(第3套)最新人教版九年级下册数学 26.2 实际问题与反比例函数精品教学课件

合集下载

九年级数学下册第二十六章反比例函数26.2实际问题与反比例函数教案(新版)新人教版2

九年级数学下册第二十六章反比例函数26.2实际问题与反比例函数教案(新版)新人教版2

《26.2实际问题与反比例函数》教学模式介绍:数学的核心素养包括数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。

这些数学学科素养既相对独立,又互相交融,是一个有机的整体。

核心素养下的教学设计是利用设计好的核心问题在课堂中培养学生的数学核心素质,重视学生在学习活动中的主体地位,让学生在积极参与学习活动的过程中得到发展。

教师创设情境设计问题,或通过富有启发性的讲授,或引导学生独立思考、自主探索、合作交流,组织学生操作实验、观察现象、提出猜想、推理论证等,有效地启发学生思考,使学生成为学习的主体,学会学习。

课堂教学中,要注重让学生理解和掌握数学的基础知识和基本技能,让学生感悟数学思想,积累数学活动经验,在学习数学和应用数学的过程中,发展数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等数学学科核心素养,让学生能与他人建立良好关系,有效地管理自己的学习、生活,能够发掘自身潜力,战胜学习数学中的困难,让学生能够适应未来社会、进行终身学习,实现全面发展。

设计思路说明:“实际问题与反比例函数”是在学习了一次函数,二次函数的有关内容以及反比例函数概念,反比例函数的图像和性质的基础上的进一步研究。

这节课从复习旧知入手,类比一次函数与二次函数的学习过程,即从研究函数的概念出发,到画函数图像,探究得出函数性质,最后运用函数的概念和性质解决简单的实际问题,学生进一步熟悉函数学习的基本过程和方法。

通过探究学习例1,建立解决问题的反比例函数模型,然后应用反比例函数的概念、性质进行解决,初步培养学生应用反比例函数解决实际问题的能力。

在例1的基础上,探究实际运输过程中存在的反比例函数问题,进一步培养学生建立反比例函数模型的能力,从而发展学生的数学核心素养。

学生虽然已经学过反比例函数的概念、性质,但是从实际问题中抽象反比例函数时,可能对比例系数理解不透、对两个变量的反比例函数关系把握不准,因此在建立函数关系时,要仔细分析实际问题,准确抽象出常量和变量,理解变量之间的关系,确定两个变量的积是一个常量。

新人教版九年级数学下册《二十六章 反比例函数 26.2 实际问题与反比例函数 生活中的反比例关系》教案_5

新人教版九年级数学下册《二十六章 反比例函数 26.2 实际问题与反比例函数 生活中的反比例关系》教案_5
2.前面已经学习了一次函数、二次函数,类比前面Байду номын сангаас学习过程,我们将继续探究什么内容呢?基本方法有哪些呢?
教师引导学生进行解答,学生回忆所学,教师做好补充和辅导.
进一步熟悉学习函数的基本过程和方法.
活动
一:
创设
情境
导入
新课
【课堂引入】
某科技小组进行野外考察,途中遇到一片十几米的烂泥湿地.为了安全、迅速地通过这片湿地,他们沿着前进的路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能用物理中学过的关于压强的知识解释他们这样做的道理吗?压强问题能利用反比例函数知识解决吗?
情感态度
体验反比例函数是有效描述现实世界的重要手段,认识到数学是解决问题和进行交流的工具.
教学
重点
能够在实际问题中构建反比例函数模型.
教学
难点
在实际问题中寻找变量之间的关系,注意分析过程,渗透数形结合思想.
授课
类型
新授课
课时
教具
多媒体
教学活动
教学
步骤
师生活动
设计意图
回顾
教师提出问题:
1.我们已经学习了反比例函数的哪些内容?
教学设计
课题
26.2实际问题与反比例函数
授课人


知识技能
1.能灵活运用反比例函数解析式解决一些实际问题;
2.能综合利用几何图形、方程、反比例函数的知识解决实际问题.
数学思考
体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.
问题解决
分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.
y= (x>0)的图象如图26-2-13所示,请根据图象说明,做为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?

九年级数学下册26.2《实际问题与反比例函数(1)》教学

九年级数学下册26.2《实际问题与反比例函数(1)》教学

用 反 比 知例 识函 点数 一解 决 体 积 问 题
例1 市煤气公司要在地下修建一个容积为 104 m3 的圆柱形煤气储存室.
(1)储存室的底面积S(单位:m2 )与其深度 d(单位:m)有怎样的函数关系? (2)公司决定把储存室的底面积S定为500
m2 ,施工队施工时应该向下挖进多深? (3)当施工队按(2)中的计划挖进到地下15m 时,碰上了坚硬的岩石,为了节约建设资金
26.2 实际问题与反比例函数(1)
一、新课引入
1、反比例函数的一般形式是y
它的图象是 双曲线

.
k x
(k

R,
k

0,
x
,0)
2在、每反个比象例限函内数它y的图 3x像的上图y随像x在的第减小二、而四
象限, .
减小
3在、每反个比象例限函内数它y的图5x像的上图y随像x在的第增一大、而三
三、研读课文
用 反 比 知例 识函 点数 二解 决 体 积 问 题
例2 码头工人以每天30吨的速度往一艘 轮船上装载货物,装载完毕恰好用了8天 时间. (1)轮船到达目的地后开始卸货,卸货速 度v(单位:吨/天)与卸货时间t(单 位:天)之间有怎样的函数关系?
(2)由于遇到紧急情况,船上货物必须在 不超过5天内卸载完毕,那么平均每天至
解得d=__2_0___如果把储存室的底面积定为
500 m2 ,施工时应向地下掘进__2_0___m深.
( s=3_)_1105_4根__据_解题得意s,_=_把6_6__6__d.__6=_.71_5_代入_s___1_d0_4 ,得 当储存室的深为15m时,储存室的底面积应
改为_6_66_._67_m_2才能满足需要.

人教版数学九年级下26.2实际问题与反比例函数ppt市公开课一等奖省优质课获奖课件

人教版数学九年级下26.2实际问题与反比例函数ppt市公开课一等奖省优质课获奖课件

知识讲解
例1 市煤气企业要在地下修建一个容积为104 m3圆柱形煤气储存室. (1)储存室底面积S(单位:m2)与其深度d(单位:m)有怎样函数关系? (2)企业决定把储存室底面积S定为500m2,施工队施工时应该向下掘进多深? (3)当施工队按(2)中计划掘进到地下15m时,碰上了坚硬岩石.为了节约建设 资金,企业暂时改变计划,把储存室深改为15m,对应地,储存室底面积应 改为多少才能满足需要(准确到0.01m2)?
第1天 第2天 第3天 第4天
150
200
250
300
40
30
24
20
第12页
第13页
课堂小结
实际 问题
建立数学模型 利用数学知识处理
反百分 比函数
第14页
学习目标
1.能利用反百分比函数概念、性质处理一些实际问题. 2.能从实际问题中寻找变量之间关系,建立反百分比函数模型,处理实 际问题.
第2页
新课导入
前面我们结合实际问题讨论了反百分比函数,看到了反百 分比函数在分析和处理实际问题中所起作用,下面,我们深入 探讨怎样利用反百分比函数处理实际问题.
第3页
第7页
例2 码头工人以天天30吨速度往一艘轮船上装载货物, 装 载完成恰好用了8天时间. (1)轮船抵达目标地后开始卸货,卸货速度v(单位:吨/天) 与卸货时间t(单位:天)之间有怎样函数关系?
第8页
(2)因为碰到紧急情况,船上货物必须在不超出5天内卸 载完成,那么平均天天最少要卸多少吨货物?
第9页
随堂训练
减小
反百分 比
B
第10页
Hale Waihona Puke 3. 小明乘车从南充到成都,行车平均速度v(km/h)和行车

九年级数学下册 第26章 反比例函数 26.2 实际问题与反比例函数(2)教案 (新版)新人教版-(

九年级数学下册 第26章 反比例函数 26.2 实际问题与反比例函数(2)教案 (新版)新人教版-(

26.2实际问题与反比例函数(2)一、【教材分析】二、【教学流程】A BC D4.在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.(1)求I与R之间的函数关系式;(2)当电流I=0.5时,求电阻R的值..它们的关系式,进一步根据题意求解答案.其中往往要用到电学中的公式PR=U2,P指用电器的输出功率(瓦),U指用电器两端的电压(伏),R指用电器的电阻(欧姆).补偿提高蓄电池的电压为定值.使用此电源时,电流I(A)是电阻R(Ω)的反比例函数,其图象如图所示.⑴求这个反比例函数的表达式;⑵当R=10Ω时,电流能是4A吗?为什么?电学中的公式:RUI电压U(伏),电流I(安培)和电阻R(欧姆).小结通过本节课的学习你有什么收获?1.知识小结:“杠杆定律”:动力×动力臂=阻力×阻力臂;PR=U2,P指用电器的输出功率(瓦),U指用电器两端的电压(伏),R指用电器的电阻(欧姆).2. 思想方法小结──建模—反比例函数的数学思想方法.作业必做:第3、4、8题(2)课本P17阅读与思考《生活中的反比例关系》教师布置作业,并提出要求.三、【板书设计】四、【教后反思】本节课通过两个例题讨论了反比例函数的某些应用,在这些实际应用中,备课时注意到与学生的实际生活相联系,切实发生在学生身边的某些实际情境,并且注意用函数观点来处理问题或对问题的解决用函数做出某种解释,用以加深对函数的认识,并突出知识之间的内在联系.本节的主要目标是让学生逐步形成用函数的观点处理问题意识,体验数形结合的思想方法.教学时,能够达到三维目标的要求,突出重点,把握难点。

能够让学生经历数学知识的应用过程,关注对问题的分析过程,让学生自己利用已经具备的知识分析实例.用函数的观点处理实际问题的关键在于分析实际情境,建立函数模型,并进一步提出明确的数学问题,注意分析的过程,即将实际问题置于已有的知识背景之中,用数学知识重新理解(这是什么?可以看成什么?),让学生逐步学会用数学的眼光考察实际问题。

人教版九年级数学下册:26.2 《实际问题与反比例函数》教学设计4

人教版九年级数学下册:26.2 《实际问题与反比例函数》教学设计4

人教版九年级数学下册:26.2 《实际问题与反比例函数》教学设计4一. 教材分析人教版九年级数学下册第26.2节《实际问题与反比例函数》是本册教材的重要内容,旨在让学生理解和掌握反比例函数的定义、性质及其在实际问题中的应用。

通过本节课的学习,学生能够认识到反比例函数在现实生活中的广泛应用,提高解决实际问题的能力。

二. 学情分析九年级的学生已经掌握了函数的基本概念和一次函数、二次函数的知识,具备了一定的数学思维能力。

但反比例函数的概念和性质较为抽象,学生对其理解可能存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习状况,引导学生通过实际问题来理解和掌握反比例函数。

三. 教学目标1.知识与技能:让学生掌握反比例函数的定义、性质及表达式,能够运用反比例函数解决实际问题。

2.过程与方法:通过观察、分析实际问题,引导学生发现反比例函数的规律,培养学生解决实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极参与数学探究的精神,提高学生运用数学知识解决实际问题的意识。

四. 教学重难点1.反比例函数的定义及其性质。

2.反比例函数在实际问题中的应用。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生通过观察、分析实际问题,发现反比例函数的规律,培养学生解决实际问题的能力。

六. 教学准备1.准备相关的生活案例,如广告费与观众人数、药水浓度与稀释倍数等,用于引导学生发现反比例函数的规律。

2.制作多媒体课件,展示反比例函数的图像和实际问题。

3.准备练习题和测试题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过展示生活案例,引导学生观察和分析实际问题中数量关系,让学生发现实际问题中存在一种特殊的函数关系。

2.呈现(10分钟)教师给出反比例函数的定义、性质及表达式,引导学生理解反比例函数的概念。

同时,通过多媒体课件展示反比例函数的图像,让学生直观地感受反比例函数的特点。

人教版数学九年级下册26.2《实际问题与反比例函数》教学设计

人教版数学九年级下册26.2《实际问题与反比例函数》教学设计

人教版数学九年级下册26.2《实际问题与反比例函数》教学设计一. 教材分析人教版数学九年级下册第26.2节《实际问题与反比例函数》是本册教材中的一个重要内容。

本节内容主要让学生了解反比例函数在实际问题中的应用,通过解决实际问题,培养学生运用数学知识解决实际问题的能力。

教材通过丰富的实例,引导学生认识反比例函数的实际意义,感受数学与生活的紧密联系。

二. 学情分析九年级的学生已经学习了反比例函数的基本知识,对反比例函数的定义、性质有一定的了解。

但学生在解决实际问题时,往往不能将数学知识与实际问题有效结合,对反比例函数在实际问题中的应用还不够熟练。

因此,在教学本节内容时,要注重培养学生的实际问题解决能力,引导学生运用反比例函数解决实际问题。

三. 教学目标1.了解反比例函数在实际问题中的应用,感受数学与生活的紧密联系。

2.能够运用反比例函数解决实际问题,提高学生的实际问题解决能力。

3.培养学生的合作交流能力,提高学生的数学素养。

四. 教学重难点1.反比例函数在实际问题中的应用。

2.如何将实际问题转化为反比例函数问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中发现数学规律。

2.利用合作交流的方式,让学生在讨论中解决问题,提高学生的合作能力。

3.通过实例讲解,让学生感受反比例函数在实际问题中的应用。

六. 教学准备1.准备与反比例函数实际问题相关的实例。

2.准备多媒体教学设备,如投影仪、计算机等。

3.准备学生分组讨论所需的学习材料。

七. 教学过程1.导入(5分钟)利用一个实际问题引入本节课的内容,如“一辆汽车以60km/h的速度行驶,行驶1小时,行驶的路程是多少?”引导学生思考实际问题与反比例函数的关系。

2.呈现(10分钟)呈现几个与反比例函数实际问题相关的实例,如“一个长方形的面积是24cm²,长是8cm,求宽是多少?”让学生尝试解决这些问题,体会反比例函数在实际问题中的应用。

人教版数学九年级下册26.2实际问题与反比例函数反比例函数在物理学中的应用教学设计

人教版数学九年级下册26.2实际问题与反比例函数反比例函数在物理学中的应用教学设计
二、学情分析
九年级下册的学生已经具备了一定的数学基础,掌握了正比例函数、一次函数等基本函数的概念及其应用。在此基础上,他们对反比例函数的学习将更加顺利。然而,学生对反比例函数在物理学中的应用可能还较为陌生,需要教师在教学过程中加以引导。此外,学生在解决实际问题时,可能会遇到以下困难:
1.不能熟练地将实际问题转化为数学模型;
4.巩固练习,提升能力
设计具有梯度的练习题,让学生独立完成,巩固所学知识。同时,鼓励学生尝试将反比例函数应用于其他物理问题,提高解决问题的能力。
5.总结反思,拓展延伸
在课程尾声,教师引导学生总结反比例函数的性质和应用,反思学习过程中的收获与不足。此外,可布置一道拓展题,让学生在课后继续思考,培养其自主学习能力。
2.在运用反比例函数解决物理问题时,对公式的理解不够深入;
3.部分学生对小组合作、讨论等学习方式不够适应。
针对以上学情,教师应关注以下几点:
1.注重激发学生的兴趣,引导他们发现反比例函数在物理学中的广泛应用;
2.通过实例分析,帮助学生理解反比例函数与物理现象之间的关系,提高数学建模能力;
3.鼓励学生积极参与小组合作、讨论,培养团队协作意识,提高解决问题的能力;
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结反比例函数的定义、性质及其在物理学中的应用。
2.学生分享学习收获,反思学习过程中遇到的困难和解决方法。
3.教师对学生的表现给予肯定,强调反比例函数在实际问题中的应用价值,鼓励学生在课后继续探索反比例函数的相关知识。
五、作业布置
为了巩固本节课所学知识,提升学生对反比例函数的理解和应用能力,特布置以下作业:
(二)过程与方法
1.通过小组合作、讨论、探究的方式,培养学生主动发现问题的能力;

人教版数学九年级下册26.2实际问题与反比例函数(第2课时)优秀教学案例

人教版数学九年级下册26.2实际问题与反比例函数(第2课时)优秀教学案例
3.采用多元化的评价方式,如口头评价、书面评价、同伴评价等,全面、客观地评价学生的综合能力。
4.重视评价的激励作用,通过表扬、鼓励等方式,激发学生学习数学的热情和信心。
四、教学内容与过程
(一)导入新课
1.教师以一个简单的实际问题导入新课:“同学们,假设我们班要组织一次郊游活动,已知车辆的速度是固定的,请问我们如何计算在不同时间能够到达的地点?这个问题与我们今天要学习的反比例函数有什么关系呢?”通过这个问题,引导学生回顾反比例函数的基本概念。
(二)过程与方法
1.通过小组合作、讨论交流等形式,培养学生主动探究、合作学习的良好习惯。
2.学会在解决实际问题的过程中,运用画图、列表、计算等方法,分析反比例函数的变化规律,培养解决问题的策略。
3.引导学生从实际问题中提炼出反比例函数模型,提高学生将实际问题转化为数学问题的能力。
4.在教学过程中,注重培养学生的数学思维能力,让学生在思考、探索中掌握反比例函数的知识。
2.针对不同层次的学生,设计难易适度的问题,使每个学生都能在解决问题的过程中获得成就感,提高他们的自信心。
3.引导学生通过问题解决,总结反比例函数的性质和应用,提高他们归纳、总结的能力。
(三)小组合作
小组合作是本节课的重要教学策略,旨在培养学生团队合作精神和解决问题的能力。
1.将学生分成若干小组,每组4-6人,确保每个小组成员在知识、能力等方面具有一定的互补性。
2.创设趣味性问题情景,如“一个神秘的数学森林,每前进一步,距离目的地就减少一半,请问同学们如何用数学知识描述这个现象?”通过这些问题,激发学生的好奇心,引导他们主动探究反比例函数的奥秘。
(二)问题导向
本节课以问题为导向,引导学生通过解决问题来学习反比例函数的知识。

人教版九年级数学下册教案:26.2实际问题与反比例函数

人教版九年级数学下册教案:26.2实际问题与反比例函数
b.反比例函数图像的特点及其在实际问题中的应用。
-举例:分析反比例函数图像在坐标系中的位置,如何根据图像解决实际问题,如求两个反比例函数的交点。
c.反比例函数与其他函数的关系,特别是与一次函数、二次函数的转换。
-举例:通过具体例子,如反比例函数图像在x轴、y轴的渐近线,与一次函数图像的交点,探讨它们之间的联系。
4.引导学生探究反比例函数与其他函数的关系,培养数学探究和创新思维。
5.培养学生在解决反比例函数优化问题时,运用数学方法进行合理估算和预测的能力,提高数学问题解决的综合素养。
三、教学难点与重点
1.教学重点
a.反比例函数的定义及其性质的理解与应用。
-举例:通过实际情境引入反比例函数,如“某物品的价格与购买数量成反比”,强调y=k/x(k≠0)的形式,并让学生理解k的物理意义。
人教版九年级数学下册教案:26.2实际问题与反比例函数
一、教学内容
人教版九年级数学下册教案:26.2实际问题与反比例函数
1.教材章节:第二十六章反比例函数
2.内容列举:
a.实际问题中的反比例函数模型
b.反比例函数的定义及其性质
c.反比例函数的应用:求解实际问题
d.反比例函数与一次函数、二次函数的关系
小组讨论的环节也很有成效。学生们积极参与,互相交流想法,共同解决问题。我在旁听的时候,也适时给予了一些提示和引导,让学生们能够更深入地思考问题。从成果分享来看,大多数小组都能够理解反比例函数在实际问题中的应用,并且能够用所学知识去分析和解决问题。
然而,我也注意到,在实践活动和小组讨论中,有一部分学生参与度不高,可能是由于他们对知识的掌握还不够牢固,或者是性格较为内向,不愿意主动表达自己的观点。对于这部分学生,我需要进一步关注,通过课后辅导和鼓励,帮助他们更好地融入课堂,提高他们的自信心。

人教版九年级数学下册:26.2《实际问题与反比例函数》说课稿1

人教版九年级数学下册:26.2《实际问题与反比例函数》说课稿1

人教版九年级数学下册:26.2 《实际问题与反比例函数》说课稿1一. 教材分析人教版九年级数学下册第26.2节《实际问题与反比例函数》是本册教材中的重要内容。

本节内容通过引入实际问题,让学生了解反比例函数的定义,掌握反比例函数的性质,并能够运用反比例函数解决实际问题。

本节内容分为两个部分:一是反比例函数的定义及其性质;二是反比例函数在实际问题中的应用。

在第一部分中,学生需要理解反比例函数的定义,掌握反比例函数的性质,包括图像、单调性、奇偶性等。

在第二部分中,学生需要能够将实际问题转化为反比例函数问题,并运用反比例函数解决实际问题。

二. 学情分析九年级的学生已经掌握了函数的基本概念和性质,具备了一定的函数知识基础。

但是,对于反比例函数的理解和应用,学生可能还存在一定的困难。

因此,在教学过程中,教师需要通过生动的实例和实际问题,引导学生理解反比例函数的定义和性质,并能够运用反比例函数解决实际问题。

三. 说教学目标1.知识与技能目标:学生能够理解反比例函数的定义,掌握反比例函数的性质,包括图像、单调性、奇偶性等;学生能够将实际问题转化为反比例函数问题,并运用反比例函数解决实际问题。

2.过程与方法目标:通过实际问题的引入和解决,培养学生的观察能力、思考能力和解决问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣和好奇心,培养学生的团队合作意识和克服困难的勇气。

四. 说教学重难点1.教学重点:反比例函数的定义及其性质,反比例函数在实际问题中的应用。

2.教学难点:反比例函数的性质的理解和应用,将实际问题转化为反比例函数问题的方法的掌握。

五. 说教学方法与手段本节课采用讲授法、引导法、讨论法、实例教学法等教学方法。

同时,利用多媒体教学手段,如PPT、教学软件等,展示反比例函数的图像和实际问题的数据,帮助学生更好地理解和掌握反比例函数的性质和应用。

六. 说教学过程1.导入:通过一个实际问题,引导学生思考反比例函数的概念。

人教版数学九年级下册26.2.2《实际问题与反比例函数(2)》教学设计

人教版数学九年级下册26.2.2《实际问题与反比例函数(2)》教学设计

人教版数学九年级下册26.2.2《实际问题与反比例函数(2)》教学设计一. 教材分析人教版数学九年级下册26.2.2《实际问题与反比例函数(2)》这一节主要讲述了反比例函数在实际问题中的应用。

学生已经学习了反比例函数的定义、性质及其在简单实际问题中的应用。

本节课通过实例分析,让学生进一步理解反比例函数在实际生活中的运用,培养学生的数学应用能力。

二. 学情分析九年级的学生已经具备了一定的函数知识,对反比例函数有一定的了解。

但在实际问题中的应用方面,可能还存在一定的困难。

因此,在教学过程中,教师需要通过具体实例,引导学生将反比例函数与实际问题相结合,提高学生的数学应用能力。

三. 教学目标1.理解反比例函数在实际问题中的运用;2.能够运用反比例函数解决简单的实际问题;3.培养学生的数学应用能力和解决问题的能力。

四. 教学重难点1.反比例函数在实际问题中的运用;2.如何将实际问题转化为反比例函数问题。

五. 教学方法1.实例分析法:通过具体实例,让学生了解反比例函数在实际问题中的运用;2.问题驱动法:引导学生主动发现问题,并运用反比例函数解决问题;3.小组合作学习:学生分组讨论,共同解决问题,提高合作能力。

六. 教学准备1.准备相关实例,用于讲解反比例函数在实际问题中的应用;2.设计问题,引导学生进行思考和讨论;3.准备PPT,用于展示反比例函数的实际应用实例。

七. 教学过程1.导入(5分钟)教师通过展示生活中常见的实际问题,如广告宣传、物资分配等,引导学生思考如何用数学知识解决这些问题。

进而引出本节课的主题——反比例函数在实际问题中的应用。

2.呈现(10分钟)教师展示PPT,呈现反比例函数的实际应用实例。

例如,某商店进行打折活动,商品的原价与折扣后的价格成反比例关系。

引导学生分析实例中反比例函数的运用。

3.操练(10分钟)教师提出问题,引导学生运用反比例函数解决问题。

例如,一辆汽车以每小时60千米的速度行驶,行驶的路程与时间成反比例关系。

新人教版九年级数学下册《二十六章 反比例函数 26.2 实际问题与反比例函数 生活中的反比例关系》教案_6

新人教版九年级数学下册《二十六章 反比例函数 26.2 实际问题与反比例函数 生活中的反比例关系》教案_6
教学过程
(一)自学指导 归纳概念
下列问题中,变量间的对应关系可用怎样的函数关系式表示?
1.京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车
平均速度v(单位:km/h)的变化而变化;
2.某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;
3.已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:
(2)在思考、归纳过程中,发展学生的合情说理能力。
(三)情感目标
(1)通过创设情境让学生经历在实际问题中探索数量关系的过程,体验数学活动与人类的生活的密切联系,养成用数学思维方式解决实际问题的习惯。
(2)理论联系实际,让学生有学有所用的感性认识。
教学重难点
重点:反比例函数的概念
难点:求反比例函数的解析式。
(二)合作交流 巩固概念
下列哪些式子表示y是关于x的反比例函数?并说出 k的值。哪些是一次函数?
y = 3x-1 y = 2x y=1/5x+1 y=1/2x²
xy=2 y =-1/x y=3/2x y=1/3x
已知函数y = x m -7 是正比例函数,则 m = ___ ;
已知函数 y = 3xm -7 是反比例函数,则 m = ___ ;
学情分析
课堂,只有宝贵的四十分钟,有相当一部分学生注意力不能集中。针对这种情况,从学生身边的生活和已有的知识出发创设情境,目的是让学生感受到生活中处处有数学,激发学生对数学的兴趣和愿望,同时也为抽象反比例函数概念做好铺垫。让学生自己举例,讨论总结规律,抽象概念,便于学生理解和掌握反比例函数的概念,同时,培养和提高了学生的总结归纳能力和抽象能力。
1.反比例函数的概念。

九年级数学下册第二十六章反比例函数26.2实际问题与反比例函数教案(新版)新人教版

九年级数学下册第二十六章反比例函数26.2实际问题与反比例函数教案(新版)新人教版

26.2 实际问题与反比例函数【教学目标】知识技能目标:1.能够根据实际问题情景建立反比例函数的模型.2.能灵活运用反比例函数的意义和性质解决生活实际问题.过程性目标:1.通过探究生活中的实际问题,让学生体会数学建模思想的构建.2.通过探究反比例函数解决实际问题,体会数学知识的现实意义,提高分析问题、解决问题的能力,培养数学应用意识.情感态度目标:1.通过将反比例函数性质灵活应用于实际,让学生体会学习数学的价值,从而提高学生学习数学的兴趣.2.通过小组合作交流,提高合作意识,培养创新精神.3.让学生体会数学知识与现实世界的联系.【重点难点】重点:从实际问题中建立反比例函数模型,运用反比例函数的意义和性质解决实际问题.难点:根据具体实际问题情景建立反比例函数的模型.【教学过程】一、创设情境问题1:(1)反比例函数的定义是________________.(2)反比例函数的图象是__________,当k>0时,__________;当k<0时,________________.(3)待定系数法求反比例函数解析式的步骤:________________.问题2:公元前3世纪,有一位科学家说了这样一句名言:“给我一个支点,我可以撬动地球!”你们知道这位科学家是谁吗?这里蕴含什么样的原理呢?杠杆原理:阻力×阻力臂=动力×动力臂问题3:电学知识告诉我们,用电器的功率P(单位:W)、两端的电压U(单位:V)以及用电器的电阻R(单位:Ω)有如下关系:PR=U2.这个关系也可写为P=,或R=.二、探索归纳例1:市煤气公司要在地下修建一个容积为104 m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15 m时,公司临时改变计划,把储存室的深度改为15 m.相应地,储存室的底面积应改为多少(结果保留小数点后两位)?解:(1)根据圆柱的体积公式,得Sd=104,所以S关于d的函数解析式为S=.(2)把S=500代入S=,得500=,解得d=20(m).答:如果把储存室的底面积定为500 m2,施工时应向地下掘进20 m深.(3)根据题意,把d=15代入S=,得S=,解得S≈666.67(m2).答:当储存室的深度为15 m时,底面积应改为666.67 m2.例2:码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,平均卸货速度v(单位:吨/天)与卸货天数t之间有怎样的函数关系?(2)由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?解:(1)设轮船上的货物总量为k吨,根据已知条件得k=30×8=240,所以v关于t的函数解析式为v=.(2)把t=5代入v=,得v==48(吨/天).∴如果全部货物恰好用5天卸载完,那么平均每天卸载48吨.∵对于函数v=,当t>0时,t越小,v越大.∴若货物不超过5天卸载完,则平均每天至少要卸载48吨.例3:小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1 200 N和0.5 m.(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5 m时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,则动力臂l至少要加长多少?解:(1)根据“杠杆原理”,得F l=1 200×0.5,所以F关于l的函数解析式为F=.当l=1.5 m时,F==400(N).对于函数F=,当l=1.5 m时,F=400 N,此时杠杆平衡.因此,撬动石头至少需要400 N的力.(2)当F=400×=200时,由200=得l==3(m),3-1.5=1.5(m).对于函数F=,当l>0时,l越大,F越小.因此,若想用力不超过400 N的一半,则动力臂至少要加长1.5 m.例4:一个用电器的电阻是可调节的,其范围为110~220 Ω.已知电压为220 V,这个用电器的电路图如图所示.(1)功率P与电阻R有怎样的函数关系?(2)这个用电器功率的范围是多少?解:(1)根据电学知识,当U=220时,得P=.(2)根据反比例函数的性质可知,电阻越大,功率越小.把电阻R最小值=110代入P=,得P最大值==440(W);把电阻R最大值=220代入P=,得P最小值==220(W);因此用电器功率的范围为220~440 W.追问:想一想为什么收音机的音量、某些台灯的亮度以及电风扇的转速可以调节.三、新知应用1.如图,某玻璃器皿制造公司要制造一种容积为1 L(1 L=1 dm3)的圆锥形漏斗.(1)漏斗口的面积S(单位:dm2)与漏斗的深度d有怎样的函数关系?(2)如果漏斗口的面积为100 cm2,则漏斗的深为多少?答案:(1)S=(2)30 cm2.一司机驾驶汽车从甲地去乙地,他以80 km/h的平均速度用6 h到达目的地.(1)当他按原路匀速返回时,汽车的速度v与时间t有怎样的函数关系?(2)如果该司机必须在4 h之内回到甲地,那么返程时的平均速度不能小于多少?答案:(1)v=(2)120 km/h3.新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5×103 m2.(1)所需的瓷砖块数n与每块瓷砖的面积S(单位:m2)有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,建筑师决定采用灰、白和蓝三种颜色的瓷砖,每块瓷砖的面积都是80 cm2,且灰、白、蓝瓷砖使用数量的比为2∶2∶1,需要三种瓷砖各多少块?答案:(1)n=(2)250 000块,250 000块,125 000块四、检测反馈1.已知甲、乙两地相距s(单位:km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(单位:h)关于行驶速度v(单位:km/h)的函数图象是( )答案:C2.在某一电路中,电源电压U保持不变,电流I(A)与电阻R(Ω)之间的函数关系如图所示.(1)写出I与R之间的函数解析式.(2)结合图象回答当电路中的电流不超过12 A时,电路中电阻R的取值范围是多少Ω?答案:(1)I=(2)电阻R大于或等于3 Ω3.密闭容器内有一定质量的二氧化碳,当容器的体积V(单位:m3)变化时,气体的密度ρ(单位:kg/m3)也会随之变化.已知密度ρ与体积V是反比例函数关系,它的图象如图所示.(1)求密度ρ关于体积V的函数解析式.(2)求V=9 m3时,二氧化碳的密度ρ.答案:(1)ρ=(2)1.1 kg/m3五、课堂小结1.知识小结:面积一定时,矩形的长与宽成反比;面积一定时,三角形的一边长与这边的高成反比;体积一定时,柱体的底面积与高成反比等.建立反比例函数模型解决实际问题时,要注意自变量的取值范围.2.思想方法小结──深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法.六、板书设计课题:26.2 实际问题与反比例函数例1 例3实际问题数学模型例2 例4(反比例函数)。

九年级数学下册 第26章 反比例函数 26.2 实际问题与反比例函数(1)教案 (新版)新人教版

九年级数学下册 第26章 反比例函数 26.2 实际问题与反比例函数(1)教案 (新版)新人教版

26.2实际问题与反比例函数(1)一、【教材分析】二、【教学流程】探究(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰上了坚硬的岩石.为了节约建设资金,储存室的底面积应改为多少才能满足需要(保留两位小数)?探究2:码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5日内卸载完毕,那么平均每天至少要卸多少吨货物?题中各数量间的关系,容积为104,底面积是S,深度为d,满足基本公式:圆柱的体积=底面积×高,由题意知S是函数,d是自变量,改写后所得的函数关系式是反比例函数的形式.(2)问实际上是已知函数S的值,求自变量d的取值,(3)问则是与(2)相反.根据装货速度×装货时间=货物的总量,可以求出轮船装载货物的总量;再根据卸货速度=货物的总量÷卸货时间,得到v与t的函数式.t(时)之间的函数关系是______.⑵若到达目的地后,按原路匀速返回,并要求在3小时内回到A城,则返回的速度不能低于___________.5. 学校锅炉旁建有一个储煤库,开学时购进一批煤,现在知道:按每天用煤0.6吨计算,一学期(按150天计算)刚好用完.若每天的耗煤量为x吨,那么这批煤能维持y天.(1)则y与x之间有怎样的函数关系?(2)画函数图象(3)若每天节约0.1吨,则这批煤能维持多少天?领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法.补偿提高1. 在□ABCD中,AB=4cm,BC=1cm,E是CD边上一动点,AE、BC的延长线交于点F,设DE=x(cm),BF=y(cm).则y与x之间的函数关系式为 ____________,并写出自变量x的取值范围为____________.2.设∆ABC中BC边的长为x(cm),BC上的高AD为y(cm).已知y关于x的函数图象过点(3,4).⑴求y关于x的函数解析式和∆ABC 的面积.⑵画出函数的图象,并利用图象,求当2<x<8时y的取值范围.三角形的一边长与这边的高成反比.利用函数图像求y取值范围.三、【板书设计】四、【教后反思】本节课讨论了反比例函数的某些应用,在这些实际应用中,备课时根据“高效课堂”的四大板块进行,注意到与学生的实际生活相联系,切实发生在学生的身边的某些实际情境,并且注意用函数观点来处理问题或对问题的解决用函数做出某种解释,用以加深对函数的认识,并突出知识之间的内在联系。

人教版九年级数学下册:26.2 《实际问题与反比例函数》教学设计3

人教版九年级数学下册:26.2 《实际问题与反比例函数》教学设计3

人教版九年级数学下册:26.2 《实际问题与反比例函数》教学设计3一. 教材分析人教版九年级数学下册第26.2节《实际问题与反比例函数》是本册教材中的重要内容,主要介绍了反比例函数的应用。

通过本节课的学习,学生能够理解反比例函数的概念,掌握反比例函数的性质,并能运用反比例函数解决实际问题。

教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。

二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数、二次函数的知识,对函数有一定的认识。

但反比例函数的概念和性质较为抽象,学生可能难以理解。

因此,在教学过程中,教师需要运用生动形象的教学手段,帮助学生直观地理解反比例函数的概念和性质。

同时,学生需要通过大量的练习,提高运用反比例函数解决实际问题的能力。

三. 教学目标1.理解反比例函数的概念,掌握反比例函数的性质。

2.能够运用反比例函数解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.反比例函数的概念和性质。

2.运用反比例函数解决实际问题。

五. 教学方法1.情境教学法:通过生活实例,引发学生的兴趣,引导学生主动探究反比例函数的知识。

2.例题教学法:通过典型例题,讲解反比例函数的解题思路和方法。

3.练习法:通过大量练习,巩固所学知识,提高解决问题的能力。

4.小组合作学习:引导学生相互讨论、交流,培养团队合作精神。

六. 教学准备1.教学课件:制作反比例函数的课件,包括图片、动画、例题等。

2.练习题:准备一定数量的反比例函数练习题,包括基础题、提高题和拓展题。

3.教学道具:准备一些实际物品,如剪刀、绳子等,用于演示反比例函数的性质。

七. 教学过程1.导入(5分钟)利用生活实例,如商场打折、广告费用与观看人数的关系等,引导学生思考实际问题与反比例函数的关系,激发学生的学习兴趣。

2.呈现(10分钟)讲解反比例函数的定义和性质,引导学生通过观察、分析、归纳,理解反比例函数的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:当t=5h时,Q=48/5=9.6m3.所以每时的排水量
至少为9.6m3.
(5)已知排水管的最大排水量为每时12m3,那么最少
多长时间可将满池水全部排空?
解:当Q=12(m3)时,t=48/12=4(h).所以最少需4h可 将满池水全部排空. (6)画出函数图象,根据图象请对问题(4)和(5)作出直 观解释,并和同伴交流.
104
解:(3)根据题意,把d=15代入 S ,得: d
s 104
15
解得: S≈666.67
答:当储存室的深为15m时,储存室的底面积应改为
m2
666.67 才能满足需要.
随堂练习 1
(1)已知某矩形的面积为20cm2,写出其长y与宽x之间的
函数表达式;
(1) y
20 x
(x
0)
(2)当矩形的长为12cm是,求宽为多少?当矩形的
(5)已知汽车的平均速度最大可达80千米/时, 那么它从甲地到乙地最快需要多长时间?
补充练习: 1、
2、如图所示,正比例函数y=k1x的图象与
反比例函数y= k2的图象交于A、B两点,其
x
中点A的坐标为( 3 ,2 3 )。
(1)分别写出这两个函数的表达式。 (2)你能求出点B的坐标吗?
你是怎样求的?
(2)当人和木板对湿地的压力一定时, 随着木板面积S(㎡)的变化,人和木板
对地面的压强p( pa )将如何变化?
答:在物理中,我们曾学过,当人和 木板对湿地的压力一定时,随着木 板面积S的增加,人和木板对地面的 压强P将减小.
(3)如果人和木板对湿地的压力合计600N,那
么: ①用含S的代数式表示p,p是s的反比例函数
问题2:市煤气公司要在地下修建 一个容积为104m3 的圆柱形煤气储 存室. (1)储存室的底面积S(单位: m2)与 其深度d(单位:m)有怎样的函数关系?
解:(1)根据圆柱体的体积公式,我们有
s×d=104
10 变形得: S
4
(d 0)
d
d S
即储存室的底面积S是其深度d的反比例函数.
(2)公司决定把储存室的底面积S定为500 m2 ,施工 队施工时应该向下掘进多深?
(3)若点C坐标是(–4,0).
请求△BOC的面积。
C
(4)试着在坐标轴上找
点D,使△AOD≌△BOC。
(4,D 0)
中小学精品教学资源 中小学精品教学资源
中小学精品教学资源 中小学精品教学资源
中小学精品教学资源 中小学精品教学资源
2.一辆汽车往返于甲、乙两地之间,如果汽车 以50千米/时的平均速度从甲地出发,则经过6小 时可达到乙地.
(1)甲、乙两地相距多少千米?
(2)如果汽车把速度提高到v(千米/时),那么 从甲地到乙地所用时间t(小时)将怎样变化?
(3)写出t与v之间的函数关系式;
(4)因某种原因,这辆汽车需在5小时内从乙地到 甲地,则此汽车的平均速度至少应是多少?
(1)根据表中的数据 Y(个) 20 15 12 10
在平面直角坐标系中描出实数对(x,y)的对应点.
(2)猜测并确定y与x之间的函数关系式,并画出图 象;
(3)设经营此贺卡的销售利润为w元,试求出w与x 之间的函数关系式,若物价局规定此贺卡的销售价 最高不能超过10元/个,请你求出当日销售单价x定 为多少元时,才能获得最大日销售利润?
② ③做出直观解释.
(3)如果人和木板对湿地的压力合计600N,那么:
①用含S的代数式表示p,p是s的反比例函数吗?
②当木板面积为20㎡时,压强是多少? ③如果要求 压强不超过6000 ,木板面积至少要多大?
④在直角坐标系中,
作出相应函数图象.
⑤请利用图象对
② ③做出直观解释.
解:问题(2)是已知图象上的某点的横坐标为0.2,求该点的纵 坐标;问题(3)是已知图象上点的纵坐标不大于6000,求这些 点所处位置及它们横坐标的取值范围.实际上这些点都在 直线P=6000下方的图象上.
吗?
p 600 (s 0) s
P是S的反比例函数.
②当木板面积为20㎡时,压强是多少?
当S=0.2m2时,P=600/0.2=3000(Pa)
③如果要求压强不超过6000 ,木板面积至少要
多大? 当P≤6000时,S≥600/6000=0.1(m2)
④在直角坐标系中,
作出相应函数图象.
⑤请利用图象对
答:此时所需时间t(h)将减少.
(3)写出t与Q之间的函数关系式;
解:t与Q之间的函数关系式为:
t
48 Q
1.某蓄水池的排水管每时排水8m3,6h可将满池水全 部排空.
(3)写出t与Q之间的函数关系式;
解:t与Q之间的函数关系式为:
t
48 Q
(4)如果准备在5h内将满池水排空,那么每时的排水
量至少为多少?
104
解: (2)把S=500代入 S ,得: d
500 104 d
解得: d 20
m2
答:如果把储存室的底面积定为500 ,施工时 应向地下掘进20m深.
(3)当施工队按(2)中的计划掘进到地下15m时,碰上了 坚硬的岩石.为了节约建设资金,储存室的底面积应 改为多少才能满足需要(保留两位小数)?
宽为4cm,其长为多少 ?
5
(2) cm,5cm.
3
(3)如果要求矩形的长不小于8cm,其宽至多要多少?
(3) 5 cm 2
想一想:
1.某蓄水池的排水管每时排水8m3,6h可将满池水全 部排空.
(1)蓄水池的容积是多少? 解:蓄水池的容积为:8×6=48(m3).
(2)如果增加排水管,使每时的排水量达到Q(m3),那 么将满池水排空所需的时间t(h)将如往一艘轮船 装载货物,把轮船装载完毕恰好用了8天时间.
(1)轮船到达目的地后开始卸货,卸货速度v (单位:吨/天)与卸货时间t (单位:天) 之间有怎样的关系?
(2)由于遇到紧急情况,船上的货物必须在不 超过5日内卸完,那么平均每天至少要卸多少吨 货物?
分析:(1)根据装货速度×装货时间=货物的总量, 可以求出轮船装载货物的的总量;
(2)再根据卸货速度=货物总量÷卸货时间, 得到v与t的函数式。
例2.某种工艺品,一名工人一天的 产量约为5至8个,若每天要生产这 种工艺品60个,那么需要工人多少 人?
1.某商场出售一批进价为2元的贺卡,在市场营
销中发现此商品的日销售单价x元与日销售量y之间
有如下关系:
X(元) 3 4 5 6
中小学精品教学资源 中小学精品教学资源
中小学精品教学资源 中小学精品教学资源
中小学精品教学资源 中小学精品教学资源
问题1:某校科技小组进行野外考察,途中遇到一片 十几米宽的烂泥湿地,为了安全,迅速通过这片湿地, 他们沿着前进路线铺垫了若干块木板,构筑成一条临 时通道,从而顺利完成了任务.
(1)请你解释他们这样做的道理.
相关文档
最新文档