2018高考数学异构异模复习第二章函数的概念及其基本性质课时撬分练2.3函数的奇偶性与周期性理

合集下载

2018高考数学异构异模温习 第二章节 函数的概念及其基本性质 2.6 对数与对数函数讲义 理

2018高考数学异构异模温习 第二章节 函数的概念及其基本性质 2.6 对数与对数函数讲义 理

1.思维辨析 (1)若 log2(log3x)=log3(log2y)=0,则 x+y=5.( √ ) (2)2log510+log50.25=5.( × ) (3)已知函数 f(x)=lg x,若 f(ab)=1,则 f(a2)+f(b2)=2.( √ ) (4)当 x>1 时,logax>0.( × ) (5)函数 y=ln 11+ -xx与 y=ln (1+x)-ln (1-x)的定义域相同.( √ ) (6)若 logam<logan,则 m<n.( × )
撬题·对点题 必刷题
函数 y=log1 (x2-2x)的单调递减区间是________.
2
[正解] 由 x2-2x>0,得函数 y=log1 (x2-2x)的定义域为(-∞,0)∪(2,+∞).
2
令 u=x2-2x,则 u 在(-∞,0)上是减函数,在(2,+∞)上是增函数,
又 y=log1 u 在(0,+∞)上是减函数,
(2)已知
a
2 3
=49(a>0),则
log2
3
a=__3______.
解析 (1)∵2a=5b=10,∴a=log210,b=log510,∴1a=lg 2,1b=lg 5,∴1a+1b=lg 2+lg 5=1.
(2)因为
a
2 3
=49(a>0),所以
a=94
3 2
=323,
A.3
B.2
C.1
D.0
(2)已知函数 f(x)=|lg x|,若 a≠b,且 f(a)=f(b),则 a+b 的取值范围是( )
A.(1,+∞)
B.[1,+∞)
C.(2,+∞)
D.[2,+∞)

高考数学异构异模复习 第二章 函数的概念及其基本性质 2.1.1 函数的概念及其表示课件 理

高考数学异构异模复习 第二章 函数的概念及其基本性质 2.1.1 函数的概念及其表示课件 理

2.(1)函数 f(x)= 2x-1+x-1 2的定义域为(
)
A.[0,2)
B.(2,+∞)
C.[0,2)∪(2,+∞)
D.(-∞,2)∪(2,+∞)
(2)若函数 y=f(x)的定义域为 M={x|-2≤x≤2},值域为 N={y|0≤y≤2},则函数 y=f(x)的图象可能是
()
2x-1≥0 解析 (1)由 f(x)解析式得x-2≠0 ,
命题法 1 求函数的定义域
典例 1
(1)f(x)= log21x2-1的定义域为(
)
A.0,12
B.(2,+∞)
C.0,21∪(2,+∞)
D.0,12∪[2,+∞)
(2)若函数 y=f(x)的定义域为[0,2],则函数 g(x)=xf-2x1的定义域是__[_0_,1_)___. [解析] (1)要使函数 f(x)有意义,需使(log2x)2-1>0,即(log2x)2>1,∴log2x>1 或 log2x<-1.解之得 x>2
解得 x≥0 且 x≠2, ∴f(x)的定义域为[0,2)∪(2,+∞). (2)由函数的概念知 C 错,由函数的定义域 M 知 A 错,再由函数的值域 N 知 D 错,故选 B.
3.函数 f(x)=ln (x2-x)的定义域为( )
A.(0,1)
B.[0,1]
C.(-∞,0)∪(1,+∞) D.(-∞,0)∪[1,+∞)
f(x)和它对应
元素 y 与之对应
名称
那么就称 f:A→B 为从集合 A 那么就称对应 f:A→B 为从集合 A
到集合 B 的一个函数
到集合 B 的一个映射
记法
y=f(x),x∈A
对应 f:A→B 是一个映射

2018高考数学异构异模复习第二章函数的概念及其基本性质课时撬分练2.3函数的奇偶性与周期性理

2018高考数学异构异模复习第二章函数的概念及其基本性质课时撬分练2.3函数的奇偶性与周期性理

2018高考数学异构异模复习考案第二章函数的概念及其基本性质课时撬分练2.3 函数的奇偶性与周期性理时间:60分钟基础组1.[2016·冀州中学期末]下列函数中,既是偶函数又在(-∞,0)上单调递增的是( )A.y=x2B.y=2|x|C.y=log21 |x|D.y=sin x答案C解析函数y=x2在(-∞,0)上是减函数;函数y=2|x|在(-∞,0)上是减函数;函数y=log21|x|=-log2|x|是偶函数,且在(-∞,0)上是增函数;函数y=sin x不是偶函数.综上所述,选C.2. [2016·衡水中学预测]函数f(x)=a sin2x+bx 23+4(a,b∈R),若f⎝⎛⎭⎪⎫lg12014=2013,则f(lg 2014)=( )A.2018B.-2009A.2018 B.-2009C.2013 D.-2013答案C解析g(x)=a sin2x+bx 23,g(-x)=a sin2x+bx23,g(x)=g(-x),g(x)为偶函数,f⎝⎛⎭⎪⎫lg12014=f(-lg 2014),f(-lg 2014)=g(-lg 2014)+4=g(lg 2014)+4=f(lg 2014)=2013,故选C.3.[2016·枣强中学热身]若函数f(x)(x∈R)是奇函数,函数g(x)(x∈R)是偶函数,则一定成立的是( )A.函数f(g(x))是奇函数3.[2016·枣强中学热身]若函数f(x)(x∈R)是奇函数,函数g(x)(x∈R)是偶函数,则一定成立的是( )A.函数f(g(x))是奇函数B.函数g(f(x))是奇函数C.函数f(f(x))是奇函数D.函数g(g(x))是奇函数答案C解析由题得,函数f(x),g(x)满足f(-x)=-f(x),g(-x)=g(x),则有f(g(-x))=f(g(x)),g(f(-x))=g(-f(x))=g(f(x)),f(f(-x))=f(-f(x))=-f(f(x)),g(g(-x))=g(g(x)),可知函数f(f(x))是奇函数,故选C. 4.[2016·衡水中学猜题]定义域为(-∞,0)∪(0,+∞)的函数f(x)不恒为0,且对于定义域内的任意实数x,y都有f(xy)=x+y成立,则f(x)( ) A.是奇函数,但不是偶函数B.是偶函数,但不是奇函数C .既是奇函数,又是偶函数D .既不是奇函数,又不是偶函数答案 A解析 令x =y =1,则f (1)=1+1,∴f (1)=0. 令x =y =-1,则f (1)=--1+--1,∴f (-1)=0.令y =-1,则f (-x )=-x+-1,∴f (-x )=-f (x ).∴f (x )是奇函数.又∵f (x )不恒为0,∴f (x )不是偶函数.故选A.5.[2016·衡水中学一轮检测]设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}答案 B解析 当x <0时,-x >0,∵f (x )是偶函数,∴f (x )=f (-x )=-x 3-8.∴f (x )=⎩⎪⎨⎪⎧x3-8,x≥0,-x3-8,x<0,∴f (x -2)=⎩⎪⎨⎪⎧--8,x≥2,---8,x<2,由f (x -2)>0,得⎩⎪⎨⎪⎧x≥2--8>0或⎩⎪⎨⎪⎧x<2,---8>0,解得x >4或x <0.故选B.6. [2016·冀州中学模拟]已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)答案 D解析 由函数f (x )是奇函数且f (x )在[0,2]上是增函数可以推知,f (x )在[-2,2]上递增,又f (x -4)=-f (x )⇒f (x -8)=-f (x -4)=f (x ),故函数f (x )以8为周期,f (-25)=f (-1),f (11)=f (3)=-f (3-4)=f (1),f (80)=f (0),故f (-25)<f (80)<f (11).7.[2016·衡水二中周测]函数f (x )=x 3+sin x +1(x ∈R ),若f (m )=2,则f (-m )的值为( )A .3B .0C .-1D .-2答案 B解析 把f (x )=x 3+sin x +1变形为f (x )-1=x 3+sin x ,令g (x )=f (x )-1=x 3+sin x ,则g (x )为奇函数,有g (-m )=-g (m ),所以f (-m )-1=-[f (m )-1],得到f (-m )=-(2-1)+1=0.。

高考数学异构异模复习第二章函数的概念及其基本性质2.9.1函数的实际应用课件理

高考数学异构异模复习第二章函数的概念及其基本性质2.9.1函数的实际应用课件理
第二章 函数的概念及其基本性质
第9讲 函数模型及函数的综合应用
考点一 函数的实际应用
撬点·基础点 重难点
1 常见的函数模型
函数模型
函数解析式
一次函数型
f(x)=ax+b(a,b 为常数,a≠0)
二次函数型
f(x)=ax2+bx+c(a,b,c 为常数,a≠0)
指数函数型 f(x)=bax+c(a,b,c 为常数,a>0 且 a≠1,b≠0)
② 根据自己预习时理解过的逻辑结构抓住老师的思路。老师讲课在多数情况下是根据教材本身的知识结构展开的,若把自己预习时所理解过的知识 逻辑结构与老师的讲解过程进行比较,便可以抓住老师的思路。
③ 根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是····”等等,这些 用语往往体现了老师的思路。来自:学习方法网
【解题法】 函数模型的应用技巧 (1)在建立二次函数模型解决实际问题中的最值问题时,一定要注意自变量的取值范围,需根据函数图 象的对称轴与函数定义域在坐标系中对应区间之间的位置关系讨论求解. (2)与幂函数、指数函数、对数函数三类函数模型有关的实际问题,在求解时,要先学会合理选择模型, 在三类模型中,指数函数模型是增长速度越来越快(底数大于 1)的一类函数模型,与增长率、银行利率有关 的问题都属于指数函数模型. (3)在解决幂函数、指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再 借助函数的图象求解最值问题,必要时可借助导数.
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。

2018高考数学(文科)异构异模复习考案撬分法习题第二章函数的概念及其基本性质课时撬分练2-3Word版含答案

2018高考数学(文科)异构异模复习考案撬分法习题第二章函数的概念及其基本性质课时撬分练2-3Word版含答案

……………………………………………… ………………………………………………时间:60分钟基础组1.下列函数中,既是偶函数又在(-∞,0)上单调递增的是( ) A .y =x 2B .y =2|x |C .y =log 21|x |D .y =sin x答案 C解析 函数y =x 2在(-∞,0)上是减函数;函数y =2|x |在(-∞,0)上是减函数;函数y =log 21|x |=-log 2|x |是偶函数,且在(-∞,0)上是增函数;函数y =sin x 不是偶函数.综上所述,选C.2. 函数f (x )=a sin 2x +bx 23 +4(a ,b ∈R ),若f ⎝ ⎛⎭⎪⎫lg 12014=2013,则f (lg 2014)=( )点击观看解答视频A .2018B .-2009C .2013D .-2013答案 C解析 g (x )=a sin 2x +bx 23 ,g (-x )=a sin 2x +bx 23 ,g (x )=g (-x ),g (x )为偶函数,f ⎝⎛⎭⎪⎫lg12014=f (-lg 2014),f (-lg 2014)=g (-lg 2014)+4=g (lg 2014)+4=f (lg 2014)=2013,故选C.3.若函数f (x )(x ∈R )是奇函数,函数g (x )(x ∈R )是偶函数,则一定成立的是( ) A .函数f (g (x ))是奇函数 B .函数g (f (x ))是奇函数 C .函数f (f (x ))是奇函数 D .函数g (g (x ))是奇函数 答案 C解析 由题得,函数f (x ),g (x )满足f (-x )=-f (x ),g (-x )=g (x ),则有f (g (-x ))=f (g (x )),g (f (-x ))=g (-f (x ))=g (f (x )),f (f (-x ))=f (-f (x ))=-f (f (x )),g (g (-x ))=g (g (x )),可知函数f (f (x ))是奇函数,故选C.4.定义域为(-∞,0)∪(0,+∞)的函数f (x )不恒为0,且对于定义域内的任意实数x ,y 都有f (xy )=f y x +f xy成立,则f (x )( )A .是奇函数,但不是偶函数B .是偶函数,但不是奇函数C .既是奇函数,又是偶函数D .既不是奇函数,又不是偶函数 答案 A解析 令x =y =1,则f (1)=f1+f1,∴f (1)=0. 令x =y =-1,则f (1)=f --1+f --1,∴f (-1)=0.令y =-1,则f (-x )=f -x+f x-1,∴f (-x )=-f (x ).∴f (x )是奇函数. 又∵f (x )不恒为0,∴f (x )不是偶函数.故选A.5.设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( ) A .{x |x <-2或x >4} B .{x |x <0或x >4} C .{x |x <0或x >6} D .{x |x <-2或x >2}答案 B解析 当x <0时,-x >0,∵f (x )是偶函数, ∴f (x )=f (-x )=-x 3-8.∴f (x )=⎩⎪⎨⎪⎧x 3-8,x ≥0,-x 3-8,x <0,∴f (x -2)=⎩⎪⎨⎪⎧x -3-8,x ≥2,-x -3-8,x <2,由f (x -2)>0,得⎩⎪⎨⎪⎧x ≥2x -3-8>0或⎩⎪⎨⎪⎧x <2,-x -3-8>0,解得x >4或x <0.故选B.6. 已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间上是增函数,则( )点击观看解答视频A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11) 答案 D解析 由函数f (x )是奇函数且f (x )在上是增函数可以推知,f (x )在上递增, 又f (x -4)=-f (x )⇒f (x -8)=-f (x -4)=f (x ),故函数f (x )以8为周期,f (-25)=f (-1),f (11)=f (3)=-f (3-4)=f (1),f (80)=f (0),故f (-25)<f (80)<f (11).7.函数f (x )=x 3+sin x +1(x ∈R ),若f (m )=2,则f (-m )的值为( ) A .3 B .0 C .-1 D .-2答案 B解析 把f (x )=x 3+sin x +1变形为f (x )-1=x 3+sin x ,令g (x )=f (x )-1=x 3+sin x ,则g (x )为奇函数,有g (-m )=-g (m ),所以f (-m )-1=-,得到f (-m )=-(2-1)+1=0.8.设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈时,f (x )=x +1,则f ⎝ ⎛⎭⎪⎫32=________.答案 32解析 f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫32-2=f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12=12+1=32.9.若f (x )=(x +a )(x -4)为偶函数,则实数a =________. 答案 4解析 由f (x )=(x +a )(x -4), 得f (x )=x 2+(a -4)x -4a ,若f (x )为偶函数,则a -4=0,即a =4.10.设f (x )是定义在R 上的以3为周期的奇函数,若f (2)>1,f (2014)=2a -3a +1,则实数a 的取值范围是________.答案 ⎝⎛⎭⎪⎫-1,23 解析 ∵f (2014)=f (1)=f (-2)=-f (2)<-1, ∴2a -3a +1<-1,解得-1<a <23. 11.设函数f (x )是定义在R 上的偶函数,且满足: ①f (x )=f (2-x );②当0≤x ≤1时,f (x )=x 2. (1)判断函数f (x )是否为周期函数;(2)求f (5.5)的值. 解 (1)由⎩⎪⎨⎪⎧f x =f -x ,fx =f -x⇒f (-x )=f (2-x )⇒f (x )=f (x +2)⇒f (x )是周期为2的周期函数.(2)f (5.5)=f (4+1.5)=f (1.5)=f (2-1.5)=f (0.5)=0.25.12.已知函数f (x )的定义域为(-2,2),函数g (x )=f (x -1)+f (3-2x ). (1)求函数g (x )的定义域;(2)若f (x )为奇函数,并且在定义域上单调递减,求不等式g (x )≤0的解集.解 (1)由题意可知⎩⎪⎨⎪⎧-2<x -1<2,-2<3-2x <2,∴⎩⎪⎨⎪⎧-1<x <3,12<x <52,解得12<x <52,故函数g (x )的定义域为⎝ ⎛⎭⎪⎫12,52.(2)由g (x )≤0得f (x -1)+f (3-2x )≤0. ∴f (x -1)≤-f (3-2x ).又∵f (x )为奇函数,∴f (x -1)≤f (2x -3),而f (x )在(-2,2)上单调递减,∴⎩⎪⎨⎪⎧x -1≥2x -3,12<x <52,解得12<x ≤2,∴不等式g (x )≤0的解集为⎝ ⎛⎦⎥⎤12,2. 能力组13.已知y =f (x )是偶函数,而y =f (x +1)是奇函数,且对任意0≤x ≤1,都有f ′(x )≥0,则a =f ⎝ ⎛⎭⎪⎫9819,b =f ⎝ ⎛⎭⎪⎫10117,c =f ⎝ ⎛⎭⎪⎫10615的大小关系是( ) A .c <b <a B .c <a <b C .a <c <b D .a <b <c答案 B解析 因为y =f (x )是偶函数,所以f (x )=f (-x ),① 因为y =f (x +1)是奇函数,所以f (x )=-f (2-x ),② 所以f (-x )=-f (2-x ),即f (x )=f (x +4).所以函数f (x )的周期为4.又因为对任意0≤x ≤1,都有f ′(x )≥0,所以函数在上单调递增,又因为函数y =f (x +1)是奇函数,所以函数在上单调递增,又a =f ⎝ ⎛⎭⎪⎫9819=f ⎝ ⎛⎭⎪⎫2219,b =f ⎝⎛⎭⎪⎫10117=f ⎝ ⎛⎭⎪⎫3317,c =f ⎝ ⎛⎭⎪⎫10615=f ⎝ ⎛⎭⎪⎫-1415=f ⎝ ⎛⎭⎪⎫1415,所以f ⎝ ⎛⎭⎪⎫1415<f ⎝ ⎛⎭⎪⎫2219<f ⎝ ⎛⎭⎪⎫3317,即c <a <b .14.已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________. 答案 -1解析 设h (x )=f (x )+x 2为奇函数, 则h (-x )=f (-x )+x 2,∴h (-x )=-h (x ),∴f (-x )+x 2=-f (x )-x 2, ∴f (-1)+1=-f (1)-1,∴f (-1)=-3, ∴g (-1)=f (-1)+2=-1.15. 定义在R 上的函数f (x )对任意a ,b ∈R 都有f (a +b )=f (a )+f (b )+k (k 为常数).点击观看解答视频(1)判断k 为何值时f (x )为奇函数,并证明;(2)设k =-1,f (x )是R 上的增函数,且f (4)=5,若不等式f (mx 2-2mx +3)>3对任意x ∈R 恒成立,求实数m 的取值范围.解 (1)若f (x )在R 上为奇函数,则f (0)=0,令x =y =0,则f (0+0)=f (0)+f (0)+k ,∴k =0.证明:令a =b =0,由f (a +b )=f (a )+f (b ),得f (0+0)=f (0)+f (0),即f (0)=0. 令a =x ,b =-x ,则f (x -x )=f (x )+f (-x ), 又f (0)=0,则有0=f (x )+f (-x ), 即f (-x )=-f (x )对任意x ∈R 成立, ∴f (x )是奇函数.(2)∵f (4)=f (2)+f (2)-1=5,∴f (2)=3.∴f (mx 2-2mx +3)>3=f (2)对任意x ∈R 恒成立. 又f (x )是R 上的增函数,∴mx 2-2mx +3>2对任意x ∈R 恒成立, 即mx 2-2mx +1>0对任意x ∈R 恒成立, 当m =0时,显然成立;当m ≠0时,由⎩⎪⎨⎪⎧m >0,Δ=4m 2-4m <0,得0<m <1.∴实数m 的取值范围是已知函数f (x )对任意实数x ,y 恒有f (x +y )=f (x )+f (y ),且当x >0时,f (x )<0,又f (1)=-2.(1)判断f (x )的奇偶性; (2)求证:f (x )是R 上的减函数;(3)求f (x )在区间上的值域;(4)若∀x ∈R ,不等式f (ax 2)-2f (x )<f (x )+4恒成立,求a 的取值范围. 解 (1)取x =y =0,则f (0+0)=2f (0),∴f (0)=0. 取y =-x ,则f (x -x )=f (x )+f (-x ),∴f (-x )=-f (x )对任意x ∈R 恒成立,∴f (x )为奇函数.(2)证明: 任取x 1,x 2∈(-∞,+∞),且x 1<x 2,则x 2-x 1>0,f (x 2)+f (-x 1)=f (x 2-x 1)<0,∴f (x 2)<-f (-x 1),又f (x )为奇函数, ∴f (x 1)>f (x 2). ∴f (x )是R 上的减函数.(3)由(2)知f (x )在R 上为减函数, ∴对任意x ∈,恒有f (3)≤f (x )≤f (-3),∵f (3)=f (2)+f (1)=f (1)+f (1)+f (1)=-2×3=-6, ∴f (-3)=-f (3)=6,f (x )在上的值域为.(4)f (x )为奇函数,整理原式得f (ax 2)+f (-2x )<f (x )+f (-2), 则f (ax 2-2x )<f (x -2),∵f (x )在(-∞,+∞)上是减函数,∴ax 2-2x >x -2, 当a =0时,-2x >x -2在R 上不是恒成立,与题意矛盾;当a >0时,ax 2-2x -x +2>0,要使不等式恒成立,则Δ=9-8a <0,即a >98;当a <0时,ax 2-3x +2>0在R 上不是恒成立,不合题意.综上所述,a 的取值范围为⎝ ⎛⎭⎪⎫98,+∞.。

2018高考数学文科异构异模复习考案撬分法习题 第二章 函数的概念及其基本性质2-3-2 含答案 精品

2018高考数学文科异构异模复习考案撬分法习题 第二章 函数的概念及其基本性质2-3-2 含答案 精品

1.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x+15,则f (log 220)=( )A .-1 B.45 C .1 D .-45答案 A解析 由f (x -2)=f (x +2),得f (x +4)=f (x ),∴f (x )的周期T =4,结合f (-x )=-f (x ),有f (log 220)=f (1+log 210)=f (log 210-3)=-f (3-log 210),∵3-log 210∈(-1,0),∴f (log 220)=-23-log 210-15=-45-15=-1.故选A. 2.函数f (x )=lg |sin x |是( ) A .最小正周期为π的奇函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为2π的偶函数 答案 C解析 易知函数的定义域为{x |x ≠k π,k ∈Z },关于原点对称,又f (-x )=lg |sin(-x )|=lg |-sin x |=lg |sin x |=f (x ),所以f (x )是偶函数,又函数y =|sin x |的最小正周期为π,所以函数f (x )=lg |sin x |是最小正周期为π的偶函数.故选C.3.已知函数f (x )是(-∞,+∞)上的奇函数,且f (x )的图象关于x =1对称,当x ∈时,f (x )=2x -1,则f (2013)+f (2014)的值为( )点击观看解答视频A .-2B .-1C .0D .1答案 D解析 ∵函数f (x )为奇函数,则f (-x )=-f (x ),又函数的图象关于x =1对称,则f (2+x )=f (-x )=-f (x ),∴f (4+x )=f =-f (x +2)=f (x ).∴f (x )的周期为4.又函数的图象关于x =1对称,∴f (0)=f (2),∴f (2013)+f (2014)=f (1)+f (2)=f (1)+f (0)=21-1+20-1=1.故选D.4.已知定义在R 上的奇函数f (x )满足f (x +1)=-f (x ),且在[0,1)上单调递增,记a=f ⎝ ⎛⎭⎪⎫12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .a >b =c B .b >a =c C .b >c >a D .a >c >b答案 A解析 由题意得,f (x +2)=-f (x +1)=f (x ),即函数f (x )是以2为周期的奇函数,所以f (2)=f (0)=0.因为f (x +1)=-f (x ),所以f (3)=-f (2)=0.又f (x )在[0,1)上是增函数,于是有f ⎝ ⎛⎭⎪⎫12>f (0)=f (2)=f (3),即a >b =c .故选A.5.已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x ,x ≥4,f x +,x <4,则f (2+log 23)的值为( ) A.124B.112C.16D.13答案 A解析 ∵2+log 23<4,∴f (2+log 23)=f (3+log 23).∵3+log 23>4,∴f (2+log 23)=f (3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=18×⎝ ⎛⎭⎪⎫12log 23=18×13=124.故选A.6.若y =f (x )既是周期函数,又是奇函数,则其导函数y =f ′(x )( ) A .既是周期函数,又是奇函数 B .既是周期函数,又是偶函数 C .不是周期函数,但是奇函数 D .不是周期函数,但是偶函数 答案 B解析 因为y =f (x )是周期函数,设其周期为T ,则有f (x +T )=f (x ),两边同时求导,得f ′(x +T )(x +T )′=f ′(x ),即f ′(x +T )=f ′(x ),所以导函数为周期函数.因为y =f (x )是奇函数,所以f (-x )=-f (x ),两边同时求导,得f ′(-x )(-x )′=-f ′(x ),即-f′(-x)=-f′(x),所以f′(-x)=f′(x),即导函数为偶函数,选B.。

高考数学异构异模复习第二章函数的概念及其基本性质课时撬分练2.1函数的概念及其表示文

高考数学异构异模复习第二章函数的概念及其基本性质课时撬分练2.1函数的概念及其表示文

2018高考数学异构异模复习考案 第二章 函数的概念及其基本性质课时撬分练2.1 函数的概念及其表示 文时间:45分钟基础组1.[2016·枣强中学周测]已知集合A =[0,8],集合B =[0,4],则下列对应关系中,不能看作从A 到B 的映射的是( )A .f :x →y =18xB .f :x →y =14xC .f :x →y =12xD .f :x →y =x答案 D解析 按照对应关系f :x →y =x ,对A 中某些元素(如x =8),B 中不存在元素与之对应.2. [2016·冀州中学预测]函数f (x )=+1-2x的定义域是( )A .(-3,0)B .(-3,0]C .(-∞,-3)∪(0,+∞)D .(-∞,-3)∪(-3,0)答案 A解析 ∵f (x )=+1-2x,∴要使函数f (x )有意义,需使⎩⎪⎨⎪⎧x +3>0,1-2x>0,即-3<x <0.3.[2016·冀州中学猜题]设函数f (x )=⎩⎨⎧x ,x≥0,-x ,x<0,若f (a )+f (-1)=2,则a =( )A .-3B .±3C .-1D .±1答案 D解析 当a ≥0时,f (a )=a ,由已知得a +1=2,得a =1;当a <0时,f (a )=-a ,由已知得-a +1=2,得a =-1,综上a =±1.4.[2016·武邑中学仿真]已知函数f (n )=⎩⎪⎨⎪⎧n -3,n≥10,+,n<10.其中n ∈N *,则f (6)的值为( )A .6B .7C .8D .9答案 B解析 由函数解析式,可知f (6)=f (f (11))=f (8)=f (f (13))=f (10)=10-3=7.5.[2016·衡水中学模拟]已知函数g (x )=1-2x ,f [g (x )]=1-x2x2(x ≠0),则f ⎝ ⎛⎭⎪⎫12等于( )A .1B .3C .15D .30答案 C解析 令1-2x =12,得x =14,∴f ⎝ ⎛⎭⎪⎫12=1-116116=15,故选C.6.[2016·冀州中学期中]函数f (x )=11--的最大值是( )A.45B.54 C.34D.43 答案 D解析 1-x (1-x )=⎝ ⎛⎭⎪⎫x -122+34≥34,所以0<11--≤43.7.[2016·衡水中学仿真]已知函数f (x )的定义域为(0,2],则函数f (x +1)的定义域为( )A .[-1,+∞)B .(-1,3]C .[5,3)D .(0,5)答案 B解析 根据题意,得0<x +1≤2,即0<x +1≤4,解得-1<x ≤3,故选B.8.[2016·枣强中学预测]设函数f (x )=⎩⎪⎨⎪⎧x ,x≥0,⎝ ⎛⎭⎪⎫12x ,x<0,则f (f (-4))=________.答案 4解析 因为x =-4<0,所以f (-4)=⎝ ⎛⎭⎪⎫12-4=16,因为x =16>0,所以f (16)=16=4.9.[2016·冀州中学一轮检测]函数f (x )=x +1-2x 的值域为________.答案 (-∞,1]解析 函数的定义域为⎝⎛⎦⎥⎤-∞,12,令t =1-2x(t ≥0),则x =1-t22.∴y =1-t22+t =-12(t -1)2+1(t ≥0),故t =1(即x =0)时,y 有最大值1,故值域为(-∞,1].10.[2016·武邑中学一轮检测]已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1.求函数f (x )的解析式.解 设f (x )=ax 2+bx +c (a ≠0),又f (0)=0,∴c =0,即f (x )=ax 2+bx .又∵f (x +1)=f (x )+x +1.。

高考数学异构异模复习第二章函数的概念及其基本性质2.9.1函数的实际应用撬题文

高考数学异构异模复习第二章函数的概念及其基本性质2.9.1函数的实际应用撬题文

2018高考数学异构异模复习考案 第二章 函数的概念及其基本性质2.9.1 函数的实际应用撬题 文1.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k .据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10答案 C解析 由题意可得:y min =-3+k =2.解得k =5,故这段时间水深的最大值为3+5=8(m),选C.2.某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q 2B.++-12C.pqD.++-1 答案 D解析 设两年前的年底该市的生产总值为a ,则第二年年底的生产总值为a (1+p )(1+q ).设这两年生产总值的年平均增长率为x ,则a (1+x )2=a (1+p )(1+q ),由于连续两年持续增加,所以x >0,因此x =++-1,故选D.3.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内通话时间t (分钟)与电话费S (元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差( )A .10元B .20元C .30元 D.403元答案 A解析 依题意可设S A (t )=20+kt ,S B (t )=mt . 又S A (100)=S B (100),∴100k +20=100m ,得k -m =-0.2,于是S A (150)-S B (150)=20+150k -150m =20+150×(-0.2)=-10,即两种方式电话费相差10元,选A.4. 如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若AB =15 m ,AC =25 m ,∠BCM =30°,则tan θ的最大值是________.(仰角θ为直线AP 与平面ABC 所成角)答案 539解析 由于AB ⊥BC ,AB =15 m ,AC =25 m ,所以BC = 252-152=20 m .过点P 作PN⊥BC 交BC 于N ,连接AN (如图),则∠PAN =θ,tan θ=PN AN .设NC =x (x >0),则BN =20-x ,于是AN =AB2+BN2= 152+-=x2-40x +625,PN =NC ·tan30°=33x ,。

2018高考数学文科异构异模复习考案撬分法习题 第二章 函数的概念及其基本性质课时撬分练2-7 含答案 精品

2018高考数学文科异构异模复习考案撬分法习题 第二章 函数的概念及其基本性质课时撬分练2-7 含答案 精品

………………………………………………………………………………………………时间:60分钟基础组1.函数y =lg |x -1|的图象大致为( )答案 B解析 y =lg |x -1|关于直线x =1对称,排除A ,D ;因函数值可以为负值,故选B. 2.函数y =1-1x -1的图象是( )答案 B解析 解法一:y =1-1x -1的图象可以看成由y =-1x的图象向右平移1个单位,再向上平移1个单位而得到的.解法二:由于x ≠1,故排除C 、D.又函数在(-∞,1)及(1,+∞)上均为增函数,排除A ,所以选B.3.函数y =xa x|x |(a >1)的图象的大致形状是( )答案 B解析 函数y =xa x|x |(a >1)化为y =⎩⎪⎨⎪⎧a x ,x >0-a x,x <0,其图象是B 项.4.使log 2(-x )<x +1成立的x 的取值范围是( ) A .(-1,0) B .方程|x 2-2x |=a 2+1(a >0)的解的个数是( )A .1B .2C .3D .4答案 B解析 (数形结合法) ∵a >0,∴a 2+1>1.而y =|x 2-2x |的图象如图,∴y =|x 2-2x |的图象与y =a 2+1的图象总有两个交点.6.函数y =ax 2+bx 与函数y =x a+b (a ≠0)在同一坐标系中的图象可能为( )答案 C解析 y =ax 2+bx =a ⎝ ⎛⎭⎪⎫x +b 2a 2-b 24a.对A ,由二次函数图象可知,a <0,-b 2a <0,所以b <0,函数y =x a+b 不符合要求,同理B 不符合要求;对于C ,D ,由二次函数图象可知,a <0,-b2a>0,所以b >0,比较选项C ,D 可知C 符合要求. 7.定义运算a ⊕b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,则函数f (x )=1⊕2x的图象是( )答案 A解析 因为x ≤0时,2x≤1;x >0时,2x>1.根据a ⊕b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,得f (x )=1⊕2x=⎩⎪⎨⎪⎧2x,x ≤0,1,x >0,故选A.8.已知x 2>x 13 ,则实数x 的取值范围是________.答案 {x |x <0或x >1}解析 分别画出函数y =x 2与y =x 13 的图象,如图所示,由于两函数的图象都过点(1,1),(0,0),由图象可知不等式x 2>x 13 的解集为{x |x <0或x >1}.9.若函数y =⎝ ⎛⎭⎪⎫12|1-x |+m 的图象与x 轴有公共点,则m 的取值范围是________.答案 -1≤m <0解析 首先作出y =⎝ ⎛⎭⎪⎫12|1-x |的图象(如右图所示),欲使y =⎝ ⎛⎭⎪⎫12|1-x |+m 的图象与x 轴有交点,则-1≤m <0.10.函数f (x )=⎩⎪⎨⎪⎧ax +b ,x ≤0log c ⎝ ⎛⎭⎪⎫x +19,x >0的图象如图所示,则a +b +c =_______.答案133解析 由图象可求得直线的方程为y =2x +2(x ≤0),又函数y =log c ⎝ ⎛⎭⎪⎫x +19的图象过点(0,2),将其坐标代入可得c =13,所以a +b +c =2+2+13=133.11.已知不等式x 2-log a x <0,当x ∈⎝ ⎛⎭⎪⎫0,12时恒成立,求实数a 的取值范围.解 由x 2-log a x <0,得x 2<log a x . 设f (x )=x 2,g (x )=log a x .由题意知,当x ∈⎝ ⎛⎭⎪⎫0,12时,函数f (x )的图象在函数g (x )的图象的下方,如图,可知⎩⎪⎨⎪⎧0<a <1,f ⎝ ⎛⎭⎪⎫12≤g ⎝ ⎛⎭⎪⎫12,即⎩⎪⎨⎪⎧0<a <1,⎝ ⎛⎭⎪⎫122≤log a 12,解得116≤a <1.∴实数a 的取值范围是⎣⎢⎡⎭⎪⎫116,1. 12.已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0. (1) 求实数m 的值; (2)作出函数f (x )的图象;(3)根据图象指出f (x )的单调递减区间;(4)若方程f (x )=a 只有一个实数根,求a 的取值范围.解 (1)∵f (4)=0,∴4|m -4|=0,即m =4. (2)f (x )=x |x -4|=⎩⎪⎨⎪⎧x x -=x -2-4,x ≥4,-x x -=-x -2+4,x <4.f (x )的图象如图所示:(3)f (x )的减区间是.(4)从f (x )的图象可知,当a >4或a <0时,f (x )的图象与直线y =a 只有一个交点,方程f (x )=a 只有一个实数根,即a 的取值范围是(-∞,0)∪(4,+∞).能力组13. 函数f (x )=ln (x +1)·tan x 的图象可能是( )点击观看解答视频答案 A解析 因为x >-1,结合图形,可以排除B ,D ;取x =π4,有f ⎝ ⎛⎭⎪⎫π4=ln ⎝ ⎛⎭⎪⎫π4+1tanπ4=ln ⎝ ⎛⎭⎪⎫π4+1>0,可以排除C ,故选A.14.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x,x +2,10-x }(x ≥0),则f (x )的最大值为____________.答案 6解析 f (x )=min{2x,x +2,10-x }(x ≥0)的图象如图.令x +2=10-x ,得x =4.当x =4时,f (x )取最大值,f (4)=6.15.已知函数y =f (x )(x ∈R ).对函数y =g (x )(x ∈I ),定义g (x )关于f (x )的“对称函数”为函数y =h (x )(x ∈I ).y =h (x )满足:对任意x ∈I ,两个点(x ,h (x )),(x ,g (x ))关于点(x ,f (x ))对称.若h (x )是g (x )=4-x 2关于f (x )=3x +b 的“对称函数”,且h (x )>g (x )恒成立,则实数b 的取值范围是________.点击观看解答视频答案 (210,+∞) 解析 由已知得h x +4-x 22=3x +b ,所以,h (x )=6x +2b -4-x 2.h (x )>g (x )恒成立,即6x +2b -4-x 2>4-x 2恒成立,整理得3x +b >4-x 2恒成立.在同一坐标系内,画出直线y =3x +b 及半圆y =4-x 2(如图所示),当直线与半圆相切时,|3×0-0+b |1+32=2,所以|b |=210.故b 的取值范围是(210,+∞). 16.若直线y =2a 与函数y =|a x-1|(a >0且a ≠1)的图象有两个公共点,求a 的取值范围.解 当0<a <1时,y =|a x-1|的图象如图(1). 由已知得0<2a <1,∴0<a <12;当a >1时,y =|a x-1|的图象如图(2),由已知得0<2a <1,此时无解.综上可知a 的取值范围是⎝ ⎛⎭⎪⎫0,12.。

2018高考数学异构异模复习 第二章 函数的概念及其基本性质 2.7.2 函数图象的应用撬题 理

2018高考数学异构异模复习 第二章 函数的概念及其基本性质 2.7.2 函数图象的应用撬题 理

2018高考数学异构异模复习考案 第二章 函数的概念及其基本性质2.7.2 函数图象的应用撬题 理1.函数f (x )=ax +bx +c 2的图象如图所示,则下列结论成立的是( )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <0 答案 C 解析 ∵f (x )=ax +bx +c 2的图象与x ,y 轴分别交于N ,M ,且点M 的纵坐标与点N 的横坐标均为正,∴x =-b a>0,y =b c2>0,故a <0,b >0,又函数图象间断点的横坐标为正,∴-c >0,故c <0,故选C.2.已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln (x +a )的图象上存在关于y 轴对称的点,则a 的取值范围是( )A.⎝⎛⎭⎪⎫-∞,1eB .(-∞,e)C.⎝⎛⎭⎪⎫-1e,eD.⎝⎛⎭⎪⎫-e ,1e 答案 B解析 由已知得函数f (x )的图象关于y 轴对称的函数为h (x )=x 2+e -x-12(x >0).令h (x )=g (x ),得ln (x +a )=e -x -12,作函数M (x )=e -x-12的图象,显然当a ≤0时,函数y =ln (x +a )的图象与M (x )的图象一定有交点.当a >0时,若函数y =ln (x +a )的图象与M (x )的图象有交点,则ln a <12,则0<a < e.综上a < e.故选B.3.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( )A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2}答案 C解析 在平面直角坐标系中作出函数y =log 2(x +1)的图象如图所示.所以f (x )≥log 2(x +1)的解集是{x |-1<x ≤1},所以选C.4.已知函数y =f (x )的大致图象,如图所示,则函数y =f (x )的解析式应为( ) A .f (x )=e xln x B .f (x )=e -xln (|x |) C .f (x )=e xln (|x |) D .f (x )=e |x |ln (|x |) 答案 C解析 由定义域是{x |x ∈R ,且x ≠0},排除A ;由函数图象知函数不是偶函数,排除D ;当x →+∞时,f (x )=ln |x |ex→0,排除B ,故选C. 5.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f x -f -xx<0的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)答案 D解析 f (x )为奇函数,所以不等式f x -f -x x <0化为f xx<0,即xf (x )<0,f (x )的大致图象如图所示.所以xf (x )<0的解集为(-1,0)∪(0,1).6.对实数a 和b ,定义运算“□”:a □b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)□(x-1),x ∈R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-1,1]∪(2,+∞)B .(-2,-1]∪(1,2]C .(-∞,-2)∪(1,2]D .[-2,-1] 答案 B解析 令(x 2-2)-(x -1)≤1, 得-1≤x ≤2,∴f (x )=⎩⎪⎨⎪⎧x 2-2,-1≤x ≤2,x -1,x <-1或x >2.若y =f (x )-c 与x 轴恰有两个公共点,画函数f (x )的图象知实数c 的取值范围是(-2,-1]∪(1,2].7.已知函数f (x )=⎩⎪⎨⎪⎧sin πx ,0≤x ≤1,log 2014x ,x >1,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围是( )A .(1,2014)B .(1,2015)C .(2,2015)D .[2,2015]答案 C解析 函数f (x )=⎩⎪⎨⎪⎧sin πx ,0≤x ≤1,log 2014x ,x >1的图象如下图所示,不妨令a <b <c ,由正弦曲线的对称性可知a +b =1,而1<c <2014.所以2<a +b +c <2015,故选C.。

2018高考数学异构异模复习 第二章 函数的概念及其基本性质 2.1.2 分段函数及其应用撬题 文

2018高考数学异构异模复习 第二章 函数的概念及其基本性质 2.1.2 分段函数及其应用撬题 文

2018高考数学异构异模复习考案 第二章 函数的概念及其基本性质2.1.2 分段函数及其应用撬题 文1.设函数f (x )=⎩⎪⎨⎪⎧1+log 2-x ,x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( ) A .3 B .6 C .9 D .12答案 C解析 由于f (-2)=1+log 24=3,f (log 212)=2log 212-1=2log 26=6,所以f (-2)+f (log 212)=9.故选C.2.设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1.则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1B .[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1,+∞)答案 C解析 由题意知,f (a )=⎩⎪⎨⎪⎧3a -1,a <12a,a ≥1.由f (a )<1,解得a <23.所以f (f (a ))=⎩⎪⎨⎪⎧3fa -1,f a2fa,f a=⎩⎪⎨⎪⎧a --1,a <2323a -1,23≤a <122a,a ≥1故当a <23时,方程f (f (a ))=2f (a )化为9a -4=23a -1,即18a -8=23a.如图,分别作出直线y =18x -8与函数y =23x=8x的图象,根据图象分析可知,A 点横坐标为23,故a <23不符合题意.当23≤a <1时,方程f (f (a ))=2f (a )化为23a -1=23a -1,显然方程恒成立. 当a ≥1时,方程f (f (a ))=2f (a )化为22a =22a,显然方程恒成立.所以a 的取值范围是⎣⎢⎡⎭⎪⎫23,+∞. 3.已知符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.f (x )是R 上的增函数,g (x )=f (x )-f (ax )(a >1),则( )A .sgn[g (x )]=sgn xB .sgn[g (x )]=-sgn xC .sgn[g (x )]=sgn[f (x )]D .sgn[g (x )]=-sgn[f (x )] 答案 B解析 因为f (x )是R 上的增函数,又a >1,所以当x >0时,f (x )<f (ax ),即g (x )<0;当x =0时,f (x )=f (ax ),即g (x )=0;当x <0时,f (x )>f (ax ),即g (x )>0.由符号函数sgn x=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0知,sgn[g (x )]=⎩⎪⎨⎪⎧-1,x >0,0,x =0,1,x <0∴sgn[g (x )]=-sgn x .4.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1, x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)答案 D解析 作出f (x )的图象如图所示,可排除A 、B 、C ,故D 正确.5.设f (x )=⎩⎪⎨⎪⎧x -a 2,x ≤0,x +1x+a ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]答案 D解析 ∵当x ≤0时,f (x )=(x -a )2,又f (0)是f (x )的最小值,∴a ≥0.当x >0时,f (x )=x +1x+a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解之,得-1≤a ≤2,∴a 的取值范围是0≤a ≤2.选D.6.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( )A.12B.45 C .2 D .9答案 C解析 f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1.∵0<1,∴f (0)=20+1=2.∵f (0)=2≥1,∴f (f (0))=22+2a =4a ,∴a =2. 故应选C.7.已知函数f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,x 2+,x <1,则f (f (-3))=________,f (x )的最小值是________.答案 0 22-3解析 由题知,f (-3)=1,f (1)=0,即f (f (-3))=0.又f (x )在(-∞,0)上单调递减,在(0,1)上单调递增,在(1,2)上单调递减,在(2,+∞)上单调递增,所以f (x )min =min{f (0),f (2)}=22-3.。

高考数学异构异模复习第二章函数的概念及其基本性质2.1.2分段函数及其应用课件理

高考数学异构异模复习第二章函数的概念及其基本性质2.1.2分段函数及其应用课件理
第二章 函数的概念及其基本性质
第1讲 函数的概念及其表示
考点二 分段函数Байду номын сангаас其应用
撬点·基础点 重难点
1 分段函数的定义 若函数在其定义域的不同子集上,因 对应关系 不同而分别用几个不同的式子来表示,这种函数称为 分段函数. 2 分段函数的定义域 分段函数的定义域等于各段函数的定义域的 并集 ,其值域等于各段函数的值域的 并集 ,分段函数 虽由几个部分组成,但它表示的是一个函数.
已知实数 a≠0,函数 f(x)=2-x+x-a2,ax,<x1≥,1, 若 f(1-a)=f(1+a),则 a 的值为(
)
A.-32
B.-34
C.-32或-34
D.32或-34
[错解] [错因分析] 在解题过程中误以为 1-a<1,1+a>1,没有对 a 进行讨论,直接代入求解,导致错误.
注意点 分段函数求值时需注意的问题 当分段函数的自变量范围不确定时,应分类讨论.
1.思维辨析 (1)分段函数分几部分就是几个函数.( × )
x x≥0
(2)f(x)=|x|与 g(x)=-x
是同一函数.( √ ) x<0
(3)函数是特殊的映射.( √ )
(4)函数 f(x)= x2+3+1 的值域是{y|y≥1}.( × )
2019/5/23
最新中小学教学课件
18
thank you!
C.3
D. 9
(2)如图是张大爷晨练时离家距离(y)与行走时间(x)之间的函数图象.若用黑点表示张大爷家的位置,则
张大爷散步行走的路线可能是( )
解析 (1)由题意知 f(3)=23,f23=322+1=193, ∴f(f(3))=f32=193. (2)由函数图象可知,张大爷先是离家越来越远,然后在一段时间内他离家的距离不变,最后他离家越 来越近,分析可知 D 正确.

高考数学异构异模复习第二章函数的概念及其基本性质2.9.2函数的综合应用课件文

高考数学异构异模复习第二章函数的概念及其基本性质2.9.2函数的综合应用课件文

(2)原不等式为(x2-1)m-(2x-1)<0,
设 f(m)=(x2-1)m-(2x-1),则问题转化为求一次函数(或常函数)f(m)的值在[-2,2]内恒为负时应满足
的条件,得ff2-<20<,0,
2x2-1-2x-1<0, 即-2x2-1-2x-1<0,
解得 x∈
注意点 数学思想在函数综合应用问题中的使用 (1)注意应用数形结合思想,将问题进行等价转化. (2)注意应用函数与方程思想,解决函数问题.
1.思维辨析 (1)不存在 x0,使 ax0<xn0<logax0.( × ) (2)在(0,+∞)上,随着 x 的增大,y=ax(a>1)的增长速度会超过并远远大于 y=xa(a>0)的增长速度.( √ ) (3)“指数爆炸”是指数型函数 y=a·bx+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.( × ) (4)f(x)=x2,g(x)=2x,h(x)=log2x,当 x∈(4,+∞)时,恒有 h(x)<f(x)<g(x).( √ )
尖子生好方法:听课时应该始终跟着老师的节奏,要善于抓住老师讲解中的关键词,构建自己的知识结构。利用老师讲课的间隙,猜想老师还会讲什么,会怎样讲, 怎样讲会更好,如果让我来讲,我会怎样讲。这种方法适合于听课容易分心的同学。
2019/7/12
精选最新中小学教学课件
18
thank
you!
2019/7/12
[正解] 设包装盒的高为 h cm,底面边长为 a cm. 由已知得 a= 2x, h=60-22x= 2(30-x),0<x<30. 解法一:S=4ah=8x(30-x)=-8(x-15)2+1800, 所以当 x=15 时,S 取得最大值. 解法二:S=4ah=8x(30-x)≤8×x+320-x2=8×9400=1800, 当且仅当 x=30-x,即 x=15 时等号成立,∴当 x=15 时 S 取得最大值.

高考数学异构异模复习第二章函数的概念及其基本性质2.6对数与对数函数撬题文

高考数学异构异模复习第二章函数的概念及其基本性质2.6对数与对数函数撬题文

2018高考数学异构异模复习考案 第二章 函数的概念及其基本性质2.6 对数与对数函数撬题 文1.设f (x )=ln x,0<a <b ,若p =f (ab),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >q 答案 B解析 ∵0<a <b ,∴a +b2>ab ,又f (x )=ln x 在(0,+∞)上单调递增,故f (ab)<f ⎝⎛⎭⎪⎫a +b 2,即q >p ,∵r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =f ()ab =p ,∴p =r <q .故选B.2.函数f (x )=log 12 (x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2) 答案 D解析 由x 2-4>0得x >2或x <-2,因此函数定义域为(-∞,-2)∪(2,+∞).令t =x 2-4,当x ∈(-∞,-2)时,t 随x 的增大而减小,y =log 12t 随t 的增大而减小,所以y =log 12(x 2-4)随x 的增大而增大,即f (x )在(-∞,-2)上单调递增.故选D.3.设a =log 37,b =21.1,c =0.83.1,则( ) A .b <a <c B .c <a <b C .c <b <a D .a <c <b 答案 B解析 由3<7<9得log 33<log 37<log 39,∴1<a <2,由21.1>21=2得b >2,由0.83.1<0.80=1得c <1,因此c <a <b ,故选B.4.已知关于x 的方程⎝ ⎛⎭⎪⎫12x =1+lg a 1-lg a有正根,则实数a 的取值范围是( )A .(0,1)B .(0.1,10)C .(0.1,1)D .(10,+∞) 答案 C解析 当x >0时,0<⎝ ⎛⎭⎪⎫12x <1,∵关于x 的方程⎝ ⎛⎭⎪⎫12x =1+lg a 1-lg a有正根,∴0<1+lg a 1-lg a <1,∴⎩⎪⎨⎪⎧1+lg a 1-lg a <1,1+lg a 1-lg a >0,解得-1<lg a <0,∴0.1<a <1.故选C.5.函数y =2log 4(1-x )的图象大致是( )答案 C解析 函数y =2log 4(1-x )的定义域为(-∞,1),排除A 、B ;又函数y =2log 4(1-x )在定义域内单调递减,排除D.选C.6.若a =log 43,则2a+2-a=________.答案433解析 ∵a =log 43=log 23,∴2a +2-a=2log23 +2-log23=3+13=433.。

2018高考数学异构异模复习 第二章 函数的概念及其基本性质 课时撬分练2.5 指数与指数函数 文

2018高考数学异构异模复习 第二章 函数的概念及其基本性质 课时撬分练2.5 指数与指数函数 文

2018高考数学异构异模复习考案 第二章 函数的概念及其基本性质课时撬分练2.5 指数与指数函数 文时间:45分钟基础组1.[2016·冀州中学热身]下列函数中值域为正实数的是( ) A .y =-5xB .y =⎝ ⎛⎭⎪⎫131-xC .y =⎝ ⎛⎭⎪⎫12x -1 D .y =1-2x答案 B解析 ∵1-x ∈R ,y =⎝ ⎛⎭⎪⎫13x 的值域是正实数,∴y =⎝ ⎛⎭⎪⎫131-x的值域是正实数.故选B.2. [2016·枣强中学热身]已知a =⎝ ⎛⎭⎪⎫1223 ,b =2-43 ,c =⎝ ⎛⎭⎪⎫1213,则下列关系式中正确的是( )A .c <a <bB .b <a <cC .a <c <bD .a <b <c答案 B解析 把b 化简为b =⎝ ⎛⎭⎪⎫12 43 ,而函数y =⎝ ⎛⎭⎪⎫12x 在R 上为减函数,43>23>13,所以⎝ ⎛⎭⎪⎫1243 <⎝ ⎛⎭⎪⎫12 23 <⎝ ⎛⎭⎪⎫12 13,即b <a <c .3.[2016·冀州中学周测]设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( ) A .(-∞,-3) B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞) 答案 C解析 若a <0,则由f (a )<1得⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8=⎝ ⎛⎭⎪⎫12-3,所以-3<a <0,若a ≥0,则由f (a )<1得a <1,所以0≤a <1.综上,a 的取值范围是-3<a <1,即(-3,1).4.[2016·衡水二中一轮检测]已知f (x )=2x+2-x,若f (a )=3,则f (2a )等于( ) A .5B .7C .9D .11答案 B解析 ∵f (x )=2x+2-x,f (a )=3, ∴2a +2-a=3. ∴f (2a )=22a+2-2a=(2a +2-a )2-2=9-2=7.5.[2016·衡水二中猜题]若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]答案 B解析 f (1)=19得a 2=19.又a >0,所以a =13,因此f (x )=⎝ ⎛⎭⎪⎫13|2x -4|.因为g (x )=|2x -4|在[2,+∞)上单调递增,所以f (x )的单调递减区间是[2,+∞). 6.[2016·枣强中学月考]函数y =⎝ ⎛⎭⎪⎫12-x 2+x +2 的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤-1,12 B .(-∞,-1]C .[2,+∞) D.⎣⎢⎡⎦⎥⎤12,2答案 D解析 由-x 2+x +2≥0知,函数定义域为[-1,2],-x 2+x +2=-⎝ ⎛⎭⎪⎫x -122+94.当x ≥12时,u (x )=-x 2+x +2递减,又y =⎝ ⎛⎭⎪⎫12x 在定义域上递减,故函数y =⎝ ⎛⎭⎪⎫12-x 2+x +2的单调递增区间为⎣⎢⎡⎦⎥⎤12,2. 7.[2016·衡水二中预测]不等式2-x 2+2x>⎝ ⎛⎭⎪⎫12x +4的解集为________. 答案 {x |-1<x <4} 解析 不等式2-x 2+2x>⎝ ⎛⎭⎪⎫12x +4可化为⎝ ⎛⎭⎪⎫12x 2-2x >⎝ ⎛⎭⎪⎫12x +4,等价于不等式x 2-2x <x +4,即x 2-3x -4<0,解得-1<x <4,所以解集为{x |-1<x <4}.8.[2016·武邑中学期末]已知偶函数f (x )在[0,+∞)上单调递减,若f (2x -1)>f ⎝ ⎛⎭⎪⎫53成立,则x 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-13,43 解析 由题可知f (x )在区间(-∞,0]上单调递增,若f (2x -1)>f ⎝ ⎛⎭⎪⎫53成立,则-53<2x -1<53,即-13<x <43.9.[2016·衡水二中热身]已知0≤x ≤2,则y =4x -12-3·2x+5的最大值为________.答案 52解析 令t =2x,∵0≤x ≤2,∴1≤t ≤4, 又y =22x -1-3·2x+5,∴y =12t 2-3t +5=12(t -3)2+12, ∵1≤t ≤4,∴t =1时,y max =52.10.[2016·衡水中学热身]函数f (x )=a x(a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a2,求a 的值.解 当a >1时,f (x )=a x 为增函数,在x ∈[1,2]上,f (x )最大=f (2)=a 2,f (x )最小=f (1)=a .∴a 2-a =a2.即a (2a -3)=0.∴a =0(舍)或a =32>1.∴a =32.当0<a <1时, f (x )=a x为减函数,在x ∈[1,2]上,f (x )最大=f (1)=a , f (x )最小=f (2)=a 2.∴a -a 2=a2.∴a (2a -1)=0,∴a =0(舍)或a =12.∴a =12.综上可知,a =12或a =32.11.[2016·武邑中学月考]已知函数f (x )=2x,g (x )=12|x |+2. (1)求函数g (x )的值域;(2)求满足方程f (x )-g (x )=0的x 的值. 解 (1)g (x )=12|x |+2=⎝ ⎛⎭⎪⎫12|x |+2,因为|x |≥0,所以0<⎝ ⎛⎭⎪⎫12|x |≤1,即2<g (x )≤3,故g (x )的值域是(2,3]. (2)由f (x )-g (x )=0,得2x-12|x |-2=0,当x ≤0时,显然不满足方程, 即只有x >0时满足2x-12x -2=0,整理得(2x )2-2·2x-1=0,(2x-1)2=2,故2x=1±2, 因为2x>0,所以2x=1+2, 即x =log 2(1+2).12.[2016·武邑中学一轮检测]已知函数f (x )=b ·a x(其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B (3,24).(1)求f (x )的表达式;(2)若不等式⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1bx-m ≥0在x ∈(-∞,1]时恒成立,求实数m 的取值范围.解 (1)因为f (x )的图象过点A (1,6),B (3,24),则⎩⎪⎨⎪⎧b ·a =6,b ·a 3=24.所以a 2=4,又a >0,所以a =2,则b =3.所以f (x )=3·2x.(2)由(1)知a =2,b =3,则x ∈(-∞,1]时,⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x -m ≥0恒成立,即m ≤⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x在x ∈(-∞,1]时恒成立.又因为y =⎝ ⎛⎭⎪⎫12x 与y =⎝ ⎛⎭⎪⎫13x 均为减函数,所以y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x 也是减函数,所以当x =1时,y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x 有最小值56.所以m ≤56,即m 的取值范围是⎝⎛⎦⎥⎤-∞,56.能力组13. [2016·冀州中学一轮检测]已知函数f (x )=|2x-1|,a <b <c ,且f (a )>f (c )>f (b ),则下列结论中,一定成立的是________.①a <0,b <0,c <0; ②a <0,b ≥0,c >0; ③2-a<2c; ④2a+2c<2. 答案 ④解析 由图示可知a <0时,b 的符号不确定,1>c >0,故①②错; ∵f (a )=|2a -1|,f (c )=|2c-1|, ∴|2a -1|>|2c-1|, 即1-2a >2c-1, 故2a +2c <2,④成立. 又2a+2c>22a +c,∴2a +c<1,∴a +c <0,∴-a >c , ∴2-a>2c,③不成立.14.[2016·枣强中学预测]设函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则方程f (x )=12的解集为________.答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2解析 当x ≤0时,解2x=12得x =-1;当x >0时,解|log 2x |=12得x =22或x = 2.所以方程f (x )=12的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2.15. [2016·衡水中学仿真]已知函数f (x )=⎩⎪⎨⎪⎧x +1,0≤x <1,2x -12,x ≥1,若a >b ≥0,且f (a )=f (b ),则bf (a )的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫34,2 解析 如图,f (x )在[0,1),[1,+∞)上均单调递增,由a >b ≥0及f (a )=f (b )知a ≥1>b ≥12.bf (a )=bf (b )=b (b +1)=b 2+b ,∵12≤b <1,∴34≤bf (a )<2.16.[2016·冀州中学期中]求函数f (x )=3x 2-5x +4的定义域、值域及单调区间.解 依题意知x 2-5x +4≥0,解得x ≥4或x ≤1, ∴f (x )的定义域是(-∞,1]∪[4,+∞).∵x 2-5x +4≥0,∴f (x )=3x 2-5x +4≥30=1,∴函数f (x )的值域是[1,+∞). 令u =x 2-5x +4=⎝ ⎛⎭⎪⎫x -522-94, x ∈(-∞,1]∪[4,+∞),∴当x ∈(-∞,1]时,u 是减函数, 当x ∈[4,+∞)时,u 是增函数. 而3>1,∴由复合函数的单调性可知,f (x )=3x 2-5x +4在(-∞,1]上是减函数,在[4,+∞)上是增函数.。

高考数学异构异模复习第二章函数的概念及其基本性质2.2.1函数的单调性课件理

高考数学异构异模复习第二章函数的概念及其基本性质2.2.1函数的单调性课件理

典例 (1)下列函数中,在区间(0,+∞)上为增函数的是( )
A.y= x+1
B.y=(x-1)2
C.y=2-x
D.y=log0.5(x+1)
(2)函数 f(x)=log1 (x2-4)的单调递增区间为( )
2
A.(0,+∞)
B.(-∞,0)
C.(2,+∞)
D.(-∞,-2)
[解析] (1)y=(x-1)2 仅在[1,+∞)上为增函数,排除 B;y=2-x=21x 为减函数,排除 C;因为 y=log0.5t
增 增减减
外函数 y=f(t)
增 减增减
y=f(φ(x))
增 减减增
y=f(φ(x))的单调性可以利用口诀——“同增异减”来判断,即内外函数的单调性相同时,为增函数;
单调性不同时为减函数.
(4)导数法:先求导,再确定导数值的正负,由导数的正负得函数的单调性(区间).
(5)性质法:利用函数单调性的有关结论,确定简单的初等函数的单调性.
2.下列四个函数中,在(0,+∞)上为增函数的是( )
A.f(x)=3-x
B.f(x)=x2-3x
C.f(x)=-x+1 1
D.f(x)=-|x|
解析 当 x>0 时,f(x)=3-x 为减函数; 当 x∈0,23时,f(x)=x2-3x 为减函数; 当 x∈23,+∞时,f(x)=x2-3x 为增函数; 当 x∈(0,+∞)时,f(x)=-x+1 1为增函数; 当 x∈(0,+∞)时,f(x)=-|x|为减函数.故选 C.
第二章 函数的概念及其基本性质
第2讲 函数的单调性及其最值
考点一 函数的单调性
撬点·基础点 重难点
1 单调函数的定义
增函数

高考数学异构异模复习第二章函数的概念及其基本性质课时撬分练2.8函数与方程文

高考数学异构异模复习第二章函数的概念及其基本性质课时撬分练2.8函数与方程文

2018高考数学异构异模复习考案 第二章 函数的概念及其基本性质课时撬分练2.8 函数与方程 文时间:60分钟基础组1.[2016·武邑中学仿真]已知x 0是f (x )=⎝ ⎛⎭⎪⎫12x +1x的一个零点,x 1∈(-∞,x 0),x 2∈(x 0,0),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)>0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)<0,f (x 2)>0答案 C解析 如图,在同一坐标系下作出函数y =⎝ ⎛⎭⎪⎫12x ,y =-1x 的图象,由图象可知当x ∈(-∞,x 0)时,⎝ ⎛⎭⎪⎫12x >-1x,当x ∈(x 0,0)时,⎝ ⎛⎭⎪⎫12x <-1x,所以当x 1∈(-∞,x 0),x 2∈(x 0,0)时,有f (x 1)>0,f (x 2)<0,选C.2.[2016·枣强中学一轮检测]函数f (x )=x cos2x 在区间[0,2π]上的零点个数为( )A .2B .3C .4D .5答案 D解析 令f (x )=x cos2x =0,得x =0或cos2x =0.由cos2x =0,得2x =k π+π2(k ∈Z ),故x =k π2+π4(k ∈Z ).又因为x ∈[0,2π],所以x =π4,3π4,5π4,7π4.所以零点的个数为1+4=5.故选D. 3.[2016·衡水中学周测]已知函数f (x )=ln x ,则函数g (x )=f (x )-f ′(x )的零点所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案 B解析 函数f (x )的导数为f ′(x )=1x ,所以g (x )=f (x )-f ′(x )=ln x -1x .因为g (1)=ln 1-1=-1<0,g (2)=ln 2-12>0,所以函数g (x )=f (x )-f ′(x )的零点所在的区间为(1,2).故选B.4. [2016·衡水中学模拟]设定义在R 上的函数f (x )是最小正周期为2π的偶函数,f ′(x )是f (x )的导函数,当x ∈[0,π]时,0<f (x )<1;当x ∈(0,π)且x ≠π2时,⎝⎛⎭⎪⎫x -π2f ′(x )>0,则函数y =f (x )-sin x 在[-2π,2π]上的零点个数为( )A .2B .4C .5D .8答案 B解析 ∵f (x )是最小正周期为2π的偶函数,∴f (x +2π)=f (x )=f (-x ),∴y =f (x )的图象关于y 轴和直线x =π对称,又∵0<x <π2时,⎝ ⎛⎭⎪⎫x -π2f ′(x )>0,∴0<x <π2时,f ′(x )<0.同理,π2<x <π时,f ′(x )>0.又∵0≤x ≤π时,0<f (x )<1,∴y =f (x )的大致图象如图所示.又函数y =f (x )-sin x 在[-2π,2π]上的零点个数⇔函数y =f (x )与y =sin x 图象的交点个数,由图可知共有四个交点,故选B.5.[2016·枣强中学热身]已知函数f (x )=⎝ ⎛⎭⎪⎫14x-cos x ,则f (x )在[0,2π]上的零点个数为( )A .1B .2C .3D .4答案 C。

2018高考数学异构异模复习 第二章 函数的概念及其基本性质 2.6 对数与对数函数撬题 理

2018高考数学异构异模复习 第二章 函数的概念及其基本性质 2.6 对数与对数函数撬题 理

2018高考数学异构异模复习考案 第二章 函数的概念及其基本性质2.6 对数与对数函数撬题 理1.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >q 答案 B解析 ∵0<a <b ,∴a +b 2>ab ,又f (x )=ln x 在(0,+∞)上单调递增,故f (ab )<f ⎝ ⎛⎭⎪⎫a +b 2,即q >p ,∵r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =f ()ab =p ,∴p =r <q .故选B. 2.函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)答案 D解析 由x 2-4>0得x >2或x <-2,因此函数定义域为(-∞,-2)∪(2,+∞).令t =x 2-4,当x ∈(-∞,-2)时,t 随x 的增大而减小,y =log 12 t 随t 的增大而减小,所以y =log 12(x 2-4)随x 的增大而增大,即f (x )在(-∞,-2)上单调递增.故选D.3.设a =log 37,b =21.1,c =0.83.1,则( )A .b <a <cB .c <a <bC .c <b <aD .a <c <b答案 B解析 由3<7<9得log 33<log 37<log 39,∴1<a <2,由21.1>21=2得b >2,由0.83.1<0.80=1得c <1,因此c <a <b ,故选B. 4.已知关于x 的方程⎝ ⎛⎭⎪⎫12x =1+lg a 1-lg a有正根,则实数a 的取值范围是( ) A .(0,1)B .(0.1,10)C .(0.1,1)D .(10,+∞)答案 C 解析 当x >0时,0<⎝ ⎛⎭⎪⎫12x <1,∵关于x 的方程⎝ ⎛⎭⎪⎫12x =1+lg a 1-lg a有正根,∴0<1+lg a 1-lg a <1,∴⎩⎪⎨⎪⎧ 1+lg a 1-lg a <1,1+lg a 1-lg a >0,解得-1<lg a <0,∴0.1<a <1.故选C.5.函数y =2log 4(1-x )的图象大致是( )答案 C解析 函数y =2log 4(1-x )的定义域为(-∞,1),排除A 、B ;又函数y =2log 4(1-x )在定义域内单调递减,排除D.选C.6.若a =log 43,则2a +2-a =________.答案 433解析 ∵a =log 43=log 23,∴2a +2-a =2log 23 +2-log 23 =3+13=433.。

[配套K12]2018高考数学异构异模复习 第二章 函数的概念及其基本性质 2.4.2 幂函数撬题 理

[配套K12]2018高考数学异构异模复习 第二章 函数的概念及其基本性质 2.4.2 幂函数撬题 理

2018高考数学异构异模复习考案 第二章 函数的概念及其基本性质2.4.2 幂函数撬题 理1.若幂函数f (x )的图象经过点⎝ ⎛⎭⎪⎫3,33,则其定义域为( ) A .{x |x ∈R ,且x >0}B .{x |x ∈R ,且x <0}C .{x |x ∈R ,且x ≠0}D .R答案 A解析 设f (x )=x α,∴3α=33,α=-12,f (x )=x -12 , ∴其定义域为{x |x >0},选A 项.2.下面给出4个幂函数的图象,则图象与函数的大致对应是( )A .①y =x13 ,②y =x 2,③y =x 12 ,④y =x -1 B .①y =x 3,②y =x 2,③y =x 12 ,④y =x -1C .①y =x 2,②y =x 3,③y =x 12 ,④y =x -1D .①y =x13 ,②y =x 12 ,③y =x 2,④y =x -1 答案 B解析 ②的图象关于y 轴对称,②应为偶函数,故排除选项C 、D.①由图象知,在第一象限内,图象下凸,递增的较快,所以幂函数的指数大于1,故排除A.选B.3.若f (x )=x23 -x - 12 ,则满足f (x )<0的x 的取值范围是________. 答案 (0,1)解析 令y 1=x 23 ,y 2=x - 12 ,则f (x )<0即为y 1<y 2.函数y 1=x 23 ,y 2=x - 12 的图象如图所示,由图象知:当0<x <1时,y 1<y 2,所以满足f (x )<0的x 的取值范围是(0,1).4.已知幂函数f (x )=(m 2-m -1)·x-5m -3在(0,+∞)上是增函数,则m =________. 答案 -1解析 由已知得⎩⎪⎨⎪⎧ m 2-m -1=1,-5m -3>0,解得m =-1.。

高考数学异构异模复习第二章函数的概念及其基本性质2.4.2幂函数课件理

高考数学异构异模复习第二章函数的概念及其基本性质2.4.2幂函数课件理

[心得体会]
编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。 • 一、听理科课重在理解基本概念和规律 • 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解,
2.当 x∈(1,+∞)时,下列函数中图象全在直线 y=x 下方的增函数是( )
1
A.y=x 2
B.y=x2
C.y=x3
D.y=x-1
解析 y=x2,y=x3 在 x∈(1,+∞)时,图象不在直线 y=x 下方,排除 B、C,而 y=x-1 是(-∞,0), (0,+∞)上的减函数.
ቤተ መጻሕፍቲ ባይዱ
1
3.已知 f(x)=x 2 ,若 0<a<b<1,则下列各式中正确的是( )
A.f(a)<f(b)<fa1<fb1
B.f1a<fb1<f(b)<f(a)
C.f(a)<f(b)<fb1<f1a
D.fa1<f(a)<fb1<f(b)
解析
因为函数
f(x)=x
1 2
在(0,+∞)上是增函数,又
(2)若
a=21
2 3
,b=51
2 3
,c=21
1 3
,则
a,b,c
的大小关系是(
)
A.a<b<c
B.c<a<b
C.b<c<a
D.b<a<c
[解析] (1)因为 a>0,所以 f(x)=xa 在(0,+∞)上为增函数,故 A 不符合;在 B 中,由 f(x)的图象知
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018高考数学异构异模复习考案 第二章 函数的概念及其基本性质课时撬分练2.3 函数的奇偶性与周期性 理时间:60分钟基础组1.[2016·冀州中学期末]下列函数中,既是偶函数又在(-∞,0)上单调递增的是( ) A .y =x 2B .y =2|x |C .y =log 21|x |D .y =sin x答案 C解析 函数y =x 2在(-∞,0)上是减函数;函数y =2|x |在(-∞,0)上是减函数;函数y =log 21|x |=-log 2|x |是偶函数,且在(-∞,0)上是增函数;函数y =sin x 不是偶函数.综上所述,选C.2. [2016·衡水中学预测]函数f (x )=a sin 2x +bx 23 +4(a ,b ∈R ),若f ⎝ ⎛⎭⎪⎫lg 12014=2013,则f (lg 2014)=( )A .2018B .-2009C .2013D .-2013答案 C解析 g (x )=a sin 2x +bx 23 ,g (-x )=a sin 2x +bx 23 ,g (x )=g (-x ),g (x )为偶函数,f ⎝⎛⎭⎪⎫lg12014=f (-lg 2014),f (-lg 2014)=g (-lg 2014)+4=g (lg 2014)+4=f (lg 2014)=2013,故选C.3.[2016·枣强中学热身]若函数f (x )(x ∈R )是奇函数,函数g (x )(x ∈R )是偶函数,则一定成立的是( )A .函数f (g (x ))是奇函数B .函数g (f (x ))是奇函数C .函数f (f (x ))是奇函数D .函数g (g (x ))是奇函数 答案 C解析 由题得,函数f (x ),g (x )满足f (-x )=-f (x ),g (-x )=g (x ),则有f (g (-x ))=f (g (x )),g (f (-x ))=g (-f (x ))=g (f (x )),f (f (-x ))=f (-f (x ))=-f (f (x )),g (g (-x ))=g (g (x )),可知函数f (f (x ))是奇函数,故选C.4.[2016·衡水中学猜题]定义域为(-∞,0)∪(0,+∞)的函数f (x )不恒为0,且对于定义域内的任意实数x ,y 都有f (xy )=f y x +f xy成立,则f (x )( )A .是奇函数,但不是偶函数B .是偶函数,但不是奇函数C .既是奇函数,又是偶函数D .既不是奇函数,又不是偶函数 答案 A解析 令x =y =1,则f (1)=f1+f1,∴f (1)=0. 令x =y =-1,则f (1)=f --1+f --1,∴f (-1)=0.令y =-1,则f (-x )=f -x+f x-1,∴f (-x )=-f (x ).∴f (x )是奇函数. 又∵f (x )不恒为0,∴f (x )不是偶函数.故选A.5.[2016·衡水中学一轮检测]设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}答案 B解析 当x <0时,-x >0,∵f (x )是偶函数, ∴f (x )=f (-x )=-x 3-8.∴f (x )=⎩⎪⎨⎪⎧x 3-8,x ≥0,-x 3-8,x <0,∴f (x -2)=⎩⎪⎨⎪⎧x -3-8,x ≥2,-x -3-8,x <2,由f (x -2)>0,得⎩⎪⎨⎪⎧x ≥2x -3-8>0或⎩⎪⎨⎪⎧x <2,-x -3-8>0,解得x >4或x <0.故选B.6. [2016·冀州中学模拟]已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11) 答案 D解析 由函数f (x )是奇函数且f (x )在[0,2]上是增函数可以推知,f (x )在[-2,2]上递增,又f (x -4)=-f (x )⇒f (x -8)=-f (x -4)=f (x ),故函数f (x )以8为周期,f (-25)=f (-1),f (11)=f (3)=-f (3-4)=f (1),f (80)=f (0),故f (-25)<f (80)<f (11).7.[2016·衡水二中周测]函数f (x )=x 3+sin x +1(x ∈R ),若f (m )=2,则f (-m )的值为( )A .3B .0C .-1D .-2答案 B解析 把f (x )=x 3+sin x +1变形为f (x )-1=x 3+sin x ,令g (x )=f (x )-1=x 3+sin x ,则g (x )为奇函数,有g (-m )=-g (m ),所以f (-m )-1=-[f (m )-1],得到f (-m )=-(2-1)+1=0.8.[2016·枣强中学仿真]设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝ ⎛⎭⎪⎫32=________.答案 32解析 f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫32-2=f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12=12+1=32.9.[2016·枣强中学月考]若f (x )=(x +a )(x -4)为偶函数,则实数a =________. 答案 4解析 由f (x )=(x +a )(x -4), 得f (x )=x 2+(a -4)x -4a ,若f (x )为偶函数,则a -4=0,即a =4.10.[2016·武邑中学热身]设f (x )是定义在R 上的以3为周期的奇函数,若f (2)>1,f (2014)=2a -3a +1,则实数a 的取值范围是________. 答案 ⎝ ⎛⎭⎪⎫-1,23解析 ∵f (2014)=f (1)=f (-2)=-f (2)<-1, ∴2a -3a +1<-1,解得-1<a <23. 11.[2016·衡水二中热身]设函数f (x )是定义在R 上的偶函数,且满足: ①f (x )=f (2-x );②当0≤x ≤1时,f (x )=x 2. (1)判断函数f (x )是否为周期函数; (2)求f (5.5)的值.解 (1)由⎩⎪⎨⎪⎧f x =f -x ,f x =f -x⇒f (-x )=f (2-x )⇒f (x )=f (x +2)⇒f (x )是周期为2的周期函数.(2)f (5.5)=f (4+1.5)=f (1.5)=f (2-1.5)=f (0.5)=0.25.12.[2016·武邑中学期末]已知函数f (x )的定义域为(-2,2),函数g (x )=f (x -1)+f (3-2x ).(1)求函数g (x )的定义域;(2)若f (x )为奇函数,并且在定义域上单调递减,求不等式g (x )≤0的解集.解 (1)由题意可知⎩⎪⎨⎪⎧-2<x -1<2,-2<3-2x <2,∴⎩⎪⎨⎪⎧-1<x <3,12<x <52,解得12<x <52,故函数g (x )的定义域为⎝ ⎛⎭⎪⎫12,52.(2)由g (x )≤0得f (x -1)+f (3-2x )≤0. ∴f (x -1)≤-f (3-2x ).又∵f (x )为奇函数,∴f (x -1)≤f (2x -3),而f (x )在(-2,2)上单调递减,∴⎩⎪⎨⎪⎧x -1≥2x -3,12<x <52,解得12<x ≤2,∴不等式g (x )≤0的解集为⎝ ⎛⎦⎥⎤12,2. 能力组13.[2016·衡水二中预测]已知y =f (x )是偶函数,而y =f (x +1)是奇函数,且对任意0≤x ≤1,都有f ′(x )≥0,则a =f ⎝ ⎛⎭⎪⎫9819,b =f ⎝ ⎛⎭⎪⎫10117,c =f ⎝ ⎛⎭⎪⎫10615的大小关系是( ) A .c <b <a B .c <a <b C .a <c <b D .a <b <c答案 B解析 因为y =f (x )是偶函数,所以f (x )=f (-x ),① 因为y =f (x +1)是奇函数,所以f (x )=-f (2-x ),② 所以f (-x )=-f (2-x ),即f (x )=f (x +4).所以函数f (x )的周期为4.又因为对任意0≤x ≤1,都有f ′(x )≥0,所以函数在[0,1]上单调递增,又因为函数y =f (x +1)是奇函数,所以函数在[0,2]上单调递增,又a =f ⎝ ⎛⎭⎪⎫9819=f ⎝ ⎛⎭⎪⎫2219,b =f ⎝ ⎛⎭⎪⎫10117=f ⎝ ⎛⎭⎪⎫3317,c =f ⎝ ⎛⎭⎪⎫10615=f ⎝ ⎛⎭⎪⎫-1415=f ⎝ ⎛⎭⎪⎫1415,所以f ⎝ ⎛⎭⎪⎫1415<f ⎝ ⎛⎭⎪⎫2219<f ⎝ ⎛⎭⎪⎫3317,即c <a <b . 14.[2016·衡水二中月考]已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.答案 -1解析 设h (x )=f (x )+x 2为奇函数, 则h (-x )=f (-x )+x 2,∴h (-x )=-h (x ),∴f (-x )+x 2=-f (x )-x 2, ∴f (-1)+1=-f (1)-1,∴f (-1)=-3, ∴g (-1)=f (-1)+2=-1.15. [2016·衡水二中猜题]定义在R 上的函数f (x )对任意a ,b ∈R 都有f (a +b )=f (a )+f (b )+k (k 为常数).(1)判断k 为何值时f (x )为奇函数,并证明;(2)设k =-1,f (x )是R 上的增函数,且f (4)=5,若不等式f (mx 2-2mx +3)>3对任意x ∈R 恒成立,求实数m 的取值范围.解 (1)若f (x )在R 上为奇函数,则f (0)=0,令x =y =0,则f (0+0)=f (0)+f (0)+k ,∴k =0.证明:令a =b =0,由f (a +b )=f (a )+f (b ),得f (0+0)=f (0)+f (0),即f (0)=0. 令a =x ,b =-x ,则f (x -x )=f (x )+f (-x ), 又f (0)=0,则有0=f (x )+f (-x ), 即f (-x )=-f (x )对任意x ∈R 成立, ∴f (x )是奇函数.(2)∵f (4)=f (2)+f (2)-1=5,∴f (2)=3.∴f (mx 2-2mx +3)>3=f (2)对任意x ∈R 恒成立. 又f (x )是R 上的增函数,∴mx 2-2mx +3>2对任意x ∈R 恒成立, 即mx 2-2mx +1>0对任意x ∈R 恒成立, 当m =0时,显然成立;当m ≠0时,由⎩⎪⎨⎪⎧m >0,Δ=4m 2-4m <0,得0<m <1.∴实数m 的取值范围是[0,1).16.[2016·衡水二中一轮检测]已知函数f (x )对任意实数x ,y 恒有f (x +y )=f (x )+f (y ),且当x >0时,f (x )<0,又f (1)=-2.(1)判断f (x )的奇偶性; (2)求证:f (x )是R 上的减函数; (3)求f (x )在区间[-3,3]上的值域;(4)若∀x ∈R ,不等式f (ax 2)-2f (x )<f (x )+4恒成立,求a 的取值范围. 解 (1)取x =y =0,则f (0+0)=2f (0),∴f (0)=0. 取y =-x ,则f (x -x )=f (x )+f (-x ),∴f (-x )=-f (x )对任意x ∈R 恒成立,∴f (x )为奇函数.(2)证明: 任取x 1,x 2∈(-∞,+∞),且x 1<x 2,则x 2-x 1>0,f (x 2)+f (-x 1)=f (x 2-x 1)<0,∴f (x 2)<-f (-x 1),又f (x )为奇函数, ∴f (x 1)>f (x 2). ∴f (x )是R 上的减函数.(3)由(2)知f (x )在R 上为减函数,∴对任意x ∈[-3,3],恒有f (3)≤f (x )≤f (-3), ∵f (3)=f (2)+f (1)=f (1)+f (1)+f (1)=-2×3=-6, ∴f (-3)=-f (3)=6,f (x )在[-3,3]上的值域为[-6,6]. (4)f (x )为奇函数,整理原式得f (ax 2)+f (-2x )<f (x )+f (-2), 则f (ax 2-2x )<f (x -2),∵f (x )在(-∞,+∞)上是减函数,∴ax 2-2x >x -2,当a =0时,-2x >x -2在R 上不是恒成立,与题意矛盾;当a >0时,ax 2-2x -x +2>0,要使不等式恒成立,则Δ=9-8a <0,即a >98;当a <0时,ax 2-3x +2>0在R 上不是恒成立,不合题意.综上所述,a 的取值范围为⎝ ⎛⎭⎪⎫98,+∞.。

相关文档
最新文档