Semidefinite Optimization #

合集下载

matlab 半定松弛

matlab 半定松弛

matlab 半定松弛
半定松弛(Semidefinite Relaxation,SDR)是一种优化方法,常用于解决半定规划问题。

半定规划(Semidefinite Programming,SDP)是一种线性规划问题的推广,其中目标函数和约束条件涉及半定矩阵(半正定矩阵)。

在实际应用中,有时难以直接求解半定规划问题。

这时,可以通过引入额外的变量和约束条件,将问题转化为一个更容易求解的凸优化问题。

这个转化过程就是半定松弛。

具体来说,半定松弛将原始的半定规划问题转化为一个矩阵约束问题。

它引入了一个半定矩阵变量,将原始的约束条件转化为矩阵约束条件,并添加一个额外的目标函数项来近似原始目标函数。

这样,可以得到一个可以用常见的凸优化算法求解的凸优化问题。

虽然这个问题的解不一定是原始问题的最优解,但它可以提供一个较好的近似解。

需要注意的是,半定松弛只是一种近似方法,并不能保证得到原始问题的最优解。

因此,在实际应用中,需要根据具体问题的要求和约束条件来评估半定松弛的有效性,并在必要时进行后处理以得到更优的解。

基于半定规划的多约束图划分问题

基于半定规划的多约束图划分问题

第61卷 第3期吉林大学学报(理学版)V o l .61 N o .32023年5月J o u r n a l o f J i l i nU n i v e r s i t y (S c i e n c eE d i t i o n )M a y2023d o i :10.13413/j .c n k i .jd x b l x b .2022255基于半定规划的多约束图划分问题王晓瑜1,刘红卫1,王 婷1,丁玉婉1,游海龙2(1.西安电子科技大学数学与统计学院,西安710126;2.西安电子科技大学微电子学院,西安710071)摘要:提出一种递归的二分算法,用于求解带顶点权重约束的图划分问题.首先利用内点法求解不加顶点权重约束的半定规划松弛模型,然后利用超平面舍入算法得到满足顶点权重约束的初始可行解,再进一步设计启发式算法对初始可行划分进行局部改进,以得到更优的划分结果.实验结果表明,所设计的算法可在较短时间内得到多约束图划分问题的高质量解.关键词:图划分;半定规划;背包问题;组合优化中图分类号:O 221.7 文献标志码:A 文章编号:1671-5489(2023)03-0540-07M u l t i -c o n s t r a i n tG r a p hP a r t i t i o n i n g Pr o b l e m B a s e d o nS e m i d e f i n i t eP r o g r a m m i n gWA N G X i a o y u 1,L I U H o n g w e i 1,WA N G T i n g 1,D I N G Y u w a n 1,Y O U H a i l o n g2(1.S c h o o l o f M a t h e m a t i c s a n dS t a t i s t i c s ,X i d i a nU n i v e r s i t y ,X i a n 710126,C h i n a ;2.S c h o o l o f M i c r o e l e c t r o n i c s ,X i d i a nU n i v e r s i t y ,X i a n 710071,C h i n a )A b s t r a c t :W e p r o p o s e d a r e c u r s i v e d i c h o t o m y a l g o r i t h mt os o l v e t h e g r a p h p a r t i t i o n i n gpr o b l e m w i t h v e r t e x w e i g h tc o n s t r a i n t .F i r s t l y ,t h ei n t e r i o r p o i n t m e t h o d w a s u s e dt os o l v et h es e m i d e f i n i t e p r o g r a mm i n g r e l a x a t i o n m o d e l w i t h o u t v e r t e x w e i g h t c o n s t r a i n t .S e c o n d l y,t h ei n i t i a lf e a s i b l e s o l u t i o ns a t i s f y i n g t h ev e r t e x w e i g h tc o n s t r a i n t w a so b t a i n e d b y h y p e r p l a n er o u n d i n g a l go r i t h m.T h i r d l y ,t h e h e u r i s t i c a l g o r i t h m w a s f u r t h e r d e s i g n e d t o l o c a l l y i m p r o v e t h e i n i t i a l f e a s i b l e p a r t i t i o n t o o b t a i n t h eo p t i m a l p a r t i t i o nr e s u l t .T h ee x p e r i m e n t a l r e s u l t ss h o wt h a t t h e p r o p o s e da l g o r i t h m c a n o b t a i n t h eh i g h q u a l i t y s o l u t i o n t o t h em u l t i -c o n s t r a i n t g r a p h p a r t i t i o n i n gp r o b l e mi na s h o r t t i m e .K e y w o r d s :g r a p h p a r t i t i o n i n g ;s e m i d e f i n i t e p r o g r a mm i n g ;k n a p s a c k p r o b l e m ;c o m b i n a t o r i a l o p t i m i z a t i o n 收稿日期:2022-06-11.第一作者简介:王晓瑜(1998 ),女,汉族,硕士研究生,从事图划分问题的研究,E -m a i l :w x yh n d w l @163.c o m.通信作者简介:刘红卫(1967 ),男,汉族,博士,教授,博士生导师,从事最优化理论的研究,E -m a i l :h w l i u x i d i a n @163.c o m.基金项目:广东省重点领域研发计划项目(批准号:2019B 010140001).超大规模集成电路(V L S I)设计[1]㊁电信[2]和并行运算[3]等问题在数学建模时通常被抽象为图的形式,图分割是其基本算法之一.但随着数据规模的不断增长,图划分问题变得更具有多面性和挑战性.该问题旨在将图G =(V ,E )的顶点在一定容量或基数的约束下划分为几个组,使得所求最优解的割边总权重最小.由于该问题是N P -完备的,因此研究寻找近似解的方法有一定的意义.图划分问题源于针对图的k 划分问题设计的一个二次程序.随着新的图划分问题的不断发展,多种求解方法也应时而生,例如:K e r n i g h a n 等[4]考虑将图划分为给定大小的子集,并设计了一种启发式方法进行求解;C h r i s t o f i d e s 等[5]对图的二分问题提出了树搜索方法,有效地限制了子集中节点的数目;L a b b é等[6]针对团划分问题,利用分支定界算法将图划分为有上下界的子集.通过将图划分问题重新表述为一个非凸二次规划问题,人们提出了一些有效的近似算法.Copyright ©博看网. All Rights Reserved.G o e m a n s 等[7]对非负加权图提出了基于半定松弛的舍入算法,该算法对k =2可实现0.878的近似界;F r i e z e 等[8]针对图的多分问题扩展了文献[7]的舍入算法,并分析了所设计算法在不同划分块下的理论近似比.在近似算法的基础上,分支定界法也被设计用于求解图划分问题.R e n d l 等[9]利用基于半定松弛的分支定界算法B i q M a c 求解了经典的最大割问题;D e l l i n g 等[10]根据分支定界框架提出了求解最小图二分的精确组合算法,其下界是通过启发式方法得到的;L u 等[11]提出了一种新的分支定界算法,直接选择一个合适的向量生成k 个子问题,设计了减少枚举过程中子问题冗余性的策略.背包问题作为组合优化问题的基本问题之一,已在多学科领域得到广泛研究.本文主要关注具有背包约束的图划分(G P K C )问题,图中的每个顶点都被赋予一个权值,每个划分集合都需满足背包约束.R e c a l d e 等[12]将背包问题转化为整数规划问题,并设计了一种基于分支定界的精确算法来求解该问题.N g u ye n [13]针对G P K C 问题提出了一个严格的L P 松弛方法,并利用启发式方法建立解的上界.由于基于半定规划在生成具有背包约束[14]和k -均分问题的二次问题紧下界方面性能较好,因此研究者们将半定规划松弛应用于G P K C 问题中.W i e g e l e 等[15]通过引入带有非负约束的紧的半定松弛,得到了多达500个顶点的G P K C 问题的高质量下界,同时,所设计的启发式算法相比于文献[13]可得到一个更严格的上界,但该算法尚未考虑在给定划分块数的情形下是否能满足划分结果.对于大规模划分的实际应用,也可考虑将启发式和元启发式方法用于寻找足够好的次优解.A r r 췍i z 等[16]将模拟退火和禁忌搜索方法相结合求解图二分问题,其算法可花费较小的计算代价而得到高质量的解.B e n l i c 等[17]基于多级划分和禁忌搜索提出了一种混合算法,把禁忌搜索作为多级框架的细化算法,用于解决图的平衡划分问题,其算法性能优于图划分软件M e t i s 和C h a c o .基于此,本文考虑带有顶点权重约束的图的二划分问题,利用图的二划分方法递归地进行图的多分,并将所设计的算法与W i e ge l e 等[15]提出的图的多分算法进行比较,验证该算法的有效性.1 图的二划分1.1 模型的建立给定一个赋权无向图G =(V ,E ),其中V ={1,2, ,n }为点集,n 为图G 中的顶点个数,E 为边集,W 为图G 的邻接矩阵,ωi j 为对应边[i ,j ]ɪE 的权值,则∀i ʂj ,有ωi j =ωji ,且ωi i =0.记b i 为顶点i 的非负权重,U 为划分集合容量上限.G P K C 问题要求将图的顶点V 划分为两部分,即S 和V \S ,使得在不同集合中的顶点满足切边总权重最小,且每组的顶点权重和不超过容量上限U ,则目标函数可写为f (S ,V \S )=m i n ði ɪS ,j ɪV\S ωi j .(1) 令x i 表示顶点i ,若顶点i 属于集合S ,则x i 取值为1,反之,x i 取值为-1.于是未考虑顶点权重约束的图二划分问题可写为如下二次函数形式:f (x )=m i n 14ði ,j ɪVωi j (1-x i x j ), x ɪ{-1,1}n .(2) 引入与W 相关的L a p l a c e 矩阵L =d i a g (W e )-W ,其中e ɪℝn 是一个分量全为1的列向量,d i a g (W e )是一个对角矩阵,其对角项为向量W e 中的元素.于是图二划分模型(2)等价于如下二次整数规划形式(I Q P ):m i n f (x )=14x T Lx ,s .t .x ɪ{-1,1}nìîíïïï. 令B 表示顶点的权重向量,则第i 个顶点的权重为b i ,U =(u 1,u 2)T表示划分集合的资源上限,u r (r ɪ{1,2})表示第r 块划分集合的上限,则求解模型(G P K C )为m i n 14x T{}L x ,s .t .x +e æèçöø÷2T B ɤu 1,e -x æèçöø÷2T B ɤu 2,x ɪ{-1,1}n ìîíïïïï.145 第3期 王晓瑜,等:基于半定规划的多约束图划分问题Copyright ©博看网. All Rights Reserved.令X =x x T ,其中x ɪ{-1,1}n ,则有X ⪰0,X i i =x 2i =1且X 是秩1矩阵.反之,若任意对称矩阵X 具有X ⪰0,X i i =1,r a n k (X )=1的性质,则存在x ɪ{-1,1}n,使得X =x x T .由于x T L x =t r (x T L x )=t r (L x x T )=t r (L X ),(3)因此利用文献[18]中矩阵迹运算的性质,可将问题(G P K C )重写为m i n 14tr (L X {}),s .t .d i a g (X )=e , t r 0B B T 2B Tæèçöø÷e x x T x x T æèçöø÷1ɤ4u 1, t r 0-B -B T 2B T æèçöø÷e x x T x x T æèçöø÷1ɤ4u 2, X ⪰0, r a n k (X )=1ìîíïïïïïïïïïïïï,(4)其中矩阵x x T x xTæèçöø÷1⇔x æèçöø÷1(x T 1)(5)是半正定的秩1矩阵,且对角线元素均为1.记C =L 0æèçöø÷00,Y =x x T x xTæèçöø÷1,Q =0B B T2B Tæèçöø÷e ,P =0-B -B T2B Tæèçöø÷e ,若去掉r a n k (X )=1的约束,则可得增加顶点约束后的半定规划松弛模型(G P K C 1):m i n14t r (C Y {}),s .t .d i a g (Y )=e ,t r (QY )ɤ4u 1,t r (P Y )ɤ4u 2,Y ⪰0{. 上述半定规划松弛模型(G P K C 1)求解较复杂,但在不考虑顶点权重约束的情形下,原问题可行,半定规划及其对应的对偶模型是严格可行的,且易找到其严格可行点,因此本文考虑使用内点法求解去掉顶点权重约束的更松弛的半定规划,再对求得的解进行随机扰动,并在随机扰动过程中增加对解的可行性判定,以保证所得解满足顶点权重约束.去掉顶点权重约束的半定规划松弛模型(S D P )为m i n14t r (C Y {}),s .t .d i a g(Y )=e ,Y ⪰0{,其对应的对偶形式(D S D P )为m a x 14e T{}y ,s .t .d i a g (y )-C =Z , Z ⪰0ìîíïïïï.本文采用内点法[19]求解模型(S D P )和(D S D P ),起始点Y ʒ=I n ˑn ,y ʒ=μe ,Z ʒ=μI -C /4是可行的且在内部,其中μ是使得Z 为正定矩阵的常数.1.2 超平面舍入算法计算最小化问题的上界通常利用启发式方法确定原问题的可行解.对于求得的模型(S D P )的最优解,主要利用G o e m a n s 等[7]对最大割问题提出的算法以及F r i e z e 等[8]提出的改进的随机舍入算法,设计图二分的超平面舍入算法以得到问题(G P K C )的近似最优解,即图二分的初始划分.下面给出完整的图二分超平面舍入算法.算法1 图二分的超平面舍入算法.输入:模型(S D P )的最优解Y ,目标矩阵C ,顶点权重向量B ,资源上限U ,抽样次数p ;初始化:x =[],f =[];245 吉林大学学报(理学版) 第61卷Copyright ©博看网. All Rights Reserved.步骤1)对Y 做C h o l e s k y 分解D TD =Y 得到D ;步骤2)f o r t =1,2, ,p步骤3) 取单位球面S n 上服从均匀分布的单位向量s t ;步骤4) x t =s g n (D T s t ),f t =x T t C x t ,x =[x ,x t ],f =[f ,ft ];步骤5)e n d步骤6)取m i n (f )对应的x 赋值于y ,并令e r r =m a x {(y +e )T B -2u 1,0}+m a x {(e -y )TB -2u 2,0};步骤7)i f∃e r r =0步骤8) 输出对应的y ;步骤9)e l s e步骤10) 对y 做一邻域调整得y 1,令f 1=y T1C y1,计算相应的e r r 1值;步骤11) 令e r r =m a x {(x +e )T B -2u 1,0}+m a x {(e -x )T B -2u 2,0};步骤12) i f∃e r r 1=0步骤13) 若∃e r r =0,则输出m i n (f )和m i n (f 1)对应的[x ,y 1];步骤14) e l s e步骤15)若∃e r r =0,输出m i n (f )对应的x ;反之,对x 做一邻域调整得x 1,计算相应的f 和e r r 值;步骤16)若∃e r r =0,输出m i n (f )对应的x 1;反之,输出调整后m i n (f )和m i n (e r r )值对应的[x 1,y1];步骤17) e n d步骤18)e n d输出:目标值最优的划分.算法1中步骤10)的邻域调整是指:令P 1={i y (i )=1},P 2={i y (i )=-1},将P 1中单点逐次移动到P 2,再将P 2中单点逐次移动到P 1,得到相应的y 1.1.3 均衡因子在对问题(2)中目标函数值进行极小化时,由于在实际问题中常将ωi j 视为非负数,因此当x i 和x j 均为1或均为-1,即顶点全划分在同一个集合时,可得最小目标值0,与本文划分思想不符.为避免上述情形发生,同时减少划分导致的资源浪费,本文考虑在目标函数中添加一个均衡因子,用于控制划分结果的均衡性.用顶点权重向量B 除以顶点权重的最大值,得列向量β,进一步可得矩阵A =ββT,此时由模型(S D P )可得新的目标矩阵C =C +a A ,其中a 是均衡因子,本文令a =300.1.4 二分图的启发式算法二分图启发式算法可用于提高各种组合问题的解决方案质量[20].在利用超平面舍入算法得到初始划分后,本文用该方法进一步改进划分的质量,下面给出改进的二分图启发式算法.给定划分结果(P 1,P 2),在满足容量限制的条件下,寻找使目标函数值更小的划分结果.算法2 图划分问题的启发式算法.输入:划分组合(P 1,P 2),目标值f *,目标矩阵C ,划分矩阵R ,停止误差ε;初始化:δ=0;步骤1)(s ,t )ѳa r g m a x i ɪP 1,j ɪP 2ðk ʂi ,k ɪP 1L jk -ðk ʂj ,k ɪP 2L jk +ðk ʂj ,k ɪP 2L i k -ðk ʂi ,k ɪP 1L {}i k ;步骤2)Δc o s t ѳðk ʂs ,k ɪP 1L t k -ðk ʂt ,k ɪP 2L t k +ðk ʂt ,k ɪP 2L s k -ðk ʂs ,k ɪP 1L s k ;步骤3)w h i l e Δc o s t >ε步骤4) P 1ѳP 1-{s }+{t },P 2ѳP 2-{t }+{s };步骤5) (s ,t )ѳa r g m a x i ɪP 1,j ɪP 2ðk ʂi ,k ɪP 1L jk -ðk ʂj ,k ɪP 2L jk +ðk ʂj ,k ɪP 2L i k -ðk ʂi ,k ɪP 1L {}i k ;步骤6) Δc o s t ѳðk ʂs ,k ɪP 1L t k -ðk ʂt ,k ɪP 2L t k +ðk ʂt ,k ɪP 2L s k -ðk ʂs ,k ɪP 1L s k ;345 第3期 王晓瑜,等:基于半定规划的多约束图划分问题 Copyright ©博看网. All Rights Reserved.445吉林大学学报(理学版)第61卷步骤7)e n d步骤8)f o r t=1ʒl e n g t h(P i),其中iɪ{1,2},jɪ{1,2}\i步骤9)rѳP i(t),令P iѳP i-{r},P jѳP j+{r};步骤10)H=C R,δ1=C(r,r)-H(r,i)+H(r,j);步骤11)i fδ1<δ步骤12)δѳδ1,(P*1,P*2)ѳ(P1,P2),f*ѳf*+δ;步骤13)e n d步骤14)e n d输出:改进的划分结果(P*1,P*2)及其对应的目标值f*.2图的多分问题图的多分问题是将图的顶点集划分为多个集合,使得各划分集合在顶点权重不超过资源上限的情形下,连接不同子集的边的总权值最小化.由于所建模型有多个约束条件,而内点算法又因内存问题无法求解大规模实例,因此针对图的多分问题,本文利用改进的图二分算法设计递归二分的图多分算法.在图二划分不可行的情形下,需额外增加资源满足图二分的可行性.为避免后续划分时因资源不足而导致划分结果不可行的情况,本文引进缩小资源的参数m,利用增加资源后新资源的m倍进行划分,令m=0.7.从而在保证二分可行的同时,避免出现资源不足的情况.下面给出增加资源的全过程.算法3资源变更算法.输入:前两块资源二分的结果x*,资源上限U,剩余的资源块φ,缩小资源参数m;步骤1)判断x*的可行性,即顶点权重是否满足资源约束,将不可行的块记入ψ;步骤2)w h i l eψ非空步骤3) w h i l eφ非空&ψ非空步骤4)uψ(1)=m[uψ(1)+uφ(1)],φ(1)=[],ψ(1)=[];步骤5)e n d步骤6)进行随机扰动,得到新的划分结果x;步骤7)判断x的可行性,将不可行的块记入ψ;步骤8)e n d步骤9)当资源增加使得二分可行时,将增加资源后的大块及其对应的顶点按相应的初始资源大小继续二分,直至得到最后的划分结果P;输出:划分结果P.在得到图多分的划分结果后,对划分的子集数k进行排列组合C2k,分别对组合中每对(P i,P j)用二分图的的启发式算法,使划分集合在满足资源限制的条件下,得到更优的目标函数值.最后将未充分利用资源的集合在保证划分可行的前提下进行合并,减少资源浪费的同时改进目标函数值.下面给出利用递归二分求解图多分问题的全过程.算法4递归二划分求解图多分问题.步骤1)建立模型(G P K C),利用内点法求解半定规划松弛模型(S D P),对模型(S D P)最优解Y用超平面舍入算法(算法1)得到图二分的初始划分;步骤2)若二分不可行,则转步骤3);步骤3)利用算法3对不可行的划分集合增加划分资源,直至二分可行,再将增加资源后的二划分集合继续进行二分,最后得到图的k划分结果;步骤4)利用图的启发式算法(算法2)对图的k划分中每两个划分集合的顶点进行调整,以得到使目标函数值更小的划分;Copyright©博看网. All Rights Reserved.步骤5)合并未充分利用资源的集合.3 数值模拟下面用MA T L A BR 2021b 实现本文算法,数据来源于文献[15]中部分随机生成图数据以及文献[13]中生成的大规模数据,其中(G P K C r a n d 20),(G P K C r a n d 50),(G P K C r a n d 80)分别表示邻接矩阵中非零边权值占比20%,50%,80%的图.将利用递归二划分算法求得的最小切边权值与文献[15]中对G P K C 问题D N N 松弛模型所设计的V c +2o p t 算法求得的切边权值进行比较,并用g a p 表示两者切边权值之间的差距,其中g a p =(递归二划分算法所得目标函数值-(V c +2o p t 算法所得目标函数值))/(V c +2o p t 算法所得目标函数值).为保证实验结果的合理性,本文对每个测试样例均进行10次实验,取实验最好结果及平均的C P U 时间,结果列于表1.表1 递归二划分算法与V c +2o pt 算法的实验结果T a b l e 1 E x p e r i m e n t a l r e s u l t s o f r e c u r s i v e b i s e c t i o na l g o r i t h ma n dV c +2o p t a l go r i t h m 划分图的顶点个数给定划分块的容量上限V c +2o pt 算法目标函数值C P U 时间/s 递归二划分算法目标函数值C P U 时间/sg a p /%50013356149048474184896914-0.161677037(G P K C r a n d 20)54084846353159484677850.05021545428866980799149398410060.336562333148401074286137310734737-0.0756781711292310882801370108955080.116697909746811375231481113502711-0.2194241353975116882518051171719200.24759908550013128613018297394130446550.202484351(G P K C r a n d 50)561012183890156021833378-0.0253217882924425322051462254125490.35735653315747275330314742754371100.03878977413176279626014742800167110.139722343792028980631580289730215-0.0262589184249297915718052982538250.1134884805001321351986063752319842186-0.092897355(G P K C r a n d 80)5318635212443778351433910-0.19609547126965413247731344135674120.07736280215049445287632394463604140.24092294512806451933736754529146150.2170451117312469418826134703839200.2055946634071481458824844817132320.0528394121173321807826551072778029-5.868118572102563185878451288183233553-1.422919500540392470894515132477605670.27160210031751283686252390283211577-0.1673327781684230645875407731010741081.190600887 表1给出了递归二划分算法和V c +2o p t 算法对500和1173个顶点的划分结果以及各算法所花费的C P U 时间.由表1可见:递归二划分算法随着容量上限的减少,划分所需时间逐渐增加;由于本文提出的递归二划分算法是在考虑去掉顶点权重约束的情形下求解半定规划松弛模型,大幅度减小了求解模型的次数,且计算过程中迭代次数较少,从而在较短的时间内可得到递归二划分算法的较优解.此外,由两种算法所得函数值的差距g a p 可知:当g a p 为正,即递归二划分算法所得目标函数值比V c +2o p t 算法所得函数值大时,递归二划分算法可在较短时间内得到与V c +2o p t 算法函数值差距最大为1.19%的较优目标函数值;当g a p 为负时,表示递归二划分算法的函数值优于V c +2o p t 算法所得目标函数值,且两者所得目标函数值差距最多为5.87%.545 第3期 王晓瑜,等:基于半定规划的多约束图划分问题 Copyright ©博看网. All Rights Reserved.645吉林大学学报(理学版)第61卷综上所述,本文针对带有顶点权重约束的图多分问题,设计了递归的二划分算法.首先,考虑用内点法求解不加顶点权重约束的半定规划松弛模型;其次,通过随机扰动得到满足顶点权重约束的可行解;最后,利用启发式算法,对可行解进行局部改进得到更紧的上界.同时加入均衡因子以避免半定规划目标值为0以及因划分不均衡导致的资源浪费,并设计了求解后的划分合并算法.实验结果表明,本文提出的递归二划分算法可高效地求解带约束的图多分问题,得到了较优的划分结果.参考文献[1] C HOJD,R A J ES,S A R R A F Z A D E H M.F a s tA p p r o x i m a t i o nA l g o r i t h m so n M a x c u t,k-C o l o r i n g,a n d k-C o l o rO r d e r i n g f o rV L S IA p p l i c a t i o n s[J].I E E ET t r a n s a c t i o n s o nC o m p u t e r s,1998,47(11):1253-1266. [2] L I S S E R A,R E N D L F.G r a p h P a r t i t i o n i n g U s i n g L i n e a ra n d S e m i d e f i n i t e P r o g r a mm i n g[J].M a t h e m a t i c a lP r o g r a mm i n g,2003,95(1):91-101.[3] H E N D R I C K S O NB,K O L D A T G.G r a p hP a r t i t i o n i n g M o d e l s f o rP a r a l l e lC o m p u t i n g[J].P a r a l l e lC o m p u t i n g,2000,26(12):1519-1534.[4] K E R N I G HA NB W,L I N S.A n E f f i c i e n t H e u r i s t i cP r o c e d u r ef o rP a r t i t i o n i n g G r a p h s[J].T h eB e l lS y s t e mT e c h n i c a l J o u r n a l,1970,49(2):291-307.[5] C H R I S T O F I D E S N,B R O O K E R P.T h e O p t i m a l P a r t i t i o n i n g o f G r a p h s[J].S I AM J o u r n a lo n A p p l i e dM a t h e m a t i c s,1976,30(1):55-69.[6] L A B BÉM,ÖZ S O Y F A.S i z e-C o n s t r a i n e d G r a p h P a r t i t i o n i n g P o l y t o p e s[J].D i s c r e t e M a t h e m a t i c s,2010,310(24):3473-3493.[7] G O E MA N S M X,W I L L I AM S O NDP.I m p r o v e dA p p r o x i m a t i o nA l g o r i t h m s f o rM a x i m u mC u t a n dS a t i s f i a b i l i t yP r o b l e m sU s i n g S e m i d e f i n i t eP r o g r a mm i n g[J].J o u r n a l o f t h eA C M,1995,42(6):1115-1145.[8] F R I E Z E A,J E R R UM M.I m p r o v e d A p p r o x i m a t i o n A l g o r i t h m sf o r M a x k-C u t a n d M a x B i s e c t i o n[J].A l g o r i t h m i c a,1997,18(1):67-81.[9] R E N D L F,R I N A L D I G,W I E G E L E A.S o l v i n g M a x-C u tt o O p t i m a l i t y b y I n t e r s e c t i n g S e m i d e f i n i t e a n dP o l y h e d r a lR e l a x a t i o n s[J].M a t h e m a t i c a l P r o g r a mm i n g,2010,121(2):307-335.[10] D E L L I N GD,F L E I S C HMA N D,G O L D B E R G A V,e ta l.A n E x a c tC o m b i n a t o r i a lA l g o r i t h mf o r M i n i m u mG r a p hB i s e c t i o n[J].M a t h e m a t i c a l P r o g r a mm i n g,2015,153(2):417-458.[11] L U C,D E N G Z B.A B r a n c h-a n d-B o u n d A l g o r i t h m f o rS o l v i n g M a x-k-C u tP r o b l e m[J].J o u r n a lo f G l o b a lO p t i m i z a t i o n,2021,81(2):367-389.[12] R E C A L D ED,T O R R E SR,V A C A P.A nE x a c tA p p r o a c h f o r t h e M u l t i-c o n s t r a i n tG r a p hP a r t i t i o n i n g P r o b l e m[J].E U R OJ o u r n a l o nC o m p u t a t i o n a lO p t i m i z a t i o n,2020,8(3/4):289-308.[13] N G U Y E N DP.C o n t r i b u t i o n s t oG r a p hP a r t i t i o n i n g P r o b l e m s u n d e rR e s o u r c eC o n s t r a i n t s[D].P a r i s:U n i v e r s i téP i e r r e e tM a r i eC u r i e,2016.[14] H E L M B E R G C,R E N D L F,W E I S MA N T E L R.Q u a d r a t i c K n a p s a c k R e l a x a t i o n s U s i n g C u t t i n g P l a n e sa n dS e m i d e f i n i t e P r o g r a mm i n g[C]//I n t e r n a t i o n a l C o n f e r e n c e o n I n t e g e r P r o g r a mm i n g a n d C o m b i n a t o r i a l O p t i m i z a t i o n.B e r l i n:S p r i n g e r,1996:175-189.[15] W I E G E L E A,Z HA O S D.S D P-B a s e dB o u n d sf o rG r a p h P a r t i t i o nv i aE x t e n d e d A D MM[J].C o m p u t a t i o n a lO p t i m i z a t i o na n dA p p l i c a t i o n s,2022,82(1):251-291.[16] A R RÁI ZE,O L I V O O.C o m p e t i t i v e S i m u l a t e dA n n e a l i n g a n dT a b uS e a r c hA l g o r i t h m s f o r t h eM a x-C u t P r o b l e m[C]//P r o c e e d i n g s o ft h e11t h A n n u a l C o n f e r e n c e o n G e n e t i c a n d E v o l u t i o n a r y C o m p u t a t i o n.N e w Y o r k:A s s o c i a t i o n f o rC o m p u t i n g M a c h i n e r y,2009:1797-1798.[17] B E N L I C U,HA O JK.A n E f f e c t i v e M u l t i l e v e lT a b uS e a r c h A p p r o a c hf o rB a l a n c e d G r a p h P a r t i t i o n i n g[J].C o m p u t e r s&O p e r a t i o n sR e s e a r c h,2011,38(7):1066-1075.[18] K L E R K ED.A s p e c t s o f S e m i d e f i n i t eP r o g r a mm i n g[M].2n de d.N e w Y o r k:S p r i n g e r,2002:214-216.[19] H E L M B E R GC,R E N D LF,V A N D E R B E IRJ,e t a l.A nI n t e r i o r-P o i n tM e t h o df o rS e m i d e f i n i t eP r o g r a mm i n g[J].S I AMJ o u r n a l o nO p t i m i z a t i o n,1996,6(2):342-361.[20] L I NS.C o m p u t e rS o l u t i o n so ft h e T r a v e l i n g S a l e s m a n P r o b l e m[J].B e l lS y s t e m T e c h n i c a lJ o u r n a l,1965,44(10):2245-2269.(责任编辑:李琦)Copyright©博看网. All Rights Reserved.。

计及电压稳定的最优潮流二阶锥规划方法

计及电压稳定的最优潮流二阶锥规划方法

计及电压稳定的最优潮流二阶锥规划方法李海英;薛琢成;张巍【摘要】为平衡系统的安全性与经济性,本文采用电压稳定裕度指标,建立计及电压稳定约束的最优潮流模型.同时增加一组临界状态下的静态安全约束,通过最优潮流模型求得电压稳定裕度中的临界参数.所建模型是多维非线性规划问题,利用二阶锥松弛方法,将其转化为二阶锥规划模型,求得全局最优解.在IEEE9节点和IEEE30节点系统中测试表明,提出的方法能够量化不同稳定裕度对发电成本及节点电压的影响,同时为无功补偿装置的安装提供指导.【期刊名称】《电力系统及其自动化学报》【年(卷),期】2018(030)012【总页数】7页(P33-39)【关键词】电力系统;电压稳定;最优潮流;二阶锥规划【作者】李海英;薛琢成;张巍【作者单位】上海理工大学电气工程系,上海 200093;上海理工大学电气工程系,上海 200093;上海理工大学电气工程系,上海 200093【正文语种】中文【中图分类】TM712传统最优潮流模型通常假设传输容量裕度足够大。

但在电力市场环境下,系统负荷水平和供电比重不断增加,负荷高峰时期传输容量可能接近稳定极限,在没有更多无功及时补充的情况下,将电压稳定纳入模型值得深入探讨[1]。

电压稳定是电力系统规划与运行考虑的重要因素之一,电压稳定问题相比于功角、频率稳定问题,具有突发性和隐蔽性,长期被忽略。

近年来世界各地发生的大规模停电事件,如土耳其“3.31”大停电事故及印度“7.30”、“7.31”大停电事故[2-3],使电压稳定问题逐渐受到关注。

电压稳定的最优潮流问题,现阶段研究主要集中在指标和算法改进两方面。

电压稳定L指标由于具有确定的上下限,通过计算系统中L指标的最大值可以判断电压稳定程度,在电压稳定分析中应用最广泛。

文献[4]利用L指标建立电压稳定最优潮流模型,对系统安全性和经济性做出分析。

文献[5]对L指标做出改进,将一个非凸问题转化为拟凸问题,得到更为精确的潮流解。

STAR-RIS辅助多载波通信感知一体化系统的资源优化

STAR-RIS辅助多载波通信感知一体化系统的资源优化

(KarushKuhnTucker)最 优 性 条 件 ,提 出 了 一 种 有 效 的 联 合优化方案三步求解技术。文献[19]研究了 DFRC系统中 的公平性问题,该系统利用 OFDM 波形同时执行雷达和通 信操作,提出了一种新的迭代算法,在满足雷达性能约束的
通信服务的激增导致了频谱拥堵等问题,为了提升频谱利 用率和降低硬件成本,6G 希望将雷达系统和通信网络集 成,形成一个通信感知一体化(integratedsensingandcom munications,ISAC)系 统,也 称 为 双 功 能 雷 达 通 信 (dual functionradarcommunications,DFRC)系统[24]。
然而,传统的 RIS只能将信号反射到表面的同一侧,这导致 了发射机和接收机不在 RIS同一侧时,通信系统不能享受 RIS带 来 的 优 势 。 为 了 克 服 这 一 限 制 ,目 前 已 经 出 现 了 一 种名为同时透射和反射的 RIS(simultaneouslytransmitting andreflectingRIS,STARRIS)的新 型 智 能 表 面[6],也 叫 做全向 智 能 表 面 (intelligentomnisurfaces,IOS)[7]。它 能够使入射到表面任一侧的无线信号被同时反射和透
RIS能够完全依靠无源可调谐元件控制其反射信号的 相移,被视为智能无线电这一新兴概念的关键使能因素[5]。
前提下,最大化不同通信用户之间的公平性。 本文首次将 STARRIS与多载波ISAC系统相结合,
利 用 它 们 各 自 的 优 势 提 高 通 信 和 感 知 性 能 。ISAC 基 站 同 时发送雷达和通信信号,在共用同一硬件资源的情况下实 现通信 和 感 知 两 种 功 能,在 保 证 雷 达 功 能 的 信 噪 比 和 STARRIS 两 侧 用 户 各 自 的 通 信 信 噪 比 前 提 下 ,通 过 优 化 ISAC 基站的功率 和 子 载 波 分 配 以 及 STARRIS 的 波 束 成

数学专业英语词汇(N)

数学专业英语词汇(N)

数学专业英语词汇(N)n ary relation n元关系n ball n维球n cell n维胞腔n chromatic graph n色图n coboundary n上边缘n cocycle n上循环n connected space n连通空间n dimensional column vector n维列向量n dimensional euclidean space n维欧几里得空间n dimensional rectangular parallelepiped n维长方体n dimensional row vector n维行向量n dimensional simplex n单形n dimensional skeleton n维骨架n disk n维圆盘n element set n元集n fold extension n重扩张n gon n角n graph n图n homogeneous variety n齐次簇n person game n人对策n simplex n单形n sphere bundle n球丛n th member 第n项n th partial quotient 第n偏商n th power operation n次幂运算n th root n次根n th term 第n项n times continuously differentiable n次连续可微的n times continuously differentiable function n次连续可微函数n tuple n组n tuply connected domain n重连通域n universal bundle n通用丛nabla 倒三角算子nabla calculation 倒三角算子计算nabla operator 倒三角算子napier's logarithm 讷代对数natural boundary 自然边界natural boundary condition 自然边界条件natural coordinates 自然坐标natural equation 自然方程natural equivalence 自然等价natural exponential function 自然指数函数natural frequency 固有频率natural geometry 自然几何natural injection 自然单射natural isomorphism 自然等价natural language 自然语言natural logarithm 自然对数natural mapping 自然映射natural number 自然数natural oscillation 固有振荡natural sine 正弦真数natural transformation 自然变换naught 零necessary and sufficient conditions 必要充分的条件necessary and sufficient statistic 必要充分统计量necessary condition 必要条件necessity 必然性negation 否定negation sign 否定符号negation symbol 否定符号negative 负数negative angle 负角negative binomial distribution 负二项分布negative complex 负复形negative correlation 负相关negative definite form 负定型negative definite hermitian form 负定埃尔米特形式negative definite quadratic form 负定二次形式negative function 负函数negative number 负数negative operator 负算子negative parity 负电阻negative part 负部分negative particular proposition 否定特称命题negative proposition 否定命题negative rotation 反时针方向旋转negative semidefinite 半负定的negative semidefinite eigenvalue problem 半负定特盏问题negative semidefinite form 半负定型negative semidefinite quadratic form 半负定二次形式negative sign 负号negative skewness 负偏斜性negative variation 负变差negligible quantity 可除量neighborhood 邻域neighborhood base 邻域基neighborhood basis 邻域基neighborhood filter 邻域滤子neighborhood retract 邻域收缩核neighborhood space 邻域空间neighborhood system 邻域系neighborhood topology 邻域拓扑neighboring vertex 邻近项点nephroid 肾脏线nerve 神经nested intervals 区间套net 网net function 网格函数net of curves 曲线网net of lines 直线网network 网络network analysis 网络分析network flow problem 网络潦题network matrix 网络矩阵neumann boundary condition 诺伊曼边界条件neumann function 诺伊曼函数neumann problem 诺伊曼问题neumann series 诺伊曼级数neutral element 零元素neutral line 中线neutral plane 中性平面neutral point 中性点newton diagram 牛顿多边形newton formula 牛顿公式newton identities 牛顿恒等式newton interpolation polynomial 牛顿插值多项式newton method 牛顿法newton potential 牛顿位势newtonian mechanics 牛顿力学nice function 佳函数nil ideal 零理想nil radical 幂零根基nilalgebra 幂零代数nilpotency 幂零nilpotent 幂零nilpotent algebra 幂零代数nilpotent element 幂零元素nilpotent group 幂零群nilpotent ideal 幂零理想nilpotent matrix 幂零矩阵nilpotent radical 幂零根基nine point circle 九点圆nine point finite difference scheme 九点有限差分格式niveau line 等位线niveau surface 等位面nodal curve 结点曲线nodal line 交点线nodal point 节点node 节点node locus 结点轨迹node of a curve 曲线的结点noetherian category 诺特范畴noetherian object 诺特对象nomogram 算图nomographic 列线图的nomographic chart 算图nomography 图算法non additivity 非加性non archimedean geometry 非阿基米德几何non archimedean valuation 非阿基米德赋值non countable set 不可数集non critical point 非奇点non denumerable 不可数的non denumerable set 不可数集non developable ruled surface 非可展直纹曲面non enumerable set 不可数集non euclidean geometry 非欧几里得几何学non euclidean motion 非欧几里得运动non euclidean space 非欧几里得空间non euclidean translation 非欧几里得平移non euclidean trigonometry 非欧几里得三角学non homogeneity 非齐non homogeneous chain 非齐次马尔可夫链non homogeneous markov chain 非齐次马尔可夫链non isotropic plane 非迷向平面non linear 非线性的non negative semidefinite matrix 非负半正定阵non oriented graph 无向图non parametric test 无分布检验non pascalian geometry 非拍斯卡几何non ramified extension 非分歧扩张non rational function 无理分数non relativistic approximation 非相对性近似non reversibility 不可逆性non singular 非奇的non stationary random process 不平稳随机过程non steady state 不稳定状态non symmetric 非对称的non symmetry 非对称non zero sum game 非零和对策nonabsolutely convergent series 非绝对收敛级数nonagon 九边形nonassociate 非结合的nonassociative ring 非结合环nonbasic variable 非基本变量noncentral chi squre distribution 非中心分布noncentral f distribution 非中心f分布noncentral t distribution 非中心t分布noncentrality parameter 非中心参数nonclosed group 非闭群noncommutative group 非交换群noncommutative ring 非交换环noncommutative valuation 非交换赋值noncommuting operators 非交换算子noncomparable elements 非可比元素nondegeneracy 非退化nondegenerate collineation 非退化直射变换nondegenerate conic 非退化二次曲线nondegenerate critical point 非退化临界点nondegenerate distribution 非退化分布nondegenerate set 非退化集nondense set 疏集nondenumerability 不可数性nondeterministic automaton 不确定性自动机nondiagonal element 非对角元nondiscrete space 非离散空间nonexistence 不存在性nonfinite set 非有限集nonholonomic constraint 不完全约束nonhomogeneity 非齐性nonhomogeneous 非齐次的nonhomogeneous linear boundary value problem 非齐次线性边值问题nonhomogeneous linear differential equation 非齐次线性微分方程nonhomogeneous linear system of differential equations 非齐次线性微分方程组nonisotropic line 非迷向线nonlimiting ordinal 非极限序数nonlinear equation 非线性方程nonlinear functional analysis 非线性泛函分析nonlinear lattice dynamics 非线性点阵力学nonlinear operator 非线性算子nonlinear optimization 非线性最优化nonlinear oscillations 非线性振动nonlinear problem 非线性问题nonlinear programming 非线性最优化nonlinear restriction 非线性限制nonlinear system 非线性系统nonlinear trend 非线性瞧nonlinear vibration 非线性振动nonlinearity 非线性nonlogical axiom 非逻辑公理nonlogical constant 非逻辑常数nonmeager set 非贫集nonmeasurable set 不可测集nonnegative divisor 非负除数nonnegative number 非负数nonnumeric algorithm 非数值的算法nonorientable contour 不可定向周线nonorientable surface 不可定向的曲面nonorthogonal factor 非正交因子nonparametric confidence region 非参数置信区域nonparametric estimation 非参数估计nonparametric method 非参数法nonparametric test 非参数检定nonperfect set 非完备集nonperiodic 非周期的nonperiodical function 非周期函数nonplanar graph 非平面图形nonprincipal character 非重贞nonrandom sample 非随机样本nonrandomized test 非随机化检验nonrational function 非有理函数nonremovable discontinuity 非可去不连续点nonrepresentative sampling 非代表抽样nonresidue 非剩余nonsense correlation 产生错觉相关nonsingular bilinear form 非奇双线性型nonsingular curve 非奇曲线nonsingular linear transformation 非退化线性变换nonsingular matrix 非退化阵nonspecial group 非特殊群nonstable 不稳定的nonstable homotopy group 非稳定的同伦群nonstandard analysis 非标准分析nonstandard model 非标准模型nonstandard numbers 非标准数nonsymmetric relation 非对称关系nonsymmetry 非对称nontangential 不相切的nontrivial element 非平凡元素nontrivial solution 非平凡解nonuniform convergence 非一致收敛nonvoid proper subset 非空真子集nonvoid set 非空集nonzero vector 非零向量norm 范数norm axioms 范数公理norm form 范形式norm of a matrix 阵的范数norm of vector 向量的模norm preserving mapping 保范映射norm residue 范数剩余norm residue symbol 范数剩余符号norm topology 范拓朴normability 可模性normal 法线normal algorithm 正规算法normal basis theorem 正规基定理normal bundle 法丛normal chain 正规链normal cone 法锥面normal congruence 法汇normal coordinates 正规坐标normal correlation 正态相关normal curvature 法曲率normal curvature vector 法曲率向量normal curve 正规曲线normal density 正规密度normal derivative 法向导数normal dispersion 正常色散normal distribution 正态分布normal distribution function 正态分布函数normal equations 正规方程normal error model 正规误差模型normal extension 正规开拓normal family 正规族normal force 法向力normal form 标准型normal form problem 标准形问题normal form theorem 正规形式定理normal function 正规函数normal homomorphism 正规同态normal integral 正规积分normal linear operator 正规线性算子normal mapping 正规映射normal matrix 正规矩阵normal number 正规数normal operator 正规算子normal order 良序normal plane 法面normal polygon 正规多角形normal polynomial 正规多项式normal population 正态总体normal probability paper 正态概率纸normal process 高斯过程normal sequence 正规序列normal series 正规列normal set 良序集normal simplicial mapping 正规单形映射normal solvable operator 正规可解算子normal space 正规空间normal surface 法曲面normal tensor 正规张量normal to the surface 曲面的法线normal valuation 正规赋值normal variate 正常变量normal variety 正规簇normal vector 法向量normality 正规性normalization 标准化normalization theorem 正规化定理normalize 正规化normalized basis 正规化基normalized function 规范化函数normalized variate 正规化变量normalized vector 正规化向量normalizer 正规化子normalizing factor 正则化因数normed algebra 赋范代数normed linear space 赋范线性空间normed space 赋范线性空间northwest corner rule 北午角规则notation 记法notation free from bracket 无括号记号notation of backus 巴科斯记号notion 概念nought 零nowhere convergent sequence 无处收敛序列nowhere convergent series 无处收敛级数nowhere dense 无处稠密的nowhere dense set 无处稠密点集nowhere dense subset 无处稠密子集nuclear operator 核算子nuclear space 核空间nucleus of an integral equation 积分方程的核null 零null class 零类null divisor 零因子null ellipse 零椭圆null function 零函数null hypothesis 虚假设null line 零线null matrix 零矩阵null method 衡消法null plane 零面null point 零点null ray 零射线null relation 零关系null representation 零表示null sequence 零序列null set 空集null solution 零解null system 零系null transformation 零变换null vector 零向量nullity 退化阶数nullring 零环nullspace 零空间number 数number defined by cut 切断数number defined by the dedekind cut 切断数number field 数域number interval 数区间number line 数值轴number notation 数记法number of partitions 划分数number of repetitions 重复数number of replications 重复数number of sheets 叶数number sequence 数列number set 数集number system 数系number theory 数论number variable 数变量numeration 计算numerator 分子numeric representation of information 信息的数值表示numerical 数值的numerical algorithm 数值算法numerical axis 数值轴numerical calculation 数值计算numerical coding 数值编码numerical coefficient 数字系数numerical computation 数值计算numerical constant 数值常数numerical data 数值数据numerical determinant 数字行列式numerical differentiation 数值微分numerical equality 数值等式numerical equation 数字方程numerical error 数值误差numerical example 数值例numerical function 数值函数numerical inequality 数值不等式numerical integration 数值积分法numerical invariant 不变数numerical mathematics 数值数学numerical method 数值法numerical model 数值模型numerical operator 数字算子numerical quadrature 数值积分法numerical series 数值级数numerical solution 数值解numerical solution of linear equations 线性方程组的数值解法numerical stability 数值稳定性numerical table 数表numerical value 数值numerical value equation 数值方程nutation 章动。

物理专业名词

物理专业名词

物理专业名词Unit 1integrated circuit ( IC)集成电路chemistry textbook元素周期表Ideal operational amplifier ( op amp)理想运算放大器bipolar-junction transistor ( BJT)双极结型晶electronics体管电子学diode 二极管analog signal 模拟信号digital signalfield-effect transistor( FET)场效应管数字信号voltage gaintransistor 晶体管电压增压light emitting diode ( LED)发光二极管bandwidth 带宽closed-loop gain 闭环增益flip-flop触发器supply voltage 电源电压metal-oxide semiconductor ( MOS)金属氧化power dissipation功率耗费物半导体resistance 电阻complementary-MOS 互补型impedance 阻抗base 基极bias currents 偏置电流emitter发射极frequency response 频次响应collector集电极phase shift 相移gate 栅极transient response瞬态响应drain 漏极distortion 失真source 源极common-mode rejection 共模克制Unit 3open-loop gain 开环增益EM (全写 Electromagnetic) filed 电磁场voltage 电压net EM filed 净电磁场direct current ( DC)直流电wireless communications无线通讯alternating current( AC)沟通电physical filed 物理场current 电流gravitation wan万有引力transducer 传感器the weak/strong interactiondata sheet 技术规格表弱 / 强互相作用offset voltage drift赔偿电压漂移electric filed 电场frequency 频次magnetic filed磁场Unit 2stationary/moving charges静止 / 运动电荷Maxwell ’sequations 麦克斯韦方程组Lorentz force law洛伦兹力定律quantum mechanical量子力学radio transmitter无线电发射机metal atoms金属原子radiation of low frequency低频辐射ultraviolet catastrophe紫外灾害a fixed frequency固定频次Max Planck 普朗克常量the photoelectric effect光电效应a quantum electrodynamics量子电动力学the grayitational filed of the sun太阳重力场Unit 4electronic transmitter电子发射机public telephone networks公共电话网gross world product世界总产值mobile phone移着手机radio broadcast 无线电广播free space 自由空间point-to-point communication 点对点通讯analogue/digital signals 模拟 / 数字信号streams of information 信息流time-division multiplexing时分多路技术(TDM)amplitude-shift keying振幅键控amplitude modulation幅度调制frequency modulation频次调制Unit 5Multiple Access Techniques 多址接入技术frequency spectrum频谱fixed bandwidth固定带宽FDMA(Frequency Division Multiple Access)频分多址TDMA(Time Division Multiple Access)时分多址CDMA(Code Division Multiple Access)码分多址radio spectrum无线电频谱wireless network无线网络base station基站analog transmissions模拟通讯available bandwidth可用带宽analog signals模拟信号multipath effects多径效应inter-symbol interference码间串扰Global System for Mobile Communications 全世界挪动通讯系统spread spectrum technique扩频技术pseudo random noise code(PN 码 )伪随机噪声信号correlate卷积phase-shift keying 相移键控accurate ranging精确测距frequency-shift keying频移键控multipath tolerance多径适应性LSI(Large Scale Integrated circuit)大规模集成电路VLSI(Very Large Scale Integration)超大规模集成电路process gain办理增益signal to noise信噪比bit rate比特率background noise背景噪声wide spread interference宽(扩)频扰乱chip码片synchronization同步forward link encoding前向连 (链)接编码matrix矩阵reverse link encoding反向链接编码time slot时隙unit6mobile communications挪动通讯cellular phones蜂窝电话cellular system蜂窝系统cordless phones无绳电话Radio Frequency(RF)射频transceiver收发器terminal终端the wireless infrastructure无线基础设备forward channel前向信道downlink下行链路reverse channel逆向信道uplink上行链路FM(frequency modulation)调频carrier frequency载波频次frequency reuse频次复用MTSO(mobile telephone switching office)挪动电话互换机构co-channel interference共信道扰乱handoff切换roams遨游path loss and multipath fading路径消耗和多径虚弱phase shifts相移amplitudes幅值space diversity空间分集antenna diversity天线分集non-faded signal无虚弱信号frequency diversity频次分集time diversity时间分集delay spread延缓扩展attenuation衰减absorption coefficient汲取系数RMS(Root-Mean-Square)均方根microsecond微秒kilohertz千赫digital modulating waveform数字调制波形interleaving交叉signal processing techniques信号办理技术bit stream比特流物理专业名词Unit7Satellite Communications卫星通讯Communications Satellite通讯卫星Commercial satellite商业卫星artificial satellite人造卫星television broadcasting电视广播radio broadcasting无线电广播wide-area network communications广域网络通讯point-to-point点对点wireless local area network无线局域网络Earth orbit地球轨道amateur radio communications业余无线通信weather forecasting天气预告Global Positioning System (GPS) 全世界定位系统hand-held terminals手持终端fixed-point telephone固定电话distance learning远程教课hand held telephone (cellular phone)手持电话cable channel有线电视频道Direct Broadcast Satellite(DBS) 直播卫星central control unit中央控制单元Fixed Service Satellite ( FSS)固定服务的卫星Tele Vision Receive Only (TVRO)仅电视接收DTHHBO家庭影院NASA 国家航空航天局low Earth orbit低地轨道space-borne repeaters太空中继器satellite broadband卫星宽带data-forwarding services数据转发业务dialup connection拨号上网wireline broadband有线宽带网络附录二conver optimization凸优化mathematical optimization数学优化least-squares 最小二乘法linear programming线性规划nonlinear-programming非线性规划interior-point method内点法semidefinite program半正定规划second-order cone program二阶锥规划automatic control system自动控制系统signal processing信号办理electronic circuit design电子技术课程设计combinatorial optimization组合优化global optimization整体最正确化real-time及时computer-aided计算机协助real-time reactive及时无功radio frequency无线射频associated dual 双有关系linear polarization线性极化singular value 奇怪值self-concordance自稳固trade-off折中方案data mining 数据发掘Architecture is deployed部署架构elementary topology 失散拓谱cross-layer跨层complexity analysis复杂度剖析Optimization优化theoretically oriented )或理论化demonstrate证明附录一protocol framework协议框架Wireless device无线设备Physical quantity 物理量cellular phone蜂窝电话radio frequency(RF)射频Personal digital assistantimage sensor图像传感器( PDA)个人数码助手extract data提取数据Energy-efficient高能效的macrosensor巨传感器portable device便携式设备Geophone sensor 地震检波传感器Real-time multimediahelicopter直升机communication及时多媒体通讯bulldozer推土机Medical application医学应用Fault-tolerant容错性Wireless Microsensor networkredundancy冗余性无线微传感器网络infrastructure基础设备home networking家庭组网Machine failure diagnosis机器故障诊疗Bandwidth带宽chemical/biological detection 生化检测restriction限制;拘束Medical monitoring医学监控innovative改革的,创新的deplete耗尽Protocol 协议Energy dissipation能量耗费tether紧的algorithm算法uniformity一致inherent固有的;内在的;Ad-hoc自组织的time-varying时变self-configuring自配置High Performance高性能global control全局控制worst-case最坏状况Retrieve检索latency时延by a factor of........的几倍Lossy compression有损压缩overhead开支Incorporate汲取data dissemination数据流传extraneous外来的Sophisticated复杂的cluster簇multi-hop routing多跳路由Correlation有关性latency-aware延时敏感cognitive认识Application-specific应用有关的application-level应用层Collaborate合作rotation轮换formation生成in terms of在什么方面Internal component内部组件compress压缩autonomous自动的Magnitude increase数目级增加error-prone易于犯错The 3rd generation(3G)Global system for mobile communication(GSM) 全世界挪动通讯系统Six-fold 6 倍Discrete cosine transform ( DCT)失散余弦变换。

svm求解 序列最小优化算法

svm求解 序列最小优化算法

svm求解序列最小优化算法【实用版】目录1.SVM 求解算法的背景和必要性2.序列最小优化算法(SMO)的原理和特点3.SMO 算法在 SVM 训练过程中的应用4.SMO 算法的优势和影响正文一、SVM 求解算法的背景和必要性支持向量机(Support Vector Machine,SVM)是一种广泛应用于分类和回归问题的机器学习算法。

它的核心思想是找到一个最佳超平面,使得样本分类的间隔最大化。

然而,在实际应用中,求解 SVM 的最佳超平面是一个复杂的优化问题,需要解决大量的二次规划问题。

二、序列最小优化算法(SMO)的原理和特点序列最小优化算法(Sequential Minimal Optimization,SMO)是一种用于解决支持向量机训练过程中所产生优化问题的算法。

SMO 算法是由微软研究院的约翰·普莱特于 1998 年发明的,被广泛使用于 SVM 的训练过程中,并在通行的 SVM 库 libsvm 中得到实现。

SMO 算法的原理是通过每次迭代更新一个权重,使得优化问题逐步收敛。

它采用一种序列的形式进行优化,每次迭代只更新一个变量,从而避免了复杂的二次规划问题。

SMO 算法具有收敛速度快、计算复杂度低、易于实现等优点。

三、SMO 算法在 SVM 训练过程中的应用在 SVM 的训练过程中,SMO 算法主要应用于求解最优权重向量和阈值。

具体来说,SMO 算法通过交替更新权重向量和阈值,使得优化问题逐步收敛。

在每次迭代过程中,SMO 算法通过计算预测误差来判断当前权重向量和阈值是否是最优的,从而决定是否进行更新。

四、SMO 算法的优势和影响SMO 算法的发明和应用,极大地推动了 SVM 算法的发展。

它解决了SVM 训练过程中复杂的优化问题,使得 SVM 算法的训练速度大大提高,计算复杂度大幅降低。

同时,SMO 算法的实现也相对简单,易于理解和推广。

基于半定规划的结构轻量化设计

基于半定规划的结构轻量化设计
Manuscript received 20210421, in revised form 20210517.
∗20210421 收到初稿, 20210517 收到修改稿。 上海市科委科研计划课题 (19DZ1100202) 资助。
∗∗王兴锋, 男, 1988 年 11 月生, 福建人, 汉族, 同济大学机械与能源工程学院博士研究生, 主要研究方向为结构优化方法。
problem with stress and stiffness constraints is simplified as a compliance⁃constrained problem, which can be further reformulated
as a relaxed semidefinite programming problem. With existing optimization solvers, the global optimum solution for the relaxed
1366
机 械 强 度
2022 年
为了同时考虑设计变量的离散性和截面的不规则
引言
岸边集装箱起重机( 简称岸桥) 正朝着大型化方
性,本文提出了将截面的尺寸优化问题转化为截面的
选型优化问题的设计思想。 前大梁和拉杆的截面尺寸
向发展。 岸桥的大型化不仅提高了自身的制造成本,
A SEMIDEFINITE PROGRAMMING METHOD
王兴锋 ∗∗ 张 氢 ∗∗∗
秦仙蓉 孙远韬
( 同济大学 机械与能源工程学院, 上海 201804)
WANG XingFeng
ZHANG Qing QIN XianRong SUN YuanTao

Optimization Algorithms

Optimization Algorithms

Optimization AlgorithmsOptimization algorithms play a crucial role in various fields, including engineering, finance, and data science. These algorithms are designed to find the best solution to a given problem by minimizing or maximizing a certain objective function. They are used to optimize a wide range of processes, such as resource allocation, scheduling, and parameter tuning. However, despite their widespread use, optimization algorithms are not without their challenges and limitations. One of the primary challenges in optimization algorithms is the need to strike a balance between exploration and exploitation. Exploration involves searching for new, potentially better solutions, while exploitation involves leveraging known solutions to improve performance. Finding the right balance between these two competing objectives is crucial for the success of an optimization algorithm. Too much exploration can lead to inefficiency and slow convergence, while too much exploitation can result in premature convergence to suboptimal solutions. Another challenge in optimization algorithms is the presence of local optima. Local optima are solutions that are optimal within a specific region of the search space but are not globally optimal. Optimization algorithms may get stuck in local optima, preventing them from finding the best possible solution. Overcoming local optima requires the use of advanced techniques such as metaheuristics, which are higher-level procedures that guide the search process to escape local optima and find better solutions. Furthermore, optimization algorithms often face the challenge of dealing with complex, high-dimensional search spaces. As the dimensionality of the search space increases, the number of possible solutions grows exponentially, making it increasingly difficult to find the best solution. This curse of dimensionality poses a significant challenge for optimization algorithms, as it can lead to increased computational complexity and longer convergence times. Addressing the curse of dimensionality requires the development of specialized techniques, such as dimensionality reduction and feature selection, to simplify the search space and improve the efficiency of optimization algorithms. In addition to these technical challenges, optimization algorithms also face ethical and societal considerations. For example, in the field of finance, optimization algorithms are used to optimize investment portfolios and trading strategies.However, the use of these algorithms can raise concerns about market manipulation and unfair advantage, especially when high-frequency trading and algorithmictrading are involved. It is essential for developers and practitioners of optimization algorithms to consider the potential ethical implications of their work and ensure that their algorithms are used responsibly and transparently. Despite these challenges, optimization algorithms continue to evolve and improve, thanks to ongoing research and innovation in the field. New algorithms and techniques are constantly being developed to address the limitations of existing approaches and improve the performance of optimization algorithms. For example, recent advancements in machine learning and deep learning have led to the development of powerful optimization algorithms, such as genetic algorithms, particle swarm optimization, and simulated annealing, which are capable ofhandling complex, high-dimensional search spaces and overcoming local optima more effectively. In conclusion, optimization algorithms play a vital role in solving complex problems across various domains, but they are not without their challenges. From technical obstacles such as exploration-exploitation trade-offs, local optima, and the curse of dimensionality to ethical considerations in fields like finance, optimization algorithms must navigate a complex landscape. However, ongoing research and innovation continue to drive the development of new techniques and algorithms that address these challenges and improve the performance and applicability of optimization algorithms. As we move forward, it is essential for developers and practitioners to remain mindful of the ethical implications oftheir work and strive to use optimization algorithms responsibly and transparently for the benefit of society.。

非确知先验信息条件下MIMO雷达波形设计

非确知先验信息条件下MIMO雷达波形设计

收稿日期:2019-10-21修回日期:2019-12-07基金项目:国家自然科学基金项目(61301258,61401526);国家博士后面上项目一等(2016M590218);国家自然科学基金应急管理基金资助项目(11847113)作者简介:姚遥(1984-),男,河南周口人,硕士,讲师。

研究方向:MIMO 雷达信号处理。

*摘要:考虑了目标先验知识未确知条件下,提升基于多输入多输出正交频分复用(MIMO-OFDM )雷达的空时自适应处理(STAP )最差条件下检测概率的稳健波形设计问题。

在发射波形恒模特性及目标参数不确定凸集约束下,基于最大化输出信干噪比(SINR )准则,构建了提高最差条件下MIMO-OFDM-STAP 检测性能的极大极小波形优化问题。

为求解所得NP-hard 问题,先将发射波形恒模特性松弛为低峰均比约束,而后利用对角加载(DL )将其重构为可有效求解的半定规划(SDP )问题。

与传统非相关信号和主流非稳健算法相比,数值仿真验证了该算法可显著提升MIMO 雷达目标检测的稳健性。

关键词:多输入多输出雷达,正交频分复用,空时自适应处理,稳健波形优化,半定规划中图分类号:TN951文献标识码:ADOI :10.3969/j.issn.1002-0640.2020.12.011引用格式:姚遥,周吉生,李琼,等.非确知先验信息条件下MIMO 雷达波形设计[J ].火力与指挥控制,2020,45(12):57-63.非确知先验信息条件下MIMO 雷达波形设计*姚遥1,周吉生2,李琼3,王洪雁4(1.周口师范学院物理与电信工程学院,河南周口466000;2.周口科技职业学院汽车工程系,河南周口466000;3.周口市农业科学院,河南周口466000;4.大连大学信息工程学院,辽宁大连116622)MIMO Radar Waveform Design withImperfect Prior InformationYAO Yao 1,ZHOU Ji-sheng 2,LI Qiong 3,WANG Hong-yan 4(1.School of Physics and Telecommunication Engineering ,Zhoukou Normal University ,Zhoukou 466000,China ;2.Department of Automotive Engineering ,Zhoukou Vocational College of Science and Technology ,Zhoukou 466000,China ;3.Zhoukou Academy of Agricultural Science ,Zhoukou 466000,China ;4.School of Information Engineering ,Dalian University ,Dalian 116622,China )Abstract :The robust waveform design issue is considered here to improve the worst -casedetection performance of multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM )radar based STAP in the case of imperfect target prior knowledge.With the transmitting waveform constant characteristic and the convex set of target parameter uncertainty ,under the criterionof maximizing the output signal -to -interference -and -noise -ratio (SINR ),the max -min waveform optimization problem can be constructed to better the worst -case detection performance of MIMO -OFDM-STAP.In order to solve the resultant NP-hard problem ,the constant envelope characteristic ofthe transmitting waveform can be firstly relaxed as the low peak-average-ratio (PAR )constraint ,in what follows ,this issue can be reformulated as a semidefinite programming (SDP )one by exploiting diagonal loading (DL )to acquire an effective solution.In comparison with the traditional uncorrelated signals and state-of-the-art non-robust algorithm ,numerical results verify that the robustness of the target detection of MIMO radar can be improved considerably via the proposed algorithm.文章编号:1002-0640(2020)12-0057-07Vol.45,No.12Dec ,2020火力与指挥控制Fire Control &Command Control 第45卷第12期2020年12月57··(总第45-)火力与指挥控制2020年第12期0引言相较于传统相控阵仅可发射相干信号,多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达可同时发射互不相关波形,并在接收端对所有回波联合处理以获得目标检测及参数估计结果[1-2],MIMO雷达可提升干扰相消能力,增强参数辨识性和发射方向图设计的灵活性[3]。

关于无线通信中一类二次约束二次规划问题的混合算法

关于无线通信中一类二次约束二次规划问题的混合算法

关于无线通信中一类二次约束二次规划问题的混合算法在无线通信中,许多问题可以建模为优化问题的求解。

特别地,许多问题可以转化为一个形如式(1)的二次约束二次规划(Quadratic Constrained Quadratic Programming,QCQP)问题,或者是一系列的QCQP子问题[1-6]。

例如:多发多收干扰信道的波束成形问题等价为一个QCQP问题[2]。

在中继辅助的点对点通信模型中,考虑优化中继的波束成形系数,在满足一定信噪比的条件下极小化中继的发送功率,该问题可建模为一个非凸的QCQP问题[2,3]。

在中继辅助下的多发多收干扰信道中,运用带权重的均方差极小化模型来求解总传输速率极大化问题,相应的预编码子问题也是一个QCQP[4]。

高效求解这些QCQP问题是诸多通信问题的关键。

一些经典的方法可用于求解QCQP问题,比如:半定规划松弛算法、逐步二次规划算法等等。

半定规划松弛算法将二次约束二次规划问题松弛为一个半定规划。

当约束个数不超过3个时,可求得QCQP问题的最优解;但当约束多于3个时,需要用随机的技巧产生QCQP问题的可行解,得到的解没有理论保证[7]。

逐步二次规划算法在KKT 点的局部具有超线性收敛速度;但当初始点距离KKT点很远时,算法迭代较慢[8]。

该文针对一类特殊结构的QCQP问题,提出了可行压缩算法,迭代得到的点作为逐步二次规划算法的初始点,从而很快收敛到QCQP问题的KKT点。

该文的具体结构如下:第一节介绍要求解的一类QCQP问题的具体形式,第二节给出可行压缩算法的流程,第三节在数值实验中将本文提出的算法与其他方法做出比较。

1 二次约束二次规划该文考虑的二次约束二次规划问题如下所示:这里为不定矩阵,…为半正定矩阵。

当(1)中均为半正定矩阵;≤0,对…都成立,(1)可以等价地转化为(2),且,,,…。

问题(2)是一个非凸的二次约束二次规划问题。

在通信模型中,考虑功率约束时,常常会遇到此类问题[4,5]。

求全局最优化的几种确定性算法

求全局最优化的几种确定性算法

求全局最优化的几种确定性算法全局最优化是一个在给定约束条件下寻找函数全局最小或最大值的问题。

确定性算法是指每次运行算法都能得到相同的结果,且结果能确保接近全局最优解。

以下是几种常见的确定性算法:1. 梯度下降法(Gradient Descent)梯度下降法是一种迭代优化算法,通过沿负梯度方向逐步调整参数值,直至找到函数的最小值或最大值。

该算法对于凸函数是有效的,但可能会陷入局部最优解。

可以通过调整学习率和选择不同的初始参数值来改进算法的效果。

2. 牛顿法(Newton's Method)牛顿法利用函数的二阶导数信息来找到函数的最小值或最大值。

它基于泰勒级数展开,通过使用当前点的一阶和二阶导数来逼近函数,然后迭代地更新参数值。

牛顿法通常比梯度下降法更快地收敛到全局最优解,但它可能需要计算和存储较大的二阶导数矩阵。

3. 共轭梯度法(Conjugate Gradient)共轭梯度法是一种迭代法,用于求解线性方程组或优化问题。

它利用问题的海森矩阵或其逼近的特殊性质,在有限次迭代后得到准确解。

共轭梯度法在解决大规模问题时具有可伸缩性,且不需要存储大规模矩阵。

4. BFGS算法(Broyden–Fletcher–Goldfarb–Shanno Algorithm)BFGS算法是一种拟牛顿法,用于解决无约束非线性优化问题。

它通过近似目标函数的海森矩阵的逆矩阵来逼近最优解,从而避免了计算海森矩阵的复杂性。

BFGS算法具有快速的收敛性和较好的全局收敛性。

5. 遗传算法(Genetic Algorithms)遗传算法是一种模拟生物进化过程的优化方法,通过模拟自然界的选择、交叉和变异过程来最优解。

它将问题表示成一个个基因型,通过使用选择、交叉和变异等操作来产生新的个体,并根据适应度函数评估每个个体的好坏。

遗传算法具有全局能力,可以处理非线性、非凸函数以及离散优化问题。

6. 粒子群优化算法(Particle Swarm Optimization)粒子群优化算法是一种模拟鸟群或鱼群行为的优化算法。

opitimize 名词

opitimize 名词

opitimize 名词讲解
"Optimize" 是一个动词,而"optimization" 是其名词形式。

以下是"optimization" 的名词讲解:
Optimization(优化):
1. 定义:Optimization 是optimize 的名词形式,指的是通过调整、改进或使达到最佳状态的过程。

在不同的领域,这个过程可能涉及到最大化效益、最小化成本、提高性能等方面的目标。

2. 应用领域:Optimization 在各个领域都有广泛的应用,包括但不限于工程、经济学、计算机科学、数学和运筹学等。

在工程领域,优化可以涉及到设计、生产和资源利用方面的问题。

在经济学中,优化可能与最大化利润或最小化成本相关。

在计算机科学中,优化通常指的是改进算法、提高程序性能或资源利用效率的过程。

3. 目标:Optimization 的目标通常是找到一组参数、决策或变量的最优解,以使得特定的目标函数达到最大值或最小值。

这可以涉及到数学建模、模拟、实验等不同的方法。

4. 优化算法:在进行优化过程时,通常需要借助于各种优化算法。

这些算法可以是数学上的最优化算法,也可以是启发式算法,例如遗传算法、模拟退火等。

选择适当的优化算法通常取决于具体的问题和约束条件。

总体来说,优化是一个通用的概念,它强调通过精心调整和改进来使事物达到最佳状态。

在各个领域中,优化都是一个重要的工具,帮助人们在有限的资源和条件下取得最佳的结果。

稀疏优化与低秩矩阵优化

稀疏优化与低秩矩阵优化

min x TVx s .t . Ax b, x 0, || x ||0 k .
(3)
三、应用实例
例2、互补问题的稀疏解 众说周知,二人矩阵博弈模型、具有生产和投资的经济 均衡模型、交通流均衡模型等,都可以转化为互补问题.如果 这个互补问题有多个解,则在这个解集中寻找一个最为稀疏 的解:
这个理论突破了香农定理对信号采样频率的限制,能够以
较少的采样资源,较高的采样速度和较低的软硬件复杂度获得 原始信号.
二、稀疏优化与压缩感知
假设原始信号为向量 x (维数大),测量信息为 b 向量 (维数小),且它们满足线性关系,则其数学模型就是一 个欠定线性方程组 Ax b. 如果原始信号 x 具有稀疏性,则其数学意义就是零元 素多,即非零元素少, 于是可以转化为稀疏优化模型:
min rank ( X ) s.t . X ij Mij ,
i , j .
(6)
三、应用实例
例5、多维标度问题(管理学、统计学) 已知12个城市中两两城市之间的距离,请你标出这12个 城市的平面坐标位置.类似地,已知一个传感器网络,通过互 相收发信号可以确定传感器之间的距离,请确定传感器的平 面坐标位置.此外,有100种白酒,品尝家可以对每两种白酒 进行品尝对比,给出一种相近程度的得分(越相近得分越高, 相差越远得分越低),我们希望从这些得分数据中得到这100 种白酒之间的排序表,所建立的数学模型就是一个矩阵秩极小 问题: min rank (Y ) (7) 2
四、理论与算法
■凸差松弛理论和算法
凸差松弛就是用(1范数-q范数)代替0-范数,从图像可以看 出,它更接近稀疏优化问题,能更好得区分无关项和相关项, 从而有助于得到较精确的逼近.
■光滑松弛理论和算法

线性代数及其应用术语要点中英对照

线性代数及其应用术语要点中英对照

[P3 ]
关键词: coefficient 系数[P2]; constant term 常数 (项) [讲义‐P1]; linear equation 线性方程 [P2]; variable
(其中第 j(1 ≤ j ≤n)列是变元 xj 的系数) 2. 1) 2) 线性方程组解的情况(Solution Status) No solution 无解 Has Solution 有解 a) Exactly one solution (unique solution) b) Infinitely many solutions 无穷多解 阶梯形(Echelon Forms) [P4]
1 / 12
[P50]
free variable 至少有一个自由变量 注:结合简化阶梯形采用反证法轻松搞定! Additionally, 此外:if r = #{pivot positions}, p = #{free variables}, n = #{variables} then r+p = n, #{} - number of {ζ} (ζ 的个数) 注:看简化阶梯形 6. 非 齐 次 线 性 方 程 组 解 的 结 构 定 理 ( Structure of Solution Set of Nonhomogeneous System) 关键词:nonhomogeneous system 非齐次线性方程组[P50]; Let v0 be a solution of a nonhomogeneous system Ax = b. Let H be the set of general solutions of the corresponding homogeneous system Ax = 0. Suppose the solution set of Ax = b is S Then S = H + v0 如果 v0 是非齐次线性方程组 Ax = b 的一个解,H 是对应齐次线性方程组 Ax = 0 的通解。 (Ax = 0 也称为 Ax = b 的导出组) 则 Ax = b 的通解是 S = H + v0

半定规划

半定规划
设 F 是一个集合,若 F = { x 0 x i R ( i 1 ,, n ) 且 a p x b p p 1 ,, m }
则 F 为线性规划的可行域,也称凸多面体。 若 x F,则称 x 为可行解。
设 x * F , 若 a0x*m xiFn{a0x}, 则称 x * 为最优解, a 0 x * 为最优值。
(D) max2y1
1 0 0 0 1 0 0 0 0 s.t. 0 0 0y11 0 0y2 0 0 0.
0 0 0 0 0 2 0 0 1 或者
y1 y2 0
(D) max2y1
s.t.
y2
0
0
O.
0 0 12y2
(y1,y2)是可行的y1 0, y2=0;最优值=0.
X 21 =
1 X 11
0
X 11
上述例题讨论的是半定规划的可行性问题。
1.3 线性规划(LP)与半定规划(SDP)的对比
LP:
m inim ize a0x
subject toapxb( pp1, ,m ) , 0xRn
线性目标,线性约束,向量变元且为非负实向量
SDP:
m inim ize A 0X subject toApXbp(p1, ,m ),OXSn
下面来看一个例子:
例 7:存在内可行解(X, y,S)(X 0,S 0)是有必要的。
0 0 0 (P) min0 0 0 X
0 0 1
1 0 0
0 1 0
s.t. 0 0 0 X 0,1 0 0 X 2, X O.
0 0 0
0 0 2
或 者 (P)m inX33 s.t. X110,X12+X212X332,XO . X是 可 行 解 . X11X12X210和 X331; 最 优 值 =1.

非负矩阵分解算法

非负矩阵分解算法

应用于寻找局部最小值。
4
梯度下降法4可能是实现起来最简单的技术,但其收敛速度可能 很慢。其他方法如共轭梯度具有更快的收敛(至少在局部最小值附 近),但是比梯度下降更复杂[8]。并且,基于梯度的方法的收敛具有 对步长选择非常敏感的缺点,这对于大型应用非常不方便。
四.乘法矫正规则
我们发现,以下“乘法矫正规则”是解决问题 1 和 2 的速度和
1
3(������3 −
T ������3TℎT)1
(15)
证明:因为显然������ ℎ, ℎ ≥ ������ ℎ ,我们只需要证明������ ℎ, ℎd ≥ ������ ℎ ,
为了证明需要,我们对比
������ ℎ = ������ ℎe + ℎ − ℎe X∇������ ℎe + g ℎ − ℎe X ������X������ ℎ − ℎe
������TU
=
Z[\ (]^]Z)[\
(7)
那么我们获得在定理 1 中给出的 H 的矫正规则。注意,该重新
调整会得出乘子因子(分母中的梯度的正分量和因子的分子中的负
分量的绝对值)。
对于散度,对角线重新调整梯度下降采取以下显示:
������TU ← ������TU + ������TU[ 3 ������3T������3U/(������������)3U − 3 ������3T] (8)
非负矩阵分解算法1
摘 要:非负矩阵分解(NMF)是一种处理多变量数据分解极为有效的方
法。这里分析了两种不同的 NMF 多重算法。它们只在矫正规则2中使用 的乘法因子上略有不同。一种算法可以最小化传统的最小二乘误差,而 另一种算法则能将广义的 Kullback-Leibler 发散度最小化。两种算法 的单调收敛性均可使用类似于用于证明期望最大化算法收敛的辅助函 数来证明。 这些算法采用对角比例梯度下降的方式,重新调整因子被 最优选择以确保收敛。

数学专业英语词汇

数学专业英语词汇

数学专业英语词汇multiple?decision?problem?多重判定问题?multiple?edge?多重棱?multiple?fourier?series?多重傅里叶级数?multiple?hypergraph?多重超图?multiple?markov?process?多重马尔可夫过程? multiple?point?多重点?multiple?regression?多重回归?multiple?root?多重根?multiple?sequence?多重序列?multiple?series?多重级数?multiple?stratification?多层化?multiple?tangent?多重切线?multiple?test?多重检验?multiple?valued?多值的?multiple?valued?function?多值函数?multiplicand?被乘数?multiplicand?register?被乘数寄存器?multiplication?乘?multiplication?operator?乘法算子?multiplication?ring?乘环?multiplication?sign?乘号?multiplication?table?九九表?multiplication?theorem?乘法定理?multiplicative?乘法的?multiplicative?axiom?乘法公理?multiplicative?character?乘法特贞?multiplicative?group?乘法群?multiplicative?lattice?乘格?multiplicative?process?繁殖过程?multiplicatively?closed?set?积闭集?multiplicator?乘数?multiplicity?重数?multiplicity?of?a?root?根的重数?multiplier?乘数;乘群?multiplier?register?乘数寄存器?multiply?乘?multiply?connected?domain?多连通区域?multiply?connected?region?多连通区域?multiply?connected?sequence?多连通序列?multiply?connected?space?多连通空间?multiply?monotone?sequence?多重单凋列?multiply?periodic?function?多重周期函数?multiply?transitive?group?多重可迁群?multipolar?多极的?multiprogram?processing?多级程序处理?multistage?programming?多阶段规划?multistep?method?多步方法?multitude?多数?multivalent?多叶的?multivalent?function?多叶函数?multivalued?decision?多值判断?multivariate?analysis?多元分析?multivariate?analysis?of?variance?多元方差分析? multivariate?distribution?多元分布?multivariate?distribution?function?多元分布函数? multivariate?statistics?多元统计?multivector?多重矢量?mutual?information?交互信息?mutually?disjoint?互不相交的?mutually?disjoint?events?互不相交事件?mutually?disjoint?subsets?互不相交子集?mutually?independent?events?互相独立事件?myria?万?myriad?无数的?myriads?无数?n?ary?relation?n元关系?n?ball?n维球?n?cell?n维胞腔?n?chromatic?graph?n色图?n?coboundary?n上边缘?n?cocycle?n上循环?n?connected?space?n连通空间?n?dimensional?column?vector?n维列向量?n?dimensional?euclidean?space?n维欧几里得空间?n?dimensional?rectangular?parallelepiped?n维长方体? n?dimensional?row?vector?n维行向量?n?dimensional?simplex?n单形?n?dimensional?skeleton?n维骨架?n?disk?n维圆盘?n?element?set?n元集?n?fold?extension?n重扩张?n?gon?n角?n?graph?n图?n?homogeneous?variety?n齐次簇?n?person?game?n人对策?n?simplex?n单形?n?sphere?bundle?n球丛?n?th?member?第n项?n?th?partial?quotient?第n偏商?n?th?power?operation?n次幂运算?n?th?root?n次根?n?th?term?第n项?n?times?continuously?differentiable?n次连续可微的?n?times?continuously?differentiable?function?n次连续可微函数? n?tuple?n组?n?tuply?connected?domain?n重连通域?n?universal?bundle?n通用丛?nabla?倒三角算子?nabla?calculation?倒三角算子计算?nabla?operator?倒三角算子?napier's?logarithm?讷代对数?natural?boundary?自然边界?natural?boundary?condition?自然边界条件?natural?coordinates?自然坐标?natural?equation?自然方程?natural?equivalence?自然等价?natural?exponential?function?自然指数函数?natural?frequency?固有频率?natural?geometry?自然几何?natural?injection?自然单射?natural?isomorphism?自然等价?natural?language?自然语言?natural?logarithm?自然对数?natural?mapping?自然映射?natural?number?自然数?natural?oscillation?固有振荡?natural?sine?正弦真数?natural?transformation?自然变换?naught?零?necessary?and?sufficient?conditions?必要充分的条件? necessary?and?sufficient?statistic?必要充分统计量? necessary?condition?必要条件?necessity?必然性?negation?否定?negation?sign?否定符号?negation?symbol?否定符号?negative?负数?negative?angle?负角?negative?binomial?distribution?负二项分布?negative?complex?负复形?negative?correlation?负相关?negative?definite?form?负定型?negative?definite?hermitian?form?负定埃尔米特形式? negative?definite?quadratic?form?负定二次形式? negative?function?负函数?negative?number?负数?negative?operator?负算子?negative?parity?负电阻?negative?part?负部分?negative?particular?proposition?否定特称命题?negative?proposition?否定命题?negative?rotation?反时针方向旋转?negative?semidefinite?半负定的?negative?semidefinite?eigenvalue?problem?半负定特盏问题? negative?semidefinite?form?半负定型?negative?semidefinite?quadratic?form?半负定二次形式? negative?sign?负号?negative?skewness?负偏斜性?negative?variation?负变差?negligible?quantity?可除量?neighborhood?邻域?neighborhood?base?邻域基?neighborhood?basis?邻域基?neighborhood?filter?邻域滤子?neighborhood?retract?邻域收缩核?neighborhood?space?邻域空间?neighborhood?system?邻域系?neighborhood?topology?邻域拓扑?neighboring?vertex?邻近项点?nephroid?肾脏线?nerve?神经?nested?intervals?区间套?net?网?net?function?网格函数?net?of?curves?曲线网?net?of?lines?直线网?network?网络?network?analysis?网络分析?network?flow?problem?网络潦题?network?matrix?网络矩阵?neumann?boundary?condition?诺伊曼边界条件?neumann?function?诺伊曼函数?neumann?problem?诺伊曼问题?neumann?series?诺伊曼级数?neutral?element?零元素?neutral?line?中线?neutral?plane?中性平面?neutral?point?中性点?newton?diagram?牛顿多边形?newton?formula?牛顿公式?newton?identities?牛顿恒等式?newton?interpolation?polynomial?牛顿插值多项式? newton?method?牛顿法?newton?potential?牛顿位势?newtonian?mechanics?牛顿力学?nice?function?佳函数?nil?ideal?零理想?nil?radical?幂零根基?nilalgebra?幂零代数?nilpotency?幂零?nilpotent?幂零?nilpotent?algebra?幂零代数?nilpotent?element?幂零元素?nilpotent?group?幂零群?nilpotent?ideal?幂零理想?nilpotent?matrix?幂零矩阵?nilpotent?radical?幂零根基?nine?point?circle?九点圆?nine?point?finite?difference?scheme?九点有限差分格式? niveau?line?等位线?niveau?surface?等位面?nodal?curve?结点曲线?nodal?line?交点线?nodal?point?节点?node?节点?node?locus?结点轨迹?node?of?a?curve?曲线的结点?noetherian?category?诺特范畴?noetherian?object?诺特对象?nomogram?算图?nomographic?列线图的?nomographic?chart?算图?nomography?图算法?non?additivity?非加性?non?archimedean?geometry?非阿基米德几何?non?archimedean?valuation?非阿基米德赋值?non?countable?set?不可数集?non?critical?point?非奇点?non?denumerable?不可数的?non?developable?ruled?surface?非可展直纹曲面? non?enumerable?set?不可数集?non?euclidean?geometry?非欧几里得几何学?non?euclidean?motion?非欧几里得运动?non?euclidean?space?非欧几里得空间?non?euclidean?translation?非欧几里得平移?non?euclidean?trigonometry?非欧几里得三角学? non?homogeneity?非齐?non?homogeneous?chain?非齐次马尔可夫链?non?homogeneous?markov?chain?非齐次马尔可夫链? non?isotropic?plane?非迷向平面?non?linear?非线性的?non?negative?semidefinite?matrix?非负半正定阵? non?oriented?graph?无向图?non?parametric?test?无分布检验?non?pascalian?geometry?非拍斯卡几何?non?ramified?extension?非分歧扩张?non?rational?function?无理分数?non?relativistic?approximation?非相对性近似? non?reversibility?不可逆性?non?singular?非奇的?non?stationary?random?process?不平稳随机过程? non?steady?state?不稳定状态?non?symmetric?非对称的?non?symmetry?非对称?non?zero?sum?game?非零和对策?nonabsolutely?convergent?series?非绝对收敛级数? nonagon?九边形?nonassociate?非结合的?nonassociative?ring?非结合环?nonbasic?variable?非基本变量?noncentral?chi?squre?distribution?非中心分布? noncentral?f?distribution?非中心f分布? noncentral?t?distribution?非中心t分布? noncentrality?parameter?非中心参数? nonclosed?group?非闭群?noncommutative?group?非交换群? noncommutative?ring?非交换环? noncommutative?valuation?非交换赋值? noncommuting?operators?非交换算子? noncomparable?elements?非可比元素? nondegeneracy?非退化?nondegenerate?collineation?非退化直射变换?nondegenerate?conic?非退化二次曲线?nondegenerate?critical?point?非退化临界点?nondegenerate?distribution?非退化分布?nondegenerate?set?非退化集?nondense?set?疏集?nondenumerability?不可数性?nondeterministic?automaton?不确定性自动机?nondiagonal?element?非对角元?nondiscrete?space?非离散空间?nonexistence?不存在性?nonfinite?set?非有限集?nonholonomic?constraint?不完全约束?nonhomogeneity?非齐性?nonhomogeneous?非齐次的?nonhomogeneous?linear?boundary?value?problem?非齐次线性边值问题? nonhomogeneous?linear?differential?equation?非齐次线性微分方程? nonhomogeneous?linear?system?of?differential?equations?非齐次线性微分方?程组?nonisotropic?line?非迷向线?nonlimiting?ordinal?非极限序数?nonlinear?equation?非线性方程?nonlinear?functional?analysis?非线性泛函分析?nonlinear?lattice?dynamics?非线性点阵力学?nonlinear?operator?非线性算子?nonlinear?optimization?非线性最优化?nonlinear?oscillations?非线性振动?nonlinear?problem?非线性问题?nonlinear?programming?非线性最优化?nonlinear?restriction?非线性限制?nonlinear?system?非线性系统?nonlinear?trend?非线性瞧?nonlinear?vibration?非线性振动?nonlinearity?非线性?nonlogical?axiom?非逻辑公理?nonlogical?constant?非逻辑常数?nonmeager?set?非贫集?nonmeasurable?set?不可测集?nonnegative?divisor?非负除数?nonnegative?number?非负数?nonnumeric?algorithm?非数值的算法?nonorientable?contour?不可定向周线?nonorientable?surface?不可定向的曲面?nonorthogonal?factor?非正交因子?nonparametric?confidence?region?非参数置信区域? nonparametric?estimation?非参数估计? nonparametric?method?非参数法?nonparametric?test?非参数检定?nonperfect?set?非完备集?nonperiodic?非周期的?nonperiodical?function?非周期函数?nonplanar?graph?非平面图形?nonprincipal?character?非重贞?nonrandom?sample?非随机样本?nonrandomized?test?非随机化检验?nonrational?function?非有理函数?nonremovable?discontinuity?非可去不连续点? nonrepresentative?sampling?非代表抽样? nonresidue?非剩余?nonsense?correlation?产生错觉相关?nonsingular?bilinear?form?非奇双线性型? nonsingular?curve?非奇曲线?nonsingular?linear?transformation?非退化线性变换? nonsingular?matrix?非退化阵?nonspecial?group?非特殊群?nonstable?不稳定的?nonstable?homotopy?group?非稳定的同伦群? nonstandard?analysis?非标准分析?nonstandard?model?非标准模型?nonstandard?numbers?非标准数?nonsymmetric?relation?非对称关系?nonsymmetry?非对称?nontangential?不相切的?nontrivial?element?非平凡元素?nontrivial?solution?非平凡解?nonuniform?convergence?非一致收敛?nonvoid?proper?subset?非空真子集?nonvoid?set?非空集?nonzero?vector?非零向量?norm?范数?norm?axioms?范数公理?norm?form?范形式?norm?of?a?matrix?阵的范数?norm?of?vector?向量的模?norm?preserving?mapping?保范映射?norm?residue?范数剩余?norm?residue?symbol?范数剩余符号?norm?topology?范拓朴?normability?可模性?normal?法线?normal?algorithm?正规算法?normal?basis?theorem?正规基定理?normal?bundle?法丛?normal?chain?正规链?normal?cone?法锥面?normal?congruence?法汇?normal?coordinates?正规坐标?normal?correlation?正态相关?normal?curvature?法曲率?normal?curvature?vector?法曲率向量? normal?curve?正规曲线?normal?density?正规密度?normal?derivative?法向导数?normal?dispersion?正常色散?normal?distribution?正态分布?normal?distribution?function?正态分布函数? normal?equations?正规方程?normal?error?model?正规误差模型?normal?extension?正规开拓?normal?family?正规族?normal?force?法向力?normal?form?标准型?normal?form?problem?标准形问题?normal?form?theorem?正规形式定理? normal?function?正规函数?normal?homomorphism?正规同态?normal?integral?正规积分?normal?linear?operator?正规线性算子? normal?mapping?正规映射?normal?matrix?正规矩阵?normal?number?正规数?normal?operator?正规算子?normal?order?良序?normal?plane?法面?normal?polygon?正规多角形?normal?polynomial?正规多项式?normal?population?正态总体?normal?probability?paper?正态概率纸? normal?process?高斯过程?normal?sequence?正规序列?normal?series?正规列?normal?set?良序集?normal?simplicial?mapping?正规单形映射? normal?solvable?operator?正规可解算子? normal?space?正规空间?normal?surface?法曲面?normal?tensor?正规张量?normal?to?the?surface?曲面的法线?normal?valuation?正规赋值?normal?variate?正常变量?normal?variety?正规簇?normal?vector?法向量?normality?正规性?normalization?标准化?normalization?theorem?正规化定理?normalize?正规化?normalized?basis?正规化基?normalized?function?规范化函数?normalized?variate?正规化变量?normalized?vector?正规化向量?normalizer?正规化子?normalizing?factor?正则化因数?normed?algebra?赋范代数?normed?linear?space?赋范线性空间?normed?space?赋范线性空间?northwest?corner?rule?北午角规则?notation?记法?notation?free?from?bracket?无括号记号? notation?of?backus?巴科斯记号?notion?概念?nought?零?nowhere?convergent?sequence?无处收敛序列? nowhere?convergent?series?无处收敛级数? nowhere?dense?无处稠密的?nowhere?dense?set?无处稠密点集?nowhere?dense?subset?无处稠密子集?nuclear?operator?核算子?nuclear?space?核空间?nucleus?of?an?integral?equation?积分方程的核? null?零?null?class?零类?null?divisor?零因子?null?ellipse?零椭圆?null?function?零函数?null?hypothesis?虚假设?null?line?零线?null?matrix?零矩阵?null?method?衡消法?null?plane?零面?null?point?零点?null?ray?零射线?null?relation?零关系?null?representation?零表示?null?sequence?零序列?null?set?空集?null?solution?零解?null?system?零系?null?transformation?零变换?null?vector?零向量?nullity?退化阶数?nullring?零环?nullspace?零空间?number?数?number?defined?by?cut?切断数?number?defined?by?the?dedekind?cut?切断数?number?field?数域?number?interval?数区间?number?line?数值轴?number?notation?数记法?number?of?partitions?划分数?number?of?repetitions?重复数?number?of?replications?重复数?number?of?sheets?叶数?number?sequence?数列?number?set?数集?number?system?数系?number?theory?数论?number?variable?数变量?numeration?计算?numerator?分子?numeric?representation?of?information?信息的数值表示? numerical?数值的?numerical?algorithm?数值算法?numerical?axis?数值轴?numerical?calculation?数值计算?numerical?coding?数值编码?numerical?coefficient?数字系数?numerical?computation?数值计算?numerical?constant?数值常数?numerical?data?数值数据?numerical?determinant?数字行列式?numerical?differentiation?数值微分?numerical?equality?数值等式?numerical?equation?数字方程?numerical?error?数值误差?numerical?example?数值例?numerical?function?数值函数?numerical?inequality?数值不等式?numerical?integration?数值积分法?numerical?invariant?不变数?numerical?mathematics?数值数学?numerical?method?数值法?numerical?model?数值模型?numerical?operator?数字算子?numerical?quadrature?数值积分法?numerical?series?数值级数?numerical?solution?数值解?numerical?solution?of?linear?equations?线性方程组的数值解法? numerical?stability?数值稳定性?numerical?table?数表?numerical?value?数值?numerical?value?equation?数值方程?nutation?章动?obelisk?方尖形?object?对象?object?language?对象语言?object?variable?对象变数?objective?analysis?客观分析?objective?function?目标函数?oblate?ellipsoid?扁椭面?oblate?spheroid?扁椭面?oblique?angle?斜角?oblique?angled?斜角的?oblique?astroid?斜星形线?oblique?circular?cone?斜圆锥?oblique?circular?cylinder?斜圆柱?oblique?cone?斜圆锥?oblique?coordinate?system?斜角坐标系?oblique?coordinates?斜角坐标?oblique?parallelepiped?斜六面体?oblique?prism?斜棱柱?oblique?pyramid?斜棱锥?oblique?strophoid?斜环诉?oblique?triangle?斜三角形?observable?可观测的?observable?component?可观测分量?observation?观测?observation?function?观测函数?observational?error?观测误差?observer?观察器观测员?obstruction?障碍?obstruction?cocycle?障碍闭上链?obstruction?theory?障碍理论?obstruction?to?lifting?f?提升的障碍?obtuse?钝的?obtuse?angle?钝角?obtuse?triangle?钝角三角形?octagon?八角形?octahedral?八面体?octahedral?form?八面体形式?octahedral?group?八面体群?octahedron?八面体?octal?digit?八进制数字?octal?notation?八进记数法?octal?system?八进制系?octant?卦限?octuple?八倍的?odd?奇的?odd?dimensional?space?奇维空间?odd?even?check?奇偶校验?odd?function?奇函数?odd?number?奇数?odd?parity?负电阻?odd?permutation?奇置换?oddness?奇数性?omega?consistent?相容性?omega?group?群?one?address?单地址?one?address?instruction?单地址指令?one?digit?单位的?one?dimensional?一维的?one?dimensional?boundary?value?problem?一维边值问题? one?dimensional?differential?equation?一维微分方程? one?dimensional?integral?单积分?one?dimensional?space?一维空间?one?figure?单位的?one?figure?number?单位数?one?parameter?单参数的?one?parameter?family?of?curves?曲线的单参数族? one?place?number?单位数?one?place?predicate?calculus?一元谓词演算?one?point?compactification?单点紧化?one?point?set?退化集?one?point?union?一点并?one?sample?method?单样本法?one?sided?单侧的?one?sided?continuity?单侧连续性?one?sided?derivative?单边导数?one?sided?differentiability?单侧可微性?one?sided?limit?单侧极限?one?sided?lower?approximate?limit?单侧下近似极限? one?sided?surface?单侧曲面?one?sided?test?单侧检验?one?sided?upper?approximate?limit?单侧偏大近似极限? one?term?单项的?one?to?many?correspondence?一对多对应?one?to?many?mapping?一对多映射?one?to?one?一对一的?one?to?one?correspondence?一一对应?one?to?one?mapping?一一映射?one?to?one?relation?一一关系?one?to?one?sequence?一一序列?one?valued?单值的?one?valued?function?单值函数?onevaluedness?单值性?onto?hpmpmprphism?满射同态?onto?mapping?满射?open?ball?开球?open?base?开底?open?cover?开覆盖?open?disk?开圆盘?open?interval?开区间?open?manifold?开廖?open?map?开映射?open?mapping?theorem?开映射定理?open?neighborhood?开邻域?open?ordered?set?开有序集?open?parallelepiped?开平行六面体?open?rectangular?parallelepiped?开长方体?open?relation?开关系?open?segment?开线段?open?semicircle?开半圆?open?set?开集?open?sphere?开球?open?star?开星形?open?subprogram?开型子程序?open?subroutine?开型子程序?open?surface?开曲面?operand?运算对象?operating?characteristic?运算特征? operating?system?控制系统?operation?运算?operation?code?操纂?operation?of?symmetric?difference?对称差运算? operational?运算的?operational?amplifler?运算放大器? operational?calculus?算子演算?operational?code?操纂?operational?research?运筹学?operational?unit?运算部件?operations?research?运筹学?operator?算子?operator?algebra?算子代数?operator?automorphism?算子同构?operator?domain?算子域?operator?equation?算子方程?operator?function?算子函数?operator?homomorphism?算子同态?operator?isomorphism?算子同构?operator?method?符号法?operator?norm?算子范数?operator?of?finite?rank?有限秩算子? operator?set?算子域?operator?valued?function?算子函数?oppose?反对?opposite?逆的?opposite?angles?对角?opposite?category?对偶范畴?opposite?sides?对边?opposite?sign?导号?opposite?vector?反向向量?opposite?vertex?对顶?opposition?对立?optimal?最佳的?optimal?control?最优控制?optimal?disjunctive?normal?form?最优析取范式? optimal?normal?form?最优标准形?optimal?policy?最优策略?optimal?position?最优位置?optimal?process?最优过程?optimal?step?size?最优步长?optimal?strategy?最优策略?optimal?trajectory?最优轨道?optimal?value?function?最优值函数? optimality?最优性?optimality?criterion?最优性判别?optimality?policy?最优策略?optimality?principle?最优性原理? optimalization?problem?最优化问题?optimally?useful?direction?最优可用方向? optimization?最优化?optimization?of?scheduling?工序的最优化? optimization?problem?最优化问题?optimum?最佳?optimum?conditions?最优条件?optimum?programming?最优规划?optimum?solution?最优解?optimum?strategy?最优策略?optimum?system?最佳系统?optimum?system?control?最佳系统控制? optimum?value?最优值?optional?sampling?任意抽样?optional?selection?任意抽样?orbit?轨道?orbit?curve?轨道曲线?orbit?determination?轨道计算?orbit?space?轨道空间?orbital?stability?轨道稳定性?order?次数?order?bounded?set?有序有界集?order?boundedness?有序有界性?order?code?指令码?order?complete?set?有序完全集?order?continuous?topology?有序连续的拓扑? order?convergence?有序收敛?order?function?序函数?order?homomorphic?group?序同态群?order?homomorphic?image?序同态象?order?homomorphism?序同态?order?homomorphism?operator?序同态算子?order?interval?有序区间?order?isomorphic?field?序同构域?order?isomorphic?group?序同构群?order?of?a?differential?equation?微分方程的阶? order?of?a?group?群的阶?order?of?an?infinitesimal?无穷小的阶?order?of?approximation?逼近的阶?order?of?branch?point?支点的阶数?order?of?contact?接触度?order?of?convergence?收敛的阶?order?of?infinities?无穷大的阶?order?of?infinity?无穷大的阶?order?of?magnitude?绝对值的阶?order?of?polynomial?多项式的阶?order?of?rational?integral?function?有理整函数的阶? order?of?units?位数?order?of?zero?point?零点的阶?order?preserving?correspondence?保序对应?order?preserving?isomorphism?保序同构?order?register?指令寄存器?order?relation?序关系?order?simple?group?序单群?order?statistic?顺序统计量?order?type?有序型?ordered?有序的?ordered?chain?complex?有序链复形?ordered?factor?group?有序商群?ordered?field?有序域?ordered?group?有序群?ordered?linear?space?有序线性空间?ordered?module?有序模?ordered?pair?序对?ordered?product?有序积?ordered?sample?有序样本?ordered?set?有序集?ordered?set?bounded?below?下有界有序集?ordered?simplex?有序单形?ordered?singular?boundary?有序奇异边界?ordered?triplet?有序三个一组?orderisomorphism?序同构?orderpreserving?relation?保序关系?ordinal?序数?ordinal?number?序数?ordinal?number?class?序数类?ordinal?number?of?the?second?class?第二类的序数?ordinal?product?序数积?ordinal?series?序数列?ordinal?type?有序型?ordinary?导常的?ordinary?differential?equation?常微分方程?ordinary?differential?operator?常微分算子?ordinary?dirichlet?series?狄利克雷级数?ordinary?integral?element?寻常积分元素?ordinary?linear?differential?equation?线性常微分方程?ordinary?multiple?point?寻常多重点?ordinary?point?单点?ordinary?singularity?寻常奇点?ordinate?纵坐标?ordinate?axis?纵轴?orient?定向?orientability?可定向性?orientable?可定向的?orientable?surface?可定向曲面?orientation?定向?orientation?class?定向类?orientation?of?surface?曲面的定向?orientation?of?torsion?挠率的定向?orientation?preserving?automorphism?保持定向自同构?orientation?preserving?isomorphism?保持定向同构?orientation?preserving?parameter?transformation?保持定向参数变换? orientation?reversing?反转定向的?oriented?chain?complex?有向链复形?oriented?circle?有向圆?oriented?contour?有向围道?oriented?element?有向元?oriented?homology?group?有向同岛?oriented?intersection?有向交叉?oriented?line?有向直线?oriented?plane?有向平面?oriented?polygon?有向多角形?oriented?space?有向空间?oriented?sphere?bundle?有向球丛?oriented?surface?有向曲面?origin?坐标的原点?origin?of?coordinates?坐标的原点?original?初始的?ortho?pinacoid?正交平行双面?orthocenter?垂心?orthocentric?垂心的?orthocentric?quadrangle?垂心四边形?orthocentric?tetrahedron?垂心四面体? orthocomplement?正交补?orthogonal?直交的?orthogonal?axonometry?正轴测射影法?orthogonal?basis?正交基?orthogonal?circle?正交圆?orthogonal?complement?正交补?orthogonal?coordinate?system?正交坐标系?orthogonal?coordinates?正交坐标?orthogonal?decomposition?正交分解?orthogonal?expansion?正交函数展开?orthogonal?functions?正交函数?orthogonal?groups?正交群?orthogonal?involution?正交对合?orthogonal?matrix?正交矩阵?orthogonal?polynomial?expansion?正交多项式展开? orthogonal?polynomials?正交多项式?orthogonal?projection?正射影?orthogonal?projector?正交射影算子?orthogonal?sequence?正交序列?orthogonal?series?正交级数?orthogonal?space?正交空间?orthogonal?square?正交方格?orthogonal?stochastic?process?正交随机过程? orthogonal?subspaces?正交子空间?orthogonal?substitution?正交代换?orthogonal?sum?正交和?orthogonal?system?正交系?orthogonal?tests?独立检验?orthogonal?trajectory?正交轨线?orthogonal?transformation?正交变换?orthogonal?vectors?正交向量?orthogonality?正交性?orthogonality?of?columns?列正交性?orthogonality?of?lines?行正交性?orthogonality?relation?正交关系?orthogonality?rows?行正交性?orthogonalization?procedure?正交化过程? orthogonalization?process?正交化过程?orthogonally?irreducible?representation?正交不可约表示?orthography?正投影法?orthoheliotropism?直向阳性?orthohexagonal?正六方的?orthomorphism?正交射?orthonormal?规格化正交的?orthonormal?basis?标准正交基?orthonormal?sequence?标准正交序列? orthonormality?标准正交性?orthonormalization?标准正交化? orthonormalization?process?标准正交化过程? orthonormalized?basis?标准正交化基?orthopole?正交极?orthotomy?面正交性?oscillate?振动?oscillating?divergent?series?振动发散级数? oscillating?infinite?determinant?振动无穷行列式? oscillating?series?振荡级数?oscillation?振动?oscillation?equation?振动方程?oscillation?function?振动函数?oscillation?of?a?function?函数的振幅? oscillation?theorem?振动定理?oscillatory?振动的?osculating?circle?密切圆?osculating?cone?密切锥面?osculating?conic?密切二次曲线?osculating?curve?密切曲线?osculating?figure?密切图形?osculating?helix?密切螺旋线?osculating?parabola?密切抛物线?osculating?plane?密切平面?osculating?quadric?密切二次曲面?osculating?sphere?密切球面?osculation?密切?osculatory?密切的?outdegree?出度?outer?外部的?outer?automorphism?外自同构?outer?boundary?外边界?outer?capacity?外容量?outer?diameter?外径?outer?direct?product?外直积?outer?lebesgue?measure?勒贝格外测度?outer?measure?外测度?outer?point?外点?outer?product?外积?outer?semidirect?product?外半直积?output?输出?output?alphabet?输出字母表?output?device?输出装置?output?function?输出函数?output?quantity?输出量?output?signal?输出信号?output?state?输出状态?output?unit?输出设备?outside?外部?outward?normal?外法线?oval?卵形线?oval?surface?卵形曲面?overconvergence?过度收敛?overcrossing?point?上交叉点?overdetermined?problem?超定问题?overdetermined?system?超定组?overdetermined?system?of?partial?differential?equations?偏微分方程的超?定组?overfield?扩张域?overflow?溢出?overidentification?过分识别?overlap?交叠?overlapping?domains?交叠域?overrelaxation?超松弛?p?adic?algebra?p进代数?p?adic?fraction?p进分数?p?adic?integer?p进整数?p?adic?number?p进数?p?adic?representation?p进表示?p?adic?system?p进法?p?adic?valuation?p进赋值?pack?束?pair?对?paired?comparison?成对比较法?paired?samples?成双样本?pairing?配对?pairwise?两两的?pairwise?independent?events?互相独立事件?paleogeometry?古几何学?pantograph?比例画器放大器?parabola?抛物线?parabola?of?order?n?n阶抛物线?parabolic?coordinates?抛物线坐标?parabolic?curve?抛物曲线?parabolic?cusp?抛物尖点?parabolic?cylinder?抛物柱面?parabolic?cylinder?function?抛物柱面函数? parabolic?differential?equation?抛物型微分方程? parabolic?folium?抛物叶形线?parabolic?orbit?抛物线轨道?parabolic?point?抛物点?parabolic?regression?抛物回归?parabolic?segment?抛物线段?parabolic?spiral?抛物螺线?parabolic?type?抛物型?parabolograph?抛物图形?paraboloid?抛物面?paraboloid?of?revolution?回转抛物面? paraboloidal?coordinates?抛物面坐标? paracompact?space?仿紧空间?paradox?悖论?paradoxical?荒谬的?paradoxical?set?不合理集合?parallactic?displacement?视差位移?parallel?平行线?parallel?algorithm?并联算法?parallel?angle?平行角?parallel?axiom?平行公理?parallel?body?平行体?parallel?circle?平行圆?parallel?coordinates?平行坐标?parallel?curve?平行曲线?parallel?displacement?平行位移?parallel?edge?平行棱?parallel?line?平行线?parallel?operation?并行运算?parallel?plane?平面平行的?parallel?projection?平行射影?parallel?rule?平行直尺?parallel?shift?并行进位?parallel?slit?平行缝隙?parallel?slit?domain?平行裂纹域?parallel?strip?平行带?parallel?subspace?平行子空间?parallel?surface?平行曲面?parallel?translation?并行进位?parallelepiped?平行六面体?parallelepipedal?neighborhood?平行六面体邻域law?法则?law?of?commutation?交换律?law?of?composition?合成律?law?of?cosines?余弦定律?law?of?deduction?演绎定律?law?of?double?negation?双重否定律?law?of?errors?误差律?law?of?excluded?middle?排中律?law?of?exponentiation?指数定律?law?of?inertia?惯性律?law?of?iterated?logarithm?迭对数定律?law?of?large?numbers?大数定律?law?of?similarity?transformation?相似变换律?law?of?sines?正弦定律?law?of?small?numbers?小数定律?law?of?tangents?正切定律?laws?of?integral?exponents?整指数定律?leading?coefficient?首项系数?leading?diagonal?衷角线?leading?ideal?猪想?leading?term?知项?leaf?叶?least?common?denominator?最小公分母?least?common?left?multiple?左最小公倍数?least?common?multiple?最小公倍数?least?common?right?multiple?右最小公倍数?least?significant?digit?最小有效数字?least?squares?approximation?最小二乘逼近?least?squares?estimator?最小二乘估计量?least?upper?bound?最小上界?lebesgue?area?勒贝格面积?lebesgue?decomposition?勒贝格分解?lebesgue?integrable?勒贝格可积的?lebesgue?integral?勒贝格积分?lebesgue?measurable?勒贝格可测的?lebesgue?measure?勒贝格测度?lebesgue?number?勒贝格数?lebesgue?space?勒贝格空间?lebesgue?stieltjes?integral?勒贝格?斯蒂尔吉斯积分?left?adjoint?homomorphism?左伴随同态?left?almost?periodic?function?左殆周期函数? left?alternative?division?ring?左交错可除环? left?alternative?law?左交错律?left?alternative?ring?左交错环?left?annihilator?左零化子?left?artinian?ring?左阿廷环?left?associated?element?左相伴元素?left?balanced?functor?左平衡函子?left?closed?object?在闭对象?left?completion?左完备化?left?continuous?左方连续的?left?continuous?function?左连续函数?left?coset?左陪集?left?coset?space?左傍系空间?left?derivative?左导数?left?derived?functor?左导函子?left?differential?左微分?left?direct?product?左直积?left?directed?quasiorder?逆有向拟序?left?distributive?左分配的?left?distributive?law?左分配律?left?divisor?左因子?left?end?point?左端点?left?exact?functor?左正合函子?left?exactness?左正合性?left?faithful?functor?左一一的函子?left?hand?differentiable?function?左可微函数? left?hand?lower?dini?derivative?左下狄尼导数? left?hand?side?左边?left?hand?symmetrizable?kernel?左方可对称化核? left?hand?upper?dini?derivative?左上狄尼导数? left?handed?co?ordinate?system?左手坐标系? left?handed?curve?左旋曲线?left?handed?system?左手坐标系?left?hereditary?ring?左遗传环?left?homotopy?inverse?左同伦逆元?left?ideal?左理想?left?identity?element?左幺元?left?injective?dimension?左内射维数?left?inner?product?左内积?left?invariant?mean?左不变平均值?left?invariant?measure?左不变测度?。

稳健性最优化简介

稳健性最优化简介

稳健性最优化简介2008-9-28 19:09:34【来源:网络】稳健性最优化,英文是robust optimization,本质上是一类半无限最优化问题(semi-infinite programming)。

只不过它研究的更为具体一些,在方法论上,更加注重于把半无限最优化问题用转化称一个多项式可解的确定性最优化问题或者用一个多项式可解的确定性最优化问题来逼近。

稳健性最优化开始于1998,由EI. Ghaoui,etc和Ben-Tal and Nemirovski等等倡导。

目前稳健性最优化问题的研究方法有3种。

第一种,也是最先的,由Ghaoui,Febret等等开始使用,来自于robust control的,叫做分式线性型(fractional linear representaion)。

他们研究可以表示为fractional linear representation的不确定性(叫做结构不确定性:structual uncertainty)。

在这种假定下,他们研究了robust最小二乘问题以及robust semi-definite programming问题,或者了一些结果。

第二种方法是Ben-Tal 和Nemirovski采用的研究非结构不确定性的方法。

他们采用semi-definite programming的方法论,研究了robust linear optimization, robust quadradic optimization和robust semi-definite programming,并且证明了一些近似结果。

他们最重要的结果表明:对于如下robust linear optimizationmin c^Txs.t. Ax<=b, \forall [A,b]\in U其中,U是不确定集合。

当U 是椭球,或者多胞形,或者是半正定约束表成的集合,半无限线性规划可以转化乘相应的二次规划,线性规划以及半正定规划。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Copyright (C) by Cambridge University ቤተ መጻሕፍቲ ባይዱress, Acta Numerica 10 (2001) 515–560. School of Operations Research and Industrial Engineering, Cornell University, Ithaca, New York 14853, USA (miketodd@). Research supported in part by NSF through grant DMS-9805602 and ONR through grant N00014-96-1-0050.


1
1
Introduction
Semidefinite optimization is concerned with choosing a symmetric matrix to optimize a linear function subject to linear constraints and a further crucial constraint that the matrix be positive semidefinite. It thus arises from the well-known linear programming problem by replacing the vector of variables with a symmetric matrix and replacing the nonnegativity constraints with a positive semidefinite constraint. (An alternative way to write such a problem is in terms of a vector of variables, with a linear objective function and a constraint that some symmetric matrix that depends affinely on the variables be positive semidefinite.) This generalization nevertheless inherits several important properties from its vector counterpart: it is convex, has a rich duality theory (although not as strong as linear programming’s), and admits theoretically efficient solution procedures based on iterating interior points to either follow the central path or decrease a potential function. Here we will investigate this class of problems and survey the recent results and methods obtained. While linear programming (LP) as a subject grew very fast during the ’50s and ’60s, due to the availability of the very efficient simplex method of G.B. Dantzig, semidefinite optimization (also known as semidefinite programming or SDP, the term we shall use) was slower to attract as much attention. Partly this was because, since the feasible region is no longer polyhedral, the simplex method was not applicable, although related methods do exist. As soon as theoretically efficient (as well as practically useful) algorithms became available in the late ’80s and ’90s, research in the area exploded. The recent Handbook of Semidefinite Programming [67] lists 877 references, while the online bibliography on semidefinite programming collected by Wolkowicz [66] lists 722, almost all since 1990. The development of efficient algorithms was only one trigger of this explosive growth: another key motivation was the power of SDP to model problems arising in a very wide range of areas. We will describe some of these applications in Section 3, but these only cover part of the domain. The handbook [67] has chapters on applications in combinatorial optimization, on nonconvex quadratic programming, on eigenvalue and nonconvex optimization, on systems and control theory, on structural design, on matrix completion problems, and on problems in statistics. Bellman and Fan seem to have been the first to formulate a semidefinite programming problem, in 1963. Instead of considering a linear programming problem in vector form and replacing the vector variable with a matrix variable, they started with a scalar LP formulation and replaced each scalar variable with a matrix. The resulting problem (although equivalent to the general formulation) was somewhat cumbersome, but they derived a dual problem and established several key duality theorems, showing that additional regularity is needed in the SDP case to prove strong duality. However, the importance of constraints requiring that a certain matrix be positive (semi)definite had been recognised much earlier in control theory: Lyapunov’s characterization of the stability of the solution of a linear differential equation in 1890 involved just such a constraint (called a linear matrix inequality, or LMI), and subsequent work of Lur´ e, Postnikov, and Yakubovich in the Soviet Union in the ’40s, ’50s, and ’60s established the importance of LMIs in control theory (see Boyd at al. [9]). In the early ’70s, Do-
Semidefinite Optimization
M. J. Todd


August 22, 2001
Abstract Optimization problems in which the variable is not a vector but a symmetric matrix which is required to be positive semidefinite have been intensely studied in the last ten years. Part of the reason for the interest stems from the applicability of such problems to such diverse areas as designing the strongest column, checking the stability of a differential inclusion, and obtaining tight bounds for hard combinatorial optimization problems. Part also derives from great advances in our ability to solve such problems efficiently in theory and in practice (perhaps “or” would be more appropriate: the most effective computational methods are not always provably efficient in theory, and vice versa). Here we describe this class of optimization problems, give a number of examples demonstrating its significance, outline its duality theory, and discuss algorithms for solving such problems.
相关文档
最新文档