∴当函数图象不经过第一象限时,k 的取值范围20.(1) ∵k=2>0,b=-3<0,所以直线y=2x-3 经过第一、三、四象限;故答案为:一、三、四.(2)∵直线y=mx+n 经过第一、二、三象限,∴m>0,n>0,(3)∵直线y=mx+n 不经过第一象限,∴直线y=mx+n 经过第二、三、四象限,∴m<0,n≤0.21 . (1)在y=3x+3 中,令y=0, 则x=- 1; 令x=0, 则y=3,所以,点A 的坐标为( -1,0),点B 的坐标为(0,3);(2)如图:22. (1)设直线的解析式为y=kx+b, 把A(1,1),B(3,-3) 代入,可得:解得:,所以直线解析式为:y=-2x+3,把C(-2,m) 代入y=-2x+3 中,得: m=7;( 2 ) 令x=0, 则y=3,所以直线与y 轴的交点坐标为(0,3),由 ( 1)得点C 的坐标为(-2,7),所以△OCD的面23. (1)∵y-2 与x 成正比例,∴设y-2=kx(k≠0),∵当x=2 时,y=6,∴6-2=2k,解得k=2,∴y-2=2x,函数关系式为:y=2x+2;( 2)当x=0 时,y=2,当y=0 时,2x+2=0, 解得x=- 1,所以,函数图象经过点B(0,2),A(-1,0),函数图象如图:( 3)∵点C 在x轴上,若S △w=3,∴AC=3,由图象得:C(-4,0) 或 ( 2,0).24 . (1)∵函数y=-|kx-2|+b 的图象经过点(0,1)和点(2,3),*解∴函数的表达式为y=- |x-2 |+3;(2)列表:描点、连线画出函数图象如图:函数的一条性质:函数有最大值3.故答案为函数有最大值3.(3)把点(2,3)代入y=mx+4 得,3=2m+4,解得事由图象可知,关于x 的方程- |kx-2|+b=mx+4 有实数解,则m的取值范围是m> 1,故答案为或m>1.。
人教版八年级数学下册19.2.2一次函数(第一课时 一次函数的概念)同步练习题
一次函数 第一课时一. 选择题1.若函数y=(m-1)x∣m∣-5是一次函数,则m 的值为( ) A .±1 B .-1C .1D .2 2.等腰三角形底角与顶角之间的函数关系是( )A .正比例函数B .一次函数C .反比例函数D .二次函数A .1个B .2个C .3个D .4个A .1个B .2个C .3个D .4个 5.嘉嘉买了6支笔花了9元钱,琪琪买了同样售价的x 支笔,还买了单价为5元的三角尺两幅,用y (元)表示琪琪花的总钱数,那么y 与x 之间的关系式应该是( )A . 1.510y x =+B .510y x =+C . 1.55y x =+D .55y x =+A .3B .1C .2D .3或17.一次函数y=(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m ,n 的值为( )A .m≠2,n=2B .m=2,n=2C .m≠2,n=1D .m=2,n=1 8.已知初一(6)班的班费总共为200元,现在要为全班x 个同学每人购买一个笔袋,笔袋单价为2元,则购买后剩余班费y 元与班级人数x 之间的函数关系式为 ( )A .2y x =B .2002y x =-C .2200y x =-D .2002y x =+9.某商场存放处每周的存车量为5000辆次,其中自行车存车费是毎辆一次1元,电动车存车费为每辆一次2元,若自行车存车量为x 辆次,存车的总收入为y 元,则y 与x 之间的关系式是( )A .y =﹣x +10000B .y =﹣2x +5000C .y =x +1000D .y =x +500010.若一次函数y=kx+17的图象经过点(-3,2),则k 的值为( )A .-6B .6C .-5D .5二、填空题11.已知23(2)1m y m x m -=+++是一次函数,则m =__________.12.已知一次函数24y x =+的图象经过点(),8A m ,那么m 的值等于______.13.已知函数y=(k+1)x+k²-1.当k____时, 它是一次函数;当k_______时,它是正比例函数.14.直线36y x =-与坐标轴所围成的三角形的面积是_____.三、解答题15.某种动物的身高()y dm 是其腿长()x dm 的一次函数.当动物的腿长为6dm 时,身高为45.5dm ;当动物的腿长为14dm 时,身高为105.5dm .(1)写出y 与x 之间的关系式;(2)当该动物腿长10dm 时,其身高为多少?16.某地长途汽车客运公规定旅客可随携带一定质量的行李,如果超过规定需要购买行李票,行李票费用y 元是行李质量xkg 的一次函数,如图所示.(1)求y 与x 之间的函数表达式;(2)求旅客最多可免费携带行李的质量是多少?17.已知一次函数24y x =-+.(1)在如图所示平面直角坐标系中,画出该函数的图象;(2)若一次函数24=-+的图象与x轴、y轴分别交于A、B两点,求出A、B两点的坐标;y x(3)求AOB∆的面积;(4)利用图象直接写出:当0y时,x的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题
1.已知一个正比例函数的图象经过点(-1,3),则这个正比例函数的表达式是 .
2
.函数y =x 的取值范围是_______________.
3.已知一次函数y =2x +4的图像经过点(m ,8),则m =________.
4.若函数y = -2x m +2 +n -2正比例函数,则m 的值是 ,n 的值为________.
5.一次函数113
y x =-+的图象与x 轴的交点坐标是_________,与y 轴的交点坐标是__________. 6.若直线y =kx +b 平行于直线y =5x +3,且过点(2,-1),则k =______,b =______.
7.某一次函数的图象经过点(1-,3),且函数y 随x 的增大而减小,请你写出一个符合条件的函数解析式______________________.
8.现有笔记本500本分给学生,每人5本,则余下的本数y 和学生数x 之间的函数解析式为_________________,自变量x 的取值范围是______________.
9.一次函数12-=x y 一定不经过第 象限.
10.已知直线6+=x y 与x 轴,y 轴围成一个三角形,则这个三角形面积为 .
11.已知一次函数y=-x -(a -2),当a_____时,函数的图象与y 轴的交点在x 轴的下方.
12.已知一次函数y=(m+2)x+4m-8的图象与x 轴交于其正半轴,则m 的范围为____________
二、选择题
13.直线y=x-1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形, 则满足条件的点C 最多有( ) A.4个 B.5个 C.7个 D.8个
14.如图,直线y=kx+b 与坐标轴的两个交点分别为A (2,0)和B (0,-3),
则不等式kx+b+3≥0的解集是( )A :x ≥0 B :x ≤0 C :x ≥2 D :x ≤2 15.已知:a b c k b c a c a b
===+++,则直线2y kx k =+一定经过 ( ) (A )第一、二象限 (B )第二、三象限 (C )第三、四象限 (D )第一、四象限
16.已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( )
17、若点(-4,y 1),(2,y 2)都在直线y=1x t 3
-+上,则y 1与y 2的大小关系是 ( ) A .y 1>y 2 B .y 1=y 2
C .y 1<y 2
D .无法确定 三、解答题
17.已知,直线y kx b =+经过点A (3,8)和B (6-,4-).求:(1)k 和b 的值;(2)求当3x =-时,y 的值
18.已知正比例函数2
8(1)m y m x -=+.(1)若函数图象从左到右呈上升趋势,则m 的范围是什么?
(2)求此函数的表达式.
A B
o y x
19.已知2y -与x 成正比,且当1x =时,6y =-.
(1)求y 与x 之间的函数关系式;(2)若点(a ,2)在这个函数图象上,求a .
20如右图:一次函数的图象经过A 、B 两点。
(1)求直线AB 的解析式(2)求△AOC 的面积
21.已知函数(21)3y m x m =++-。
(1)若函数图象经过原点,求m 的值;
(2)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.
22.作出函数24y x =-的图象,并根据图象回答下列问题:
(1)当 -2≤x ≤4时,求函数y 的取值范围;
(2)当x 取什么值时,y <0,y =0,y>0?
(3)当x 取何值时,-4<y <2?
23、在直角坐标系中,点A 的坐标为
(1,0),•以OA •为边在第四象限内作
等边△AOB ,点C 为x 轴的正半轴上一动点
(OC >1),连结BC ,•以BC •为边在
第四象限内作等边△CBD ,直线DA 交y 轴于点E .
(1)试问△OBC 与△ABD 全等吗?并证明你的结论.
(2 ) 求线段AE 的长。