金属材料基础知识汇总

合集下载

(完整版)金属材料常识简介

(完整版)金属材料常识简介

金属材料常识简介一、钢:1. 钢与铁的区别主要在含碳量上,一般含碳量在2.11%以下的铁碳合金称为钢;一般含碳量在2.11%以上的铁碳合金称为铁。

2. 钢的分类:按照化学成分分为碳素钢、中低合金钢、高合金钢。

按冶炼工艺分为平炉钢、转炉钢、电炉钢、感应炉钢、电渣炉钢等。

按脱氧程度分为镇静钢(脱氧完全的钢)、半镇静钢(脱氧较完全的钢)、沸腾钢(脱氧不完全的钢)按用途分为结构钢、工具钢、特殊性能钢。

结构钢用于制造工程结构和机械零件。

工程结构用钢一般属于低碳钢范围内,在轧制或正火状态下使用,很少进行热处理,适用于焊接。

机械零件用钢大多需要进行热处理。

二、碳素钢1.碳素钢分类按碳的质量分数又可分为低碳钢(<0.25%);中碳钢(=0.25%~0.60%);高碳钢(>0.60%)。

按钢的冶金质量和钢中有害杂质元素硫、磷的质量分数分普通质量钢;优质钢;高级优质钢。

普通质量钢又分为只保证化学成分不保证机械性能的和只保证机械性能不保证化学成分的两种。

2 、钢的编号(1)普通碳素结构钢碳素结构钢牌号表示方法由代表屈服点屈字的汉语拼音字母、屈服极限数值、质量等级符号及脱氧方法符号四个部分按顺序组成。

牌号中Q表示“屈”;A、B、C、D表示质量等级,它反映了碳素钢结构中有害杂质(S、P)质量分数的多少,(C、D)级硫、磷质量分数最低、质量好,可作重要焊接结构件。

例如Q235AF,即表示屈服点为235N/mm2、A等级质量的沸腾钢。

D级质量最好,A级最差。

普通碳素结构钢的硫、磷含量较多,但由于冶炼容易,工艺性好,价格便宜,在力学性能上一般能满足普通机械零件及工程结构件的要求,因此用量很大,约占钢材总量的70%。

(2)优质碳素结构钢其牌号用两位数字表示,两位数字表示钢中平均碳质量分数的万倍。

例如45钢,表示平均ωc =0.45%;08钢表示平均ωc =0.08%。

优质碳素结构钢按锰的质量分数不同,分为普通锰钢(ωMn=0.25%~0.80%)与较高锰的钢(ωMn=0.70%~1.20%)两组。

金属材料的基本知识

金属材料的基本知识

1. 静载荷下金属材料的机械性能
• 在缓慢加载条件下测得的 金属材料抗变形和抗断 裂的能力,称为金属材料的静力强度。(拉伸强 度、压缩强度、弯曲强度、剪切强度和扭转强度) • 通过拉伸试验测定拉伸强度,是确定金属材料机 械性能的一种最重要的方法。拉伸试验通常用标 准试样在万能试验机上进行。 • (1)弹性和刚度
抗磁性材料 能抗拒或削弱外磁场对材料的磁化作用,如铜、锌等。
• 铁磁性材料可用于制造变压器、电动机、测量仪表等。抗磁性材料则用 于要求避免电磁场干扰的零件和结构材料,如航海罗盘。 • 铁磁性材料当温度升高到一定数值时,磁畴被破坏,变为顺磁体,这个 转变温度称为居里点,如铁的居里点是770 ℃。
金属材料以金属键方式结合,从而使金属材料具有 以下特征:
F0 Fk 100% F0
其中:Fk—试样断裂处横截面面积 Fo—试样原始横截面面积
说明:1.伸长率和收缩率在实际应用中,一般是用表示塑性大小。 、 Ψ越大,材料的塑性越好。通常认为<5%脆性材料。 2. 一些脆性材料,如铸铁、陶瓷、玻璃钢、混凝土等,由 于塑性较低,拉伸时基本不产生塑性变形,不仅无屈服现象,也 不产生缩颈,断裂是突然发生的。
算球面压痕单位表面积上所承受的平均压力来表示布氏硬度值。
HB 0.102
2P
D( D D 2 d 2 )
布 氏 硬 度 计
• 压头为钢球时,布氏硬度用符号HBS表示,适用于 布氏硬度值在450以下的材料。 • 压头为硬质合金球时,用符号HBW表示,适用于布 氏硬度在650以下的材料。
• 补充说明:
• ① 用面缩率表示塑性比伸长率更接近真实 变形。 • ② 直径d0 相同时,l0,。只有当l0/d0 为 常数时,塑性值才有可比性。 • 当l0=10d0 时,伸长率用 表示; • 当l0=5d0 时,伸长率用5 表示。显然5> • ③ > 时,无颈缩,为脆性材料表征

有关金属的知识点总结

有关金属的知识点总结

有关金属的知识点总结一、金属的性质1. 金属的物理性质:金属的物理性质主要包括导电性、热导性、弹性和延展性等。

大多数金属具有很好的导电性和热导性,这使得它们成为电线、电路、散热器等的理想材料。

同时,金属还具有较好的弹性和延展性,可以被加工成各种形状,用于制造不同的产品。

2. 金属的化学性质:金属的化学性质主要包括活泼性、耐腐蚀性等。

大多数金属都具有一定的活泼性,与非金属元素发生化学反应,形成氧化物、氢化物、硫化物等化合物。

另外,一些金属还具有很好的耐腐蚀性,可以用于制造耐腐蚀设备、管道等。

3. 金属的晶体结构:金属的分子结构是一种紧密排列的晶格结构,这种结构决定了金属的一些特性,比如硬度、延展性等。

晶体结构也是金属导电性和热导性的重要原因。

二、金属的分类1. 金属根据晶体结构可分为:(1)面心立方(FCC)结构金属,如铝、铜等;(2)体心立方(BCC)结构金属,如铁、钴等;(3)密堆排(HCP)结构金属,如钛、锌等。

2. 金属根据化学性质可分为:(1)活泼金属和不活泼金属;(2)有色金属和黑色金属。

3. 金属根据用途和性质可分为:(1)结构金属,如铝、镁等,主要用于机械结构部件;(2)功能金属,如铜、铁等,用于导电、传热等;(3)特种金属,如钨、铟等,用于特殊行业需求。

三、金属的生产1. 金属的提炼:金属提炼主要是指从矿石中提取出金属的过程。

一般来说,金属的提炼包括矿石的选矿、焙烧、冶炼等步骤。

提炼方法有传统的火法冶炼和现代的湿法冶炼等。

2. 金属的合金化:金属合金是由两种或两种以上的金属或非金属元素组成的固态溶体,具有比单一金属更优越的性能。

金属的合金化是为了改善金属的性能,满足特定的需求。

常见的金属合金有钢、铜合金、铝合金等。

3. 金属的加工:金属的加工是指将金属材料加工成所需形状和尺寸的过程,包括锻造、压延、挤压、粉末冶金等。

金属加工可以改善金属的性能、提高金属的强度和硬度等。

四、金属的应用1. 工业领域:金属在工业领域中应用广泛,主要用于机械制造、电子设备、航空航天等。

金属知识点总结大全

金属知识点总结大全

一、金属的基本性质1. 导电性:金属具有良好的导电性,其原子结构中的自由电子能够在金属内部自由流动,从而实现电流的传导。

2. 导热性:金属具有良好的导热性,可以快速将热量传导到周围环境中,因此常用于制造散热器和导热器等产品。

3. 可塑性:金属具有良好的可塑性,可以通过锻造、轧制等方式形成各种形状的产品。

4. 良好的机械性能:金属材料具有较高的强度和韧性,可以满足不同工程领域的需要。

二、金属的分类1. 基本金属:包括铁、铜、铝、镁、锌等,是工业生产中最常用的金属材料。

2. 合金:由两种或更多种金属或非金属混合而成,具有优良的物理和化学性能,如钢、铜合金、铝合金等。

3. 贵金属:如黄金、铂、银等,具有良好的抗腐蚀性和化学稳定性,常用于珠宝、电子器件等领域。

三、常见金属材料1. 铁:是最常见的金属材料,包括纯铁、钢和铸铁等,广泛应用于建筑、机械制造、汽车制造等领域。

2. 铝:具有良好的轻量化和耐腐蚀性能,常用于航空航天、汽车制造和建筑材料等领域。

3. 铜:具有良好的导电性和导热性,常用于电子器件、建筑材料等领域。

4. 钛:具有优良的耐腐蚀性和高强度,常用于航空航天、医疗器械等领域。

四、金属加工和制造1. 铸造:将金属熔化后倒入模具,冷却后得到所需的形状。

2. 锻造:通过对金属进行加热后进行锻打,使其得到所需的形状和尺寸。

3. 冷拔:通过在室温下拉制金属材料,使其形成所需的形状和尺寸。

4. 焊接:将两个金属材料通过加热或施加压力,使其相互连接。

5. 切削加工:通过旋转刀具等方式对金属材料进行加工,实现所需的形状和尺寸。

1. 建筑领域:金属材料常用于制造建筑结构、门窗、屋顶等部件。

2. 机械制造:金属材料广泛应用于制造机床、轴承、齿轮等机械零部件。

3. 电子设备:金属材料常用于制造电子器件、电路板、散热器等产品。

4. 汽车制造:金属材料是汽车制造的主要材料,常用于制造车身、发动机零部件等。

六、金属的环保和可持续发展1. 循环利用:金属材料可以通过回收再利用的方式,减少资源浪费和环境污染。

金属材料相关知识

金属材料相关知识

金属材料相关知识金属材料是我们生活中常见的一种材料,广泛应用于建筑、机械制造、汽车制造、船舶制造等领域。

本文将从金属的基本性质、金属的分类、金属加工及应用等方面详细介绍金属材料相关知识。

一、金属的基本性质1、导电性和导热性金属具有良好的导电性和导热性,因其外层电子较弱,易于受到外部电场的作用,从而导致电子流动和热量传递。

2、可塑性和延展性金属具有良好的可塑性和延展性,能够承受一定程度的形变而不破裂或断裂。

这是由于金属的晶格结构存在滑移面和滑移系统,使得金属在外力作用下能够发生塑性变形。

3、硬度和强度金属的硬度和强度取决于其晶体结构和微观组织。

通常情况下,金属的硬度和强度成正比,但也可以通过控制晶格结构、合金化等方式来改变其硬度和强度。

二、金属的分类金属根据其物理性质和化学性质可以分为以下几类:1、贵金属贵金属是指在自然界中较为稀少或难以提取的金属,如金、银、铂等。

它们具有较高的化学稳定性和耐腐蚀性,在珠宝、硬币、电子元器件以及化工催化剂等领域有广泛应用。

2、有色金属有色金属是指那些不含铁元素的金属,如铜、铝、镁、锌、钨等。

它们具有良好的导电性、导热性和可塑性,广泛应用于电气、电子、建筑等领域。

3、黑色金属黑色金属一般指铁和钢材,它们具有较高的强度和硬度,广泛应用于机械制造、建筑和汽车制造等领域。

三、金属加工金属加工是指将金属材料通过机械加工、热加工、冷加工等手段进行形状改变的过程。

金属加工可以将原材料加工成不同形状、大小和特定用途的产品,应用广泛,是金属材料制造的重要环节。

常见的金属加工方式包括:1、铸造铸造是将金属熔化后倒入模具中,经过冷却凝固形成所需形状的过程。

铸造是制造大型、复杂、薄壁和空心件的主要方法,广泛应用于建筑、机械制造、汽车制造等领域。

2、锻造锻造是指将金属材料加热到一定温度后进行塑性变形的加工方式。

锻造可使材料获得良好的机械性能和表面质量,广泛应用于机械制造、航空航天等领域。

3、剪板剪板是将金属板材按照所需尺寸进行切割或裁剪的过程。

金属材料基础知识

金属材料基础知识

金属的冷热弯曲性能也取决于材料的塑性和强度。材料承受 弯曲而不出现裂纹的能力,称为弯曲性能。一般用弯曲角度 或弯心直径与材料厚度的比值来衡量弯曲性能。
电厂锅炉管道弯头和输粉管道弯头是经过冷热弯曲成型的。
(三)焊接性能
• 金属材料采用一定的焊接工艺、焊接材料及结构形式,优质焊 接接头的能力,称为金属的焊接性。
适用范围
HRC
120°金刚石圆 锥
150
HRB Φ1.588mm钢球
100
HRA
120°金刚石圆 锥
60
一般淬火钢等硬度较大材料
退火钢和有色金属等软材料
硬而薄的硬质合金或表面淬 火钢
3.维氏硬度(HV) 维氏硬度是用一定的载荷将锥面夹角为136°的正四棱锥金刚石压头压入试 样表面,保持一定时间后卸除载荷,试样表面就留下压痕,测量压痕对角线 的长度,计算压痕表面积,载荷F除以压痕面积S所得值即为维氏硬度。维氏 硬度用符号HV表示,计算公式如下:
1.拉伸试样
2.拉伸曲线
• 拉伸曲线表示试样拉伸过程中力和变形关系,可用应力-延伸率曲线表 示,纵坐标为应力R,R=F/S0,横坐标为延伸率ε,ε=ΔL/L0。
拉伸曲线的形状与材料有关, 由图可见,在载荷小的oa阶 段,试样在载荷F的作用下 均匀伸长,伸长量与载荷的 增加成正比。如果此时卸除 载荷,试样立即回复原状, 即试样产生的变形为弹性变 形。当载荷超过b点以后, 试样会进一步产生变形,此 时若卸除载荷,试样的弹性 变形消失,而另一部分变形 则保留下来,这种不能恢复 的变形称为塑性变形。
(四)切削性能 金属材料承受切削加工的难易程度,称为切削性能。
金属的切削性能与材料及切削条件有关,如纯铁很பைடு நூலகம்易切削,但难以获得较高的光洁度; 不锈钢可在普通车床上加工,但在自动车床上,却难以断屑,属于难加工材料。通常,材 料硬度低时切削性能较好,但是对于碳钢来说,硬度如果太低时,容易出现“粘刀”现象, 光洁度也较差。一般情况下金属承受切削加工时的硬度在HB170一230之间为宜。

金属材料的基础知识

金属材料的基础知识

金属材料的基础知识一、金属材料分类:1、按组成成分分类a、纯金属(简单金属)——指由一种金属元素组成的物质。

b、合金(复杂金属)——指由一种金属元素(为主)与另一种(或几种)金属元素(或非金属元素)组成的物质。

它的种类甚多,加工业上常用的生铁、钢就是铁碳合金;黄铜就是铜锌合金等。

由于合金的各项性能一般较优于纯金属,因此在工业上合金的应用比纯金属广泛。

2、实用分类:a、黑色金属——指铁和铁的合金,如生铁,铁合金,铸铁和钢等。

b、有色金属——又称非铁金属。

指除黑色金属外和金属和合金,如铜、锡、铅、锌、铝、钛、镁及黄铜、青铜、铝合金、钛合金、镁合金和轴承合金等。

c、贵金属——铂、金、银d、稀有金属——铀、镭等放射性金属。

二、物理性能名词简介:1、①密度:(kg/m3)②熔点:指金属材料从固态向液态转化时的熔化温度℃;③导电性:s/m(导电率)电阻率Ω·m④导热性:λ或k 单位w/cm·k⑤热膨胀性:指金属材料受热后产生体积增大的性能。

2、化学性能名词简介:①耐腐蚀性②抗氧化性:高温下抵抗氧化作用的能力;③化学稳定性:而腐蚀性和抗氧化性的总和。

三、力学(机械)性能简介:1、极限强度:单位MPa(或N/mm3)指金属材料抵抗外力破坏作用的能力。

按外力作用形式的不同可分为:a、抗拉强度(抗张强度),代号为:δb指外力是拉力时的极限强度;b、抗压强度,代号为:δy指外务是压力时的极限强度;c、抗弯强度,代号为:δw指外力与材料轴线垂直,并在作用后使材料呈弯曲的极限强度;d、抗剪强度,代号为:τ指外力与材料轴线垂直,并在材料呈剪切作用时的极限强度。

2、屈服点规定残余伸长应力和规定非比例伸长应力a、屈服点(物理屈服强度)代号为:δS单位:MPa(N/mm2)指金属材料在受外力作用到某种程度时,其变形(伸长)突然增加很大时的材料低抗外力的能力。

b、规定残余伸长应力(屈服强度条件屈服强度)代号δr单位MPa(N/mm2)。

金属材料的基本知识

金属材料的基本知识

金属材料的基本知识金属材料是一类重要的材料,具有良好的导电性、导热性、可塑性和可焊性等特点。

金属材料广泛应用于建筑、汽车、机械制造、航空航天等行业。

本文将介绍金属材料的基本知识,包括金属的性质、金属的组织结构、金属的加工工艺以及金属的应用等内容。

1.金属的性质金属具有良好的导电性和导热性。

这是因为金属的结构中存在自由电子,电子可以自由移动,从而导致金属对电流和热的传导性能非常好。

此外,金属还具有高硬度、耐磨性和良好的韧性,使其在工程领域得到广泛应用。

2.金属的组织结构金属的组织结构主要有晶体结构和非晶态结构两种类型。

晶体结构是由晶粒组成的,晶粒是由原子周期排列形成的。

晶体结构的类型包括立方晶系、六方晶系、四方晶系等。

非晶态结构是指金属在快速冷却过程中形成的无序结构。

晶体结构和非晶态结构对金属材料的性能有着重要影响。

3.金属的加工工艺金属材料一般需要经过加工工艺才能获得所需形状和性能。

金属的加工工艺包括塑性加工、热处理和表面处理等。

塑性加工是指通过施加力量使金属材料发生塑性变形的工艺,包括锻造、轧制、拉伸等。

热处理是指通过加热和冷却控制金属的组织结构,改变其性能的工艺。

表面处理是指对金属材料的表面进行涂覆、喷涂、电镀等方式的处理,以提高金属材料的耐腐蚀性能和外观质量。

4.金属的应用金属材料广泛应用于各个领域。

在建筑领域,金属材料用于制作结构框架、铝合金门窗和金属屋面等。

在汽车和航空航天领域,金属材料用于制造车身、发动机和航空器部件等。

在机械制造领域,金属材料用于制造机床、工具和各种零部件等。

此外,金属材料还广泛应用于电子、能源和医疗器械等领域。

综上所述,金属材料具有良好的导电性、导热性、可塑性和可焊性等特点。

金属的组织结构、加工工艺和应用也是金属材料研究的重要内容。

金属材料的广泛应用和不断创新,为工业领域的发展做出了重要贡献。

然而,随着科技的不断进步,人们对金属材料的研究和应用也在不断深入,未来金属材料的发展仍然具有巨大潜力。

(完整版)金属材料知识大全

(完整版)金属材料知识大全

概述金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称。

包括纯金属、合金、金属材料金属间化合物和特种金属材料等。

(注:金属氧化物(如氧化铝)不属于金属材料)1. 意义人类文明的发展和社会的进步同金属材料关系十分密切。

继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。

现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。

2. 种类金属材料通常分为黑色金属、有色金属和特种金属材料。

(1)黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳2%- 4% 的铸铁,含碳小于2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、不锈钢、精密合金等。

广义的黑色金属还包括铬、锰及其合金。

(2)有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。

有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。

(3)特种金属材料包括不同用途的结构金属材料和功能金属材料。

其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金以及金属基复合材料等。

3. 性能一般分为工艺性能和使用性能两类。

所谓工艺性能是指机械零件在加工制造过程中,金属材料在所定的冷、热加工条件下表现出来的性能。

金属材料工艺性能的好坏,决定了它在制造过程中加工成形的适应能力。

由于加工条件不同,要求的工艺性能也就不同,如铸造性能、可焊性、可锻性、热处理性能、切削加工性等。

所谓使用性能是指机械零件在使用条件下,金属材料表现出来的性能,它包括力学性能、物理性能、化学性能等。

金属材料使用性能的好坏,决定了它的使用范围与使用寿命。

在机械制造业中,一般机械零件都是在常温、常压和非常强烈腐蚀性介质中使用的,且在使用过程中各机械零件都将承受不同载荷的作用。

金属材料在载荷作用下抵抗破坏的性能,称为力学性能(过去也称为机械性能)。

金属材料基础知识

金属材料基础知识

1金属材料基础知识1.1名词解释1)铁素体:碳原子溶入α铁中的间隙固溶体,用符号F 表示。

2)奥氏体:碳原子溶入γ铁中的间隙固溶体,用符号A 表示。

3)珠光体:是铁素体和渗碳体所组成的机械混合物,通常呈片层状相间分布,用符号P 表示。

4)渗碳体:铁和碳形成的稳定Fe3C 化合物称为渗碳体。

5)马氏体:碳与合金元素在α-Fe 过饱和固溶体,是合金在冷却过程中所发生的马氏体转变产物的统称,用符号M 表示。

6)回火马氏体:淬火状态的马氏体在低温回火(150℃~250℃)的分解产物。

7)贝氏体:钢铁奥氏体化后,过冷到珠光体转变温度区与Ms 之间的中温区等温,或连续冷却通过这个中温区时所形成的组织,又称贝茵体,其组织由过饱和α固溶体和碳化物组成。

按其形态可分为上贝氏体、下贝氏体和粒状贝氏体三种。

8)晶粒度:晶粒度指多晶体内晶粒的大小。

可用晶粒号、晶粒平均直径、单位面积或单位体积内的晶粒数目定量表征。

9)相:相指金属组织中化10)组织:在显微镜下作金相检验时,具有共同的特种、相同的组成部分叫组织。

一种组织可以是单相组成,如奥氏体、铁素体,也可以是多相组织。

11)铁碳平衡图:用温度为纵坐标、碳含量为横坐标的图解方法表示接近平衡条件或亚稳条件下,以铁、碳为组元组成的合金,在不同温度下所显示的相和相之间关系的图,也称铁碳相图。

12)金属晶体结构:金属晶体中原子的排列方式。

常见的金属晶体结构有体心立方、面心立方及密排六方。

13) 宏观组织:金属试样的磨面经适当处理后,用肉眼或借助放大镜观察到的组织,又称低倍组织。

14) 结构:多晶体材料当变形度大时,其中多数晶粒的滑移系最终基本上朝向统一方向,这就使原来位向较乱的多晶体出现择优取向,诸晶粒晶体学位向接近一致的组织。

15) 晶粒:多晶体材料内以晶界分开、晶体学位向基本相同的小晶体。

16) 晶界:多晶体材料中相邻晶粒的界面。

相邻晶粒晶体学位向差小于 10°的晶界称为小角晶界;相邻晶粒晶体学位向差较大的晶界称为大角晶界。

金属材料的基础知识

金属材料的基础知识

抗拉强度: 在拉断前试样所能承受的最大应力 为该试样的抗拉强度,用符号σb 表示,计算公式为。
σb=
Fb So
二、 塑性
➢概念
塑性是指金属材料在外力作用下,产生永久性变形而不断裂的能 力。
➢ 衡量指标
伸长率:试样被拉断后,标距的伸长量与原始标距的百分比 称为伸长率,用符号δ表示。计算公式为:
δ= l1 l0 ×100% l0
δ ψ
性能指标
名称
抗拉强度 屈服点 规定残余伸长应力
伸长率 断面收缩率
硬度 冲击韧性
HBS(HBW) HRC HRB HRA 标尺洛氏硬度值 A标尺洛氏硬度值 维氏硬度值
冲击韧度
疲劳强度 σ-1
疲劳极限
单位 MPa MPa MPa
J/cm2 MPa
含义
试样拉断前所能承受的最大应力 拉伸过程中,力不增加(保持恒定)试 样仍能继续伸长时的应力 规定残余伸长率达0.2%时的应力
部永久性积累损伤经一定循环次数后产生裂纹或突发完全断 裂的过程称为金属疲劳。
五、疲劳强度
➢疲劳破坏可分为微观裂纹、宏 观裂纹和瞬时断裂三 个过程。
五、疲劳强度
➢疲劳曲线 :疲劳曲线是指交变应力σ与循 环次数N的关系曲线,如下图所示。
常用金属材料的力学性能指标及其含义
力学性能
符号
强度 塑性
σb σs σ0.2
0.1
e 0.2
一、强度—拉伸曲线
1.弹性变形阶段 2.屈服阶段 3.强化阶段 4.缩颈阶段
低碳钢的应力-应变曲线
一、强度—衡量指标
屈服点: 用符号σs表示,计算公式为
σs=
Fs So
式中:Fb——试样断裂前所承受的最大拉力, 单位为N;

金属材料知识点

金属材料知识点

金属材料知识点金属材料是一类常见的材料,广泛应用于工业和日常生活中。

它们具有许多独特的性质和特点,为我们提供了各种各样的用途和功能。

本文将介绍一些与金属材料相关的主要知识点。

一、金属的基本特性金属材料的基本特性是它们具有良好的导电性和导热性。

这使得金属材料成为电器、电子设备、加热器和冷却器等领域的理想选择。

此外,金属材料还具有高强度和硬度,使其能够支撑重物和承受外力。

同时,金属材料还具有良好的塑性和可塑性,可以通过锻造、压延和拉伸等方式进行成型。

二、金属晶体结构金属材料的原子结构呈现出一种有序排列的结构,称为金属晶体结构。

最常见的金属晶体结构是面心立方(fcc)和体心立方(bcc)。

在面心立方结构中,每个原子都与周围12个原子有着最密堆积的联系;而在体心立方结构中,每个原子都与周围8个原子有着最密堆积的联系。

这种有序结构赋予金属材料优异的物理和力学性能。

三、金属材料的类型金属材料可以分为两类:纯金属和合金。

纯金属由同一种原子构成,具有较高的纯度。

合金是由两种或两种以上的金属元素组成,通过加入不同元素可以调整和改善材料的性能。

例如,将铁和碳合金化可以制造出钢材,具有更好的强度和韧性。

四、金属的热处理热处理是指通过加热和冷却的方式改变金属材料的晶体结构和性能。

常见的热处理方法包括退火、淬火和时效处理。

退火可以消除金属内部的应力和缺陷,提高材料的延展性和韧性。

淬火则用于增加金属的硬度和强度。

时效处理是将金属材料在一定温度下保持一段时间,使其硬度和强度得到优化。

五、金属的表面处理金属材料的表面处理是为了增强其耐腐蚀性和装饰性。

常见的金属表面处理方法包括电镀、喷涂和阳极氧化。

电镀可以在金属表面形成一层附着性好、抗腐蚀的保护层。

喷涂涂层可以提供美观和装饰效果,并增强金属的抗腐蚀性。

阳极氧化是将金属表面形成一层氧化膜,提高其抗氧化性和耐磨性。

六、常见的金属材料金属材料有许多种类,常见的包括铁、铜、铝、锌、镁等。

金属材料基本知识

金属材料基本知识

金属材料基本知识1、什么是变形?变形有几种形式?构件在外力作用下,发生尺寸和形状改变的现象。

变形的基本形式:有弹性变形、永久变形(塑性变形)和断裂变形三种。

构件在外力作用下发生变形,外力去除后能恢复原来形状和尺寸,材料的这一特性称为弹性。

这种在外力去除后能消失的变形称为弹性变形。

若外力去除后,只能部分的恢复原状,还残留一部分不能消失的变形,材料的这一特性称为塑性。

外力去除后不能消失而永远残留的变形,称为塑性变形或残余变形,也称永久变形。

工程上,一般要求构件在正常工作时,只能发生少量弹性变形,而不能出现永久变形。

但对材料进行某种加工(如弯曲、压延、锻打)时,则希望它产生永久变形。

3、什么是强度?什么是刚度?什么是韧性?材料或构件承受外力时,抵抗塑性变形或破坏的能力称强度。

钢材在较大外力作用下可能不被破坏,木材在较小外力作用下而可能会断裂,我们说钢材的强度比木材高。

材料或构件承受外力时抵抗变形的能力称为刚度。

刚度不仅与材料种类有关,还与构件的结构形式、尺寸等有关。

比如管式空气预热器管箱与钢管省煤器组件相比,前者抗变形能力要比后者好,我们称前者的刚度强(好),后者的刚度弱(差)。

刚度好的构件,在外力作用下的稳定性也好。

材料抵抗冲击载荷的能力称为韧性或冲击韧性,即材料承受冲击载荷时迅速产生塑性变形的性能。

锅炉承压部件所使用的材料应具有较好的韧性。

4、什么是塑性材料?什么是脆性材料?在外力作用下,虽然产生较显著变形而不被破坏的材料,称为塑性材料。

在外力作用下,发生微小变形即被破坏的材料,称为脆性材料。

材料的塑性和韧性的重要性并不亚于强度。

塑性和韧性差的材料,工艺性能往往很差,难以满足各种加工及安装的要求,运行中还可能发生突然的脆性破坏。

这种破坏往往滑事故前兆,其危险性也就更大。

脆性材料抵抗冲击载荷的能力更差。

5、什么是应力、应变和弹性模量?材料或构件在单位截面上所承受的垂直作用力称为应力。

外力为拉力时,所产生的应力为拉应力;外力为压缩力时,产生的应力为压应力。

(完整版)金属材料学知识整理(经典版)

(完整版)金属材料学知识整理(经典版)

第一章 合金化原理主要内容 :碳钢中的常存杂质 碳钢的分类 碳钢的用途1.2 钢的合金化原理:① Me 在钢中的存在形式 ②Me 与铁和碳的相互作用 ③Me 对Fe-Fe3C 相图的影响 ④Me 对钢的热处理的影响 ⑤Me 对钢的性能的影响1.3合金钢的分类概念:⑴合金元素 :特别添加 到钢中为了保证获得所要求的组织结构、 物理、化学和机 械性能的化学元素。

⑵杂质:冶炼时 由原材料以及冶炼方法、工艺操作而 带入 的化学元素。

⑶碳钢: 含碳量在 0.0218-2.11% 范围内的铁碳合金。

⑷合金钢:在碳钢基础上加入一定量合金元素的钢。

① 低合金钢: 一般指合金元素总含量小于或等于 5%的钢。

② 中合金钢: 一般指合金元素总含量在 5~10%范围内的钢。

③ 高合金钢: 一般指合金元素总含量超过 10%的钢。

④ 微合金钢: 合金元素(如 V,Nb,Ti,Zr,B ) 含量小于或等于 0.1%,而能显著影响 组织和性能的钢。

1.1 碳钢概论1. 锰( Mn )和硅( Si )⑴Mn :W Mn %<0.8 % ①固溶强化 ②形成高熔点 MnS 夹杂物(塑性夹杂物),减 少钢的热脆 (高温晶界熔化,脆性↑) ;⑵Si :W Si %<0.5% ①固溶强化 ②形成 SiO2 脆性夹杂物;⑶Mn 和 Si 是有益杂质 ,但夹杂物 MnS 、SiO2将使钢的疲劳强度和塑、韧性下降 。

2. 硫(S )和磷( P )⑴S :在固态铁中的 溶解度极小 , S 和 Fe 能形成 FeS ,并易于形成 低熔点共晶 。

发生热脆 ( 裂) 。

⑵P :可固溶于α -铁,但剧烈地降低钢的韧性,特别是 低温韧性 ,称为冷脆。

磷 可以提高钢在大气中的抗腐蚀性能 。

⑶S 和 P 是有害杂质 ,但可以 改善钢的切削加工性能 。

3.氮( N )、氢( H )、氧( O )⑴N :在α -铁中可溶解, 含过饱和 N 的钢析出氮化物—机械时效或 应变时效(经 变形,沉淀强化,强度↑,塑性韧性↓,使其力学性能改变) 。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《金属材料基础知识》第一部分金属材料及热处理基本知识材料性能:通常所指的金属材料性能包括两个方面:1,使用性能即为了保证机械零件、设备、结构件等能够正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等)。

使用性能决定了材料的应用范围,使用安全可靠性和寿命。

2,工艺性能即材料被制造成为零件、设备、结构件的过程中适应的各种冷、热加工的性能,如铸造、焊接、热处理、压力加工、切削加工等方面的性能。

工艺性能对制造成本、生产效率、产品质量有重要影响。

二,材料力学基本知识金属材料在加工和使用过程中都要承受不同形式外力的作用,当达到或超过某一限度时,材料就会发生变形以至于断裂。

材料在外力作用下所表现的一些性能称为材料的力学性能。

承压类特种设备材料的力学性能指标主要有强度、硬度、塑性、韧性等。

这些指标可以通过力学性能试验测定。

1,强度金属的强度是指金属抵抗永久变形和断裂的能力。

材料强度指标可以通过拉伸试验测出。

抗拉强度(7 b和屈服强度(7 s是评价材料强度性能的两个主要指标。

一般金属材料构件都是在弹性状态下工作的。

是不允许发生塑性变形,所以机械设计中一般采用屈服强度7 s 作为强度指标,并加安全系数。

2,塑性材料在载荷作用下断裂前发生不可逆永久变形的能力。

评定材料塑性的指标通常用伸长率和断面收缩率。

伸长率S =[ (L1 —L0) 0]100% L0 试件原来的长度L1试件拉断后的长度断面收缩率© =[ (A1—A0) 0]100%A0试件原来的截面积A1试件拉断后颈缩处的截面积断面收缩率不受试件标距长度的影响,因此能够更可靠的反映材料的塑性。

对必须承受强烈变形的材料,塑性优良的材料冷压成型的性能好。

3,硬度金属的硬度是材料抵抗局部塑性变形或表面损伤的能力。

硬度与强度有一定的关系,一般情况下,硬度较高的材料其强度也较高,所以可以通过测试硬度来估算材料强度。

另外,硬度较高的材料耐磨性也较好。

工程中常用的硬度测试方法有以下四种( 1) 布氏硬度 ( 2)洛氏硬度( 3)维氏硬度( 4 ) 里氏硬度4,冲击韧性指材料在外加冲击载荷作用下断裂时消耗的能量大小的特性。

材料的冲击韧性通常是在摆锤式冲击试验机是测定的,摆锤冲断试样所作的功称为冲击吸收功。

以表示,为断口处的截面积,则冲击韧性。

在承压类特种设备材料的冲击试验中应用较多。

三金属学与热处理的基本知识1,金属的晶体结构物质是由原子构成的。

根据原子在物质内部的排列方式不同,可将物质分为晶体和非晶体两大类。

凡内部原子呈现规则排列的物质称为晶体,凡内部原子呈现不规则排列的物质称为非晶体,所有固态金属都是晶体。

晶体内部原子的排列方式称为晶体结构。

常见的晶体结构有:(1)体心立方晶格,如金属a -铁、3 —铁、B、、V等。

(2)面心立方晶格,如金属a -铁、、、等。

(3)密排六方晶格,如金属、、丫等。

实际使用的金属是由许多晶粒组成的,叫做多晶体。

每一晶粒相当于一个单晶体,晶粒内的原子排列是相同的,但不同晶粒的原子排列的位向是不同的,晶粒之间的界面称为晶界。

晶界容易产生缺陷。

高温的液态金属冷却转变为固态金属的过程是一个结晶过程态,即原子由不规则状态 (液态) 过渡到规则状态(固态) 的过程。

2,铁碳合金的基本组织通常把钢和铸铁统称为铁碳合金,因为钢和铸铁的成分虽然复杂,但是基本上是铁和碳两种元素组成的。

一般把含碳0.022% 的称为钢,含碳量大于2%的称为铸铁。

碳含量对钢铁的性质有决定性的影响。

碳含量低,其性质是“强而韧”,碳含量高,其性质是“弱而脆”,铁碳合金—的金相结构有以下几种:( 1)铁素体,( 2)奥氏体,( 3)渗碳体承压类特种设备常用的碳素钢含碳量一般低于0.25%。

1,热处理的一般过程热处理是将固态金属及合金按预定要求进行加热,保温和冷却,以改变其内部组织,从而获得所要求性能的一种工艺过程。

在实际生产中,热处理过程是比较复杂的,但是其基本工艺过程是由加热,保温和冷却三个阶段构成的,温度和时间是影响热处理的主要因素,任何热处理过程都可以用温度时间曲线来说明。

2,承压类特种设备常用热处理工艺根据钢在加热和冷却时的组织和性能变化规律,热处理工艺分为退火、正火、淬火、回火、化学热处理等。

1) 退火将钢件加热到适当温度,保温一定时间后缓慢冷却,以获得接近平衡状态组织的热处理工艺。

根据钢的成分和目的的不同,退火又分为完全退火、不完全退火、消除应力退火等,承压类特种设备的消除应力退火处理主要指焊后热处理(),也有在焊接过程中间和冷变形加工后进行消除应力处理的,其目的主要是消除焊接过程中产生的内应力及冷作硬化。

(2)正火将钢件加热到3或以上30—50 C,保温一定时间后在空气中冷却的热处理工艺。

正火的目的和退火基本相同,主要是细化晶粒,均匀组织,降低内应力,正火和退火的不同之处在于前者的冷却速度较快,过冷度较大,钢正火后的强度、硬度、韧性都比退火高。

3) 淬火将钢件加热到临界温度以上,经过适当保温后快冷,使奥氏体转变为马氏体的过程。

材料通过淬火获得马氏体组织,可以提高其强度、硬度,这对于轴承、模具等工件是有用的,但是马氏体硬而脆,韧性差,内应力很大,容易产生裂纹,所以承压类特种设备材料和焊缝的组织一般不希望出现马氏体。

(4)回火将经过淬火的钢件加热到 1 以下的适当温度,保温一定时间后,然后用符合要求的方法冷却(通常是空冷),以获得所需组织和性能的热处理工艺。

回火的目的是降低材料的内应力,提高韧性。

通过调整回火温度,可获得不同的强度、硬度、韧性,以满足所要求的力学性能。

按回火温度的不同可将回火分为低温、中温、高温回火三种。

四,承压类特种设备常用材料承压类特种设备都是在承压状态下运行,材料要承受较大的工作应力,有些还要同时承受高温和腐蚀介质的作用,工作条件恶劣,如果在使用过程中发生破坏性事故,将会造成严重损失,因此,对承压类特种设备的材料有一定的要求。

承压类特种设备常用材料很多,下面简单介绍1,钢的分类和命名方法国家标准3304—91《钢分类》中规定,钢的分类分为“按化学成份分类”和“按主要质量等级和主要性能及使用特性分类”。

按化学成份分类,钢可分为非合金钢,低合金钢,合金钢三大类。

A ,碳钢的分类和命名:按含碳量分为:(1)低碳钢,C< 0.25%(2)中碳钢,0.250.6%(3)高碳钢,C> 0.6%按质量分为:(1)普通碳素钢,S< 0.050%, P< 0.045%(2)优质碳素钢,S< 0.040%, P< 0.040%(3)高级优质碳素钢,S<0.030%, P< 0.035%B ,合金钢的分类和命名:为了改善钢的性能, 在钢中特意加入了除铁和碳以外的其它元素。

这类钢称为合金钢。

按合金元素的加入量分为:( 1 )低合金钢,合金总量不超过5%;( 2)中合金钢,合金总量510%;( 3)高合金钢,合金总量超过10%;2,承压类特种设备常用碳素钢牌号锅炉和压力容器常用的碳素钢牌号有Q235、Q235A、Q235B、Q235C 20g、20R等,压力管道常用的碳素钢牌号有10#、20#钢等,它们都是低碳钢,一般以热轧或正火状态供货,正常的金相组织为铁素体珠光体P。

碳是碳素钢中的主要合金元素,含碳量增加,钢的强度增加,但塑性、韧性降低,焊接性能变差,淬硬倾向变大,因此制作焊接结构的锅炉和压力容器所使用的碳素钢。

含弹量一般不超过0.25%。

3,承压类特种设备常用合金钢牌号锅炉用低合金钢牌号有16、15 、18等压力容器用低合金钢牌号有16、15、18、07 等压力管道用低合金钢牌号有09 、16、12、121 等,除此之外,锅炉和压力容器因为用途不同,还用到其它特殊材料,如低温容器要用低温用钢,高压锅炉用低合金钢耐热钢等等。

4 ,奥氏体不锈钢奥氏体不锈钢的种类有以为主加元素的铁素体不锈钢(013,117 等)和马氏体不锈钢(113,213等),以、为主加元素的奥氏体不锈钢(0189,001810 等),其中奥氏体不锈钢在压力容器中得道广泛应用。

奥氏体不锈钢的机械性能较好,屈服点低,塑性、韧性好,可做低温用钢和耐热钢,其常用牌号是1189,它具有良好的化学稳定性。

在氧化性和某些还原性介质中耐腐蚀性很高,但是在敏化状态,存在晶阶腐蚀性,并且在高温氯化物溶液中容易发生应力腐蚀开裂。

第二部分焊接基本知识焊接在承压类特种设备制造中占有重要的地位,例如,在压力容器制造中,焊接工作量占全部工作量的30%。

焊接质量对承压类特种设备产品质量和使用安全可靠性有直接影响,许多承压类特种设备事故都源于焊接缺陷。

因此,对承压类特种设备无损检测人员来说,掌握焊接知识是非常必要的。

一,承压类特种设备常用的焊接方法1,手工电弧焊(1)特点:利用焊条与焊件之间的电弧热,将焊条及部分焊件熔化而形成焊缝的焊接方法。

手工电弧焊设备简单,便于操作,适用与于室内外各种位置的焊接,可以焊接碳钢、低合金钢、耐热钢、不锈钢等各种材料,在承压类特种设备制造中广泛应用。

其缺点是生产效率低,劳动强度大,对焊工的技术水平及操作要求较高。

(2)焊接设备:常用的手工电弧焊设备有交流电焊机,旋转式直流电焊机和硅整流式直流电焊机三种。

(3)手工电弧焊焊条:涂有药皮的供手工电弧焊的熔化电极称为焊条。

它由焊芯和药皮两部分组成。

焊条中被药皮包覆的金属芯称为焊芯,在电弧作用下熔化后,作为填充金属与熔化的母材混合形成焊缝。

涂敷在焊芯表面的有效成分称为药皮,其作用是:稳弧、保护、冶金、改善焊接工艺性能。

(4)焊条的种类:一般按焊条药皮熔化后所形成熔渣的酸碱性不同分为碱性焊条和酸性焊条两种。

也有按用途分类的,如碳钢焊条、低合金钢焊条、不锈钢焊条、铜及铜合金焊条等。

(5)手工电弧焊的焊接位置:手工电弧焊可以在不同的位置进行操作。

熔焊时,焊接接头所处的空间位置称为焊接位置,3375—94《焊接术语》中用倾角和转角两个参数来划分不同的焊接位置。

对接焊缝和角焊缝有平焊、立焊、横焊、仰焊是四种基本位置。

管子环焊缝也有四种基本位置:水平转动、垂直固定、水平固定、45 •位置。

2,埋弧自动焊(1)特点:焊接过程中,主要的焊接操作如引燃及熄灭电弧、送进焊条、移动焊条或工件等都由机械自动完成叫自动电弧焊。

在自动电弧焊中,电弧被埋在焊剂层下面燃烧并实现焊接的叫埋弧自动焊。

(2)优点:a,采用大的焊接电流,电弧热量集中,熔深大,焊丝可连续送进而不需要频凡更换,因此生产效率高。

b ,焊接规范参数稳定,焊缝成分均匀,外观光滑美观,焊接质量好。

C,操作时看不到弧光,又是机械自动,所以劳动条件好。

(3)局限性:设备比较复杂昂贵:由于电弧不可见, 所以对接头加工和装配要求严格:焊接位置受到一定限制,一般总是在平焊位置。

相关文档
最新文档