高考数学(文科)习题 第二章 函数的概念及其基本性质2-1-1 Word版含答案

合集下载

2018高考数学(文科)习题 第二章 函数的概念及其基本性质2-9-1 word版含答案

2018高考数学(文科)习题 第二章 函数的概念及其基本性质2-9-1 word版含答案

1.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k .据此函数可知,这段时间水深(单位:m)的最大值为( )点击观看解答视频A .5B .6C .8D .10答案 C解析 由题意可得:y min =-3+k =2.解得k =5,故这段时间水深的最大值为3+5=8(m),选C.2.某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q2B.p +1q +1-12C.pqD.p +1q +1-1答案 D解析 设两年前的年底该市的生产总值为a ,则第二年年底的生产总值为a (1+p )(1+q ).设这两年生产总值的年平均增长率为x ,则a (1+x )2=a (1+p )(1+q ),由于连续两年持续增加,所以x >0,因此x =1+p1+q -1,故选D.3.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内通话时间t (分钟)与电话费S (元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差( )A.10元B.20元C.30元 D.403元答案 A解析依题意可设S A(t)=20+kt,S B(t)=mt.又S A(100)=S B(100),∴100k+20=100m,得k-m=-0.2,于是S A(150)-S B(150)=20+150k-150m=20+150×(-0.2)=-10,即两种方式电话费相差10元,选A.4. 如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15 m,AC=25 m,∠BCM=30°,则tanθ的最大值是________.(仰角θ为直线AP与平面ABC所成角)答案53 9解析 由于AB ⊥BC ,AB =15 m ,AC =25 m ,所以BC = 252-152=20 m .过点P 作PN ⊥BC 交BC 于N ,连接AN (如图),则∠PAN =θ,tan θ=PN AN.设NC =x (x >0),则BN =20-x , 于是AN =AB 2+BN 2= 152+20-x2=x 2-40x +625, PN =NC ·tan30°=33x , 所以tan θ=33x x 2-40x +625=331-40x +625x 2=33625x 2-40x+1,令1x =t ,则625x 2-40x+1=625t 2-40t +1,当t =4125时,625t 2-40t +1取最小值925, 因此625x 2-40x+1的最小值为925=35,这时tan θ的最大值为33×53=539⎝⎛⎭⎪⎫此时x =1254.5.某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路.记两条相互垂直的公路为l 1,l 2,山区边界曲线为C ,计划修建的公路为l .如图所示,M ,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米.以l 2,l 1所在的直线分别为x ,y 轴,建立平面直角坐标系xOy .假设曲线C 符合函数y =ax 2+b(其中a ,b为常数)模型.(1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式f (t ),并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.点击观看解答视频解 (1)由题意知,点M ,N 的坐标分别为(5,40),(20,2.5). 将其分别代入y =ax 2+b,得⎩⎪⎨⎪⎧a25+b =40,a 400+b =2.5,解得⎩⎪⎨⎪⎧a =1000,b =0.(2)①由(1)知,y =1000x2(5≤x ≤20), 则点P 的坐标为⎝ ⎛⎭⎪⎫t ,1000t 2,设在点P 处的切线l 交x ,y 轴分别于A ,B 点,y ′=-2000x3,则l 的方程为y -1000t 2=-2000t3(x -t ),由此得A ⎝ ⎛⎭⎪⎫3t 2,0,B ⎝⎛⎭⎪⎫0,3000t 2.故f (t )= ⎝ ⎛⎭⎪⎫3t 22+⎝ ⎛⎭⎪⎫3000t 22 =32t 2+4×106t4,t ∈.②设g (t )=t 2+4×106t 4,则g ′(t )=2t -16×106t5.令g ′(t )=0,解得t =10 2. 当t ∈(5,102)时, g ′(t )<0,g (t )是减函数; 当t ∈(102,20)时,g ′(t )>0,g (t )是增函数;从而,当t =102时,函数g (t )有极小值,也是最小值,所以g (t )min =300,此时f (t )min=15 3.故当t =102时,公路l 的长度最短,最短长度为153千米.6.某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线的一段.已知跳水板AB 的长为2 m ,跳水板距水面CD 的高BC 为3 m .为安全和空中姿态优美,训练时跳水曲线应在离起跳点A 处水平距h m(h ≥1)时达到距水面最大高度4 m .规定:以CD 为横轴,BC 为纵轴建立直角坐标系.(1)当h =1时,求跳水曲线所在抛物线的方程;(2)若跳水运动员在区域EF 内入水时才能达到比较好的训练效果,求此时h 的取值范围. 解 (1)由题意知抛物线的最高点为(2+h,4),h ≥1,故设抛物线的方程为y =a 2+4. 当h =1时,最高点为(3,4),方程为y =a (x -3)2+4.将A (2,3)代入,得3=a (2-3)2+4,解得a =-1.所以当h =1时,跳水曲线所在抛物线的方程为y =-(x -3)2+4.(2)将A (2,3)代入y =a 2+4,整理得ah 2=-1'①. 由题意,方程a 2+4=0在区间内有一解.由①得,y =f (x )=a 2+4=-1h22+4,则⎩⎪⎨⎪⎧f 5=-1h23-h 2+4≥0f6=-1h24-h2+4≤0,解得1≤h ≤43.故达到较好的训练效果时h 的取值范围是⎣⎢⎡⎦⎥⎤1,43.沿着公园小径散步,这儿,那儿,立着不少人物雕塑。

高中数学 第二章 函数 2.1 函数的概念及性质素材 苏教版必修1(2021年最新整理)

高中数学 第二章 函数 2.1 函数的概念及性质素材 苏教版必修1(2021年最新整理)

高中数学第二章函数2.1 函数的概念及性质素材苏教版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章函数2.1 函数的概念及性质素材苏教版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章函数2.1 函数的概念及性质素材苏教版必修1的全部内容。

2。

1 函数的概念及性质【补充知识】含绝对值的不等式与一元二次不等式的解法 (1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆>0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a ==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a ≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅〖1。

2〗函数及其表示 【1.2.1】函数的概念 (1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f 对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么:f A B →叫做集合A 到B 的一个函数,记作.A x x f y ∈=),(②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1。

第二章 第1讲 函数的概念及其表示-2025年高考数学备考

第二章 第1讲 函数的概念及其表示-2025年高考数学备考

第二章函数第1讲函数的概念及其表示课标要求命题点五年考情命题分析预测1.了解构成函数的要素,能求简单函数的定义域.2.了解简单的分段函数,并能简单应用.求函数的定义域2022北京T11本讲是函数部分的基础,命题热点为分段函数的求值、含参和解不等式问题,题型以选择题、填空题为主,难度中等偏易.在2025年高考的备考中,要掌握函数的三要素和以分段函数为载体的有关应用.求函数的解析式分段函数2022浙江T14;2021浙江T12学生用书P0181.函数的概念及表示函数的定义一般地,设A ,B 是①非空的实数集,如果对于集合A 中的②任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有③唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .三要素④定义域,⑤对应关系,⑥值域.定义域自变量x 的取值范围A .值域函数值的集合{f (x )|x ∈A },是集合B 的⑦子集.相等函数⑧定义域相同,⑨对应关系完全一致.函数的表示法⑩解析法,⑪列表法,⑫图象法.注意(1)与x 轴垂直的直线和函数图象最多有一个交点;(2)解决函数问题时,优先考虑定义域.常用结论求函数的定义域时常用的结论(1)分式型1()要满足f (x )≠0;(2)偶次根式型2()(n ∈N *)要满足f (x )≥0;(3)[f (x )]0要满足f (x )≠0;(4)对数型log a f (x )(a >0,且a ≠1)要满足f(x)>0;(5)正切型tan f(x)要满足f(x)≠π2+kπ,k∈Z.2.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.注意(1)分段函数虽由几个部分构成,但它表示的是一个函数;(2)分段函数的定义域是各段函数定义域的并集,值域是各段函数值域的并集.1.下列f(x)与g(x)表示同一个函数的是(B)A.f(x)=2-1与g(x)=-1·+1B.f(x)=x与g(x)=3+2+1C.f(x)=x与g(x)=()2D.f(x)=2与g(x)=332.下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是(D)A.y=xB.y=lg xC.y=2xD.y3.[教材改编]已知函数f(x 1,≤1,>1,则f(f(-2))=(B)A.8B.12C.-34D.-109解析因为f(x)1,≤1,>1,所以f(-2)=(-2)2-1=3,所以f(f(-2))=f(3)=13-1=12,故选B.4.已知函数f(x)=2x-3,x∈{x∈N|1≤x≤5},则函数f(x)的值域为{-1,1,3,5,7}.学生用书P019命题点1求函数的定义域例1(1)[2022北京高考]函数f(x)=1+1-的定义域是(-∞,0)∪(0,1].解析因为f(x)=1+1-,所以x≠0,1-x≥0,解得x∈(-∞,0)∪(0,1].(2)若函数f(1-2x)的定义域为[-1,2],则函数f(x)的定义域为[-3,3].解析因为函数f(1-2x)的定义域为[-1,2],所以-1≤x≤2,所以-3≤1-2x≤3.所以函数f(x)的定义域为[-3,3].命题拓展若函数f(x)的定义域为[-1,2],则函数f(1-2x)的定义域为[-12,1].解析由-1≤1-2x≤2,得-12≤x≤1,所以函数f(1-2x)的定义域为[-12,1].方法技巧1.求具体函数的定义域的策略根据函数解析式,构造使解析式有意义的不等式(组),求解不等式(组)即可;对实际问题,既要使函数解析式有意义,又要使实际问题有意义.2.求抽象函数的定义域的策略(1)若已知函数f(x)的定义域为[a,b],则复合函数f(g(x))的定义域由不等式a≤g(x)≤b求出;(2)若已知函数f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在[a,b]上的值域.注意无论函数的形式如何,定义域均是指其中的自变量x的取值集合.训练1(1)[2024浙江省宁波市余姚中学一检]已知函数y=f(x)的定义域是[-2,3],则函数y=(2r1)r1的定义域是(A)A.[-32,-1)∪(-1,1]B.[-3,-1)∪(-1,7]C.(-1,7]D.[-32,-1)解析因为函数y=f(x)的定义域是[-2,3],所以-2≤2x+1≤3,且x+1≠0,解得x∈[-32,-1)∪(-1,1].故选A.(2)[2024江苏省镇江市丹阳市模拟]函数f(x)=3-2+(x-4)0的定义域为[23,4)∪(4,+∞).解析要使函数f(x)=3-2+(x-4)0有意义,则有3-2≥0,-4≠0,解得x≥23且x≠4,所以函数f(x)=3-2+(x-4)0的定义域为[23,4)∪(4,+∞).命题点2求函数的解析式例2(1)[2024河南省内乡高中模拟]已知f(x)是一次函数,且f(f(x))=16x-25,则f(x)=4x-5或-4x+253.解析设f(x)=kx+b(k≠0),则f(f(x))=k(kx+b)+b=k2x+kb+b=16x-25,∴2=16,B+=-25,∴=4,=-5或=-4,=253,∴f(x)=4x-5或f(x)=-4x+253.(2)已知f(x)满足2f(x)+f(1)=3x-1,则f(x)=2x-1-13.解析已知2f(x)+f(1)=3x-1①,以1代替①中的x(x≠0),得2f(1)+f(x)=3-1②,①×2-②,得3f(x)=6x-3-1,故f(x)=2x-1-13.方法技巧求函数解析式的常用方法(1)待定系数法:若已知函数类型(如一次函数、二次函数等),则可用待定系数法求解.(2)换元法:若已知复合函数f(g(x))的解析式求解函数f(x)的解析式,可令g(x)=t,解出x,然后代入f(g(x))中即可求得f(t),从而求得f(x).此时要注意新元的取值范围.(3)配凑法:配凑法是将函数f(g(x))的解析式配凑成关于g(x)的形式,进而求出函数f(x)的解析式.(4)构造方程组法(消元法):若已知f(x)与f(1),f(-x)等的表达式,则可通过赋值(如令x为1,-x等)构造出另一个等式,通过解方程组求出f(x).注意求函数解析式时,若定义域不是R,一定要注明函数定义域.训练2(1)已知f(x2+12)=x4+14,则f(x)的解析式为f(x)=x2-2,x∈[2,+∞).解析因为f (x 2+12)=(x 2+12)2-2,所以f (x )=x 2-2,x ∈[2,+∞).(2)[2024安徽淮南模拟]已知f (x )是二次函数,且f (x +1)+f (x -1)=2x 2-4x +4,则f (x )=x 2-2x +1.解析因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则有a (x +1)2+b (x +1)+c +a (x -1)2+b (x -1)+c =2x 2-4x +4,即2ax 2+2bx +2a +2c =2x 2-4x+4,所以2=2,2=-4,2+2=4,所以=1,=-2,=1,所以f (x )=x 2-2x +1.(3)[2024湖北省钟祥市第一中学模拟]已知f (x )满足3f (x )+2f (1-x )=4x ,则f (x )的解析式为f (x )=4x -85.解析3f (x )+2f (1-x )=4x①,用1-x 代替①中的x 可得3f (1-x )+2f (x )=4(1-x )②,由3×①-2×②可得f (x )=4x -85.命题点3分段函数角度1分段函数的求值(求参)问题例3(1)[山东高考]设f (x )=,0<<1,2(-1),≥1.若f (a )=f (a +1),则f (1)=(C)A.2B.4C.6D.8解析作出f (x )的图象,如图所示,因为a <a +1,所以要使f (a )=f (a +1),则有=2(a +1-1),0<a <1,所以解得a =14,所以f (1)=f (4)=6.(2)[2022浙江高考]已知函数f (x )=-2+2,≤1,+1-1,>1,则f (f (12))=3728;若当x ∈[a ,b ]时,1≤f (x )≤3,则b -a 的最大值是3+3.解析由题意知f (12)=-(12)2+2=74,则f (f (12))=f (74)=74+174-1=74+47-1=3728.作出函数f (x )的大致图象,如图所示,结合图象,令-x 2+2=1,解得x =±1;令x +1-1=3,解得x =2±3,又x >1,所以x =2+3.所以(b -a )max =2+3-(-1)=3+3.角度2分段函数的解不等式问题例4[全国卷Ⅰ]设函数f (x )=2-,≤0,1,>0,则满足f (x +1)<f (2x )的x 的取值范围是(D)A.(-∞,-1]B.(0,+∞)C.(-1,0)D.(-∞,0)解析解法一当x ≤0时,函数f (x )=2-x 是减函数,则f (x )≥f (0)=1.作出f (x )的大致图象如图所示,结合图象可知,要使f (x +1)<f (2x ),则需+1<0,2<0,2<+1或+1≥0,2<0,所以x <0,故选D.解法二当x =-12时,f (x +1)=f (12)=1,f (2x )=f (-1)=2-(-1)=2,满足f (x +1)<f (2x ),排除A ,B ;当x =-1时,f (x +1)=f (0)=20=1,f (2x )=f (-2)=22=4,满足f (x +1)<f (2x ),排除C.故选D.方法技巧1.解分段函数的求值问题的思路:一般根据自变量所在区间代入相应的函数解析式求解,当出现f (f (a ))形式时,一般由内向外逐层求值.2.解分段函数的解不等式问题的思路:(1)若图象易画,可画出函数图象,数形结合求解;(2)根据分段函数的不同段分类讨论,最后取各段结果的并集.注意解得值或范围后,要注意检验其是否符合相应段的自变量的范围.训练3(1)[2024河南郑州外国语模拟]已知实数a <0,函数f (x )=2+,<1,--2,≥1,若f (1-a )=f (1+a ),则a 的值为(A )A.-34B.-32C.-35D.-1解析因为a<0,所以1-a>1,1+a<1.因为f(1-a)=f(1+a),所以-(1-a)-2a=2(1+a)+a,解得a=-34.故选A.(2)[2024四川达州外国语模拟]已知函数f(x)=e-1,≤2,2(-2),>2,则f(7)=8.解析由题意得f(7)=2f(5)=2×2f(3)=4×2f(1)=8e1-1=8.(3)[2023江苏南通模拟]已知函数f(x)=max{1-x,2x},其中max{a,b}表示a,b中的较大者.则不等式f(x)>4的解集为(-∞,-3)∪(2,+∞).解析作出f(x)的大致图象如图所示,结合图象可知f(x)=1-,≤0,2,>0.当x≤0时,由1-x>4,得x<-3.当x>0时,由2x>4,得x>2,所以f(x)>4的解集为(-∞,-3)∪(2,+∞).1.[命题点1/2023黑龙江省齐齐哈尔市恒昌中学模拟]函数f(x-log3(1-2)的定义域是(A)A.[0,12)B.(-∞,12)C.(-∞,12]D.(-∞,1)解析由题意得1->0,-log3(1-2)≥0,1-2>0,解得0≤x<12,所以函数f(x)的定义域是[0,12),故选A.2.[命题点2]定义在(-1,1)上的函数f(x)满足2f(x)-f(-x)=lg(x+1),则f(x)=23lg(x+1)+13lg(1-x),x∈(-1,1).解析当x∈(-1,1)时,有2f(x)-f(-x)=lg(x+1)①.以-x代替x得,2f(-x)-f(x)=lg(-x+1)②.由①②消去f(-x)得,f(x)=23lg(x+1)+13lg(1-x),x∈(-1,1).3.[命题点3角度1]设函数f(x,≤1,>1,则满足2f(f(a))=f(a)的a的取值范围是(D)A.(-∞,0]B.[0,2]C.[2,+∞)D.(-∞,0]∪[2,+∞)解析作出f(x)的图象(图略),可得f(x)的最小值为12,令t=f(a),则t≥12,考虑f(t)=2的解,作出y=f(t)与y=2在[12,+∞)上的图象,如图1中实线所示,由图可知,当t≥1时,f(t)=2,故t≥1.下面考虑f(a)≥1的解集,作出y=f(a)与y=1的图象如图2所示,由图可得a≤0或a≥2.故选D.图1图24.[命题点3角度2/2023山东济南模拟]已知函数f(x)=-2+2B-2,≤,-,>,若f(a2-4)>f(3a),则实数a的取值范围是(B)A.(-1,4)B.(-∞,-1)∪(4,+∞)C.(-4,1)D.(-∞,-4)∪(1,+∞)解析由题意知f(x)=-(-)2,≤,-,>,易知函数f(x)在(m,+∞),(-∞,m]上单调递增,且m-m=-(m-m)2,所以函数f(x)在R上单调递增.则由f(a2-4)>f(3a),得a2-4>3a,解得a>4或a<-1,所以实数a的取值范围是(-∞,-1)∪(4,+∞),故选B.学生用书·练习帮P2641.函数f(x)=3-1+1ln(2-)的定义域为(C)A.[13,1)∪(1,+∞)B.[13,2)C.[13,1)∪(1,2)D.(0,2)解析要使函数f(x)=3-1+1ln(2-)有意义,则3-1≥0,2->0,2-≠1,解得≥13,<2,≠1,故函数的定义域为[13,1)∪(1,2).故选C.2.下列各组函数表示相同函数的是(C)A.f(x)=2和g(x)=()2B.f(x)=1和g(x)=x0C.f(x)=|x|和g(x)=,≥0,-,<0D.f(x)=e ln x和g(x)=lg10x解析对于选项A,f(x)=2=|x|的定义域为R,g(x)=()2=x的定义域为[0,+∞),两个函数的定义域不相同,不是相同函数;对于选项B,f(x)=1的定义域为R,g(x)=x0=1的定义域为{x|x≠0},两个函数的定义域不相同,不是相同函数;对于选项C,f(x)=|x|=,≥0,-,<0,函数f(x),g(x)的定义域都是R,且对应法则相同,是相同函数;对于选项D,f(x)=e ln x的定义域为(0,+∞),g(x)=lg10x的定义域为R,两个函数的定义域不相同,不是相同函数.故选C.3.[2023重庆模拟]已知函数f(+1)=x+2,则f(x)的解析式为(C)A.f(x)=x2-1B.f(x)=x2-1,x∈(1,+∞)C.f(x)=x2-1,x∈[1,+∞)D.f(x)=x2-1,x∈[0,+∞)解析解法一(配凑法)f(+1)=x+2=(+1)2-1,令t=+1(t≥1),则f(t)=t2-1,t∈[1,+∞),所以f(x)=x2-1,x∈[1,+∞),故选C.解法二(换元法)令t=+1(t≥1),则=t-1(t≥1),f(t)=(t-1)2+2(t -1)=t2-1,t∈[1,+∞),所以f(x)=x2-1,x∈[1,+∞),故选C.4.已知函数f(x)=ln,≥1,0,0≤<1,,<0,若f(2a-1)-1≤0,则实数a的取值范围是(D)A.[e+12,+∞)B.(-∞,-12]∪[0,e+12]C.[0,e+12]D.(-∞,e+12]解析因为f(2a-1)-1≤0,所以f(2a-1)≤1.作出函数y=f(x)及y=1的图象,如图所示,设两函数图象交于点P,则由图可知,2a-1≤x P=e,所以a≤e+12,即a的取值范围是(-∞,r12],故选D.5.[2024广东名校联考]已知函数f(x)的定义域是[0,4],则函数y 的定义域是(2,5].解析由题意知0≤-1≤4,-2>0,解得2<x≤5,即y2,5].6.[2024山东省部分学校阶段监测]已知函数f(x)=3,≤0,l4,>0,则f(f(116))=19.解析因为f(x)=3,≤0,log4,>0,所以f(116)=log4116=-2,f(-2)=3-2=19,所以f(f(116))=19.7.[2024惠州市一调]已知函数f(x)满足f(x+1)=f(x)+2,则f(x)的解析式可以是f(x)=2x(答案不唯一).(写出满足条件的一个解析式即可)解析由f(x+1)=f(x)+2知,函数f(x)的图象上移2个单位长度后得到的图象,与左移1个单位长度后得到的图象重合,f(x)=2x+k(其中k可取任意实数)满足要求.本题为开放题,答案可为f(x)=2x,f(x)=2x+1等.8.[2024浙江名校联考]已知函数f(x)=(12),∈(-∞,1),log4,∈(1,+∞),则f(x)>1的解集为(-∞,0)∪(4,+∞).解析由题意可得,f(0)=(12)0=1,结合指数函数y=(12)x在定义域内单调递减可知,当x<1时,f(x)>1的解集为(-∞,0);f(4)=log44=1,结合对数函数y=log4x在定义域内单调递增可知,当x>1时,f(x)>1的解集为(4,+∞).所以不等式f(x)>1的解集为(-∞,0)∪(4,+∞).9.[2023福建漳州联考]已知函数f(x)=log2,>0,2+4+1,≤0,若实数a满足f(f(a))=1,则实数a的所有取值的和为(C)A.1B.1716-5C.-1516-5D.-2解析作出y=f(x)及y=1的部分图象,如图所示,易得y=f(x)与y=1的图象有三个交点,设这三个交点分别为A,B,C,则易得x A=-4,x B=0,x C=2.令f(a)=-4,则由图可得log2a=-4,解得a=2-4=116;令f(a)=0,则由图可得a2+4a+1=0或log2a=0,解得a=-2-3或a=-2+3或a=1;令f(a)=2,则由图可得a2+4a+1=2(a≤0)或log2a=2,解得a=-2-5或a=22=4.所以实数a的所有取值的和为116+(-2-3)+(-2+3)+1+(-2-5)+4=-1516-5,故选C.10.[2023西北工业大学附属中学模拟]设函数f(x)=,0<<1,eln,≥1,若f(a)=f(e a),则f(1)=解析根据题意作出函数f(x)的图象,如图所示.由f(x)的定义域知,a>0,所以e a>1.易知y=e x的图象与y=x的图象无交点,所以e a≠a,所以要使f(a)=f(e a),则0<a<1<e a,所以=e ln e a,变形可得=e a,解得a=1e,则f(1)=f(e)=e ln e=e.11.[情境创新]德国著名数学家狄利克雷在数学领域成就显著,是解析数论的创始人之一.函数f(x)=1,为有理数,0,为无理数被称为狄利克雷函数,则关于函数f(x),下列说法正确的是(D)A.f(x)的定义域为{0,1}B.f(x)的值域为[0,1]C.∃x∈R,f(f(x))=0D.对于任意一个非零有理数T,f(x+T)=f(x)对任意x∈R恒成立解析由题意知f(x)的定义域为R,值域为{0,1},故A,B错误;因为f(x)=0或f(x)=1,所以当f(x)=0时,f(f(x))=f(0)=1,当f(x)=1时,f(f(x))=f(1)=1,故C错误;对于任意一个非零有理数T,若x为有理数,则x+T也为有理数,则f(x)=f(x+T)=1,若x为无理数,则x+T也为无理数,则f(x+T)=f(x)=0,综上可得,对于任意一个非零有理数T,f(x+T)=f(x)对任意x∈R恒成立,故D正确.故选D.12.[探索创新/多选/2024江西名校联考]若存在M,使得f(x)≥M对任意x∈D恒成立,则函数f(x)在D上有下界,其中M为函数f(x)的一个下界,若存在N,使得f(x)≤N对任意x∈D恒成立,则函数f(x)在D上有上界,其中N为函数f(x)的一个上界,如果一个函数既有上界又有下界,那么称该函数有界,则下列说法正确的是(ABD)A.2是y=x+1(x∈(2,+∞))的一个下界B.y=ln有上界无下界C.y=x e x有上界无下界D.y=cos2+1有界解析对选项A,y=x+1在(2,+∞)上单调递增,故y>2+12=52≥2,A正确;对选项B,y=ln,则y'=1-ln2,当x∈(0,e)时,y'>0,函数单调递增,当x∈(e,+∞)时,y'<0,函数单调递减,故函数在x=e时有最大值为1e,无最小值,即y≤1e恒成立,B正确;对选项C,当x趋近于+∞时,y=x e x趋近于+∞,C错误;对选项D,y=Hs2+1,则|y|=|Hs|2+1≤12+1≤1,即-1≤y≤1恒成立,D正确.故选ABD.。

高考数学一轮复习第二章函数概念与基本初等函数Ⅰ2-1函数及其表示学案理

高考数学一轮复习第二章函数概念与基本初等函数Ⅰ2-1函数及其表示学案理

【2019最新】精选高考数学一轮复习第二章函数概念与基本初等函数Ⅰ2-1函数及其表示学案理考纲展示► 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单地应用(函数分段不超过三段).考点1 函数的概念1.函数与映射的概念确定2.函数由定义域、________和值域三个要素构成.答案:对应关系3.相等函数:如果两个函数的________和________完全一致,则这两个函数相等,这是判断两函数相等的依据.答案:定义域对应关系[教材习题改编]以下属于函数的有________.①y=±x;②y2=x+1;③y=+;④y=x2-2(x∈N).答案:④解析:①②中,对于定义域内任意一个数x,可能有两个不同的y 值,不满足对应的唯一性,所以①②错误;③中,定义域是空集,而函数的定义域是非空的数集,所以③错误.函数与映射理解的误区:唯一性;非空数集.如图表示的是从集合A到集合B的对应,其中________是映射,________是函数.答案:①②④①②解析:函数与映射都要求对于集合A中的任一元素在集合B中都有唯一确定的元素与之对应,所以③不是映射也不是函数;①②④表示的对应是映射;①②是函数,由于④中集合A,B不是数集,所以不是函数.[典题1] (1)下列四个图象中,是函数图象是( )A.① B.①③④C.①②③ D.③④[答案] B[解析] ②中当x>0时,每一个x的值对应两个不同的y值,因此不是函数图象;①③④中每一个x的值对应唯一的y值,因此是函数图象.故选B.(2)下列各组函数中,表示同一函数的是( )A.f(x)=|x|,g(x)=x2B.f(x)=,g(x)=()2C.f(x)=,g(x)=x+1D.f(x)=·,g(x)=x2-1[答案] A[解析] A中,g(x)=|x|,∴f(x)=g(x);B中,f(x)=|x|(x∈R),g(x)=x(x≥0),∴两函数的定义域不同;C中,f(x)=x+1(x≠1),g(x)=x+1(x∈R),∴两函数的定义域不同;D中,f(x)=·(x+1≥0且x-1≥0),f(x)的定义域为{x|x≥1};g(x)=(x2-1≥0),g(x)的定义域为{x|x≥1或x≤-1}.∴两函数的定义域不同.故选A.(3)下列集合A到集合B的对应f中:①A={-1,0,1},B={-1,0,1},f:A中的数平方;②A={0,1},B={-1,0,1},f:A中的数开方;③A=Z,B=Q,f:A中的数取倒数;④A=R,B={正实数},f:A中的数取绝对值.是从集合A到集合B的函数的为________.[答案] ①[解析] ②中,由于1的开方数不唯一,因此f不是A到B的函数;③中,A中的元素0在B中没有对应元素;④中,A中的元素0在B中没有对应元素.[点石成金] 函数的三要素:定义域、值域、对应法则.这三要素不是独立的,值域可由定义域和对应法则唯一确定.因此当且仅当定义域和对应法则都相同时,函数才是同一函数.特别值得说明的是,对应法则是就效果而言的(判断两个函数的对应法则是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应法则算出的函数值是否相同)不是指形式上的.即对应法则是否相同,不能只看外形,要看本质;若是用解析式表示的,要看化简后的形式才能正确判断.考点2 函数的定义域对函数y=f(x),x∈A,其中x叫做自变量,x的取值范围A叫做定义域,与x的值对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做值域.(1)[教材习题改编]函数f(x)=+的定义域为( )A.[0,2)B.(2,+∞)C.[0,2)∪(2,+∞)D.(-∞,2)∪(2,+∞)答案:C (2)[教材习题改编]若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是( )A BC D答案:B 定义域问题的两个易错点:忽略定义域;化简后求定义域.(1)已知长方形的周长为12,设一边长为x,则其面积y关于x的函数解析式为________.答案:y=x(6-x)(0<x<6)解析:因为长方形一边长为x,则另一边长为=6-x,所以y=x(6-x).又x>0,6-x>0,所以0<x<6.如果不考虑x的范围,会扩大x的范围,这样会使实际问题失去意义.(2)函数y=的定义域为________.答案:(-∞,1)∪(1,+∞)解析:要使函数有意义,应使x-1≠0,即x≠1,所以函数定义域为(-∞,1)∪(1,+∞).本题如果对解析式化简会有y===x+2,从而得函数定义域为R,所以在求解定义域时,不能对函数变形、化简,以免定义域发生变化.[考情聚焦] 函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,研究函数问题必须树立“定义域优先”的观念.求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴.主要有以下几个命题角度:角度一求给定函数解析式的定义域[典题2] (1)[2017·山东淄博月考]函数f(x)=的定义域是( )A.(0,2)B.(0,1)∪(1,2)D.(0,1)∪(1,2]C.(0,2][答案] D [解析] 要使函数有意义,则有即所以0<x≤2且x≠1,所以函数f(x)的定义域为(0,1)∪(1,2],故选D. (2)[2017·山东青州高三模拟]函数f(x)=ln(x-1)+的定义域为( )A .(1,2)B .[1,2)C .(1,2]D .[1,2][答案] A[解析] 函数f(x)=ln(x -1)+的定义域为⇒1<x<2,故选A.角度二求抽象函数的定义域[典题3] (1)若函数f(x2+1)的定义域为[-1,1],则f(lg x)的定义域为( )A .[-1,1]B .[1,2]C .[10,100]D .[0,lg 2][答案] C[解析] 因为f(x2+1)的定义域为[-1,1],则-1≤x≤1,故0≤x2≤1,所以1≤x2+1≤2.因为f(x2+1)与f(lg x)是同一个对应法则,所以1≤lg x≤2,即10≤x≤100, 所以函数f(lg x)的定义域为[10,100].(2)[2017·河北唐山模拟]已知函数f(x)的定义域是[0,2],则函数g(x)=f +f 的定义域是________.[答案] ⎣⎢⎡⎦⎥⎤12,32 [解析] 因为函数f(x)的定义域是[0,2],所以函数g(x)=f +f中的自变量x 需要满足⎩⎪⎨⎪⎧0≤x+12≤2,0≤x-12≤2,解得≤x≤,所以函数g(x)的定义域是.角度三已知定义域确定参数问题[典题4] [2017·安徽合肥模拟]若函数f(x)=的定义域为R,则a的取值范围为________.[答案] [-1,0][解析] 函数f(x)的定义域为R,所以2x2+2ax-a-1≥0对x∈R恒成立,即2x2+2ax-a≥20,x2+2ax-a≥0恒成立,因此有Δ=(2a)2+4a≤0,解得-1≤a≤0.[点石成金] 求函数定义域的两种方法函数的表示法表示函数的常用方法有:________、________、________.答案:解析法图象法列表法[典题5] (1)已知f=lg x,则f(x)=________.[答案] lg (x>1)[解析] 令t =+1(t >1),则x =,∴f(t)=lg ,即f(x)=lg (x >1).(2)已知f(x)是一次函数,且满足3f(x +1)-2f(x -1)=2x +17,则f(x)=________. [答案] 2x +7[解析] 设f(x)=ax +b(a≠0),则3f(x +1)-2f(x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立,∴解得⎩⎪⎨⎪⎧a =2,b =7,∴f(x)=2x +7.(3)已知f(x)满足2f(x)+f =3x ,则f(x)=________.[答案] 2x -(x≠0)[解析] ∵2f (x)+f =3x ,① 以代替①式中的x(x≠0),得2f +f(x)=.②①×2-②,得3f(x)=6x -,∴f(x)=2x -(x ≠0).(4)[2017·山东青岛一中检测]奇函数f(x)在(0,+∞)上的表达式为f(x)=x +,则在(-∞,0)上f(x)的表达式为f(x)=________.[答案] x --x[解析] 设x<0,则-x>0,∴f(-x)=-x +.又f(x)为奇函数,∴f(x)=-f(-x)=x -, 即x∈(-∞,0)时,f(x)=x -. [点石成金] 求函数解析式的方法1.已知f(+1)=x +2,则f(x)=________.答案:x2-1(x≥1)解析:令t =+1,∴t≥1,x =(t -1)2,则f(t)=(t -1)2+2(t -1)=t2-1,∴f(x)=x2-1(x ≥1).2.已知f(x)为二次函数且f(0)=3,f(x +2)-f(x)=4x +2,则f(x)的解析式为________. 答案:f(x)=x2-x +3解析:设f(x)=ax2+bx +c(a≠0), 又f(0)=c =3,∴f(x)=ax2+bx +3,∴f(x +2)-f(x)=a(x +2)2+b(x +2)+3-(ax2+bx +3)=4ax+4a +2b =4x +2. ∴∴⎩⎪⎨⎪⎧a =1,b =-1.∴f(x)=x2-x +3.考点4 分段函数及其应用1.分段函数的定义若函数在其定义域内,对于定义域内的不同取值区间,有着不同的________,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.答案:对应关系 2.分段函数的性质(1)分段函数的定义域是各段函数解析式中自变量的取值集合的________.(2)分段函数的值域是各段函数值的________,它的最大值取各段最大值中最大的,最小值取各段最小值中最小的.(3)分段函数的单调性,首先应该判断各段函数的单调性,若每一段函数单调性一致,再判断分界点处函数值的关系,若符合单调性定义,则该函数在整个定义域上单调递增或递减;若不符合,则必须分区间说明单调性.答案:(1)并集(2)并集[考情聚焦] 分段函数是一类重要的函数,是高考的命题热点,多以选择题或填空题的形式呈现,试题难度不大,多为中低档题.主要有以下几个命题角度:角度一求分段函数的函数值或取值范围[典题6] [2017·广东广州模拟]设函数f(x)=则f(f(4))=________;若f(a)<-1,则a的取值范围为________.[答案] 5 ∪(1,+∞)[解析] f(4)=-2×42+1=-31,f(f(4))=f(-31)=log2(1+31)=5.当a≥1时,由-2a2+1<-1,得a2>1,解得a>1;当a<1时,由log2(1-a)<-1,得log2(1-a)<log2,∴0<1-a<,∴<a<1.即a的取值范围为∪(1,+∞).角度二分段函数的图象与性质的应用[典题7] 对任意实数a ,b 定义运算“⊗”:a ⊗b =设f(x)=(x2-1)⊗(4+x),若函数y =f(x)+k 的图象与x 轴恰有三个不同交点,则k 的取值范围是( )A .(-2,1)B .[0,1]C .[-2,0)D .[-2,1)[答案] D[解析] 解不等式x2-1-(4+x)≥1,得x≤-2或x≥3.解x2-1-(4+x)<1,得-2<x<3.所以f(x)=⎩⎪⎨⎪⎧x +4,-∞,-2]∪[3,+,x2-1,-2,其图象如图实线所示.由图可知,当-2≤k<1时,函数y =f(x)+k 的图象与x 轴恰有三个不同交点,故选D.[点石成金] 分段函数应用的常见题型与破解策略间进行分别求解,然后整合.[方法技巧] 1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质和图象的基础.因此,我们一定要树立函数定义域优先意识.3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、解方程组法.[易错防范] 1.求函数的解析式时要充分根据题目的类型选取相应的方法,同时要注意函数的定义域,如已知f()=x +1,求函数f(x)的解析式时,通过换元的方法可得f(x)=x2+1,这个函数的定义域是[0,+∞),而不是(-∞,+∞).2.求分段函数应注意的问题:在求分段函数的值f(x0)时,首先要判断x0属于定义域的哪个子集,然后再代入相应的关系式.真题演练集训1.[2013·大纲全国卷]已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为( )A .(-1,1)B .⎝ ⎛⎭⎪⎫-1,-12 C .(-1,0)D .⎝ ⎛⎭⎪⎫12,1 答案:B解析:∵f(x)的定义域为(-1,0),∴-1<2x +1<0,∴-1<x<-. 2.[2015·新课标全国卷Ⅱ]设函数f(x)=则f(-2)+f(log212)=( )A .3B .6C .9D .12答案:C解析:∵ -2<1,∴ f(-2)=1+log2(2+2)=1+log24=1+2=3.∵ log212>1,∴ f(log212)=2log212-1==6.∴ f(-2)+f(log212)=3+6=9.故选C. 3.[2015·浙江卷]存在函数f(x)满足:对任意x∈R都有( )A.f(sin 2x)=sin xB.f(sin 2x)=x2+xC.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|答案:D解析:取特殊值法.取x=0,,可得f(0)=0,1,这与函数的定义矛盾,所以选项A错误;取x=0,π,可得f(0)=0,π2+π,这与函数的定义矛盾,所以选项B错误;取x=1,-1,可得f(2)=2,0,这与函数的定义矛盾,所以选项C错误;取f(x)=,则对任意x∈R都有f(x2+2x)==|x+1|,故选项D正确.综上可知,故选D.4.[2014·山东卷]函数f(x)=的定义域为( )A.B.(2,+∞)C.∪(2,+∞)D.∪[2,+∞)答案:C解析:(log2x)2-1>0,即log2x>1或log2x<-1,解得x>2或0<x<,故所求的定义域是∪(2,+∞).5.[2014·上海卷]设f(x)=若f(0)是f(x)的最小值,则a的取值范围为( )B.[-1,0]A.[-1,2]D.[0,2]C.[1,2]答案:D解析:∵当x≤0时,f(x)=(x-a)2,又f(0)是f(x)的最小值,∴a≥0.当x>0时,f(x)=x++a≥2+a,当且仅当x=1时等号成立.要满足f(0)是f(x)的最小值,需2+a≥f(0)=a2,即a2-a-2≤0,解得-1≤a≤2,∴a的取值范围是0≤a≤2.故选D.6.[2016·江苏卷]函数y=的定义域是________.答案:[-3,1]解析:要使函数y=有意义,则3-2x-x2≥0,解得-3≤x≤1,则函数y=的定义域是[-3,1].课外拓展阅读已知定义域求参数问题[典例1] 已知函数y=的定义域为R,求实数k的值.[解] 函数y=的定义域即使k2x2+3kx+1≠0的实数x的集合.由函数的定义域为R,得方程k2x2+3kx+1=0无解.当k=0时,函数y==1,函数的定义域为R,因此k=0符合题意;当k≠0时,k2x2+3kx+1=0无解,即Δ=9k2-4k2=5k2<0,不等式不成立.所以实数k的值为0.归纳总结已知函数的定义域,逆向求解函数中参数的取值,需运用分类讨论以及转化与化归的思想方法.转化与化归的思想方法是通过某种转化过程,将一个难以解决的问题转化为一个已经解决或者比较容易解决的问题,从而获解.如本题中将求参问题转化为方程无解的问题.[典例2] 已知函数y=(a<0且a为常数)在区间(-∞,1]上有意义,求实数a的取值范围.[解] 由题意知ax+1≥0,a<0,所以x≤-,即函数的定义域为.因为函数在(-∞,1]上有意义,所以(-∞,1]⊆,所以-≥1.又a<0,所以-1≤a<0,即a的取值范围是[-1,0).温馨提示函数在(-∞,1]上有意义,说明函数的定义域包含区间(-∞,1],使函数有意义的自变量的集合是定义域的子集.已知分段函数图象求解析式已知函数的图象求函数的解析式y=f(x),如果自变量x在不同的区间上变化时,函数y=f(x)的解析式也不同,应分类求解.此时应根据图象,结合已学过的基本函数的图象,选择相应的解析式,用待定系数法求解,其函数解析式一般为分段函数.要注意写解析式时各区间端点的值,做到不重也不漏.[典例3] 根据如图所示的函数y=f(x)的图象,写出函数的解析式.[解] 当-3≤x<-1时,函数y=f(x)的图象是一条线段(右端点除外),设f(x)=ax +b(a≠0),将点(-3,1),(-1,-2)代入,可得f(x)=-x -;当-1≤x<1时,同理可设f(x)=cx +d(c≠0),将点(-1,-2),(1,1)代入,可得f(x)=x -; 当1≤x<2时,f(x)=1.综上f(x)=⎩⎪⎨⎪⎧-32x -72,-3≤x<-1,32x -12,-1≤x<1,1,1≤x<2.方法探究由图象求函数的解析式,需充分挖掘图象中提供的点的坐标,合理利用待定系数法求解.对于分段函数,需观察各段图象的端点是空心点还是实心点,正确写出各段解析式对应的自变量的范围.。

最新高考数学(文)第二章 函数的概念及其基本性质2-2-1习题及答案

最新高考数学(文)第二章 函数的概念及其基本性质2-2-1习题及答案

1.设函f (x )=ln (1+x )-ln (1-x ),则f (x )是( )A .奇函,且在(0,1)上是增函B .奇函,且在(0,1)上是减函C .偶函,且在(0,1)上是增函D .偶函,且在(0,1)上是减函答案 A解析 由题意可得,函f (x )的定义域为(-1,1),且f (x )=ln 1+x 1-x=ln ⎝ ⎛⎭⎪⎫21-x -1,易知y =21-x -1在(0,1)上为增函,故f (x )在(0,1)上为增函,又f (-x )=ln (1-x )-ln (1+x )=-f (x ),故f (x )为奇函,选A.2.已知定义在R 上的函f (x )=2|x -m |-1(m 为实)为偶函.记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a 答案 C解析 由f (x )=2|x -m |-1是偶函得m =0,则f (x )=2|x |-1.当x ∈[0,+∞)时,f (x )=2x -1递增,又a =f (log 0.53)=f (|log 0.53|)=f (log 23),c =f (0),且0<log 23<log 25,则f (0)<f (log 23)<f (log 25),即c <a <b .3.下列函中,满足“f (x +y )=f (x )·f (y )”的单调递增函是( )A .f (x )=x12 B .f (x )=x 3C .f (x )=⎝ ⎛⎭⎪⎫12x D .f (x )=3x 答案 D解析 f (x )为指函模型,排除A 、B.又∵f (x )为单调递增函,排除C ,故选D.4.已知实x,y满足a x<a y(0<a<1),则下列关系式恒成立的是( )点击观看解答视频A.1x2+1>1y2+1B.ln (x2+1)>ln (y2+1)C.sin x>sin yD.x3>y3答案 D解析根据x>y,函f(x)=x3单调递增,故x3>y3,故选D.5.已知偶函f(x)在[0,+∞)上单调递减,f(2)=0.若f(x-1)>0,则x 的取值范围是________.答案(-1,3)解析∵f(2)=0,f(x-1)>0,∴f(x-1)>f(2),又∵f(x)是偶函且在[0,+∞)上单调递减,∴f(|x-1|)>f(2),∴|x-1|<2,∴-2<x-1<2,∴-1<x<3,∴x∈(-1,3).。

2018高考数学(文科)习题 第二章 函数的概念及其基本性质2-6 word版含答案

2018高考数学(文科)习题 第二章 函数的概念及其基本性质2-6 word版含答案

1.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >q答案 B解析 ∵0<a <b ,∴a +b2>ab ,又f (x )=ln x 在(0,+∞)上单调递增,故f (ab )<f ⎝⎛⎭⎪⎫a +b 2,即q >p ,∵r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =f ()ab =p ,∴p =r <q .故选B.2.函数f (x )=log 12(x 2-4)的单调递增区间为( )点击观看解答视频A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2) 答案 D解析 由x 2-4>0得x >2或x <-2,因此函数定义域为(-∞,-2)∪(2,+∞).令t =x 2-4,当x ∈(-∞,-2)时,t 随x 的增大而减小,y =log 12t 随t 的增大而减小,所以y =log 12(x 2-4)随x 的增大而增大,即f (x )在(-∞,-2)上单调递增.故选D.3.设a =log 37,b =21.1,c =0.83.1,则( ) A .b <a <c B .c <a <b C .c <b <a D .a <c <b答案 B解析 由3<7<9得log 33<log 37<log 39,∴1<a <2,由21.1>21=2得b >2,由0.83.1<0.80=1得c <1,因此c <a <b ,故选B.4.已知关于x 的方程⎝ ⎛⎭⎪⎫12x =1+lg a 1-lg a有正根,则实数a 的取值范围是( )A .(0,1)B .(0.1,10)C .(0.1,1)D .(10,+∞)答案 C解析 当x >0时,0<⎝ ⎛⎭⎪⎫12x <1,∵关于x 的方程⎝ ⎛⎭⎪⎫12x =1+lg a 1-lg a有正根,∴0<1+lg a 1-lg a <1,∴⎩⎪⎨⎪⎧1+lg a1-lg a <1,1+lg a 1-lg a >0,解得-1<lg a <0,∴0.1<a <1.故选C.5.函数y =2log 4(1-x )的图象大致是( )答案 C解析 函数y =2log 4(1-x )的定义域为(-∞,1),排除A 、B ;又函数y =2log 4(1-x )在定义域内单调递减,排除D.选C.6.若a =log 43,则2a +2-a=________. 答案433解析 ∵a =log 43=log 23,∴2a+2-a=2log 23 +2-log 23=3+13=433.。

高考数学(文科)习题 第二章 函数的概念及其基本性质2-4-2 Word版含答案

高考数学(文科)习题 第二章 函数的概念及其基本性质2-4-2 Word版含答案

1.若幂函数f (x )的图象经过点⎝ ⎛⎭⎪⎫3,33,则其定义域为( ) A .{x |x ∈R ,且x >0}B .{x |x ∈R ,且x <0}C .{x |x ∈R ,且x ≠0}D .R 答案 A解析 设f (x )=x α,∴3α=33,α=-12,f (x )=x - 12 ,∴其定义域为{x |x >0},选A 项.2.下面给出4个幂函数的图象,则图象与函数的大致对应是( )A .①y =x13 ,②y =x 2,③y =x 12 ,④y =x -1 B .①y =x 3,②y =x 2,③y =x 12 ,④y =x -1C .①y =x 2,②y =x 3,③y =x 12 ,④y =x -1D .①y =x13 ,②y =x 12 ,③y =x 2,④y =x -1 答案 B解析 ②的图象关于y 轴对称,②应为偶函数,故排除选项C 、D.①由图象知,在第一象限内,图象下凸,递增的较快,所以幂函数的指数大于1,故排除A.选B.3.若f (x )=x 23 -x - 12 ,则满足f (x )<0的x 的取值范围是________.答案 (0,1)解析 令y 1=x 23 ,y 2=x - 12 ,则f (x )<0即为y 1<y 2.函数y 1=x 23 ,y 2=x - 12 的图象如图所示,由图象知:当0<x <1时,y 1<y 2,所以满足f (x )<0的x 的取值范围是(0,1).4.已知幂函数f (x )=(m 2-m -1)·x -5m -3在(0,+∞)上是增函数,则m =________.点击观看解答视频答案 -1解析 由已知得⎩⎪⎨⎪⎧ m 2-m -1=1,-5m -3>0,解得m =-1.。

高考数学专题《函数的概念及其表示》习题含答案解析

高考数学专题《函数的概念及其表示》习题含答案解析

专题3.1 函数的概念及其表示1.(2021·四川达州市·高三二模(文))已知定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,则(1)f =( )A .1-B .1C .13-D .13【答案】B 【解析】当0x =时,f (1)2(0)1f +=①;当1x =时,(0)2f f +(1)2=②,由此进行计算能求出f (1)的值.【详解】定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,∴当0x =时,f (1)2(0)1f +=,①当1x =时,(0)2f f +(1)2=,②②2⨯-①,得3f (1)3=,解得f (1)1=.故选:B2.(2021·浙江高一期末)已知231,1,()3,1,x x f x x x +⎧=⎨+>⎩…则(3)f =( )A .7B .2C .10D .12【答案】D 【解析】根据分段函数的定义计算.【详解】由题意2(3)3312f =+=.故选:D .3.(2021·全国高一课时练习)设3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,则(5)f 的值为( )A .16B .18C .21D .24练基础【解析】根据分段函数解析式直接求解.【详解】因为3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,所以(5)(10)(15)15318f f f ===+=.故选:B.4.(2021·浙江湖州市·湖州中学高一开学考试)若函数213()22f x x x =-+的定义域和值域都是[1,]b ,则b =( )A .1B .3C .3-D .1或3【答案】B 【解析】根据函数213()22f x x x =-+在[1,]b 上为增函数,求出其值域,结合已知值域可求出结果.【详解】因为函数213()22f x x x =-+21(1)12x =-+在[1,]b 上为增函数,且定义域和值域都是[1,]b ,所以min ()(1)f x f =1=,2max 13()()22f x f b b b b ==-+=,解得3b =或1b =(舍),故选:B5.(上海高考真题)若是的最小值,则的取值范围为( ).A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]【答案】D 【详解】由于当0x >时,1()f x x a x=++在1x =时取得最小值2a +,由题意当0x ≤时,2()()f x x a =-应该是递减的,则0a ≥,此时最小值为2(0)f a =,因此22a a ≤+,解得02a ≤≤,选D .6.(广东高考真题)函数()f x =的定义域是______.【答案】[)()1,00,∞-⋃+由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案.【详解】由{100x x +≥≠,得1x ≥-且0x ≠.∴函数()f x =的定义域为:[)()1,00,-⋃+∞;故答案为[)()1,00,-⋃+∞.7.(2021·青海西宁市·高三一模(理))函数()f x 的定义域为[]1,1-,图象如图1所示,函数()g x 的定义域为[]1,2-,图象如图2所示.若集合()(){}0A x f g x ==,()(){}0B x g f x ==,则A B 中有___________个元素.【答案】3【解析】利用数形结合分别求出集合A 与集合B ,再利用交集运算法则即可求出结果.【详解】若()()0f g x =,则()0g x =或1-或1,∴{}1,0,1,2A =-,若()()0g f x =,则()0f x =或2,∴{}1,0,1B =-,∴{}1,0,1=- A B .故答案为:3.8.(2021·湖北襄阳市·襄阳五中高三二模)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是[)1,+∞,则函数()y f x =的定义域是_______.【答案】(]1,2【解析】令()()222111x x g x x x x +-=≥+-,根据函数值域的求解方法可求得()g x 的值域即为所求的()f x 的定义域.【详解】令()()222111x x g x x x x +-=≥+-,则()()222111111111x x x x g x x x x x x x x+-+==+=+≥+-+--+,1y x x =- 在[)1,+∞上单调递增,10x x∴-≥,10111x x∴<≤-+,()12g x ∴<≤,()f x ∴的定义域为(]1,2.故答案为:(]1,2.9.(2021·黑龙江哈尔滨市第六中学校高三二模(文))已知函数()221,01,0x x f x x x⎧+≥⎪=⎨<⎪⎩,若()2f a =,则实数a =___________.【答案】1或【解析】分别令212a +=,212a=,解方程,求出方程的根即a 的值即可.【详解】当0a ≥,令212a +=,解得:1a =,当0a <,令212a =,解得:a =故1a =或,故答案为:1或.10.(2021·云南高三二模(理))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则t 的取值范围为________.【答案】171,12⎤-⎥⎦【解析】用n 表示出m ,结合二次函数的性质求得t n m =-的取值范围.【详解】画出()f x 图象如下图所示,3114⨯+=,令()2140x x -=>,解得x =由()(),n m f n f m >=得2311m n +=-,223n m -=,且1n <≤所以(222121333n t n m n n n n -=-=-=-++<≤,结合二次函数的性质可知,当131223n =-=⎛⎫⨯- ⎪⎝⎭时,t 取得最大值为2133217322312⎛⎫-⨯++= ⎪⎝⎭,当n =时,t取得最小值为212133-⨯=-.所以t的取值范围是171,12⎤⎥⎦.故答案为:171,12⎤⎥⎦1.(2021·云南高三二模(文))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则( )A .t 没有最小值B .t1-C .t 的最小值为43D .t 的最小值为1712【答案】B 【解析】先作出分段函数图象,再结合图象由()()f n f m =,得到m 与n 的关系,消元得关于n 的函数,最后求最值.【详解】如图,作出函数()f x 的图象,()()f n f m = 且n m >,则1m £,且1n >,练提升2311m n ∴+=-,即223n m -=.由21014n n >⎧⎨<-≤⎩,解得1n <≤.222211317(32)(333212n n m n n n n -⎡⎤∴-=-=---=--+⎢⎥⎣⎦,又1n <≤ ∴当n =时,()min 1n m -=-.故选:B.2.(2020·全国高一单元测试)已知函数21,0,()2,0,x x f x x x ⎧+≤=⎨->⎩,若()05f x =,则0x 的取值集合是( )A .{2}-B .5,22⎧⎫-⎨⎬⎩⎭C .{2,2}-D .52,2,2⎧⎫--⎨⎬⎩⎭【答案】A 【解析】根据分段函数值的求解方法,对00x ≤与00x >两种情况求解,可得答案.【详解】若00x ≤,可得2015x +=,解得02x =-,(02x =舍去);若00x >,可得02x -=5,可得052x =-,与00x >相矛盾,故舍去,综上可得:02x =-.故选:A.3.【多选题】(2021·全国高一课时练习)(多选题)下列函数中,定义域是其值域子集的有( )A .865y x =+B .225y x x =--+C .y =D .11y x=-【答案】AC 【解析】分别求得函数的定义域和值域,利用子集的定义判断.【详解】A 函数的定义域和值域都是R ,符合题意;B.定义域为R ,因为2225(1)66y x x x =--+=-++≤,所以函数值域为(,6]-∞,值域是定义域的真子集不符合题意;C.易得定义域为[1,)+∞,值域为[0,)+∞,定义域是值域的真子集;D.定义域为{|0}x x ≠,值域为{|1}x x ≠-,两个集合只有交集;故选:AC4.【多选题】(2021·全国高一课时练习)已知f (x )=2211x x+-,则f (x )满足的关系有( )A .()()f x f x -=-B .1f x ⎛⎫⎪⎝⎭= ()f x -C .1f x ⎛⎫⎪⎝⎭=f (x )D .1(()f f x x-=-【答案】BD 【解析】根据函数()f x 的解析式,对四个选项逐个分析可得答案.【详解】因为f (x )= 2211x x+-,所以()f x -=221()1()x x +---=2211x x+-()f x =,即不满足A 选项;1f x ⎛⎫ ⎪⎝⎭=221111x x ⎛⎫+ ⎪⎝⎭⎛⎫- ⎪⎝⎭=2211x x +-,1f x ⎛⎫⎪⎝⎭=()f x -,即满足B 选项,不满足C 选项,1(f x -=221111x x ⎛⎫+- ⎪⎝⎭⎛⎫-- ⎪⎝⎭=2211x x +-,1()()f f x x -=-,即满足D 选项.故选:BD5.【多选题】(2021·全国高三其他模拟)已知函数21,0,()2,0,x x f x x x x +<⎧=⎨-+≥⎩令()()()g x f f x =,则下列说法正确的是( )A .()10g -=B .方程()2g x =有3个根C .方程()2g x =-的所有根之和为-1D .当0x <时,()()f xg x ≤【答案】ACD 【解析】由题意知()10f -=可得()10g -=;令()f x u =,因为方程()2f u =没有实根,即()2g x =没有实根;令()u f x =,则方程()2g x =-,即()2f u =-,通过化简与计算即可判断C ;当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,即可判断D .【详解】对于A 选项,由题意知()10f -=,则()()()()1100g f f f -=-==,所以A 选项正确;对于B 选项,令()f x u =,则求()()()2g x f f x ==的根,即求()2f u =的根,因为方程()2f u =没有实根,所以()2g x =没有实根,所以选项B 错误;对于C 选项,令()u f x =,则方程()2g x =-,即()2f u =-,得112,03u u u +=-<⇒=-,2222,01u u u u -+=-≥⇒=+,由方程1()f x u =得13(0)x x +=-<或223(0)x x x -+=-≥,解得4x =-或3x =,易知方程2()f x u =,没有实数根,所以方程()2g x =-的所有根之和为-1,选项C 正确;对于D 选项,当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,当0x <时,函数()g x 的图象不在()f x 的图象的下方,所以D 选项正确,故选:ACD .6.【多选题】(2021·全国高三专题练习)已知函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,则( )A .()f x 的图象过点()1,0和()1,0-B .()f x 在定义域上为奇函数C .若当1x >时,有()0f x >,则当10x -<<时,()0f x <D .若当01x <<时,有()0f x <,则()0f x >的解集为()1,+∞【答案】AC 【解析】根据抽象函数的性质,利用特殊值法一一判断即可;【详解】解:因为函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,令1x y ==,则()()()111f f f =+,则()10f =,令1x y ==-,则()()()111f f f =-+-,则()10f -=,所以()f x 过点()1,0和()1,0-,故A 正确;令1y =-,则()()()1f x f x f -=+-,即()()f x f x -=,所以()f x 为偶函数,故B 错误;令1y x =-,则()()110f f x f x ⎛⎫-=+-= ⎪⎝⎭,则()1f f x x ⎛⎫-=- ⎪⎝⎭当1x >时,所以()11,0x -∈-,又()0f x >,则10f x ⎛⎫-< ⎪⎝⎭,即当10x -<<时,()0f x <,故C 正确;令1y x =,则()()110f f x f x ⎛⎫=+= ⎪⎝⎭,则()1f f x x ⎛⎫=- ⎪⎝⎭,当01x <<时,所以()11,x ∈+∞,又()0f x <,则10f x ⎛⎫>⎪⎝⎭,即当1x >时,()0f x >,因为()f x 是偶函数,所以1x <-时,()0f x >,所以()0f x >的解集为()(),11,-∞-+∞U ,故D 错误;故选:AC7.【多选题】(2021·全国高三专题练习)已知函数()22,023,0x x x f x x x ⎧-<=⎨-+≥⎩,则( )A .()13f f -⎡⎤⎣=-⎦B .若()1f a =-,则2a =C .()f x 在R 上是减函数D .若关于x 的方程()f x a =有两解,则(]0,3a ∈【答案】ABD 【解析】根据函数解析式,代入数据可判断A 、B 的正误,做出()f x 的图象,可判断C 、D 的正误,即可得答案.【详解】对于A :由题意得:2(1)(1)2(1)3f -=--⨯-=,所以()(3)23331f f f -==-⨯+=-⎡⎤⎣⎦,故A 正确;对于B :当0a <时,2()21f a a a =-=-,解得a =1,不符合题意,舍去当0a ≥时,()231f a a =-+=-,解得2a =,符合题意,故B 正确;对于C :做出()f x 的图象,如下图所示:所以()f x 在R 上不是减函数,故C 错误;对于D :方程()f x a =有两解,则()y f x =图象与y a =图象有两个公共点,如下图所示所以(]0,3a ∈,故D 正确.故选:ABD8.(2021·浙江高三月考)已知0a >,设函数2(22),(02)(),(2)x a x x a f x ax x a ⎧-++<<+=⎨≥+⎩,存在0x 满足()()00f f x x =,且()00f x x ≠,则a 的取值范围是______.1a ≤<【解析】求得()2x ax a y =≥+关于y x =对称所得函数的解析式,通过构造函数,结合零点存在性列不等式,由此求得a 的取值范围.【详解】由于()f x 存在0x 满足()()0f f x x=,且()00f x x ≠,所以()f x 图象上存在关于y x =对称的两个不同的点.对于()()2,2y ax x a y a a =≥+≥+,交换,x y 得x ay =,即()()12,2y x x a a y a a=≥+≥+,构造函数()()22111222222g x x a x x x a x x x a a a a ⎛⎫⎛⎫=-++-=-++-=-++- ⎪ ⎪⎝⎭⎝⎭(()22a a x a +≤<+),所以()g x 的零点122a a +-满足()12222a a a a a+≤+-<+,由1222a a a +-<+得()()21111001a a a a a a a a+---==<⇒<<,由()1222a a a a+≤+-得3210a a -+≤,即()()()()31111a a a a a a a --+=+---()()()21110a a a a a a ⎛=+--=--≤ ⎝,由于01a <<1a ≤<.1a ≤<9. (2021·浙江高一期末)已知函数()1f x x =-+,()()21g x x =-,x ∈R .(1)在图1中画出函数()f x ,()g x 的图象;(2)定义:x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为()()(){}min ,m x f x g x =,请分别用图象法和解析式法表示函数()m x .(注:图象法请在图2中表示,本题中的单位长度请自己定义且标明)【答案】(1)图象见解析;(2)()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩;图象见解析.【解析】(1)由一次函数和二次函数图象特征可得结果;(2)根据()m x 定义可分段讨论得到解析式;由解析式可得图象.【详解】(1)()f x ,()g x 的图象如下图所示:(2)当0x ≤时,()211x x -≥-+,则()()1m x f x x ==-+;当01x <<时,()211x x -<-+,则()()()21m x g x x ==-;当1≥x 时,()211x x -≥-+,则()()1m x f x x ==-+;综上所述:()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩.()m x图象如下图所示:10. (2021·全国高一课时练习)已知函数()12f x x x =++-,()3g x x =-.(1)在平面直角坐标系里作出()f x 、()g x 的图象.(2)x R ∀∈,用()min x 表示()f x 、()g x 中的较小者,记作()()(){}min ,x f x g x =,请用图象法和解析法表示()min x ;(3)求满足()()f x g x >的x 的取值范围.【答案】(1)答案见解析;(2)答案见解析;(3)()(),20,-∞-+∞ .【解析】(1)化简函数()f x 、()g x 的解析式,由此可作出这两个函数的图象;(2)根据函数()min x 的意义可作出该函数的图象,并结合图象可求出函数()min x 的解析式;(3)根据图象可得出不等式()()f x g x >的解集.【详解】(1)()21,2123,1212,1x x f x x x x x x -≥⎧⎪=++-=-<<⎨⎪-≤-⎩,()3,333,3x x g x x x x -≥⎧=-=⎨-<⎩.则对应的图象如图:(2)函数()min x的图象如图:解析式为()3,20312,21min 3,103,3x x x x x x x x x -<-≤<⎧⎪--≤≤-⎪=⎨-<<⎪⎪-≥⎩或;(3)若()()f x g x >,则由图象知在A 点左侧,B 点右侧满足条件,此时对应的x 满足0x >或2x <-,即不等式()()f x g x >的解集为()(),20,-∞-+∞ .1.(山东高考真题)设f (x )=<x <1―1),x ≥1,若f (a )=f (a +1),则=( )A .2B .4C .6D .8【答案】C【解析】由x ≥1时f (x )=2(x ―1)是增函数可知,若a ≥1,则f (a )≠f (a +1),所以0<a <1,由f (a )=f (a+1)得a =2(a +1―1),解得a =14,则=f (4)=2(4―1)=6,故选C.2.(2018上海卷)设D 是含数1的有限实数集,f (x )是定义在D 上的函数,若f (x )的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1)的可能取值只能是( )A .3B .32 C .33 D .0【答案】B 【解析】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转π6个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f (1)=3,33,0时,此时得到的圆心角为π3,π6,0,然而此时x=0或者x=1时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y ,因此只有当练真题x=32,此时旋转π6,此时满足一个x 只会对应一个y ,故选:B .3. (2018年新课标I 卷文)设函数f (x )=2―x , x ≤01 , x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A. (―∞ , ―1]B. (0 , +∞)C. (―1 , 0)D. (―∞ , 0)【答案】D【解析】将函数f (x )的图象画出来,观察图象可知会有2x <02x <x +1,解得x <0,所以满足f (x +1)<f (2x )的x 的取值范围是(―∞ , 0),故选D.4.(浙江高考真题(文))已知函数()2,1{66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦,()f x 的最小值是.【答案】162-【解析】如图根据所给函数解析式结合其单调性作出其图像如图所示,易知()()min 12,62f f f x f ⎡⎤-=-==⎣⎦.5. (2018·天津高考真题(文))已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.【答案】1,28⎡⎤⎢⎥⎣⎦【解析】由题意分类讨论0x >和0x ≤两种情况,结合恒成立的条件整理计算即可求得最终结果.【详解】分类讨论:①当0x >时,()f x x ≤即:222x x a x -+-≤,整理可得:21122a x x ≥-+,由恒成立的条件可知:()2max 11022a x x x ⎛⎫≥-+> ⎪⎝⎭,结合二次函数的性质可知:当12x =时,2max 1111122848x x ⎛⎫-+=-+= ⎪⎝⎭,则18a ≥;②当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+,由恒成立的条件可知:()()2min3230a x x x ≤--+-≤≤,结合二次函数的性质可知:当3x =-或0x =时,()2min322x x --+=,则2a ≤;综合①②可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦,故答案为1,28⎡⎤⎢⎥⎣⎦.6.(2018·浙江高考真题)已知λ∈R,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【答案】(1,4) (1,3](4,)⋃+∞ 【解析】分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数λ的取值范围.详解:由题意得240x x ≥⎧⎨-<⎩或22430x x x <⎧⎨-+<⎩,所以24x ≤<或12x <<,即14x <<,不等式f (x )<0的解集是(1,4),当4λ>时,()40f x x =->,此时2()430,1,3f x x x x =-+==,即在(,)λ-∞上有两个零点;当4λ≤时,()40,4f x x x =-==,由2()43f x x x =-+在(,)λ-∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(1,3](4,)⋃+∞.。

第二章 函数概念与基本初等函数(题)1-3

第二章 函数概念与基本初等函数(题)1-3

第二章函数概念与基本初等函数第一节函数及其表示最新考纲:1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念;2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;3.了解简单的分段函数,并能简单地应用.知识梳理1.函数与映射的概念提示:函数是特殊的映射,二者区别在于映射定义中的两个集合是非空集合,可以不是数集,而函数中的两个集合必须是非空数集.2.函数的相关概念(1)函数的三要素是定义域、值域和对应关系.(2)相等函数如果两个函数的定义域和对应关系完全一致,则这两个函数相等.问题探究2:如果两个函数的定义域与值域相同,则它们是否为相等函数?提示:不一定,如函数f(x)=x和函数g(x)=-x的定义域和值域均为R,但两者显然不是同一函数.3.函数的表示法表示函数的常用方法有:解析法、列表法、图象法.4.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.基础自测1.判断正误(在括号内打“√”或“×”)(1)函数f (x )=x 2-2x 与函数f (t )=t 2-2t 是同一个函数.( ) (2)函数y =1与函数y =x 0是相同函数.( )(3)若两个函数的定义域和值域相同,则这两个函数为相同函数.( ) (4)函数是特殊的映射.( )(5)分段函数的定义域等于各段函数定义域的并集,值域等于各段函数值域的并集.( ) 2.下列四组函数中,表示相等函数的一组是( )A .f (x )=x +1·x -1,g (x )=x 2-1 B .f (x )=x 2,g (x )=(x )2C .f (x )=x 2-1x -1,g (x )=x +1 D .f (x )=|x |,g (t )=t 23.(2015·江西重点中学一联)函数f (x )=3xx -2+lg(3-x )的定义域是( )A .(3,+∞)B .(2,3)C .[2,3)D .(2,+∞)4.(2016·沈阳二中阶段验收)已知函数f (x )=5|x |,g (x )=ax 2-x (a ∈R ).若f [g (1)]=1,则a =( )A .1B .2C .3D .-15.若函数f (x )在闭区间[-1,2]上的图象如图所示,则此函数的解析式为 .考点一 函数的表示方法1.表示函数的常用方法有:解析法、列表法、图象法.2.解析法就是把变量x ,y 之间的关系,用一个关系式y =f (x )来表示,通过关系式可以由x 的值求出y 的值.列表法是将变量x ,y 的取值列成表格,由表格直接反映出二者的关系;图象法就是把x ,y 之间的关系绘制成图象,图象上每个点的坐标就是相应的变量x ,y 的值.提醒:用解析式表示函数的优点是简明扼要,规范准确;列表法的优点是能鲜明地显现出自变量与函数值之间的数量关系;用图象表示函数的优点是形象直观,能清晰呈现函数的增减变化,点的对称,最大(或最小)值等性质.例1:(1)(2016·河南洛阳期中)下列图形可以表示函数y=f(x)图象的是( )(2)已知函数f(x)=x-1,若f(a)=3,则实数a= .点拨:集合A中任意一个x都有唯一确定的值f(x)与之对应,是判断函数的关键.对点训练1.下列函数中与函数y=-2x3相同的是( )A.y=x-2x B.y=-x-2x C.y=-2x3 D.y=x2-2 x2.设函数f:x→-x2+2x是实数集R到实数集R的映射,若对于实数t∈R,t不存在原象,则t的取值范围是 ( )A.(-∞,1) B.(1,+∞) C.(-∞,1] D.[1,+∞)3.已知函数f(x),g(x)分别由下表给出,则f[g(1)]= .考点二求函数的定义域确定函数定义域的原则(1)当函数y=f(x)用列表法给出时,函数的定义域是指表格中实数x的集合.(2)当函数y=f(x)用图象法给出时,函数的定义域是指图象在x轴上的投影所覆盖的实数的集合.(3)当函数y=f(x)用解析式给出时,函数的定义域是指使解析式有意义的实数的集合.(4)当函数y=f(x)由实际问题给出时,函数的定义域由实际问题的意义确定.提醒:确定函数的定义域是解决函数问题的关键.例2: (1)(2015·郑州第二次模拟)函数f (x )=12x2-1的定义域为( ) A.⎝ ⎛⎭⎪⎫0,12 B .(2,+∞) C.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D .⎝ ⎛⎦⎥⎤0,12∪[2,+∞) (2)(2015·银川模拟)已知函数f (2x +1)的定义域为(0,1),则f (x )的定义域是 .点拨:(1)求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集;(2)已知f (x )的定义域是[a ,b ],求f [g (x )]的定义域,是指满足a ≤g (x )≤b 的x 的取值范围,而已知f [g (x )]的定义域是[a ,b ],指的是x ∈[a ,b ].[拓展探究] (1)本例(2)改为f (x )的定义域为(0,1),求f (2x +1)的定义域,又如何求呢? (2)本例(2)的条件不变,求f (1-x )的定义域,如何求?考点三 分段函数对于分段函数给定自变量求函数值时,应根据自变量的范围,利用相应的解析式直接求解;若给定函数值求自变量,应根据函数每一段的解析式分别求解,但应注意检验该值是否在相应的自变量取值范围之内.提醒:分段函数是一个函数,而不是几个函数.处理分段函数问题时,首先要确定自变量的取值属于哪个区间段,再选取相应的对应关系,离开定义域讨论问题是产生错误的重要原因之一.例3:(1)(2015·新课标全国卷Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 2-x ,x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12(2)(2016·银川一中月考)设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0.若f [f (a )]≤2,则实数a 的取值范围是 .点拨:解决分段函数问题的关键是“对号入座”,即根据自变量取值的范围,准确确定相应的对应法则,代入相应的函数解析式,转化为一般的函数在指定区间上的问题,解完之后应注意检验自变量取值范围的应用.总之,解决分段函数的策略就是“分段函数,分段解决”,亦即应用分类讨论思想解决. 对点训练1.(2016·江西吉安一中上学期期中)已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,2x,x ≤0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=( )A .4B .14C .-4D .-142.设函数f (x )=⎩⎪⎨⎪⎧21-x,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)3.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为 .———————方法规律总结————————[方法技巧]1.判断对应是否为A 到B 的映射,即看A 中元素是否满足“每元有象”和“且象唯一”. 2.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域相同;二是对应法则相同. 3.在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集. [易错点睛]1.判断A 到B 的函数时,A 中不同元素可有相同的象,即可以多对一,不可以一对多;B 中元素可以无原象,即B 中元素可以有剩余.2.函数定义域是研究函数的基础依据,对函数性质的讨论,必须在定义域上进行,坚持定义域优先的原则.课时跟踪训练(四)一、选择题1.(2015·苏州模拟)下列四组函数中,表示同一函数的是( ) A .y =x -1与y =x -2B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lgx1002.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )3.如图,是张大爷晨练时所走的离家距离(y )与行走时间(x )之间的函数关系的图象.若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是 ( )4.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f [f (0)]=4a ,则实数a 等于( )A.12 B .45C .2D .9 5.(2015·湖南岳阳质检(二))设函数f (x )=lg 3+x 3-x ,则f ⎝ ⎛⎭⎪⎫x 3+f ⎝ ⎛⎭⎪⎫3x 的定义域为( )A .(-9,0)∪(0,9)B .(-9,-1)∪(1,9)C .(-3,-1)∪(1,3)D .(-9,-3)∪(3,9) 6.若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,34 B .⎝ ⎛⎭⎪⎫0,34 C.⎣⎢⎡⎦⎥⎤0,34 D .⎣⎢⎡⎭⎪⎫0,347.已知实数m ≠0,函数f (x )=⎩⎪⎨⎪⎧3x -m ,x ≤2,-x -2m ,x >2,若f (2-m )=f (2+m ),则实数m 的值为( )A .-83B .8C .-83或8D .-83或8或08.(2016·潍坊质检)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,0≤x <5,f x -,x ≥5,则f (2 014)=( )A .26B .17C .10D .59.设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,2,x >0,若f (-2)=f (0), f (-1)=-3,则关于x 的方程f (x )=x 的解的个数为( ) A .1 B .2 C .3 D .410.已知[x ]表示不超过实数x 的最大整数(x ∈R ),如:[-1.3]=-2,[0.8]=0,[3.4]=3.定义{x }=x -[x ],则⎩⎨⎧⎭⎬⎫12 014+⎩⎨⎧⎭⎬⎫22 014+⎩⎨⎧⎭⎬⎫32 014+…+⎩⎨⎧⎭⎬⎫2 0142 014=( ) A .2 013 B .2 0132 C .1 007 D .2 014二、填空题11.(2015·合肥二次质检)函数f (x )=ln ⎝⎛⎭⎪⎫1-1x -1的定义域是 . 12.(2015·南京模拟)设函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,f x -+2,x >0,则f (9)= .13.若集合A ={1,2,3,k },B ={4,7,a 4,a 2+3a },其中a ∈N *,k ∈N *,f :x →y =3x +1,x ∈A ,y ∈B 是从定义域A 到值域B 的一个函数,则a +k = . 三、解答题14.记f (x )=lg(2x -3)的定义域为集合M ,函数g (x )=1-2x -1的定义域为集合N ,求:(1)集合M 、N ;(2)集合M ∩N ,M ∪N .15.如图,点M 是边长为1的正方形ABCD 的边CD 的中点.当点P 在正方形的边上沿A —B —C 运动时,点P 经过的路程为x ,△APM 的面积为y ,求y 关于x 的函数关系式.16.已知函数f (x )=⎩⎪⎨⎪⎧x 2-6x +6, x ≥0,3x +4, x <0,若互不相等的实数x 1、x 2、x 3满足f (x 1)=f (x 2)=f (x 3),求x 1+x 2+x 3的取值范围.第二节 函数的值域与解析式最新考纲:1.了解求函数值域的方法,会求一些简单函数的值域;2.会求一些简单函数的解析式.知识梳理1.函数的值域(1)在函数y =f (x )中,与自变量x 的值相对应的y 的值叫函数值,函数值的集合叫函数的值域. (2)基本初等函数的值域 ①y =kx +b (k ≠0)的值域是R .②y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞;当a <0时,值域为⎝ ⎛⎦⎥⎤-∞,4ac -b 24a .③y =kx(k ≠0)的值域是{y |y ∈R 且y ≠0}. ④y =a x(a >0且a ≠1)的值域是(0,+∞). ⑤y =log a x (a >0且a ≠1)的值域是R . ⑥y =sin x ,y =cos x 的值域是[-1,1]. ⑦y =tan x 的值域是R .问题探究:函数的值域由什么决定? 提示:函数的值域由对应关系和定义域决定. 2.函数解析式的求法 (1)换元法:若已知f []gx的表达式,求f (x )的解析式,通常是令g (x )=t ,从中解出x=φ(t ),再将g (x )、x 代入已知解析式求得f (t )的解析式,即得函数f (x )的解析式,这种方法叫作换元法,需注意新设变量“t ”的范围.(2)待定系数法:若已知函数类型,可设出所求函数的解析式,然后利用已知条件列方程(组),再求系数.(3)消去法:若所给解析式中含有f (x )、f ⎝ ⎛⎭⎪⎫1x或f (x )、f (-x )等形式,可构造另一个方程,通过解方程组得到f (x ).(4)配凑法或赋值法:依据题目特征,能够由一般到特殊或由特殊到一般寻求普遍规律,求出解析式.基础自测1.判断正误(在括号内打“√”或“×”)(1)函数的解析式相同,定义域不同,值域也一定不同.( ) (2)同一函数的解析式是唯一确定的.( ) (3)函数y =1x 2+1的值域为(-∞,1].( ) (4)函数y =1-2xx +1的值域为{y |y ≠-2}.( )(5)若f (x )=x +1,则f (x )=x 2+1,x ∈R .( ) 2.函数f (x )=33x-3的值域为( ) A .(-∞,-1) B .(-1,0)∪(0,+∞) C .(-1,+∞) D .(-∞,-1)∪(0,+∞) 3.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2x D .g (x )=-3x 2-2x 4.(2016·西安质检(一))函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x <1,的值域为( )A .[-1,2]B .(-∞,2)C .(0,+∞)D .(-∞,-2)5.已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,则f (x )= .考点一 求函数的值域求函数值域的常用方法:(1)观察法;(2)换元法;(3)配方法;(4)单调性法;(5)基本不等式法;(6)分离常数法;(7)数形结合法.提醒:(1)求函数值域,一定要注意到定义域的范围;(2)利用换元法时,要及时确定新变量的取值范围.例1:求下列函数的值域: (1)y =x 2+2x (x ∈[0,3]); (2)y =x -3x +1;(3)y =x -1-2x ; (4)y =log 3x +log x 3-1.点拨:(1)当所给函数是分式的形式,且分子、分母是同次的,可考虑用分离常数法;(2)若与二次函数有关,可用配方法;(3)若函数解析式中含有根式,可考虑用换元法或单调性法;(4)当函数解析式结构与均值不等式有关,可考虑用均值不等式求解;(5)分段函数宜分段求解;(6)当函数的图象易画出时,还可借助于图象求解.[拓展探究] (1)本例中(2)变为y =x -3x +1,x ∈[1,+∞)时,其值域如何求? (2)本例中(2)变为y =x 2+3x +1(x >-1)时,其值域如何求?考点二 求函数的解析式函数的解析式是表示函数的一种方法,对于不是y =f (x )的形式,可根据题目的条件转化为该形式.提醒:求函数解析式时要关注定义域.例2:(1)已知 f (x +1)=x +2x ,求 f (x );(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式;(3)已知 f (x )满足2 f (x )+ f ⎝ ⎛⎭⎪⎫1x =3x ,求f (x ).点拨:求函数的解析式时要充分根据题目的类型选取相应的方法,同时要注意函数的定义域. 对点训练1.已知f (1-cos x )=sin 2x ,求f (x )的解析式.2.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1,试求f (x )的表达式.考点三 函数的定义域、值域及解析式的综合应用函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的部分,函数的值域是函数值的集合,它是由函数的定义域与对应关系确定,函数解析式是表示函数的一种方法,对于不是y =f (x )的形式,可根据题目的具体条件转化为该种形式.对于求出的解析式,一定要注意定义域的变化.提醒:解决函数的综合问题时,一般采取“定义域优先”的原则.例3:(1)(2015·山东卷)已知函数f (x )=a x+b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b = .(2)(2015·福建卷)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2,(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是 .点拨:(1)对定义域、值域的综合问题,要注意定义域对函数值域的限制作用.即在定义域内用相应方法求值域;(2)若解析式中含有参数,要注意参数对函数值域的影响,即要考虑分类讨论;(3)解题时要注意数形结合思想的应用,即借助图象确定函数的值域. 对点训练1.(2016·江西宜春期末统考)函数y =x 2-2x +3在定义域[m,3]上的值域为[2,6],则m 的取值范围是( )A .(0,3]B .[0,3)C .[-1,1]D .[0,1]2.(2016·广东深圳第二次调研)设函数f (x )=⎩⎪⎨⎪⎧2x+a ,x >2,x +a 2,x ≤2.若f (x )的值域为R ,则常数a的取值范围是( )A .(-∞,-1]∪[2,+∞)B .[-1,2]C .(-∞,-2]∪[1,+∞)D .[-2,1] 3.若函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为 .———————方法规律总结————————[方法技巧]1.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础,要树立函数定义域优先意识.2.函数值域的几何意义是对应函数图象上点的纵坐标的变化范围.利用函数几何意义,数形结合可求某些函数的值域. [易错点睛]1.利用配方法、判别式法、基本不等式求值域时,一定注意等号是否成立,必要时注明“=”成立的条件.2.利用换元法求函数解析式时,切记新元的范围即为函数的定义域.课时跟踪训练(五)一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,f x -,x >0,则f (5)等于( )A .32B .16 C.12 D .1322.(2016·济南质检)函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( ) A .(-∞,0)∪⎝ ⎛⎦⎥⎤12,2 B .(-∞,2] C.⎝ ⎛⎭⎪⎫-∞,12∪[2,+∞) D .(0,+∞) 3.下列函数中,不满足f (2x )=2f (x )的是( )A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x4.(2016·北京东城第一学期联考)若函数f (sin x )=3-cos 2x ,则f (cos x )=( ) A .3-cos 2x B .3-sin 2x C .3+cos 2x D .3+sin 2x 5.(2015·河北唐山期中)下列函数中,值域是(0,+∞)的是( ) A .y =15-x+1B .y = ⎝ ⎛⎭⎪⎫12x -1C .y =⎝ ⎛⎭⎪⎫131-x D .y =1-2x6.已知函数f (x )=4|x |+2-1的定义域是[a ,b ](a ,b ∈Z ),值域是[0,1],则满足条件的整数数对(a ,b )共有( )A .3个B .4个C .5个D .6个7.(2015·湖南衡阳六校联考)已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x +1x ,则f (x )=( )A .(x +1)2B .(x -1)2C .x 2-x +1 D .x 2+x +18.已知函数f (x )=e x-1,g (x )=-x 2+4x -3.若存在实数a 使f (a )=g (b ),则b 的取值范围为( )A .[2-2,2+2]B .(2-2,2+2)C .[1,3]D .(1,3) 9.(2015·浙江十二校二联)函数f (x )=sin x 2-cos x 的值域是( )A.⎣⎢⎡⎦⎥⎤-33,33 B .[-1,1] C .[-2,2] D .[-3,3] 10.(2015·浙江温州十校联考)设函数g (x )是二次函数,f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1,若函数f [g (x )]的值域是[0,+∞),则函数g (x )的值域是( )A .(-∞,-1]∪[1,+∞)B .[0,+∞)C .(-∞,-1]∪[0,+∞)D .[1,+∞) 二、填空题11.(2015·合肥模拟)函数y =1-x2x +5的值域为 .12.若函数y =log 2(ax 2+2x +1)的值域为R ,则a 的取值范围为 .13.定义在区间(-1,1)上的函数f (x )满足2f (x )-f (-x )=lg(x +1),则函数f (x )的解析式为 . 三、解答题14.求下列函数的值域: (1)y =1-x 21+x 2;(2)y =-2x 2+x +3; (3)y =x +1x+1;(4)y=x+4-x2.15.已知函数f(x)(x∈R)满足f(x)=2bxax-1(a≠0), f(1)=1,且使f(x)=2x成立的实数x只有一个,求函数f(x)的解析式.16.已知二次函数f(x)=ax2+bx(a、b是常数,且a≠0)满足条件:f(2)=0,且方程f(x)=x 有两个相等实根.(1)求f(x)的解析式;(2)是否存在实数m、n(m<n),使f(x)的定义域和值域分别为[m,n]和[2m,2n]?如存在,求出m、n的值;如不存在,说明理由.第三节函数的单调性与最值最新考纲:1.理解函数的单调性及其几何意义,会运用基本初等函数的图象分析函数的性质;2.理解函数最大值、最小值及其几何意义,会运用函数图象理解和研究函数的最值.知识梳理1.函数的单调性(1)单调函数的定义(2)若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D叫作f(x)的单调区间.问题探究1:函数f(x)在区间[a,b]上单调递增与函数f(x)的单调递增区间为[a,b]含义相同吗?提示:含义不同.f(x)在区间[a,b]上单调递增并不能排除f(x)在其他区间单调递增,而f(x)的单调递增区间为[a,b]意味着f(x)在其他区间不可能单调递增.2.函数的最值问题探究2:函数的单调性、最大(小)值反映在其函数图象上有什么特征?提示:函数单调性反映在图象上是上升或下降的,而最大(小)值反映在图象上为其最高(低)点的纵坐标的值.基础自测1.判断正误(在括号内打“√”或“×”) (1)函数y =1x在定义域上为减函数.( )(2)对于函数f (x ),x ∈D ,若x 1,x 2∈D ,且(x 1-x 2)·[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.( )(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) (4)函数f (x )=log 5(2x +1)的单调增区间是(0,+∞).( ) (5)闭区间上的单调函数,其最值一定在区间端点取到.( ) 2.下列函数中,在区间(0,+∞)上为增函数的是 ( )A .y =ln(x +2)B .y =-x +1C .y =⎝ ⎛⎭⎪⎫12xD .y =x +1x3.函数y =log 12(x 2-2x )的单调递减区间是( )A .(-∞,1)B .(1,+∞)C .(2,+∞)D .(-∞,0)4.如果二次函数f (x )=3x 2+2(a -1)x +b 在区间(-∞,1)上是减函数,则( ) A .a =-2 B .a =2 C .a ≤-2 D .a ≥2 5.已知函数f (x )=2|x -a |(a 为常数),若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是 .考点一 函数单调性的判断与证明1.定义法用定义证明函数单调性的一般步骤(1)取值:即设x 1,x 2是该区间内的任意两个值,且x 1<x 2.(2)作差:即f (x 2)-f (x 1)(或f (x 1)-f (x 2)),并通过通分、配方、因式分解等方法,向有利于判断差的符号的方向变形.(3)定号:根据给定的区间和x 2-x 1的符号,确定差f (x 2)-f (x 1)(或f (x 1)-f (x 2))的符号.当符号不确定,可以进行分类讨论. (4)判断:根据定义得出结论.2.导数法f ′(x )≥0(x ∈A )⇔f (x )在A 上为增函数,(使f ′(x )=0的x 仅是个别值); f ′(x )≤0(x ∈A )⇔f (x )在A 上为减函数,(使f ′(x )=0的x 仅是个别值).提醒:应熟记常用函数的单调性,为函数的应用提供依据.例1:判断函数f (x )=x +ax(a >0)在(0,+∞)上的单调性,并给出证明.点拨:判断函数单调性的方法(1)对于给出具体解析式的函数,证明或判断其在某区间上的单调性有两种方法:①可以利用定义(基本步骤为取值、作差或作商、变形、定号、下结论)求解;②可导函数则可以利用导数解之;(2)复合函数y =f [g (x )]的单调性规律是“同则增,异则减”,即y =f (u )与u =g (x )若具有相同的单调性,则y =f [g (x )]为增函数;若具有不同的单调性,则y =f [g (x )]为减函数. 对点训练1.(2016·太原质检)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1) 2.试讨论函数f (x )=axx 2-1,x ∈(-1,1)的单调性(其中a ≠0).考点二 求函数的单调区间1.求函数的单调区间 (1)利用已知函数的单调性.(2)定义法:先求定义域,再利用单调性定义.(3)图象法:如果f (x )是以图象给出的,或者f (x )的图象易作出,可直接由图象的直观性写出它的单调区间.(4)导数法:利用导函数取值的正负确定原函数的单调区间. 2.求复合函数 y =f [g (x )]的单调区间的步骤 (1)确定定义域.(2)将复合函数分解成基本初等函数:y =f (u ),u =g (x ). (3)分别确定这两个函数的单调区间.(4)若这两个函数同增或同减,则 y =f [g (x )]为增函数;若一增一减,则 y =f [g (x )]为减函数,即“同增异减”.提醒:函数的单调性是对某个区间而言的,所以要受到区间的限制.例如函数y =1x分别在(-∞,0),(0,+∞)内都是单调递减的,但不能说它在(-∞,0)∪(0,+∞)内单调递减,只能分开写,即函数的单调减区间为(-∞,0)和(0,+∞),不能用“∪”连接.例2: (1)(2015·合肥第二次质检)函数y =|x 2-4x +3|的单调递增区间是 .(2)(2015·洛阳第二次模拟)函数y =f (x )(x ∈R )的图象如图所示,则函数g (x )=f (log a x )(0<a <1)的单调减区间是( )A.⎣⎢⎡⎦⎥⎤0,12 B .[a ,1] C .(-∞,0)∪⎣⎢⎡⎭⎪⎫12,+∞ D .[a ,a +1]点拨:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;二是画出这个分段函数图象,结合函数的图象、性质进行直观的判断.[拓展探究] (1)若将本例(1)中的函数变为“y =x 2-4|x |+3”,则结果如何? (2)若将本例(2)中的“0<a <1”改为“a >1”,则函数g (x )的单调递减区间如何?考点三 利用单调性求最值若函数在闭区间[a ,b ]上是减函数,则f (x )在[a ,b ]上的最大值为f (a ),最小值为f (b ); 若函数在闭区间[a ,b ]上是增函数,则f (x )在[a ,b ]上的最大值为f (b ),最小值为f (a ).提醒:运用函数单调性求最值是求函数最值的重要方法,特别是当函数图象不易作出时,单调性法成为首选方法.例3:已知f (x )=x 2+2x +a x ,x ∈[1,+∞).(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞), f (x )>0恒成立,试求实数a 的取值范围.点拨:利用函数的性质求恒成立问题,主要的解题步骤是研究函数的性质,确定函数在所给区间上的单调性,得到区间上对应的函数最值.对点训练已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.考点四 函数单调性的应用函数的单调性主要应用在以下几方面 (1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小; (3)解函数不等式;(4)利用单调性求参数的取值范围或值.提醒:熟练掌握基本初等函数的单调性是解决这类问题的关键.例4:(1)已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0 (2)已知函数f (x )=x 2-2ax +2,当x ∈[-1,+∞)时,f (x )≥a 恒成立,则a 的取值范围是 .点拨:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.对点训练1.(2015·沈阳模拟)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]2.(2016·衡水中学月考)函数f (x )=log a (2-ax 2)在(0,1)上为减函数,则实数a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫12,1 B .(1,2) C .(1,2] D .⎝ ⎛⎭⎪⎫12,1 3.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是 .———————方法规律总结————————[方法技巧]1.利用定义判断或证明函数的单调性注意定义的如下两种等价形式:设任意x 1,x 2∈[a ,b ],那么 (1)f x 1-f x 2x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;f x 1-f x 2x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.(2)(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上是减函数. 2.求函数的单调区间首先应注意函数的定义域,函数的单调区间都是其定义域的子集;其次掌握一次函数、二次函数等基本初等函数的单调区间.常用方法:根据定义、利用图象和单调函数的性质、利用导函数.3.复合函数的单调性对于复合函数y =f [g (x )],若t =g (x )在区间(a ,b )上是单调函数,且y =f (t )在区间(g (a ),g (b ))或者(g (b ),g (a ))上是单调函数,若t =g (x )与y =f (t )的单调性相同(同时为增或减),则y =f [g (x )]为增函数;若t =g (x )与y =f (t )的单调性相反,则y =f [g (x )]为减函数. 简称:同增异减.4.函数的最值与函数的值域有着密切的联系.事实上,若在函数的值域中存在最大数(最小数),则这个数就是函数的最大值(最小值),因此可借助函数值域的求法确定最值. [易错点睛]1.函数的单调性是通过任意两点的变化趋势来刻画整体的变化趋势,“任意”两个字是必不可少的.如果只用其中两点的函数值(比如说端点值)进行大小比较是不能确定函数的单调性的. 2.讨论函数单调性必须在其定义域内进行,函数的单调区间是其定义域的子集,因此,讨论函数的单调性时,应先确定函数的定义域.3.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间要分开写,即使在两个区间上的单调性相同,也不能用并集表示.课时跟踪训练(六)一、选择题1.下列函数中,在区间(1,+∞)上是增函数的是( ) A .y =-x +1 B .y =11-xC .y =-(x -1)2D .y =31-x2.(2016·安徽宿州一检)下列函数f (x )中,满足“对任意的x 1,x 2∈(0,+∞)时,均有(x 1-x 2)[f (x 1)-f (x 2)]>0”的是( )A .f (x )=12B .f (x )=x 2-4x +4C .f (x )=2xD .f (x )=log 12x3.函数f (x )=11-x-x的最大值是( )A.45 B .54 C.34 D .434.已知函数y =x 2-2x +3在区间[0,m ]上有最大值3,最小值2,则m 的取值范围是( ) A .[1,+∞) B .[0,2] C .(-∞,2] D .[1,2].5.(2016·东北三校联考(一))设函数f (x )=x 2+(a -2)x -1在区间[2,+∞)上是增函数,则实数a 的最小值为( )A .-2B .-1C .1D .26.设函数f (x )=log a |x |在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系是( ) A .f (a +1)=f (2) B .f (a +1)>f (2) C .f (a +1)<f (2) D .不能确定7.(15郑州第二次质检)已知函数f (x )=ln x +2x,若f (x 2-4)<2,则实数x 的取值范围是( ) A .(-2,2) B .(2,5) C .(-5,-2) D .(-5,-2)∪(2,5)8.已知f (x )=⎩⎪⎨⎪⎧a -x +4a ,x ≤1,log a x ,x >1.是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1)B .⎝ ⎛⎭⎪⎫0,13 C.⎣⎢⎡⎭⎪⎫17,13 D .⎣⎢⎡⎭⎪⎫17,1 9.已知函数f (x )=4-mxm -1(m ≠1)在区间(0,1]上是减函数,则实数m 的取值范围是( ) A .(-∞,0) B .(-∞,4) C .(1,4] D .(-∞,0)∪(1,4]10.(2016·浙江嘉兴测试一)偶函数f (x )在[0,+∞)上为增函数,若不等式f (ax -1)<f (2+x 2)恒成立,则实数a 的取值范围为( )A .(-23,2)B .(-2,2)C .(-23,23)D .(-2,23) 二、填空题11.函数y =log 12|x -3|的单调递减区间是 .12.(2015·东北三校联考)若函数f (x )=ax +1x +2在区间(-2,+∞)上是单调递增函数,则实数a 的取值范围是 .13.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是 . 三、解答题14.(2016·重庆诊断测试)已知函数f (x )=m ⎝ ⎛⎭⎪⎫x +1x 的图象与函数h (x )=14⎝ ⎛⎭⎪⎫x +1x +2的图象关于点A (0,1)对称.(1)求m 的值;(2)若g (x )=f (x )+a4x在区间(0,2]上为减函数,求实数a 的取值范围.15.(2016·江苏徐州期中)已知a ∈R ,函数f (x )=x |x -a |.(1)当a =2时,写出函数y =f (x )的单调递增区间;(2)当a >2时,求函数y =f (x )在区间[1,2]上的最小值.16.已知函数f (x )=lg ⎝⎛⎭⎪⎫x +ax-2,其中a 是大于0的常数.(1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.。

高考数学(理)大一轮复习习题:第二章 函数的概念与基本初等函数ⅰ word版含答案

高考数学(理)大一轮复习习题:第二章 函数的概念与基本初等函数ⅰ word版含答案

第二章⎪⎪⎪函数的概念与基本初等函数Ⅰ第一节函数及其表示 突破点(一) 函数的定义域基础联通 抓主干知识的“源”与“流”1.函数与映射的概念 函数映射两集合A ,B设A ,B 是两个非空的数集 设A ,B 是两个非空的集合 对应关系f :A →B如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应名称 称f :A →B 为从集合A 到集合B 的一个函数称对应f :A →B 为从集合A 到集合B 的一个映射记法y =f (x ),x ∈A对应f :A →B(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.考点贯通 抓高考命题的“形”与“神”求给定解析式的函数的定义域(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R. (4)y =x 0的定义域是{x |x ≠0}.(5)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为R. (6)y =log a x (a >0且a ≠1)的定义域为(0,+∞).(7)y =tan x 的定义域为⎩⎨⎧ x ⎪⎪⎭⎬⎫x ≠k π+π2,k ∈Z .[例1] y =x -12x-log 2(4-x 2)的定义域是( ) A .(-2,0)∪(1,2) B .(-2,0]∪(1,2) C .(-2,0)∪[1,2)D .[-2,0]∪[1,2][解析] 要使函数有意义,必须⎩⎪⎨⎪⎧x -12x ≥0,x ≠0,4-x 2>0,∴x ∈(-2,0)∪[1,2).即函数的定义域是(-2,0)∪[1,2). [答案] C [易错提醒](1)不要对解析式进行化简变形,以免定义域发生变化.(2)当一个函数由有限个基本初等函数的和、差、积、商的形式构成时,定义域一般是各个基本初等函数定义域的交集.(3)定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.求抽象函数的定义域对于抽象函数定义域的求解(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [例2] 若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为________.[解析] 由题意得,⎩⎪⎨⎪⎧x -1≠0,0≤2x ≤2,解得0≤x <1,即g (x )的定义域是[0,1).[答案] [0,1)[易错提醒]函数f [g (x )]的定义域指的是x 的取值范围,而不是g (x )的取值范围.已知函数定义域求参数[例3] 若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是( )A .[0,4)B .(0,4)C .[4,+∞)D .[0,4][解析] 由题意可得mx 2+mx +1≥0恒成立. 当m =0时,1≥0恒成立;当m ≠0时,则⎩⎪⎨⎪⎧m >0,Δ=m 2-4m ≤0,解得0<m ≤4. 综上可得:0≤m ≤4. [答案] D[方法技巧]已知函数定义域求参数的思想方法已知函数的定义域,逆向求解函数中参数的取值,需运用分类讨论以及转化与化归的思想方法.转化与化归的思想方法是通过某种转化过程,将一个难以解决的问题转化为一个已经解决或者比较容易解决的问题,从而获解.基础联通 抓主干知识的“源”与“流” 1.[考点一]函数y =x ln(2-x )的定义域为( ) A .(0,2) B .[0,2) C .(0,1]D .[0,2]解析:选B 由题意知,x ≥0且2-x >0,解得0≤x <2,故其定义域是[0,2). 2.[考点一](2017·青岛模拟)函数y =1-x 22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞)D.⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1 解析:选D 由题意得⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12,所以函数的定义域为⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1.故选D. 3.[考点一]函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________.解析:由题意得⎩⎪⎨⎪⎧ 1-|x -1|≥0,a x -1≠0,解得⎩⎪⎨⎪⎧0≤x ≤2,x ≠0,即0<x ≤2,故所求函数的定义域为(0,2].答案:(0,2]4.[考点二]已知函数y =f (x 2-1)的定义域为[-3, 3 ],则函数y =f (x )的定义域为________.解析:∵y =f (x 2-1)的定义域为[-3, 3 ],∴x ∈[-3, 3 ],x 2-1∈[-1,2],∴y =f (x )的定义域为[-1,2].答案:[-1,2]5.[考点三]若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________.解析:函数f (x )的定义域是不等式ax 2+abx +b ≥0的解集.不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧a <0,1+2=-b ,1×2=b a ,解得⎩⎪⎨⎪⎧a =-32,b =-3,所以a +b =-32-3=-92.答案:-92突破点(二) 函数的表示方法1.函数的表示方法函数的表示方法有三种,分别为解析法、列表法和图象法.同一个函数可以用不同的方法表示.2.应用三种方法表示函数的注意事项(1)解析法:一般情况下,必须注明函数的定义域;(2)列表法:选取的自变量要有代表性,应能反映定义域的特征;(3)图象法:注意定义域对图象的影响.与x 轴垂直的直线与其最多有一个公共点. 3.函数的三种表示方法的优缺点(2)求x与y的对应关系时需逐个计算,比较繁杂列表法能鲜明地显示自变量与函数值之间的数量关系只能列出部分自变量及其对应的函数值,难以反映函数变化的全貌图象法形象直观,能清晰地呈现函数的增减变化、点的对称关系、最大(小)值等性质作出的图象是近似的、局部的,且根据图象确定的函数值往往有误差考点贯通抓高考命题的“形”与“神”求函数的解析式[典例](1)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为()A.y=12x3-12x2-xB.y=12x3+12x2-3xC.y=14x3-xD.y=14x3+12x2-2x(2)定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时,f(x)=x(1-x),则当-1≤x ≤0时,f (x )=________.(3)(2017·合肥模拟)已知f (x )的定义域为{x |x ≠0},满足3f (x )+5f ⎝⎛⎭⎫1x =3x +1,则函数f (x )的解析式为________.[解析] (1)设该函数解析式为f (x )=ax 3+bx 2+cx +d ,则f ′(x )=3ax 2+2bx +c , 由题意知⎩⎪⎨⎪⎧f (0)=d =0,f (2)=8a +4b +2c +d =0,f ′(0)=c =-1,f ′(2)=12a +4b +c =3,解得⎩⎪⎨⎪⎧a =12,b =-12,c =-1,d =0,∴f (x )=12x 3-12x 2-x .(2)∵-1≤x ≤0,∴0≤x +1≤1,∴f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1).故当-1≤x ≤0时,f (x )=-12x (x+1).(3)用1x代替3f (x )+5f ⎝⎛⎭⎫1x =3x +1中的x ,得3f ⎝⎛⎭⎫1x +5f (x )=3x +1, ∴⎩⎨⎧3f (x )+5f ⎝⎛⎭⎫1x =3x +1, ①3f ⎝⎛⎭⎫1x +5f (x )=3x +1, ②①×3-②×5得f (x )=1516x -916x +18(x ≠0).[答案] (1)A (2)-12x (x +1) (3)f (x )=1516x -916x +18(x ≠0)[易错提醒]1.已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x x -1,则f (x )=________. 解析:在f (x )=2f ⎝⎛⎭⎫1x x -1中,用1x 代替x ,得f ⎝⎛⎭⎫1x =2f (x )1x -1,将f ⎝⎛⎭⎫1x =2f (x )1x -1代入f (x )=2f ⎝⎛⎭⎫1x x -1中,求得f (x )=23x +13(x >0).答案:23x +13(x >0) 2.函数f (x )满足2f (x )+f (-x )=2x ,则f (x )=________.解析:由题意知⎩⎪⎨⎪⎧2f (x )+f (-x )=2x ,2f (-x )+f (x )=-2x ,解得f (x )=2x . 答案:2x3.已知f (x +1)=x +2x ,求f (x )的解析式. 解:设t =x +1,则x =(t -1)2,t ≥1,代入原式有 f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1,x ≥1.4.已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x )的解析式. 解:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.5.已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式. 解:由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.突破点(三) 分段函数基础联通 抓主干知识的“源”与“流”1.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.2.分段函数的相关结论(1)分段函数虽由几个部分组成,但它表示的是一个函数.(2)分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 考点贯通 抓高考命题的“形”与“神”分段函数求值[例1] (1)设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=( )A .-1 B.14 C.12D.32(2)已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x ,x ≥4,f (x +1),x <4,则f (1+log 25)的值为( ) A.14 B.⎝⎛⎭⎫12错误!未找到引用源。

2022版高考数学大一轮复习第2章函数概念与基本初等函数Ⅰ第2讲函数的基本性质1

2022版高考数学大一轮复习第2章函数概念与基本初等函数Ⅰ第2讲函数的基本性质1

第二章函数概念与基本初等函数Ⅰ第二讲函数的基本性质练好题·考点自测1.下列说法中正确的个数是() (1)若函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(2)对于函数f(x),x∈D,若对任意x1,x2∈D(x1≠x2),有(x1-x2)[f(x1)-f(x2)]〉0,则函数f(x)在区间D上是增函数。

(3)若函数y=f(x+a)是偶函数,则函数y=f(x)的图象关于直线x=a对称。

(4)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称。

(5)已知函数y=f(x)是定义在R上的偶函数,若f(x)在(-∞,0)上是减函数,则f(x)在(0,+∞)上是增函数。

(6)若T为函数y=f(x)的一个周期,那么nT(n∈Z)也是函数f(x)的周期。

A.3 B。

4 C.5 D。

62。

[2019北京,3,5分][文]下列函数中,在区间(0,+∞)上单调递增的是()A。

y=x12 B.y=2-xC.y=lo g12x D.y=1x3.[2019全国卷Ⅱ,6,5分][文]设f(x)为奇函数,且当x≥0时,f(x)=e x—1,则当x<0时,f(x)=()A .e —x —1B .e -x +1C .—e —x —1 D.—e -x +14.[2020山东,8,5分]若定义在R 的奇函数f (x )在(—∞,0)上单调递减,且f (2)=0,则满足xf (x —1)≥0的x 的取值范围是( )A.[—1,1]∪[3,+∞)B.[-3,-1]∪[0,1] C 。

[—1,0]∪[1,+∞) D 。

[-1,0]∪[1,3]5.[2021大同市调研测试]已知函数f (x )=ax 3+b sin x +c ln(x +√x2+1)+3的最大值为5,则f (x )的最小值为 ( )A.—5 B 。

1 C .2 D.36.[2020福州3月质检]已知f (x )是定义在R 上的偶函数,其图象关于点(1,0)对称。

(版)高考文科数学函数专题讲解及高考真题(含答案)

(版)高考文科数学函数专题讲解及高考真题(含答案)

函数【】函数的概念〔1〕函数的概念①设A、B是两个非空的数集,如果按照某种对应法那么f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应〔包括集合A,B以及A到B的对应法那么f〕叫做集合A到B的一个函数,记作f:A B.②函数的三要素:定义域、值域和对应法那么.③只有定义域相同,且对应法那么也相同的两个函数才是同一函数.〔2〕区间的概念及表示法①设a,b 是两个实数,且a b,满足ax b的实数x的集合叫做闭区间,记做[a,b];满足a x b的实数x的集合叫做开区间,记做(a,b);满足a xb,或ax b的实数x的集合叫做半开半闭区间,分别记做[a,b),(a,b];满足x a,x a,x b,x b的实数x的集合分别记做[a,),(a,),(,b],(,b).注意:对于集合{x|a x b}与区间(a,b),前者a可以大于或等于b,而后者必须b.3〕求函数的定义域时,一般遵循以下原那么:f(x)是整式时,定义域是全体实数.②f(x)是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤y tanx中,x k(k Z).2⑥零〔负〕指数幂的底数不能为零.⑦假设f(x)是由有限个根本初等函数的四那么运算而合成的函数时,那么其定义域一般是各根本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:假设f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式a g(x)b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.4〕求函数的值域或最值求函数最值的常用方法和求函数值域的方法根本上是相同的.事实上,如果在函数的值域中存在一个最小〔大〕数,这个数就是函数的最小〔大〕值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比拟简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:假设函数y f(x)可以化成一个系数含有y的关于x的二次方程a(y)x2b(y)x c(y)0,那么在a(y)0时,由于x,y为实数,故必须有b2(y)4a(y)c(y)0,从而确定函数的值域或最值.④不等式法:利用根本不等式确定函数的值域或最值.⑤换元法:通过变量代换到达化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【】函数的表示法5〕函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.〔6〕映射的概念①设A、B是两个集合,如果按照某种对应法那么f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应〔包括集合A,B以及A到B的对应法那么f〕叫做集合A到B的映射,记作f:A B.②给定一个集合A到集合B的映射,且aA,b B.如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〗函数的根本性质】单调性与最大〔小〕值1〕函数的单调性①定义及判定方法函数的定义图象判定方法性质(版)高考文科数学函数专题讲解及高考真题(含答案)如果对于属于定义域 I 内〔1〕利用定义某个区间上的任意两个1yy=f(X)f(x 2)〔2〕利用函数 12<的单调性自变量的值x、x ,当x..函数的单调性x 2时,都有 f(x 1)<f(x2),.. .........那么就说 f(x) 在这个区间上是增函数. ...如果对于属于定义域 I 内某个区间上的任意两个 自变量的值 x 1、x 2,当x 1< .. x 2时,都有 f(x 1)>f(x2),.. .........那么就说 f(x) 在这个区 间上是减函数.... f(x 1)o x 1x 2xy y=f(X)f(x 1)f(x 2)o x 1 x 2x〔3〕利用函数图象〔在某个区间图象上升为增〕4〕利用复合函数1〕利用定义2〕利用函数的单调性3〕利用函数图象〔在某个区间图象下降为减〕〔4〕利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数yf [g(x)],令ug(x),假设yf(u)为增,u g(x)为增,那么y f[g(x)]为增;假设y f(u)为减,ug(x)为减,那么yf[g(x)]为增;假设y f(u)为增,ug(x)为减,那么yf[g(x)]为减;假设yf(u)为减,u g(x)为增,那么 y f[g(x)]为减. 〔2〕打“√〞函数 f(x) x a(a0)的图象与性质xf(x)分别在( , a]、[a,)上为增函数,分别在[a,0)、(0,a]上为减函数.〔3〕最大〔小〕值定义①一般地,设函数 y f(x)的定义域为I ,如果存在实数 M 满足:〔1〕对于任意yox的xI ,都有 f(x) M ;〔2〕存在x 0I ,使得f(x 0)M.那么,我们称M 是函数f(x)的最大值,记 作f max (x) M .②一般地,设函数yf(x)的定义域为I ,如果存在实数m 满足:〔1〕对于任意的xI ,都有f(x) m ;〔2〕存在x 0I ,使得f(x 0)m .那么,我们称m 是函数f(x)的最小值,记作f max (x)m .】奇偶性4〕函数的奇偶性①定义及判定方法函数的 定义图象 判定方法性质如果对于函数f(x)定义域内任意一个x,都有f(-x)=-f(x),那么函数...........f(x)叫做奇函数....函数的奇偶性如果对于函数f(x)定义域内任意一个x,都有f(-x)=f(x),那么函数..........f(x)叫做偶函数....②假设函数f(x)为奇函数,且在x 0处有定义,那么f(0)0.1〕利用定义〔要先判断定义域是否关于原点对称〕2〕利用图象〔图象关于原点对称〕1〕利用定义〔要先判断定义域是否关于原点对称〕2〕利用图象〔图象关于y轴对称〕③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数〔或奇函数〕的和〔或差〕仍是偶函数〔或奇函数〕,两个偶函数〔或奇函数〕的积〔或商〕是偶函数,一个偶函数与一个奇函数的积〔或商〕是奇函数.〖补充知识〗函数的图象1〕作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质〔奇偶性、单调性〕;④画出函数的图象.利用根本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种根本初等函数的图象.①平移变换y f(x)②伸缩变换y f(x)y f(x)③对称变换h0,左移h个单位yf(xh)yf(x)k0,上移k个单位yf(x)k h0,右移|h|个单位k0,下移|k|个单位01,伸y f(x)1,缩0A1,缩y Af(x)A1,伸y f(x)y f(x)y f(x)yf(x) x轴f(x)y f()y轴y f() y x x原点f(x)y f(x)直线yxy f1(x) y去掉y轴左边图象y f(|x|)保存y轴右边图象,并作其关于y轴对称图象保存x轴上方图象y|f(x)|将x轴下方图象翻折上去2〕识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.3〕用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形〞的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 根本初等函数 (Ⅰ)〗指数函数】指数与指数幂的运算〔1〕根式的概念①如果x na,a R,xR,n1,且n N ,那么x 叫做a 的n 次方根.当n 是奇数时,a 的 n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号 n a 表示,负的n 次方根用符号 na表示;0的n 次方根是 0;负数a 没有n 次方根.②式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,a 0 .③根式的性质:(n a)na ;当n 为奇数时,n a na ;当n 为偶数时,n a n|a|a(a0).a(a0)〔2〕分数指数幂的概念mn a m(a①正数的正分数指数幂的意义是:a n0,m,n N,且n 1).0的正分数指数幂等于0.mmn (1)m (a②正数的负分数指数幂的意义是:an(1)n 0,m,nN,且n1).0的负分数指数幂没aa有意义. 注意口诀:底数取倒数,指数取相反数.〔3〕分数指数幂的运算性质①a r a s a rs (a 0,r,sR)②(a r )s a rs (a0,r,sR)③(ab )r rb r (a 0,b 0,r )aR【】指数函数及其性质〔4〕指数函数函数名称指数函数定义函数ya x (a0且a1)叫做指数函数图象a 10 a1yya xyya xy1y1(0,1)(0,1)Ox Ox 定域R域(0,)定点象定点(0,1),即当x0,y1.奇偶性非奇非偶性在R上是增函数在R上是减函数a x1(x0)a x1(x0)函数的a x1(x0)a x1(x0)化情况a x a x1(x0)1(x0) a化象的影响在第一象限内,a越大象越高;在第二象限内,a越大象越低.〖〗数函数【】数与数运算〔1〕数的定①假设a x N(a0,且a 1),x叫做以a底N的数,作x log a N,其中a叫做底数,N叫做真数.②数和零没有数.③数式与指数式的互化:xlog a N a x N(a0,a1,N0).〔2〕几个重要的数恒等式log a10,log a a1,log a a b b.〔3〕常用数与自然数常用数:lgN,即log10N;自然数:lnN,即log e N〔其中e⋯〕.〔4〕数的运算性如果a0,a1,M0,N0,那么①加法:log a M log a N log a(MN)②减法:log a M log a Nlog a MN③数乘:nlog a M log a M n(n R)④a log a N N⑤log bM n nlogaM(b0,n)log a Nlog b N且b1)ab R⑥换底公式:(b0,log b a【】对数函数及其性质5〕对数函数函数名称对数函数定义函数ylog a x(a0且a1)叫做对数函数a10a1x1x1y ylog a x y ylog a x图象(1,0)O(1,0)x O x 定义域(0,)值域R过定点图象过定点(1,0),即当x1时,y0.奇偶性非奇非偶单调性在(0,)上是增函数在(0,)上是减函数log a x0(x1)log a x0(x1)函数值的log a x0(x1)log a x0(x1)变化情况log a x0(0x1)log a x0(0x1) a变化对图象的影响在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高.(6)反函数的概念设函数y f(x)的定义域为A,值域为C,从式子y f(x)中解出x,得式子x(y).如果对于y在C中的任何一个值,通过式子x(y),x在A中都有唯一确定的值和它对应,那么式子x(y)表示x是y的函数,函数x(y)叫做函数y f(x)的反函数,记作x f1(y),习惯上改写成yf1(x).〔7〕反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式y f(x)中反解出x f1(y);③将x f1(y)改写成y f1(x),并注明反函数的定义域.〔8〕反函数的性质①原函数y f(x)与反函数y f1(x)的图象关于直线yx对称.②函数y f(x)的定义域、值域分别是其反函数yf1(x)的值域、定义域.③假设P(a,b)在原函数y f(x)的图象上,那么P'(b,a)在反函数y f1(x)的图象上.④一般地,函数yf(x)要有反函数那么它必须为单调函数.〖〗幂函数〔1〕幂函数的定义一般地,函数y x叫做幂函数,其中x为自变量,是常数.〔2〕幂函数的图象〔3〕幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)都有定义,并且图象都通过点(1,1).③单调性:如果0,那么幂函数的图象过原点,并且在[0,)上为增函数.如果0,那么幂函数的图象在(0,)上为减函数,在第一象限内,图象无限接近x轴与y轴.④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当q〔其中p,q互pq q质,p和q Z〕,假设p为奇数q为奇数时,那么yx p是奇函数,假设p为奇数q为偶数时,那么yx p是偶q函数,假设p为偶数q为奇数时,那么y x p是非奇非偶函数.⑤图象特征:幂函数yx,x(0,),当1时,假设0x1,其图象在直线y x下方,假设x1,其图象在直线y x上方,当10x1yx上方,假设x1,其图象在直线时,假设,其图象在直线x下方.〖补充知识〗二次函数〔1〕二次函数解析式的三种形式①一般式:f(x)ax2bx c(a0)②顶点式:f(x)a(x h)2k(a0)③两根式:f(x)a(x x1)(x x2)(a0)〔2〕求二次函数解析式的方法①三个点坐标时,宜用一般式.②抛物线的顶点坐标或与对称轴有关或与最大〔小〕值有关时,常使用顶点式.③假设抛物线与x轴有两个交点,且横线坐标时,选用两根式求f(x)更方便.〔3〕二次函数图象的性质①二次函数f(x)ax2bx c(a0)的图象是一条抛物线,对称轴方程为x b,顶点坐标是2ab4acb2 (,).2a4a②当a0时,抛物线开口向上,函数在(,b]上递减,在[b,)上递增,当xb时,2a2a2af min(x)4acb 2;当a0时,抛物线开口向下,函数在(,b]上递增,在[b,)上递减,4a2a2a当x b4acb2时,f max(x)4a.2a③二次函数f(x)ax2bx c(a0)当b24ac0时,图象与x轴有两个交点M1(x1,0),M2(x2,0),|M1M2||x1x2||a|.〔4〕一元二次方程ax2bxc0(a0)根的分布一元二次方程根的分布是二次函数中的重要内容,这局部知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理〔韦达定理〕的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程ax2bx c 0(a 0)的两实根为x1,x2,且x1x2.令f(x) ax2bx c,从以b 下四个方面来分析此类问题:①开口方向: a ②对称轴位置:x ③判别式:④端点函数2a值符号.〔5〕二次函数f(x)ax 2 bxc(a 0)在闭区间[p,q]上的最值设f(x)在区间[p,q]上的最大值为M,最小值为m ,令x 01(p q).〔Ⅰ〕当a0时〔开口向上〕2①假设bp ,那么mf(p) ②假设p bq ,那么mf( b ) ③假设b q ,那么mf(q)2a2a2a2affff(q)(p)(q)(p)OxOxOxfbbf((p)bf()f f())2a2a 2a(q)b Mf(q)bf(p)①假设x 0,那么②x 0,那么M2a2ax 0f(q)O gxff((p)b )(Ⅱ)当a02a时(开口向下)①假设bf(p)②假设pp ,那么M2af(b)2af(p)(p)Oxfb(q),那么mf(q)①假设x 0 2af(b ) f 2a(p)x 0gOxf (q)f(p)xgOxf f(b)2a(q)b q ,那么Mf( b)③假设b2a2a2af(b)2aff f (Ox(q)f(q)Ob x 0,那么mf(p).f②2a(p)f (b)2a(q)xgO xf (p)q ,那么Mf(q)) 2ax第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数yf(x)(xD),把使f(x)0成立的实数x 叫做函数yf(x)(xD)的零点。

2025届高考数学一轮复习第2章函数概念与基本初等函数Ⅰ第2讲函数的基本性质作业试题2含解析新人教版

2025届高考数学一轮复习第2章函数概念与基本初等函数Ⅰ第2讲函数的基本性质作业试题2含解析新人教版

其次讲 函数的基本性质1.[2024江西红色七校第一次联考]下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是 ( )A.y=cos xB.y=x 2C.y=ln|x|D.y=e-|x|2.[2024湖北省四地七校联考]若函数f(x)=sin x·ln(mx+√1+4x 2)的图象关于y 轴对称,则m= ( )A.2B.4C.±2D.±43.[2024郑州三模]若函数f(x)={e x -x +2a,x >0,(a -1)x +3a -2,x ≤0在(-∞,+∞)上是单调函数,则a 的取值范围是( )A.[1,+∞)B.(1,3]C.[12,1) D.(1,2]4.[2024广州市阶段模拟]已知f(x),g(x)分别是定义在R 上的偶函数和奇函数,且 f(x)-g(x)=x 3+x 2+a,则g(2)=( ) A.-4B.4C.-8D.85.[2024长春市第一次质量监测]定义在R 上的函数f(x)满意f(x)=f(x+5),当x∈[-2,0)时,f(x)=-(x+2)2,当x∈[0,3)时,f(x)=x,则f(1)+f(2)+…+f(2 021)= ( )A.809B.811C.1 011D.1 0136.[2024陕西省部分学校摸底检测]已知函数f(x)=2x cosx 4x +a是偶函数,则函数f(x)的最大值为 ( )A.1B.2C.12 D.37.[2024济南名校联考]已知定义在R 上的函数f(x)满意f(x+6)=f(x),y=f(x+3)为偶函数,若f(x)在(0,3)上单调递减,则下面结论正确的是 ( )A.f(192)<f(e 12)<f(ln 2)B.f(e 12)<f(ln 2)<f(192)C.f(ln 2)<f(192)<f(e 12) D.f(ln 2)<f(e 12)<f(192)8.[2024江苏苏州初调]若y=f(x)是定义在R 上的偶函数,当x∈[0,+∞)时,f(x)={sinx,x ∈[0,1),f(x -1),x ∈[1,+∞),则f(-π6-5)= .9.函数f(x)=x 3-3x 2+5x-1图象的对称中心为 .10.[2024蓉城名校联考]已知函数f(x)=x+cosx,x∈R,设a= f(0.3-1), b= f(2-0.3),c= f(log 20.2),则 ( )A.b<c<aB.c<a<bC.b<a<cD.c<b<a11.[2024辽宁葫芦岛其次次测试]已知y=f(x-1)是定义在R 上的偶函数,且y=f(x)在[-1,+∞)上单调递增,则不等式f(-2x-1-1)<f(3)的解集为 ( )A.(2,+∞)B.(3,+∞)C.(-∞,2)D.(-∞,3)12.已知f(x)是定义在(1,+∞)上的增函数,若对于随意x,y∈(1,+∞),均有f(x)+f(y)=f(2x+y),f(2)=1,则不等式f(x)+f(x-1)-2≥0的解集为 ( )A.[52,+∞)B.(52,+∞)C.[1,52]D.(2,52]13.[2024广东七校联考]已知定义在R 上的偶函数y=f(x+2),其图象是连续的,当x>2时,函数y=f(x)是单调函数,则满意f(x)=f(1-1x+4)的全部x 之积为 ( )A.3B.-3C.-39D.3914.[原创题]设增函数f(x)={lnx,x >1,-1+ax x ,0<x ≤1的值域为R,若不等式f(x)≥x+b 的解集为{x|c≤x≤e},则实数c 的值为 ( )A.e -√e 2-42B.e+√e 2-42C.e±√e 2-42D.1215.[多选题]已知奇函数f(x)在(-∞,+∞)上单调递增,f(1)=2,若0<f(m)<2,则 ( )A.log m (1+m)<log m (1+m 2) B.log m (1-m)<0 C.(1-m)2>(1+m)2D.(1-m )13>(1-m )1216.[2024湖南六校联考][多选题]已知f(x)是定义在R 上的奇函数,且f(1+x)=f(1-x),当0≤x≤1时,f(x)=x,则关于函数g(x)=|f(x)|+f(|x|),下列说法正确的是( ) A.g(x)为偶函数B.g(x)在(1,2)上单调递增C.g(x)在[2 016,2 020]上恰有三个零点D.g(x)的最大值为2答 案其次讲 函数的基本性质1.D 函数y=cos x 是偶函数且是周期为2π的周期函数,所以y=cos x 在(0,+∞)上不具有单调性,所以A 选项不符合题意;函数y=x 2为偶函数,但在(0,+∞)上单调递增,所以B 选项不符合题意;函数y=ln|x|={lnx,x >0,ln(-x),x <0为偶函数,但在(0,+∞)上单调递增,所以C 选项不符合题意;函数y=e -|x|={e -x ,x ≥0,e x ,x <0为偶函数,在(0,+∞)上单调递减,所以D 选项符合题意.故选D.2.C ∵f(x)的图象关于y 轴对称,∴f(x)为偶函数,又y=sin x 为奇函数,∴y=ln(mx+√1+4x 2)为奇函数,即ln[-mx+√1+4·(-x)2]+ln(mx+√1+4x 2)=0,即ln(1+4x 2-m 2x 2)=0,1+4x 2-m 2x 2=1,解得m=±2.故选C.3.B 当x>0时,f(x)=e x -x+2a,则f '(x)=e x-1>0,所以函数f(x)在(0,+∞)上单调递增.因为函数f(x)在(-∞,+∞)上是单调函数,所以函数f(x)在(-∞,+∞)上是单调递增函数.当x≤0时,f(x)=(a-1)x+3a-2是单调递增函数,所以a-1>0,得a>1.e 0-0+2a≥(a -1)×0+3a -2,解得a≤3.所以1<a≤3,故选B.4.C 依题意f(x)是偶函数,g(x)是奇函数,且f(x)-g(x)=x 3+x 2+a ①,所以f(-x)-g(-x)=-x 3+x 2+a,即f(x)+g(x)=-x 3+x 2+a ②,②-①得2g(x)=-2x 3,g(x)=-x 3,所以g(2)=-23=-8.故选C. 5.A 由f(x)=f(x+5)可知f(x)的周期为5,又f(0)=0,f(1)=1,f(2)=2,f(-1)=-1,f(-2)=0,∴f(3)=f(-2)=0,f(4)=f(-1)=-1,f(5)=f(0)=0,∴f(1)+f(2)+f(3)+f(4)+f(5)=2,∴f(1)+f(2)+…+f(2 021)=f(1)+2×404=809.故选A. 6.C 解法一 因为函数f(x)=2x cosx 4x +a 是偶函数,所以f(-x)=f(x),即2-x cos(-x)4-x +a=2x cosx 4x +a ,化简可得a(4x -1)=4x-1,得a=1,所以f(x)=2x cosx4x +1=cosx2x +2-x .又cos x≤1,2x+2-x≥2,当且仅当x=0时两个“=”同时成立,所以f(x)≤12.故选C. 解法二 因为函数f(x)为偶函数,所以f(-1)=f(1),即2-1cos(-1)4-1+a=21cos14+a ,解得a=1,所以f(x)=2x cosx4x +1=cosx2x +2-x .因为cosx≤1,2x+2-x≥2,当且仅当x=0时两个“=”同时成立,所以f(x)max =12,故选C.7.A 由f(x+6)=f(x)知函数f(x)是周期为6的函数.因为y=f(x+3)为偶函数,所以f(x+3)=f(-x+3),所以f(192)=f(72)=f(12+3)=f(-12+3)=f(52).(题眼)(难点:利用函数的性质把自变量的取值化到同一个单调区间内) 因为1<e 12<2,0<ln 2<1,所以0<ln 2<e 12<52<3.因为f(x)在(0,3)上单调递减,所以f(52)<f(e 12)<f(ln 2),即f(192)<f(e 12)<f(ln 2),故选A.8.12 因为y=f(x)是定义在R 上的偶函数,所以f(-π6-5)=f(π6+5).因为x≥1时,f(x)=f(x-1),所以f(π6+5)=f(π6+4)=…=f(π6).又0<π6<1,所以f(π6)=sin π6=12.故f(-π6-5)=12.9.(1,2) 解法一 由题意设图象的对称中心为(a,b),则2b=f(a+x)+f(a-x)对随意x 均成立,代入函数解析式得,2b=(a+x)3-3(a+x)2+5(a+x)-1+(a-x)3-3(a-x)2+5(a-x)-1=2a 3+6ax 2-6a 2-6x 2+10a-2=2a 3-6a 2+10a-2+(6a-6)x 2对随意x 均成立,所以6a-6=0,且2a 3-6a 2+10a-2=2b,即a=1,b=2,即f(x)的图象的对称中心为(1,2).解法二 由三次函数对称中心公式可得,f(x)的图象的对称中心为(1,2).10.D f(x)=x+cos x,则f '(x)=1-sin x≥0,所以f(x)在R 上单调递增,又log 20.2<2-0.3<1<0.3-1=103,所以f(log 20.2)<f(2-0.3)<f(103),即c<b<a.11.D 由题可知y=f(x-1)的图象关于y 轴对称.因为y=f(x)的图象向右平移1个单位长度得到y=f(x-1)的图象,所以y=f(x)的图象关于直线x=-1对称.因为y=f(x)在[-1,+∞)上单调递增,所以f(x)在(-∞,-1)上单调递减.所以|-2x-1-1-(-1)|<|3-(-1)|,即0<2x-1<4,解得x<3,所以原不等式的解集为(-∞,3),故选D.12.A 依据f(x)+f(y)=f(2x+y),f(2)=1,可得2=1+1=f(2)+f(2)=f(24),所以f(x)+f(x-1)-2≥0得f(22x-1)≥f(24).又f(x)是定义在(1,+∞)上的增函数,所以{22x -1≥24,x >1,x -1>1, 解得x≥52.所以不等式f(x)+f(x-1)-2≥0的解集为[52,+∞).13.D 因为函数y=f(x+2)是偶函数,所以函数y=f(x)图象关于x=2对称,因为f(x)在(2,+∞)上单调,所以f(x)在(-∞,2)上也单调,所以要使f(x)=f(1-1x+4),则x=1-1x+4或4-x=1-1x+4.由x=1-1x+4,得x 2+3x-3=0,Δ1>0,设方程的两根分别为x 1,x 2,则x 1x 2=-3;由4-x=1-1x+4,得x 2+x-13=0,Δ2>0,设方程的两根分别为x 3,x 4,则x 3x 4=-13.所以x 1x 2x 3x 4=39.故选D.14.A 当x>1时,f(x)为增函数,且f(x)∈(0,+∞), 当0<x≤1时,-1+ax x=a-1x≤a -1,即f(x)∈(-∞,a -1].因为f(x)为增函数,所以a-1≤0,则a≤1,又函数f(x)的值域为R,所以a-1≥0,即a≥1,从而a=1,函数f(x)={lnx,x >1,-1+x x,0<x ≤1.因为不等式f(x)≥x+b 的解集为{x|c≤x≤e},易知ln x=x+b 的解为x=e,所以b=1-e,当x=1时,x+b=1+1-e=2-e<0=f(1),故0<c<1.令-1+x x=x+1-e,得x 2-ex+1=0,从而x=e -√e 2-42,则c=e -√e 2-42,故选A.15.AD ∵f(x)为奇函数,0<f(m)<2,f(1)=2,f(0)=0,∴f(0)<f(m)<f(1).又f(x)在R 上单调递增,∴0<m<1,∴1+m>1,0<1-m<1,∴log m (1-m)>0,B 错误.∵1+m>1+m 2,∴log m (1+m)<log m (1+m 2),A 正确.∵y=x 2在(0,+∞)上单调递增,1-m<1+m,∴(1-m)2<(1+m)2,C 错误.∵y=(1-m)x在(0,+∞)上单调递减,∴(1-m )13>(1-m )12,D 正确.故选AD. 16.AD 易知函数g(x)的定义域为R,且g(-x)=|f(-x)|+f(|-x|)=|-f(x)|+f(|x|)=|f(x)|+f(|x|)=g(x),所以g(x)为偶函数,故A 正确.因为f(1+x)=f(1-x),所以f(x)的图象关于直线x=1对称,又f(x)是奇函数,所以f(x)是周期为4的函数,其部分图象如图D 2-2-1所示,图D 2-2-1所以当x≥0时,g(x)={2f(x),x∈[4k,2+4k]0,x∈(2+4k,4+4k],k∈N,当x∈(1,2)时,g(x)=2f(x),g(x)单调递减,故B错误.g(x)在[2 016,2 020]上零点的个数等价于g(x)在[0,4]上零点的个数,而g(x)在[0,4]上有多数个零点,故C错误. 当x≥0时,易知g(x)的最大值为2,由偶函数图象的对称性可知,当x<0时,g(x)的最大值也为2,所以g(x)在整个定义域上的最大值为2,故D正确.综上可知,选AD.。

2023年高考数学一轮复习第二章函数1函数的概念及其表示练习含解析

2023年高考数学一轮复习第二章函数1函数的概念及其表示练习含解析

函数的概念及其表示考试要求 1.了解函数的含义,会求简单函数的定义域和值域.2.在实际情景中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并会简单的应用.知识梳理 1.函数的概念一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . 2.函数的三要素(1)函数的三要素:定义域、对应关系、值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为同一个函数. 3.函数的表示法表示函数的常用方法有解析法、图象法和列表法. 4.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数. 常用结论1.直线x =a 与函数y =f (x )的图象至多有1个交点.2.在函数的定义中,非空数集A ,B ,A 即为函数的定义域,值域为B 的子集.3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若两个函数的定义域和值域相同,则这两个函数是同一个函数.( × ) (2)函数y =f (x )的图象可以是一条封闭曲线.( × ) (3)y =x 0与y =1是同一个函数.( × ) (4)函数f (x )=⎩⎪⎨⎪⎧x -1,x ≥0,x 2,x <0的定义域为R .( √ )教材改编题1.下列各曲线表示的y 与x 之间的关系中,y 不是x 的函数的是( )答案 C2.(多选)下列各组函数是同一个函数的是( ) A .f (x )=x 2-2x -1,g (s )=s 2-2s -1B .f (x )=x -1,g (x )=x 2-1x +1C .f (x )=x 2,g (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0D .f (x )=-x 3,g (x )=x -x 答案 AC3.(2022·长沙质检)已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤0,log 3x ,x >0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12等于( )A .-1B .2C.3D.12答案 D解析 ∵f ⎝ ⎛⎭⎪⎫12=log 312<0, ∴f ⎝⎛⎭⎪⎫f⎝ ⎛⎭⎪⎫12=31log 23=12.题型一 函数的定义域例1 (1)(2022·武汉模拟)函数f (x )=1ln x +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]答案 B解析 要使函数有意义,则需⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,解得-1<x ≤2且x ≠0, 所以x ∈(-1,0)∪(0,2].所以函数的定义域为(-1,0)∪(0,2].(2)若函数f (x )的定义域为[0,2],则函数f (x -1)的定义域为________. 答案 [1,3]解析 ∵f (x )的定义域为[0,2], ∴0≤x -1≤2,即1≤x ≤3, ∴函数f (x -1)的定义域为[1,3].延伸探究 将本例(2)改成“若函数f (x +1)的定义域为[0,2]”,则函数f (x -1)的定义域为________. 答案 [2,4]解析 ∵f (x +1)的定义域为[0,2], ∴0≤x ≤2, ∴1≤x +1≤3, ∴1≤x -1≤3, ∴2≤x ≤4,∴f (x -1)的定义域为[2,4]. 教师备选1.(2022·西北师大附中月考)函数y =lg(x 2-4)+x 2+6x 的定义域是( ) A .(-∞,-2)∪[0,+∞) B .(-∞,-6]∪(2,+∞) C .(-∞,-2]∪[0,+∞) D .(-∞,-6)∪[2,+∞) 答案 B解析 由题意,得⎩⎪⎨⎪⎧x 2-4>0,x 2+6x ≥0,解得x >2或x ≤-6.因此函数的定义域为(-∞,-6]∪(2,+∞).2.已知函数f (x )=x1-2x ,则函数f x -1x +1的定义域为( )A .(-∞,1)B .(-∞,-1)C .(-∞,-1)∪(-1,0)D .(-∞,-1)∪(-1,1) 答案 D解析 令1-2x>0, 即2x<1,即x <0.∴f (x )的定义域为(-∞,0).∴函数f x -1x +1中,有⎩⎪⎨⎪⎧x -1<0,x +1≠0,解得x <1且x ≠-1.故函数f x -1x +1的定义域为(-∞,-1)∪(-1,1).思维升华 (1)求给定函数的定义域:由函数解析式列出不等式(组)使解析式有意义. (2)求复合函数的定义域①若f (x )的定义域为[m ,n ],则在f (g (x ))中,由m ≤g (x )≤n 解得x 的范围即为f (g (x ))的定义域.②若f (g (x ))的定义域为[m ,n ],则由m ≤x ≤n 得到g (x )的范围,即为f (x )的定义域. 跟踪训练1 (1)函数f (x )=11-4x2+ln(3x -1)的定义域为( )A.⎝ ⎛⎦⎥⎤13,12B.⎝ ⎛⎭⎪⎫13,12C.⎣⎢⎡⎭⎪⎫-12,14 D.⎣⎢⎡⎦⎥⎤-12,12 答案 B解析 要使函数f (x )=11-4x2+ln(3x -1)有意义,则⎩⎪⎨⎪⎧1-4x 2>0,3x -1>0⇒13<x <12. ∴函数f (x )的定义域为⎝ ⎛⎭⎪⎫13,12. (2)已知函数f (x )的定义域为[-2,2],则函数g (x )=f (2x )+1-2x的定义域为__________. 答案 [-1,0]解析 由条件可知,函数的定义域需满足⎩⎪⎨⎪⎧-2≤2x ≤2,1-2x≥0,解得-1≤x ≤0,所以函数g (x )的定义域是[-1,0]. 题型二 函数的解析式例2 (1)(2022·哈尔滨三中月考)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,则f (x )的解析式为________.答案 f (x )=lg2x -1(x >1) 解析 令2x+1=t (t >1),则x =2t -1, 所以f (t )=lg 2t -1(t >1), 所以f (x )=lg2x -1(x >1). (2)已知y =f (x )是二次函数,若方程f (x )=0有两个相等实根,且f ′(x )=2x +2,则f (x )=________. 答案 x 2+2x +1解析 设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b ,∴2ax +b =2x +2, 则a =1,b =2.∴f (x )=x 2+2x +c , 又f (x )=0,即x 2+2x +c =0有两个相等实根. ∴Δ=4-4c =0,则c =1. 故f (x )=x 2+2x +1.(3)已知函数对任意的x 都有f (x )-2f (-x )=2x ,则f (x )=________. 答案 23x解析 ∵f (x )-2f (-x )=2x ,① ∴f (-x )-2f (x )=-2x ,② 由①②得f (x )=23x .教师备选已知f (x )满足f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,则f (x )=________.答案 -2x 3-43x解析 ∵f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,①以1x代替①中的x ,得f ⎝ ⎛⎭⎪⎫1x -2f (x )=2x,②①+②×2得-3f (x )=2x +4x,∴f (x )=-2x 3-43x.思维升华 函数解析式的求法(1)配凑法;(2)待定系数法;(3)换元法;(4)解方程组法. 跟踪训练2 (1)已知f (1-sin x )=cos 2x ,则f (x )=________. 答案 -x 2+2x ,x ∈[0,2] 解析 令t =1-sin x , ∴t ∈[0,2],sin x =1-t ,∴f (t )=1-sin 2x =1-(1-t )2=-t 2+2t ,t ∈[0,2], ∴f (x )=-x 2+2x ,x ∈[0,2].(2)(2022·黄冈质检)已知f ⎝⎛⎭⎪⎫x 2+1x2=x 4+1x4,则f (x )=__________.答案 x 2-2,x ∈[2,+∞)解析 ∵f ⎝⎛⎭⎪⎫x 2+1x 2=⎝⎛⎭⎪⎫x 2+1x22-2,∴f (x )=x 2-2,x ∈[2,+∞). 题型三 分段函数例3 (1)已知f (x )=⎩⎪⎨⎪⎧cosπx ,x ≤1,f x -1+1,x >1,则f ⎝ ⎛⎭⎪⎫43+f⎝ ⎛⎭⎪⎫-43的值为( ) A.12B .-12C .-1D .1 答案 D解析 f ⎝ ⎛⎭⎪⎫43=f⎝ ⎛⎭⎪⎫43-1+1=f ⎝ ⎛⎭⎪⎫13+1=cosπ3+1=32,f ⎝ ⎛⎭⎪⎫-43=cos ⎝ ⎛⎭⎪⎫-4π3=cos2π3=-12, ∴f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=32-12=1.(2)已知f (x )=⎩⎪⎨⎪⎧2x+3,x >0,x 2-4,x ≤0,若f (a )=5,则实数a 的值是__________;若f (f (a ))≤5,则实数a 的取值范围是__________. 答案 1或-3 [-5,-1]解析 ①当a >0时,2a+3=5,解得a =1; 当a ≤0时,a 2-4=5, 解得a =-3或a =3(舍). 综上,a =1或-3.②设t =f (a ),由f (t )≤5得-3≤t ≤1. 由-3≤f (a )≤1,解得-5≤a ≤-1. 教师备选1.已知函数f (x )=⎩⎪⎨⎪⎧sin ⎝ ⎛⎭⎪⎫πx +π6,x >1,⎝ ⎛⎭⎪⎫12x,x <1,则f (f (2022))等于( )A .-32B.22C.32D. 2 答案 B解析 f (2022)=sin ⎝ ⎛⎭⎪⎫2022π+π6=sin π6=12,∴f (f (2022))=f ⎝ ⎛⎭⎪⎫12=1212⎛⎫ ⎪⎝⎭=22. 2.(2022·百校联盟联考)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≥0,-x 2,x <0,若对于任意的x ∈R ,|f (x )|≥ax ,则a =________. 答案 0解析 当x ≥0时,|f (x )|=x 3≥ax ,即x (x 2-a )≥0恒成立,则有a ≤0; 当x <0时,|f (x )|=x 2≥ax ,即a ≥x 恒成立, 则有a ≥0,所以a =0.思维升华 分段函数求值问题的解题思路(1)求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.跟踪训练3 (1)(2022·河北冀州一中模拟)设f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,x 2+1,x <1.则f (f (-1))=________,f (x )的最小值是________. 答案 0 22-3 解析 ∵f (-1)=2,∴f (f (-1))=f (2)=2+22-3=0,当x ≥1时,f (x )=x +2x-3≥22-3,当且仅当x =2时取等号,f (x )min =22-3, 当x <1时,f (x )=x 2+1≥1,x =0时取等号, ∴f (x )min =1,综上有f (x )的最小值为22-3.(2)(2022·重庆质检)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >1,x 2-1,x ≤1,则f (x )<f (x +1)的解集为________.答案 ⎝ ⎛⎭⎪⎫-12,+∞解析 当x ≤0时,x +1≤1,f (x )<f (x +1), 等价于x 2-1<(x +1)2-1, 解得-12<x ≤0;当0<x ≤1时,x +1>1, 此时f (x )=x 2-1≤0,f (x +1)=log 2(x +1)>0,∴当0<x ≤1时,恒有f (x )<f (x +1);当x >1时,f (x )<f (x +1)⇔log 2x <log 2(x +1)恒成立.综上知,不等式f (x )<f (x +1)的解集为⎝ ⎛⎭⎪⎫-12,+∞.课时精练1.(2022·重庆模拟)函数f (x )=3-xlg x的定义域是( ) A .(0,3) B .(0,1)∪(1,3) C .(0,3] D .(0,1)∪(1,3]答案 D解析 ∵f (x )=3-xlg x,∴⎩⎪⎨⎪⎧3-x ≥0,lg x ≠0,x >0,解得0<x <1或1<x ≤3,故函数的定义域为(0,1)∪(1,3].2.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 A 中函数定义域不是[-2,2];C 中图象不表示函数;D 中函数值域不是[0,2]. 3.(2022·安徽江淮十校联考)设函数f (x )=⎩⎪⎨⎪⎧4x -12,x <1,a x ,x ≥1,若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫78=8,则a 等于( ) A.12 B.34 C .1 D .2答案 D解析 f ⎝ ⎛⎭⎪⎫78=4×78-12=3,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫78=f (3)=a 3,得a 3=8,解得a =2.4.设函数f ⎝ ⎛⎭⎪⎫1-x 1+x =x ,则f (x )的表达式为( )A.1+x1-x(x ≠-1) B.1+xx -1(x ≠-1) C.1-x1+x(x ≠-1) D.2xx +1(x ≠-1) 答案 C解析 令t =1-x 1+x ,则x =1-t1+t ,∴f (t )=1-t 1+t ,即f (x )=1-x1+x(x ≠-1).5.如图,点P 在边长为1的正方形的边上运动,M 是CD 的中点,当P 沿A -B -C -M 运动时,设点P 经过的路程为x ,△APM 的面积为y ,则函数y =f (x )的图象大致是( )答案 A解析 由题意可得y =f (x )=⎩⎪⎨⎪⎧12x ,0≤x <1,34-x4,1≤x <2,54-12x ,2≤x ≤52.画出函数f (x )的大致图象,故选A.6.(多选)下列函数中,与y =x 是同一个函数的是( ) A .y =3x 3B .y =x 2C .y =lg10xD .y =10lg x答案 AC解析 y =x 的定义域为x ∈R ,值域为y ∈R ,对于A 选项,函数y =3x 3=x 的定义域为x ∈R ,故是同一函数;对于B 选项,函数y =x 2=||x ≥0,与y =x 的解析式、值域均不同,故不是同一函数;对于C 选项,函数y =lg10x=x ,且定义域为R ,故是同一函数;对于D 选项,y =10lg x=x 的定义域为(0,+∞),与函数y =x 的定义域不相同,故不是同一函数.7.(多选)(2022·张家界质检)设函数f (x )=⎩⎪⎨⎪⎧1-x ,x ≤a ,2x,x >a ,若f (1)=2f (0),则实数a可以为( ) A .-1B .0C .1D .2 答案 AB 解析 若a <0,则f (0)=1,f (1)=2,f (1)=2f (0)成立; 若0≤a <1,则f (0)=1,f (1)=2,f (1)=2f (0)成立; 若a ≥1,则f (0)=1,f (1)=0,f (1)=2f (0)不成立. 综上所述,实数a 的取值范围是(-∞,1).8.(多选)具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数满足“倒负”变换的函数的是( ) A .f (x )=x -1xB .f (x )=ln1-x1+xC .f (x )=1ex x-D .f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1答案 AD解析 对于A ,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x ),满足题意; 对于B ,f (x )=ln1-x1+x,则f ⎝ ⎛⎭⎪⎫1x =ln x -1x +1≠-f (x ),不满足; 对于C ,f ⎝ ⎛⎭⎪⎫1x =111e xx -=ex -1,-f (x )=1ex x--≠f ⎝ ⎛⎭⎪⎫1x ,不满足;对于D ,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,则f ⎝ ⎛⎭⎪⎫1x =-f (x )满足“倒负”变换,故选AD.9.已知f (x 5)=lg x ,则f (100)=________. 答案 25解析 令x 5=100, 则x =15100=2510, ∴f (100)=25lg 10=25.10.函数f (x )=ln(x -1)+4+3x -x 2的定义域为________. 答案 (1,4]解析 依题意⎩⎪⎨⎪⎧x -1>0,4+3x -x 2≥0,解得1<x ≤4,∴f (x )的定义域为(1,4].11.(2022·广州质检)已知函数f (x )=⎩⎪⎨⎪⎧1-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫-1,12 解析 ∵当x ≥1时,f (x )=ln x ≥ln1=0, 又f (x )的值域为R ,故当x <1时,f (x )的值域包含(-∞,0).故⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥0,解得-1≤a <12.12.设函数f (x )=⎩⎪⎨⎪⎧x ,x <0,1,x >0,则不等式xf (x )+x ≤2的解集是________.答案 [-2,0)∪(0,1] 解析 当x <0时,f (x )=x , 代入xf (x )+x ≤2得x 2+x -2≤0, 解得-2≤x <0; 当x >0时,f (x )=1,代入xf (x )+x ≤2,解得0<x ≤1. 综上有-2≤x <0或0<x ≤1.13.设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( ) A .(-∞,-1] B .(0,+∞) C .(-1,0) D .(-∞,0)答案 D解析 当x ≤0时,函数f (x )=2-x是减函数,则f (x )≥f (0)=1.作出f (x )的大致图象如图所示,结合图象知,要使f (x +1)<f (2x ),当且仅当⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,解得x <-1或-1≤x <0,即x <0.14.设函数f (x )=⎩⎪⎨⎪⎧-x +λ,x <1λ∈R,2x,x ≥1,若对任意的a ∈R 都有f (f (a ))=2f (a )成立,则λ的取值范围是______. 答案 [2,+∞) 解析 当a ≥1时,2a≥2. ∴f (f (a ))=f (2a)=22a=2f (a )恒成立.当a <1时,f (f (a ))=f (-a +λ)=2f (a )=2λ-a ,∴λ-a ≥1,即λ≥a +1恒成立, 由题意λ≥(a +1)max ,∴λ≥2, 综上,λ的取值范围是[2,+∞).15.(多选)若函数f (x )满足:对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝ ⎛⎭⎪⎫x 1+x 22,则称函数f (x )具有H 性质.则下列函数中具有H 性质的是( )A .f (x )=⎝ ⎛⎭⎪⎫12xB .f (x )=ln xC .f (x )=x 2(x ≥0) D .f (x )=tan x ⎝ ⎛⎭⎪⎫0≤x <π2 答案 ACD解析 若对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝ ⎛⎭⎪⎫x 1+x 22,则点(x 1,f (x 1)),(x 2,f (x 2))连线的中点在点⎝⎛⎭⎪⎫x 1+x 22,f ⎝ ⎛⎭⎪⎫x 1+x 22的上方,如图⎝⎛⎭⎪⎫其中a =f⎝ ⎛⎭⎪⎫x 1+x 22,b =f x 1+f x 22.根据函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=ln x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝⎛⎭⎪⎫0≤x <π2的图象可知,函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝⎛⎭⎪⎫0≤x <π2具有H 性质,函数f (x )=ln x 不具有H 性质.16.设f (x )是定义在R 上的函数,且f (x +2)=2f (x ),f (x )=⎩⎪⎨⎪⎧2x +a ,-1<x <0,b e 2x,0≤x ≤1,其中a ,b 为正实数,e 为自然对数的底数,若f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫32,则a b 的取值范围为________. 答案 (2e ,+∞)解析 因为f (x +2)=2f (x ),所以f ⎝ ⎛⎭⎪⎫92=f⎝ ⎛⎭⎪⎫12+4=(2)2f ⎝ ⎛⎭⎪⎫12=2e b ,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12+2=2f ⎝ ⎛⎭⎪⎫-12 =2⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫-12+a =2(a -1), 因为f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫32,所以2(a -1)=2e b , 所以a =2e b +1, 因为b 为正实数, 所以a b=2e b +1b=2e +1b∈(2e ,+∞),故a b的取值范围为(2e ,+∞).。

高考数学重点复习题

高考数学重点复习题

高考数学重点复习题一、函数与导数1. 函数的基本性质:定义域、值域、奇偶性、单调性、周期性。

2. 复合函数、反函数、分段函数的理解和应用。

3. 导数的定义、几何意义、物理意义以及基本导数公式。

4. 导数的运算法则:和差、积、商、链式法则。

5. 利用导数研究函数的单调性、极值和最值问题。

6. 导数在实际问题中的应用,如最优化问题。

二、三角函数与解三角形1. 三角函数的定义、图像和性质。

2. 三角恒等变换,包括和差化积、积化和差、倍角公式、半角公式等。

3. 解三角形的基本方法:正弦定理、余弦定理。

4. 三角函数在实际问题中的应用,如测量、物理等领域。

三、立体几何1. 空间几何体的表面积和体积的计算。

2. 空间直线与平面的位置关系。

3. 空间向量在立体几何中的应用。

4. 空间几何体的组合与分解。

四、解析几何1. 直线与圆的方程及其性质。

2. 椭圆、双曲线、抛物线的标准方程及其性质。

3. 直线与圆锥曲线的位置关系。

4. 圆锥曲线的参数方程和极坐标方程。

五、数列1. 等差数列和等比数列的定义、通项公式和求和公式。

2. 数列的单调性、有界性。

3. 数列的极限概念及其性质。

4. 数列在实际问题中的应用。

六、概率与统计1. 随机事件的概率计算,包括古典概型和几何概型。

2. 条件概率和事件的独立性。

3. 随机变量及其分布,包括离散型和连续型随机变量。

4. 统计量的计算,如均值、方差、标准差等。

5. 抽样分布和假设检验。

七、综合应用题1. 函数、导数、三角函数、解析几何等知识点的综合运用。

2. 解决实际问题,如经济、物理、工程等领域的问题。

3. 培养数学建模和数学思维能力。

结束语:数学是一门需要不断练习和思考的学科,希望以上的复习题能够帮助同学们巩固知识点,提高解题能力。

在高考中取得优异的成绩。

2025版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第1讲函数的概念及其表示课件

2025版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第1讲函数的概念及其表示课件
逻辑思维 应用性 数学运算 数学运算
运算求解 综合性 逻辑推理 数学运算
运算求解 创新性 逻辑推理
考题
考点
考向
关键能力 考查要求 核心素养
2021新高 函数奇偶性 利用奇偶性求 运算求解 基础性 数学运算
考Ⅰ,13 与周期性 解参数的值
2021新高 函数奇偶性 函数奇偶性的 运算求解 基础性 数学运算
(2)如果两个函数的定义域相同,并且___对__应__关__系___完全一致,则这
两个函数为相等函数.
3.函数的表示法 表示函数的常用方法有___解__析__法___、图象法和列表法.
知识点二 分段函数 1.若函数在其定义域的不同子集上,因对函数称为分段函数.分段函数表示的是一个 函数. 2.分段函数的定义域等于各段函数的定义域的并集,其值域等于 各段函数的值域的__并__集____.
第一讲 函数的概念及其表示
知识梳理 · 双基自测
知识梳理 知识点一 函数的概念及其表示 1.函数的概念
函数
两个集合A,B
设A,B是两个__非__空__数__集____
如果按照某种确定的对应关系f,使对于集合A中 对应关系f:A→B 的__任__意____一个数x,在集合B中都有__唯__一__确__定___
x (5)函数 y= x-1定义域为 x>1.( × )
题组二 走进教材 2.(必修1P67T1改编)若函数y=f(x)的定义域为M={x|-2≤x≤2}, 值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是( B )
[解析] A中函数的定义域不是[-2,2];C中图象不表示函数;D中 函数的值域不是[0,2].
的定义域为x2<x<3,且x≠52 .

高考一轮总复习数学(文科)练习第2章 重点强化课 函数的概念与性质 Word版含解析

高考一轮总复习数学(文科)练习第2章 重点强化课 函数的概念与性质 Word版含解析

函数的概念与性质[]复习导读函数是中学数学的核心概念,函数的概念与性质既是中学数学教学的重点,又是高考考查的重点与热点,题型以选择题、填空题为主,既重视三基,又注重思想方法的考查.备考时,要透彻理解函数,尤其是分段函数的概念,切实掌握函数的性质,并加强数形结合思想、分类讨论思想.函数与方程思想的应用意识.[题型突破]强化点函数的定义域与解析式()(·湖北卷)函数()=+的定义域为( ).(,) .(,].(,)∪(,] .(-,)∪(,]()(·湖南卷)已知(),()分别是定义在上的偶函数和奇函数,且()-()=++,则()+()=( ).-.-..解析:()法一当=和=时,函数均没有意义,故可以排除选项,;当=时,函数有意义,可排除选项,故选.法二由得故函数定义域为(,)∪(,],故选.()法一∵()-()=++,∴(-)-(-)=-++,又由题意可知(-)=(),(-)=-(),∴()+()=-++,则()+()=.法二令()=+,()=-,显然符合题意,∴()+()=+-=.答案:() ().本例()考查了函数定义域的求法,绝对值不等式和分式不等式的求解,注重考查运算求解能力,在利用数轴求交集时,考查了数形结合思想的应用..在求解()时,巧妙地沟通未知与已知的内在联系,先求出()+()的表达式,进而求出()+()的值,解法简捷明快.【变式训练】(·武汉一模)若函数()=的定义域为,则的取值范围是.解析:由题意知+--≥恒成立,∴+-≥恒成立,∴Δ=+≤,∴-≤≤.答案:[-,]强化点函数的值域与最值(·浙江卷)已知函数()=则((-))=,()的最小值是.解析:((-))=()=+-=-,当≤时,()=;。

课标专用2020届高考数学一轮复习第二章函数2.2函数的基本性质教师用书文PDF含解析20190812292

课标专用2020届高考数学一轮复习第二章函数2.2函数的基本性质教师用书文PDF含解析20190812292

函数 f( x) 在区间 D 上是 增 函数 f ( x) 在区间 D 上是 减
函数
函数
图象 描述
自左向右看图象是上升的
自左向右看图象是下降的
注意 (1)单调函数的定义有以下两种等价形式:
∀x1 ,x2 ∈[ a,b] ,且 x1 ≠x2 ,

i)
f(
x1 ) x1
-f( -x2
x2


0⇔f(
(1)若 f(x+a)= f(x+b)(a≠b),则 f(x)的周期是 T = | a-b | .
(2) 若 f( x+a)= -f( x) ,则 f( x) 的周期是 T = 2 | a | .
( 3) 若
f( x+a)

1 f( x)

f(
x+a)


1 f( x)

其中
f(
x)
≠0,则
f(x)的周期是 T = 2 | a | .
(4) 设 f( x) 是 R 上的偶函数,且图象关于直线 x = a( a≠0)
对称,则 f( x) 是周期函数,2 | a | 是它的一个周期.
(5)设 f(x)是 R 上的奇函数,且图象关于直线 x = a( a≠0)
对称,则 f( x) 是周期函数,4 | a | 是它的一个周期.
������������������������������������������
域内的任何值时,都有 f(x+T)= f( x),那么函数 f( x) 叫做周期函
数,非零常数 T 叫 f( x) 的周期.如果所有的周期中存在一个最小
的正数,那么这个最小正数就叫 f( x) 的最小正周期.
注意 并不是所有的周期函数都有最小正周期,如 f(x)= 5.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档