第三讲 目标规划与动态规划介绍
动态规划
多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状 态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化 问题的方法为动态规划方法 。
任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适 用动态规划的问题必须满足最优化原理和无后效性 。
动态规划
运筹学的分支
01 原理
03 局限性
目录
02 分类
动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年 代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理, 从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域, 并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了 显著的效果 。
最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成 的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足 最优化原理又称其具有最优子结构性质 。
将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来 的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又 称为无后效性 。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因 素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点 。
动态规划的基本思想
动态规划的基本思想动态规划是一种常见的解决问题的算法思想,它通过将复杂的问题分解成一个个子问题,逐步求解并记录下每个子问题的解,最终得到原问题的解。
这种思想在很多领域都有广泛的应用,例如计算机科学、经济学、物理学等。
一、动态规划的定义与特点动态规划是一种分治法的改进方法,它主要用于解决具有重叠子问题和最优子结构性质的问题。
它的基本思想可以概括为“记住中间结果,以便在需要的时候直接使用”。
动态规划算法的特点包括:1. 问题可以分解为若干个重叠的子问题;2. 子问题的解可以通过已知的子问题解来求解,且子问题的解可以重复使用;3. 需要使用一个数据结构(通常是一个矩阵)来存储子问题的解,以便在需要时直接取出。
二、动态规划的基本步骤动态规划算法通常可以分为以下几个基本步骤:1. 确定问题的状态:将原问题转化为一个或多个子问题,并定义清楚每个子问题的状态是什么。
2. 定义问题的状态转移方程:找出子问题之间的关系,即如何通过已知的子问题解来解决当前问题。
3. 设置边界条件:确定最简单的子问题的解,即边界条件。
4. 计算子问题的解并记录:按顺序计算子问题的解,并将每个子问题的解记录下来,以便在需要时直接使用。
5. 由子问题的解得到原问题的解:根据子问题的解和状态转移方程,计算得到原问题的解。
三、动态规划的实例分析为了更好地理解动态规划的基本思想,我们以求解斐波那契数列为例进行分析。
问题描述:斐波那契数列是一个经典的数学问题,它由以下递推关系定义:F(n) = F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。
解决思路:根据递推关系,可以将问题分解为求解F(n-1)和F(n-2)两个子问题,并将子问题的解累加得到原问题的解。
根据以上思路,可以得到以下的动态规划算法实现:1. 确定问题的状态:将第n个斐波那契数定义为一个状态,记为F(n)。
2. 定义问题的状态转移方程:由递推关系F(n) = F(n-1) + F(n-2)可得,F(n)的值等于前两个斐波那契数之和。
数学建模8-动态规划和目标规划
数学建模8-动态规划和目标规划一、动态规划1.动态规划是求解决策过程最优化的数学方法,主要用于求解以时间划分阶段的动态过程的优化问题。
但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。
2.基本概念、基本方程:(1)阶段(2)状态(3)决策(4)策略(5)状态转移方程:(6)指标函数和最优值函数:(7)最优策略和最优轨线(8)递归方程:3.计算方法和逆序解法(此处较为抽象,理解较为困难,建议结合例子去看)4.动态规划与静态规划的关系:一些静态规划只需要引入阶段变量、状态、决策等就可以用动态规划方法求解(详见书中例4)5.若干典型问题的动态规划模型:(1)最短路线问题:(2)生产计划问题:状态定义为每阶段开始时的储存量x k,决策为每个阶段的产量,记每个阶段的需求量(已知量)为d k,则状态转移方程为(3)资源分配问题:详见例5状态转移方程:最优值函数:自有终端条件:(4)具体应用实例:详见例6、例7。
二、目标规划1.实际问题中,衡量方案优劣要考虑多个目标,有主要的,有主要的,也有次要的;有最大值的,也有最小值的;有定量的,也有定性的;有相互补充的,也有相互对立的,这时可用目标规划解决。
其求解思路有加权系数法、优先等级法、有效解法等。
2.基本概念:(1)正负偏差变量:(2)绝对(刚性)约束和目标约束,次位赋(3)优先因子(优先等级)与权系数:凡要求第一位达到的目标赋予优先因子P1……以此类推。
予P2(4)目标规划的目标函数:(5)一般数学模型:3.求解目标规划的解法:(1)序贯式算法(用LINGO软件求解,有编程模板可以使用,下面以书中例3说明,具体还可以参考书中例6-例8):model:sets:level/1..3/:p,z,goal;variable/1..2/:x;h_con_num/1..1/:b;s_con_num/1..4/:g,dplus,dminus;h_con(h_con_num,variable):a;s_con(s_con_num,variable):c;obj(level,s_con_num)/1 1,2 2,3 3,3 4/:wplus,wminus;endsetsdata:ctr=?;goal=? ? 0;b=12;g=1500 0 16 15;a=2 2;c=200 300 2 -1 4 0 0 5;wplus=0 1 3 1;wminus=1 1 3 0;enddatamin=@sum(level:p*z);p(ctr)=1;@for(level(i)|i#ne#ctr:p(i)=0);@for(level(i):z(i)=@sum(obj(i,j):wplus(i,j)*dplus(j)+wminus(i,j)*dminus(j)));@for(h_con_num(i):@sum(variable(j):a(i,j)*x(j))<b(i));@for(s_con_num(i):@sum(variable(j):c(i,j)*x(j))+dminus(i)-dplus(i)=g(i));@for(level(i)|i #lt# @size(level):@bnd(0,z(i),goal(i)));end(2)多目标规划的MATLAB解法:以书中例5详细说明如下:a=[-1 -1 0 00 0 -1 -13 0 2 00 3 0 2];b=[-30 -30 120 48]';c1=[-100 -90 -80 -70];c2=[0 3 0 2];[x1,g1]=linprog(c1,a,b,[],[],zeros(4,1)) %求第一个目标函数的目标值[x2,g2]=linprog(c2,a,b,[],[],zeros(4,1)) %求第二个目标函数的目标值g3=[g1;g2]; %目标goal的值[x,fval]=fgoalattain('Fun',rand(4,1),g3,abs(g3),a,b,[],[],zeros(4,1))。
动态规划的基本原理和基本应用
动态规划的基本原理和基本应用动态规划(Dynamic Programming)是一种通过将一个问题分解为较小的子问题并存储子问题的解来解决复杂问题的方法。
动态规划的基本原理是通过记忆化或自底向上的迭代方式来求解问题,以减少不必要的重复计算。
它在计算机科学和数学中具有广泛的应用,尤其是在优化、组合数学和操作研究等领域。
1.确定最优子结构:将原问题分解为较小的子问题,并且子问题的最优解能够推导出原问题的最优解。
2.定义状态:确定存储子问题解的状态变量和状态方程。
3.确定边界条件:确定初始子问题的解,也称为边界状态。
4.递推计算:利用状态方程将子问题的解计算出来,并存储在状态变量中。
5.求解最优解:通过遍历状态变量找到最优解。
1.背包问题:背包问题是动态规划的经典应用之一、它有多种变体,其中最基本的是0/1背包问题,即在限定容量的背包中选择物品,使得所选物品的总价值最大。
可以使用动态规划的思想来解决背包问题,确定状态为背包容量和可选物品,递推计算每个状态下的最优解。
2. 最长递增子序列:最长递增子序列(Longest Increasing Subsequence)是一种常见的子序列问题。
给定一个序列,找到其中最长的递增子序列。
可以使用动态规划来解决这个问题,状态可以定义为以第i个元素为结尾的最长递增子序列的长度,并递推计算每个状态的解。
3.矩阵链乘法:矩阵链乘法是一种优化矩阵连乘计算的方法。
给定一系列矩阵,求解它们相乘的最小计算次数。
可以使用动态规划解决矩阵链乘法问题,状态可以定义为矩阵链的起始和结束位置,递推计算每个状态下最小计算次数。
4.最短路径问题:最短路径问题是在有向图或无向图中找到两个节点之间最短路径的问题。
可以使用动态规划解决最短路径问题,状态可以定义为起始节点到一些节点的最短距离,递推计算每个状态的最优解。
动态规划-动态规划-美国数学家贝尔曼-动态规划领域
物品
1 2 … j …n
重量(公斤/件) a1 a2 … aj … an
每件使用价值 c1 c2 … cj … cn
类似问题:工厂里的下料问题、运输中的 货物装载问题、人造卫星内的物品装载问题等。
生产决策问题:企业在生产过程中,由于需求 是随时间变化的,因此企业为了获得全年的最佳 生产效益,就要在整个生产过程中逐月或逐季度 地根据库存和需求决定生产计划。
描述状态的变量称为状态变量,它可用一个数、 一组数或一向量(多维情形)来描述,第k阶段 的状态变量常用sk表示,通常一个阶段有若干个 状态。
第k阶段的状态就是该阶段所有始点的集合, 用Sk表示。在第1阶段状态变量s1是确定的,称初 始状态。如引例中:
S1 A,S2 B1, B2, B3,S3 C1,C2,C3,S4 D1, D2
min
4
9
12
决策点为B3
AB3
f2
B3
3 9*
f1(A)=12说明从A到E的最短距离为12,最短路 线的确定可按计算顺序反推而得。即
A→B3→C2→D2→E 上述最短路线问题的计算过程,也可借助于图
形直观的表示出来:
12 2 A4
3
11
B1
7 4
6
93
B2 2
4
96
B3
2 5
6
C1 3
多阶段决策过程特点:
(1)根据过程的特性可以将过程按空 间、时间等标志分为若干个互相联系又互相 区别的阶段。
(2)在每一个阶段都需要做出决策,从 而使整个过程达到最好的效果。
(3)在处理各阶段决策的选取上,不仅只 依赖于当前面临的状态,而且还要注意对以后 的发展。即是从全局考虑解决局部(阶段)的 问题。
最优化多目标规划动态规划
最优化多目标规划动态规划多目标规划是指在决策问题中同时考虑多个目标的优化问题,其目标可能相互矛盾或者相互关联。
动态规划是一种通过将问题划分为子问题并利用子问题的最优解来求解整体最优解的方法。
将多目标规划与动态规划结合起来,可以解决一些具有多个相互关联目标的决策问题。
下面将介绍最优化多目标规划动态规划的原理和应用举例。
1.定义决策变量:确定需要作出的决策,并定义决策变量。
2.建立状态转移方程:将问题划分为多个子问题,并建立它们之间的状态转移方程。
状态转移方程描述了子问题之间的关系,通过子问题之间的转移可以得到整体问题的最优解。
3.确定初始状态和边界条件:确定初始状态和边界条件,即子问题的初始状态和边界条件,用于递归地求解子问题。
4.递推求解:使用动态规划的递推求解方法,从初始状态开始,逐步求解子问题,直到求解出整体的最优解。
5.分析最优解:根据求解结果分析得到的最优解,并根据需要进行调整和优化。
假设有一家公司要进行产品的生产安排,公司有多个产品需要安排生产,每个产品有不同的生产时间和利润,同时公司还要考虑生产能力的限制和产品订单的要求。
问题可以建立如下的数学模型:决策变量:对于每个产品,决定其生产数量。
目标函数:最大化总利润。
约束条件:生产时间不能超过生产能力限制,同时生产数量要满足订单要求。
利用动态规划方法可以将问题分解为多个子问题,以子问题的最优解作为动态规划的递推依据。
具体步骤如下:1.将产品的生产时间和利润作为状态,根据时间顺序划分为多个子问题。
2.定义状态转移方程,将子问题的最优解与前面子问题的最优解关联起来。
3.初始状态为生产时间为0的情况,边界条件为订单要求。
4.递推求解,根据状态转移方程求解每个子问题的最优解。
5.分析最优解,确定每个产品的生产数量,以及总利润。
通过最优化多目标规划动态规划的方法,可以在满足多个目标和约束条件的情况下,求解出最优的决策方案。
这种方法可以应用于生产调度、资源分配、物流配送等领域,帮助企业做出合理的决策,达到优化目标。
数学建模动态规划
u5*(E2)F.
4
6
D2 2
F
3
1
D3
3
E2 u4 *(D 1)E1.
f4(D2)5 u4 *(D 2)E2.
f 3 ( C 2 ) m d 3 ( C 2 , D 1 i ) f 4 n ( D 1 ) d 3 ( { C , 2 , D 2 ) f 4 ( D 2 )}
m 4 i7 ,5 n 5 } { 1 . 0
一、基本概念
阶段:是指问题需要做出决策的步数。阶段总数常记为n,相 应的是n个阶段的决策问题。阶段的序号常记为k,称为阶段 变量,k=1,2, …,n. k即可以是顺序编号也可以是逆序编号, 常用顺序编号。 状态:各阶段开始时的客观条件,第k阶段的状态常用状态
变量 s k 表示,状态变量取值的集合成为状态集合,用 S k
4
A
5
2
B1 3
6
8 7
B2
7
C1
5
8
4
C2 5
3
C3 4
8
C4 4
D1
3
5 6
D2 2
1
D3
3
u5*(E1)F,
E1
4
3
E2
u5*(E2)F.
F
f 4 ( D 1 ) m d 4 ( D 1 , E 1 i ) f n 5 ( E 1 ) d 4 ( { D , 1 , E 2 ) f 5 ( E 2 )}
到过程终止时的最佳效益。记为
其中 opt 可根据具体情况取max 或min。 基本方程:此为逐段递推求和的依据,一般为:
式中opt 可根据题意取 max 或 min. 例如,案例1的基本方程为:
动态规划的基本思想
动态规划的基本思想动态规划是一种常用于解决具有重叠子问题和最优子结构特征的问题的算法思想。
它将问题分解成一系列子问题,并通过解决子问题构建出整个问题的最优解。
动态规划的基本思想是将原始问题转化成一个或多个相似的子问题,然后通过解决这些子问题获得原始问题的解。
这种思想在很多实际问题中都能够得到应用。
动态规划的基本流程一般包括以下几个步骤:1. 将原始问题分解为子问题:首先需要将原问题划分为多个子问题,并且确保这些子问题之间有重叠的部分。
2. 定义状态:确定每个子问题需要求解的状态,也即问题需要达成的目标。
3. 确定状态转移方程:根据子问题之间的关系,确定子问题之间的状态转移方程,即如何将子问题的解转移到原问题的解。
4. 解决首个子问题:解决最基本的子问题,获得初始状态下的解。
5. 填充状态表格:根据状态转移方程,依次求解其他子问题,并且填充状态表格。
6. 求解原问题:通过填充状态表格,在保证状态转移方程的基础上求解原问题的最优解。
动态规划的关键在于将原问题转化为子问题,通过递归或者迭代的方式求解子问题,最终获得原问题的最优解。
在这个过程中,重叠子问题的求解是动态规划的特点之一。
由于问题的子问题存在重叠,所以在求解的过程中我们可以保存已经求解过的子问题的解,避免重复计算,从而提高效率。
动态规划还要求问题具有最优子结构特征,即问题的最优解可以通过子问题的最优解构建出来。
通过利用已解决的子问题的最优解,可以有效地解决原问题。
动态规划算法在实际应用中有着广泛的应用。
它可以用于解决很多经典的问题,如最长公共子序列、0-1背包问题、最大子数组和等。
动态规划算法可以有效地解决这些问题,使得它们的时间复杂度得到了有效的降低。
总结来说,动态规划的基本思想是将原始问题转化为子问题,并通过解决子问题构建整个问题的最优解。
动态规划算法通过保存已经解决的子问题的解来避免重复计算,从而提高算法的效率。
动态规划算法在实际应用中具有广泛的应用,是解决具有重叠子问题和最优子结构特征的问题的常用算法思想。
动态规划-动态规划
过程指标函数是指过程所包含的各阶段的状 态和决策所产生的总效益值,记为
Vkn (sk , Pkn ) Vkn (sk , dk (sk ), sk1, dk1(sk1), , sn , dn (sn ), sn1) k 1, 2, , n
动态规划所要求的过程指标函数应具有可分 离性,即可表达为它所包含的各阶段指标函数的 函数形式。
能用动态规划方法求解的多阶段决策过程是一 类特殊的多阶段决策过程,即状态具有无后效性 的多阶段决策过程。
无后效性(马尔可夫性):是指如果某阶段状 态给定后,则在这个阶段以后过程的发展不受 这个阶段以前各段状态的影响;构造动态规划 模型时,要充分注意是否满足无后效性的要求; 状态变量要满足无后效性的要求;如果状态变 量不能满足无后效性的要求,应适当改变状态 的定义或规定方法。
3、决策(decision)
决策:在某一阶段,当状态给定后,往往可以 作出不同的决定,从而确定下一阶段的状态,这种 决定称为决策。
决策变量:描述决策的变量。dk(sk) :第k阶段 的决策变量(状态变量sk的函数)。
允许决策集合:决策变量的取值范围。常用 Dk(sk)表示。显然dk(sk)∈Dk(sk)。
3 3*
3
4
6 决策点为D1
第二阶段,由Bj到Ci分别均有三种选择
f2
B1
min
B1C1 B1C2
B1C3
f3 f3 f3
C1 C2
C3
min
7 6 4 7* 6 6
11决策点为C2
f2
B2
min
BB22CC21
f3 f3
C1 C2
min
3 6* 2 7*
min
4
动态规划的基本原理和基本应用
例2 生产和存储控制问题
某工厂生产某种季节性商品,需要作下一 年度的生产计划,假定这种商品的生产周期需 要两个月,全年共有6个生产周期,需要作出 各个周期中的生产计划。
设已知各周期对该商品的需要量如下表所示: 周期 1 2 3 4 5 6
需求量 5 5 10 30 50 8
8
例2
假设这个工厂根据需要可以日夜两班生产或只是日 班生产,当开足日班时,每一个生产周期能生产商品15 个单位,每生产一个单位商品的成本为100元。当开足 夜班时,每一生产周期能生产的商品也是15个,但是由 于增加了辅助性生产设备和生产辅助费用,每生产一单 位商品的成本为120元。由于生产能力的限制,可以在 需求淡季多生产一些商品储存起来以备需求旺季使用, 但存储商品是需要存储费用的,假设每单位商品存储一 周期需要16元,已知开始时存储为零,年终也不存储商 品备下年使用,问应该如何作生产和存储计划,才能使 总的生产和存储费用最小?
5
例1
若以y与x-y分别投入生产方式A与B,在第一 阶段生产后回收的总资源为x1=ay+b(x-y),再将x1 投入生产方式A和B,则可得到收入g(y1)+h(x1-y1), 继续回收资源x2=ay1+b(x1-y1),……
若上面的过程进行n个阶段,我们希望选择n 个变量y,y1,y2,…,yn-1,使这n个阶段的总收入最大。
6
例1
因此,我们的问题就变成:求y,y1,y2,…,yn-1,以使 g(y)+h(x-y)+g(y1)+h(x1-y1)+…+g(yn-1)+h(xn-1-yn-1) 达到最大,且满足条件
x1=ay+b(x-y) x2=ay1+b(x1-y1)
第6章_动态规划ppt课件
第一章 动态规划的基本方法 §1 动态规划的研究对象
特征:包含有随时同变化的因素和变量,整个 过程可以分为若干个相互联系的阶段,而且每个 阶段都要做出决策。
PPT学习交流
1
应用:
企业管理:动态规划可以用来解决最优路径问题、资源 分配问题、生产调度问题、库存问题、装载问题、排序 问题、设备更新问题、生产过程最优控制问题等等。
xk(sk)Dk(sk)
PPT学习交流
10
PPT学习交流
11
在实际过程中,可供选择的策略有一定的范围,此 范围称为允许策略集合,用P表示,从允许策略集合中 找出达到最优效果的策略称为最优策略。
五、状态转移方程
在多阶段决策过程中,第k阶段到第(k+1)阶段的 演变规律,称为状态转移方程。当给定了第K阶段的状 态变量sk和决策变量xk时,根据状态转移方程,第 (k+1)阶段的状态Sk+1的值也随之而定。也就是说, sk+1将依某种函数关系与(sk,xk(sk))相对应,这种对 应关系常记为:
一个阶段包含若干个状态,描述状态的变量称为状 态变量。常用sk表示第k阶段的某一状态。所有状态 变量组成的集合,称为状态变量集合。常用Sk表示第 k阶段的状态变量集合。 三、决策和决策变量
决策就是某阶段状态给定以后,从该状态演变 到下一阶段某状态的选择。描述决策的变量,称为 决策变量。常用xk(sk)表示第k阶段当状态处于sk时 的决策变量,在实际问题中,决策变量的取值往往 限制在某一范围内,此范围称为允许决策集合,通 常用Dk(sK)表示第k阶段的允许决策集合,显然有:
二、动态规划的基本方程 动态规划函数基本方程的一般形式为:
fk(sk)opvk( tsk,xk(sk) )fk 1(sk 1)
动态规划部分知识点总结
动态规划部分知识点总结动态规划的基本思想动态规划的基本思想可以用“递推”来描述。
在解决一个问题时,通常需要先确定一个递推关系,然后利用递推关系逐步求解问题的最优解。
以求解最长递增子序列(Longest Increasing Subsequence,LIS)问题为例,最长递增子序列是指在一个无序的序列中找到一个最长的子序列,要求子序列中的元素是递增的。
假设原序列为A,最长递增子序列的长度为LIS(i),则可以通过递推关系来解决这个问题:LIS(i) = max(LIS(j)+1),其中j<i 且A[j]<A[i]通过这个递推关系,我们可以逐步求解出从A[1]到A[n]的最长递增子序列的长度,最终得到整个序列的最长递增子序列。
动态规划的特点动态规划有一些特点,可以帮助我们更好地理解和应用这种方法。
1. 重叠子问题:动态规划的关键特点之一是重叠子问题,即原问题可以分解为若干个子问题,不同的子问题可能有重叠的部分。
通过记录和利用子问题的解,可以避免重复计算,提高计算效率。
2. 最优子结构:动态规划适用于具有最优子结构性质的问题。
最优子结构指的是原问题的最优解可以通过子问题的最优解来求解。
换句话说,原问题的最优解可以由子问题的最优解推导出来。
3. 状态转移方程:动态规划问题通常可以通过状态转移方程来描述。
状态转移方程是指原问题与子问题之间的关系,它可以用数学公式或递推关系来表示。
通过状态转移方程,可以确定问题的递推规律,从而求解问题的最优解。
动态规划的应用动态规划广泛应用于各种领域,比如算法设计、优化问题、数据挖掘等。
它可以解决许多经典问题,比如最短路径、背包问题、编辑距离、最长公共子序列等。
1. 最短路径:最短路径问题是指在一个加权有向图或加权无向图中,找到一条从起点到终点的路径,使得路径上的边权重之和最小。
动态规划可以用于求解最短路径问题,比如利用Floyd-Warshall算法或Dijkstra算法,通过记录并利用子问题的解来求解最短路径。
动态规划的基本概念和基本原理
史的一个完整总结。只有具有无后效性的多阶段决策过程
才适合于用动态规划方法求解。
2 A1
3
5 B1 4
7
6
B2
5
3
2
C1 2 5 6
C2 3
2
C3 1
D3
1
E 5 D
2
B3 2
3.决策(decision)
C4 7
当各阶段的状态选定以后可以做出不同的决定(或选择)从
而确定下一个阶段的状态,这种决定(或选择)称为决策。
5.状态转移方程(state transfer equation) 设第k阶段状态为sk,做出的决策为uk(sk),则第k+1阶段 的状态sk+1随之确定,他们之间的关系可以表示为:
sk+1=Tk(sk,uk) 表示从第k阶段到第k+1阶段状态转移规律的方程称为状态 转移方程,它反映了系统状态转移的递推规律。
f3
(C3
)
min
d d
3 3
(C3 (C3
, ,
D1) D2 )
f4 (D1) f4 (D2 )
2 3
min1
5
5
u3(C3)=D1
f3(C4)= d3(C4,D2)+ f4(D2)=7+5=12
u3(C4)=D2
5
C1 2
2
A
1
3
B1 4
7
6
B2
5
3
2
5 6 C2 3 2
C3 1
D1 3
4.策略(policy)
当各个阶段的决策确定以后,各阶段的决策形成一个决策序 列,称此决策序列为一个策略。
高中数学动态规划教案
高中数学动态规划教案
一、教学内容:动态规划
二、教学目标:
1. 了解动态规划的概念和基本思想。
2. 掌握动态规划的解题步骤和方法。
3. 能够运用动态规划解决相关问题。
三、教学重点和难点:
1. 动态规划的基本概念和基本思想。
2. 动态规划的解题步骤和方法。
四、教学内容:
1. 动态规划的概念和基本原理。
2. 动态规划的解题步骤:确定状态转移方程、初始化状态、递推求解、计算结果。
3. 动态规划的应用实例。
五、教学过程:
1. 概念解释:介绍动态规划的概念和基本原理。
2. 示例演练:通过一个具体的例子,演示如何使用动态规划解题。
3. 练习训练:让学生练习动态规划的相关题目,加深理解和掌握。
4. 考核评价:进行动态规划相关题目的考核,评价学生的学习情况。
六、教学方法:
1. 讲授结合实例演示。
2. 课堂练习和讨论。
3. 个别指导和辅导。
七、教学资源:
1. 课件、教材等相关资料。
2. 教师制作的动态规划例题和习题。
八、教学评价:
1. 知识运用能力的考核。
2. 解题思路和方法的评价。
3. 学生动手能力的评价。
以上是本次高中数学动态规划教案范本,希望能对您有所帮助。
祝教学顺利!。
运筹学课件(动态规划)
(二)、动态规划的基本思想 1、动态规划方法的关键在于正确地写出基本的递推 关系式和恰当的边界条件(简称基本方程)。要做到 这一点,就必须将问题的过程分成几个相互联系的阶 段,恰当的选取状态变量和决策变量及定义最优值函 数,从而把一个大问题转化成一组同类型的子问题, 然后逐个求解。即从边界条件开始,逐段递推寻优, 在每一个子问题的求解中,均利用了它前面的子问题 的最优化结果,依次进行,最后一个子问题所得的最 优解,就是整个问题的最优解。
d( B1,C1 ) + f1 (C1 ) 3+1 f2 ( B1 ) = min d( B1,C2 ) + f1 (C2 ) = min 3+3 d( B1,C3 ) + f1 (C3 ) 1+4 4 = min 6 = 4 (最短路线为B1→C1 →D) 5
3
2 A 4 B2 B1 2 1 3
最优策略为(30,20),此时最大利润为105万元。
f 2 ( 40)
g2 ( y) y 0 ,10 ,, 40
max
f1 ( 40 y )
90
最优策略为(20,20),此时最大利润为90万元。
f 2 (30)
g2 ( y) y 0 ,10 , 20 , 30
max
f1 (30 y )
70
最优策略为(20,10),此时最大利润为70万元。
f 2 ( 20) ma 0 ,10 , 20
50
最优策略为(20,0),此时最大利润为50万元。
f 2 (10) maxg 2 ( y ) f1 (10 y )
3 2 A 4 B2 B1 2 3 1 3 1
C1 C2 4 3
数据结构之动态规划动态规划的基本思想和常见应用场景
数据结构之动态规划动态规划的基本思想和常见应用场景动态规划(Dynamic Programming,DP)是一种通过将问题分解为更小的子问题来解决复杂问题的方法。
它的基本思想是利用已解决过的子问题的解来求解当前问题的解,从而避免重复计算,提高算法效率。
动态规划的应用广泛,可以用于解决一些优化问题、最优化问题以及组合优化问题等。
动态规划的基本思想可以用以下三个步骤来概括:1. 定义子问题:将原问题划分为一个或多个子问题,并找到它们之间的关系。
2. 构建状态转移方程:根据子问题之间的关系,找到问题的递推关系,将问题转化为子问题的解。
3. 解决问题:通过递推计算或者自底向上的方法,求解问题的最终解。
动态规划的核心是状态转移方程。
状态转移方程描述了子问题与原问题之间的关系,通过它可以求解原问题的解。
在构建状态转移方程时,需要考虑如何选择最优子结构并进行状态转移,以及确定初始状态和边界条件。
动态规划常见的应用场景包括:1. 最优化问题:如最短路径问题、最长递增子序列问题、背包问题等。
这类问题中,动态规划可以帮助我们找到最优解。
2. 组合优化问题:如旅行商问题(TSP)、任务分配问题等。
这类问题中,动态规划可以帮助我们找到最佳的组合方案。
3. 概率计算问题:如概率图模型中的推断问题、隐马尔可夫模型中的预测问题等。
这类问题中,动态规划可以帮助我们计算复杂的概率。
举例来说,我们可以通过动态规划求解最长递增子序列问题。
给定一个序列,我们希望找到其中最长递增的子序列的长度。
首先,定义状态dp[i]表示以第i个元素结尾的最长递增子序列的长度。
然后,我们可以根据dp[i-1]和第i个元素的大小关系来更新dp[i]的值,即dp[i]= max(dp[i], dp[j]+1),其中j为i之前的某个位置,且nums[j] < nums[i]。
最后,我们通过遍历数组,找到dp数组中的最大值,即可得到最长递增子序列的长度。
高中数学线性规划与动态规划
高中数学线性规划与动态规划数学是一门抽象而深奥的学科,其中涵盖了大量的分支和理论。
在高中阶段,线性规划与动态规划是数学中的两个重要概念,对于解决实际问题和优化决策具有重要意义。
本文将介绍高中数学中线性规划与动态规划的概念、原理以及实际应用。
一、线性规划线性规划是数学规划问题中的一种常见方法。
它的目标是在满足多个线性约束条件的前提下,寻找线性目标函数的最优解。
线性规划问题可以用图像来表示,其中目标函数和约束条件都是线性方程或线性不等式。
线性规划的标准形式可以表示为:Maximize (或Minimize) Z = c₁x₁ + c₂x₂ + … + cₙxₙSubject to:a₁₁x₁ + a₁₂x₂ + … + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + … + a₂ₙxₙ ≤ b₂…aₙ₁x₁ + aₙ₂x₂ + … + aₙₙxₙ ≤ bₙx₁, x₂, …, xₙ ≥ 0其中,Z表示线性目标函数的值,c₁, c₂, …, cₙ为目标函数中的系数,aᵢₙ为约束条件中的系数,b₁, b₂, …, bₙ为约束条件的右边常数,x₁, x₂, …, xₙ为决策变量。
线性规划问题可以使用单纯形法等算法求解,得到最优解及最优解对应的目标函数值。
二、动态规划动态规划是一种通过将原问题拆分成子问题并保存子问题解,然后利用这些子问题的解来求解原问题的方法。
它适用于那些具有重叠子问题和最优子结构性质的问题。
动态规划通常包含以下几个步骤:1. 定义子问题:将原问题拆分成一系列子问题,这些子问题和原问题具有相同的性质,并且可以通过子问题的解来推导出原问题的解。
2. 确定状态:将子问题的解表示成状态,通常使用状态转移方程来描述状态之间的关系。
3. 构建状态转移方程:根据子问题的性质和状态之间的关系,建立状态转移方程,以表达问题的最优解与子问题最优解之间的关系。
4. 确定初始条件:确定问题的起始状态下的初始值,通常需要定义初始值。
动态规划
第二节动态规划动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。
不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。
动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。
因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。
我们也可以通过对若干有代表性的问题的动态规划算法进行分析、讨论,逐渐学会并掌握这一设计方法。
一、动态规划的基本模型(一)多阶段决策过程的最优化问题在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。
当然,各个阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线,如下图所示:这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题就称为多阶段决策问题。
例 3-2-1 :最短路径问题。
下图给出了一个地图,地图中的每个顶点代表一个城市,两个城市间的一条连线代表道路,连线上的数值代表道路的长度。
现在想从城市A到达城市E,怎样走路程最短?最短路程的长度是多少?分析:把A到E的全过程分成四个阶段,用K表示阶段变量,第1阶段有一个初始状态A,有两条可供选择的支路A-B1、A-B2;第2阶段有两个初始状态B1、B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。
用DK(XI ,X+1J)表示在第K阶段由初始状态X I 到下阶段的初始状态X+1J的路径距离,FK(XI)表示从第K阶段的XI到终点E的最短距离,利用倒推的方法,求解A到E的最短距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2 动态规划
例1:问题的引出
例1:某运输公司有500辆运输卡车,超负 荷运输(每天满载行驶500km以上)时, 年利润25万元/辆,卡车的年损坏率为0.3; 低负荷运输(每天行驶300km以下),年 利润16万元/辆,年损坏率为0.1。现要求制 定5年计划,如何分配不同负荷下的卡车数 量,使5年的总利润最大。
P (d 6
12
d
12
) Pd 7
13
计算结果,得到满意调运方案见表4。 总运费 表4 销地 B B B B 产量 C 3 90 4 100 产地 A 100 200 300 2 100 4 110 A 90 110 200 A 100 250 50 400 2 250 7 200 虚设点 10 90 100 3 50 3360元 销 量 200 100 450 250 1000
应用举例(1)
③目标函数: min z=P1d1++P2(d2++d3++d4+)+P3(d5-+d6-)
用目标规划单纯形法求解,得到多重解。
变 量 x1 x2 x3 d1 d2d3d4d5+ + d6 含义 晋升到Ⅰ级的人数 晋升到Ⅱ级的人数 新招收Ⅲ级的人数 工资总额的结余额 Ⅰ级缺编人数 Ⅱ级缺编人数 Ⅲ级缺编人数 Ⅱ级超编人数 Ⅲ级超编人数 解1 2.4 3 0 6300 0.6 2.4 3 0 0 解2 2.4 3 3 3300 0.6 2.4 0 0 0 解3 3 3 3 3000 0 3 0.6 0 0 解4 3 5 5 0 0 1 0 0.6 2
应用举例(2)
每个销地的供应量不小于其需要量的80%: x11+x21+x31+d6--d6+=200×0.8 x12+x22+x32+d7--d7+=100×0.8 x13+x23+x33+d8--d8+=450×0.8 x14+x24+x34+d9--d9+=250×0.8 调运方案的总运费不超过最小运费调运方案的10%:
1)决策值小于目标值 100X1+80X2 <10000
2)决策值等于目标值 100X1+80X2 =10000 3)决策值大于目标值 100X1+80X2 >10000
建模问题
问题: 怎样将这些可能性体现在一个模型中?
方法: 引入偏差变量
偏差变量
可以设置如下偏差变量:
d+:决策超过目标值部分(正偏差变量)
(3)、充分利用设备,不希望加班。
(4)、尽可能达到并超过利润计划指标56元。
建模步骤
建模:
(1)、设定约束条件。(目标约束、绝对约束)
(2)、规定目标约束优先级。 (3)、建立模型
例2—设定约束条件
设X1 ,X2为产品Ⅰ,产品Ⅱ产量。 2X1+X2 11 X1 -X2 +d1- -d1+=0 X1 +2X2 +d2- -d2+=10 X1 , X2 , di- , di+ 0
min{P1d1+ , P2(d2-+d2+), P3(d3-)}
min Z=P1d1++P2(d2-+d2+)+P3(d3-)
为了说明目标的优先性,定义了优先因子Pl: Pl >> Pl+1 >0
即目标l 比目标 l+1具有绝对的优先权
例3 同等优先级的情况
例3、电视机厂装配25寸和21寸两种彩电,每 台电视机需装备时间1小时,每周装配线计划 开动40小时,预计每周25寸彩电销售24台, 每台可获利80元,每周21寸彩电销售30台, 每台可获利40元。 该厂目标: 1、避免开工不足。 2、允许装配线加班,但尽量不超过10小时。 3、尽量满足市场需求,尤其是25寸彩电。
应用举例(1)
目标约束: ⒈月工资总额不超过60000: 2000(10-10×0.1+x1)+1500(12-x1+x2)+1000(15x2+x3)+d1—-d1+ =60000; ⒉各级人数不超编: 对Ⅰ级有 10(1-0.1)+x1+d2-—d2+=12 对Ⅱ级有 12-x1+x2+d3-—d3+=15 对Ⅲ级有 15-x2+x3+d4-—d4+=15; ⒊ Ⅱ,Ⅲ级的升级面不大于现有人数的20%: 对Ⅱ级有 x1+d5-—d5+=12×0.2 对Ⅲ级有 x2+d6-—d6+=15×0.2
应用举例(2)
例2 已知有三个产地给四个销地供应某种产品,产销 地之间的供需量和单位运价见表4-10。有关部门在研 究调运方案时依次考虑以下七项目标,并规定其相应 的优先等级:
销 地
B1 5 3 4 200
B2 2 5 5 100
B3 6 4 2 450
B4 7 6 3 250
产量 300 200 400 900/1000
应用举例(2)
解 产小于销的问题,采用表上作业法求得最小运费 的调运方案见表3。这时得最小运费为2950元,再根 据提出的各项目标的要求建立目标规划的模型。
表3
销 地 产地
B1 200
B2 100
B3
B4
产量 300 200 400 100 1000/1000
A1 A2 A3 虚设点 销 量
200 250 200 100 450
例1 软约束的设计
例1、生产甲、乙两种产品,数据如下, 最如何安排生产使收益最大?
甲
金工 装配 收益 4 2 100
乙
2 4 80
有效工时
400 500
例1的线性规划模型
LP: maxZ=100X1 + 80X2
2X1+4X2 500
4X1+2X2 400 X1 , X2 0 X* =(50,100) Z* =13000
市场需求
X1 , X2 , di- , di+ 0 di- .di+= 0 (i=1,2,3,4)
权系数
为了对优先级同为Pl的目标实现重要性的微调, 可以对第k个目标的分量dk-加权Wlk- , dk+加权 Wlk+。 可以看到, Wlk越大, 第k个目标的重要性越
大。
目标规划的一般形式
K min Pl Wlk d k Wlk d k , l 1,2,..., L k 1
力求总运费最省:
c x
i 1 j 1
3
4
ij ij
d d 2950
13
13
应用举例(2)
目标函数为:
min z Pd P d 5 P (d 6 d 7 d 8 d 9 ) 1 4 2 3
Pd 4
10
P d 5
11
应用举例(1)
表1
等级 Ⅰ Ⅱ Ⅲ 合计 工资额(元/月) 2000 1500 1000 现有人数 10 12 15 37 编制人数 12 15 15 42
解 ①决策变量:设x1、x2、x3分别表示提升到Ⅰ、 Ⅱ级和录用到Ⅲ级的新职工人数。
②约束条件分析:对各目标确定的优先因子为:
P1——不超过年工资总额60000元; P2——每级的人数不超过定编规定的人数; P3——Ⅱ、Ⅲ级的升级面尽可能达到现有人数的20%。
特点: ① 目标函数中只有偏差变量。 ② 目标函数总是求偏差变量最小。 ③ Z=0:各级目标均已达到 Z>0:部分目标未达到。
解法:图解法、序贯式算法、单纯形法
应用举例
例 某单位领导在考虑本单位职工的升级调资方案时, 依次遵守以下规定: (1) 不超过月工资总额60000元; (2) 每级的人数不超过定编规定的人数; (3) Ⅱ,Ⅲ级的升级面尽可能达到现有人数的20%,且 无越级提升; (4) Ⅲ级不足编制的人数可录用新职工,又Ⅰ级的职工 中有10%要退休。 有关资料汇总于表1中,问该领导应如何拟订一个满意 的方案。
§1 目标规划的数学模型
线性规划的问题
1、线性规划的目标是一个刚性的目标但实 际应用中,目标常常是模糊的。 解决方法: 将目标化作一种软约束。
线性规划的问题
2、线性规划要求有解时各个约束条件相容, 可行域非空。而实际情况并非总能满足。 思路: 正视现实,将原来要求寻找最优解的目 标,改为寻找满意解。 解决方法: 1)将矛盾的普通约束改为目标约束,即 将硬约束改为软约束。 2)将多个约束分为不同的优先级。
d-:决策不足目标值部分(负偏差变量) 存在如下关系: d+ 0 d- 0 d+ ·- =0 d
目标函数
(1)、恰好达到目标:
min Z= d -+d+ (2)、超过目标: min Z= d -
(3)、不超过目标:
min Z= d+
例1的目标规划模型
Min Z= d-
100X1+80X2 -d++d- =10000 4X1+2X2 400 2X1+4X2 500 X1 , X2 , d- , d+ 0 d+.d- =0
严格控制原材料
X1产量不大于X2
充分利用设备,不加班
8X1 +10X2 +d3- -d3+=56 利润要求 di- . di+ =0
例2的目标函数
多个目标函数:
minZ1 = d1+ X1产量不大于X2