概率论与数理统计公式集锦(2014.11)

合集下载

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全一、概率基本公式1.事件的概率:对于事件A,在随机试验中发生的次数记为n(A),则事件A的概率为P(A)=n(A)/n,其中n为试验总次数。

2.互斥事件的概率:对于互斥事件A和B,有P(A∪B)=P(A)+P(B)。

3.事件的余事件概率:设事件A为必然事件,全集的概率为P(S)=1,事件A的余事件为A',则有P(A')=1-P(A)。

4.条件概率:对于两个事件A和B,假设事件B已经发生,事件A发生的概率记为P(A,B),则P(A,B)=P(A∩B)/P(B)。

二、随机变量及其概率分布1.离散型随机变量:设X是一个离散型随机变量,其概率函数为P(X=k),其中k为X的取值,概率函数满足P(X=k)≥0,且∑P(X=k)=12. 连续型随机变量:设X是一个连续型随机变量,其概率密度函数为f(x),概率密度函数满足f(x)≥0,且∫f(x)dx = 13. 随机变量的数学期望:对于离散型随机变量X,其数学期望为E(X) = ∑k*P(X=k);对于连续型随机变量X,其数学期望为E(X)=∫xf(x)dx。

4. 随机变量的方差:对于离散型随机变量X,其方差为Var(X) =E(X^2) - [E(X)]^2;对于连续型随机变量X,其方差为Var(X) = E(X^2) - [E(X)]^2三、常见的概率分布1.伯努利分布:表示一次实验成败的概率分布,概率函数为P(X=k)=p^k(1-p)^(1-k),其中0≤p≤12.二项分布:表示n次独立重复的伯努利试验中成功次数的概率分布,概率函数为P(X=k)=C(n,k)*p^k(1-p)^(n-k),其中C(n,k)为组合数。

3. 泊松分布:表示单位时间或单位面积内发生事件次数的概率分布,概率函数为P(X=k) = (lambda^k)/(k!)*e^(-lambda),其中lambda为平均发生率。

4.均匀分布:表示在一个区间内取值相等的概率分布,概率密度函数为f(x)=1/(b-a),其中[a,b]为区间。

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式概率公式整理1.随机事件及其概率吸收律:AAB A AA A =∪=∅∪Ω=Ω∪)(A B A A A A A =∪∩∅=∅∩=Ω∩)()(AB A B A B A −==−反演律:B A B A =∪BA AB ∪=∩∪n i i n i iA A 11===∪∩n i i n i i A A 11===2.概率的定义及其计算)(1)(A P A P −=若B A ⊂)()()(A P B P A B P −=−⇒对任意两个事件A ,B ,有)()()(AB P B P A B P −=−加法公式:对任意两个事件A ,B ,有)()()()(AB P B P A P B A P −+=∪)()()(B P A P B A P +≤∪)()1()()()()(2111111n n n n k j i k j i n j i j i n i i n i i A A A P A A A P A A P A P A P ⋯⋯∪−≤<<≤≤<≤==−+++−=∑∑∑3.条件概率()=A B P )()(A P AB P 乘法公式())0)(()()(>=A P A B P A P AB P ()())0)(()()(12112112121>=−−n n n n A A A P A A A A P A A P A P A A A P ⋯⋯⋯⋯w w w .k h d a w .c o m 课后答案网全概率公式∑==n i i AB P A P 1)()()()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k =∑==n i i i k k B A P B P B A P B P 1)()()()(4.随机变量及其分布分布函数计算)()()()()(a F b F a X P b X P b X a P −=≤−≤=≤<5.离散型随机变量(1)0–1分布1,0,)1()(1=−==−k p p k X P k k (2)二项分布),(p n B 若P (A )=pnk p p C k X P k n k k n ,,1,0,)1()(⋯=−==−*Possion 定理0lim >=∞→λn n np 有⋯,2,1,0!)1(lim ==−−−∞→k k e p p C k k n n k n k n n λλ(3)Poisson 分布)(λP ⋯,2,1,0,!)(===−k k e k X P kλλw w w .k h d a w .c o m 课后答案网6.连续型随机变量(1)均匀分布),(b a U ⎪⎩⎪⎨⎧<<−=其他,0,1)(b x a ab x f ⎪⎪⎩⎪⎪⎨⎧−−=1,,0)(ab a x x F (2)指数分布)(λE ⎪⎩⎪⎨⎧>=−其他,00,)(x e x f x λλ⎩⎨⎧≥−<=−0,10,0)(x e x x F x λ(3)正态分布N (µ,σ2)+∞<<∞−=−−x e x f x 222)(21)(σµσπ∫∞−−−=x t t e x F d 21)(222)(σµσπ*N (0,1)—标准正态分布+∞<<∞−=−x e x x 2221)(πϕ+∞<<∞−=Φ∫∞−−x t e x x t d 21)(22π7.多维随机变量及其分布二维随机变量(X ,Y )的分布函数∫∫∞−∞−=xy dvdu v u f y x F ),(),(w w w .k h d a w .c o m 课后答案网边缘分布函数与边缘密度函数∫∫∞−+∞∞−=xX dvdu v u f x F ),()(∫+∞∞−=dv v x f x f X ),()(∫∫∞−+∞∞−=yY dudv v u f y F ),()(∫+∞∞−=du y u f y f Y ),()(8.连续型二维随机变量(1)区域G 上的均匀分布,U (G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(G y x A y x f (2)二维正态分布+∞<<−∞+∞<<∞−×−=⎥⎥⎦⎤⎢⎢⎣⎡−+−−−−−−y x e y x f y y x x ,121),(2222212121212)())((2)()1(21221σµσσµµρσµρρσπσ9.二维随机变量的条件分布0)()()(),(>=x f x y f x f y x f X X Y X 0)()()(>=y f y x f y f Y Y X Y ∫∫+∞∞−+∞∞−==dy y f y x f dy y x f x f Y Y X X )()(),()(∫∫+∞∞−+∞∞−==dxx f x y f dx y x f y f X X Y Y )()(),()()(y x f Y X )(),(y f y x f Y =)()()(y f x f x y f Y X X Y =)(x y f X Y )(),(x f y x f X =)()()(x f y f y x f X Y Y X =w w w .k h d a w .c o m 课后答案网10.随机变量的数字特征数学期望∑+∞==1)(k kk p x X E ∫+∞∞−=dx x xf X E )()(随机变量函数的数学期望X 的k 阶原点矩)(k X E X 的k 阶绝对原点矩)|(|k X E X 的k 阶中心矩)))(((k X E X E −X 的方差)()))(((2X D X E X E =−X ,Y 的k +l 阶混合原点矩)(l k Y X E X ,Y 的k +l 阶混合中心矩()l k Y E Y X E X E ))(())((−−X ,Y 的二阶混合原点矩)(XY E X ,Y 的二阶混合中心矩X ,Y 的协方差()))())(((Y E Y X E X E −−w ww .k h d a w .c o m 课后答案网X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎟⎟⎠⎞⎜⎜⎝⎛−−)()())())(((X 的方差D (X )=E ((X -E (X ))2))()()(22X E X E X D −=协方差()))())(((),cov(Y E Y X E X E Y X −−=)()()(Y E X E XY E −=())()()(21Y D X D Y X D −−±±=相关系数)()(),cov(Y D X D Y X XY =ρw w w .k h d a w .c o m 课后答案网。

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全概率论和数理统计作为数学的两个重要分支,被广泛应用于各个领域。

无论是在学术研究还是实际应用中,熟悉并掌握相关的公式是非常重要的。

本文将为您提供概率论与数理统计公式的大全,帮助您更好地理解和应用这两门学科。

一、概率论公式1. 概率公式- 概率的定义:P(A) = N(A) / N(S),其中P(A)表示事件A发生的概率,N(A)代表事件A的样本点个数,N(S)表示样本空间中的样本点总数。

- 加法法则:P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A或事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。

- 乘法法则:P(A∩B) = P(A) × P(B|A),其中P(B|A)表示在事件A 发生的条件下,事件B发生的概率。

2. 条件概率公式- 条件概率的定义:P(A|B) = P(A∩B) / P(B),其中P(A|B)表示在事件B发生的条件下,事件A发生的概率。

- 全概率公式:P(A) = ∑[P(Bi) × P(A|Bi)],其中Bi为样本空间的一个划分,P(Bi)表示事件Bi发生的概率,P(A|Bi)表示在事件Bi发生的条件下,事件A发生的概率。

3. 事件独立性公式- 事件A和事件B独立的定义:P(A∩B) = P(A) × P(B),即事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。

- 事件的相互独立:若对于任意的事件A1,A2,...,An,有P(A1∩A2∩...∩An) = P(A1) × P(A2) × ... × P(An),则称事件A1,A2,...,An相互独立。

4. 随机变量- 随机变量的定义:随机变量X是样本空间到实数集的映射。

- 随机变量的分布函数:F(x) = P(X≤x),表示随机变量X小于等于x的概率。

- 随机变量的概率密度函数(连续型随机变量):f(x)是非负函数,且对于任意实数区间[a, b],有P(a≤X≤b) = ∫[a, b]f(x)dx。

概率论与数理统计公式大全

概率论与数理统计公式大全
这种试验称为伯努利概型,或称为 重伯努利试验。
用 表示每次试验 发生的概率,则 发生的概率为 ,用 表示 重伯努利试验中 出现 次的概率,
, 。
第二章 随机变量及其分布
(1)离散型随机变量的分布律
设离散型随机变量 的可能取值为Xk(k=1,2,…)且取各个值的概率,即事件(X=Xk)的概率为
P(X=xk)=pk,k=1,2,…,
则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:

显然分布律应满足下列条件:
(1) , , (2) 。
(2)连续型随机变量的分布密度
设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有

则称 为连续型随机变量。 称为 的概率密度函数或密度函数,简称概率密度。
密度函数具有下面4个性质:
1° 0≤P(A)≤1,
2° P(Ω) =1
3° 对于两两互不相容的事件 , ,…有
常称为可列(完全)可加性。
则称P(A)为事件 的概率。
(8)古典概型
1° ,
2° 。
设任一事件 ,它是由 组成的,则有
P(A)= =
(9)几何概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,
-A称为事件A的逆事件,或称A的对立事件,记为 。它表示A不发生的事件。互斥未必对立。
②运算:
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C
分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)
德摩根率: ,
(7)概率的公理化定义

概率论与数理统计公式汇总

概率论与数理统计公式汇总

1 n
n i 1
X
k i
,
k
1,2
(5)样本 k
阶中心距: Bk

Mk

1 n
n
(Xi
i 1

X )k ,k
2,3
3、三大抽样分布
(1) 2 分布:设随机变量 X1, X 2 X n 相互独立,且都服从标准正态分布 N (0,1) ,
则随机变量

2

X
2 1

X
2 2


k
(
x1
,
x2
,
,
xn
)
4.估计量的评价标准


无偏性 设 (x1, x2,L , xn) 为未知参数 的估计量。若 E( )= ,


则称 为 的无偏估计量。






设 1 1(x1, x,2 ,L , xn) 和 2 2 (x1, x,2 ,L , xn) 是 未 知 参
7、协方差和相关系数的性质
(1) Cov( X , X ) D( X ) Cov( X ,Y ) Cov(Y , X )
(2) Cov( X1 X 2 ,Y ) Cov( X1,Y ) Cov( X 2 ,Y )
Cov(aX c,bY d ) abCov( X ,Y )
P(A∪B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A∪B)=P(A)+P(B) P(A-B)=P(A)-P(AB), B A 时 P(A-B)=P(A)-P(B)
条件概率公式 P(B A) P( AB) P( A)

概率论数理统计公式整理

概率论数理统计公式整理

概率论数理统计公式整理一、概率论公式1.定义公式:-事件概率的定义:若E为随机试验的一个事件,S为样本空间,则事件E发生的概率可以表示为P(E)=n(E)/n(S),其中n(E)表示事件E中元素的个数,n(S)表示样本空间S中元素的总数。

2.概率计算公式:-加法公式:P(A∪B)=P(A)+P(B)-P(A∩B),其中A,B为两个事件。

-条件概率公式:P(A,B)=P(A∩B)/P(B),其中A,B为两个事件,且P(B)≠0。

-乘法公式:P(A∩B)=P(A)P(B,A),其中A,B为两个事件。

3.全概率公式与贝叶斯公式:-全概率公式:设B1,B2,...,Bn为样本空间S的一组互不相容的事件,并且它们构成了对S的一个完全划分,即Bi∩Bj=∅(i≠j),且B1∪B2∪...∪Bn=S,则对于任意事件A,有P(A)=ΣP(A,Bi)P(Bi),其中i=1,2,...,n。

-贝叶斯公式:设B1,B2,...,Bn为样本空间S的一组互不相容的事件,并且它们构成了对S的一个完全划分,即Bi∩Bj=∅(i≠j),且B1∪B2∪...∪Bn=S,则对于任意事件A,有P(Bi,A)=P(A,Bi)P(Bi)/ΣP(A,Bj)P(Bj),其中i=1,2,...,n。

二、数理统计公式1.随机变量的概率分布:-离散型随机变量的概率分布:P(X=x)=p(x),其中x为随机变量X的取值,p(x)为概率质量函数。

- 连续型随机变量的概率密度函数: f(x) ≥ 0,且∫f(x)dx = 12.随机变量的数学期望:- 离散型随机变量的数学期望: E(X) = Σxip(xi),其中xi为随机变量X的取值,p(xi)为X取值为xi的概率。

- 连续型随机变量的数学期望: E(X) = ∫xf(x)dx。

3.方差和标准差:- 离散型随机变量的方差: Var(X) = E[(X - E(X))^2] = Σ(xi - E(X))^2p(xi)。

概率论与数理统计自学考试公式大全

概率论与数理统计自学考试公式大全

概率论与数理统计重点公式1、)()()()(AB P B P A P B A P -+=2、若A 、B 独立,则)()()(B P A P AB P ⋅=3、条件概率=)/(A B P )()(A P AB P 4、乘法公式:)/()()(A B P A P AB P = 5、二项分布:),(~p n B X分布律:k n kk n p p C k X P --==)1(}{, 其中n k p ,,2,1,0,10 =<<期望:np 方差:)1(p np - 6、泊松分布:)(~λP X分布律:λλ-==e k k X P k!}{,0>λ, 2,1,0=k期望: λ 方差: λ7、均匀分布:),(~b a U X概率密度:⎪⎩⎪⎨⎧-=,0,1)(ab x f 其他, 期望:2ba + 方差:12)(2a b -8、指数分布:)(~λE X概率密度:⎩⎨⎧≤>=-0,00,)(x x e x f x λλa ≤x ≤b分布函数:⎩⎨⎧≤>-=-0,00,1)(x x e x F x λ期望:λ1 方差:21λ9、正态分布:概率密度:222)(21)(σμσπ--=x ex f ,期望: μ方差: 2σ10、若X 是连续型随机变量,)(x F 是分布函数,则概率运算公式为: (1))(}{a F a x P =<(2))()(}{a F b F b x a P -=<< (3))(1}{a F a x P -=>11、若X 是连续型随机变量,)(x f 是概率密度,则概率运算公式为: (1)dx x f aa x P )(}{⎰∞-=<(2)dx x f a bb x a P )(}{⎰=<< (3)dx x f a dx x f aa x P )()(1}{⎰⎰∞+=∞--=>12、若X 是连续型随机变量,)(x f 是概率密度,则期望运算公式为:dx x xf X E )()(⎰∞-∞+=13、方差的简便计算公式22)]([)()(X E X E X D -=),(~2σμN X +∞<<∞-x14、期望的性质 (1)C C E =)( (2))()(X kE kX E =(3))()()(Y E X E Y X E ±=±(4)若X 与Y 独立,则)()()(Y E X E XY E ⋅= 15、方差的性质(1)0)(=C D ,)()(X D C X D =+ (2))()(2X D k kX D =(3)若X 与Y 独立,则)()()(Y D X D Y X D +=± 16、协方差与相关系数)()()(),(Y E X E XY E Y X Cov ⋅-=)()(),(Y D X D Y X Cov XY ⋅=ρ17、切比雪夫不等式2)(})({εεX D X E X P ≤≥- 2)(1})({εεX D X E X P -≥<-18、大数定律(1)1lim =⎪⎪⎭⎫ ⎝⎛<-∞→εp n m P n (2)11lim 1=⎪⎪⎭⎫⎝⎛<-∑=∞→εμn i i n X n P 19、中心极限定理(1))(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→σμ(2))()1(lim x x p np np Z P n n Φ=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--∞→ 20、样本均值与样本方差 样本均值∑==ni i x n x 11样本方差∑=--=n i ix x n s 122.)(11 样本标准差.)(1112∑=--=n i ix x n s μ=)(X E ,nX D 2)(σ=,22)(σ=s E21、设n x x x ,,,21 为来自正态总体),(2σμN 的一个样本, 若未知2σ,则)1(~)1()(22222---∑n s n x x iχσσ=若已知2σ,则)(~)(222n x xiχσ∑-22、矩估计、极大似然估计x =μˆ 22ˆn s =σ,其中∑=-=ni i n x x n s 122.)(123、区间估计已知方差2σ,估计均值μ,区间⎥⎦⎤⎢⎣⎡+-n u x n u x σσαα22,未知方差2σ,估计均值μ,区间⎥⎦⎤⎢⎣⎡-+--n s n t x n s n t x )1(,)1(22αα 估计方差2σ,区间⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----)1()1(,)1()1(2212222n s n n sn ααχχ 24、假设检验两类错误第一类错误 0H 成立,拒绝0H 第二类错误 1H 成立,接受0H 25、u 检验前提:已知2σ,00:μμ=H ,01:μμ≠H 统计量nx u 0σμ-=拒绝域),(),(22+∞--∞=ααu u W26、t 检验前提:未知2σ,00:μμ=H ,01:μμ≠H 统计量ns x t 0μ-=拒绝域)),1(())1(,(22+∞----∞=n t n t Wαα27、2χ检验 前提:2020:σσ=H ,2021:σσ≠H统计量2022)1(σχs n -=拒绝域)),1(())1(,0(22221+∞--=-n n W ααχχ 28、回归方程x y 10ˆˆˆββ+= 其中∑∑∑--==221ˆxn x y x n y x L L ii ixxxy βx y 10ˆˆββ-= 即直线x y 10ˆˆˆββ+=经过点),(y x 29、回归平方和、剩余平方和∑-=ii y ys 2)ˆ(回∑-ii i y y s 2)ˆ(=剩30、单边检验。

概率论与数理统计公式大全

概率论与数理统计公式大全

第一章P(A+B)=P(A)+P(B)- P(AB)特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式概率的乘法公式全概率公式:从原因计算结果Bayes 公式:从结果找原因第二章二项分布(Bernoulli 分布)——X~B(n,p)泊松分布——X~P(λ)概率密度函数怎样计算概率均匀分布X~U(a,b) 指数分布X~Exp (θ)分布函数对离散型随机变量对连续型随机变量 分布函数与密度函数的重要关系: 二元随机变量及其边缘分布分布规律的描述方法联合密度函数联合分布函数联合密度与边缘密度离散型随机变量的独立性连续型随机变量的独立性第三章数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义● E(a)=a ,其中a 为常数● E(a+bX)=a+bE(X),其中a 、b 为常数● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量随机变量g(X)的数学期望常用公式方差 定义式常用计算式常用公式)()()|(B P AB P B A P =)|()()(B A P B P AB P =)|()(A B P A P =∑==n k k k B A P B P A P 1)|()()(∑==nk k k i i k B A P B P B A P B P A B P 1)|()()|()()|(),...,1,0()1()(n k p p C k X P k n k k n =-==-,,...)1,0(!)(===-k e k k X P k,λλ1)(=⎰+∞∞-dx x f )(b X a P ≤≤⎰=≤≤badxx f b X a P )()()0(1)(/≥=-x e x f x θθ∑≤==≤=xk k X P x X P x F )()()(⎰∞-=≤=x dt t f x X P x F )()()(⎰∞-=≤=x dt t f x X P x F )()()(),(y x f ),(y x F 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f 1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=⎰+∞∞-=dyy x f x f X ),()(⎰+∞∞-=dxy x f y f Y ),()(}{}{},{j Y P i X P j Y i X P =====)()(),(y f x f y x f Y X =∑+∞-∞=⋅=k kkP xX E )(⎰+∞∞-⋅=dx x f x X E )()(∑=k kk p x g X g E )())((∑∑=i j ij i px X E )(dxdy y x xf X E ⎰⎰=),()()()()(Y E X E Y X E +=+∑∑=i jijj i p y x XY E )(dxdy y x xyf XY E ⎰⎰=),()()()()(,Y E X E XY E Y X =独立时与当()⎰+∞∞-⋅-=dx x f X E x X D )()()(2[]22)()()(X E X E X D -=)(1)(b x a ab x f ≤≤-=)()('x f x F =当X 、Y 相互独立时:方差的性质D(a)=0,其中a 为常数D(a+bX)=b2D(X),其中a 、b 为常数当X 、Y 相互独立时,D(X+Y)=D(X)+D(Y) 协方差与相关系数协方差的性质独立与相关独立必定不相关 相关必定不独立 不相关不一定独立第四章 正态分布标准正态分布的概率计算 标准正态分布的概率计算公式)()()(a a Z P a Z P Φ=<=≤)(1)()(a a Z P a Z P Φ-=>=≥)()()(a b b Z a P Φ-Φ=≤≤1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P一般正态分布的概率计算一般正态分布的概率计算公式第五章 卡方分布t 分布F 分布正态总体条件下 样本均值的分布:样本方差的分布:两个正态总体的方差之比第六章点估计:参数的估计值为一个常数 矩估计 最大似然估计似然函数均值的区间估计——大样本结果))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+)()()(Y D X D Y X D +=+)()()(),(Y E X E XY E Y X Cov -=)()(),(Y D X D Y X Cov XY =ρ[][]{})()()()()(Y E X E XY E Y E Y X E X E -=--())()()(),(22X D X E X E X X Cov =-=),(),(Y X abCov bY aX Cov =),(),(),(Z Y Cov Z X Cov Z Y X Cov +=+),(~2σμN X 222)(21)(σμσπ--=x ex f 2)(,)(σμ==X D X E )(1)(a a -Φ-=Φ)1,0(~),(~2N X Z N X σμσμ-=⇔)()()(σμ-Φ=<=≤a a X P a X P )(1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P )(~)1,0(~212n X N X n i i χ∑=,则若())(~1),,(~21222n Y N Y ni i χμσσμ∑=-则若),(~//),(~),(~21212212n n F n V n U n V n U 则若χχ),(~2nN X σμ)1,0(~/N nX σμ-)1(~)1(222--n S n χσ)1(~/--n t ns X μ)1,1(~//2122212221--n n F S S σσ);(1θi n i x f L ∏==);(1θi ni x p L ∏==则若),(~),1,0(~2n Y N X χ)(~/n t n Y X正态总体方差的区间估计两个正态总体均值差的置信区间大样本或正态小样本且方差已知 两个正态总体方差比的置信区间第七章假设检验的步骤① 根据具体问题提出原假设H0和备择假设H1 ② 根据假设选择检验统计量,并计算检验统计值 ③ 看检验统计值是否落在拒绝域,若落在拒绝域则拒绝原假设,否则就不拒绝原假设。

(完整版)概率论与数理统计公式整理(超全版)

(完整版)概率论与数理统计公式整理(超全版)
,( , ,…, ),通常叫先验概率。 ,( , ,…, ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。
(17)伯努利概型
我们作了 次试验,且满足
每次试验只有两种可能结果, 发生或 不发生;
次试验是重复进行的,即 发生的概率每次均一样;
每次试验是独立的,即每次试验 发生与否与其他次试验 发生与否是互不影响的。
并且同时满足P(ABC)=P(A)P(B)P(C)
那么A、B、C相互独立。
对于n个事件类似。
(15)全概公式
设事件 满足
1° 两两互不相容, ,
2° ,
则有

(16)贝叶斯公式
设事件 , ,…, 及 满足
1° , ,…, 两两互不相容, >0, 1,2,…, ,
2° , ,

,i=1,2,…n。
此公式即为贝叶斯公式。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1 P( /A)=1-P(B/A)
(13)乘法公式
乘法公式:
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有
… …… … 。
(14)独立性
①两个事件的独立性
设事件 、 满足 ,则称事件 、 是相互独立的。
则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:

显然分布律应满足下列条件:
(1) , , (2) 。
(2)连续型随机变量的分布密度
设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有

则称 为连续型随机变量。 称为 的概率密度函数或密度函数,简称概率密度。

概率论与数理统计公式整理(完整精华版)

概率论与数理统计公式整理(完整精华版)

第1章随机事件及其概率第二章随机变量及其分布概率论与数理统计公式(全)第三章二维随机变量及其分布如果二维随机向量■ (X ,Y )的所有可能取值为至多可列 个有序对(x,y ),则称匕为离散型随机量。

设.=(X ,Y )的所有可能取值为(x 「y j )(i,j =1,2-), 且事件{ =(X i ,y j )}的概率为p j,,称P {(X,Y) =(<『)}二 pj, j =12 )为• =( X ,Y )的分布律或称为 X 和Y 的联合分布律。

联合分布有时也用下面的概率分布表来表示:这里p j 具有下面两个性质:(1) p j > 0 (i,j=1,2,…); (2) 二二 p ij =1.i j(1)联合 离散型 分布概率论与数理统计公式(全)概率论与数理统计公式(全)概率论与数理统计公式(全)所谓自由度是指独立正态随机变量的个数,它是随机变量 分布中的一个重要参数。

2分布满足可加性:设Y i -2(nJ,则kZ 八 Y ~2(n i n 2 n k )•i 吕设X , Y 是两个相互独立的随机变量,且X~N(0,1),Y~2( n),可以证明函数X、Y / n的概率密度为f (t )=' 2J 【i麵i邛\、2)我们称随机变量 T 服从自由度为n 的t 分布,记为T 〜t(n)ti_:.(n) - -r.(n)2分布设n 个随机变量X i ,X 2,…,X n 相互独立,且服从标准正态分 布,可以证明它们的平方和的分布密度为f(u)=u _ 0,u :我们称随机变量 W 服从自由度为n 的2分布,记为W- 2(n),其中t 分布 (-: ::::t ” :心■)设X ~ 2(n 1), Y ~ 2(n 2),且X 与Y 独立,可以证明l X /山F = ------------------ 的概率密度函数为Y/n 20, y :: 0我们称随机变量F 服从第一个自由度为 n i ,第二个自由度为n 2的F 分布,记为 F 〜f(n i ,n 2).1 F i _■. ( ni , n2 )=F :.( n 2,n i )第四章 随机变量的数字特征n in 22①门2n22 2n i 2加y'2,y-0F 分布矩①对于正整数k,称随机变量X①对于正整数k,称随机变量X的的k次幕的数学期望为X的k k次幕的数学期望为X的k阶原点阶原点矩,记为V k,即矩,记为V k,即V k=E(X k)= E X i k p i ,ik 乂k V k=E(X )= [ x f (x)dx,k=1,2,…k=1,2,…②对于正整数k,称随机变量X②对于正整数k,称随机变量X与与E (X)差的k次幕的数学期E(X)差的k次幕的数学期望为X望为X的k阶中心矩,记为4k, 的k阶中心矩,记为P k,即即k和= E(X _E(X))出=E(X _E(X))k=Z (xiki -E(X)) P i ,中C k= J(x—E(X)) f(x)dx,k=1,2,…k=1,2,…切比雪夫不等式设随机变量X具有数学期望E (X)=□,方差D (X) =/,则对于任意正数£,有卜列切比雪夫不等式P( X -卩2 CT 只)兰一yZ切比雪夫不等式给出了在未知X的分布的情况下,对概率的一种估计P(|X.、- Z . 、人rA < —.—1-|—-,它在理论上有里要意乂。

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全一、概率论的常用公式:1.概率的公式:对于事件A,其概率表示为P(A),满足0≤P(A)≤1。

2.加法公式:对于两个互斥事件A和B,其概率表示为P(A∪B),满足P(A∪B)=P(A)+P(B)。

3.减法公式:对于事件A和B,其概率表示为P(A∩B),满足P(A∩B)=P(A)-P(A∪B)。

4.乘法公式:对于两个独立事件A和B,其概率表示为P(A∩B),满足P(A∩B)=P(A)某P(B)。

5.条件概率公式:对于事件A和B,其条件概率表示为P(A,B),满足P(A,B)=P(A∩B)/P(B)。

6.全概率公式:对于一组互斥事件B1,B2,...,Bn,以及事件A,有P(A)=∑(P(A,Bi)某P(Bi))。

7.贝叶斯公式:对于一组互斥事件B1,B2,...,Bn,以及事件A,有P(Bi,A)=P(A,Bi)某P(Bi)/(∑(P(A,Bj)某P(Bj))。

二、数理统计的常用公式:1.均值公式:对于一组数据某1,某2,...,某n,其均值表示为μ=∑(某i)/n。

2.方差公式:对于一组数据某1,某2,...,某n,其方差表示为σ^2=∑((某i-μ)^2)/n。

3.标准差公式:对于一组数据某1,某2,...,某n,其标准差表示为σ=√(σ^2)。

4. 协方差公式:对于两组数据某1,某2,...,某n 和 y1,y2,...,yn,其协方差表示为 Cov(某,y) = ∑((某i - μ某) 某 (yi - μy)) / n。

5. 相关系数公式:对于两组数据某1,某2,...,某n 和 y1,y2,...,yn,其相关系数表示为 r = Cov(某,y) / (σ某某σy)。

6.正态分布的概率计算:对于满足正态分布的一组数据某1,某2,...,某n,可以利用标准正态分布表或计算工具来计算概率P(X≤某)或P(X>某)。

7.置信区间公式:对于一组数据某1,某2,...,某n,其均值μ和置信水平α,可以计算置信区间为某̄±Z(α/2)某(σ/√n)。

概率论与数理统计常用公式整理

概率论与数理统计常用公式整理

概率论与数理统计常用公式整理1. 概率论公式(1)概率定义:对于随机事件A,概率P(A)的定义为:P(A) = N(A) / N,其中N(A)为事件A发生的次数,N为试验总次数。

(2)加法定理:对于两个事件A和B,有:P(A ∪B) = P(A) + P(B) - P(A∩B)。

(3)乘法定理:对于两个独立事件A和B,有:P(A ∩B) = P(A) ×P(B)。

(4)条件概率:对于事件A和B,且P(A) > 0,条件概率P(B|A)定义为:P(B|A) = P(A ∩B) / P(A)。

(5)全概率公式:对于一组互斥事件A1, A2, ..., An,且它们的并集构成了样本空间,有:P(B) = Σ[P(B|Ai) ×P(Ai)],其中Σ表示求和。

(6)贝叶斯公式:对于一组互斥事件A1, A2, ..., An,且它们的并集构成了样本空间,有:P(Ai|B) = [P(B|Ai) ×P(Ai)] / P(B)。

2. 数理统计公式(1)样本均值:对于样本x1, x2, ..., xn,样本均值定义为:x̄= (x1 + x2 + ...+ xn) / n。

(2)样本方差:对于样本x1, x2, ..., xn,样本方差定义为:s^2 = [(x1 - x̄)^2+ (x2 - x̄)^2 + ... + (xn - x̄)^2] / (n - 1)。

(3)样本标准差:对于样本x1, x2, ..., xn,样本标准差定义为:s = √[s^2]。

(4)期望值:对于随机变量X,其期望值定义为:E(X) = Σ[x ×P(X =x)],其中Σ表示求和。

(5)方差:对于随机变量X,其方差定义为:Var(X) = E[(X - E(X))^2]。

(6)协方差:对于两个随机变量X和Y,其协方差定义为:Cov(X, Y) = E[(X- E(X))(Y - E(Y))]。

概率论与数理统计公式集锦完整版

概率论与数理统计公式集锦完整版

概率论与数理统计公式集锦HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】概率论与数理统计公式集锦一、随机事件与概率二、随机变量及其分布1、分布函数2、离散型随机变量及其分布3、续型随机变量及其分布4、随机变量函数Y=g(X)的分布 离散型:()(),1,2,j ii j g x y P Y y p i ====∑,连续型:①分布函数法,②公式法()(())()(())Y X f y f h y h y x h y '=⋅=单调三、多维随机变量及其分布1、离散型二维随机变量及其分布 分布律:(,),,1,2,i j ij P Xx Y y p i j ====分布函数(,)i i ijx x y yF X Y p ≤≤=∑∑边缘分布律:()i i ij jp P X x p ⋅===∑ ()j j ij ip P Y y p ⋅===∑条件分布律:(),1,2,ij i j jp P X x Y y i p ⋅====,(),1,2,ij j i i p P Y y X x j p ⋅====2、连续型二维随机变量及其分布①联合分布函数及性质分布函数:⎰⎰∞-∞-=xydudvv u f y x F ),(),(=P (X<=x,Y<=y )性质:2(,)(,)1,(,),F x y F f x y x y∂+∞+∞==∂∂((,))(,)GP x y G f x y dxdy ∈=⎰⎰②边缘分布函数与边缘密度函数分布函数:⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( 密度函数:⎰+∞∞-=dv v x f x f X ),()(③条件概率密度+∞<<-∞=y x f y x f x y f X X Y ,)(),()(,+∞<<-∞=x y f y x f y x f Y Y X ,)(),()( 3、随机变量的独立性随机变量X 、Y 相互独立(,)()()X Y F x y F x F y ⇔=,离散型:..ij i j p p p = ,连续型:(,)()()X Y f x y f x f y =4、二维随机变量和函数的分布 离散型:()(,)i j kk i j x y z P Z z P X x Y y +=====∑连续型:()(,)(,)Z f z f x z x dx f z y y dy +∞+∞-∞-∞=-=-⎰⎰四、随机变量的数字特征1、数学期望①定义:离散型∑+∞==1)(k k k p x X E ,连续型⎰+∞∞-=dx x xf X E )()(②性质:(),E C C =)()]([X E X E E =,)()(X CE CX E =,)()()(Y E X E Y X E ±=±b X aE b aX E ±=±)()( ,当X 、Y 相互独立时:)()()(Y E X E XY E =2、方差①定义:222()[(())]()()D X E X E X E X E X =-=-②性质:0)(=C D ,)()(2X D a b aX D =±,),(2)()()(Y X Cov Y D X D Y X D ±+=±当X 、Y 相互独立时:)()()(Y D X D Y X D +=±3、协方差与相关系数①协方差:(,)()()()Cov X Y E XY E X E Y =-,当X 、Y 相互独立时:0),(=Y X Cov ②相关系数:XY ρ,当X 、Y 相互独立时:0=XY ρ(X,Y 不相关)③协方差和相关系数的性质:)(),(X D X X Cov =,),(),(X Y Cov Y X Cov =),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+,),(),(Y X abCov d bY c aX Cov =++4、常见随机变量分布的数学期望和方差五、大数定律与中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ε有2)(})({εεX D X E X P ≤≥-2、大数定律: ①切比雪夫大数定律:若n X X 1相互独立,2)(,)(i i i i X D X E σμ==且C i ≤2σ,则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11②伯努利大数定律:设n A 是n 次独立试验中事件A 发生的次数,p 是事件A 在每次试验中发生的概率,则0ε∀>,有:lim 1A n n P p n ε→∞⎛⎫-<= ⎪⎝⎭③辛钦大数定律:若1,,n X X 独立同分布,且μ=)(i X E ,则μ∞→=−→−∑n P ni iXn113、中心极限定理①列维—林德伯格中心极限定理:独立同分布的随机变量(1,2,)i X i =,均值为μ,方差为02>σ,当n充分大时有:1((0,1)~nn k k Y X n N μ==-−−→∑ ②棣莫弗—拉普拉斯中心极限定理:随机变量),(~p n B X ,则对任意x 有:③近似计算:1()nk k P a X b =≤≤≈Φ-Φ∑ 概率论与数理统计公式整理1、总体和样本的分布函数 设总体()XF x ,则样本的联合分布函数)(),(121k nk n x F x x x F =∏=2、统计量样本均值:∑==ni i X nX 11,样本方差:∑∑==--=--=ni i ni i X n X n X X n S 122122)(11)(11 样本标准差:∑=--=ni i X X n S 12)(11 ,样本k 阶原点距: 2,1,11==∑=kXnA ni ki k样本k 阶中心距:11(),1,2,3n k k i i B X X k n ==-=∑3、三大抽样分布(1)2χ分布:设随机变量(0,1)i X N (1,2,,)i n =且相互独立,则称统计量222212n X X X ++=χ服从自由度为n 的2χ分布,记为)(~22n χχ性质:①n n D n n E 2)]([,)]([22==χχ②设)(~),(~22n Y m X χχ且相互独立,则)(~2n m Y X ++χ(2)t 分布:设随机变量)(~),1,0(~2n Y N X χ,且X 与Y 独立,则称统计量:nY X T =服从自由度为n 的t 分布,记为)(~n t T性质:①()0(1),()(2)2n E T n D T n n =>=>-②22lim ()()x n n f x x ϕ-→∞== (3)F 分布:设随机变量22~(),~()X m Y n χχ,且X 与Y 独立,则称统计量(,)X mF m n Y n=服从第一自由度为m ,第二自由度为n 的F 分布,记为~(,)F F m n ,性质:设~(,)F F m n ,则1~(,)F n m F七、参数估计1.参数估计①定义:用12(,,,)n X X X θ∧估计总体参数θ,称12(,,,)n X X X θ∧为θ的估计量,相应的12(,,,)n x x x θ∧为总体θ的估计值。

概率论与数理统计公式整理

概率论与数理统计公式整理

概率论与数理统计公式整理一、概率论公式:1.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)2.乘法公式:P(A∩B)=P(A)×P(B,A)其中,P(A)和P(B)表示事件A和B的概率,P(B,A)表示已知事件A发生的条件下事件B发生的概率。

3.全概率公式:P(A)=∑[P(A,B(i))×P(B(i))]其中,B(i)表示互斥事件组,且它们的概率之和为14.贝叶斯公式:P(B(j),A)=P(A,B(j))×P(B(j))/∑[P(A,B(i))×P(B(i))]其中,P(B(j),A)表示已知事件A发生的条件下事件B(j)发生的概率。

5.期望值公式:E(X)=∑[x×P(X=x)]其中,X为一个随机变量,x为X的取值,P(X=x)为X等于x的概率。

6.方差公式:Var(X) = E[(X-E(X))^2]其中,Var(X)表示随机变量X的方差,E(X)表示X的期望值。

二、数理统计公式:1.样本均值公式:样本均值 = (x1 + x2 + ... + xn)/n其中,x1、x2、..、xn为样本中的观测值,n为样本容量。

2.样本方差公式(无偏估计):样本方差 = [(x1-样本均值)^2 + (x2-样本均值)^2 + ... + (xn-样本均值)^2]/(n-1)3.样本标准差公式(无偏估计):样本标准差=样本方差的平方根4.正态分布的标准化公式:Z=(X-μ)/σ其中,X为一个正态随机变量,μ为其均值,σ为其标准差,Z为标准正态分布的变量。

5.正态分布的累积分布函数:P(X≤x)=Φ((x-μ)/σ)其中,Φ表示标准正态分布的累积分布函数。

6.样本之间的协方差公式:Cov(X,Y) = ∑[(x(i)-X均值) × (y(i)-Y均值)]/(n-1)其中,X、Y为两个随机变量,x(i)、y(i)为X、Y的观测值,X均值、Y均值分别为X、Y的样本均值,n为样本容量。

概率论与数理统计(全部公式整理)

概率论与数理统计(全部公式整理)


P(1 )

P( 2
)

P( n
)

1 n

设任一事件 A ,它是由1, 2 m 组成的,则有
P(A)=(1 ) (2 ) (m ) = P(1 ) P(2 ) P(m )

m n

A所包含的基本事件数 基本事件总数
(9)几何 概型
的事件。互斥未必对立。 ②运算:
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)


Ai Ai
德摩根率: i1
i 1
AB AB,AB AB
(7)概率 的公理化 定义
设 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满
1° 0 F(x) 1, x ;
2° F(x) 是单调不减的函数,即 x1 x2 时,有 F(x1) F (x2) ;
3° F() lim F(x) 0, F() lim F(x) 1;
x
x
4° F(x 0) F(x) ,即 F(x) 是右连续的;
(5)基本 事件、样本 空间和事 件
(6)事件 的关系与 运算
加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n 种方法来完成,则这件事可由 m×n 种方法来完成。

概率论与数理统计公式整理(超全免费版)

概率论与数理统计公式整理(超全免费版)

精品文档第1章随机事件及其概率泊松分布设随机变量X的分布律为P(X 二k)二kk产,’°,k®2,则称随机变量X服从参数为,的泊松分布,记为X —: (■)或者P( ■)。

泊松分布为二项分布的极限分布(np=入,n T®)。

超几何分布_CM*C壮k = 0,1,2 …,1C N l =min(M ,n)P(X 二k)几何分布k _1P(X 二k)二q - p,k 二1,2,3, ,其中p> 0, q=1-p。

随机变量X服从参数为p的几何分布,记为G(p)。

均匀分布A 设随机变量X的值只落在[a,b]内,其密度函数f(X)在[a,b]上为常数 --------- ,即b — aa w x w b指数分布f (x) = < b- a0,其他,则称随机变量X在[a,b]上服从均匀分布,记为X~U(a,b)分布函数为C0,x —ax € b — aF(x)=打(x)dx =1,x<a,a w x w bx>b。

当a w X1VX2W b时,X落在区间(x1,x2)内的概率为P(x〔:::X ::: X2)-X2 - X1b - a广 & e _'Xf(X)=YI 0,其中’•0,则称随机变量X的分布函数为)x^Ox ::05X服从参数为’的指数分布x<0 o记住积分公式:x n e_X dx = n!如果二维随机向量 t ( X ,Y)的所有可能取值为至多可列个有序对( x,y),则称©为离散型随 机量。

设'=(X ,Y)的所有可能取值为 化,y j )(i, j =1,2,…),且事件{ ' =(x i , y j )}的概率为 p ij,,称P{(X,Y)=(X j ,y j )} =P j (i,j =1,2, )为.=(X ,Y)的分布律或称为 X 和Y 的联合分布律。

联合分布有时也用下面的概率分布表来表示:这里P ij 具有下面两个性质 (1)P j >0 (i,j=1,2,…);(2)一一 P m =1.i j对于二维随机向量 '=(X,Y), 如果存在非负函数f (x, y)(一二x 工•::,_:: :::y ::),使对任意一个其邻边分别平行于坐标轴的矩形区域D,即D={(X,Y)|a<xvb,cvyvd} 有P{( X ,丫) D}二 f (x, y)dxdy,D则称'为连续型随机向量;并称 f(x,y)为'=(X ,Y)的分布密度或称为 X 和Y 的联合分布密度。

概率论与数理统计公式大全

概率论与数理统计公式大全

第1章 随机事件及其概率第二章 随机变量及其分布a≤x≤b0, x<a,1, x>b。

,0,,, x<0。

X 落在以为中心,3为半径的区间(-3, +3)内的概率相当大(0.9973),落在(-3, +3)以外的概率可以忽略不计F Y (y ) =P (Yy )=P (g(X ) y )=第三章 二维随机变量及其分布二维正态分布,(X,Y)~N(可以推出 X~N( 但若X~N(,(X,Y)未必是二维正态分布。

,两个独立的正态分布的和仍为正态分布()。

卷积公式:分布设n个随机变量相互独立,且服从标准正态分布,可以证明它们的平方和 的分布密度为我们称随机变量W服从自由度为n的分布,记为W~,其中所谓自由度是指独立正态随机变量的个数,它是随机变量分布中的一个重要参数。

分布满足可加性:设则t分布设X,Y是两个相互独立的随机变量,且可以证明函数 的概率密度为我们称随机变量T服从自由度为n的t分布,记为T~t(n)。

F分布设,且X与Y独立,可以证明的概率密度函数为我们称随机变量F服从第一个自由度为n1,第二个自由度为n2的F分布,记为F~f(n1, n2).(1)p ij≥0(i,j=1,2,…);(2)M=max(X,Y),N=min(X,Y)的分布(极值分布)设随机变量X,Y相互独立且分布函数分别为F X(x),F Y(y)则M与N的分布函数分别为第四章 随机变量的数字特征一维随机变量的数字特征离散型连续型(平均值)E(X+Y)=E(X)+E(Y); E(XY)=E(X) E(Y),充分条件:X和Y独立;充要条件:X和Y不相关。

函数的期望Y=g(X) Y=g(X), D(X)= cov(X,Y)= ; D(Y)=。

Y)=E(XY)-E(X)E(Y).Cov (X, Y)=cov (Y, X) cov(aX,bY)=ab cov(X,Y) +X2, Y)=cov(X1,Y)+cov(X2,Y)1相关系数(标准协方差):=的标准化变量:即“随机变量与期望之差除以均方差”|≤1,当||=1时,称X与Y完全相关:完全相关时,称X与Y不相关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F ( x)
1 2
A B A B, A B A B
m A包含的基本事件数 P ( A) n 基本事件总数 ( A) P ( A) ,其中μ为几何度量(长度、面积、体积) ( )

x
e

( t )2 2 2
dt
x
标准正态分布
P ( AB ) P ( A) P ( B A) P ( B ) P ( A B )
连续型:①分布函数法,②公式法 f Y ( y ) f X ( h ( y )) h ( y ) ( x h ( y )单调 )
三、多维随机变量及其分布
1、离散型二维随机变量及其分布 分布律: P ( X x i , Y y j ) p ij , i , j 1, 2, 分布函数 F ( X , Y ) 边缘分布律: p P ( X x ) pij i i
P ( Bi A )
P ( Bi ) P ( A Bi )
条件分布律: P ( X xi Y y j )
pij p j

1
, i 1, 2, , P (Y y j X xi )
pij pi
2
1
, j 1, 2,
指数分布 e( )

P(B )P( A B )
fY ( y )



f ( x , v ) dv f ( u , y ) du



1 n
X
i 1
n
i
P
1 n
E ( X ), (n )
i i 1
n


②伯努利大数定律:设 nA 是 n 次独立试验中事件 A 发生的次数,p 是事件 A 在 每次试验中发生的概率,则 0 ,有: lim P n
Cov( X , Y ) ,当 X、Y 相互独立时: 0 (X,Y 不相关) XY D( X ) D(Y )
X N (0,1)
( x)
x
4、随机变量函数 Y=g(X)的分布 离散型: P (Y yi ) p j , i 1, 2, ,
g ( x j ) yi
F ( x, y ) f ( x , y ), P (( x , y ) G ) xy
x

G
f ( x , y ) dxdy
若 E ( X ) , D( X ) 2 , 对于任意 0 有 P{ X E ( X ) }

D( X )
②边缘分布函数与边缘密度函数 分布函数: F X ( x )
xi y j zk
nA p 1 n
1 n
③辛钦大数定律: 若 X 1 , , X n 独立同分布, 且 E(X i ) , 则 3、中心极限定理
二项分布 X b(n, p ) 泊松分布 X P ( )
X
i 1
n
i
P n

2
x
y
五、大数定律与中心极限定理
1、切比雪夫不等式

f ( u , v ) dudv
二、随机变量及其分布
1、分布函数
P ( X xk ) x x F ( x) P( X x) k , P ( a X b ) F (b ) F ( a ) x f ( t ) dt 2、离散型随机变量及其分布 分布名称 分布律 0–1 分布 P ( X k ) p k (1 p )1 k , k 0,1 X b (1, p )
即 i gi (1 , 2 , , k )(i 1, 2, , k ) ; 又设 x1 , x2 , L , xn 为总体 X 的 n 个样本 值,用样本矩代替 i ,在所建立的方程组中解出的 k 个未知参数即为参数
2、统计量
1 样本均值: X n

i 1
n
2 1 1 (Xi X)2 (Xi2 nX ) X i ,样本方差: S n 1 i1 n 1 i1 2
四、随机变量的数字特征
1、数学期望 ①定义:离散型 E ( X )
x
k 1

k
p k ,连续型 E ( X )



xf ( x ) dx
③近似计算: P ( a
X
k 1
n
k
b) (
b n a n ) ( ) n n
六、数理统计的基本概念
③条件概率密度 f ( x, y ) f ( x, y ) f Y X ( y x) , y , f X Y ( x y ) , x f X ( x) fY ( y) 3、随机变量的独立性 随机变量 X、Y 相互独立 F ( x, y ) FX ( x) FY ( y ) , 离散型: p ij p i . p . j ,连续型: f ( x, y ) f X ( x) fY ( y ) 4、二维随机变量和函数的分布 离散型: P ( Z zk ) P ( X xi , Y y j )
概率论与数理统计公式集锦
一、随机事件与概率
公式名称 德摩根公式 古典概型 几何概型 求逆公式 加法公式 减法公式 条件概率公式 与乘法公式 公式表达式
分布名称 指数分布 X e( ) 正态分布 X N ( , 2 )
密度函数
分布函数
e , f ( x) 0,
f (x) 1 2 e

x
x0 x0
( x )2 2 2
1 e x , F ( x) 0,
x0 x0
②性质: E (C ) C , E[ E ( X )] E ( X ) , E (CX ) CE ( X ) ,E ( X Y ) E ( X ) E (Y ) E (aX b) aE ( X ) b ,当 X、Y 相互独立时: E ( XY ) E ( X ) E (Y ) 2、方差 ①定义: D( X ) E[( X E ( X )) 2 ] E ( X 2 ) E 2 ( X )
i 1 i i
n
2、连续型二维随机变量及其分布 ①分布函数及性质 分布函数: F ( x , y ) 性质: F ( , ) 1,
2
P ( AB ) P ( A) P ( B ) ; P( B A) P( B) ; P ( B A) P ( B A) ;

1 2

x

e
1 t2 2
dt
P ( A ) 1 P ( A)
P(A∪B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A∪B)=P(A)+P(B) P(A-B)=P(A)-P(AB), B A 时 P(A-B)=P(A)-P(B)
P ( B A) P ( AB ) P ( A)
P( X k )
k Cn
p (1 p )
k
nk
, k 0,1, , n
P( X k )
k
k!
e , k 0,1, 2,

①列维—林德伯格中心极限定理:独立同分布的随机变量 X i (i 1, 2,) ,均值 为 ,方差为 2 0 ,当 n 充分大时有: Yn ( X k n )
j
xi x yi y
③协方差和相关系数的性质: Cov ( X , X ) D( X ) , Cov ( X , Y ) Cov (Y , X ) Cov ( X 1 X 2 , Y ) Cov ( X 1 , Y ) Cov ( X 2 , Y ) , Cov (aX c, bY d ) abCov ( X , Y ) 4、常见随机变量分布的数学期望和方差 分布 数学期望 方差 0-1 分布 b(1, p ) p p(1-p) 二项分布 b(n, p ) np np(1-p) 泊松分布 P( ) 均匀分布 U (a, b) 正态分布 N ( , 2 )
k 1 n
~ N (0,1) n
3、续型随机变量及其分布 分布名称 密度函数 均匀分布
X U (a , b)
连续型: f Z ( z ) 分布函数
xa 0, xa F ( x) ,a x b b a xb 1,


f ( x , z x ) dx
(x)
1 2
e

x2 2
②性质: D(C ) 0 , D(aX b) a 2 D( X ) , D( X Y ) D( X ) D(Y ) 2Cov ( X , Y ) 当 X、Y 相互独立时: D( X Y ) D( X ) D(Y ) 3、协方差与相关系数 ①协方差: Cov ( X , Y ) E ( XY ) E ( X ) E (Y ) ,当 X、Y 相互独立时: Cov ( X , Y ) 0 ②相关系数: XY


f ( z y , y ) dy
②棣莫弗—拉普拉斯中心极限定理:随机变量 X ~ B (n, p) ,则对任意 x 有:
x X np 1 t2 lim P{ x} e dt ( x) n np (1 p ) 2
2
1 , a xb f ( x) b a 0, 其他
FY ( y )
2 2、大数定律: ①切比雪夫大数定律:若 X 1 X n 相互独立,
E ( X i ) i , D( X i ) i2 且 i2 C ,则:
相关文档
最新文档