下学期九年级数学期末考试试卷

合集下载

2022-2023学年人教版九年级数学第一学期期末测试卷含答案

2022-2023学年人教版九年级数学第一学期期末测试卷含答案

第1页,共4页 第2页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号2022-2023学年第一学期期末质量监测试卷九年级 数学学科(考试时间:120分钟 考试分值:150分)一、选择题(每题5分,共45分)1.(5分)下列新冠疫情防控标识图案中,中心对称图形是( )A.B.C.D.2.(5分)下列为一元二次方程的是( )A.02=+-c bx axB.0232=-+x x C.01322=+-x x D.0222=+y x3.(5分)已知关于x 的一元二次方程x m x 442=-有两个不相等的实数根,则m 的取值范围是( )A.1->mB.2<mC.0≥mD.0<m4.(5分)方程0)3)(2(=+-x x 的解是( )A.2=xB.3-=xC.3,221==x xD.3,221-==x x 5.(5分)如图,AB 是☉O 的弦,点C 在圆上,已知∠AOB=100°,则∠C=( )A.40°B.50°C.60°D.80°6.(5分)抛物线2)4(32++=x y 的顶点坐标是( ) A.(2,4) B.(2,-4) C.(4,2) D.(-4,-2)7.(5分)目前我国已建立了比较完善的经济困难学生资助体系.某校前年发放给每个经济困难学生389元,今年发放了438元.设每年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( )A.438)13892=+x (B.389)14382=+x (C.438)21389=+x (D.389)21438=+x (8.(5分)对于二次函数2)1(2+-=x y 的图像,下列说法正确的是( ) A.开口向下B.对称轴是直线1-=xC.顶点坐标是(1,2)D.当1>x 时,y 随x 的增大而减小9.(5分)当0>ab 时,2ax y =与b ax y +=的图象大致是( )A. B. C. D.二、 填空题 (每题 5 分 ,共30分 )10.(5分)点A(-2,3)关于原点对称的点的坐标是________.11.(5分)已知关于x 的方程0322=++k x x 的一个根是-1,则k=________. 12.(5分)如图,四边形ABCD 为☉O 的内接四边形,已知∠BOD=100°,则∠BCD 的度数为____.13.(5分)一个不透明袋子中装有10个球,其中有5个红球,3个白球,2个黑球,这些球除颜色外无其它差别,从袋子中随机取出个球,则它是白球的概率是________.14.(5分)若562)1(--+=m m x m y 是二次函数,则m=________.第3页,共14页第4页,共14页装订线内不许答题15.(5分)如图,抛物线与x 轴交于点A(-1,0),顶点坐标(1,n),与y 轴的交点在(0,3),(0,4)之间(包含端点),则下列结论正确的有________.(填编号)①03<b a +;②134-≤≤-a ;③对于任意实数m ,bm am b a +≥+2恒成立;④关于x 的方程12+=++n c bx ax 有两个相等的实数根.三、 解答题 (本题共计 8 小题 ,共计75分 )16. (8分) 解方程:(1)033(=-+-x x x ); (2)0142=--x x . 17. (7分) 关于x 的方程0232=+-m x x 的一个根为-1,求方程的另一个根及m 的值.18. (8分) 如图所示,每个小正方形的边长为1个单位长度,作出△ABC 关于原点对称的图形△A 1B 1C 1,并写出A 1,B 1,C 1的坐标.19. (10分) 如图,某小区规划在一个长为40米、宽为26米的矩形场地ABCD 上修建三条同样宽度的马路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每一块草坪的面积都是144m 2,求马路的宽.第5页,共4页 第6页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号20.(10分) 为了解长垣市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题: (1)此次调查中接受调查的人数为________人; (2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为________度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.21.(10分) 如图,在△ABC 中,点O 是AB 边上一点,OB=OC,∠B=30°,过点A 的 ☉O 切BC 于点D ,CO 平分∠ACB .(1)求证:AC 是☉O 的切线; (2)若BC=12,求☉O 的半径长;(3)在(2)的条件下,求阴影部分的面积.22. (10分) 某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件.现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价0.1元,其销售量就要减少1件,问涨价多少元时,才能使每天所赚的利润达到360元?23.(12分) 如图,在平面直角坐标系中,抛物线422++=ax ax y 与x 轴交于点 A(-4,0),B(2,0),与y 轴交于点C .经过点B 的直线b kx y +=与y 轴交于点D(0,2),与抛物线交于点E .(1)求抛物线的解析式及点C 的坐标;(2)若点P 为抛物线的对称轴上的动点,当△AEP 的周长最小时,求点P 的坐标; (3)若点M 是直线BE 上的动点,过M 作MN ∥y 轴交抛物线于点N ,判断是否存在点M ,使以点M 、N ,C ,D 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.第7页,共14页 第8页,共14页装订线内不许答题2022-2023学年第一学期期末质量监测试卷答案九年级 数学学科一、选择题(每题5分,共45分)1.A2.C3.A4.D5.B6.D7.A8.C9.D二、 填空题 (每题 5 分 ,共30分 )10.(2,-3) 11.2± 12.130° 13.10314. 7 15.①②③三、 解答题 (本题共计 8 小题 ,共计75分 )16.解:(1)0)3()3(=-+-x x x分解因式得:0)1)(3=+-x x (————————2分 可得03=-x 或01=+x解得:1,321-==x x ————————4分 (2)5142=--x x移项得:642=-x x ————————1分配方法得:10442=+-x x 即10)22=-x (————————2分 开方得:102±=-x解得:10210221-=+=x x , ————————4分 17.解:把 代入方程,得,解得,————————3分设方程的另一个根为,则,————————5分所以,即方程的另一个根为.————————7分18.解:关于原点的对称图形如图,————————5分根据图形可知:,,.————————8分19.解:设马路的宽为米 ————————1分依题意可列方程————————4分整理得 ————————6分 解得,(舍去) ————————9分答:马路的宽为2米.————————10分第9页,共4页第10页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号20.(1)∵非常满意的有18人,占,∴此次调查中接受调查的人数:(人).故答案为:50 ————————2分 (2)此次调查中结果为满意的人数为:(人)补全条形统计图如下:————————4分(3)144 ————————6分 (4)画树状图:∵共有12种等可能的结果,选择回访市民为“一男一女”的有8种情况,∴选择回访的市民为“一男一女”的概率为:. ————————10分21.(1)证明:∵∴又∵ 平分∴ ∴∴∴是的切线. ————————3分(2)解:如图,连接,设交于点,设半径为r .∵ 切于点, ∴.又∵,, ∴AC=6,,由勾股定理得AB=36∴ 在直角三角形OCD 中,由勾股定理得 r 2+62=(36-r)2解得 r=32 ————————6分 (3)解:∵, ∴————————10分第11页,共14页 第12页,共14页装订线内不许答题22.解:设涨价元时,才能使每天所赚的利润达到元. ————————1分————————4分 ,, ————————7分 解得. ————————9分答:涨价元时,才能使每天所赚的利润达到元. ————————10分23.解:(1),点的坐标为————————4分(2)如图,由,可得对称轴为.∵ 的边是定长,∴ 当的值最小时,的周长最小.点关于的对称点为点,∴ 当点是与直线的交点时,的 值最小. ∵ 直线经过点∴ ’解得∴ 直线:令,得,∴ 当的周长最小时,点的坐标为————————8分(3)存在.点的坐标为或————————12分第13页,共4页 第14页,共4页…………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………点场号名座位号。

2024年北京密云区初三九年级上学期期末数学试题和答案

2024年北京密云区初三九年级上学期期末数学试题和答案

北京市密云区2023-2024学年第一学期期末考试九年级数学试卷2024.1考生须知1.本试卷共7页,共3道大题,28道小题,满分100分,考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用......2.B .铅笔...4.考试结束,请将本试卷和答题纸一并交回.一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..选项是符合题意的.1.二次函数y =3(x +1)2-4的最小值是()A .1B.-1C .4D .-42.已知⊙O 的半径为6,点P 在⊙O 内,则线段OP 的长度可以是()A .5B .6C .7D .83.中国瓷器,积淀了深厚的文化底蕴,是中国传统艺术文化的重要组成部分.瓷器上的图案设计精美,极富变化.下面瓷器图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4.下列事件中,为必然事件的是()A .等腰三角形的三条边都相等;B .经过任意三点,可以画一个圆;C .在同圆或等圆中,相等的圆心角所对的弧相等;D .任意画一个三角形,其内角和为360°.5.在下列方程中,有一个方程有两个实数根,且它们互为相反数,这个方程是()A .x +2=0B .x 2-x =0C .x 2-4=0D .x 2+4=06.如图,四边形ABCD 内接于⊙O ,若∠A =60°,⊙O 的半径为3,则的长为()A .πB .2πC.3πD .6π7.如图,在正方形网格中,A ,B 两点在格点上,线段AB 绕某一点逆时针旋转一定角度后得到线段A'B',点A'与点A 对应,其旋转中心是()A .点B B .点GC .点ED .点F8.某种幼树在相同条件下进行移植试验,结果如下:移植总数n 400750150035007000900014000成活数m 364651133031746324807312620成活的频率0.9100.8680.8870.9070.9030.8970.901下列说法正确的是()A .由于移植总数最大时成活的频率是0.901,所以这种条件下幼树成活的概率为0.901;B .由于表格中成活的频率的平均数约为0.90,所以这种条件下幼树成活的概率为0.90;C .由于表格中移植总数为1500时成活数为1330,所以移植总数3000时成活数为2660;D .由于随着移植总数的增大,幼树移植成活的频率越来越稳定在0.90左右,所以估计幼树成活的概率为0.90.二、填空题(本题共16分,每小题2分)9.若关于x 的方程(k +3)x 2-6x +9=0是一元二次方程,则k 的取值范围是.10.将抛物线y=x 2向下平移1个单位长度,再向右平移2个单位长度后,得到抛物线的解析式为.11.用配方法解一元二次方程x 2-4x =1时,将原方程配方成(x -2)2=k 的形式,则k 的值为.12.如图,AB 、AC 为⊙O 的切线,B 、C 为切点,连接OC 并延长到D ,使CD =OC ,连接AD .若∠BAD =75°,则∠AOC 的度数为.mnB D13.若点A (-2,y1),B (-1,y 2),C (3,y 3)三点都在二次函数y =-3x 2的图象上,则y 1、y 2、y 3的大小关系是(按从小到大的顺序,用“<”连接).14.请写出一个常数a 的值,使得二次函数y =x 2+4x +a 的图象与x 轴没有交点,则a 的值可以是.15.如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为4,则正六边形ABCDEF 的面积为_________.16.在平面直角坐标系xOy 中,点A 、点B 的位置如图所示,抛物线y =ax 2-2ax 经过A 、B 两点,下列四个结论中:①抛物线的开口向上②抛物线的对称轴是x =1③A 、B 两点位于对称轴异侧④抛物线的顶点在第四象限所有不.正确..结论的序号是.三、解答题(本题共68分,其中17-22每题5分,23-26每题6分,27、28题每题7分)17.解方程:x 2+8x -20=0.18.下面是小宁设计的“作平行四边形的高”的尺规作图过程.已知:平行四边形ABCD .求作:AE ⊥BC ,垂足为E .作法:如图所示,①连接AC ,分别以点A 和点C 为圆心,大于的长为半径作弧,两弧相交于P ,Q 两点;②作直线PQ ,交AC 于点O ;③以点O 为圆心,OA 长为半径作圆,交线段BC 于点E (点E 不与点C 重合),连接AE .所以线段AE 就是所求作的高.12AC根据小宁设计的尺规作图过程,解决问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AP=CP,AQ=,∴点P、Q都在线段AC的垂直平分线上,∴直线PQ为线段AC的垂直平分线,∴O为AC中点.∵AC为直径,⊙O与线段BC交于点E,∴∠AEC=°.()(填推理的依据)∴AE⊥BC.19.已知:二次函数y=x2+bx-3的图象经过点A(2,5).(1)求二次函数的解析式;(2)求该函数的顶点坐标.20.二十四节气是中华民族农耕文明的智慧结晶,是专属中国人的独特时间美学,被国际气象界誉为“中国第五大发明”.如图,小文购买了四张形状、大小、质地均相同的“二十四节气”主题邮票,正面分别印有“立春”“立夏”“秋分”“大暑”四种不同的图案,背面完全相同,他将四张邮票洗匀后正面朝下放在桌面上.(1)小文从中随机抽取一张,抽出的邮票恰好是“大暑”的概率是___________;(2)若印有“立春”“立夏”“秋分”“大暑”四种不同图案的邮票分别用A,B,C,D 表示,小文从中随机抽取一张(不放回),再从中随机抽取一张,请用画树状图或列表的方法求小文抽到的两张邮票恰好是“立春”和“立夏”的概率.21.2023年10月,第三届“一带一路”国际合作高峰论坛在北京召开,回顾了十年来共建“一带一路”取得的丰硕成果.为促进经济繁荣,某市大力推动贸易发展,2021年进出口贸易总额为60000亿元,2023年进出口贸易总额为86400亿元.若该市这两年进出口贸易总额的年平均增长率相同,求这两年该市进出口贸易总额的年平均增长率.22.玉环为我国的传统玉器,通常为正中带圆孔的扁圆形器物.据《尔雅·释器》记载:“肉好若一,谓之环”,其中“肉”指玉质部分(边),“好”指中央的孔.结合图1,“肉好若一”的含义可以表示为:中孔直径d=2h.图2是一枚破损的汉代玉环,为修复原貌,需推算出该玉环的孔径尺寸.如图3,文物修复专家将破损玉环的外围边缘表示为弧AB,设弧AB所在圆的圆心为O,测得弧所对的弦长AB为6cm,半径OC⊥AB于点D,测得CD=1cm,连接OB,求该玉环的中孔半径的长.图1图2图323.已知关于x的一元二次方程x2-5x+m=0(m<0).(1)判断方程根的情况,并说明理由;(2)若方程的一个根为6,求m的值和方程的另一个根.24.如图,⊙O是△ABC的外接圆,∠ABC=45°,连接OC交AB于点E,过点A作OC的平行线交BC延长线于点D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为4,AD=6,求线段CD的长.25.某景观公园计划修建一个人工喷泉,从垂直于地面的喷水枪喷出的水流路径可以看作是抛物线的一部分.记喷出的水流距喷水枪的水平距离为x m,距地面的竖直高度为y m,获得数据如下:x(米)00.5 2.0 3.55y(米) 1.67 2.25 3.00 2.250小华根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小华的探究过程,请补充完整:(1)在平面直角坐标系xOy中,描出以表中各对对应值为坐标的点,并用平滑的曲线画出该函数的图象;(2)直接写出水流最高点距离地面的高度为米;(3)求该抛物线的表达式,并写出自变量的取值范围;(4)结合函数图象,解决问题:该景观公园准备在距喷水枪水平距离3m处修建一个大理石雕塑,使喷水枪喷出的水流刚好落在雕塑顶端,则大理石雕塑的高度约为m(结果精确到0.1m).26.在平面直角坐标系xOy中,点(2,m)和(5,n)在抛物线y=x2+2bx上,设抛物线的对称轴为x=t.(1)若m=0,求b的值;(2)若mn<0,求该抛物线的对称轴t的取值范围.27.如图,在Rt△ABC中,∠ACB=90°,AC=BC.点D为AB边上的一点,将线段CD绕点C逆时针旋转90°得到线段CE,连接AE、BE.(1)依据题意,补全图形;(2)直接写出∠ACE+∠BCD的度数;(3)若点F为BD中点,连接CF交AE于点P,用等式表示线段AE与CF之间的数量关系,并证明.28.在平面直角坐标系xOy中,已知⊙O的半径为1,点A的坐标为(-1,0).点B是⊙O上的一个动点(点B不与点A重合).若点P在射线AB上,且AP=2AB,则称点P 是点A关于⊙O的2倍关联点.(1)若点P是点A关于⊙O的2倍关联点,且点P在x轴上,则点P的坐标为_______;(2)直线l经过点A,与y轴交于点C,∠CAO=30°.点D在直线l上,且点D是点A关于⊙O的2倍关联点,求D点的坐标;(3)直线y=x+b与x轴交于点M,与y轴交于点N,若线段MN上存在点A关于⊙O的2倍关联点,直接写出b的取值范围.北京市密云区2023-2024学年第一学期期末考试九年级数学试卷参考答案及评分标准2024.1一、选择题(本题共16分,每小题2分)题号12345678选项D A B C C B C D二、填空题(本题共16分,每小题2分)9.k≠-3;10.y=(x-2)2-1;11.k=5;12.65°;13.y3<y1<y2;14.6;(答案不唯一,大于4均可)15.16.①④.三、解答题(本题共68分.其中17~22题每题5分,23~26题每题6分,27、28题每题7分)说明:与参考答案不同,但解答正确相应给分.17.解:x2+8x-20=0(x+10)(x-2)=0………………………………2分∴x+10=0或x-2=0………………………………3分∴x=-10或x=2………………………………4分∴x1=-10,x2=2………………………………5分18.(1)………………………………2分(2)CQ………………………………3分90°,直径所对的圆周角是直角.………………………………5分19.(1)解:将点A(2,5)代入y=x2+bx-3解析式4+2b-3=5………………………………1分2b=4b=2………………………………2分∴二次函数的解析式为y=x2+2x-3………………………………3分(2)解:y=x2+2x-3=(x+1)2-4………………………………4分∴该函数的顶点坐标是(-1,-4)………………………………5分20.(1)14………………………………1分(2)根据题意,可以画出如下树状图:………………………………3分由树状图可知,所有可能出现的结果共有12种,即AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC,并且它们出现的可能性相等.其中,恰好抽到的两张邮票是“立春”和“立夏”(记为事件A)的结果有2种,即AB或BA.………………………………4分∴()21 126P A==.………………………………5分21.解:设这两年该市进出口贸易总额的年平均增长率为x,则:………………………………1分60000(1+x)2=86400………………………………2分(1+x)2=36251+x=65±解得:x1=0.2,x2=-2.2………………………………4分经检验:x=-2.2不符实际意义,舍去∴x=0.2=20%答:这两年该市进出口贸易总额的年平均增长率为20%.………………………………5分22.解:∵OC是⊙O的半径,且OC⊥AB∴AD=BD∵AB=6∴BD=3………………………………1分设⊙O的半径为x,则OC=OB=x∵CD=1∴OD=x-1………………………………2分在Rt△ODB中∵OD2+BD2=OB2∴(x-1)2+32=x2………………………………3分x=5∴OB=5………………………………4分∵玉环的中孔直径d=2h∴玉环的中孔半径为2.5cm.………………………………5分23.(1)该方程有两个不相等的实数根,理由如下:………………………………1分解:△=(-5)2-4m………………………………2分=25-4m∵m<0∴-4m>0∴25-4m>0即△>0………………………………3分∴方程有两个不相等的实数根(2)解:将x=6代入原方程∴36-30+m=0∴m=-6………………………………4分原方程为x2-5x-6=0(x-6)(x+1)=0解得:x1=6,x2=-1………………………………5分∴方程的另一个根为-1.………………………………6分24.(1)证明:连接OA………………………………1分∵⊙O是△ABC的外接圆,且∠ABC=45°∴∠AOC=90°………………………………2分∵OC//AD∴∠AOC+∠OAD=180°∴∠OAD=90°∴AD是⊙O的切线………………………………3分(2)解:过点C作CF⊥AD于点F,∴∠AFC=90°∴∠AOC=∠OAD=∠AFC=90°∴四边形AOCF是矩形∵OC=OA∴矩形AOCF是正方形∵⊙O的半径为4∴AF=CF=OC=4………………………………4分∵AD=6∴FD=AD-AF=2………………………………5分在Rt△CFD中CD==∴线段CD的长为………………………………6分25.(1)………………………………1分(2)3;………………………………2分(3)解:设y=a(x-2)2+3(a<0)………………………………3分∵将(5,0)代入函数表达式,则9a+3=0a=∴………………………………4分自变量的取值范围为:0≤x≤5.………………………………5分(4)2.7m(误差均可)………………………………6分26.(1)解:当m=0时,将(2,0)代入y=x2+2bx∴4+4b=0………………………………1分4b=-4∴b=-1………………………………2分(2)解:由题意,抛物线经过点(2,m)和(5,n)∵a>0∴抛物线开口向上,且经过坐标原点(0,0)如果t≤0,那么当x≥t时,y随x的增大而增大∴m>0,n>0,与mn<0不符,舍去如果t≥5,那么当x≤t时,y随x的增大而减小∴m<0,n<0,与mn<0不符,舍去∴0<t<5∵mn<0∴函数图象示意图为:图1图213-21(2)33y x=--+0.1±由图1,当0<t <2时作(0,0)关于x=t 的对称点(x 0,0)∵抛物线为轴对称图形∴点(x 0,0)在抛物线上∴x 0=2t∵a >0∴x ≥t 时,y 随x 的增大而增大∵m <0<n ∴2<2t <5………………………………3分∴512t <<∴12t <<………………………………4分由图2,当2≤t <5时作(5,n )关于x=t 的对称点(x 1,n )∵抛物线为轴对称图形∴点(x 1,n )在抛物线上∴x 1=2t -5∵a >0∴x ≤t 时,y 随x 的增大而减小∵m <0<n ∴2t -5<0<2………………………………5分其中0<2恒成立,解2t -5<0得t <52∴522t ≤<综上所述,512t <<………………………………6分27.(1)………………………………1分(2)∠ACE+∠BCD=180°………………………………2分(3)AE与CF之间的数量关系为:AE=2CF………………………………3分证明:延长CF至H,使FH=CF∵点F为BD中点∴DF=BF∵∠DFH=∠CFB∴△DFH≅△CFB………………………………4分∴DH=BC,∠H=∠BCF∵AC=BC∴DH=AC∵∠H=∠BCF∴DH//BC∴∠DCB+∠CDH=180°∵∠DCB+∠ACE=180°∴∠CDH=∠ACE………………………………5分∵CD=CE∴△CDH≅△ECA………………………………6分∴CH=AE∵CH=2CF∴AE=2CF………………………………7分28.(1)(3,0)………………………………1分(2)解:当直线l 与y 轴正半轴交于点C 时∵点D 在直线l 上,且点D 是点A 关于⊙O 的2倍关联点,∴直线l 与⊙O 的另一个交点为点B ,点D 在射线AB 上,满足AD =2AB 过点O 作OE ⊥AB ∴AB =2AE………………………………2分在Rt △AOE 中,∠CAO =30°,OA=1∴OE =12∴2AE ==∴AB =2∵AD =2AB∴AD =………………………………3分过点D 作DF ⊥x 轴,交x 轴于点F ∵在Rt △AOE 中,∠CAO =30°∴DF ,3AF ==∴OF =2∴D (2)………………………………4分同理可证,当直线l 与y 轴负半轴交于点C 时,D (2,……………………5分综上所述,D 点坐标为(2,)或(2,)(3)1b -≤≤或11b <≤………………………………7分。

2022-2023学年重庆市渝中区九年级上学期期末考试数学试卷含详解

2022-2023学年重庆市渝中区九年级上学期期末考试数学试卷含详解
(1)求该抛物线的解析式;
(2)用关于 的代数式表示线段 ,求 的最大值及此时点 的坐标;
(3)过点 作 于点 , ,
①求点 的坐标;
②连接 ,在 轴上是否存在点 ,使得 为直角三角形,若存在,求出点 的坐标;若不存在,请说明理由.
25.如图,在直角 中, ,点D是 上一点,连接 ,把 绕点A逆时针旋转90°,得到 ,连接 交 于点M.
A. B. C. D.
12.二次函数 ( 、 、 是常数,且 )的自变量 与函数值 的部分对应值如表:
1
2
3
4
3
有下列四个结论:① ;②抛物线 的对称轴是直线 ;③0和1是方程 的两个根;④若 ,则 .其中正确结论的个数是().
A.4B.3C.2D.1
二、填空题(本大题4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卷上对应的横线上.
(1)求证: 是 切线;
(2)若 , ,求 的长.
23.渝中区正在进行旧城改造和旅游升级,即将改造完毕的大田湾体育场外广场正在打造体育生态公园,实现体育与环境的完美结合,为周边群众创造更加舒适的健身休闲环境.体育场准备利用一堵呈“ ”形的围墙(粗线 表示墙,墙足够高)改建室外篮球场,如图所示,已知 , 米, 米,现计划用总长为121米的围网围建呈“日”字形的两个篮球场,并在每个篮球场开一个宽2米的门,如图所示(细线表示围网,两个篮球场之间用围网 隔开),为了充分利用墙体,点 必须在线段 上.
∵ 是 的直径,
∴ ,
∴ ,
∵ 与 都是弧 所对圆周角,
∴ ,
故选C,

【点睛】本题考查圆周角定理:同弧或等弧所对圆周角相等,直径所对圆周角等于 .
10.飞机着陆后滑行的距离 (单位:米)与滑行的时间 (单位:秒)的函数解析式是 ,那么飞机着陆后滑行()秒才能停下来.

2022-2023学年第一学期九年级数学期末数学模拟试题(03)

2022-2023学年第一学期九年级数学期末数学模拟试题(03)

2022-2023学年第一学期九年级数学期末数学模拟试题(03)(考试时间:100分钟试卷满分:120分)考生注意:1.本试卷26道试题,满分120分,考试时间100分钟.2.本试卷分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号码等相关信息.一.选择题(共10小题每题3分,满分30分)1.一组数据0、﹣2、3、2、1的极差是()A.2B.3C.4D.52.Rt△ABC中,∠C=90°,AC=1,BC=2,sin A的值为()A.B.C.D.23.一元二次方程x2+2x=﹣1的根的情况是()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根4.下列实际问题中的y与x之间的函数表达式是二次函数的是()A.正方体集装箱的体积ym3,棱长xmB.高为14m的圆柱形储油罐的体积ym3,底面圆半径xmC.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤D.小莉驾车以108km/h的速度从南京出发到上海,行驶xh,距上海ykm5.在地球上同一地点,不同质量的物体从同一高度同时下落,如果除地球引力外不考虑其他外力的作用,那么它们的落地时间相同.物体的下落距离h(m)与下落时间t(s)之间的函数表达式为h=gt2.其中g取值为9.8m/s2.小莉进行自由落体实验,她从某建筑物抛下一个小球,经过4s后落地,则该建筑物的高度约为()A.98m B.78.4m C.49m D.36.2m6.如图,在△ABC中,∠BAC=45°,BD、CE分别是AC、AB边上的高,连接DE,若DE=2,则BC的长为()A.B.C.D.27.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A.1个B.2个C.3个D.4个8.如图,D,E分别是△ABC的边AB,AC上的点,=,DE∥BC,若△ADE的面积为6,则△ABC 的面积等于()A.12B.18C.24D.549.如图,点A、B、C都在⊙O上,若∠BOC=64°,则∠BAC的度数为()A.64°B.32°C.26°D.23°10.如图,△ABC的两条中线BE、CD交于点O,则下列结论不正确的是()A.=B.=C.S△DOE:S△BOC=1:2D.△ADE∽△ABC二.填空题(共8小题,每题4分,满分24分)11.如果,那么锐角A的度数为.12.已知2a=3b,其中b≠0,则=.13.科学家发现,蝴蝶的身体长度与它展开的双翅的长度之比是黄金比,已知蝴蝶展开的双翅的长度是4cm,则蝴蝶身体的长度约为cm(精确到0.1).14.抛掷一枚质地均匀的正方体骰子1次(骰子的六个面分别标有数字1,2,3,4,5,6),朝上的点数为6的概率为.15.如图,圆锥的母线长l为5cm,侧面积为10πcm2,则圆锥的底面圆半径r=cm.16.将二次函数y=﹣2(x+2)2的图象向右平移2个单位得到二次函数的表达式为.17.二次函数y=x2+bx的图象如图所示,对称轴为x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<6的范围内无解,则t的取值范围是.18.如图,AB是⊙O的直径,CD是⊙O的弦,∠CAB=42°,则∠D的度数是°.三.解答题(共8小题,满分66分)19.(1)计算:tan260°+4sin30℃os45°;(2)解方程:(x+3)2=2x+14.20.如图,在矩形ABCD中,AB:BC=1:2,点E在AD上,BE与对角线AC交于点F.(1)求证:△AEF∽△CBF;(2)若BE⊥AC,求AE:ED.21.在三张形状、大小、质地均相同的卡片上各写一个数字,分别为1、2、﹣1.现将三张卡片放入一只不透明的盒子中,搅匀后任意抽出一张,记下数字后放回,搅匀后再任意抽出一张记下数字.(1)第一次抽到写有负数的卡片的概率是;(2)用画树状图或列表等方法求两次抽出的卡片上数字都为正数的概率.22.如图,某旅游景区观光路线是从山脚下的地面A处出发,沿坡度为1:的斜坡AB步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.(1)求山坡B距离山脚下地面的高度;(2)求山顶D距离山脚下地面的高度;(精确到1m)(本题可参考的数据:sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)23.某工厂加工一种产品的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克,为增大市场占有率,在保证盈利的情况下,工厂采取降价措施,批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润y元与降价x元之间的函数关系;(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)当定价应设在什么范围之间时,可使工厂每天的利润要不低于9750元?24.如图1,C、D为半圆O上的两点,且点D是弧BC的中点.连结AC并延长,与BD的延长线相交于点E.(1)求证:CD=ED;(2)连结AD与OC、BC分别交于点F、H.①若CF=CH,如图2,求证:CH=CE;②若圆的半径为2,BD=1,如图3,求AC的值.25.已知正方形ABCD的边长为1,点E是射线BC上的动点,以AE为直角边在直线BC的上方作等腰直角三角形AEF,∠AEF=90°,设BE=m.(1)如图1,若点E在线段BC上运动,EF交CD于点P,连结CF.①当m=时,求线段CF的长;②设CP=n,请求出n与m的关系式;(2)如图2,AF交CD于点Q,在△PQE中,设边QE上的高为h,求h的最大值.26.如图,点A在抛物线上,过A作x轴的平行线交抛物线于另一点B,点C为抛物线上的任一点.(1)若点A的横坐标为﹣4,且△ABC为直角三角形时,求C点的坐标;(2)当A点变化时,是否总存在C点,使得△ABC是直角三角形,若是总存在,请说明理由;若不是总存在,请直接写出点A纵坐标m的取值范围;(3)若△ABC为直角三角形,AB边上的高为h,①h的大小是否改变,若改变,请说明理由;不改变,请求出高的长度;②若将抛物线的关系式由换成y=ax2(a≠0),其余条件不发生改变,试猜想h与a的关系,并证明.答案与解析一.选择题(共10小题每题3分,满分30分)1.一组数据0、﹣2、3、2、1的极差是()A.2B.3C.4D.5【分析】根据极差的概念求解.【解答】解:极差为:3﹣(﹣2)=5.故选:D.【点评】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.2.Rt△ABC中,∠C=90°,AC=1,BC=2,sin A的值为()A.B.C.D.2【分析】直接利用勾股定理得出AB的长,再利用锐角三角三角函数关系得出答案.【解答】解:∵Rt△ABC中,∠C=90°,AC=1,BC=2,∴AB=,∴sin A===.故选:C.【点评】此题主要考查了锐角三角函数的定义,正确把握相关定义是解题关键.3.一元二次方程x2+2x=﹣1的根的情况是()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根【分析】先把方程化为一般式,再计算根的判别式的值,然后根据根的判别式的意义判断方程根的情况.【解答】解:方程化为x2+2x+1=0,∵Δ=22﹣4×1=0,∴方程有两个相等的实数根.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系,当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.上面的结论反过来也成立.4.下列实际问题中的y与x之间的函数表达式是二次函数的是()A.正方体集装箱的体积ym3,棱长xmB.高为14m的圆柱形储油罐的体积ym3,底面圆半径xmC.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤D.小莉驾车以108km/h的速度从南京出发到上海,行驶xh,距上海ykm【分析】根据二次函数的定义逐项判断即可.【解答】解:A.正方体集装箱的体积ym3,棱长xm,则y=x3,故不是二次函数;B.高为14m的圆柱形储油罐的体积ym3,底面圆半径xm,则y=14πx2,故是二次函数;C.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤,则y=,故不是二次函数;D.小莉驾车以108km/h的速度从南京出发到上海,行驶xh,距上海ykm,则y=南京与上海之间的距离﹣108x,故不是二次函数.故选:B.【点评】本题考查二次函数的实际应用,熟练掌握二次函数的定义是解题关键.5.在地球上同一地点,不同质量的物体从同一高度同时下落,如果除地球引力外不考虑其他外力的作用,那么它们的落地时间相同.物体的下落距离h(m)与下落时间t(s)之间的函数表达式为h=gt2.其中g取值为9.8m/s2.小莉进行自由落体实验,她从某建筑物抛下一个小球,经过4s后落地,则该建筑物的高度约为()A.98m B.78.4m C.49m D.36.2m【分析】把t=4代入可得答案.【解答】解:把t=4代入得,h=9.8×42=78.4m.故选:B.【点评】本题考查二次函数的实际应用,根据题意把t=4代入是解题关键6.如图,在△ABC中,∠BAC=45°,BD、CE分别是AC、AB边上的高,连接DE,若DE=2,则BC的长为()A.B.C.D.2【分析】根据等腰直角三角形的性质得到=,=,进而得到=,得到△ADE∽△ABC,根据相似三角形的性质列出比例式,计算即可.【解答】解:在Rt△ADB中,∠BAC=45°,则=,同理:=,∴=,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴==,∵DE=2,∴BC=2,故选:D.【点评】本题考查的是相似三角形的判定与性质、等腰直角三角形的性质,证明△ADE∽△ABC是解题的关键.7.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A.1个B.2个C.3个D.4个【分析】由抛物线开口方向,对称轴以及抛物线与y轴的交点,即可判断①;由对称轴改善得到b=﹣2a 代入a﹣b+c<0中得3a+c<0,即可判断②;由x=﹣1时对应的函数值y<0,可得出a﹣b+c<0,得到a+c<b,x=1时,y>0,可得出a+b+c>0,得到|a+c|<|b|,即可得到(a+c)2﹣b2<0,即可判断③;由对称轴为直线x=1,即x=1时,y有最大值,即可判断④.【解答】解:①∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴右侧,∴b>0∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,所以①正确;②当x=﹣1时,y<0,∴a﹣b+c<0,∵﹣=1,∴b=﹣2a,把b=﹣2a代入a﹣b+c<0中得3a+c<0,所以②错误;③当x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,当x=1时,y>0,∴a+b+c>0,∴a+c>﹣b,∴|a+c|<|b|∴(a+c)2<b2,即(a+c)2﹣b2<0,所以③正确;④∵抛物线的对称轴为直线x=1,∴x=1时,函数的最大值为a+b+c,∴a+b+c≥am2+mb+c,即a+b≥m(am+b),所以④错误.故选:B.【点评】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:Δ=b2﹣4ac>0时,抛物线与x轴有2个交点;Δ=b2﹣4ac=0时,抛物线与x轴有1个交点;Δ=b2﹣4ac<0时,抛物线与x轴没有交点.8.如图,D,E分别是△ABC的边AB,AC上的点,=,DE∥BC,若△ADE的面积为6,则△ABC 的面积等于()A.12B.18C.24D.54【分析】利用DE∥BC判定△ADE∽△ABC,再利用相似三角形的面积比等于相似比的平方,列出关系式即可求得结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC.∴.∵=,∴=.∴S△ABC=9S△ADE=54.故选:D.【点评】本题主要考查了相似三角形的判定与性质,利用相似三角形的判定方法得出△ADE∽△ABC是解题的关键.9.如图,点A、B、C都在⊙O上,若∠BOC=64°,则∠BAC的度数为()A.64°B.32°C.26°D.23°【分析】利用圆周角定理求解即可.【解答】解:∵∠BAC=BOC,∠BOC=64°,∴∠BAC=32°,故选:B.【点评】本题考查圆周角定理,解题的关键是理解圆周角定理,属于中考常考题型.10.如图,△ABC的两条中线BE、CD交于点O,则下列结论不正确的是()A.=B.=C.S△DOE:S△BOC=1:2D.△ADE∽△ABC【分析】根据中线BE、CD交于点O,可得DE是△ABC的中位线,根据三角形的中位线定理得出DE∥BC,DE=BC,根据平行线的性质得出相似,根据相似三角形的性质求出即可.【解答】解:∵BE和CD是△ABC的中线,∴DE是△ABC的中位线,∴DE=BC,DE∥BC,∴=,故A选项正确;∵DE∥BC,∴=,故B选项正确;∵DE∥BC,∴△DOE∽△COB,∴=()2=()2=,故C选项错误;∵DE∥BC,∴△ADE∽△ABC,故D选项正确;故选:C.【点评】本题主要考查了三角形中位线定理以及相似三角形的判定与性质,解题时注意:三角形的中位线平行于第三边,并且等于第三边的一半.二.填空题(共8小题,每题4分,满分24分)11.如果,那么锐角A的度数为30°.【分析】根据30°角的余弦值等于解答.【解答】解:∵cos A=,∴锐角A的度数为30°.故答案为:30°.【点评】本题考查了特殊角的三角函数值,熟记30°、45°、60°的三角函数值是解题的关键.12.已知2a=3b,其中b≠0,则=.【分析】根据比例的性质等式两边都除以2b,即可得出答案.【解答】解:∵2a=3b,b≠0,∴除以2b,得=,故答案为:.【点评】本题考查了比例的性质,能选择适当的方法求解是解此题的关键,注意:如果ad=bc,那么=.13.科学家发现,蝴蝶的身体长度与它展开的双翅的长度之比是黄金比,已知蝴蝶展开的双翅的长度是4cm,则蝴蝶身体的长度约为 2.5cm(精确到0.1).【分析】设蝴蝶身体的长度为xcm,根据黄金比为列式计算即可.【解答】解:设蝴蝶身体的长度为xcm,由题意得,x:4=,解得,x=2﹣2≈2.5,故答案为:2.5.【点评】本题考查的是黄金分割的概念和性质,掌握黄金比为是解题的关键.14.抛掷一枚质地均匀的正方体骰子1次(骰子的六个面分别标有数字1,2,3,4,5,6),朝上的点数为6的概率为.【分析】让朝上一面的数字是6的情况数除以总情况数6即为所求的概率.【解答】解:∵抛掷六个面上分别刻有的1,2,3,4,5,6的骰子有6种结果,其中朝上一面的数字为6的只有1种,∴朝上一面的数字为6的概率为,故答案为:.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.15.如图,圆锥的母线长l为5cm,侧面积为10πcm2,则圆锥的底面圆半径r=2cm.【分析】根据圆锥的侧面积和圆锥的母线长求得圆锥的弧长,利用圆锥的侧面展开扇形的弧长等于圆锥的底面周长求得圆锥的底面半径即可.【解答】解:∵圆锥的母线长是5cm,侧面积是10πcm2,∴圆锥的侧面展开扇形的弧长为:l===4π,∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r===2cm,故答案为:2.【点评】本题考查了圆锥的计算,解题的关键是正确地进行圆锥与扇形的转化.16.将二次函数y=﹣2(x+2)2的图象向右平移2个单位得到二次函数的表达式为y=﹣2x2.【分析】直接利用二次函数的平移规律进而得出答案.【解答】解:将二次函数y=﹣2(x+2)2的图象向右平移2个单位得到二次函数的表达式为:y=﹣2x2.故答案为:y=﹣2x2.【点评】此题主要考查了二次函数图象与几何变换,正确掌握平移移规律是解题关键.17.二次函数y=x2+bx的图象如图所示,对称轴为x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<6的范围内无解,则t的取值范围是t<﹣4或t≥12.【分析】根据抛物线的对称轴方程可求出抛物线的解析式,要使关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<6的范围内无解,只需直线y=t与抛物线y=x2+bx在﹣1<x<6的范围内没有交点,只需结合图象就可解决问题.【解答】解:∵抛物线y=x2+bx的对称轴为x=2,∴x=﹣=2,∴b=﹣4,∴抛物线的解析式为y=x2﹣4x.当x=﹣1时,y=5;当x=2时y=﹣4;当x=6时y=12.结合图象可得:当t<﹣4或t≥12时,直线y=t与抛物线y=x2﹣4x在﹣1<x<6的范围内没有交点,即关于x的一元二次方程x2﹣4x﹣t=0(t为实数)在﹣1<x<6的范围内无解.故答案为t<﹣4或t≥12.【点评】本题主要考查了抛物线的性质、抛物线上点的坐标特征等知识,运用数形结合的思想是解决本题的关键.18.如图,AB是⊙O的直径,CD是⊙O的弦,∠CAB=42°,则∠D的度数是48°.【分析】根据直径所对的圆周角是直角推出∠ACB=90°,再结合图形由直角三角形的性质得到∠B=90°﹣∠CAB=48°,进而根据同弧所对的圆周角相等推出∠D=∠B=48°.【解答】解:连接CB.∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=42°,∴∠B=90°﹣∠CAB=48°,∴∠D=∠B=48°.故答案为:48.【点评】本题考查圆周角定理,解题的关键是结合图形根据圆周角定理推出∠ACB=90°及∠D=∠B,注意运用数形结合的思想方法.三.解答题(共8小题,满分66分)19.(1)计算:tan260°+4sin30℃os45°;(2)解方程:(x+3)2=2x+14.【分析】(1)先代入三角函数值,再计算乘方和乘法即可;(2)先将方程整理成一般式,再利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可.【解答】解:(1)原式=()2+4××=3+;(2)整理成一般式,得:x2+4x﹣5=0,∴(x+5)(x﹣1)=0,则x+5=0或x﹣1=0,解得x1=﹣5,x2=1.【点评】本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.20.如图,在矩形ABCD中,AB:BC=1:2,点E在AD上,BE与对角线AC交于点F.(1)求证:△AEF∽△CBF;(2)若BE⊥AC,求AE:ED.【分析】(1)根据矩形的性质得到AD∥BC,然后根据相似三角形的判断方法可判断△AEF∽△CBF;(2)设AB=x,则BC=2x,利用矩形的性质得到AD=BC=2x,∠BAD=∠ABC=90°,接着证明△ABE ∽△BCA,利用相似比得到AE=x,则DE=x,从而可计算出AE:DE.【解答】(1)证明:∵四边形ABCD为矩形,∴AD∥BC,∴△AEF∽△CBF;(2)解:设AB=x,则BC=2x,∵四边形ABCD为矩形,∴AD=BC=2x,∠BAD=∠ABC=90°,∵BE⊥AC,∴∠AFB=90°,∵∠ABF+∠BAF=90°,∠BAC+∠ACB=90°,∴∠ABF=∠ACB,∵∠BAE=∠ABC,∠ABE=∠BCA,∴△ABE∽△BCA,∴=,即=,∴AE=x,∴DE=AD﹣AE=2x﹣x=x,∴AE:DE=x:x=1:3.【点评】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;同时利用相似三角形的性质进行几何计算.也考查了矩形的性质.21.在三张形状、大小、质地均相同的卡片上各写一个数字,分别为1、2、﹣1.现将三张卡片放入一只不透明的盒子中,搅匀后任意抽出一张,记下数字后放回,搅匀后再任意抽出一张记下数字.(1)第一次抽到写有负数的卡片的概率是;(2)用画树状图或列表等方法求两次抽出的卡片上数字都为正数的概率.【分析】(1)用负数的个数除以数字的总个数即可;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)第一次抽到写有负数的卡片的概率是,故答案为:;(2)画树状图为:共有9种等可能的结果数,其中两次抽出的卡片上数字都为正数的有4种结果,所以两次抽出的卡片上数字都为正数的概率为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.22.如图,某旅游景区观光路线是从山脚下的地面A处出发,沿坡度为1:的斜坡AB步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.(1)求山坡B距离山脚下地面的高度;(2)求山顶D距离山脚下地面的高度;(精确到1m)(本题可参考的数据:sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)【分析】(1)过点C作CE⊥DG于E,过B作BF⊥DG于F,延长CB交AG于点H,由含30°角的直角三角形的性质即可得出答案;(2)由锐角三角函数定义求出DE,即可解决问题.【解答】解:(1)如图,过点C作CE⊥DG于E,过B作BF⊥DG于F,延长CB交AG于点H,则CH⊥AG,由题意可知,∠DCE=19°30′,CD=180m,BC=EF=30m,∵i=1:=tanα=,∴α=30°,在Rt△ABH中,α=30°,AB=50m,∴BH=AB=25(m),答:山坡B距离山脚下地面的高度为25m;(2)由(1)得:FG=BH=25m,在Rt△DCE中,∠DCE=19°30′,CD=180m,∴DE=sin∠DCE•CD≈0.33×180=59.4(m),∴DG=DE+EF+FG≈59.4+30+25=114.4≈114(m),答:山顶D距离山脚下地面的的高度约为114m.【点评】本题考查了解直角三角形的应用—仰角俯角问题、坡度坡角问题,正确作出辅助线构造直角三角形是解题的关键.23.某工厂加工一种产品的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克,为增大市场占有率,在保证盈利的情况下,工厂采取降价措施,批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润y元与降价x元之间的函数关系;(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)当定价应设在什么范围之间时,可使工厂每天的利润要不低于9750元?【分析】(1)根据利润=销售量×(单价﹣成本),列出函数关系式即可;(2)根据(1)求得的函数关系式进一步利用配方法求出答案即可;(3)首先由(2)中的函数得出降价x元时,每天要获得9750元的利润,进一步利用函数的性质得出答案.【解答】解:(1)由题意得:y=(48﹣30﹣x)(500+50x)=﹣50x2+400x+9000,答:工厂每天的利润y元与降价x元之间的函数关系为y=﹣50x2+400x+9000;(2)由(1)得:y=﹣50x2+400x+9000=﹣50(x﹣4)2+9800,∵﹣50<0,∴x=4时,y最大为9800,即当降价4元时,工厂每天的利润最大,最大为9800元;(3)﹣50x2+400x+9000=9750,解得:x1=3,x2=5,48﹣3=45,48﹣5=43,∴定价应为43﹣45元之间(含43元和45元).【点评】此题考查二次函数的实际运用,解题的关键是求得函数解析式,进一步利用函数的性质解决问题.24.如图1,C、D为半圆O上的两点,且点D是弧BC的中点.连结AC并延长,与BD的延长线相交于点E.(1)求证:CD=ED;(2)连结AD与OC、BC分别交于点F、H.①若CF=CH,如图2,求证:CH=CE;②若圆的半径为2,BD=1,如图3,求AC的值.【分析】(1)如图1中,连接BC.想办法证明∠E=∠DCE即可;(2)①如图2中,根据等腰三角形的性质得到∠CFH=∠CHF,根据三角形外角的性质得到∠ACO=∠OBC,求得∠OCB=∠OBC,得到∠ACO=∠BCO=∠ACB=45°,推出AC=BC,根据全等三角形的性质即可得到结论;②连接OD交BC于G.设OG=x,则DG=2﹣x.利用勾股定理构建方程求解即可.【解答】(1)证明:如图1中,连接BC.∵点D是弧BC的中点.∴=,∴∠DCB=∠DBC,∵AB是直径,∴∠ACB=∠BCE=90°,∴∠E+∠DBC=90°,∠ECD+∠DCB=90°,∴∠E=∠DCE,∴CD=ED;(2)①证明:如图2中,∵CF=CH,∴∠CFH=∠CHF,∵∠CFH=∠CAF+∠ACF,∠CHA=∠BAH+∠ABH,∵∠CAD=∠BAH,∴∠ACO=∠OBC,∵OC=OB,∴∠OCB=∠OBC,∴∠ACO=∠BCO=∠ACB=45°,∴∠CAB=∠ABC=45°,∴AC=BC,∵∠ACH=∠BCE=90°,∠CAH=∠CBE,∴△ACH≌△BCE(ASA),∴CH=CE;②解:如图3中,连接OD交BC于G.设OG=x,则DG=2﹣x.∵=,∴∠COD=∠BOD,∵OC=OB,∴OD⊥BC,CG=BG,在Rt△OCG和Rt△BGD中,则有22﹣x2=12﹣(2﹣x)2,∴x=,即OG=,∵OA=OB,∴OG是△ABC的中位线,∴OG=AC,∴AC=.【点评】本题属于圆综合题,考查了圆周角定理,弧,圆心角,弦之间的关系,全等三角形的判定和性质,三角形的中位线,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.25.已知正方形ABCD的边长为1,点E是射线BC上的动点,以AE为直角边在直线BC的上方作等腰直角三角形AEF,∠AEF=90°,设BE=m.(1)如图1,若点E在线段BC上运动,EF交CD于点P,连结CF.①当m=时,求线段CF的长;②设CP=n,请求出n与m的关系式;(2)如图2,AF交CD于点Q,在△PQE中,设边QE上的高为h,求h的最大值.【分析】(1)①过点F作FG⊥BC交BC的延长线于M,利用AAS证明△ABE≌△EGF,得FM=BE=,EM=AB=BC,则CM=BE,从而求出CF的长;②利用△BAE∽△CEP,得,代入即可;(2)将△ADQ绕点A顺时针旋转90°得△ABG,首先由∠ABG=∠ABE=90°,得B,G,E三点共线,再利用SAS证明△GAE≌△EAQ,得∠AEG=∠AEQ,则有∠QEP=∠CEP,可得h=CP,利用②中结论得h=﹣m2+m=﹣(m﹣)2+.【解答】解:(1)①如图,过点F作FG⊥BC交BC的延长线于M,在等腰直角三角形AEF中,∠AEF=90°,AE=FE,在正方形ABCD中,∠B=90°,∴∠BAE+∠AEB=∠FEM+∠AEB,∴∠BAE=∠FEM,又∵∠B=∠FME,∴△ABE≌△EGF(AAS),∴FM=BE=,EM=AB=BC,∴CM=BE=∴FC==;②∵∠BAE=∠FEC,∠B=∠ECP=90°,∴△BAE∽△CEP,∴,即,∴CP=m﹣m2,即n=m﹣m2;(2)如图,将△ADQ绕点A顺时针旋转90°得△ABG,则AG=AQ,∠GAB=∠QAD,GB=DQ,∵∠EAF=45°,∴∠BAE+∠QAD=∠BAE+∠GAB=90°﹣45°=45°,即∠GAE=∠EAF=45°,∵∠ABG=∠ABE=90°,∴B,G,E三点共线,又∵AE=AE,∴△GAE≌△EAQ(SAS),∴∠AEG=∠AEQ,∴∠QEP=∠CEP,∴h=CP,∴h=﹣m2+m=﹣(m﹣)2+,即当m=时,h有最大值为.【点评】本题是四边形综合题,主要考查了正方形的性质,等腰直角三角形的性质,角平分线的判定,全等三角形的判定与性质,二次函数的性质等知识,作辅助线构造全等三角形证明∠QEP=∠CEF是解题的关键.26.如图,点A在抛物线上,过A作x轴的平行线交抛物线于另一点B,点C为抛物线上的任一点.(1)若点A的横坐标为﹣4,且△ABC为直角三角形时,求C点的坐标;(2)当A点变化时,是否总存在C点,使得△ABC是直角三角形,若是总存在,请说明理由;若不是总存在,请直接写出点A纵坐标m的取值范围;(3)若△ABC为直角三角形,AB边上的高为h,①h的大小是否改变,若改变,请说明理由;不改变,请求出高的长度;②若将抛物线的关系式由换成y=ax2(a≠0),其余条件不发生改变,试猜想h与a的关系,并证明.【分析】(1)设C(t,t2),求出A、B点的坐标,利用勾股定理求t的值即可;(2)设A(﹣,m),C(t,t2),则B(,m),由勾股定理求得t2=2m﹣4,则当2m﹣4≥0时,此时△ABC是直角三角形;(3)①由(2)可得h=m﹣(m﹣2)=2;②设A(﹣m,am2),C(t,at2),则B(m,am2),由勾股定理求得t2=,可确定点A(﹣m,am2),C(t,),则h=.【解答】解:(1)∵点A的横坐标为﹣4,∴A(﹣4,8),∵AB∥x轴,∴B(4,8),设C(t,t2),∵△ABC为直角三角形,∴AB2=AC2+BC2,即(t+4)2+(t2﹣8)2+(4﹣t)2+(t2﹣8)2=64,∴t2=16(舍)或t2=12,∴C(2,6)或C(﹣2,6);(2)不是总存在,理由如下:设A(﹣,m),C(t,t2),则B(,m),∵AB2=AC2+BC2,即(t+)2+(t2﹣m)2+(﹣t)2+(t2﹣m)2=8m,∴t2=2m(舍)或t2=2m﹣4,当2m﹣4≥0时,m≥2,此时△ABC是直角三角形;(3)①h的大小不改变,理由如下:由(2)可知,C(,m﹣2)或C(﹣,m﹣2),∴C点的纵坐标为m﹣2,∵AB边上的高为h,∴h=m﹣(m﹣2)=2;②设A(﹣m,am2),C(t,at2),则B(m,am2),∵AB2=AC2+BC2,即(t+m)2+(at2﹣am2)2+(m﹣t)2+(at2﹣am2)2=4m2,∴t2=m2(舍)或t2=,∴A(﹣m,am2),C(t,),∴h=am2﹣=.【点评】本题是二次函数的综合题,熟练掌握二次函数的图象及性质,灵活应用勾股定理,准确计算是解题的关键.。

四川省成都市武侯区2024届九年级上学期期末考试数学试卷(含答案)

四川省成都市武侯区2024届九年级上学期期末考试数学试卷(含答案)

2023~2024学年度上期期末考试试题九年级数学注意事项:1.全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟。

2.考生使用答题卡作答。

3.在作答前,考生务必将自己的姓名、考生号和座位号填写在答题卡规定的地方。

考试结束,监考人员只将答题卡收回。

4.选择题部分请使用2B铅笔填涂;非选择题部分请使用0.5毫米黑色签字笔书写,字体工整、笔迹清楚。

5.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

6.保持答题卡清洁,不得折叠、污染、破损等。

A卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分)1.某几何体的三视图如图所示,则这个几何体是()A.圆锥B.正方体C.圆柱D.球2.若方程是关于的一元二次方程,则“□”中可以是()A.B.C.D.3.已知四条线段成比例,则下列结论正确的是()A.B.C.D.4.若表示平行四边形,表示矩形,表示菱形,表示正方形,它们之间的关系用下列图形来表示,正确的是()A.B.C.D.5.若关于的方程有实数根,则的取值范围是()A.B.C.D.6.如图,在平面直角坐标系中,矩形的顶点坐标分别是,.已知矩形与矩形位似,位似中心是原点,且矩形的面积等于矩形的面积的,则点的坐标是()A.B.C.或D.或7.王丽同学在一次用频率估计概率的试验中,统计了某一结果出现的频率,绘出的统计图如图所示,则该试验可能是()A.关于“从装有2张红桃和1张黑桃的扑克牌盒子中,随机摸出一张(这些扑克牌除花色外都相同),这张扑克牌是黑桃”的试验B.关于“50个同学中,有2个同学生日相同”的试验C.关于“抛一枚质地均匀的硬币,正面朝上”的试验D.关于“掷一枚质地均匀的正方体骰子,出现的点数是1”的试验8.已知反比例函数的图象如图所示,关于下列说法:①常数;②的值随值的增大而减小;③若点为轴上一点,点为反比例函数图象上一点,则;④若点在反比例函数的图象上,则点也在该反比例函数的图象上.其中说法正确的是()A.①②③B.③④C.①④D.②③④第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.将方程化成一元二次方程的一般形式为_________.10.一个口袋中装有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有69次摸到红球,则可估计这个口袋中红球的数量是_________.11.如图,小强自制了一个小孔成像的纸筒装置,其中纸筒的长度为,他准备了一支长为的蜡烛,想要得到高度为的像,蜡烛应放在水平距离纸筒点处_________的地方.12.在平面直角坐标系中,一次函数的图象与反比例函数的图象如图所示,则当时,自变量的取值范围是_________.13.如图,先将一张正方形纸向上对折、再向左对折,然后沿着图中的虚线剪开,得到①②两部分,将①展开后得到的平面图形是_________.三、解答题(本大题共5个小题,共48分)14.解方程(本小题满分12分,每题6分)(1);(2).15.(本小题满分8分)如图,在正方形中,延长至点,使得,连接交于点.(1)试探究的形状;(2)求的度数.16.(本小题满分8分)2023年9月21日,“天宫课堂”第四课在中国空间站开讲,“太空教师”景海鹏、朱杨柱、桂海潮为广大青少年带来一场精彩的太空科普课,航天员们演示了“球形火焰”“奇妙乒乓球”“动量守恒”和“又见陀螺”四个实验.本次授课活动分别在北京、内蒙古阿拉善盟、陕西延安、安徽桐城及浙江宁波设置了5个地面课堂。

2022-2023学年山东省济南市九级九年级数学第一学期期末学业水平测试试题含解析

2022-2023学年山东省济南市九级九年级数学第一学期期末学业水平测试试题含解析

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.在平面直角坐标系中,点P (m ,1)与点Q (﹣2,n )关于原点对称,则m n 的值是( )A .﹣2B .﹣1C .0D .22.下列二次根式是最简二次根式的是( )A .18B .13C .10D .0.33.服装店为了解某品牌外套销售情况,对各种码数销量进行统计店主最应关注的统计量是( ) A .平均数 B .中位数 C .方差 D .众数4.如图,平面直角坐标系中,()()()8,0,8,4,0,4A B C --,反比例函数k y x=的图象分别与线段,AB BC 交于点,D E ,连接DE .若点B 关于DE 的对称点恰好在OA 上,则k =( )A .20-B .16-C .12-D .8-5.下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .6.已知关于x 的方程(m +4)x 2+2x ﹣3m =0是一元二次方程,则m 的取值范围是( )A .m <﹣4B .m ≠0C .m ≠﹣4D .m >﹣47.已知如图ABC 中,点O 为BAC ∠,ACB ∠的角平分线的交点,点D 为AC 延长线上的一点,且AD AB =,CD CO =,若138∠=︒AOD ,则ABC ∠的度数是( ).A .12︒B .24︒C .48︒D .96︒8.如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若12AB BC =,则DE EF=( )A .12B .13C .23D .19.若正方形的外接圆半径为2,则其内切圆半径为( )A .2B 2C 2D .110.若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是A .点A 在圆外B .点A 在圆上C .点A 在圆内D .不能确定 11.一元二次方程x 2+x ﹣1=0的两根分别为x 1,x 2,则1211x x +=( ) A .12 B .1 C 5 D 512.若反比例函数2k yx (k 为常数)的图象在第二、四象限,则k 的取值范围是( ) A .2k <-B .2k >-且0k ≠C .2k >D .2k <且0k ≠二、填空题(每题4分,共24分)13.超市经销一种水果,每千克盈利10元,每天销售500千克,经市场调查,若每千克涨价1元,日销售量减少20千克,现超市要保证每天盈利6000元,每千克应涨价为______元.14.若二次函数25(0)y ax bx a =-+≠的图像经过点(2,2),则242017b a -+的值是_______.15. “上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .16.如图,在矩形ABCD中,AB=4,AD=3,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是______(结果保留π).17.如图,A、B、C是⊙O上三点,∠ACB=30°,则∠AOB的度数是_____.18.某班级准备举办“迎鼠年,闹新春”的民俗知识竞答活动,计划A、B两组对抗赛方式进行,实际报名后,A组有男生3人,女生2人,B组有男生1人,女生4人,若从两组中各随机抽取1人,则抽取到的两人刚好是1男1女的概率是__________.三、解答题(共78分)19.(8分)已知△ABC,AB=AC,BD是∠ABC的角平分线,EF是BD的中垂线,且分别交BC于点E,交AB于点F,交BD于点K,连接DE,DF.(1)证明:DE//AB;(2)若CD=3,求四边形BEDF的周长.20.(8分)一个盒子中装有两个红球,一个白球和一个蓝球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,请你用列表法和画树状图法求两次摸到的球的颜色能配成紫色的概率(说明:红色和蓝色能配成紫色)21.(8分)为了推动课堂教学改革,打造高效课堂,配合我市“两型课堂”的课题研究,莲城中学对八年级部分学生就一期来“分组合作学习”方式的支持程度进行调查,统计情况如图.试根据图中提供的信息,回答下列问题:(1)求本次被调查的八年级学生的人数,并补全条形统计图;(2)若该校八年级学生共有180人,请你估计该校八年级有多少名学生支持“分组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生).22.(10分)某校综合实践小组要对一幢建筑物MN 的高度进行测量.如图,该小组在一斜坡坡脚A 处测得该建筑物顶端M 的仰角为45︒,沿斜坡向上走20m 到达B 处,(即20AB m =)测得该建筑物顶端M 的仰角为30.已知斜坡的坡度3:4i =,请你计算建筑物MN 的高度(即MN 的长,结果保留根号).23.(10分)如图,在△ABC 中,∠C =90°,AC=8cm ,BC=6cm . 点P 从点A 出发,沿AB 边以2 cm /s 的速度向点B 匀速移动;点Q 从点B 出发,沿BC 边以1 cm /s 的速度向点C 匀速移动, 当一个运动点到达终点时,另一个运动点也随之停止运动,设运动的时间为t (s).(1)当PQ ∥AC 时,求t 的值;(2)当t 为何值时,△PBQ 的面积等于245cm 2.24.(10分)如图,已知抛物线经过坐标原点O 和x 轴上另一点E ,顶点M 的坐标为()2,4.矩形ABCD 的顶点A 与点O 重合,AD 、AB 分别在x 轴、y 轴上,且AD =2,AB =1.(1)求该抛物线所对应的函数关系式;(2)将矩形ABCD 以每秒1个单位长度的速度从图1所示的位置沿x 轴的正方向匀速平行移动,同时一动点P 也以相同的速度从点A 出发向B 匀速移动,设它们运动的时间为t 秒(03)t ≤≤,直线AB 与该抛物线的交点为N (如图2所示). ①当52t =,判断点P 是否在直线MB 上,并说明理由; ②设P 、N 、C 、D 以为顶点的多边形面积为S ,试问S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.25.(12分)先化简,再求值:2111x y x y xy y⎛⎫+÷ ⎪+-+⎝⎭,其中x 52,y 5 2. 26.已知,直线23y x =-+与抛物线2y ax =相交于A 、B 两点,且A 的坐标是(3,)m -(1)求a ,m 的值;(2)抛物线的表达式及其对称轴和顶点坐标.参考答案一、选择题(每题4分,共48分)1、A【分析】已知在平面直角坐标系中,点P (m ,1)与点Q(﹣2,n )关于原点对称,则P 和Q 两点横坐标互为相反数,纵坐标互为相反数即可求得m ,n ,进而求得m n 的值.【详解】∵点P (m ,1)与点Q(﹣2,n )关于原点对称∴m=2,n=-1∴m n =-2故选:A【点睛】本题考查了直角坐标系中,关于原点对称的两个点的坐标特点,它们的横坐标互为相反数,纵坐标互为相反数. 2、C【解析】根据最简二次根式的定义逐项分析即可.【详解】A. ,故不是最简二次根式;B. ,故不是最简二次根式;C. ,是最简二次根式;D. ,故不是最简二次根式; 故选C.【点睛】本题考查了最简二次根式的识别,如果二次根式的被开方式中都不含分母,并且也都不含有能开的尽方的因式,象这样的二次根式叫做最简二次根式.3、D【分析】根据题意,应该关注哪种尺码销量最多.【详解】由于众数是数据中出现次数最多的数,故应该关注这组数据中的众数.故选D【点睛】本题考查了数据的选择,根据题意分析,即可完成。

2023—-2024学年上学期九年级期末考试数学试卷

2023—-2024学年上学期九年级期末考试数学试卷

准考证号:__________________姓名:_________(在此卷上答题无效)2023-2024学年第一学期初中毕业班期末考试数学一、选择题(本大题有8小题,每小题4分,共32分.每小题都有四个选项,其中有且只有一个选项正确)1.掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件中,是确定性事件的是A.向上一面的点数是2B.向上一面的点数是奇数C.向上一面的点数小于3D.向上一面的点数小于72.下列方程中,有两个不相等的实数根的是A.x2=0B.x2-3x-1=0C.x2-2x+5=0D.x2+1=03.如图1,△ABC内接于⊙O,直径AD交BC于点P,连接OB.下列角中,等于12∠AOB的是A.∠OABB.∠ACBC.∠CADD.∠OPB4.关于y=(x-2)2-1(x为任意实数)的函数值,下列说法正确的是A.最小值是-1B.最小值是2C.最大值是-1D.最大值是25.某学校图书馆2023年年底有图书5万册,预计到2025年年底增加到8万册,设图书数量的年平均增长率为x,可列方程A.5(1+x)=8B.5(1+2x)=8C.5(1+x)2=8D.5(1+2x)2=86.如图2,直线l是正方形ABCD的一条对称轴,l与AB,CD分别交于点M,N.AN,BC的延长线相交于点P,连接BN.下列三角形中,与△NCP成中心对称的是A.△NCBB.△BMNC.△AMND.△NDA数学试题第1页(共6页)7.某个正六边形螺帽需要拧4圈才能拧紧,小梧用扳手的卡口卡住螺帽,通过转动扳手的手柄来转动螺帽(如图3所示).以此方式把这个螺帽拧紧,他一共需要转动扳手的次数是A.4B.16C.24D.328.某航空公司对某型号飞机进行着陆后的滑行测试.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是=−32t2+60t,则t的取值范围是A.0≤t≤600B.20≤t≤40C.0≤t≤40D.0≤t≤20二、填空题(本大题有8小题,每小题4分,共32分)9.不透明袋子中只装有2个红球和1个黄球,这些球除颜色外无其他差别.从袋子中随机摸出1个球,摸出红球的概率是_________.10.抛物线y=3(x-1)2+4的对称轴是__________.11.已知x=1是方程x2+mx-3=0的根,则m的值为____________.12.四边形ABCD内接于⊙O,E为CD延长线上一点,如图4所示,则图中与∠ADE相等的角是_________.13.如图5,在△ABC中,AB=AC=5,BC=6,AD是△ABC的角平分线.把△ABD绕点A逆时针旋转90°得到△AEF,点B的对应点是点E,则点D与点F之间的距离是___________.14.在平面直角坐标系xOy中,ABCD的对角线交于点O.若点A的坐标为(-2,3),则点C的坐标为_________.15.为了改良某种农作物的基因,培育更加优良的品种,某研究团队开展试验,对该种农作物的种子进行辐射,使其基因发生某种变异.表一记录了截至目前的试验数据.表一累计获得试验成功的种子数(单位:粒)1468101214累计试验种子数(单位:千粒)15810.512.514.516.5该团队共需要30粒基因发生该种变异的种子,请根据表一的数据,合理估计他们还需要准备用以辐射的种子数(单位:千粒):_________.16.有四组一元二次方程:①x2-4x+3=0和3x2-4x+1=0;②x2-x-6=0和6x2+x-1=0;③x2-4=0和4x2-1=0;④4x2-13x+3=0和3x2-13x+4=0.这四组方程具有共同特征,我们把具有这种特征的一组一元二次方程中的一个称为另一个的“相关方程”.请写出一个有两个不相等实数根但没有“相关方程”的一元二次方程:______________.数学试题第2页(共6页)三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程x2-5x+2=0.18.(本题满分8分)如图6,四边形ABCD是平行四边形,AC=AD,AE⊥BC,DF⊥AC,垂足分别为E,F.证明AE=DF.19.(本题满分8分)先化简,再求值:(−1)÷2−2m+1,其中=2+1.20.(本题满分8分)如图7,AB与⊙O相切于点A,OB交⊙O于点C,OC=8,AC的长为2π,求BC 的长.数学试题第3页(共6页)某公交公司有一栋4层的立体停车场,第一层供车辆进出使用,第二至四层停车.每层的层高为6m,横向排列30个车位,每个车位宽为3m,各车位有相应号码,如:201表示二层第1个车位.第二至四层每层各有一个升降台,分别在211,316,421,为便于升降台垂直升降,升降台正下方各层对应的车位都留空.每个升降台前方有可在轨道上滑行的转运板(以第三层为例,如图9所示).该系统取车的工作流程如下(以取停在311的车子为例):①转运板接收指令,从升降台316前空载滑行至311前;②转运板进311,托起车,载车出311;③转运板载车滑行至316前;④转运板进316,放车,空载出316,停在316前;⑤升降台垂直送车至一层,系统完成取车.停车位301…停车位311…升降台316…留空321…停车位330转运板滑行区转运板滑行区图9停车场第三层平面示意图升降台升与降的速度相同,转运板空载时的滑行速度为1m/s,载车时的滑行速度是升降台升降速度的2倍.(1)若第四层升降台送车下降的同时,转运板接收指令从421前往401取车,升降台回到第四层40s后转运板恰好载着401的车滑行至升降台前,求转运板载车时的滑行速度;(说明:送至一层的车驶离升降台的时间、转运板进出车位所用的时间均忽略不计)(2)在(1)的条件下,若该系统显示目前第三层没有车辆停放,现该系统将某辆车随机停放在第三层的停车位上,取该车时,升降台已在316待命,求系统按上述工作流程在1分钟内完成取该车的概率.【22题得分情况】正方形的顶点T在某抛物线上,称该正方形为该抛物线的“T悬正方形”.若直线l:y =x+t与“T”是正方形“以T为端点的一边相交,且点T到直线l的距离为2(2-t),则称直线l为该正方形的“T悬割线”.已知抛物线M:y=-(x-1)2+m2-2m+4,其中12≤m<1,A(m,3),B(4-3m,3),以AB为边作正方形ABCD(点D在点A的下方).(1)证明:正方形ABCD是抛物线M的“A悬正方形”;(2)判断正方形ABCD是否还可能是抛物线M的“B悬正方形”,并说明理由;(3)若直线l是正方形ABCD的“A悬割线”,现将抛物线M及正方形ABCD进行相同的平移,是否存在直线l为平移后正方形的“C悬割线”的情形?若存在,请探究抛物线M经过了怎样的平移;若不存在,请说明理由.【23题得分情况】24.(本题满分12分)四边形ABCD是菱形,点O为对角线交点,AD边的垂直平分线交线段OD于点P (P不与O重合),连接PC,以点P为圆心,PC长为半径的圆交直线BC于点E,直线AE与直线CD交于点F,如图10所示.(1)当∠ABC=60°时,求证:直线AB与⊙P相切;(2)当AO=2,AF2+EF2=16时,求∠ABC的度数;(3)在菱形ABCD的边长与内角发生变化的过程中,若点C与E不重合,请探究∠AFC与∠CAF的数量关系.25.(本题满分14分)请阅读下面关于运用跨学科类比进行的一次研究活动的材料:[背景]小梧跟同学提到他家附近在规划开一个超市,有同学问道:“你家附近不是已经有一个A超市了吗?再开一个能吸引顾客吗?“这个问题引起了大家对超市的吸引力展开研究的兴趣. [过程]为了简化问题,同学们首先以“在楼层数相同、同样商品的品质和价格相同、售货服务的品质也大致相同的情况下,影响超市吸引力的主要因素“为主题对该市居民展开随机调查.结果显示:超市的占地面积、住处与超市的距离这两个因素的影响程度显著大于其他因素.大家根据调查进行了总结:①可以把“平均每周到超市购物次数p”作为超市吸引力指标;②占地面积越大吸引力越大;③距离越大吸引力越小.在此次调查所收集到的居民平均每周到各超市购物次数的基础上,同学们进一步调查了相应超市的占地面积s(单位:m2)及其与居民住处的距离r(单位:m),并对p,s,r之间的关系进行研究.一开始,同学们猜想p可能是的正比例函数,但经过检验,发现与实际数据相差较大.这时,小梧提出:“我联想到牛顿万有引力定律,这个定律揭示了两个物体之间的引力大小与各个物体的质量成正比,而与它们之间距离的平方成反比,可以表示为F=B122(G是引力常数),我们是不是可以作个类比,试一下看p与2的关系如何?”.按他的建议,同学们利用调查所得的数据在平面直角坐标系中绘制了p与2对应关系的散点图,如图11所示.根据阅读材料思考:(1)观察图11中散点的分布规律,请用一种函数来合理估计p与2的对应关系,直接写出它的一般形式;(2)为了清晰表示位置,同学们选A超市为原点,分别以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,规定一个单位长度代表1m长,则小悟家的坐标为(400,200).A超市的占地面积为2000m2,规划中的B超市在A超市的正东方向.根据(1)中的对应关系,解决下列问题:①若B超市与A超市距离600m~800m,且对小悟家的吸引力与A超市相同,求B超市占地面积的范围;②小梧家在东西向的百花巷,百花巷横向排列着较为密集的居民楼.现规划B超市开在距A超市300m处,且占地面积最大为490m2,要想与A超市竞争百花巷的居民,该规划是否合适?请说明理由.【25题得分情况】。

2022~2023学年九年级数学上学期期末考试卷-人教版(含答案)

2022~2023学年九年级数学上学期期末考试卷-人教版(含答案)

2022~2023学年九年级数学上学期期末考试卷-人教版(含答案)本试卷共8页.总分120分,考试时间120分钟. 注意事项:1.仔细审题,工整作答,保持卷面整洁. 2.考生完成试卷后,务必从头到尾认真检查一遍.一、选择题.(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点(,3)a -关于原点的对称点是(2,3),则a 的值为( ) A .2-B .2C .3-D .32.抛物线223y x x =-+-与y 轴的交点坐标为( ) A .(0,3)B .(0,3)-C .(3,0)D .(3,0)-3.图1是某几何体的三视图,该几何体是( )A .长方体B .正方体C .球D .圆柱4.在Rt ABC △中,90C ∠=︒,5AB =,3BC =,则sin A 的值为( ) A .35B .45C .34D .435.如图2,在ABC △中,DE BC ∥,且23AD AB =.若6DE =,则BC 的长为( )A .8B .9C .12D .156.在如图3所示的44⨯正方形方格中,选取一个白色的小正方形涂灰,使图中阴影部分成为一个中心对称图形,这样的涂法有( )A .0种B .1种C .2种D .3种7.小明解方程2280x x --=的过程如图4所示,开始出现错误..的是( )A .第一步B .第二步C .第三步D .第四步8.不透明布袋中有3个白球,若干个黄球,这些球除颜色外无其他差别.从袋子中随机取出1个球,如果取到白球的概率最大,那么布袋中的黄球可能..有( ) A .2个B .3个C .4个D .4个以上9.已知点11(,)A x y ,22(,)B x y 在反比例函数2k y x+=的图象上,且当120x x <<时,12y y <,则k 的取值范围是( ) A .2k >-B .2k ≥-C .2k <-D .2k ≤-10.已知在矩形ABCD 中,3AB =,6BC =,若以AD 为直径作圆,则与这个圆相切的矩形ABCD 的边共有( ) A .0条B .1条C .2条D .3条11.从地面竖直向上抛出一小球,小球的高度h (米)与运动时间t (秒)之间的解析式是2530(06)h t t t =-+≤≤,则小球到达最高高度时,运动的时间是( )A .1秒B .2秒C .3秒D .4秒12.下列说法正确的是( ) A .阳光下林荫道上的树影是中心投影B .相似图形一定是位似图形C .关于x 的方程220x kx --=有实数根D .三点确定一个圆属于必然事件13.如图5,矩形ABCD 在平面直角坐标系中,点A ,D 分别在反比例函数k y x =和3y x=-的图象上,点B ,C 在x 轴上,若4ABCD S =矩形,则k 的值为( )A .12B .7C .12-D .7-14.如图6,四边形ABCD 内接于O ,135ABC =∠︒,4AC =,则O 的半径为( )A .4B .22C .23D .4215.如图7,在ABC △中,8AB AC ==,6BC =,点P 从点B 出发以每秒1个单位长度的速度向点A 运动,同时点Q 从点C 出发以每秒2个单位长度的速度向点B 运动.当以B ,P ,Q 为顶点的三角形与ABC △相似时,运动时间为( )A .2411秒 B .95秒 C .2411秒或95秒 D .以上均不对16.已知抛物线2()1y x a a =--+-(a 为常数),则下列判断正确的是( ) ①当12x -<<时,y 随x 的增大而增大,则a 的取值范围为2a ≥; ②无论a 为何值,该抛物线的顶点始终在一条直线上 A .两个都对B .两个都错C .只有①对D .只有②对二、填空题.(本大题有3个小题,每小题有2个空,每空2分,共12分.把答案写在题中横线上) 17.如图8,已知AB 是O 的直径,AB CD ⊥于点E ,120COD =∠︒.(1)BAD ∠的度数为_____________.(2)若23CD =AB 的长为_____________. 18.已知一个矩形的周长为56cm .(1)当该矩形的面积为2180cm 时,求矩形的长.设矩形的长为cm x ,则根据题意可列方程为__________________________;(2)该矩形的面积_____________.(填“能”或“不能”)为2200cm .19.如图9,已知在ABC △中,5AB AC ==,8BC =,点P 在边BC 上(点P 与点B ,C 不重合),APF B ∠=∠,射线PF 与边AC 交于点F ,过点A 作BC 的平行线,交射线PF 于点Q .(1)若2BP =,则CF 的长为_____________;(2)当AFQ △是等腰三角形时,BP 的长为_____________.三、解答题.(本大题共7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(每小题4分,共计8分) 按要求完成下列各小题.(1)解方程:2(23)5(23)x x -=-;(2)计算:22sin 30cos 30︒+︒.21.(本小题满分9分)如图10,为测量一座山峰CD 的高度,将此山的某侧山坡划分为AB 和BC 两段,每一段山坡近似是“直”的,测得坡长800AB =米,200BC =米,坡面AB 的坡度为1:3坡面BC 的坡度为1:1.过点B 作BE CD ⊥于点E .(1)求点B 到AD 的高度;(2)求山峰的高度CD .2 1.41≈3 1.73≈)22.(本小题满分9分)小明和小亮相约乘坐地铁到“市图书馆”站集合,此站有A ,B ,C ,D 四个出站口,选择每个出站口出站的机会是相同的.(1)小明到“市图书馆”站下车恰好从D 口出站的概率是____________;(2)请用列表法或画树状图法求小明和小亮到“市图书馆”站下车都从D 口出站的概率.23.(本小题满分9分)如图11,已知点(,2)A a ,(1,)B b -是直线26y x =-与反比例函数my x=图象的交点,且该直线与y 轴交于点C .(1)求该反比例函数的解析式;(2)连接OA ,OB ,求AOB △的面积; (3)根据图象,直接..写出不等式26mx x-≥的解集.如图12,已知BE ,CF 分别是ABC △的边AC ,AB 上的高. (1)求证:AE ABAF AC=; (2)连接EF .若1cos 2A =,试判断AEF S △与ABC S △之间的数量关系,并说明理由.25.(本小题满分10分)如图13-1,已知60ABC ∠=︒,点O 在射线BC 上,且4OB =.以点O 为圆心,(0)r r >为半径作O ,交直线BC 于点D ,E . (1)当O 与ABC ∠只有两个交点时,r 的取值范围是__________________;(2)当22r =BA 绕点B 按顺时针方向旋转(0180)αα︒<<︒. ①当α为多少时,射线BA 与O 相切;②如图13-2,射线BA 与O 交于M ,N 两点,若MN OB =,求阴影部分的面积.一小球M从斜坡OA上的点O处抛出,球的抛出路线是抛物线的一部分,建立如图14所示的平面直角坐标系,斜坡可以用一次函数12y x刻画.若小球到达最高点的坐标为(4,8).(1)求抛物线的函数解析式(不写自变量x的取值范围);(2)小球在斜坡上的落点A的垂直高度为___________米;(3)若要在斜坡OA上的点B处竖直立一个高4米的广告牌,点B的横坐标为2,请判断小球M能否飞过这个广告牌?通过计算说明理由;(4)求小球M在飞行的过程中离斜坡OA的最大高度.参考答案评分说明:1.本答案仅供参考,若考生答案与本答案不一致,只要正确,同样得分. 2.若答案不正确,但解题过程正确,可酌情给分. 一、(1-10题每题3分,11-16题每题2分,共计42分) 题号 1 2 3 4 5678910111213141516答案ABDABBDACDCCDBCA二、(每小题有2个空,每空2分,共计12分) 17.(1)30︒;(2)418.(1)1568202x x -⎛⎫⎪⎝=⎭(或(28)180x x -=);(2)不能 19.(1)125;(2)5或25819.(2)【精思博考:①当AF FQ =时,易证四边形ABPQ 是平行四边形,APQ ABC ∽△△,5PQ AB ∴==,AQ BP =,AQ PQ AC BC =,258BP ∴=; ②当AQ AF =时,易证BAP CPF ∽△△,AB BPCP CF∴=,5AB BP ∴==; ③当AQ QF =时,QAF QFA ∠=∠.QFA PFC ∠=∠,QAF C ∠=∠,PFC C ∴∠=∠.C B APQ ∠=∠=∠,APQ PFC ∴∠=∠,AP AC ∴∥,与已知矛盾,舍去】三、20.解:(1)方程的解为132x =,24x =;(4分)(2)原式1=.(4分)21.解:(1)过点B 作BF AD ⊥于点F . 设BF x =米.坡面AB 的坡度为1:3,30A ∴∠=︒,14002BF AB ∴==(米),即点B 到AD 的高度BF 为400米;(5分) (2)易得四边形BFDE 为矩形,ED BF ∴=.坡面BC 的坡度为1∶1,222BE CE BC ∴===(米),1002400541CD CE ED ∴=+=≈(米),即山峰的高度CD 为541米.(4分) 22.解:(1)14;(3分) (2)树状图如图,共有16种等可能的结果,小明和小亮到“市图书馆”站下车都从D 口出站的结果有1种,∴小明和小亮到“市图书馆”站下车都从D 口出站的概率为116.(6分)23.解:(1)点(,2)A a 在直线26y x =-上,226a ∴=-,解得4a =.点(4,2)A 在反比例函数m y x =的图象上,24m ∴=,解得8m =,即反比例函数的解析式为8y x=;(4分) (2)直线26y x =-与y 轴交于点C ,当0x =时,6y =-,∴点C 的坐标为(0,6)-,6OC ∴=.1161641522AOB OBC AOC S S S =+=⨯⨯+⨯⨯=△△△;(3分) (3)不等式26mx x-≥的解集为10x -≤<或4x ≥.(2分) 24.解:(1)证明:BE ,CF 分别是ABC △的边AC ,AB 上的高,90AEB AFC ∴∠=∠=︒.又BAE CAF ∠=∠,ABE ACF ∴∽△△,AE ABAF AC∴=;(4分) (2)AEF S △与ABC S △之间的数量关系为14AEF ABC S S =△△; 理由:由(1)得AE AB AF AC =,AE AFAB AC∴=.又EAF BAC ∠=∠,AEF ABC ∴∽△△. 1cos 2AF A AC ==,21124AEF ABC S S ∆∆⎛⎫∴== ⎪⎝⎭,AEF S ∴△与ABC S △之间的数量关系为14AEF ABC S S =△△.(5分) 25.解:(1)023r <<4r >;(2分) (2)①如图1,当射线BA 在射线BC 的上方与O 相切时,设切点为P ,连接OP .4OB =,22OP =2sin 2OP B OB ∴==,45B ∴∠=︒,604515α∴=︒-︒=︒. 如图2,当射线BA 在射线BC 的下方与O 相切时,设切点为P ,连接OP .同理可得6045105α=︒+︒=︒. 综上所述,当α为15︒或105︒时,射线BA 与O 相切;(4分)②如图3,连接OM ,ON ,过点O 作OQ MN ⊥于点Q ,122MQ NQ MN ∴===. 22OM =2sin 2MQ MOQ OM ∴∠==,45MOQ ∴∠=︒,290MON MOQ ∴∠=∠=︒, 2290(22)1(22)243602S ππ∴=-⨯=-阴影.(4分)26.解:(1)小球到达最高点的坐标为(4,8),∴设抛物线的解析式为2(4)8y a x =-+,把(0,0)代入2(4)8y a x =-+,解得12a =-,∴抛物线的解析式为21(4)82y x =--+(或2142y x x =-+);(3分) (2)72;(2分) (3)能;理由:当2x =时,112y x ==,21(4)862y x =--+=.614->, ∴小球M 能飞过这个广告牌;(3分)(4)小球M 在飞行的过程中离斜坡OA 的高度22111749(4)822228h x x x ⎛⎫=--+-=--+ ⎪⎝⎭,∴小球M 在飞行的过程中离斜坡OA 的最大高度为498.(4分)。

2022-2023学年人教版九年级数学第一学期期末测试题含答案

2022-2023学年人教版九年级数学第一学期期末测试题含答案

第1页,共4页 第2页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号2022-2023学年第一学期期末质量监测试卷九年级 数学学科(考试时间:120分钟 考试分值:150分)一、选择题。

(每题5分,共45分)1.在下列图形中,是中心对称图形的是( )A.B.C.D.2.下列事件属于必然事件的是( )A.打开电视,正在播放新闻B.我们班的同学将会有人成为航天员C.实数0<a ,则02<aD.新疆的冬天不下雪3.若关于x 的一元二次方程01)12=++-x x k (有两个实数根,则k 的取值范围是( ) A.45≤k B.45>kC.45<k 且1≠kD.45≤k 且1≠k4.用配方法解方程0982=++x x ,变形后的结果正确的是 A.9)4(2-=+x B.7)4(2-=+x C.25)4(2=+xD.7)4(2=+x5.二次函数3)1(2+-=x y 的图象的顶点坐标是 A.)3,1(-B.)3,1(C.)3,1(--D.)3,1(-6.如图,在圆O 中,所对的圆周角50=∠ACB ,若P 为上一点,55=∠AOP ,则=∠POB ( ) A.30B.45 C.55D.60第6题图 第7题图7.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作圆锥形生日礼帽.如图,圆锥帽底面半径为cm 9,母线长为cm 36,请你帮助他们计算制作一个这样的生日礼帽需要纸板的面积为( ) A.2648cm ΠB.2432cm ΠC.2324cm ΠD.2216cm Π8.下列各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数c ax y +=的大致图象,有且只有一个是正确的,正确的是( )A.B. C. D.9.宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x 元.则有( )A.10890)1050)(20180=--+xx ( B.10890)1018050)(20=---x x (C.180902050)108050(=⨯---x xD.108902050)1050)(180=⨯--+xx (二、 填空题。

江苏省无锡市宜兴市2023-2024学年九年级上学期期末数学试题(解析版)

江苏省无锡市宜兴市2023-2024学年九年级上学期期末数学试题(解析版)

2023年秋学期宜兴市初中学业水平调研测试九年级数学试题 2024.01考试时间为120分钟,试卷满分150分.注意事项:1.答卷前,考生务必用毫米黑色墨水签字笔将自己的姓名、班级、考试号填写在答题卡的相应位置上,并认真核对姓名、班级、考试号是否与本人的相符合.2.答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共10小题,每题3分,共计30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑.)1. 一元二次方程的根为( )A. B. C. , D. ,【答案】C【解析】【分析】本题考查了因式分解法解一元二次方程,根据因式分解法解一元二次方程,即可求解.【详解】解:,即,解得:,,故选:C .2. 下列图形中,是中心对称图形的是( )A. B. C. D.【答案】B【解析】0.50.52x x =120x x ==121x x ==10x =21x =10x =21x =-2x x =()10x x -=10x =21x =【分析】本题考查中心对称图形的概念,根据图形绕某点旋转后,仍与原图形重合,一一作出判断即可解题.【详解】解:A 、是轴对称图形,不是中心对称图形,不符合题意.B 、是中心对称图形,符合题意.C 、是轴对称图形,不是中心对称图形,不符合题意.D 、是轴对称图形,不是中心对称图形,不符合题意.故选:B .3. 若一组数据2,3,4,的方差比另一组数据5,6,7,8的方差大,则的值可能是( )A. 1B. 3C. 5D. 7【答案】D【解析】【分析】本题主要考查方差,解题的关键是掌握方差的定义和方差的意义.观察两组数据分布特点,根据方差的意义求解,也可先计算出后一组数据的方差,再取一个x 的值计算出前一组数据的方差求解.【详解】解:数据5,6,7,8,每2个数相差1;数据2,3,4, x 前3个数据也相差1,若或,两组数据方差相等,而数据2,3,4,的方差比另一组数5,6,7,8的方差大,说明2,3,4,的波动大,则x 的值可能是7,故D 正确.故选D .4. 某商品经过两次降价,售价由原来的每件25元降到每件16元,已知两次降价的百分率相同,则每次降价的百分率为( )A. 20%B. 25%C. 30%D. 36%【答案】A【解析】【分析】可设降价的百分率为,第一次降价后的价格为,第二次降价后的价格为,根据题意列方程求解即可.【详解】解:设每次降价的百分率为,根据题意可列方程为:,解得:,(舍),∴每次降价得百分率为,故A 正确.的180︒x x 1x =5x =x x x ()251x -()2251x -x ()225116x -=115x =295x =20%【点睛】本题考查了一元二次方程的在销售问题中的应用,正确理解题意,找出题中等量关系是解题的关键.5. 若关于的一元二次方程有两个相等的实数根,则实数的值为( )A. B. C. D. 9【答案】C【解析】【分析】根据一元二次方程有两个相等的实数根,可得,进而即可求解.【详解】解:∵关于的一元二次方程有两个相等的实数根,∴.解得:.故选:C .【点睛】本题考查了一元二次方程 (为常数)的根的判别式,理解根的判别式对应的根的三种情况是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.6. 如图,中,弦相交于点,若,,则的度数为( )A. B. C. D. 【答案】A【解析】【分析】本题考查了圆周角的性质应用,三角外角的性质应用是解题的关键,根据外角,求出,由同弧所对圆周角相等,即可求出.【详解】解:∵,,,,x 230x x m -+=m 9-94-94Δ0=x 230x x m -+=24940b ac m ∆=-=-=94m =20ax bx c ++=0a a b c ≠,,,24b ac ∆=-0∆>Δ0=Δ0<O AB CD 、P 46A ∠=︒80APD ∠=︒B ∠34︒44︒46︒54︒APD ∠C ∠B ∠46A ∠=︒80APD ∠=︒804634C ∠=︒-︒=︒34B C ∠=∠=︒7. 已知抛物线经过点,则下列结论错误的是( )A. 抛物线的开口向上B. 抛物线关于直线对称C. 抛物线与坐标轴有两个交点D. 当时,关于的一元二次方程有实根.【答案】C【解析】【分析】本题考查了二次函数的图象与性质、二次函数与一元二次方程的联系.将点代入可求出二次函数的解析式,再根据二次函数的图象与性质、二次函数与一元二次方程的联系逐项判断即可得.【详解】解:∵抛物线经过点,∴,解得:,∴抛物线的开口向上,故A 选项正确,不符合题意;∴抛物线的解析式为,∴抛物线关于直线对称,故B 选项正确,不符合题意;∴抛物线的顶点坐标为,即抛物线的最低点为,∵抛物线的开口向上,∴抛物线与x 轴有两个交点,当时,,∴抛物线与y 轴的交点为,∴抛物线与坐标轴有3个交点,故C 选项错误,符合题意;当时,抛物线与直线有交点,∴关于的一元二次方程有实根,故D 选项正确,不符合题意;故选:C .253y ax x =--()1,4-54x =498t ≥-x 2530ax x t ---=()1,4-253y ax x =--()1,4-534a +-=2a =22549253248y x x x ⎛⎫=--=-- ⎪⎝⎭54x =549,48⎛⎫- ⎪⎝⎭549,48⎛⎫- ⎪⎝⎭0x ==3y -()0,3-498t ≥-2253y x x =--y t =x 2530ax x t ---=8. 如图,四边形是的内接四边形,,,,,则的长为( )A. B. C. D. 6【答案】C【解析】【分析】本题考查了圆的内接四边形对角互补,特殊角的三角函数值,如图,延长,,二线交于点,可求得,在中,利用计算,在中,利用计算,根据求解即可;【详解】如图,延长,,二线交于点,,,,,,,在中,,在中,,,ABCD O 90B Ð=°120BCD ∠=︒5AB =3CD =AD28-10-AD BC E 30E ∠=︒Rt CDE tan30︒DE Rt ABE sin30︒AE AD AE DE =-AD BC E 90B ∠=︒ 120BCD ∠=︒60A ∴∠=︒30E ∠=︒90ADC ∠=︒ADC EDC ∴∠=∠=90︒Rt CDE tan30︒=DC DEDE ∴==Rt ABE sin30︒=AB AEAB ∴=51012=AD AE DE ∴=-=10-,故选:C .9. 如图,矩形中,,.点在边上,点在边上,点在对角线上.若四边形是菱形,则的长是( )A. B. 6 C. D. 【答案】A【解析】【分析】首先连接交于O ,再由矩形和菱形的性质得出,由全等三角形得,再用勾股定理求出的长,再由得,即可求得答案.【详解】解:连接交于O ,如下图:∵四边形是菱形,∴,,∵四边形是矩形,∴,∴,在和中,,∴,∴,∵,ABCD 4AB =2BC =E AB F CD G H 、AC EGFH AE 52EF AC CFO AEO≌AO CO =,AC AO AOE ABC∽AO AE AB AC=EF AC EGFH FE AC ⊥OE OF =ABCD 90,B D ∠=∠=︒AB CD ∥ACD CAB ∠=∠CFO △AEO △FCO OAE FOC AOE OF OE ∠=∠⎧⎪∠=∠⎨⎪=⎩CFO AEO ≌()AAS AO CO ====AC∴,∵,∴∴,,∴,故选:A .【点睛】本题主要考查了菱形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练运用判定和性质是解题的关键.10. 发动机的曲柄连杆将直线运动转化为圆周运动,如图是其示意图.点在直线上往复运动,推动点做圆周运动形成,与表示曲柄连杆的两直杆,点是直线与的交点;当点运动到时,点到达;当点运动到时,点到达.若,,则下列结论:①②③当与相切时,④当时,.其中正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】本题考查切线的性质,勾股定理,直线与圆的位置关系.由题意得,,求出,得到,由切线的性质定理得到,由勾股定理求出,又,得到,由勾股定理求出,求出.【详解】解:由题意,,12AO AC==∠=∠CAB EAO 90,AOE B ∠=∠=︒,AOE ABC ∽AO AE AB AC==52AE =A lB O AB BOCD 、l O AE B C AF B D 12AB =5OB =2FC =10EF =AB O 4EA =OB CD ⊥5AF=-12EC DF AB ===5OC OD OB ===2FC FD CD =-=10EF EC FC =-=OB AB ⊥13AO ==17OE EC OC =+=17134EA OE OA =-=-=AO =7OF FC OC =+=7AF AO OF =-=-12EC DF AB ===5OC OD OB ===,故①符合题意;,,,,故②符合题意;与相切时,,,,,③符合题意;当时,,,故④不符合题意.其中正确结论的个数是3个.故选:.二、填空题(本大题共8小题,每题3分,共计24分.请把答案直接填写在答题卡相应位置上.)11. 一组数据7,-2,-1,6的极差为____.【答案】9【解析】【分析】根据极差的定义:一组数据中,最大值与最小值的差即为极差,进行解答即可.【详解】解:一组数据,,,的极差为故答案为:9.【点睛】本题考查了极差的定义.解题的关键在于熟练掌握极差的定义.12. 如果关于的一元二次方程的一个解是,则代数式的值为______.【答案】2025∴12522FC FD CD =-=-´= EF EC FC =-12EC =2FC =∴10EF = AB O ∴OB AB ⊥∴13AO == 12517OE EC OC =+=+=∴17134EA OE OA =-=-=OB CD ⊥∴AO = 257OF FC OC =+=+=∴7AF AO OF =-=-∴C 72-1-6()729--=x 210ax bx ++=1x =2024a b --【解析】【分析】本题主要考查了一元二次方程的解.把代入,可得,再代入,即可求解.【详解】解:∵方程的一个解是,∴,∴,∴.故答案为:202513. 古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝斤,干燥后耗损斤两(古代中国斤等于两).今有干丝斤,问原有生丝多少?”则原有生丝为__________斤.【答案】【解析】【分析】设原有生丝斤,根据题意列出方程,解方程即可求解.【详解】解:设原有生丝斤,依题意,解得:,故答案为:.【点睛】本题考查了一元一次方程的应用,根据题意列出方程解题的关键.14. 用半径为3的半圆围成一个圆锥的侧面,则圆锥的底面半径等于______.【答案】【解析】【分析】本题综合考查有关扇形和圆锥的相关计算.半径为的半圆的弧长是:,则圆锥的底面周长等于侧面展开图的扇形弧长是,依此列出方程即可.【详解】解:设圆锥的底面半径是,则,解得:,圆锥底面半径为,1x =1a b +=-2024a b --210ax bx ++=1x =10a b ++=1a b +=-()()20242024202412025a b a b --=-+=--=3031211612967x x 30121230316x =-967x =9673233π3πr 23r ππ=32r =32故答案为:.15. 一个二次函数图像的顶点在x 轴负半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是______.【答案】(答案不唯一)【解析】【分析】本题考查了二次函数的图象与系数的关系以及二次函数的性质,掌握数形结合思想是解题的关键;根据二次函数的图象与系数的关系即可解答(答案不唯一).【详解】二次函数图像的顶点在x 轴负半轴上,顶点坐标为,令顶点坐标抛物线对称轴左侧的部分是上升的,,令这个二次函数的解析式可以是(答案不唯一).16. 如图,在中,,,以为直径作半圆,交于点,交于点,则的长为______.【答案】##【解析】【分析】本题考查了等腰三角形三线合一性质,圆周角定理,弧长公式.连接,,,根据等腰三角形三线合一性质,圆周角定理,弧长公式计算即可.【详解】解:如图,连接,,,为322y ax bx c =++()21y x =-+ 2y ax bx c =++∴,02⎛⎫- ⎪⎝⎭b a 02b a -<()1,0- ∴a<01a =-∴()21y x =-+ABC 5AB AC ==50BAC ∠=︒AB BC D AC E DE2536π2536πAD OD OE AD OD OE∵为直径,∴,∵,,∴,,∴,,∴弧的长为,故答案为:.17. 如图,在中,是的中点,点在上,连接并延长交于点,若,,则的长为______.【答案】【解析】【分析】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.过点作,交于,根据平行线分线段成比例定理得到等式,计算即可.【详解】解:过点作,交于,则,,AB AD AB ⊥5AB AC ==50BAC ∠=︒BD CD =1252BAD CAD BAC ∠=∠=∠=︒250DOE BAD ∠=∠=︒115222OD AB AC ===DE 55025218036ππ⨯⨯=2536πABC D AC F BD AF BC E :3:1BF FD =8BC =CE 165D DH AE ∥BC H D DH AE ∥BC H 1CH CD HE DA ==3BE BF EH FD==,,.故答案为:.18. 如图,在中,,,.动点从点出发,以的速度沿射线匀速运动,到点停止运动,同时动点从点出发,的速度沿射线匀速运动.当点停止运动时,点也随之停止运动.在的右侧作,且,点在射线上.设点的运动时间为().与的重叠部分的面积为(),则当______()时最大;当______()时.【答案】①. ②. 、【解析】【分析】根据题意得出然后根据题意画出图形,找到临界点,分情况讨论,得出,建立方程,解方程即可求解.【详解】解:∵中,,,,∴作于点,在∴32BE EC =8BC = 216855CE ∴=⨯=165ABC 90ACB ∠=︒30A ∠=︒4AB =cm P A 1cm /s AB B Q A cm /s AC P Q PQ PQH QH AB ⊥H AB P t s PQH ABC S 2cm t =s S t =s S 2cm 16713AC =())220216247x x S x x <≤=⎨⎫⎪-<≤⎪⎪⎭⎩ABC 90ACB ∠=︒30A ∠=︒4AB =cos 4AC AB A =⋅∠==PD AC ⊥D由题意得,,∴,∴,∴是线段的垂直平分线,∴,∴,,∴,,则,当点Q 运动到与点重合时,∴,当点P 运动到与点重合时,∴,,∴当时,,当时,如图所示,∵,则,则是等边三角形,则,,AP x=AQ=cos30AD AP =⋅︒=12AD DQ AQ ==PD AQ 30PQA A ∠=∠=︒60QPH ∠=︒PQ AP x ==12QH AQ x ==PQ PA x ==1122PH PQ x ==C 122AP PN AB ===2x =B 4AP AB ==4x =02x <≤21122S x x x =⨯=24x <≤,30PA PQ A =∠=︒60QPB B ∠=∠=︒PTB V 4BP PT TB x ===-)4TI x x =-=-,,∵,∴,∴,∴,∴,综上所述,,∴当时,取得最大值,当时,,解得:(负值舍去),或,解得:或(舍去),故答案为:;或.【点睛】本题考查了解直角三角形,等边三角形的性质与判定,二次函数的性质,解一元二次方程,分类QH PA x ===CQ AQ AC =-=-9060CQK A ∠=︒-∠=︒2cos 60CQ QK CQ ===-︒(KH QH QK x x =-=--=-()1111422222HI PH PI PQ PT x x x =-=-=--=-)()2114222PTI TIHK S S S x x x x ⎛⎫=+=-++⋅- ⎪ ⎪⎝⎭梯形)()()242x x =-+-=-2167x ⎫=-+⎪⎭())220216247x x S x x <≤=⎨⎫⎪-+<≤⎪⎪⎭⎩167x =S S =2x =1x =+-=3x =117x =16713讨论是解题的关键.三、解答题(本大题共10小题,共计96分.解答应写出必要的文字说明或演算步骤.)19. 解方程(1);(2).【答案】19. 20. ,【解析】【分析】本题考查了解一元二次方程;(1)根据配方法解一元二次方程,即可求解;(2)根据因式分解法解一元二次方程,即可求解.【小问1详解】解:∴∴即解得:【小问2详解】解:∴,∴,解得:,.20. 如图,在矩形中,点分别在边上,,垂足为点.22410x x --=2221x x x -=-1211x x =-=112x =21x =22410x x --=2122x x -=23212x x -+=()2312x -=1211x x ==2221x x x -=-()()2110x x --=210x -=10x -=112x =21x =ABCD ,E F ,DC BC AE DF ⊥G(1)求证:.(2)若,,,求长.【答案】(1)见解析(2)【解析】【分析】本题是相似形综合题目,考查了相似三角形的判定与性质、矩形的性质质等知识,熟练掌握矩形的性质、三角形相似的判定与性质是解题的关键,属于中考常考题型.(1)由矩形的性质得,再证,即可得出结论;(2)由可得,再由矩形的性质可得,,再代入求值即可.【小问1详解】证明:∵四边形是矩形,∴,∴,∵,∴,∴,∴,∴;【小问2详解】解:∵∴∵四边形是矩形,,,∴,,∴的ADE DCF △∽△6AB =9BC =4DE =BF 19390ADE DCF ∠=∠=︒AED DFC ∠=∠ADE DCF △∽△AD DF DC FC =6CD AB ==9AD BC ==ABCD 90ADE DCF ∠=∠=︒90CDF DFC ∠+∠=︒AE DF ⊥90DGE ∠=︒90CDF AED ∠+∠=︒AED DFC ∠=∠ADE DCF △∽△ADE DCF△∽△AD DE DC FC=ABCD 6AB =9BC =4DE =6CD AB ==9AD BC ==946FC=∴∴21. 某中学积极推进校园文学创作,倡导每名学生每学期向校报编辑部至少投1篇稿件.学期末,学校对七、八年级学生投稿情况进行调查.分别从两个年级随机抽取相同数量的学生,统计每人在本学期投稿的篇数,制作了频数分布表.投稿篇数(篇)12345七年级频数(人)71015126八年级频数(人)210134(1)扇形统计图中圆心角______,并补全频数直方图.(2)根据频数分布表分别计算有关统计量:统计量中位数众数平均数方差七年级33八年级直接写出表格中______、______、______.(3)从中位数、众数、平均数、方差中,任选两个统计量,对七、八年级学生的投稿情况进行比较,并作出评价.【答案】(1),补全频数直方图:10,21(2),4,3(3)八年级学生的投稿情况比七年级学生的投稿情况好【解析】的83FC =819933BF =-=aα=x 1.48m n 3.3 1.01m =n =x =72︒3.5【分析】本题考查统计图表、统计的数字特征、熟练利用运算和逻辑推理是解题的关键,(1)利用乘以七年级学生投稿2篇的学生所占百分比即可得的值,根据八年级学生的投稿篇数的频数分布表补全频数直方图即可;(2)根据中位数和众数的定义,加权平均数公式即可得答案;(3)从平均数、方差的意义进行分析即可得评价.【小问1详解】解:由题可知:七年级和八年级随机抽取学生数量相同且均为(人),其中七年级学生投稿2篇的学生有10人,∴七年级学生投稿2篇的学生所点百分比为,∴.由频数分布表可得:,补全频数分布直方图如下:【小问2详解】解:将八年级学生的投稿篇数按从小到大进行排序后,第25个和第26个数的平均数即为其中位数,∵,,即第25个和第26个数分别是3和4,∴中位数,∵在八年级学生的投稿数中,投稿数4出现的次数最多,∴众数,∴七年级的平均数为.【小问3详解】解:由(2)统计表可知,八年级学生的平均数高于七年级学生的平均数,而且从方差来看,八年级学生的方差小于七年级学生的方差,360︒α7101512650++++=101505=10360100%7250α=︒⨯⨯=︒()5021013421a =-+++=2101325++=210132146+++=34 3.52m +==4n =1721031541256350x ⨯+⨯+⨯+⨯+⨯==八年级学生的投稿情况比七年级学生的投稿情况好.22. 为促进消费,助力经济发展,某商场决定“让利酬宾”,于“五一”期间举办了抽奖促销活动.活动规定:凡在商场消费一定金额的顾客,均可获得一次抽奖机会.抽奖方案如下:从装有大小质地完全相同的1个红球及编号为①②③的3个黄球的袋中,随机摸出1个球,若摸得红球,则中奖,可获得奖品:若摸得黄球,则不中奖.同时,还允许未中奖的顾客将其摸得的球放回袋中,并再往袋中加入1个红球或黄球(它们的大小质地与袋中的4个球完全相同),然后从中随机摸出1个球,记下颜色后不放回,再从中随机摸出1个球,若摸得的两球的颜色相同,则该顾客可获得精美礼品一份.现已知某顾客获得抽奖机会.(1)求该顾客首次摸球中奖的概率;(2)假如该顾客首次摸球未中奖,为了有更大机会获得精美礼品,他应往袋中加入哪种颜色的球?说明你的理由【答案】(1) (2)应往袋中加入黄球,见解析【解析】【分析】(1)直接由概率公式求解即可;(2)根据列表法求分别求得加入黄球和红球的概率即可求解.【小问1详解】解:顾客首次摸球的所有可能结果为红,黄①,黄②,黄③,共4种等可能的结果.记“首次摸得红球”为事件,则事件发生的结果只有1种,所以,所以顾客首次摸球中奖的概率为.【小问2详解】他应往袋中加入黄球.理由如下:记往袋中加入的球为“新”,摸得的两球所有可能的结果列表如下:第二球第一球红黄①黄②黄③新红红,黄①红,黄②红,黄③红,新黄①黄①,红黄①,黄②黄①,黄③黄①,新黄②黄②,红黄②,黄①黄②,黄③黄②,新14A A ()14P A =14黄③黄③,红黄③,黄①黄③,黄②黄③,新新新,红新,黄①新,黄②新,黄③共有种等可能结果.()若往袋中加入的是红球,两球颜色相同的结果共有种,此时该顾客获得精美礼品的概率;()若往袋中加入的是黄球,两球颜色相同的结果共有种,此时该顾客获得精美礼品的概率;因为,所以,所作他应往袋中加入黄球.【点睛】本小题考查简单随机事件的概率等基础知识,考查抽象能力、运算能力、推理能力、应用意识、创新意识等,考查统计与概率思想、模型观念,熟练掌握概率公式是解题的关键.23. 正方形中,点在边上(不与点重合),射线与射线交于点,若.(1)求正方形的边长.(2)以点为圆心,长为半径画弧,交线段于点.若,求的长.【答案】(1)(2)【解析】【分析】本题考查了正方形的性质,相似三角形的判定和性质,勾股定理,灵活运用这些性质解决问题是解题的关键.(1)通过证明,由相似三角形的性质可得,即可求解;(2)设,则,,然后根据勾股定理解题即可.【小问1详解】∵四边形是正方形,∴,,20ⅰ8182205P ==ⅱ122123205P ==2355<12P P <ABCD E AD ,A D BE CD F 9AE CF ⋅=ABCD B BC BE G 2ED EG =ED 3AB =6ED =-ABE CFB ∽AB AE CF BC=EG x =32AE x =-3BE x =+ABCD 90A C ∠=∠=︒AB CD ∥AB BC =∴,∴,∴,∴.∴正方形的边长.【小问2详解】设,则,.在中,,即,解得.∴.24. 如图,已知,,是边上一个定点,连接.图1 图2(1)尺规作图:若分别为边上的动点,请你用圆规和无刻度的直尺在图1中作出取得最小值时所在位置;(2)在(1)的条件下,若,,,则的最小值是______.【答案】24. 见解析25. 【解析】【分析】本题考查作图-复杂作图,轴对称最短问题,相似三角形的判定和性质,勾股定理,解题的关键是理解题意,灵活运用所学知识解决问题.(1)分别以,为圆心,,为半径作弧,两弧交于点,连接,过点作于点,交于点,连接,点、即为所求;(2)过点作于点,在上取一点,使得,连接.证明ABE F ∠=∠ABE CFB ∽AB AE CF BC=9AE CF AB BC ⋅=⋅=ABCD 3AB =EG x =32AE AD DE x =-=-3BE BG GE BC GE x =+=+=+Rt ABE △222AB AE BE +=()()2223323x x +-=+3x =6ED =-ABC 90C ∠=︒E AC BE P Q 、AB EB 、EP PQ +P Q 、6AC =8BC =1EC =EP PQ +A B AE BE E 'E B 'E 'E Q EB '⊥Q AB P EP P Q E EH AB ⊥H BH T ET BT =ET,得,,设,求出,再证明,,进而可证,得,求出可得结论.【小问1详解】解:以,为圆心,,为半径作弧,两弧交于点,连接,过点作于点,交于点,连接,由作图可知:,,则点与点关于对称,∴,则,当时,取得最小值;如图,点、即为所求;【小问2详解】过点作于点,在上取一点,使得,连接.∵,,,∴,∴,∴,∵,,∴,∴,∴,∴,,∴,AEH ABC ∽△△4EH =3AH =ET BT x ==6514ET BT ==EBE ETH '∠=∠ETH E BQ '△∽△EH ET E Q E B=''E Q 'A B AE BE E 'E B 'E 'E Q EB '⊥Q AB P EP AE AE '=BE BE '=E E 'AB PE PE '=EP PQ PE PQ E Q ''+=+≥E Q EB '⊥EP PQ +P Q E EH AB ⊥H BH T ETBT =ET 6AC =8BC =90C ∠=︒10AB ===1EC =5AE AC EC =-=EB ==A A ∠=∠90AHE C ∠=∠=︒AEH ABC ∽△△AE EH AH AB BC AC==51086EH AH ==4EH =3AH =7BH AB AH =-=设,则有,∴,则,∵,∴,∴,由对称可知:,则,∴,∴,∴,则,∴∴的最小值.25. 如图,中,以为直径的交于点D ,是的切线,且,垂足为E ,延长交于点F .(1)求证:;(2)若,,求的长.【答案】(1)见解析(2)【解析】【分析】(1)连接,由切线的性质得,结合可证,推出,由等腰三角形的性质得到,故,即可证明;(2)连接,,证明得到,即可求出,证明得ET BT x ==()22247x x =+-6514x =6514ET BT ==ET BT =TEB TBE ∠=∠2ETH TEB TBE TBE ∠=∠+∠=∠EBT E BT '∠=∠2EBE EBT '∠=∠EBE ETH '∠=∠ETH E BQ '△∽△EH ET E Q E B =''4E Q ='E Q '=PE PQ +E Q '=ABC AB O BC DE O DEAC ⊥CA O AB AC =3AE =5DE =AF 163OD OD DE ⊥DE AC ⊥OD AC ∥C ODB ∠=∠B ODB ∠=∠C B ∠=∠AB AC =BF AD CDE DAE ∽△△AE DE DE EC =253EC =DE BF ∥,可求出,然后根据求解即可.【小问1详解】如图所示,连接,∵以为直径的交于点D ,是的切线,∴,∵,∴,∴,又,∴,∴,∴;【小问2详解】连接,,则,∴∴∴∴∴即∴又∵是直径,∴,∴∴1CE CD EF BD ==253EF EC ==AF EF AE =-OD AB O BC DE O OD DE ⊥DE AC ⊥OD AC ∥C ODB ∠=∠OB OD =B ODB ∠=∠C B ∠=∠AB AC =BF AD AD BC ⊥BD CD=90ADC ADB AED DEC ∠=∠=∠=∠=︒DAE ADE DAC C∠+∠=∠+∠ADE C∠=∠CDE DAE∽△△AE DE DE EC =355EC=253EC =AB BF CF ⊥DE BF∥1CE CD EF BD==∴∴【点睛】本题考查切线的性质,圆周角定理,相似三角形的判定和性质,等腰三角形的判定和性质,熟练掌握圆的性质、相似三角形的判定与性质是解答本题的关键.26. 商店出售某品牌护眼灯,每台进价为50元,在销售过程中发现,月销量(台)与销售单价(元)之间满足一次函数关系,规定销售单价不低于进价,且不高于进价的倍,其部分对应数据如下表所示:销售单价(元)…607080…月销量(台)…908070…(1)求与之间的函数关系式;(2)当护眼灯销售单价定为多少元时,商店每月出售这种护眼灯所获的利润最大?最大月利润为多少元?【答案】(1)(2)当定价定为90元时,所获利润最大,最大月利润为2400元【解析】【分析】本题考查了一次函数的应用、二次函数的应用:(1)用待定系数法求解即可;(2)设销售利润为W 元,列出W 关于x 的函数关系式,结合二次函数的性质即可得出答案.【小问1详解】解:设与之间的函数关系式,当,;当,;∴,解得:,∴与之间的函数关系式;【小问2详解】解:设销售利润为元,则,整理得:,253EF EC ==2516333AF EF AE =-=-=y x 1.8x y y x 150y x =-+y x ()0y kx b k =+≠60x =90y =70x =80y =60907080k b k b +=⎧⎨+=⎩1150k b =-⎧⎨=⎩y x 150y x =-+W ()()()5050150W x y x x =-=--+22007500W x x =-+-∵销售单价不低于进价,且不高于进价的倍,∴,∵,,∴当时,随的增大而增大∴当时,有最大值,且最大值为2400;答:当定价定为90元时,所获利润最大,最大月利润为2400元.27. 如图,菱形中,,,点分别是边上的动点,点与点不重合,且,作,交边于点,连接,将四边形沿直线翻折得到四边形.(1)当是的中点时,求四边形面积;(2)设,四边形面积为,求关于的函数关系式.【答案】(1(2)【解析】【分析】(1)连接,设与交于点,根据菱形的性质以及已知条件得出,是正三角形,由翻折得,当为中点时,,,则,三点共线,进而根据勾股定理求得,根据梯形的面积公式,即可求解;(2)同(1)分别勾股定理得,过作于,表示出,根据梯形的面积公式列出函数关系式,即可求解.【小问1详解】连接,设与交于点,1.85090x ≤≤10-<()21002500W x =--+100x ≤W x 90x =W ABCD 60A ∠=︒6AB =E F 、AB AD 、E A B 、AF AE =EG EF ⊥BC G DG EGDF AD E G DF ''E AB EE G G ''()06AE x x =<<EE G G ''S S x 2S x =BD EE 'AD H 120ABC ∠=︒BCD AEF 、△△EE AD '⊥E AB AE EB BG GC ===DG BC ⊥DG AD ⊥,,D G G ',,EH DG DH EG E EQ GG '⊥Q EQ BD EE 'AD H∵四边形是菱形,,,,∴,,,∴,是正三角形,由翻折得,∴为的中点,,∴,,由翻折得∵,∴,∴,当为中点时,,∴,则,∴三点共线,∴∴【小问2详解】由(1)得,在中,,,∴,∴,ABCD 60A ∠=︒AF AE =6AB =60C A ∠=∠=︒AD BC ∥CD BC =120ABC ∠=︒BCD AEF 、△△EEAD '⊥H AF 60FEA ∠=︒EH ==32AH =39622DH =-=2EE EH'==⊥EF EG 30GEB BGE ∠=︒=∠BE BG =E AB AE EB BG GC ===DG BC ⊥DG AD ⊥,,D G G 'DG ==2GG DG '==(1922E EG G S ''=+⨯=GG '=Rt AEH △AE x =60A ∠=︒EH x ==2EE EH '=在中,,,∴,过作于,在中,,∴,∴.【点睛】本题考查了菱形的性质,等边三角形的性质与判定,勾股定理,列函数关系式,折叠的性质,熟练掌握以上知识是解题的关键.28. 在平面直角坐标系中,已知抛物线与轴交于点,两点,与轴交于点,点是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点在第一象限时,连接交于点.当的值最大时,求点的坐标及的最大值;(3)过点作轴的垂线交直线于点,连接,将沿直线翻折,当点的对应点恰好落在轴上时,请直接写出此时点的坐标.【答案】(1)(2)最大值; (3),【解析】【分析】本题考查二次函数的图象及性质.(1)用待定系数法求函数的解析式即可;(2)过点P 作x 轴的垂线交直线于点M ,过点A 作轴交直线于点N ,则,可EBG30BEG BGE ∠=∠=︒6EB x =-)6EG x ==-E EQ GG '⊥Q R t EG Q 60QGE ∠=︒))1662EQ x x =-=-()213622S x x =⨯+⨯-=-()06x <<24y ax bx =++x ()1,0A -()4,0B y C P P AP BC D PD AD P PD ADP x BC M PC PCM △PC M M 'y M 234y x x =-++45()2,6(4+(4BC AN x ⊥BC PM AN ∥得,求出直线的解析式为,设,则,得到,当时,的值最大为,此时;(3)由折叠可知,,再由,推导出,设,则,得到方程求出m 的值即可确定点M 的坐标.【小问1详解】解:将代入,∴,解得,∴函数的解析式为;【小问2详解】解:过点P 作x 轴的垂线交直线于点M ,过点A 作轴交直线于点N ,∴,∴,当时,,∴,PD PM AD AN=BC 4y x =-+()2,34P t t t -++(),4M t t -+()214255PD PM t AD AN ==--+2t =PD AD 456(2)P ,CM CM M CP PCM ''=∠=∠,CM PM '∥MP CM =()2,34P m m m -++(),4M m m -+24m m -+=()()1040A B -,,,24y ax bx =++4016440a b a b -+=⎧⎨++=⎩=1=3a b -⎧⎨⎩234y x x =-++BC AN x ⊥BC PM AN ∥PD PM AD AN=0x =4y =()04C ,设直线的解析式为,∴,解得,∴直线的解析式为,设,则,∴,∵,∴,∴,∴,当时,的值最大为,此时;【小问3详解】解:由折叠可知,,∵在y 轴上,∴,∴,∴,∴,设,则,∴,∴解得,∴或.BC 4y kx=+440k +=1k =-BC 4y x=-+()2,34P t t t -++(),4M t t -+24PM t t =-+()1,0A -()1,5N -5AN =()224142555PD PM t t t AD AN -+===--+2t =PD AD 456(2)P ,CM CM M CP PCM ''=∠=∠,M 'CM PM '∥'CPM M CP ∠=∠PCM CPM ∠=∠MP CM =()2,34P m m m -++(),4M m m -+24PM m m =-+CM =24m m -+=4m =+4m =(4M +(4M。

九年级数学上学期期末考试题 试题 (2)

九年级数学上学期期末考试题  试题 (2)

第51中2021-2021学年九年级数学上学期期末考试题制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日〔考试时间是是:120分钟;满分是:120分〕题号 一 二三 四合计 合计人复核人15 1617 18 19 20 21 22 23 24得分真情提示:亲爱的同学,欢送你参加本次考试,祝你答题成功! 1.请必须在规定的正确位置填写上座号,并将密封线内的工程填写上清楚.2.本试题一共有24道题.其中1—8题为选择题,请将所选答案的标号填写上在第8题后面给出表格的相应位置上;9—14题为填空题,请将做出之答案填写上在第14题后面给出表格的相应位置上;15—24题请在试卷给出的此题位置上做答.一、选择题〔此题满分是24分,一共有8道小题,每一小题3分〕以下每一小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每一小题选对得分;不选、选错或者选出的标号超过一个的不得分.请将1-8各小题所选答案的标号填写上在第8小题后面的表格内.+sin300= 〔 〕A. 2B.233+ C. 23D. 231+2. 如图,由高和直径一样的5个圆柱搭成的几何体,其左视图是〔 〕得 分 阅卷人 复核人A. B. C. D.3. 以下模拟掷硬币的试验不正确的选项是〔〕A.用计算器随机地取数,取奇数相当于正面朝上,取偶数相当于硬币正面朝下。

B.在袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上。

C.在没有大小王的扑克牌中随机地抽一张牌,抽到红色牌表示硬币正面朝上。

D.将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上。

4. 将抛物线y=x2平移得到抛物线y=(x+2)2,那么这个平移过程正确的选项是〔〕A. 向左平移2个单位 B 向下平移2个单位.C . 向上平移2个单位D. 向左平移2个单位5. 一个不透明的口袋里装有除颜色外都一样的8个白球和假设干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:现将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮一共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A. 92 B 72 .C . 80 D. 886. 如图是二次函数y=ax2+bx+c图象的一局部,且过点A〔3,0〕,二次函数图象的对称轴是x=1,以下结论正确的选项是〔〕A. b2>4ac B ac>0 .C . a﹣b+c>0 D. 4a+2b+c<07. 如图,Rt△ABC 内有边长分别有a,b,c 的三个正方形,那么a,b,c 满足的关系式是〔 〕 A 、b=a+c B 、b=ac C 、b²=a²+c² D 、b=2a=2b8. 如图,在矩形ABCD 中,AD=2AB ,AE 平分∠BAD ,DF ⊥AE 于F ,BF 交DE 、CD 于O 、H ,以下结论:①∠DEA=∠DEC ;②BF=FH ;③OE=OD ;④BC-CH=2EF .⑤AB=HF,其中正确结论的个数是〔 〕A. 2个 B 3个 .C . 4个 D. 5个请将1—8各小题所选答案的标号填写上在下面的表格内: 题号 1 2 3 4 5 6 7 8 答案二、填空题〔此题满分是18分,一共有6道小题,每一小题3分〕 请将 9—14各小题之答案填写上在第14小题后面的表格内.9.方程x 〔x —2〕=x —2的解是 。

九年级数学第二学期阶段性测试(一)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学

九年级数学第二学期阶段性测试(一)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学

九年级数学第二学期阶段性测试(一)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------九年级数学第二学期阶段性测试(一)数学试卷亲爱的同学:好的开端是成功的一半,希望你们稳扎稳打,在考试中获得好成绩!请注意:全卷共三大题25小题,满分150分。

一、选择题。

(本题有12小题,每小题4分,共48分)1、下列运算正确的是()A、a+a=a2B、a2·a=2a3C、(2a)2÷a=4aD、(―ab)2=―ab22、我县经济发展步伐不断加快,综合实力显著增强,其中外向型经济发展迅速,近四年来实际利用外资1640万美元。

1640万美元用科学记数法表示为()A、1.64×103美元B、1.64×107美元C、0.164×108美元D、164×105美元3、计算的结果为()A、4B、C、D、164、若等腰三角形底角为72°,则顶角为()A、108°B、72°C、54°D、36°5、不等式2―x<1的解是()A、x>1B、x>―1C、x<1D、x<―16、夏天,一杯开水放在桌子上,杯中水的温度T(℃)随时间t变化的关系大致图象()T(℃)T(℃)T(℃)T(℃)OtOtOtOtABCD7、在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A、小明的影子比小强的影子长B、小明的影子比小强的影子短yC、小明的影子和小强的影子一样长D、无法判断谁的影子长8、已知抛物线y=―x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A、―2.5<x<B、―1.5<x<-10xC、x>或x<—2.5D、x<或x>—2.5y9、如图,AP切圆O于点P,OA交圆O于B,且AB=1,PAP=,则阴影部分的面积S等于()OBAA、B、C、D、无法确定10、如图,把一个正方形纸片三次对折后沿虚线剪下(1)、(2)两部分,则展开(2)得()ABC D11、有若干张如图所示的正方形和长方形卡片,表中所列四种方案能拼成邻边长分别是a+b 和2a+b的矩形是()a(1)b(2)b(3)aba12、已知P是线段AB的黄金分割点,点P将AB分成m、n两部分(m>n),以m为边长的正方形面积是S1,以(m+n)和n为边长的矩形的面积为S2,则S1与S2的大小关系是()A、S1>S2B、S1=S2C、S1<S2D、无法确定二、填空题。

九年级上学期期末考试数学试卷(附答案)

九年级上学期期末考试数学试卷(附答案)

九年级上学期期末考试数学试卷(附答案)一.单选题。

(每小题4分,共40分)1.﹣5的相反数是()A.15B.﹣15C.5D.﹣52.如图是一根空心方管,它的左视图是()A. B. C. D.3.一个数是8600,这个数用科学计数法表示8600为()A.8.6×102B.8.6×103C.86×102D.0.86×1044.下列各式计算正确的是()A.3x+3y=6xyB.4xy2-5xy2=﹣1C.﹣2(x-3)=﹣2x+6D.2a+a=3a25.把20个除颜色外完全相同的小球,放在一个不透明的盒子中,其中有m个白球,做大量重复试验,每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子里,最终发现摸到白球的频率稳定在35%左右,则m的值大约是()A.7B.8C.9D.106.关于菱形一定具有的性质,下列说法错误的是()A.对角线互相平分B.对角线互相垂直C.邻边相等D.对角线相等7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,下列关系正确的是()A.sinA=BCAC B.tanB=ACABC.cosA=CDACD.sinB=CDBC(第7题图)(第8题图)(第9题图)8.如图,点A,B是反比例函数y=kx(x>0)图象上的两点,AC⊥x轴于点C,BD⊥x轴于点D,连接OA ,BC ,若点C (1,0),BD=2,△BCD 面积为3,则△AOC 的面积是( ) A.2 B.3 C.4 D.59.如图,已知点C ,D 是以AB 为直径的半圆O 的三等分点,圆的半径为1,则图中阴影部分面积是( )A.16π B.316π C.124π D.112π+√3410.如图,二次函数y=ax 2+bx+c 的图象的顶点在第一象限,且过点(0,1)和(﹣1,0)下列结论:①ab >0,②b 2-4ac >0,③0<a+b+c <2,④0<b <1,⑤当y >﹣1时,x >0,其中正确结论个数是( )A.2个B.3个C.4个D.5个(第10题图)二.填空题。

2023-2024学年高一下学期期末考试数学试卷

2023-2024学年高一下学期期末考试数学试卷

秘密★启用前【考试时间:2024年6月18日14:00-16:00】2023~2024学年度下期高中2023级期末联考数学考试时间120分钟,满分150分注意事项:1.答题前,考生务必在答题卡上将自己的姓名、座位号、准考证号用0.5毫米的黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的“贴条形码区”.2.选择题使用2B 铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案;非选择题用0.5毫米的黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效;在草稿纸上、试卷上答题无效.3.考试结束后由监考老师将答题卡收回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知1cos 2α=,则cos2α=( )12 D.12−2.MN PQ MP −−=( )A.QNB.NQC.PMD.MP3.在ABC 中,3,4,5AB BC AC ===,则CB CA ⋅=( )A.-16B.16C.32D.-324.一个水平放置的平面图形OABC 按斜二测画法得到的直观图O A B C ′′′′如图所示.知24,O A C B O C A B ′===′′′′′′′,则平面图形OABC 的面积为( )A.3B.6C. 5.把函数()sin f x x =的图象向左平移π6个单位长度,再把横坐标变为原来的6π倍(纵坐标不变),得到函数()g x 的图象,下列关于函数()g x 的说法正确的是( ) A.函数()y g x =的最小正周期6T = B.函数()y g x =在区间()2,8上单调递减C.函数()2y g x =+是奇函数 D.函数()2y g x =+在区间[]3,4上的最大值为126.某一时段内,从天空降落到地面上的雨水,未经蒸发、渗透、流失而在水平面上积聚的深度,称为这个时段的降雨量(单位:mm ).24小时降雨量的等级划分如下: 24小时降雨量(精确到0.1)0.1~9.910.024.9∼25.049.9∼50.0~99.9降雨等级小雨中雨大雨暴雨在一次降雨过程中,用一个侧棱180mm AA =的三棱柱容器收集的24小时的雨水如图所示,当侧面11AA B B 水平放置时,水面恰好过1111,,,AC BC AC B C 的中点.则这24小时的降雨量的等级是( )A.小雨B.中雨C.大雨D.暴雨7.如图,圆锥PO 的底面直径和高均为12,过PO 上一点O ′作平行于底面的截面,以该截面为底面挖去一个圆柱,我们称该圆柱为圆锥的内接圆柱.则该圆锥的内接圆柱侧面积的最大值为( )A.12πB.24πC.36πD.72π8.在ABC 中,4AB AC BC ===,点P 满足BP tBC =,且1AP BC BC⋅=,则t =( ) A.34 B.14 C.34− D.14−二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求;全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,m n 是两条不同的直线,α是平面,若m ∥,n αα⊂,则,m n 的关系可能为( )A.平行B.垂直C.相交D.异面10.ABC 的内角,,A B C 的对边分别为,,a b c ,下列结论正确的是( ) A.若222sin sin sin sin sin A B C B C =+−,则角π3A =B.存在,,A B C ,使tan tan tan tan tan tan A B C A B C ++>成立C.若sin2sin2A B =,则ABC 为等腰或直角三角形D.若30ab A ,则ABC 有两解 11.如图,在正方体1111ABCD A B C D −中,E 为棱AB 上的动点,DF ⊥平面1,D EC F 为垂足,下列结论正确的是( )A.1FD FC =B.三棱锥1C DED −的体积为定值C.11ED A D ⊥D.1BC 与AC 所成的角为45三、填空题:本题共3小题,每小题5分,共15分.12.已知,a b为共线向量,且()()()3,1,,2ab x x =∈R ,则x =__________.13.在ABC 中,,D E 分别为,AC BC 的中点,AE 交BD 于点M .若2,4AB AC ==,π3BAC ∠=,则cos EMD ∠=__________.14.降维类比和升维类比主要应用于立体几何的学习,将空间三维问题降为平面二维或者直线一维问题就是降维类比.平面几何中多边形的外接圆,即找到一点,使得它到多边形各个顶点的距离相等.这个点就是外接圆的圆心,距离就是外接圆的半径.若这样的点存在,则这个多边形有外接圆,若这样的点不存在,则这个多边形没有外接圆.事实上我们知道,三角形一定有外接圆,如果只求外接圆的半径,我们可通过正弦定理来求,我们也可以关注九年义教初中《几何》第三册第94页例2.的结论:三角形外接圆的直径等于两边的乘积除以第三边上的高所得的商.借助求三角形外接圆的方法解决问题:若等腰梯形ABCD 的上下底边长分别为6和8,高为1,这个等腰梯形的外接圆半径为__________;轴截面是旋转体的重要载体,圆台的轴截面中包含了旋转体中的所有元素:高、母线长、底面圆的半径,通过研究其轴截面,可将空间问题转化为平面问题.观察图象,通过类比,我们可以找到一般圆台的外接球问题的研究方法,正棱台可以看作由圆台切割得到.研究问题:如图,正三棱台的高为1,上、下底面边长分别为和一球面上,则该球的体积为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知1111ABCD A B C D −是棱长为2的正方体.(1)求三棱锥11D A BC −的体积;(2)若N 是1D C 的中点,M 是1BC 的中点,证明:NM ∥平面ABCD .16.(15分)已知向量,a b 满足,4,a b == ,且a 在b 上的投影向量为b − . (1)求,a b 及a b ⋅ 的值;(2)若()()2a b a b λ−⊥+,求λ的值.17.(15分)记ABC 的内角,,A B C 的对边分别为,,a b c ,若cos πsin 2cos 6BC A=−,且sin 2sin b C B =. (1)求A 及c ;(2)若点D 在边BC 上,且3,BC BD AD ==ABC 的面积. 18.(17分)在平行四边形ABCD 中,2,45,,AB ADA E F == 分别为,AB AD 的中点,将三角形ADE 沿DE 翻折,使得二面角A ED C −−为直二面角后,得到四棱锥A EBCD −.(1)求证:EF ∥平面ABC ;(2)求证:平面AED ⊥平面ACD ; (3)求EC 与平面ACD 所成角的正弦值. 19.(17分)“费马点”是由十七世纪法国数学家费马提出并征解的一个问题,该问题是:“在一个三角形内求作一点,使其与此三角形的三个顶点的距离之和最小”.如图1,三个内角都小于120 的ABC 内部有一点P ,连接,,PA PB PC ,求PA PB PC ++的最小值.我们称三角形内到三角形三个顶点距离之和最小的点为费马点.要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可求出这三条线段和的最小值.某数学研究小组先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题,具体的做法如图2,将APC 绕点C 顺时针旋转60 ,得到EDC ,连接,PD BE ,则BE 的长即为所求,此时与三个顶点连线恰好三等分费马点P 的周角.同时小组成员研究教材发现:已知对任意平面向量(),AB x y = ,把AB绕其起点沿逆时针方向旋转θ角得到向量()cos sin ,sin cos AQ x y x y θθθθ=−+.(1)已知平面内点()(1,2,12A B +−,把点B 绕点A 沿顺时针方向旋转π4后得到点P ,求点P 的坐标;(2)在ABC 中,30,12,5ACB BC AC ∠===,借助研究成果,直接写出PA PB PC ++的最小值;(3)已知点()()()1,0,1,0,0,2A B C −,求ABC 的费马点P 的坐标.。

第二学期期末考试九年级数学试卷及参考答案

第二学期期末考试九年级数学试卷及参考答案

第二学期期末考试九年级数学试卷说明:本试卷分第Ⅰ卷和第Ⅱ卷. 第Ⅰ卷为选择题,第Ⅱ卷为非选择题.全卷满分120分,考试用时120分钟.第Ⅰ卷 (选择题 共36分)一、选择题(共12小题,每小题3分,共36分)1. -2的绝对值是A .2BC .12D .-122.函数y x 的取值范围是A .x ≥﹣1B .x ≥1C .x ≤﹣1D .x ≤13.在数轴上表示不等式组⎩⎨⎧x +2>1,x -2≤0的解集,正确的是A .B .C .D .4.下列事件中,是必然事件的是A .掷两次硬币,必有一次正面朝上.B .小明参加2011年武汉市体育中考测试,“坐位体前屈”项目获得7分.C .任意买一张电影票,座位号是偶数.D .在平面内,平行四边形的两条对角线相交.5.武汉不仅是“江城”、“湖城“、“钢城”、“车城”、“诗城”,还是“桥城”喔!坐拥大小桥梁1200多座,令武汉充满诗情画意和文化魅力. 将1200这个数用科学记数法表示为 A .60.1210⨯ B .41210⨯ C .31.210⨯ D .41.210⨯6.图中几何体的俯视图是( )正面A .B .C .D .CPBC EA7.一元二次方程x 2-3x +2=0 的两根分别是x 1、x 2,则x 1+x 2的值是 A . 3B .2C .﹣3D .﹣28.如图,菱形ABCD 中,∠A =30°,若菱形FBCE 与菱形ABCD 关于BC 所在的直线对称,则∠BCE 的度数是 A .20° B .30° C .45° D .60°9.如图,填在各方格中的三个数之间均具有相同的规律,根据此规律,n 的值是 A .48 B .56C .63D .7410.如图,⊙P 的直径AB =10,点C 在半圆上,BC =6.PE ⊥AB 交AC 于点E ,则PE 的长是A .154B .4C .5D .15211.武汉素有“首义之区”的美名,2011年9月9日,武汉与台湾将共同纪念辛亥革命一百周年.某校为了了解全校学生对辛亥革命的了解程度,随机抽取了部分学生进行问卷调查,并根据收集的信息进行了统计,绘制了下面尚不完整的统计图.第16题图根据以上的信息,下列判断:①参加问卷调查的学生有50名;②参加进行问卷调查的学生中,“基本了解”的有10人;③扇形图中“基本了解”部分的扇形的圆心角的度数是108°;④在参加进行问卷调查的学生中,“了解”的学生占10%. 其中结论正确的序号是 A .①②③ B .①②④ C .①③④ D .②③④12.如图,等腰直角△ABC 中,AC =BC ,∠ACB =90°,AF 为△ABC 的角平分线,分别过点C 、B 作AF 的垂线,垂足分别为E 、D .以下结论:①CE =DE =22BD ;②AF =2BD ;③CE +EF =12 AE ;④DF AF =2-12 .其中结论正确的序号是A .①②③B .①②④C .①③④D .②③④第Ⅱ卷 (非选择题 共84分)二、填空题(共4小题,每小题3分,共12分)13.计算:cos60°= .14.武汉市2011年初中毕业生学业考试6门学科的满分值如下表:请问数据120,120,120,130,80,30中,众数是 ,极差是 ,中位数是 .15.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费,每月收取水费y (元)与用水量x (吨)之间的函数关系如图.按上述分段收费标准,小明家三、四月份分别交水费26元和18元,则四月份比三月份节约用水 吨.16.如图,点P 在双曲线y =kx (x >0)上,以P 为圆心的⊙P 与两坐标轴都相切,点E为y 轴负半轴上的一点,过点P 作PF ⊥PE 交x 轴于点F ,若OF -OE =6,则k 的值是 .三、解答题(共9小题,共72分)17.(本题满分6分)解方程:x 2-2x -1=0.18.(本题满分6分)先化简,再求值:(1+23-a )÷412-+a a ,其中a =3.19.(本题满分6分)已知:如图,E 为BC 上一点,AC ∥BD ,AC =BE ,BC =BD . 求证:AB =DE .D20.(本题满分7分)在一个不透明的口袋中有分别标有数字﹣4,﹣1,2,5的四个质地、大小相同的小球,从口袋中随机摸出一个小球,记录其标有的数字作为x ,不放回...,再从中摸出第二个小球,记录其标有的数字为y .用这两个数字确定一个点的坐标为(x ,y ). (1)请用列表法或者画树状图法表示点的坐标的所有可能结果; (2)求点(x ,y )位于平面直角坐标系中的第三象限的概率.21.(本题满分7分)在边长为1个单位长度的小正方形组成的网格中,平面直角坐标系和四边形的位置如图所示.(1)将四边形ABCD 关于y 轴作轴对称变换,得到四边形A 1B 1C 1D 1,请在网格中画出四边形A 1B 1C 1D 1;(2)将四边形ABCD 绕坐标原点O 按逆时针方向旋转90°后得到四边形A 2B 2C 2D 2,请直接写出点D2的坐标为__ _ ___,点D旋转到点D2所经过的路径长为____ __.22.(本题满分8分)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,C为BD弧的中点,AC、BD交于点E.(1)求证:△CBE∽△CAB;(2)若S△CBE∶S△CAB=1∶4,求sin∠ABD的值.23.(本题满分10分)某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x 为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)当售价的范围是是多少时,使得每件商品的利润率不超过80%且每个月的利润不低于2250元?24.(本题满分10分)如图(1),点M、N分别是正方形ABCD的边AB、AD的中点,连接CN、DM.(1)判断CN 、DM 的数量关系与位置关系,并说明理由;(2)如图(2),设CN 、DM 的交点为H ,连接BH ,求证:△BCH 是等腰三角形; (3)将△ADM 沿DM 翻折得到△A ′DM ,延长MA ′交DC 的延长线于点E ,如图(3),求tan ∠DEM .MB ADMB ADMBAD图1 图2 图3 25.(本题满分12分)如图1,在平面直角坐标系中,直线l :2343--=x y 沿x 轴翻折后,与x 轴交于点A ,与y 轴交于点B ,抛物线22-h 3y x =()与y 轴交于点D ,与直线AB 交于点E 、点F (点F 在点E 的右侧). (1)求直线AB 的解析式;(2)若线段DF ∥x 轴,求抛物线的解析式;(3)如图2,在(2)的条件下,过F 作FH ⊥x 轴于点G ,与直线l 交于点H ,在抛物线上是否存在P 、Q 两点(点P 在点Q 的上方),PQ 与AF 交于点M ,与FH 交于点N ,使得直线PQ 既平分△AFH 的周长,又平分△AFH 面积,如果存在,求出P 、Q 的坐标,若不存在,请说明理由.数学试题参考答案及评分细则一、选择题(12小题,每小题3分,共36分)二、填空题(4小题,每小题3分,共12分)13.0.5 14.120;100;120. 15.3 16.9 三、解答题(9小题,共72分)17.方法1:解:∵1,2,1a b c ==-=-,………………3分 ∴2480b ac ∆=-=>………………4分∴2=12x ±=±5分 1x =2x =………6分 方法2:解:x 2﹣2x+1=2………………………………………2分 (x ﹣1)2=2………………………………………3分 x ﹣15分 1x =2x =6分18.解:(1+23-a )÷412-+a a =(2322a a a -+--)·(2)(2)1a a a -++…………3分=a+2……………………………………………4分 当a =3时,原式= a+2=5……………………………………………6分19.证明:∵AC ∥BD ,∴∠ACB =∠DBC …………………………1分在△ABC 和△EDB 中, B C AC BE BC BDAC DB =⎧⎪=⎨⎪=⎩∠∠,………3分∴△ABC ≌△EDB ……………………………………5分 ∴AB =DE ………………………………………………6分BA20.(1)①用表格表示点的坐标的所有可能结果如下:(共4分)(2)由表可知,共有12种等可能结果,其中位于第三象限的点有(﹣4,﹣1)、 (﹣1,﹣4)共有2个可能; …………………………6分 将依次摸出的两个小球所标数字为横坐标,纵坐标的点位于第三象限记为事件A ,则 ∴P (A )=212 =16 ……………………7分21. (1)A 2…………………4分(2) (﹣2,﹣4),134 π . …………………7分22.(1)证明:∵点C 为弧BD 的中点,∴∠DBC =∠BAC , 在△CBE 与△CAB 中;∠DBC =∠BAC ,∠BCE =∠ACB ,∴△CBE∽△CAB.……4分(2)解:连接OC交BD于F点,则OC垂直平分BD ∵S△CBE:S△CAB=1:4,△CBE∽△CAB∴AC:BC=BC:EC=2:1,∴AC=4EC∴AE:EC=3:1∵AB为⊙O的直径,∴∠ADB=90°∴AD∥OC,则AD:FC=AE:EC=3:1设FC=a,则AD=3a,∵F为BD的中点,O为AB的中点,∴OF是△ABD的中位线,则OF=12AD=1.5a,∴OC=OF+FC=1.5a+a=2.5a,则AB=2OC=5a,在Rt△ABD中,sin∠ABD=ADAB=3a3=5a5…………………………8分(本题方法众多,方法不唯一,请酌情给分)23.(1)y=[100-2(x-60)](x﹣40)=—2x2+300x—8800;(60≤x≤110且x为正整数)………………………3分(2)y=—2(x—75)2+2450,当x=75时,y有最大值为2450元………………6分(3)当y=2250时,—2(x—75)2+2450=2250,解得x1=65,x2=85 ∵a=—2<0,开口向下,当y≥2250时,65≤x≤85∵每件商品的利润率不超过80%,则x-4040≤80%,则x≤72则65≤x≤72.……………………………………………………………………10分24.(1)CN=DM,CN⊥DM,证明:∵点M、N分别是正方形ABCD的边AB、AD的中点∴AM=DN.AD=DC.∠A=∠CDN∴△AMD≌△DNC,∴CN=DM.∠CND=∠AMD∴∠CND+∠NDM=∠AMD+∠NDM=900∴CN⊥DM∴CN =DM ,CN ⊥DM …………………………………………3分(2)证明:延长DM 、CB 交于点P .∵ AD ∥BC ,∴∠MPC =∠MDA ,∠A =∠MBP∵ MA =MB △AMD ≌△BMP ,∴ BP =AD =BC .∵∠CHP =900 ∴BH =BC ,即△BCH 是等腰三角形……………………6分(3)∵AB ∥DC ∴∠EDM =∠AMD =∠DME ∴EM =ED设AD =A ′D =4k ,则A ′M =AM =2k ,∴DE =EA ′+2k .在Rt △DA ′E 中,A ′D 2+A ′E 2=DE2 ∴(4k )2+A ′E 2=(E A ′+2k )2解得A ′E =3k ,∴tan ∠DEM =A ′D :A ′E =43.………………………………10分 25.解:(1)设直线AB 的解析式为b kx y +=.直线2343--=x y 与x 轴、y 轴交点分别为(-2,0),(0,23-) 沿x 轴翻折,则直线2343--=x y 、直线AB 与x 轴交于同一点(-2,0) ∴A (-2,0).与y 轴的交点(0,23-)与点B 关于x 轴对称 ∴B (0,23) ∴⎪⎩⎪⎨⎧==+-.23,02b b k 解得43=k ,23=b . ∴直线AB 的解析式为 2343+=x y .………………………………3分 (2)抛物线的顶点为P (h ,0),抛物线解析式为:2)(32h x y -==22323432h hx x +-. ∴D (0,232h ).∵DF ∥x 轴,∴点F (2h ,232h ), 又点F 在直线AB 上,∴23)2(43322+⋅=h h . 解得 31=h ,432-=h .(舍去) ∴抛物线的解析式为6432)3(3222+-=-=x x x y .……………………7分(3)过M 作MT ⊥FH 于T ,∴R t △MTF ∽R t △AGF .∴5:4:3::::==FA GA FG FM TM FT . 设FT =3k ,TM =4k ,FM =5k .则FN =)(21AF HF AH ++-FM =16-5k . ∴24)516(21k k MT FN S MNF -=⋅=∆. ∵8122121⨯⨯=⋅=∆AG FH S AFH =48, 又AFH MNF S S ∆∆=21. ∴2424)516(=-k k . 解得56=k 或2=k (舍去). ∴FM =6,FT =518,MT =524,GN =4,TG =512. ∴M (56,512)、N (6,-4). ∴直线MN 的解析式为:434+-=x y . 联立434+-=x y 与22=463y x x -+,求得P (1,83); Q (3,0)…………………12分。

2018-2019学年上 学期期末考试九年级数学试题(含答案)

2018-2019学年上 学期期末考试九年级数学试题(含答案)

2018—2019学年九年级(上)期末数学试卷一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=32.(3分)下面左侧几何体的左视图是()A.B.C.D.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.505.(3分)关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣36.(3分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=950 7.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°9.(3分)下列说法正确的是()A.二次函数y=(x+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=x2的图象向上平移2个单位,得到二次函数y=(x+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H 的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m11.(3分)一次函数y=ax+c的图象如图所示,则二次函数y=ax2+x+c的图象可能大致是()A.B.C.D.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.14.(3分)二次函数y=﹣(x﹣1)(x+2)的对称轴方程是.15.(3分)如图,点A在曲线y=(x>0)上,过点A作AB⊥x轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.18.(5分)x2﹣8x+12=0.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?22.(8分)如图1,在平面直角坐标系中,▱OABC的一个顶点与坐标原点重合,OA边落在x轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(k>0,x>0)的图象经过点C,与AB交于点D,连接AC,CD.(1)试求反比例函数的解析式;(2)求证:CD平分∠ACB;(3)如图2,连接OD,在反比例的函数图象上是否存在一点P,使得S△POC=S△COD?如果存在,请直接写出点P的坐标.如果不存在,请说明理由.23.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=3【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.(3分)下面左侧几何体的左视图是()A.B.C.D.【解答】解:从左面看,是一个长方形.故选C.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.【解答】解:∵=2,∴a=2b,∴==3.故选A.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.50【解答】解:根据题意得=0.4,解得:n=30,故选:B.5.(3分)关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣3【解答】解:∵关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选B.6.(3分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=950 【解答】解:设2016年到2018年该地区居民年人均收入平均增长率为x,那么根据题意得2018年年收入为:300(1+x)2,列出方程为:300(1+x)2=950.故选:D.7.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=【解答】解:由题意可得:y==.故选:C.8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=60°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=38°,即∠E=19°.故选A9.(3分)下列说法正确的是()A.二次函数y=(x+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=x2的图象向上平移2个单位,得到二次函数y=(x+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等【解答】解:A、二次函数y=(x+1)2﹣3的顶点坐标是(﹣1,﹣3),错误;B、将二次函数y=x2的图象向上平移2个单位,得到二次函数y=x2+2的图象,错误;C、菱形的对角线互相垂直且平分,错误;D、平面内,两条平行线间的距离处处相等,正确;故选D10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H 的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m【解答】解:由CD∥AB∥FG可得△CDE∽△ABE、△HFG∽△HAB,∴=、=,即=、=,解得:DE=1.5、HG=2.5,∵HG﹣DE=2.5﹣1.5=1,∴影长边长1m.故选:A.11.(3分)一次函数y=ax+c的图象如图所示,则二次函数y=ax2+x+c的图象可能大致是()A.B.C.D.【解答】解:∵一次函数y=ax+c的图象经过一三四象限,∴a>0,c<0,故二次函数y=ax2+x+c的图象开口向上,对称轴在y轴左边,交y轴于负半轴,故选:C.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④【解答】解:①错误.因为当点P与BD中点重合时,CM=0,显然FM≠CM;②正确.连接PC交EF于O.根据对称性可知∠DAP=∠DCP,∵四边形PECF是矩形,∴OF=OC,∴∠OCF=∠OFC,∴∠OFC=∠DAP,∵∠DAP+∠AMD=90°,∴∠GFM+∠AMD=90°,∴∠FGM=90°,∴AH⊥EF.③正确.∵AD∥BH,∴∠DAP=∠H,∵∠DAP=∠PCM,∴∠PCM=∠H,∵∠CPM=∠HPC,∴△CPM∽△HPC,∴=,∴PC2=PM•PH,根据对称性可知:PA=PC,∴PA2=PM•PH.④正错误.∵四边形PECF是矩形,∴EF=PC,∴当CP⊥BD时,PC的值最小,此时A、P、C共线,∵AC=2,∴PC的最小值为1,∴EF的最小值为1;故选B.二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.【解答】解:∵共有3张卡片,卡片的正面分别标上数字﹣1,0,﹣2,卡片上的数字为负数的有2张,∴卡片上的数字为负数的概率为;故答案为:.14.(3分)二次函数y=﹣(x﹣1)(x+2)的对称轴方程是x=﹣.【解答】解:y=﹣(x﹣1)(x+2)=﹣(x2+x﹣2)=﹣(x+)2+,∴二次函数y=﹣(x﹣1)(x+2)的对称轴为x=﹣,故答案为:x=﹣.15.(3分)如图,点A在曲线y=(x>0)上,过点A作AB⊥x轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为4.【解答】解:∵点A在曲线y=(x>0)上,AB⊥x轴,AB=1,∴AB×OB=3,∴OB=3,∵CD垂直平分AO,∴OC=AC,∴△ABC的周长=AB+BC+AC=1+BC+OC=1+OB=1+3=4,故答案为:4.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.【解答】解:作EH⊥AB于H.∵四边形ABCD是正方形,∴AB=A D=6,∴OA=OB=6,∵OB=3OE,∴OE=2,EB=4,∵∠EBH=∠BEH=45°,∴EH=BH=2,∴AH=AB﹣BH=4,∵∠ADG+∠DAF=90°,∠DAF+∠EAH=90°,∴∠ADG=∠EAH,∵∠DAG=∠AHE,∴△DAG∽△AHE,∴=,∴=,∴AG=3,∴GH=AH﹣AG=,在Rt△EGH中,EG==.故答案为.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.【解答】解:原式=1﹣3+2+3=3.18.(5分)x2﹣8x+12=0.【解答】解:x2﹣8x+12=0,分解因式得(x﹣6)(x﹣2)=0,∴x﹣6=0,x﹣2=0,解方程得:x1=6,x2=2,∴方程的解是x1=6,x2=2.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.【解答】解:(1)画树状图得:∵共有6种等可能的结果,随机从袋中摸出两个球都是白色的有2种情况,∴随机从袋中摸出两个球,都是白色的概率是:=.(2)根据题意,得:=,解得:a=5,经检验a=5是原方程的根,故a=5.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.【解答】(1)证明:∵EF是DC的垂直平分线,∴DE=EC,DF=CF,∠EGC=∠FGC=90°,∵CD平分∠ACB,∴∠ECG=∠FCG,∵CG=CF,∴△CGE≌△FCG(ASA),∴GE=GF,∴四边形DFCE是平行四边形,∵DE=CE,∴四边形DFCE是菱形;(2)解:过D作DH⊥BC于H,则∠DHF=∠DHB=90°,∵∠ABC=60°,∴∠BDH=30°,∴BH=BD=1,在Rt△DHB中,DH==,∵四边形DFCE是菱形,∴DF∥AC,∴∠DFB=∠ACB=45°,∴△DHF是等腰直角三角形,∴DH=FH=,∴BF=BH+FH=1+.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书300﹣10x本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【解答】解:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为:300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.22.(8分)如图1,在平面直角坐标系中,▱OABC的一个顶点与坐标原点重合,OA边落在x轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(k>0,x>0)的图象经过点C,与AB交于点D,连接AC,CD.(1)试求反比例函数的解析式;(2)求证:CD平分∠ACB;(3)如图2,连接OD,在反比例的函数图象上是否存在一点P,使得S△POC=S△COD?如果存在,请直接写出点P的坐标.如果不存在,请说明理由.【解答】解:(1)如图1,过点C作CE⊥x轴于E,∴∠CEO=90°,∵∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵点C在反比例函数图象上,∴k=2×2=4,∴反比例函数解析式为y=,(2)如图2,过点D作DG⊥x轴于G,交BC于F,∵CB∥x轴,∴GF⊥CB,∵OA=4,由(1)知,OC=CE=2,∴AE=EC=2,∴∠ECA=45°,∠OCA=90°,∵OC∥AB,∴∠BAC=∠OCA=90°,∴AD⊥AC,∵A(4,0),AB∥OC,∴直线AB的解析式为y=x﹣4①,∵反比例函数解析式为y=②,联立①②解得,或(舍),∴D(2+2,2﹣2),∴AG=DG=2﹣2,∴AD=DG=4﹣2,∴DF=2﹣(2﹣2)=4﹣2,∴AD=DF,∵AD⊥AC,DF⊥CB,∴点D是∠ACB的角平分线上,即:CD平分∠ACB;(3)存在,∵点C(2,2),∴直线OC的解析式为y=x,OC=2,∵D(2+2,2﹣2),∴CD=2﹣2Ⅰ、如图3,当点P在点C右侧时,即:点P的横坐标大于2,∵S△POC=S△COD,∴设CD的中点为M,∴M(+2,),过点M作MP∥OC交双曲线于P,∴直线PM的解析式为y=x﹣2③,∵反比例函数解析式为y=④,联立③④解得,或(舍),∴P(+1,﹣1);Ⅱ、当点P'在点C左侧时,即:点P'的横坐标大于0而小于2,设点M关于OC的对称点为M',M'(m,n),∴=2,=2,∴m=2﹣,n=4﹣,∴M'(2﹣,4﹣),∵P'M'∥OC,∴直线P'M'的解析式为y=x+2⑤,联立④⑤解得,或(舍),∴P'(﹣1,+1).即:点P的坐标为(﹣1,+1)或P(+1,﹣1).23.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.【解答】解:(1)因为抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)两点,所以可以假设y=a(x+2)(x﹣4),∵OC=2OA,OA=2,∴C(0,4),代入抛物线的解析式得到a=﹣,∴y=﹣(x+2)(x﹣4)或y=﹣x2+x+4或y=﹣(x﹣1)2+.(2)如图1中,作PE⊥x轴于E,交BC于F.∵CD∥PE,∴△CMD∽△FMP,∴m==,∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1),∵BC的解析式为y=﹣x+4,设P(n,﹣n2+n+4),则F(n,﹣n+4),∴PF=﹣n2+n+4﹣(﹣n+4)=﹣(n﹣2)2+2,∴m==﹣(n﹣2)2+,∵﹣<0,∴当n=2时,m有最大值,最大值为,此时P(2,4).(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形.①当DP是矩形的边时,有两种情形,a、如图2﹣1中,四边形DQNP是矩形时,有(2)可知P(2,4),代入y=kx+1中,得到k=,∴直线DP的解析式为y=x+1,可得D(0,1),E(﹣,0),由△DOE∽△QOD可得=,∴OD2=OE•OQ,∴1=•OQ,∴OQ=,∴Q(,0).根据矩形的性质,将点P向右平移个单位,向下平移1个单位得到点N,∴N(2+,4﹣1),即N(,3)b、如图2﹣2中,四边形PDNQ是矩形时,∵直线PD的解析式为y=x+1,PQ⊥PD,∴直线PQ的解析式为y=﹣x+,∴Q(8,0),根据矩形的性质可知,将点D向右平移6个单位,向下平移4个单位得到点N,∴N(0+6,1﹣4),即N(6,﹣3).②当DP是对角线时,设Q(x,0),则QD2=x2+1,QP2=(x﹣2)2+42,PD2=13,∵Q是直角顶点,∴QD2+QP2=PD2,∴x2+1+(x﹣2)2+16=13,整理得x2﹣2x+4=0,方程无解,此种情形不存在,综上所述,满足条件的点N坐标为(,3)或(6,﹣3).。

2019-2020学年第二学期九年级数学期末考试试卷及答案

2019-2020学年第二学期九年级数学期末考试试卷及答案

第1页,共8页 数学试卷 第2页, 共8页密 封 线 学校 班级 姓名 学号封 线 内 不 得 答 题2019-2020学年第二学期九年级联考数学试卷及答案题号一 二 三 四 总分人 复核人 总分 得分本试卷满分为150分,考时间为120分钟.1. 下列各数:1.414,2,-13,0,其中是无理数的为 ( ) A .1.414 B . 2 C .-13D .02. 2017年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89 000人,将89 000用科学记数法表示为 ( )A .89×103B .8.9×104C .8.9×103D .0.89×1053. 剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为 ( )A B C D4.不等式组⎩⎨⎧x ≥-1,x<2的解集在数轴上表示正确的是 ( )A BC D 5. 下列几何体中,主视图是三角形的是 ( )A B C D 6市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学筹款情况如下表:筹款(元) 5 10 15 20 25 30 人数 3 7 11 11 13 5 则该班同学筹款金额的众数和中位数分别是 ( ) A .11,20 B .25,11 C .20,25 D .25,20 7BC ⊥AE 于点C ,CD ∥AB ,∠B =55°,则∠1等于 ( ) A .55° B .45° C .35° D .25°( 第7题 ) ( 第8题 ) (第10题)8. 如图,A ,D 是⊙O 上的两个点,BC 是直径.若∠D=32°,则∠OAC 为 ( )A .64°B .58°C .72°D .55° 9. 某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是 ( )A .(a -10%)(a +15%)万元B .a(1-90%)(1+85%)万元C .a(1-10%)(1+15%)万元D .a(1-10%+15%)万元 10. 今年五一节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t(min ).所走的路程为s(m ),s 与t 之间的函数关系如图所示,下列说法错误的是 ( ) A .小明中途休息用了20 minB .小明休息前爬山的平均速度为每分钟70 mC .小明在上述过程所走的路程为6 600 mD .小明休息前爬山的平均速度大于休息后爬山的平均速度得 分 评卷人 得分 评卷人二、填空题:本大题共8小题,每小题4分,共32分.把答案写在题中横线上的.一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题意的选项字母填入题后的括号内.第3页,共8页数学试卷 第4页,共8页密 封 线 内 不 得 答 题11. 因式分解:x 3-4x = ___________ .12.如图,在△ABC 中,D ,E 分别是边AB ,AC 上的点,且DE ∥BC ,若△ADE 与△ABC 的周长之比为2∶3,AD =4,则DB = .13.若关于x 的一元二次方程x 2-4x -m =0有两个不相等的实数根,则实数m 的取值范围是____ .14. 已知α,β均为锐角,且满足|sin α-12|+(tan β-1)2=0,则α+β=________.(第12题 ) (第17题) 15.分式方程2x x -1-11-x=1的解是 16.函数y =1-xx +2中,自变量x 的取值范围为 . 17. 如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB=65°,则∠AED ′ .18观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,……,则81+82+83+84+……+82 015的和的个位数字是得 分 评卷人19.(6分)计算:-14+12sin 60°+-(π-5)020. (6分)先化简,再求值:(m -n)2-m(m -2n),其中m =3,n = 2.21.(8分)如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1; (2)请画出△ABC 关于原点O 成中心对称的图形△A 2B 2C 2;(3)在x 轴上找一点P ,使PA +PB 的值最小,请直接写出点P 的坐标.22. (10分) 今年“五·一”节期间,某商场举行抽奖促销活动.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明,证明过程或演算步骤.第5页,共8页 数学试卷 第6页, 共8页密 封 线 学校 班级 姓名 学号封 线 内 不 得 答 题(1)请你用树形图或列表法表示出抽奖所有可能出现的结果; (2)求抽奖人员获奖的概率23(10分)如图,大楼AB 右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D 处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B ,C ,E 在同一水平直线上),已知AB =80 m ,DE =10 m ,求障碍物B ,C 两点间的距离.(结果精确到0.1 m ,参考数据:2≈1.414,3≈1.732)得 分 评卷人24. (本题满分8分)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费. 为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如下不完整的统计图(每组数据包括右端点但不包括左端点). 请你根据统计图解答下列问题: (1)此次抽样调查的样本容量是__________________.(2)补全频数分布直方图,求扇形图中“15吨—20吨”部分的圆心角的度数; (3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?用户用水量频数分布直方图 用户用水量扇形统计图 户数(单位:户)吨 10-15吨 30-35 40 30 20 100 10 15 20 25 30 35 用水量(单位:吨)25.(10分)已知,如图,△ABC 和△ECD 都是等腰直角三角形,∠ACB =∠DCE =90°,D 为线段AB 上一动点. (1)求证:BD =AE ;(2)当D 是线段AB 中点时,求证:四边形AECD 是正方形.四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.第7页,共8页数学试卷 第8页,共8页密 封 线 内 不 得 答 题26.(10分)如图,在平面直角坐标系中,一次函数2+=nx y 的图象与反比例函数xmy = 在第一象限内的图象交于点A ,与x 轴交于点B ,线段OA =5,C 为x 轴正半轴上一点,且sin ∠AOC =45. (1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积.27. 如图,AB 为⊙O 直径,C 、D 为⊙O 上不同于A 、B 的两点,∠ABD =2∠BAC .过点C 作CE⊥DB,垂足为E ,直线AB 与CE 相交于F 点. (1)求证:CF 为⊙O 的切线;(2)若⊙O 的半径为52,弦BD 的长为3,求CF 的长.28. 如图,已知抛物线y=x 2+bx+c 经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC∥x 轴,点P 时直线AC 下方抛物线上的动点. (1)求抛物线的解析式; (2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与△ABC 相似,若存在,求出点Q 的坐标,若不存在,请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图A B
C
D E
九年级下学期数学期末考试试卷
____班 姓名_______
一、
1. 方程x 2
=x 的解是
A. x=0
B. x=1
C. x=±1
D. x=1, x=0 2.如果一元二次方程2
12270x
x ++=的两个根是12,x x ,那么12x x +的值
A. -6
B. -12
C. 12
D. 27 3.下列描述不属于定义的是
A .两组对边分别平行的四边形是平行四边形
B .正三角形是特殊的三角形
C .在同一平面内三条线段首尾相连得到的图形是三角形
D .含有未知数的等式叫做方程 4.下列命题是假命题的是
A. 平行四边形的对角相等
B. 等腰梯形的对角线相等
C. 对角线互相垂直的四边形是菱形
D. 两条对角线相等的平行四边形是矩形 5. 下列说法中正确的是
A .所有的等腰三角形都相似
B .所有的菱形都相似
C .所有的矩形都相似
D .所有的等腰直角三角形都相似 6.如图1:点O 是等边△ABC 的中心,
A ′、
B ′、
C ′分
别是OA ,OB ,OC 的中点,则△ABC 与△A ′B ′C ′是位 似三角形,此时,△A ′B ′C ′与△ABC 的位似比、位 似中心分别为 A .
12
, 点A ′ B .2,点A C .
12
,点O D .2,点O
7.在Rt △ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是 A .c=
A
a sin B .c=
A a cos C .c=A a tan ⋅ D .c=A
a
tan
8. 计算: 0
20202sin30
4cos 30tan 45+-的值等于
A .4
B .
C .3
D .2
9. 学校评选出30名优秀学生,要选5名代表参加全市优秀学生表彰会,已经确定了1名代表,
则剩余学生参加全市优秀学生表彰会的概率是 A.
6
1
B.
152 C.29
5 D.
29
4
10. 准备两张大小一样,分别画有不同图案的正方形纸片,把每张纸都对折、剪开,将四张纸片
放在盒子里,然后混合,随意抽出两张正好能拼成原图的概率是 A.
31 B.41 C.51 D.6
1 二、耐心填一填,一锤定音 (每小题3分, 满分18分) 11. 方程0322
=--x x 变为b a x =+2
)(的形式是____________ .
12.定理“等腰梯形的对角线相等”的逆定理
是_____________________________________________.
13. 在ABC 中,∠C=0
90,若a=4,b=3,则sinA=____________. 14. 如果两个相似三角形的相似比为2:3, 那么这两个 相似三角形的面积比为_______________.
15. 如图2: △ABC 中,D,E 分别在AB 、AC 上,且DE 与BC 不
平行,请填上一个适当的条件:__________________可得△ADE ∽△ABC 16. 张洁和曾巧两个同学的生日在同一个月的概率是____________ .
三、细心想一想,慧眼识金 (第17、18题各5分,第19 题6分,满分16分)
17. 已知关于x 的一元二次方程5x 2
+kx -10=0一个根是-5,求k 的值及方程的另一个根.
18.如图3,某同学身高1.6米,由路灯下向前步行4米,发现自己的影子长有2米,问此路灯有多高? C
19.从1,2,3这三个数字中任意取出一个、两个或三个可以构成不同的一位数、两位数或三位数,所有这些数中均无重复数字(如22,311等为有重复数字的数). (1)列举所有可能出现的结果. (2)出现奇数的概率是多少?
四、用心做一做,马到成功 (每小题5分,满分10分)
20、如图4,梯形ABCD 中,AD ∥BC,AB=DC,P 为梯形ABCD 外一点,PA 、PD 分别交线段BC 于点E 、F,且PA=PD.
(1)写出图中三对你认为全等的三角形(不再添加辅助线); (2)选择你在(1)中写出的全等三角形中的任意一对进行证明.
图4
21. 如图5,BE 是△ABC 中∠ABC 的平分线.DE ∥BC ,若AE =3,AD =4,AC =5,求DE 的长.
五、综合用一用,再接再厉(每小题6分,满分12分)
22.在一块长方形镜面玻璃的四周镶上与它的周长相等的边框,制成一面镜子.镜子的长与宽的
比是2∶1.已知镜面玻璃的价格是每平方米120元,边框的价格是每米30元,另外制作这面镜子还需加工费45元.如果制作这面镜子共花了195元,求这面镜子的长和宽. 23.如图6,直升飞机在资江大桥AB 的上方P 点处,此时飞机离地面的高度PO=450米,且A 、B 、
O 三点在一条直线上,测得大桥两端的俯角分别为α=30°,β=45°,求大桥的长AB .
六、探究试一试,超越自我 (第24题6分,第25题8分,满分14分)
24. 已知 α为锐角,关于x 的一元二次方程0tan 3232=+-αx x 有两个相等的实数
根.
(1)求锐角α; (2) 求方程的根.
25.如图7,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M 、N 分别在边AD 、BC 上
运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E 、F . (1)求梯形ABCD 的面积;
(2)设AE =x,用含x 的代数式表示四边形MEFN 的面积.
(3)试判断四边形MEFN 能否为正方形,若能,求出正方
形MEFN 的面积;若不能,请说明理由.
图7
图5
A
B
C
D
E
1 2
_
F _
E _
P _ D
_ C
_
B _ A
C D A
B
E
F N
M
O
B
A
45图6
2010年下学期期末考试九年级数学参考答案 一、(每小题3分, 满分30分) 二、(每小题3分, 满分18分)
11、(x-1)2
=4 12、对角线相等的梯形是等腰梯形 13、5
4 14、4:9
15、∠ ADE =∠ C,或∠ AED=∠ B 或
AB
AE
=
AC
AD , 任选一种情况均可 16、
12
1 三、(第17、18题各6分,第19 题8分,满分20分)
17、 k=23 (2分) 5
2
2=x (4分)
18、△CDE ∽△ABE , (2分) 则 BE
DE AB CD =
,即4226.1+=AB ,AB=4.8米 (4分) 19、(1)所有可能出现的结果: 一位数3个:1、2、3; 两位数6个:12、13、21、23、31、32;
三位数6个:123、132、213、231、312、321. (6分)
(2)出现奇数的概率为
3
2
(2分)
四、(每小题8分, 满分16分)
20、(1)△ABE ≌△DCF ,△ABP ≌△DCP ,△PBE ≌△PCF ,△PBF ≌△PCE 任写三种情况均可
(3分)
(2)证明过程 略 (5分) 21、先证DE =DB (3分) 再求DB =3
8
(5分) 五、(每小题8分, 满分16分)
22、设长方形镜子的宽为x m , 则长为2x m, 则1954563021202
=+⨯+⨯x x (4
分)
即05682
=-+x x 解得5.0),(25.421=-=x x 舍去 答略 (4
分)
23、 30,45PAO PBO ∠=︒∠=︒,tan 30,tan 45PO PO
OA OB
=︒=︒ ,(4分)
450
tan 30OA ∴==︒
450450tan 45OB =
=︒,
1)()AB OA OB m ∴=-= 答略 (4分)
六、(第24题8分,第25题12分,满分20分) 24、(1)0tan 34)32(2=⨯⨯--=∆
α,解得1tan =α,∴045=α; (4分)
(2) 013232
=+-x x ,解得3
321=
=x x . (4分) 25、(1)分别过D 、C 两点作DG ⊥AB 于点G ,CH ⊥AB 于点H .易证
四边形DGHC 为矩形,∴GH =DC =1.又可证△AGD ≌△BHC .
∴ AG =BH =3. 在Rt △AGD 中,AG =3,AD =5, ∴
DG =4.

162
4
7)(1=⨯+=
ABCD S 梯形. (4分)
(2)易证四边形MEFN 为矩形, △MEA ≌△NFB , △MEA ∽△DGA ∴ AE =BF . 设AE =x ,则EF =7-2x .∴DG ME AG AE =
. ME =x 3
4
. ∴
x x x x EF ME S MEFN 3
2838)2(7342+-=-=
⋅=矩形. (4分) (3)能.四边形MEFN 为正方形,则ME =EF . 由(2)知,AE =x ,EF =7-2x ,ME =
x 3
4
. ∴
=34x
7-2x .解得10
21=
x .∴ EF =51427=-x <4. ∴25196
5142
=⎪⎭
⎫ ⎝⎛=MEFN
S 正方形. (4分)
A
B
E F G H。

相关文档
最新文档