MT 2013-3标配价格
TG、PRO、MT新机培训
TG500/TG1000/Pro500/MT500
2013-8-26
1
Pro500 后盖板结构图
1.电脑通讯接口 4.市电220VAC输入 6. 突波保护输出
2.RJ45/RJ11接口 3.断路器 5.突波保护+UPS电池后备输出
MT500 前面、后盖板结构图
1.开关按钮 2.电源指示灯(绿) 3.警报指示灯(红) 4.电池后备输出 5.RJ45/RJ11网络线接口 6.稳压与突波保护输出 7.RS232通信接口 8.市电220VAC输入线 9.过流断路器
整机架构图(TG500)
整机架构图(MT系列)
开机电路(TG500Ⅱ开机及工作电源电路)
市电触发Q08导通电路
市电电路(市电传输电路)
自动稳压原理
自动稳压原理(市电正常)
自动稳压原理(升压)
自动稳压原理(降压)
市电电路(市电侦测电路)
负载侦测电路(TG1000/Pro500/MT500)
直流升压电路
MT500升压管波形
CH1为升压管G-S波形 CH2为升压管D-S波形
BUS电压波形 (TG500Ⅰ/TG1000)
BUS电压波形 (TG500Ⅱ/P500/MT500)
全桥逆变电路
TG1000逆变管波形
CH1为Q07.Q08.Q34.Q36 G-S波形 CH2为Q07.Q08.Q34.Q36 D-S波形
CH1为Q09.Q10.Q35.Q37 G-S波形 CH2为Q07.Q08.Q34.Q36 D-S波形
充电电路
Pro500电池、市电工作状态MOSFETБайду номын сангаасQ03)波形
CH1为Q03 G-S波形CH2 为Q03 D-S波形
HEIDENHAIN-METRO MT12 MT25系列产品说明说明书
1068623-20 · 7/2013 · PDF
This Product Information supersedes all previous editions, which thereby become invalid. The basis for ordering from HEIDENHAIN is always the Product Information valid when the contract is made.
I0–
shield
shield
Brown
White
–
White/
Green
Yellow
Blue
Red
Gray
Pink
Brown
UP = Power supply Vacant pins or wires must not be used!
Shield on housing Color assignment applies only to extension cable.
With retracting plunger 4.4 N to 1.4 N 3.8 N to 1.4 N 3.95 N to 1.05 N
0.2 N
Any 100 m/s2 (EN 60 068-2-6) 1000 m/s2 (EN 60 068-2-27)
IP 64
10 °C to 50 °C; reference temperature 20 °C –30 °C to 70 °C
0.2 N
From the integral spring
From application of com-
0.6 N to 0.85 N
2013款经典福克斯两厢 1.8L 手动百万纪念款 参数配置
2013款经典福克斯两厢 1.8L 手动百万纪念款 参数配置基本参数:厂商指导价:品牌:级别:发动机:动力类型:变速箱:长×宽×高(mm):车身结构:上市年份:最高车速(km/h):0-100加速时间(s):工信部油耗(L/100km):官方综合油耗(L/100km):保修政策:车身参数:车长(mm):车宽(mm):车高(mm):轴距(mm):车重(kg):最小离地间隙(mm):车身结构:车门数:座位数:油箱容积(L):行李箱容积(L):行李箱最大容积(L):发动机:排量(L):进气形式:气缸排列形式:汽缸数:最大功率(kW/rpm):最大扭矩(Nm/rpm):燃料:燃油标号:供油方式:环保标准:挡位个数:变速箱类型:变速箱名称:底盘转向:驱动方式:车体结构:助力类型:前悬架类型:后悬架类型:车轮制动:前制动器类型:后制动器类型:驻车制动类型:前轮胎规格:后轮胎规格:备胎:安全配置:驾驶座安全气囊:副驾驶安全气囊:前排头部气囊(气帘):后排头部气囊(气帘):前排侧气囊:后排侧气囊:膝部气囊:ISO FIX儿童座椅接口:LATCH儿童座椅接口:胎压监测装置:零胎压继续行驶:安全带未系提示:防盗报警器:发动机防盗锁止:车内中控锁:遥控钥匙:夜视系统:操控配置:ABS防抱死:制动力分配(EBD/CBC等):刹车辅助(EBA/BAS/BA等):牵引力控制(ASR/TCS等):车身稳定控制(ESP/DSC等):自动驻车:并线辅助:车道偏离预警系统:可变悬架:可变转向比:外部配置:天窗:全景天窗:天窗最大开启程度:运动版包围:铝合金轮毂:电动吸合门:内部配置:真皮方向盘:方向盘上下调节:方向盘前后调节:多功能方向盘:方向盘电动调节:方向盘记忆:换挡拨片:泊车辅助:倒车视频影像:全景摄像头:自动泊车入位:定速巡航:自适应巡航:无钥匙启动系统:行车电脑显示屏:HUD抬头数字显示:座椅配置:真皮/仿皮座椅:座椅高低调节:驾驶座电动调节:副驾驶座电动调节:后排座椅电动调节:腰部支撑调节:座椅记忆:前排座椅加热:后排座椅加热:座椅通风:座椅按摩:后排座椅整体放倒:后排座椅按比例放倒:第三排座椅:前座中央扶手:后座中央扶手:后排杯架:电动后备厢:多媒体配置:GPS导航系统:蓝牙/车载电话:中控台彩色大屏:后排液晶屏:语音控制系统:定位互动服务:内置硬盘:车载电视:外接音源接口(AUX/USB等):CD支持MP3:单碟CD:虚拟多碟CD:多碟CD:单碟DVD:多碟DVD:2-3喇叭扬声器系统:4-5喇叭扬声器系统:6-7喇叭扬声器系统:8喇叭以上扬声器系统:灯光配置:氙气大灯:LED大灯:激光大灯:前雾灯:后雾灯:日间行车灯:大灯高度可调:自动头灯:弯道辅助照明灯:随动转向大灯:大灯清洗装置:车内氛围灯:玻璃/后视镜:前电动车窗:后电动车窗:车窗防夹手功能:防紫外线/隔热玻璃:电动后视镜:后视镜加热:后视镜电动折叠:后视镜自动防眩目:后视镜记忆:后排侧遮阳帘:后风挡遮阳帘:遮阳板化妆镜:雨量感应雨刷:空调/冰箱:手动空调:自动空调:后排出风口:温度分区控制:空气净化/花粉过滤:车载冰箱:其他:2013款经典福克斯两厢 1.8L 手动百万纪念款10.53万长安福特紧凑型车91kW(1.8L自然吸气)汽油机5挡MT4342×1840×15005门 5座 两厢轿车2013195-7.2-3年或10万公里2013款经典福克斯两厢 1.8L 手动百万纪念款43421840150026401321-两厢轿车555538512452013款经典福克斯两厢 1.8L 手动百万纪念款1.8自然吸气直列(L型)491/6000161/4000汽油93号(京92号)多点电喷国IV2013款经典福克斯两厢 1.8L 手动百万纪念款5MT手动变速箱2013款经典福克斯两厢 1.8L 手动百万纪念款前置前驱承载式电子液压助力麦弗逊式独立悬架多连杆式独立悬架2013款经典福克斯两厢 1.8L 手动百万纪念款通风盘式盘式手刹195/65 R15195/65 R15非全尺寸2013款经典福克斯两厢 1.8L 手动百万纪念款●●-----●---●-●●●-2013款经典福克斯两厢 1.8L 手动百万纪念款●●--------2013款经典福克斯两厢 1.8L 手动百万纪念款●-完全开启○●-2013款经典福克斯两厢 1.8L 手动百万纪念款-●●----●------●-2013款经典福克斯两厢 1.8L 手动百万纪念款-----------●-●---2013款经典福克斯两厢 1.8L 手动百万纪念款--------●●●-----●--2013款经典福克斯两厢 1.8L 手动百万纪念款---●●-------2013款经典福克斯两厢 1.8L 手动百万纪念款●●●-●--------2013款经典福克斯两厢 1.8L 手动百万纪念款●-----2013款经典福克斯两厢 1.8L 手动百万纪念款。
《我叫MT Oline》平民新手攻略:走好你的MT之路
《我叫MT Oline》平民新手攻略:走好你的MT之路2013-01-21 15:53:59 作者:156098379 来源: 网易游戏频道有1人参与手机看新闻本人从一测开始玩《我叫MT Oline》,然后经历了二测,最后公测,看着这个游戏一步步走过来,下面给各位新人写下个人的一些心得,希望能帮到大家。
首先,关于《我叫MT Oline》初始卡牌的选择方面,个人觉得可以优先选择的有萨满,劣人。
MT其次,盗贼和小得没必要选。
下面我来讲讲理由,后期BOSS后面的小怪伤害很高,要有群攻高伤害1-2轮秒掉小怪才能打的过去,而且后期BOSS的MISS真的很牛B,所以建议大家选择有群攻的主角,萨满,劣人都可以秒后排,而且萨满的队长技能是增加暴击概率,劣人的是增加命中,都很不错。
优先考虑,这样能很方便的推进进度。
如果喜欢MT的朋友一定要选MT那也可以,MT表现比较中庸,初期是个合格的坦克,金边后血量也高,也有抗性加成。
美中不足的就是伤害太低了。
至于盗贼由于是单体攻击的,拖慢节奏,攻击也不是很突出,而且1测时候的变态闪避属性也被削弱了,所以不建议。
小得坑爹啊,加血也少,抗也抗不住,关键复活这个技能没用,可能后期会修复这个BUG,但是没修复之前至少不考虑。
接下来就是发展了,下面分别从花点钱和一分不花钱来讲下。
如果你不是纯屌丝,也不是高富帅,但是还是花的起钱的,那么建议你充值个100元。
这100元能够保证你有个很好的起步,因为100元能送你额外的3个主角卡牌,分别是30元时候送绿色牧师,50元时候送绿色方砖,100元时候送蓝色大小姐。
这3个都是神器角色啊,在好长一段时间内都不用换这3个角色了,除非你有紫卡。
我这3个角色一直陪伴我打到通灵学院目前还在用。
这样的话,你就有2个奶,1个是牧师,1个是大小姐,同时大小姐血量也很厚是个不错的防骑,方砖DPS也很厉害,再加上猎人或者SM,DPS和治疗,T都有了,如果舍得可以高级抽奖一次玩玩看,解解手痒,抽个蓝卡也好,这样自己就5张卡了。
比亚迪汽车全部车型、
双离合 双离合
6.99 万 7.39 万
6.29 万-6.99 万 6.89 万-7.39 万
长
4846mm
1822mm 1465mm 2740mm
比亚迪F6
宽 高 轴距
2011 款 比亚迪 F6 黄金版 1.8L MT 豪华型 2011 款 比亚迪 F6 黄金版 1.8L MT 尊享型 2010 款 比亚迪 F6 黄金版 1.8L MT 豪华型停产
手动 手动 手动
8.98 万 9.98 万 8.98 万
7.96 万-8.98 万 9.59 万-9.98 万 8.86 万-9.00 万
长 宽
4860mm 1825mm 1463mm 2745mm
比亚迪G6
高 轴距
2013 款 比亚迪 G6 1.5TI 手动 豪华型 2013 款 比亚迪 G6 1.5TI 手动 尊贵型 2013 款 比亚迪 G6 1.5TID 双离合 尊贵型 2013 款 比亚迪 G6 1.5TID 双离合 尊荣型
比亚迪e6先行者
电动
比亚迪S8
比亚迪S6
长 4810mm
宽
1855mm
高
1680mm
轴距
2013款 比亚迪S6 2.0L 手动 豪华型 白金版 手动 8.99万 8.30万-8.99万 询价>
2720mm
比亚迪M6
2013款 比亚迪
9.99万0.60
比亚迪 思锐
商家报价:10.29万-15.11万 长 宽 高 轴距 4870mm 1830mm 1460mm 2755mm
手动 手动 双离合 双离合
9.38 万 9.98 万 10.88 万 11.58 万
8.68 万-9.38 万 9.28 万-9.98 万 10.08 万-10.88 万 10.88 万-11.80 万
比亚迪S6配置参数
1620 SUV 5 5 72 465 比亚迪S6 2013款 2.0MT尊 贵型 2 自然吸气 直列 4 4
1620 SUV 5 5 72 465 比亚迪S6 2013款 2.0MT尊享型 2 自然吸气 直列 4 4
发动机压缩比: 气门结构: 最大马力(ps): 功率 (Kw(ps)/rpm): 最大扭矩(N· m/rpm): 发动机特有技 术: 燃油类型: 燃油标号: 混合动力: 供油方式: 缸体材料: 缸盖材料: 环保标准: 变速箱 名称: 档位个数: 变速箱类型: 底盘转向 驱动方式: 前悬挂形式: 多点电喷 铝 铝 国Ⅳ 比亚迪S6 2013款 2.0MT豪华型 5档手动变速箱(MT) 5档 手动变速箱(MT) 比亚迪S6 2013款 2.0MT豪华型 前置前驱 多点电喷 铝 铝 国Ⅳ 比亚迪S6 2013款 2.0MT精英型 5档手动变速箱(MT) 5档 手动变速箱(MT) 比亚迪S6 2013款 2.0MT精英型 前置前驱 多点电喷 铝 铝 国Ⅳ 比亚迪S6 2013款 2.0MT尊 贵型 5档手动变速箱(MT) 5档 手动变速箱(MT) 比亚迪S6 2013款 2.0MT尊 贵型 前置前驱 多点电喷 铝 铝 国Ⅳ 比亚迪S6 2013款 2.0MT尊享型 5档手动变速箱(MT) 5档 手动变速箱(MT) 比亚迪S6 2013款 2.0MT尊享型 前置前驱 DOHC 140 103/6000 186/4000-4500 BIVT可变进气系统 汽油 93 DOHC 140 103/6000 186/4000-4500 BIVT可变进气系统 汽油 93 DOHC 140 103/6000 186/4000-4500 BIVT可变进气系统 汽油 93 DOHC 140 103/6000 186/4000-4500 BIVT可变进气系统 汽油 93
【国家自然科学基金】_金属硫蛋白(mt)_基金支持热词逐年推荐_【万方软件创新助手】_20140730
2011年 科研热词 金属硫蛋白 镉 基因克隆 饮水型地方性砷中毒 长江华溪蟹 金属硫蛋白mrna表达 转基因 表达载体pqe31 表达模式 蚯蚓 荧光定量rt-pcr 聚球藻7002 组织表达 红富士苹果 生物信息 泌乳量 斑节对虾 抗氧化 异养 序列分析 小鼠金属硫蛋白-i 奶牛 基因重组 原核表达 单核苷酸多态性 分子标志物 内分泌 克隆 光合自养 低分子量壳聚糖 产能性能 乳脂率 中国荷斯坦奶牛 中华补血草 mdfjmt2 推荐指数 8 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
推荐指数 7 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2013年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
2010年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
科研热词 金属硫蛋白 基因表达 抗氧化 功能 食管肿瘤 镉 铜锈环棱螺 铜 铅 逆转录聚合酶链反应 超氧化物歧化酶 谷氨酰胺 蛋白活性 脏器纤维化 肿瘤侵润 肿瘤 肝脏毒性 肝胰脏 联合作用 络合态铜 砷 生物积累 生物毒性 生物可利用性 热休克蛋白 烧伤 淋巴转移 淋巴细胞 氧化胁迫 氧化应激 梨形环棱螺 析因分析 心肌 家蝇 奶牛 大型水蚤 基质金属蛋白酶 基因敲除小鼠 基因克隆 原核表达 利福平 信使 rna gsh-px dna损伤 cu2+ cat
MT-3手柄说明书最新翻译
套环
旋转支架安装于顶孔 “推为加速”必须要可
以自由旋转. 旋转支架
旋转支架 t
推进去旋转 观察变化. 套环 旋转支架安装于顶孔 “拉为加速”必须要可 以自由旋转.
推加油门结构图
图 4.
注意
油 位门 置 油门软轴连接 端
油门软 轴
最小的压力 怠速螺丝
注: 这幅图不能代表特殊引擎。
连接油门
Page 6 of 12
SeaStar Solutions Installation Instructions and Owner’s Manual
Telephone: 610-495-7011
油门臂
油门臂
连杆组件
1/4-28 x 1.00 平头螺丝
衬套
连杆组件
推进去旋转 观察变化. 1/4-28 x 1.00
安装需要的工具::
胶带 螺丝刀 3/8” & 7/16” 活动扳手
电锯
电钻 3/8” & 7/32” 钻孔钻头
软轴的安装和连接必须按照制造商的安装说明指示。 To 以确保最佳的性能,遥控的所有的连接可以自由活动是很重要 的。按照制造商推荐的流程进行调整和润滑。 所有的规格和特性如有更改,恕不另行通知。
第二步. 根据实际要求的行程,重新定位齿轮箱臂。确保连接机 构正确之后收紧螺丝。参考图 2
第三步 收紧六角螺母,用 75-80 英寸磅的力道。.
相反的软轴动作,齿轮箱臂和空挡安全开关必须镜面安装像图示的 那样.
发动机应用指南
APPLICATION GUIDE
齿轮箱软轴
油门线软轴
齿轮箱软轴附件
拉软轴,前进
图 6.
注意
拉加油门结构图
捷安特与美利达山地车选购指南
山地车选购山地车,顾名思义,山地车,被设计用来跑山地的单车,这是设计初衷,不过相信大家也不能成天在山路上跑,所以在非山地路面玩车的话就没有讨论的必要了。
所谓入门山地车,就是让新手认识山地车的构造及基本原理和掌握部分维修技术的车,基本上只要玩下去,这车肯定是要换掉的,因为随着自己的提升,对车车的要求越来越高,况且入门级的山地车的强度几乎不能保证长时间的激烈运动。
这类车也没什么性价比可言。
新手挑选山地车的时候会问“xxx的山地车好还是xxx的山地车好呢?”这样的问题数不胜数,那我要问你,你需要一辆什么样的山地车呢?什么是“好”?实话告诉你吧,入门级别的山地车几乎都一个样,与其纠结配置型号啥的不如多骑一下找个正确的姿势为以后做准备(如果有以后)。
车架的选择:165cm以下的使用16寸以及15.5寸车架165~175cm,giant车架用S号,其他用17寸的车架175~185cm,18寸185~195cm,19寸195以上的可以自己取试试20寸或者21寸的,以上仅供参考,因人而异。
品牌的选择山地车品牌众多,即使玩车已几年,目前仍有一些小众品牌不认识。
为避免新手选购到一些山寨品牌,在此我简单介绍下比较大牌的品牌(品牌只介绍国内规模较大、认可度较高的,其他例如SANITCRUZ(外号:三条裤子)、GT(美国自行车生产厂家神话)、SPECIALI ZED(闪电)、CANNONDALE(佳能戴尔)、BIANCHI(比安奇)等,虽然是大牌,但是并不普及,而且在国内不容易买到,在此就不做介绍了)。
No.1 TREK美国崔克,全球最大的自行车品牌,其产品价格从3000-500000不等,但是崔克在中国目前还只是一个奢侈品的概念,因为经营策略、关税等等的原因,崔克20000元以下的车配置在同价位中偏低,尤其几千元级别的山地车,价值主要集中在其车架上,其他配件不敢恭维。
No.2 GIANT台湾捷安特,中国最大的自行车品牌,捷安特的车型涵盖城市休闲车、山地车、旅行车、折叠车、公路车,产品线非常广,可供选择的车型非常多,其山地车从代步用的通勤车到大强度专业级别的速降车都有。
2013铁路货车段修规程-10 落成要求
10落成要求10.1综合要求10.1.1基本作业条件10.1.1.1整车落成后应在符合要求的平直线路上进行检测,落成工位设置应与转向架、钩缓装置等关键零部件检修流水线衔接顺畅。
10.1.1.2应配置以下主要工艺装备:17型车钩缓冲装置拆装设备、拉铆机、标签读出器、架车设备。
10.2 竣工时,零部件、标记须齐全,各种零部件作用性能须良好。
10.2.1车钩缓冲装置组装时各金属部件摩擦面须涂润滑脂,型号应以设计为准,并须符合以下要求:10.2.1.1除特殊设计者外,同一辆车的车钩、缓冲器型号均须一致,钩尾框型号须与车钩匹配。
原装用ST型缓冲器的铁路货车可换装MT-3型缓冲器,装用MT-3型缓冲器时须配套装用凹槽型冲击座;原装用MT-2型缓冲器的铁路货车仍须装用MT-2型缓冲器;原装用HM-1、HM-2、HN-1型缓冲器的铁路货车仍须装用HM-1、HM-2、HN-1型缓冲器。
10.2.1.2 原设计装用C级钢、E级钢车钩的铁路货车仍须装用C级钢、E级钢车钩。
取消辅修铁路货车须装用C级钢或E级钢13号(13A、13B)型车钩、钩舌、钩尾框,ST或MT-3型缓冲器。
10.2.1.3 DL1型大吨位预制梁运输专用车组按原车组组成编组。
两端为DL1型大吨位预制梁运输专用车,装用17型车钩、17型锻造钩尾框、MT-2型缓冲器。
中间车为DNX17K型平车-集装箱共用车,装用13A或13B型下作用车钩、13A或13B型E级钢钩尾框、MT-3型缓冲器。
10.2.1.4 装用非金属尼龙磨耗板时须符合以下要求:10.2.1.4.1 钩体上无金属磨耗板凹槽及金属磨耗板、有金属磨耗板凹槽并带有金属磨耗板的17型车钩,须配套装用符合图样QCH255-84-00-004的16(17)型车钩支撑座和符合图样QCH255-84-00-003的16(17)型车钩支撑座尼龙磨耗板。
10.2.1.4.2 16型车钩可配套装用符合图样QCH255-84-00-004的16(17)型车钩支撑座和符合图样QCH255-84-00-003的16(17)型车钩支撑座尼龙磨耗板。
中国重汽MT系列天然气发动机产品介绍 对外宣传
1
02:05
目录
1. 技术背景及型谱 2. 先进的设计平台 3. 先进的燃气供给及控制系统 4. 完善的整车功能 5. MT13发动机参数表
2
02:05
技术背景
在MC13发动机基础上,中国重汽联合 美国Econtrols公司联合设计开发MT13发 动机。
其本体继承了MC13发动机的优秀基因 ,匹配先进的CFV持续流燃气供给系统。 运行稳定、可靠,可以输出430马力的超 强动力。
13
完善的整车功能
02:05
完善的CAN通讯功能 准确的故障诊断功能 完善的整车辅助功能
智能的自学习功能 灵活的扭矩输出功能
支持车队管理系统、 AMT自动变速箱等
停车自检、故障存储和 实时回传
PTO、排气制动、启动保 护、车下停机与启动、 远程油门、定速巡航与 限速等
油门踏板自学习、燃气 供给的自适应功能等
单 位 MT13.36-50
mm L
mm kW(PS)
r/min Nm r/min g/kWh r/min r/min
265(360) 1800
机
型
MT13.40-50
6
126/166
124
4
154
294(400)
1900
1900
1000~1400
≤185
2150±50
550±50
国Ⅴ
氧化型后处理
MT13.43-50
316(430) 1900
16
02:05
谢谢
17
发于2004年,是代表当今世界最先进水平的发动机。 2. 可靠性历经考验:
MT13发动机历经严苛的台架及道路试验,B10寿命高达 150万公里。 3. 保养间隔里程长:
DELL金牌渠道2013-11月报价单(上海戴鑫)
产品类型机型产品型号T410T620(新品)R620(新品)R710R720XD(新品)2U四路R8204U四路R910T20T320(新品)T420(新品)R210 II R320(新品)R420(新品)R520(新品)R720(新品)R415 2U 双路1U 双路烦请保存附件《DELL专业渠(具体价格以当塔式服务器机架式
服
务
器A
M
D
服
务
器塔
式
单
路塔
式
双
路1
U
单
路1U 双路上海戴鑫信息技术有限公司 戴尔认证
联系人:阁金
电话:021-51077
手机:136816887
E-mail:gj@desh
办公地址:上海市
R415
t
i
P
l
e
x
U M
561号一号楼一楼
O
传真:021-********-7446
E-mail:gj@ QQ:2880162046
主营:DELL 服务器 存储器
戴鑫信息技术有限公司 戴尔认证服务器专家合作伙伴金
51077446(直线) 传真:021-********-7446
1688779 QQ:2880162046
@
上海市普陀区中江路938号中天新世纪大厦704-705室
附件《Dell产品》以备参考;并请转给贵公司技术部门和商务采购部门,谢谢!!!
专业渠道供应商(整机类)(具体价格以当天报价为准)
1871088-7446
储器 工作站 交换机 磁盘阵列 商用台式机 笔记本。
MT-013 评估高速DAC性能
MT-013TUTORIAL Evaluating High Speed DAC Performanceby Walt KesterINTRODUCTIONUnlike an ADC which requires an FFT processor to evaluate spectral purity, a DAC produces an analog output which can be examined directly using a traditional analog spectrum analyzer. A challenge in DAC evaluation is generating the digital input that can range from a single-tone sinewave to a complex wideband CDMA signal. Direct digital synthesis techniques can be used to generate digital sinewaves, but more sophisticated and expensive word generators are needed to produce the more complex digitial signals.The ac specifications which are the most important in evaluating high speed DACs are settling time, glitch impulse area, distortion, spurious free dynamic range (SFDR), and signal-to-noise ratio (SNR). Time domain specifications will be addressed first, followed by frequency domain specifications.DAC SETTLING TIMEThe precise settling time of a DAC may or may not be of interest depending upon the application. It is especially important in high speed DACs used in video displays because of the high pixel rates associated with high resolution monitors. The DAC must be capable of making the transition from all "0"s (black level) to all "1"s (white level) in 5% to 10% of a pixel interval, which can be quite short. For instance, even the relatively common 1024 × 768, 60-Hz refresh-rate monitor has a pixel interval of only approximately 16 ns. This implies a required settling time of less than 2 ns to at least 8-bit accuracy (for an 8-bit system).The fundamental definitions of full-scale settling time are shown in Figure 1. The definition is quite similar to that of the settling time of an op amp. Notice that settling time can be defined in two acceptable ways. The more traditional definition is the amount of time required for the output to settle with the specified error band measured with respect to the 50% point of either the data strobe to the DAC (if it has a parallel register driving the DAC switches) or the time when the input data to the switches changes (if there is no internal register). Another equally valid definition is to define the settling time with respect to the time the output leaves the initial error band. This effectively removes the "dead time" from the measurement. In video DAC applications, for instance, settling time with respect to the output is the key specification—the fixed delay (dead time) is of little interest.The error band is usually defined in terms of an LSB or % full-scale. It is customary, but not mandatory, to define the error band as 1 LSB. However, measuring full-scale settling time to 1 LSB at the 12-bit level (0.025% FS) is possible with care, but measuring it to 1 LSB at the 16-bit level (0.0015% FS) presents a real instrumentation challenge. For this reason, high-speed DACs such as the TxDAC® family specify 14- and 16-bit settling time to the 12-bit level, 0.025% FS (typically less than 11 ns).DEAD TIME RECOVERY TIME LINEAR SETTLING SLEW TIMEFigure 1: DAC Full-Scale Settling TimeMid-scale settling time is also of interest, because in a binary-weighted DAC, the transition between the 0111…1 code and the 1000…0 code produces the largest transient. In fact, if there is significant bit skew, the transient amplitude can approach full-scale. Figure 2 shows a waveform along with the two acceptable definitions of mid-scale settling time. As in the case of full-scale settling time, mid-scale settling time can either be referred to the output or to the latchFigure 2: DAC Mid-Scale Settling TimeGLITCH IMPULSE AREAIdeally, when a DAC output changes it should move from one value to its new one monotonically. In practice, the output is likely to overshoot, undershoot, or both. This uncontrolled movement of the DAC output during a transition is known as a glitch . It can arise from two mechanisms: capacitive coupling of digital transitions to the analog output, and the effects of some switches in the DAC operating more quickly than others and producing temporary spurious outputs.Capacitive coupling frequently produces roughly equal positive and negative spikes (sometimes called a doublet glitch) which more or less cancel in the longer term. The glitch produced by switch timing differences is generally unipolar, much larger, and of greater concern.Glitches can be characterized by measuring the glitch impulse area , sometimes inaccurately called glitch energy . The term glitch energy is a misnomer, since the unit for glitch impulse area is volt-seconds (or more probably µV-sec or pV-sec. The peak glitch area is the area of the largest of the positive or negative glitch areas.Glitch impulse area is easily estimated from the mid-scale settling time waveform as shown in Figure 3. The areas of the four triangles are used to calculate the net glitch area. Recall that the area of a triangle is one-half the base times the height. If the total positive area equals the total negative glitch area, then the net area is zero. The specification given on most data sheets is the net glitch area, although in some cases, the peak area may specified instead.AREA 3NET GLITCH IMPULSE AREA ≈AREA 1 + AREA 2 –AREA 3 –AREA 4AREA OF TRIANGLE =12BASE ×HEIGHTFigure 3: Glitch Impulse AreaOSCILLOSCOPE MEASUREMENT OF SETTLING TIME AND GLITCH IMPULSE AREAA wideband fast-settling oscilloscope is crucial to accurate settling time measurements. There are several considerations in selecting the proper scope. The required bandwidth can be calculated based on the rise/falltime of the DAC output, for instance, a 1-ns output risetime and falltime corresponds to a bandwidth of 0.35/t r = 350 MHz. A scope of at least 500-MHz bandwidth would be required. Preferably, the scope bandwidth should be at least three times the signal bandwidth to include the second and third harmonic components for a more accurate representation of the waveform.Modern digital storage scopes (DSOs) and digital phosphor scopes (DPOs) are popular and offer an excellent solution for performing settling time measurements as well as many other waveform analysis functions (see Reference 3). These scopes offer real-time sampling rates of several GHz and are much less sensitive to overdrive than older analog scopes or traditional sampling scopes. Overdrive is a serious consideration in measuring settling time, because the scope is generally set to maximum sensitivity when measuring a full-scale DAC output change. For instance, measuring 12-bit settling for a 1-V output (20 mA into 50 Ω) requires the resolution of a signal within a 0.25-mV error band riding on the top of a 1-V step function.From a historical perspective, older analog oscilloscopes were sensitive to overdrive and could not be used to make accurate step function settling time without adding additional circuitry. Quite a bit of work was done during the 1980s on circuits to cancel out portions of the step function using Schottky diodes, current sources, etc. References 4, 5, and 6 are good examples of various circuits which were used during that time to mitigate the oscilloscope overdrive problems.Even with modern DSOs and DPOs, overdrive should still be checked by changing the scope sensitivity by a known factor and making sure that all portions of the waveform change proportionally. Measuring the mid-scale settling time can also subject the scope to considerable overdrive if there is a large glitch. The sensitivity of the scope should be sufficient to measure the desired error band. A sensitivity of 1-mV/division allows the measurement of a 0.25-mV error band if care is taken (one major vertical division is usually divided into five smaller ones, corresponding to 0.2 mV/small division). If the DAC has an on-chip op amp, the fullscale output voltage may be larger, perhaps 10 V, and the sensitivity required in the scope is relaxed proportionally.Although there is a well-known relationship between the risetime and the settling time in a single-pole system, it is inadvisable to extrapolate DAC settling time using risetime alone. There are many higher order nonlinear effects involved in a DAC which dominate the actual settling time, especially for DACs of 12-bits or higher resolution.When making settling time measurements, is generally better to make a direct connection between the DAC output and the 50-Ω scope input and avoid the use of probes. FET probes are notorious for giving misleading settling time results. If probes must be used, compensated passive ones are preferable, but they should be used with care. Skin effect associated with even short lengths of properly terminated coaxial cable can give erroneous settling time results. In making the connection between the DAC and the scope, it is mandatory that a good low impedance ground be maintained. This can be accomplished by soldering the ground of a BNC connector to the ground plane on the DAC test board and using this BNC to connect to the scope's 50-Ω input. A manufacturer's evaluation board can be of great assistance in interfacing to the DAC and should be used if available.Finally, if the DAC output is specifically designed to drive the virtual ground of an external current-to-voltage converter and does not have enough compliance to develop a measurable voltage across a load resistor, then an external op amp is required, and the test circuit measures the settling time of the DAC/op amp combination. In this case, select an op amp that has a settling time which is at least 3 to 5 times smaller than the DAC under test. If the settling time of the op amp is comparable to that of the DAC, the settling time of the DAC can be determined, because the total settling time of the combination is the root-sum-square of the DAC settling time and the op amp settling time. Solving the equation for the DAC settling time yields:DAC Settling Time = 22)Time Settling Amp Op ()Time Settling Total (−. Eq. 1DAC DISTORTIONIf we consider the spectrum of a waveform reconstructed by a DAC from digital data, we find that in addition to the expected spectrum (which will contain one or more frequencies, depending on the nature of the reconstructed waveform), there will also be noise and distortion products.Code-dependent glitches will produce both out-of-band and in-band harmonics when the DAC is reconstructing a digitally generated sinewave as in a Direct Digital Synthesis (DDS) system. For instance, the mid-scale glitch occurs twice during a single cycle of a reconstructed sinewave (at each mid-scale crossing), and will therefore produce a second harmonic of the sinewave, as shown in Figure 4. Note that the higher order harmonics of the sinewave, which also alias back into the Nyquist bandwidth (dc to f c /2), cannot be filtered.+ FULL SCALEMIDSCALE–FULL SCALEf O= 3MHzf C= 10MSPS0 1 2 3 4 5 6 7 8 9 10f c2FREQUENCY (MHz)Figure 4: Effect of Code-Dependent Glitches on Spectral Output Although segmented DAC architectures can be used to greatly minimize the distortion caused by code-dependent glitches, the distortion can never be completely eliminated.It is difficult to predict the harmonic distortion or SFDR from the glitch area specification alone. Other factors, such as the overall linearity of the DAC, also contribute to distortion. In addition, integer ratios between the DAC sampling clock and the DAC output frequency and the cause the quantization noise to concentrate at harmonics of the fundamental thereby increasing the apparent distortion at these points.Because so many DAC applications are in communications and frequency analysis systems, practically all modern DACs are now specified in the frequency domain. The basic ac specifications include harmonic distortion, total harmonic distortion (THD), signal-to-noise ratio (SNR), total harmonic distortion plus noise (THD + N), spurious free dynamic range (SFDR), etc. In order to test a DAC for these specifications, a proper digitally-synthesized signal must be generated to drive the DAC (for example, a single or multi-tone sinewave).In the early 1970s, when ADC and DAC frequency domain performance first became important, "back-to-back" testing was popular. An ADC and its companion DAC were connected together, and the appropriate analog signal source was selected to drive the ADC. An analog spectrum analyzer was then used to measure the distortion and noise of the DAC output. This approach was logical, because ADCs and DACs were often used in conjunction with a digital signal processor placed between them to perform various functions. Obviously, it was impossible todetermine exactly how the total ac errors were divided between the ADC and the DAC. Today, however, ADCs and DACs are used quite independently of one another, so they must be completely tested on their own.Figure 5 shows a typical test setup for measuring the distortion and noise of a DAC. The first consideration, of course, is the generation of the digital signal to drive the DAC. To achieve this, modern arbitrary waveform generators (for example Tektronix AWG2021 with Option 4) or word generators (Tektronix DG2020) allow almost any waveform to be synthesized digitally in software, and are mandatory in serious frequency domain testing of DACs (see Reference 3). In most cases, these generators have standard waveforms pre-programmed, such as sinewaves and triangle waves, for example. In many communications applications, however, more complex digital waveforms are required, such as two-tone or multi-tone sinewaves, QAM, GSM, and CDMA test signals, etc. In many cases, application-specific hardware and software exists for generating these types of signals and can greatly speed up the evaluation process.* MAY BE PART OF DAC EVALUATION BOARDFigure 5: Test Setup for Measuring DAC Distortion and NoiseAnalog Devices and other manufacturers of high performance DACs furnish evaluation boards which greatly simplify interfacing to the test equipment. Because many communications DACs (such as the TxDAC®-family) have quite a bit of on-chip control logic, their evaluation boards have interfaces to PCs via the SPI, USB, parallel, or serial ports, as well as Windows®-compatible software to facilitate setting the various DAC options and modes of operation. Testing DACs which are part of a direct-digital-synthesis (DDS) system is somewhat easier because the DDS portion of the IC acts as the digital signal generator for the DAC. Testing these DACs often requires no more than the manufacturer's evaluation board, a PC, a stable clock source, and a high performance spectrum analyzer.The spectrum analyzer chosen to measure the distortion and noise performance of the DAC should have at least 10-dB more dynamic range than the DAC being tested. The "maximum intermodulation-free range" specification of the spectrum analyzer is an excellent indicator of distortion performance (see Reference 7). However, spectrum analyzer manufacturers may specify distortion performance in other ways. Modern communications DACs such as the TxDAC®-series require high performance spectrum analyzers such as the Rhode and Schwartz FSEA30 (Reference 7).As in the case of oscilloscopes, the spectrum analyzer must not be sensitive to overdrive. This can be easily verified by applying a signal corresponding to the full-scale DAC output, measuring the level of the harmonic distortion products, and then attenuating the signal by 6 dB or so and verifying that both the signal and the harmonics drop by the same amount. If the harmonics drop more than the fundamental signal drops, then the analyzer is distorting the signal.In some cases, an analyzer with less than optimum overdrive performance can still be used by placing a bandstop filter in series with the analyzer input to remove the frequency of the fundamental signal being measured. The analyzer looks only at the remaining distortion products. This technique will generally work satisfactorily, provided the attenuation of the bandstop filter is taken into account when making the distortion measurements. Obviously, a separate bandstop filter is required for each individual output frequency tested, and therefore multi-tone testing is cumbersome.Finally, there are a variety of application-specific analyzers for use in communications, video, and audio. In video, the Tektronix VM-700 and VM-5000 series are widely used (Reference 3). In measuring the performance of DACs designed for audio applications, special signal analyzers designed specifically for audio are preferred. The industry standard for audio analyzers is the Audio Precision, System Two (see Reference 8). There are, of course, many other application-specific analyzers available which may be preferred over the general-purpose types. In addition, software is usually available for generating the various digital test signals required for the applications.Once the proper analyzer is selected, measuring the various distortion and noise-related specifications such as SFDR, THD, SNR, SINAD, etc., is relatively straightforward. The analyzer resolution bandwidth must be set low enough so that the harmonic products can be resolved above the noise floor. Figure 6 shows a typical spectral output where the SFDR is measured.f c dB2NOISE FLOORFigure 6: Measuring DAC Spurious Free Dynamic Range (SFDR)Figure 7 shows how to measure the various harmonic distortion components with a spectrum analyzer. The first nine harmonics are shown. Notice that aliasing causes the 6th , 7th , 8th , 9th , and 10th harmonic to fall back inside the f c /2 Nyquist bandwidth.c 2BW = ANALYZER RESOLUTION BANDWIDTH SNR = S/(NOISE FLOOR) –10 log 10f c /2BW dBNOISE FLOORFigure 7: Measuring DAC Distortion and SNR with an Analog Spectrum AnalyzerThe harmonics of the input signal can be distinguished from other distortion products by their location in the frequency spectrum. Figure 8 shows a 7-MHz input signal sampled at 20 MSPS and the location of the first 9 harmonics. Aliased harmonics of f o fall at frequencies equal to |±Kf c ± nf o |, where n is the order of the harmonic, and K = 0, 1, 2, 3,.... The second and thirdharmonics are generally the only ones specified on a data sheet because they tend to be the largest, although some data sheets may specify the value of the worst harmonic. An interactive Harmonic Image Calculator applet is available on the Analog Devices' Design Center website which shows the locations of the second and third harmonics as a function of output frequency and DAC update rate. In addition, the tool shows the attenuation effects of the sin x/x rolloff and the output anti-imaging filter.12345678910FREQUENCY (MHz)Figure 8: Location of First 9 Harmonic Products: OutputSignal = 7 MHz, DAC Update Rate = 20 MSPSDAC NOISEThe spectrum analyzer can also be used to measure SNR if the proper correction factors are taken into account. Figure 7 shows the analyzer sweep bandwidth, BW, which in most cases will be considerably less than f c/2. First, measure the noise floor level with respect to the signal level at a point in the frequency spectrum which is relatively free of harmonics. This corresponds to the value "S/(NOISE FLOOR)" in the diagram. The actual SNR over the dc to f c/2 bandwidth is obtained by subtracting the process gain, 10log10(f c/2·BW), from the S/(NOISE FLOOR).SNR = S/(NOISE FLOOR) – 10log10(f c /2·BW). Eq. 2In order for this SNR result to be accurate, one must precisely know the analyzer bandwidth. The bandwidth characteristics of the analyzer should be given out in the manufacturer's documentation. Also, if there is any signal averaging used in the analyzer, that may affect the net correction factor.In order to verify the process gain calculation, several LSBs can be disabled—under these conditions, the SNR performance of the DAC should approach ideal. For instance, measuring the 8-bit SNR of a low distortion, low noise 12-, 14-, or 16-bit DAC should produce near theoreticalresults. The theoretical 8-bit SNR, calculated using the formula SNR = 6.02N + 1.76 dB, is 50 dB. The process gain can then be calculated using the formula:PROCESS GAIN = S/(NOISE FLOOR) – SNR. Eq. 3The accuracy of this measurement should be verified by enabling the 9th bit of the DAC and ensuring that the analyzer noise floor drops by 6 dB. If the noise floor does not drop by 6 dB, the measurement should be repeated using only the first 6 bits of the DAC. If near theoretical SNR is not achieved at the 6-bit level, the DAC under consideration is probably not suitable for ac applications where noise and distortion are important.The relationship between SINAD, SNR, and THD can be derived as follows. THD is defined as the ratio of the signal to the root-sum-square (rss) of a specified number harmonics of the fundamental signal. IEEE Std. 1241-2000 (Reference 9) suggests that the first 10 harmonics be included. Various manufacturers may choose to include fewer than 10 harmonics in the calculation. Analog Devices defines THD to be the root-sum-square of the first 6 harmonics (2nd , 3rd , 4th , 5th , and 6th ) for example. In practice, the difference in dB between THD measured with 10 versus 6 harmonics is less than a few tenths of a dB, unless there is an extreme amount of distortion. The various harmonics, V2 through V6, are measured with respect to the signal level, S, in dBc. They are then converted into a ratio, combined on an rss basis, and converted back into dB to obtain the THD.The signal-to-noise-and-distortion, SINAD, can then be calculated by combining SNR and THD as a root-sum-square:()()220/THD 220/SNR 101010log 20SINAD −−+=.Eq. 4An SNR/THD/SINAD Calculator applet is available on the Analog Devices' Design Center website to assist in these conversions.One of the most important factors in obtaining accurate distortion measurements is to ensure that the DAC output frequency, f o is not a sub-harmonic of the update rate, f c . If f c /f o is an integer, then the quantization error is not random, but is correlated with the output frequency. This causes the quantization noise energy to be concentrated at harmonics of the fundamental output frequency, thereby producing distortion which is an artifact of the sampling process rather than nonlinearity in the DAC. It should be noted that these same artifacts can occur in evaluating ADCs.To illustrate this point, Figure 9 shows simulated results for an ideal 12-bit DAC where 9A shows the output frequency spectrum for the case of f c /f o = 40. Notice that the SFDR is approximately 77 dBc. The right-hand spectral output (9B) shows the case where the f c /f o ratio is a non-integer—the quantization noise is now random, and the SFDR is 93 dBc.f c= 80.000 MSPS, f o= 2.000 MHz fc= 80.000 MSPS, f o= 2.111 MHz0510152025303540 FREQUENCY -MHz 0510152025303540 FREQUENCY -MHz0−50−100−150−200−50−100−150−200(A) CORRELATED NOISE(B) UNCORRELATED NOISESFDR = 77 dBc SFDR = 93 dBcSNR = 74 dBc SNR = 74 dBcFigure 9: Correlated (A) and Uncorrelated (B) Quantization Noise Spectrum of anIdeal 12-Bit DACBecause of the wide range of possible clock and output frequencies, Analog Devices offers special fast-turnaround measurements on TxDACs for specific customer test vectors. This important service allows system designers to do advance frequency planning to ensure optimum distortion performance for their application.In lieu of specific frequency measurements, the SFDR performance of a DAC is often plotted as a function of the output frequency at fixed clock rates. This data is usually taken for sinewave outputs of various amplitudes as shown in Figure 10 for the AD9777 16-bit TxDAC. Note that this plot does not include data points where there is strong correlation between the quantization noise and the signal (i.e., where the ratio of the clock frequency to the output frequency is an integer number).DAC OUTPUT FREQUENCY (MHz)Figure 10: AD9777 16-bit TxDAC™ SFDR, Data Update Rate = 160 MSPSThere is another useful test method that gives a good overall indicator of the DAC performance at various combinations of output and clock frequencies. Specifically, this involves testing distortion for output frequencies, f o , equal to f c /3 and f c /4. In practice, the output frequency is slightly offset by a small amount, Δf, where Δf is a non-integer fraction of f c , i.e., Δf = kf c , where k << 1. For an output frequency of f c /3 – Δf, the even-order harmonics are spaced at intervals of Δf around the fundamental f o output frequency as shown in Figure 11. The worst even-order harmonic is measured at various clock frequencies up to the maximum allowable while maintaining this same ratio. The same procedure should be repeated for an output frequency f c /4 – Δf, in which case the odd-order harmonics are uniformly spaced around the output frequency as shown in Figure 12.c 3f = fc –Δf Figure 11: Location of Even Harmonics for f o = f c /3 – Δfc 4f = f c–ΔfFigure 12: Location of Odd Harmonics for f o = f c /4 – ΔfThese measurements are relatively easy to make, since once the ratio of f o to f c is established by the DDS or digital waveform generator, it is preserved as the master clock frequency is changed. Figure 13 shows a typical plot of SFDR versus clock frequency for a low distortion DAC with two output frequencies f c /3 and f c /4. In most cases, the f c /3 distortion represents a worst case condition and is good for comparing various DACs.SFDR(dBc)CLOCK FREQUENCY (MHz) 8070605040Figure 13: Worst Harmonic vs. Clock Frequency forf o = f c /3 – Δf and f o = f c /4 – ΔfDAC OUTPUT SPECTRUM AND SIN (X)/X FREQUENCY ROLLOFFThe output of a reconstruction DAC can be represented as a series of rectangular pulses whose width is equal to the reciprocal of the clock rate as shown in Figure 14. Note that the reconstructed signal amplitude is down 3.92 dB at the Nyquist frequency, f c /2. An inverse sin(x)/x filter can be used to compensate for this effect in most cases and is usually designed as part of the anti-imaging filter. The images of the fundamental signal occur as a result of the sampling function and are also attenuated by the sin(x)/x function.0.5f cf c1.5f c2f c2.5f c3f c1fAtSAMPLED SIGNALFigure 14: DAC sin(x)/x Roll Off (Amplitude Normalized)If there is no compensation for the sin(x)/x rolloff, it must be considered when making bandwidth measurements on the DAC output. The effect of the rolloff on distortion and SNR measurements is negligible over the Nyquist bandwidth, dc to f c /2.An interactive Harmonic Image Calculator applet is available on the Analog Devices' Design Center website which shows the locations of the second and third harmonics as a function of output frequency and DAC update rate. In addition, the tool shows the attenuation effects of both the sin(x)/x rolloff and the output anti-imaging filter.REFERENCES1.Jim R. Naylor, "Testing Digital/Analog and Analog/Digital Converters," IEEE Transactions on Circuitsand Systems, Vol. CAS-25, July 1978, pp. 526-538.2.Dan Sheingold, Analog-Digital Conversion Handbook, 3rd Edition, Analog Devices and Prentice-Hall,1986, ISBN-0-13-032848-0. (the defining and classic book on data conversion).3.Tektronix, Inc.,14200 SW Karl Braun Drive, P. O. Box 500, Beaverton, OR 97077, Phone: (800) 835-9433, . (the website contains a wealth of information on oscilloscopes, measurement techniques, probing, etc., as well as complete specifications on products).4.Howard K. Schoenwetter, "High Accuracy Settling Time Measurements," IEEE Transactions onInstrumentation and Measurement, Vol. IM-32, No. 1, March 1983, pp. 22-27.5.James R. Andrews, Barry A. Bell, Norris S. Nahman, and Eugene E. Baldwin, "Reference Waveform FlatPulse Generator," IEEE Transactions on Instrumentation and Measurement, Vol. IM-32, No. 1, March 1983, pp. 27-32.6.Barry Harvey, "Take the Guesswork out of Settling-Time Measurements," EDN, September 19 1985, pp.177-189.7.Rohde & Schwarz, Inc., 8661A Robert Fulton Dr., Columbia, MD 21046-2265, Phone: (410) 910-7800,. (a premier manufacturer of spectrum analyzers, the website contains tutorials on frequency analysis as well as product specifications).8.Audio Precision, 5750 S.W. Arctic Drive, Beaverton, Oregon 97005, . (therecognized industry standard for professional audio measurement equipment).9.IEEE Std. 1241-2000, IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters,IEEE, 2001, ISBN 0-7381-2724-8.10.Walt Kester, Analog-Digital Conversion, Analog Devices, 2004, ISBN 0-916550-27-3, Chapter 2 and 5.Also available as The Data Conversion Handbook, Elsevier/Newnes, 2005, ISBN 0-7506-7841-0, Chapter2 and 5.Copyright 2009, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Tutorials.。
15款喜德盛mt3山霸配置表
15款喜德盛mt3山霸配置表
【实用版】
目录
1.喜德盛山霸 MT3 简介
2.喜德盛山霸 MT3 的配置特点
3.喜德盛山霸 MT3 适合哪些人群
4.喜德盛山霸 MT3 的优缺点
5.喜德盛飞天 750 和山霸 MT3 的区别
正文
1.喜德盛山霸 MT3 简介
喜德盛山霸 MT3 是一款适合山地骑行的自行车,其特点是结实耐用、性能优良,能够应对各种复杂的路况。
它已经成为许多山马党们的首选。
2.喜德盛山霸 MT3 的配置特点
喜德盛山霸 MT3 采用了轻量化的铝合金车架,能够减轻骑行的负担。
同时,它还配备了碟刹系统和可靠的变速器,使得骑行更加稳定和顺畅。
此外,喜德盛山霸 MT3 还拥有多种款式和颜色可供选择,满足不同消费者的个性化需求。
3.喜德盛山霸 MT3 适合哪些人群
喜德盛山霸 MT3 适合喜欢户外运动和探险的人群,特别是那些喜欢挑战山地骑行的人。
它也能够满足城市骑行的需求,为骑行者带来舒适的体验。
4.喜德盛山霸 MT3 的优缺点
喜德盛山霸 MT3 的优点有:结实耐用、性能优良、轻量化、碟刹系统、可靠的变速器等。
缺点则包括:价格较高、可能不适合长途骑行等。
5.喜德盛飞天 750 和山霸 MT3 的区别
喜德盛飞天 750 和山霸 MT3 都是喜德盛品牌的山地自行车,但它们之间还是存在一些区别的。
飞天 750 的工艺比山霸 MT3 好太多,而且更注重细节和品质。
同时,飞天 750 的价格也要比山霸 MT3 高。
2013款比亚迪s6配置表
基本参数比亚迪S6 2013款2.0MT豪华型8.99万比亚迪S6 2013款2.0MT精英型9.69万比亚迪S6 2013款2.0MT尊贵型10.79万车型名称:比亚迪S6 2013款2.0MT豪华型比亚迪S6 2013款2.0MT精英型比亚迪S6 2013款2.0MT尊贵型厂商指导价(元):8.99万9.69万10.79万厂商:比亚迪比亚迪比亚迪级别:SUV SUV SUV发动机: 2.0L 140马力 L4 2.0L 140马力 L4 2.0L 140马力 L4变速箱:5挡手动5挡手动5挡手动长×宽×高(mm):4810*1855*16804810*1855*16804810*1855*1725车身结构:5门5座SUV5门5座SUV5门5座SUV最高车速(km/h):180180180官方0-100加速(s):---实测0-100加速(s):---实测100-0制动(m):---实测油耗(L):---工信部综合油耗(L):-工信部未公布工信部未公布整车质保:四年或10万公里四年或10万公里四年或10万公里车身比亚迪S6 2013款2.0MT豪华型比亚迪S6 2013款2.0MT精英型比亚迪S6 2013款2.0MT尊贵型长度(mm):481048104810宽度(mm):185518551855高度(mm):168016801725轴距(mm):272027202720前轮距(mm):158015801580后轮距(mm):155515551555最小离地间隙(mm):190190190整备质量(Kg):162016201620车身结构:SUV SUV SUV 车门数(个):555座位数(个):555油箱容积(L):727272行李厢容积(L):465465465发动机比亚迪S6 2013款2.0MT豪华型比亚迪S6 2013款2.0MT精英型比亚迪S6 2013款2.0MT尊贵型发动机型号:BYD483QB BYD483QB BYD483QB 排量(mL):199119911991进气形式:自然吸气自然吸气自然吸气气缸排列形式:L L L气缸数(个):444每缸气门数(个):444压缩比:---配气机构:DOHC DOHC DOHC 缸径:---冲程:---最大马力(Ps):140140140最大功率(kW):103103103最大功率转速(rpm):600060006000最大扭矩(N·m):186186186最大扭矩转速(rpm):4000-45004000-45004000-4500发动机特有技术:BIVT可变进气系统BIVT可变进气系统BIVT可变进气系统燃料形式:汽油汽油汽油燃油标号:93号(京92号)93号(京92号)93号(京92号)供油方式:多点电喷多点电喷多点电喷缸盖材料:铝铝铝缸体材料:铝铝铝环保标准:国IV国IV国IV变速箱比亚迪S6 2013款2.0MT豪华型比亚迪S6 2013款2.0MT精英型比亚迪S6 2013款2.0MT尊贵型简称:5挡手动5挡手动5挡手动挡位个数:555变速箱类型:手动变速箱(MT)手动变速箱(MT)手动变速箱(MT)底盘转向比亚迪S6 2013款2.0MT豪华型比亚迪S6 2013款2.0MT精英型比亚迪S6 2013款2.0MT尊贵型驱动方式:前置前驱前置前驱前置前驱前悬挂类型:麦弗逊式独立悬架麦弗逊式独立悬架麦弗逊式独立悬架后悬挂类型:麦弗逊配三连杆式独立悬架麦弗逊配三连杆式独立悬架麦弗逊配三连杆式独立悬架助力类型:机械液压助力机械液压助力机械液压助力车体结构:承载式承载式承载式车轮制动比亚迪S6 2013款2.0MT豪华型比亚迪S6 2013款2.0MT精英型比亚迪S6 2013款2.0MT尊贵型前制动器类型:通风盘式通风盘式通风盘式后制动器类型:盘式盘式盘式驻车制动类型:手刹手刹手刹前轮胎规格:225/65 R17225/65 R17225/65 R17后轮胎规格:225/65 R17225/65 R17225/65 R17备胎规格:全尺寸全尺寸全尺寸Keyless无钥匙系统比亚迪S6 2013款2.0MT豪华型比亚迪S6 2013款2.0MT精英型比亚迪S6 2013款2.0MT尊贵型无钥匙进入系统★★★一键式启动系统★★★智能滚码加密防盗系统★★★智能感应迎宾灯★★★智能行车电脑★★★CAN-BUS电子智能管家系统★★★安全及防盗比亚迪S6 2013款2.0MT豪华型比亚迪S6 2013款2.0MT精英型比亚迪S6 2013款2.0MT尊贵型四门及前后防撞钢梁★★★3H高强度全方位碰撞吸能安全车身★★★整体钢板冲压侧围★★★日本帕卡空腔注蜡技术★★★瑞士Sika(西卡)空腔阻断技术★★★博世ABS防抱死系统(含EBD)★★★前排双SRS安全气囊★★★前排侧SRS安全气囊——★窗帘式SRS安全气囊——★前排预紧式安全带★★★彩色显距倒车影像监视系统——★右前轮盲区可视系统——★全方位倒车雷达——★前后雾灯★★★高位刹车灯★★★三段式溃缩吸能转向柱★★★前排安全带未系声光提醒系统★★★碰撞自动解锁★★★儿童座椅固定装置★★★外观比亚迪S6 2013款2.0MT豪华型比亚迪S6 2013款2.0MT精英型比亚迪S6 2013款2.0MT尊贵型晶钻式透镜前大灯★★★前大灯高度可调★★★前大灯自动开启★★★"Follow me home"大灯延时关闭功能★★★手动折叠电动调节外后视镜+LED转向灯★★—电动折叠电动调节外后视镜+LED转向灯——★外后视镜电加热除霜功能★★★后风窗电加热除霜功能★★★博世前无骨雨刮器★★★背门玻璃雨刮器★★★铝合金轮毂☆★★车顶行李架——★扰流尾翼★★★发光LOGO★★★前包围—★—后包围—★—侧踏板—★—尾管装饰罩—★—舒适及便利比亚迪S6 2013款2.0MT豪华型比亚迪S6 2013款2.0MT精英型比亚迪S6 2013款2.0MT尊贵型4.3英寸双TFT屏液晶组合仪表盘★★★带电子罗盘电子防眩目内后视镜——★电子防眩目内后视镜★★—双层双模式电动天窗—★★四门电动窗(驾驶窗一触下降)★★★双温区独立自动空调+空气过滤装置★★★运动型多功能豪华方向盘★★★防潜滑高级打孔豪华座椅★★★主驾驶席座椅8向电动调节———主驾驶席座椅6向手动调节★★★副驾驶席座椅4向手动调节★★★6:4分割可折叠式中排座椅★★★遮阳板(带化妆镜)★★★前后室内灯★★★行李厢照明灯★★★照脚灯★★★外后视镜下方迎宾灯★★★车门迎宾灯★★★可移动式烟灰缸★★★全车脚垫★★★隔物帘★★★方向盘四向调节★★★HPS液压助力转向系统★★★中控门锁★★★定速巡航系统———音像及导航比亚迪S6 2013款2.0MT豪华型比亚迪S6 2013款2.0MT精英型比亚迪S6 2013款2.0MT尊贵型AUX+USB音频接口★★★5.1声道9扬声器附带独立功放汽车影院——★4扬声器高保真音响系统★★—DVD多媒体系统——★语音电子导航系统 (NAVI)——★7英寸显示触摸屏——★移动数字电视——★车载蓝牙系统——★AM/FM收音机★★★单碟CD★★—高位多功能显示屏——★多功能显示屏★★—方向盘音响控制系统★★★比亚迪S6 2013款2.0MT尊享型11.39万比亚迪S6 2013款2.4AT精英型11.69万比亚迪S6 2013款2.4AT尊享型13.09万比亚迪S6 2013款2.4AT尊荣型13.69万比亚迪S6 2013款2.0MT尊享型比亚迪S6 2013款2.4AT精英型比亚迪S6 2013款2.4AT尊享型比亚迪S6 2013款2.4AT尊荣型11.39万11.69万13.09万13.69万比亚迪比亚迪比亚迪比亚迪SUV SUV SUV SUV2.0L 140马力 L4 2.4L 160马力 L4 2.4L 160马力 L4 2.4L 160马力 L45挡手动4挡手自一体4挡手自一体4挡手自一体4810*1855*17254810*1855*16804810*1855*17254810*1855*1725 5门5座SUV5门5座SUV5门5座SUV5门5座SUV 180185185185----------------工信部未公布工信部未公布工信部未公布工信部未公布四年或10万公里四年或10万公里四年或10万公里四年或10万公里比亚迪S6 2013款2.0MT尊享型比亚迪S6 2013款2.4AT精英型比亚迪S6 2013款2.4AT尊享型比亚迪S6 2013款2.4AT尊荣型4810481048104810 1855185518551855 1725168017251725 2720272027202720 1580158015801580 1555155515551555 190190190190 1620170017001700 SUV SUV SUV SUV 5555 5555 72727272 465465465465比亚迪S6 2013款2.0MT尊享型比亚迪S6 2013款2.4AT精英型比亚迪S6 2013款2.4AT尊享型比亚迪S6 2013款2.4AT尊荣型BYD483QB三菱4G69三菱4G69三菱4G69 1991237823782378自然吸气自然吸气自然吸气自然吸气L L L L44444444-9.59.59.5 DOHC SOHC SOHC SOHC -878787-100100100 140160160160 103118118118 60005000-60005000-60005000-6000 186215215215 4000-45003500-45003500-45003500-4500BIVT可变进气系统MIVEC智能可变气门正时系统MIVEC智能可变气门正时系统MIVEC智能可变气门正时系统汽油汽油汽油汽油93号(京92号)93号(京92号)93号(京92号)93号(京92号)多点电喷多点电喷多点电喷多点电喷铝铝铝铝铝铁铁铁国IV国IV国IV国IV比亚迪S6 2013款2.0MT尊享型比亚迪S6 2013款2.4AT精英型比亚迪S6 2013款2.4AT尊享型比亚迪S6 2013款2.4AT尊荣型5挡手动4挡手自一体4挡手自一体4挡手自一体5444手动变速箱(MT)自动变速箱(AT)自动变速箱(AT)自动变速箱(AT)比亚迪S6 2013款2.0MT尊享型比亚迪S6 2013款2.4AT精英型比亚迪S6 2013款2.4AT尊享型比亚迪S6 2013款2.4AT尊荣型前置前驱前置前驱前置前驱前置前驱麦弗逊式独立悬架麦弗逊式独立悬架麦弗逊式独立悬架麦弗逊式独立悬架麦弗逊配三连杆式独立悬架麦弗逊配三连杆式独立悬架麦弗逊配三连杆式独立悬架麦弗逊配三连杆式独立悬架机械液压助力机械液压助力机械液压助力机械液压助力承载式承载式承载式承载式比亚迪S6 2013款2.0MT尊享型比亚迪S6 2013款2.4AT精英型比亚迪S6 2013款2.4AT尊享型比亚迪S6 2013款2.4AT尊荣型通风盘式通风盘式通风盘式通风盘式盘式盘式盘式盘式手刹手刹手刹手刹225/65 R17225/65 R17225/65 R17225/65 R17 225/65 R17225/65 R17225/65 R17225/65 R17全尺寸全尺寸全尺寸全尺寸比亚迪S6 2013款2.0MT尊享型比亚迪S6 2013款2.4AT精英型比亚迪S6 2013款2.4AT尊享型比亚迪S6 2013款2.4AT尊荣型★★★★★★★★★★★★★★★★★★★★★★★★比亚迪S6 2013款2.0MT尊享型比亚迪S6 2013款2.4AT精英型比亚迪S6 2013款2.4AT尊享型比亚迪S6 2013款2.4AT尊荣型★★★★★★★★★★★★★★★★★★★★★★★★★—★★★—★★★★★★★—★★★—★★★—★★★★★★★★★★★★★★★★★★★★★★★★★★比亚迪S6 2013款2.0MT尊享型比亚迪S6 2013款2.4AT精英型比亚迪S6 2013款2.4AT尊享型比亚迪S6 2013款2.4AT尊荣型★★★★★★★★★★★★★★★★—★——★—★★★★★★★★★★★★★★★★★★★★★★★—★★★★★★★★★★★★—★★★—★★★—★★★—★比亚迪S6 2013款2.0MT尊享型比亚迪S6 2013款2.4AT精英型比亚迪S6 2013款2.4AT尊享型比亚迪S6 2013款2.4AT尊荣型★★★★★—★★—★——★★★★★★★★★★★★★★★★★——★—★★—★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★—★★★比亚迪S6 2013款2.0MT尊享型比亚迪S6 2013款2.4AT精英型比亚迪S6 2013款2.4AT尊享型比亚迪S6 2013款2.4AT尊荣型★★★★★—★★—★——★—★★★—★★★—★★★—★★★—★★★★★★—★——★—★★—★——★★★★比亚迪S6 2013款2.4MT尊贵型12.09万比亚迪S6 2013款2.4MT尊贵型12.09万比亚迪SUV2.4L 167马力 L46挡手动4810*1855*17255门5座SUV185----工信部未公布四年或10万公里比亚迪S6 2013款2.4MT尊贵型4810185517252720158015551901665SUV5572465比亚迪S6 2013款2.4MT尊贵型BYD488QA-自然吸气L44-DOHC--16712360002344000BIVT可变进气系统汽油93号(京92号)多点电喷铝铝国IV比亚迪S6 2013款2.4MT尊贵型6挡手动6手动变速箱(MT)比亚迪S6 2013款2.4MT尊贵型前置前驱麦弗逊式独立悬架麦弗逊配三连杆式独立悬架机械液压助力承载式比亚迪S6 2013款2.4MT尊贵型通风盘式盘式手刹225/65 R17225/65 R17全尺寸比亚迪S6 2013款2.4MT尊贵型★★★★★★比亚迪S6 2013款2.4MT尊贵型★★★★★★★★★★★★★★★★★★比亚迪S6 2013款2.4MT尊贵型★★★★—★★★★★★★★★★★★★比亚迪S6 2013款2.4MT尊贵型★★—★★★★—★★★★★★★★★★★★★★★—比亚迪S6 2013款2.4MT尊贵型★★—★★★★★★—★—★。