高考全国卷4理科数学试题及解析范文

合集下载

高考理科数学试题及答案2024

高考理科数学试题及答案2024

高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的S =()A .2 B .3 C .4 D .59. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的 离心率为()A .2B .3C .2D .2310. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.111. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为()A .32 B .155 C .105D .33 12. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。

高考数学普通高等学校招生全国统一考试辽宁卷4

高考数学普通高等学校招生全国统一考试辽宁卷4

高考数学普通高等学校招生全国统一考试(辽宁卷)理科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C AB =()A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x << 2.设复数z 满足(2)(2)5z i i --=,则z =() A .23i + B .23i - C .32i + D .32i - 3.已知132a -=,21211log ,log 33b c ==,则() A .a b c >> B .a c b >> C .c a b >> D .c b a >>4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是() A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥5.设,,a b c 是非零向量,已知命题P :若0a b •=,0b c •=,则0a c •=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是()A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为() A .144 B .120 C .72 D .247.某几何体三视图如图所示,则该几何体的体积为() A .82π- B .8π- C .82π-D .84π-8.设等差数列{}n a 的公差为d ,若数列1{2}na a 为递减数列,则()A .0d <B .0d >C .10a d <D .10a d > 9.将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数() A .在区间7[,]1212ππ上单调递减B .在区间7[,]1212ππ上单调递增C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 10.已知点(2,3)A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为() A .12 B .23 C .34 D .4311.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是() A .[5,3]-- B .9[6,]8-- C .[6,2]-- D .[4,3]--ZXXK 12.已知定义在[0,1]上的函数()f x 满足: ①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为() A .12 B .14 C .12π D .18第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.执行右侧的程序框图,若输入9x =,则输出y =. ZXXK14.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是.15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN +=.16.对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC •=,1cos 3B =,3b =,求: (1)a 和c 的值; (2)cos()BC -的值. 18. (本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .19. (本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 分别为AC 、DC 的中点. (1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b-=过点P 3.(1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.21. (本小题满分12分)已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)xg x x x x ππ=--+-.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的x0有01x x π+<.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22. (本小题满分10分)选修41:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F. (1)求证:AB 为圆的直径; (2)若AC=BD ,求证:AB=ED.23. (本小题满分10分)选修44:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程. 24. (本小题满分10分)选修45:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N. (1)求M ; (2)当x MN ∈时,证明:221()[()]4x f x x f x +≤.普通高等学校招生全国统一考试(辽宁卷)理科数学答案1. D2. A3. C4. B5. A6. D7. B8. C9. B 10. D 11. C 12. B 13.299C14.2315. 1216.2-17.(Ⅰ)由2BA BC⋅=得,cos 2c a B ⋅=,又1cos 3B =,所以ac=6.由余弦定理,得2222cos a c b ac B +=+.又b=3,所以2292213ac +=+⨯=.解22613ac a c =⎧⎪⎨+=⎪⎩,得a=2,c=3或a=3,c=2. 因为a>c,∴a=3,c=2. (Ⅱ)在ABC ∆中,sin 3B ===由正弦定理,得2sin sin 339c CB b ==⋅=,又因为a b c =>,所以C 为锐角,因此7cos 9C ===. 于是cos()cos cos sin sin B C B C B C -=+=1723393927⋅+⋅=. 18.(Ⅰ)设1A 表示事件“日销售量不低于100个”,2A 表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天的日销售量低于50个”.因此1()(0.0060.0040.002)500.6P A =++⨯= . 2()0.003500.15P A =⨯=. ()0.60.60.1520.108P B =⨯⨯⨯=.(Ⅱ)X 的可能取值为0,1,2,3.相应的概率为033(0)(10.6)0.064P X C ==⋅-=,123(1)0.6(10.6)0.288P X C ==⋅-=,223(2)0.6(10.6)0.432P X C ==⋅-=,333(3)0.60.216P X C ==⋅=,分布列为X 0 1 2 3 P0.0640.2880.4320.216因为X~B(3,0.6),所以期望为E(X)=3×0.6=1.8,方差D (X )=3×0.6×(10.6)=0.72 19.(Ⅰ)证明:(方法一)过E 作EO ⊥BC ,垂足为O ,连OF ,由△ABC ≌△DBC 可证出△EOC ≌△FOC ,所以∠EOC=∠FOC=2π,即FO ⊥BC , 又EO ⊥BC ,因此BC ⊥面EFO , 又EF ⊂面EFO ,所以EF ⊥BC.(方法二)由题意,以B 为坐标原点,在平面DBC 内过B 左垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示的空间直角坐标系.易得B (0,0,0),A(0,1,3),D(3,1,0),C(0,2,0),因而1331(0,,0)22E F ,所以33(,0,),(0,2,0)EF BC =-=,因此0EF BC ⋅=,从而EF BC ⊥,所以EF BC ⊥. (Ⅱ)(方法一)在图1中,过O 作OG ⊥BF ,垂足为G ,连EG ,由平面ABC ⊥平面BDC ,从而EO ⊥平面BDC ,又OG ⊥BF ,由三垂线定理知EG 垂直BF. 因此∠EGO 为二面角EBFC 的平面角; 在△EOC 中,EO=12EC=12BC·cos30°=32,由△BGO ∽△BFC 知,34BO OG FC BC =⋅=,因此tan ∠EGO=2EOOG=,从而sin ∠,即二面角EBFC(方法二)在图2中,平面BFC 的一个法向量为1(0,0,1)n =,设平面BEF 的法向量2(,,)n x y z =,又311(,,0),(0,,2222BF BE ==,由220nBF n BE ⎧⋅=⎪⎨⋅=⎪⎩得其中一个2(1,n =,设二面角EBFC 的大小为θ,且由题意知θ为锐角,则121212cos |cos ,|||||||5n nn n n n θ⋅=<>==⋅,因sin θ角EBFC 的正弦值为5. 20.(Ⅰ)设切点坐标为0000(,)(0,0)x y x y >>,则切线斜率为0x y -,切线方程为0000()x y y x x y -=--,即004x x y y +=,此时,两个坐标轴的正半轴与切线围成的三角形面积为000014482S x y x y =⋅⋅=.由22000042x y x y +=≥知当且仅当00x y =时00x y 有最大值,即S 有最小值,因此点P 得坐标为, 由题意知222222213a ba b a ⎧-=⎪⎨⎪+=⎩解得221,2a b ==,故1C 方程为2212y x -=. (Ⅱ)由(Ⅰ)知2C 的焦点坐标为(,由此2C 的方程为22221113x y b b +=+,其中10b >. 由P 在2C 上,得22112213bb +=+, 解得b12=3,因此C2方程为22163x y += 显然,l不是直线y=0.设l 的方程为,点1122(,),(,)A x y Bx y由22163x my x y ⎧=+⎪⎨+=⎪⎩得22(2)30m y ++-=,又12,y y 是方程的根,因此122122232y y m y y m ⎧+=-⎪⎪+⎨-⎪=⎪+⎩①②,由1122x my x my ==得12122221212122()266()32x x m y y m m x x m y y y y m ⎧+=++=⎪⎪+⎨-⎪=+++=⎪+⎩③④因1122(2,2),(2)AP x y BP xy =--=-由题意知AP BP ⋅=,所以12121212))40x x x x y y y y++++=⑤,将①,②,③,④代入⑤式整理得22110m-+=,解得1m =-或1m =+,因此直线l 的方程为1)0x y --=,或1)0x y +-=. 21.(Ⅰ)当(0,)2x π∈时,2'()(1sin )(2)2cos 03f x x x x x π=-++--<,函数()f x 在(0,)2π上为减函数,又2816(0)0,()0323f f πππ=->=--<,所以存在唯一0(0,)2x π∈,使0()0f x =.(Ⅱ)考虑函数3()cos 2()4ln(3),[,]1sin 2x x h x x x x ππππ-=--∈+,令t x π=-,则[,]2x ππ∈时,[0,]2t π∈, 记3cos 2()()4ln(1)1sin t t u t h t t t ππ=-=-++,则3()'()(2)(1sin )f t u t t t π=++, 由(Ⅰ)得,当0(0,)t x ∈时,'()0u t >,当0(,)2t x π∈时,'()0u t <.在0(0,)x 上()u t 是增函数,又(0)0u =,从而当0(0,]t x ∈时,()0u t >,所以()u t 在0(0,]x 上无零点. 在0(,)2x π上()u t 是减函数,由0()0,()4ln 202u x u π>=-<,存在唯一的10(,)2t x π∈,使1()0u t =.所以存在唯一的10(,)2t x π∈使1()0u t =.因此存在唯一的11(,)2x t πππ=-∈,使111()()()0h x h t u t π=-==.因为当(,)2x ππ∈时,1sin 0x +>,故()(1sin )()g x x h x =+与()h x 有相同的零点,所以存在唯一的1(,)2x ππ∈,使1()0g x =. 因1110,x t t x π=->,所以01x x π+<请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(Ⅰ)因为PD=PG,所以∠PDG=∠PGD. 由于PD为切线,故∠PDA=∠DBA,又由于∠PGD=∠EGA,故∠DBA=∠EGA,所以∠DBA+∠BAD=∠EGA+∠BAD,从而∠BDA=∠PFA.由于AF 垂直EP ,所以∠PFA=90°,于是∠BDA=90°,故AB 是直径. (Ⅱ)连接BC ,DC.由于AB 是直径,故∠BDA=∠ACB=90°, 在Rt △BDA 与Rt △ACB 中,AB=BA,AC=BD , 从而Rt △BDA ≌Rt △ACB ,于是∠DAB=∠CBA. 又因为∠DCB=∠DAB,所以∠DCB=∠CBA ,故DC ∥AB. 由于,,AB EP DC EP DCE ⊥⊥∠所以为直角 于是ED 是直径,由(Ⅰ)得ED=AB.24.(Ⅰ)33,[1,)()1,(,1)x x f x x x -∈+∞⎧=⎨-∈-∞⎩当1x ≥时,由()331f x x =-≤得43x ≤,故413x ≤≤; 当1x <时,由()11f x x =-≤得0x ≥,故01x ≤<; 所以()1f x ≤的解集为4{|0}3M x x =≤≤.(Ⅱ)由2()16814g x x x =-+≤得2116()4,4x -≤解得1344x -≤≤,因此13{|}44N x x =-≤≤,故3{|0}4MN x x =≤≤.当x M N ∈时,()1f x x =-,于是22()[()]()[()]x f x x f x xf x x f x +⋅=+2111()(1)()424x f x x x x =⋅=-=--≤.23.(Ⅰ)设11(,)x y 为圆上的点,在已知变换下位C 上点(x ,y ),依题意,得112x x y y =⎧⎨=⎩由22111x y +=得22()12y x +=,即曲线C 的方程为2214y x +=.,故C 得参数方程为 cos 2sin x t y t ⎧⎨⎩==(t 为参数). (Ⅱ)由2214220y x x y ⎧+=⎪⎨⎪+-=⎩解得:10x y =⎧⎨=⎩,或02x y =⎧⎨=⎩. 不妨设12(1,0),(0,2)P P ,则线段12P P 的中点坐标为1(,1)2,所求直线的斜率为12k =,于是所求直线方程为111()22y x -=-,化极坐标方程,并整理得2cos 4sin 3ρθρθ-=-,即34sin 2cos ρθθ=-.高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.1.(5分)设函数y=的定义域为A,函数y=ln(1﹣x)的定义域为B,则A∩B=()A.(1,2)B.(1,2] C.(﹣2,1) D.[﹣2,1)2.(5分)已知a∈R,i是虚数单位,若z=a+i,z•=4,则a=()A.1或﹣1 B.或﹣C.﹣D.3.(5分)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q4.(5分)已知x,y满足约束条件,则z=x+2y的最大值是()A.0 B.2 C.5 D.65.(5分)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为=x+,已知xi=22.5,yi=160,=4,该班某学生的脚长为24,据此估计其身高为()A.160 B.163 C.166 D.1706.(5分)执行两次如图所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次,第二次输出的a值分别为()A.0,0 B.1,1 C.0,1 D.1,07.(5分)若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<8.(5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是()A.B.C.D.9.(5分)在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是()A.a=2b B.b=2a C.A=2B D.B=2A10.(5分)已知当x∈[0,1]时,函数y=(mx﹣1)2 的图象与y=+m的图象有且只有一个交点,则正实数m的取值范围是()A.(0,1]∪[2,+∞)B.(0,1]∪[3,+∞) C.(0,)∪[2,+∞)D.(0,]∪[3,+∞)二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知(1+3x)n的展开式中含有x2的系数是54,则n=.12.(5分)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.14.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.15.(5分)若函数exf(x)(e≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为.①f(x)=2﹣x②f(x)=3﹣x③f(x)=x3④f(x)=x2+2.三、解答题(共6小题,满分75分)16.(12分)设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f ()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.17.(12分)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.18.(12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(Ⅰ)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率.(Ⅱ)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.19.(12分)已知{xn}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.(Ⅰ)求数列{xn}的通项公式;(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…Pn+1(xn+1,n+1)得到折线P1 P2…Pn+1,求由该折线与直线y=0,x=x1,x=xn+1所围成的区域的面积Tn.20.(13分)已知函数f(x)=x2+2cosx,g(x)=ex(cosx﹣sinx+2x﹣2),其中e≈2.71828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.21.(14分)在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(Ⅰ)求椭圆E的方程.(Ⅱ)如图,动直线l:y=k1x﹣交椭圆E于A,B两点,C是椭圆E上的一点,直线OC 的斜率为k2,且k1k2=,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT的最大值,并求取得最大值时直线l的斜率.高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.1.(5分)设函数y=的定义域为A,函数y=ln(1﹣x)的定义域为B,则A∩B=()A.(1,2)B.(1,2] C.(﹣2,1) D.[﹣2,1)【分析】根据幂函数及对数函数定义域的求法,即可求得A和B,即可求得A∩B.【解答】解:由4﹣x2≥0,解得:﹣2≤x≤2,则函数y=的定义域[﹣2,2],由对数函数的定义域可知:1﹣x>0,解得:x<1,则函数y=ln(1﹣x)的定义域(﹣∞,1),则A∩B=[﹣2,1),故选:D.【点评】本题考查函数定义的求法,交集及其运算,考查计算能力,属于基础题.2.(5分)已知a∈R,i是虚数单位,若z=a+i,z•=4,则a=()A.1或﹣1 B.或﹣C.﹣D.【分析】求得z的共轭复数,根据复数的运算,即可求得a的值.【解答】解:由z=a+i,则z的共轭复数=a﹣i,由z•=(a+i)(a﹣i)=a2+3=4,则a2=1,解得:a=±1,∴a的值为1或﹣1,故选:A.【点评】本题考查共轭复数的求法,复数的乘法运算,考查计算能力,属于基础题.3.(5分)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】由对数函数的性质可知命题p为真命题,则¬p为假命题,命题q是假命题,则¬q是真命题.因此p∧¬q为真命题.【解答】解:命题p:∀x>0,ln(x+1)>0,则命题p为真命题,则¬p为假命题;取a=﹣1,b=﹣2,a>b,但a2<b2,则命题q是假命题,则¬q是真命题.∴p∧q是假命题,p∧¬q是真命题,¬p∧q是假命题,¬p∧¬q是假命题.故选:B.【点评】本题考查命题真假性的判断,复合命题的真假性,属于基础题.4.(5分)已知x,y满足约束条件,则z=x+2y的最大值是()A.0 B.2 C.5 D.6【分析】画出约束条件表示的平面区域,根据图形找出最优解是由解得的点A的坐标,代入目标函数求出最大值.【解答】解:画出约束条件表示的平面区域,如图所示;由解得A(﹣3,4),此时直线y=﹣x+z在y轴上的截距最大,所以目标函数z=x+2y的最大值为zmax=﹣3+2×4=5.故选:C.【点评】本题考查了线性规划的应用问题,是中档题.5.(5分)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为=x+,已知xi=22.5,yi=160,=4,该班某学生的脚长为24,据此估计其身高为()A.160 B.163 C.166 D.170【分析】由数据求得样本中心点,由回归直线方程必过样本中心点,代入即可求得,将x=24代入回归直线方程即可估计其身高.【解答】解:由线性回归方程为=4x+,则=xi=22.5,=yi=160,则数据的样本中心点(22.5,160),由回归直线方程样本中心点,则=﹣4x=160﹣4×22.5=70,∴回归直线方程为=4x+70,当x=24时,=4×24+70=166,则估计其身高为166,故选:C.【点评】本题考查回归直线方程的求法及回归直线方程的应用,考查计算能力,属于基础题.6.(5分)执行两次如图所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次,第二次输出的a值分别为()A.0,0 B.1,1 C.0,1 D.1,0【分析】根据已知中的程序框图,模拟程序的执行过程,可得答案.【解答】解:当输入的x值为7时,第一次,不满足b2>x,也不满足x能被b整数,故b=3;第二次,满足b2>x,故输出a=1;当输入的x值为9时,第一次,不满足b2>x,也不满足x能被b整数,故b=3;第二次,不满足b2>x,满足x能被b整数,故输出a=0;故选:D.【点评】本题考查的知识点是程序框图,难度不大,属于基础题.7.(5分)若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<【分析】a>b>0,且ab=1,可取a=2,b=.代入计算即可得出大小关系.【解答】解:∵a>b>0,且ab=1,∴可取a=2,b=.则=4,==,log2(a+b)==∈(1,2),∴<log2(a+b)<a+.故选:B.【点评】本题考查了函数的单调性、不等式的解法与性质,考查了推理能力与计算能力,属于中档题.8.(5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是()A.B.C.D.【分析】计算出所有情况总数,及满足条件的情况数,代入古典概型概率计算公式,可得答案.【解答】解:从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,共有=36种不同情况,且这些情况是等可能发生的,抽到在2张卡片上的数奇偶性不同的情况有=20种,故抽到在2张卡片上的数奇偶性不同的概率P==,故选:C.【点评】本题考查的知识点是古典概型及其概率计算公式,难度不大,属于基础题.9.(5分)在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是()A.a=2b B.b=2a C.A=2B D.B=2A【分析】利用两角和与差的三角函数化简等式右侧,然后化简通过正弦定理推出结果即可.【解答】解:在ABC中,角A,B,C的对边分别为a,b,c,满足sinB(1+2cosC)=2sinAcosC+cosAsinC=sinAcosC+sin(A+C)=sinAcosC+sinB,可得:2sinBcosC=sinAcosC,因为△ABC为锐角三角形,所以2sinB=sinA,由正弦定理可得:2b=a.故选:A.【点评】本题考查两角和与差的三角函数,正弦定理的应用,考查计算能力.10.(5分)已知当x∈[0,1]时,函数y=(mx﹣1)2 的图象与y=+m的图象有且只有一个交点,则正实数m的取值范围是()A.(0,1]∪[2,+∞)B.(0,1]∪[3,+∞) C.(0,)∪[2,+∞)D.(0,]∪[3,+∞)【分析】根据题意,由二次函数的性质分析可得:y=(mx﹣1)2 为二次函数,在区间(0,)为减函数,(,+∞)为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,②、当m>1时,有<1,结合图象分析两个函数的单调性与值域,可得m的取值范围,综合可得答案.【解答】解:根据题意,由于m为正数,y=(mx﹣1)2 为二次函数,在区间(0,)为减函数,(,+∞)为增函数,函数y=+m为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,在区间[0,1]上,y=(mx﹣1)2 为减函数,且其值域为[(m﹣1)2,1],函数y=+m为增函数,其值域为[m,1+m],此时两个函数的图象有1个交点,符合题意;②、当m>1时,有<1,y=(mx﹣1)2 在区间(0,)为减函数,(,1)为增函数,函数y=+m为增函数,其值域为[m,1+m],若两个函数的图象有1个交点,则有(m﹣1)2≥1+m,解可得m≤0或m≥3,又由m为正数,则m≥3;综合可得:m的取值范围是(0,1]∪[3,+∞);故选:B.【点评】本题考查函数图象的交点问题,涉及函数单调性的应用,关键是确定实数m的分类讨论.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知(1+3x)n的展开式中含有x2的系数是54,则n=4.【分析】利用通项公式即可得出.【解答】解:(1+3x)n的展开式中通项公式:Tr+1=(3x)r=3r xr.∵含有x2的系数是54,∴r=2.∴=54,可得=6,∴=6,n∈N*.解得n=4.故答案为:4.【点评】本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.12.(5分)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是.【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【解答】解:【方法一】由题意,设=(1,0),=(0,1),则﹣=(,﹣1),+λ=(1,λ);又夹角为60°,∴(﹣)•(+λ)=﹣λ=2××cos60°,即﹣λ=,解得λ=.【方法二】,是互相垂直的单位向量,∴||=||=1,且•=0;又﹣与+λ的夹角为60°,∴(﹣)•(+λ)=|﹣|×|+λ|×cos60°,即+(﹣1)•﹣λ=××,化简得﹣λ=××,即﹣λ=,解得λ=.故答案为:.【点评】本题考查了单位向量和平面向量数量积的运算问题,是中档题.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为2+.【分析】由三视图可知:长方体长为2,宽为1,高为1,圆柱的底面半径为1,高为1圆柱的,根据长方体及圆柱的体积公式,即可求得几何体的体积.【解答】解:由长方体长为2,宽为1,高为1,则长方体的体积V1=2×1×1=2,圆柱的底面半径为1,高为1,则圆柱的体积V2=×π×12×1=,则该几何体的体积V=V1+2V1=2+,故答案为:2+.【点评】本题考查利用三视图求几何体的体积,考查长方体及圆柱的体积公式,考查计算能力,属于基础题.14.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为y=±x.【分析】把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,利用根与系数的关系、抛物线的定义及其性质即可得出.【解答】解:把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,∴yA+yB=,∵|AF|+|BF|=4|OF|,∴yA+yB+2×=4×,∴=p,∴=.∴该双曲线的渐近线方程为:y=±x.故答案为:y=±x.【点评】本题考查了抛物线与双曲线的标准方程定义及其性质、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.15.(5分)若函数exf(x)(e≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为①④.①f(x)=2﹣x②f(x)=3﹣x③f(x)=x3④f(x)=x2+2.【分析】把①②代入exf(x),变形为指数函数判断;把③④代入exf(x),求导数判断.【解答】解:对于①,f(x)=2﹣x,则g(x)=exf(x)=为实数集上的增函数;对于②,f(x)=3﹣x,则g(x)=exf(x)=为实数集上的减函数;对于③,f(x)=x3,则g(x)=exf(x)=ex•x3,g′(x)=ex•x3+3ex•x2=ex(x3+3x2)=ex•x2(x+3),当x<﹣3时,g′(x)<0,∴g(x)=exf(x)在定义域R上先减后增;对于④,f(x)=x2+2,则g(x)=exf(x)=ex(x2+2),g′(x)=ex(x2+2)+2xex=ex(x2+2x+2)>0在实数集R上恒成立,∴g(x)=exf(x)在定义域R上是增函数.∴具有M性质的函数的序号为①④.故答案为:①④.【点评】本题考查函数单调性的性质,训练了利用导数研究函数的单调性,是中档题.三、解答题(共6小题,满分75分)16.(12分)设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f ()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.【分析】(Ⅰ)利用三角恒等变换化函数f(x)为正弦型函数,根据f()=0求出ω的值;(Ⅱ)写出f(x)解析式,利用平移法则写出g(x)的解析式,求出x∈[﹣,]时g(x)的最小值.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx﹣)=sinωxcos﹣cosωxsin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x﹣),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y=sin(x﹣)的图象;再将得到的图象向左平移个单位,得到y=sin(x+﹣)的图象,∴函数y=g(x)=sin(x﹣);当x∈[﹣,]时,x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴当x=﹣时,g(x)取得最小值是﹣×=﹣.【点评】本题考查了三角恒等变换与正弦型函数在闭区间上的最值问题,是中档题.17.(12分)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.【分析】(Ⅰ)由已知利用线面垂直的判定可得BE⊥平面ABP,得到BE⊥BP,结合∠EBC=120°求得∠CBP=30°;(Ⅱ)法一、取的中点H,连接EH,GH,CH,可得四边形BEGH为菱形,取AG中点M,连接EM,CM,EC,得到EM⊥AG,CM⊥AG,说明∠EMC为所求二面角的平面角.求解三角形得二面角E﹣AG﹣C的大小.法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.求出A,E,G,C的坐标,进一步求出平面AEG与平面ACG的一个法向量,由两法向量所成角的余弦值可得二面角E﹣AG﹣C的大小.【解答】解:(Ⅰ)∵AP⊥BE,AB⊥BE,且AB,AP⊂平面ABP,AB∩AP=A,∴BE⊥平面ABP,又BP⊂平面ABP,∴BE⊥BP,又∠EBC=120°,因此∠CBP=30°;(Ⅱ)解法一、取的中点H,连接EH,GH,CH,∵∠EBC=120°,∴四边形BECH为菱形,∴AE=GE=AC=GC=.取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,∴∠EMC为所求二面角的平面角.又AM=1,∴EM=CM=.在△BEC中,由于∠EBC=120°,由余弦定理得:EC2=22+22﹣2×2×2×cos120°=12,∴,因此△EMC为等边三角形,故所求的角为60°.解法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.由题意得:A(0,0,3),E(2,0,0),G(1,,3),C(﹣1,,0),故,,.设为平面AEG的一个法向量,由,得,取z1=2,得;设为平面ACG的一个法向量,由,可得,取z2=﹣2,得.∴cos<>=.∴二面角E﹣AG﹣C的大小为60°.【点评】本题考查空间角的求法,考查空间想象能力和思维能力,训练了线面角的求法及利用空间向量求二面角的大小,是中档题.18.(12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(Ⅰ)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率.(Ⅱ)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.【分析】(1)利用组合数公式计算概率;(2)使用超几何分布的概率公式计算概率,得出分布列,再计算数学期望.【解答】解:(I)记接受甲种心理暗示的志愿者中包含A1但不包含B1的事件为M,则P(M)==.(II)X的可能取值为:0,1,2,3,4,∴P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==.∴X的分布列为X 0 1 2 3 4PX的数学期望EX=0×+1×+2×+3×+4×=2.【点评】本题考查了组合数公式与概率计算,超几何分布的分布列与数学期望,属于中档题.19.(12分)已知{xn}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.(Ⅰ)求数列{xn}的通项公式;(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…Pn+1(xn+1,n+1)得到折线P1 P2…Pn+1,求由该折线与直线y=0,x=x1,x=xn+1所围成的区域的面积Tn.【分析】(I)列方程组求出首项和公比即可得出通项公式;(II)从各点向x轴作垂线,求出梯形的面积的通项公式,利用错位相减法求和即可.【解答】解:(I)设数列{xn}的公比为q,则q>0,由题意得,两式相比得:,解得q=2或q=﹣(舍),∴x1=1,∴xn=2n﹣1.(II)过P1,P2,P3,…,Pn向x轴作垂线,垂足为Q1,Q2,Q3,…,Qn,记梯形PnPn+1Qn+1Qn的面积为bn,则bn==(2n+1)×2n﹣2,∴Tn=3×2﹣1+5×20+7×21+…+(2n+1)×2n﹣2,①∴2Tn=3×20+5×21+7×22+…+(2n+1)×2n﹣1,②①﹣②得:﹣Tn=+(2+22+…+2n﹣1)﹣(2n+1)×2n﹣1=+﹣(2n+1)×2n﹣1=﹣+(1﹣2n)×2n﹣1.∴Tn=.【点评】本题考查了等比数列的性质,错位相减法求和,属于中档题.20.(13分)已知函数f(x)=x2+2cosx,g(x)=ex(cosx﹣sinx+2x﹣2),其中e≈2.71828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.【分析】(I)f(π)=π2﹣2.f′(x)=2x﹣2sinx,可得f′(π)=2π即为切线的斜率,利用点斜式即可得出切线方程.(II)h(x)=g (x)﹣a f(x)=ex(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx),可得h′(x)=2(x﹣sinx)(ex﹣a)=2(x﹣sinx)(ex﹣elna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,可得函数u(x)在R上单调递增.由u(0)=0,可得x>0时,u(x)>0;x<0时,u(x)<0.对a分类讨论:a≤0时,0<a<1时,当a=1时,a>1时,利用导数研究函数的单调性极值即可得出.【解答】解:(I)f(π)=π2﹣2.f′(x)=2x﹣2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣(π2﹣2)=2π(x﹣π).化为:2πx﹣y﹣π2﹣2=0.(II)h(x)=g (x)﹣a f(x)=ex(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx)h′(x)=ex(cosx﹣sinx+2x﹣2)+ex(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)=2(x﹣sinx)(ex﹣a)=2(x﹣sinx)(ex﹣elna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(1)a≤0时,ex﹣a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(﹣∞,0)单调递减.∴x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.(2)a>0时,令h′(x)=2(x﹣sinx)(ex﹣elna)=0.解得x1=lna,x2=0.①0<a<1时,x∈(﹣∞,lna)时,ex﹣elna<0,h′(x)>0,函数h(x)单调递增;x∈(lna,0)时,ex﹣elna>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,ex﹣elna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].②当a=1时,lna=0,x∈R时,h′(x)≥0,∴函数h(x)在R上单调递增.③1<a时,lna>0,x∈(﹣∞,0)时,ex﹣elna<0,h′(x)>0,函数h(x)单调递增;x∈(0,lna)时,ex﹣elna<0,h′(x)<0,函数h(x)单调递减;x∈(lna,+∞)时,ex﹣elna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].综上所述:a≤0时,函数h(x)在(0,+∞)单调递增;x<0时,函数h(x)在(﹣∞,。

2020年普通高等学校招生全国统一考试数学(理)样卷(四)(解析版)

2020年普通高等学校招生全国统一考试数学(理)样卷(四)(解析版)

2020年普通高等学校招生全国统一考试数学(理)样卷(四)一、单选题1.设i 是虚数单位,则202011i i -⎛⎫= ⎪+⎝⎭( )A .iB .i -C .1D .1-【答案】C【解析】根据复数的运算法则求解即可. 【详解】由于()()()21121112i i ii i i i ---===-++-,所以()()202020204505111i i i i ⨯-⎛⎫=-=-= ⎪+⎝⎭.故选:C 【点睛】本题主要考查了复数的除法运算,乘方运算,属于容易题.2.已知全集U =R ,集合(){}lg 11A x N x =∈-<,()(){}370B x x x =--≥,则图中阴影部分表示的集合为( )A .{}8,9,10B .{}2,8,9,10C .{}2,7,8,9,10D .{}3,4,5,6,7【答案】B【解析】首先分别化简集合,A B ,再根据文氏图计算即可. 【详解】因为()110lg 1111110x x x x -<⎧-<⇔⇒<<⎨->⎩,所以(){}{}{}lg 111112,3,4,5,6,7,8,9,10A x N x x N x =∈-<=∈<<=,()(){}{}37037B x x x x x =--≥=≤≤,{7UB x x =>或}3x <.所以阴影部分表示的集合为{}2,8,9,10UA B ⋂=.故选:B 【点睛】本题主要考查对数不等式的解法,同时考查了集合的运算和一元二次不等式的解法,属于简单题. 3.函数()()12sin 12xxx f x -=+的图象大致为( ) A . B .C .D .【答案】A【解析】确定函数的奇偶性可排除B ,C ,再由0,2x π⎛⎫∈ ⎪⎝⎭时的函数值的正负可排除D ,从而得正确选项. 【详解】因为()()()122112sin sin sin 122112x x xx x xf x x x x f x ------=⋅-=-⋅=⋅=+++,所以函数()f x 是偶函数,其图象关于y 轴对称,排除选项B ,C ; 因为当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0f x <,所以可排除选项D . 故选:A . 【点睛】本题考查由函数解析式先把函数图象问题,解题可研究函数的性质,函数的值的大小,正负等等利用排除法得出正确选项. 4.若点()4,1P 在函数log ay x =的图象上,则πtan3a 的值为( )A .0B .3 C .1D .3【答案】D【解析】首先根据题意得到4a =,再利用三角函数的诱导公式计算即可. 【详解】因为点()4,1P 在函数log ay x =的图象上,所以1log 4a =,所以4a =, 所以4πtantan tan tan 33333a ππππ⎛⎫==+== ⎪⎝⎭. 故选:D 【点睛】本题主要考查三角函数的诱导公式,同时考查了对数的运算,属于简单题. 5.已知在ABC 中,::3:2:4sinA sinB sinC =,那么cosC 的值为( ) A .14-B .14C .23-D .23【答案】A 【解析】【详解】::sin :sin :sin 3:2:4a b c A B C == ,不妨设3,2,4a k b k c k ===,,则()()()2223241cos 2324k k k C k k+-==-⨯⨯ ,选A.6.中国古代数学名著《九章算术》卷“商功”篇章中有这样的问题:“今有方锥,下方二丈七尺,高二丈九尺.问积几何?”(注:一丈等于十尺).若此方锥的三视图如图所示(其中俯视图为正方形),则方锥的体积为(单位:立方尺)A .7047B .21141C .7569D .22707【答案】A【解析】由三视图还原原几何体,该几何体为正四棱锥,正四棱锥的底面边长为27尺,高为29尺,再由棱锥体积公式求解. 【详解】由三视图还原原几何体如图,该几何体为正四棱锥,正四棱锥的底面边长为27尺,高为29尺, ∴该四棱锥的体积127272970473V =⨯⨯⨯=立方尺. 故选A . 【点睛】本题考查由三视图求面积,体积,关键是由三视图还原原几何体,是中档题.7.若曲线()3ln 1y x =+在1x =处的切线斜率为a ,则6213x ax ⎫-⎪⎭的展开式中的常数项为( ) A .4- B .4C .60D .60-【答案】C【解析】先由1x a y =='|,确定a 的取值,然后利用二项展开式的通项公式即可求得本题答案. 【详解】由题,得31y x '=+,则32a =, 所以6226(123))3(3x x ax x--=,则其二项展开式的通项公式:6663166222(3)()(3)()33rrr r rr r r T C x C x x ---+=-=- , 令630r -=,解得2r ,所以展开式中的常数项为24262(3)()603C -=.故选:C 【点睛】本题主要考查导数的几何意义以及二项式定理的应用,考查学生的运算求解能力. 8.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布.此问题中若记该女子一月中的第n 天所织布的尺数为n a ,则1417a a +的值为( ) A .56 B .52 C .28 D .26【答案】D【解析】根据题意设出等差数列的公差d ,然后利用前30项和列方程,解方程求得d 的值,由此求得1417a a +的值. 【详解】等差数列的首项15a =,设公差为d ,故3013029303902S a d ⨯=+=,解得1629d =,故1417122926a a a d +=+=.故选D. 【点睛】本小题主要考查等差数列基本量的计算,考查中国古代数学文化,属于基础题. 9.已知直线x y a +=与圆224x y +=交于A ,B 两点,且OA OB OA OB +=-(其中O 为坐标原点),则实数a 等于( )A .2B .2-C .2或2-D 或【答案】C【解析】根据向量运算得到OA OB ⊥,再利用点到直线的距离公式计算得到答案. 【详解】因为OA OB OA OB +=-,故222222OA OB OA OB OA OB OA OB ++⋅=+-⋅,所以OA OB ⊥,所以由题意可得圆心到直线的距离d ==2a =±.故选:C. 【点睛】本题考查了直线和圆的位置关系,向量运算,意在考查学生的计算能力和综合应用能力. 10.已知()3cos ,2sin a x x =,()2cos ,cos b x x =-,函数()3f x a b =⋅-,下面四个结论中正确的是( ) A .函数()f x 的最小正周期为2πB .函数()f x 的图象关于直线π6x =对称 C .函数()f x 的图象是由2cos2y x =的图象向左平移π6个单位得到的 D .函数π6f x ⎛⎫+ ⎪⎝⎭是奇函数 【答案】D【解析】由题意结合平面向量数量积的坐标表示、三角恒等变换可得()π2cos 26f x x ⎛⎫=+ ⎪⎝⎭;利用2T πω=即可判断A ;由π06f ⎛⎫= ⎪⎝⎭即可判断B ;由三角函数图象平移的规律可判断C ;由诱导公式可判断D ;即可得解. 【详解】由题意()232sin cos f x a b x x x =⋅-=-π2sin 22cos 26x x x ⎛⎫=-=+ ⎪⎝⎭,对于A ,函数()f x 的最小正周期2ππ2T ==,故A 错误; 对于B ,ππ2cos 266π06f ⎛⎫⨯+ ⎛⎫=⎝⎝⎭⎪⎭=⎪,故B 错误; 对于C ,由2cos2y x =的图象向左平移π6个单位得到函数π2cos 23π2cos 26x y x ⎡⎤⎛⎫=+= ⎪⎢⎛⎥⎫+ ⎪⎝⎝⎣⎦⎭⎭的图象,故C 错误;对于D ,因为ππππ2cos 22cos 22sin 26662f x x x x ⎡⎤⎛⎫⎛⎫⎛⎫+=++=+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以π6f x ⎛⎫+ ⎪⎝⎭是奇函数,故D 正确.故选:D. 【点睛】本题考查了平面向量数量积的坐标表示、三角恒等变换的应用,考查了三角函数图象的变换及三角函数图象与性质的应用,属于中档题.11.下图为国家统计局网站发布的《2018年国民经济和社会发展统计公报》中居民消费价格月度涨跌幅度的折线图(注:同比是今年第n 个月与去年第n 个月之比,环比是现在的统计周期和上一个统计周期之比)下列说法正确的是( )①2018年6月CPI 环比下降0.1%,同比上涨1.9% ②2018年3月CPI 环比下降1.1%,同比上涨2.1% ③2018年2月CPI 环比上涨0.6%,同比上涨1.4% ④2018年6月CPI 同比涨幅比上月略微扩大1.9个百分点 A .①② B .③④ C .①③ D .②④.【答案】A【解析】对照表中数据逐项检验分析即可得出答案. 【详解】对于①. 根据图表中的数据可得:2018年6月CPI 环比下降0.1%,同比上涨1.9%,正确.对于②. 根据图表中的数据可得: 2018年3月CPI 环比下降1.1%,同比上涨2.1%,正确. 对于③. 根据图表中的数据可得: 2018年2月CPI 环比上涨1.2%,同比上涨2.9%,不正确.对于④. 根据图表中的数据可得: 2018年6月CPI 同比上涨1.9%,以与上一年度的6月对比,而不是跟前一个月对比,所以不正确. 故选:A 【点睛】本题考查折线图,准确识图读图理解题意是关键,是基础题.12.若存在一个实数t ,使得()F t t =成立,则称t 为函数()F x 的一个不动点.设函数()(1)x g x e e x a =+-(a R ∈,e 为自然对数的底数),定义在R 上的连续函数()f x 满足2()()f x f x x -+=,且当0x ≤时,'()f x x <.若存在01()(1)2x x f x f x x ⎧⎫∈+≥-+⎨⎬⎩⎭,且0x 为函数()g x 的一个不动点,则实数a 的取值范围为( )A .⎛⎫-∞ ⎪ ⎪⎝⎭B .⎡⎫+∞⎪⎢⎪⎣⎭ C .⎛⎤ ⎥ ⎝⎦D .⎛⎫+∞⎪ ⎪⎝⎭【答案】B 【解析】【详解】 ∵2()()f x f x x -+= ∴令21()()2F x f x x =-, ∴221()22)1(f f x x x x =---+, ∴()()F x F x =--,即()F x 为奇函数,∵()()F x f x x '='-,且当0x ≤时,()f x x '<, ∴()0F x '<对0x <恒成立,∵()F x 为奇函数,∴()F x 在R 上单调递减, ∵1()(1)2f x f x x +≥-+, ∴22111()(1)222f x x f x x x +-≥-+-, 即()(1)F x F x ≥-,11,2x x x ≤-≤012x ∴≤,∵0x 为函数()g x 的一个不动点,∴00()g x x =,即()0x h x e a =--=在1(,]2-∞有解.∵()0x h x e '=-≤,∴()h x 在R 上单调递减.∴min 1()02h x h a ⎛⎫==≤ ⎪⎝⎭即可,∴a ≥. 故选:B点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.二、填空题13.中心在坐标原点,对称轴为坐标轴的椭圆经过抛物线28x y =的焦点和双曲线22116x y -=的顶点,则该椭圆的离心率等于______.【答案】2【解析】求出抛物线的焦点坐标和双曲线的定点坐标,则可求出椭圆的,,a b c ,进而可得离心率. 【详解】抛物线28x y =的焦点坐标为()0,2,双曲线22116x y -=的顶点坐标为()4,0,()4,0-,由题意,可知椭圆的焦点在x 轴上,设为22221(0)x ya b a b+=>>,则4a =,2b =,故c =,所以其离心率2c e a ==.【点睛】本题考查圆锥曲线的性质及运算,是基础题.14.正三棱柱111ABC A B C -中,4AB =,16AA =,若112C F FC =,12B E EB =,则异面直线1A F ,AE 所成角的正弦值为______.【答案】265【解析】首先将原三棱柱补形构造直四棱柱1111ABCD A B C D -,取12D M MD =,连接MF ,1A M ,由已知可得AE 平行于MF ,且AE MF =,从而得到1A FM ∠就是异面直线1A F 与AE 所成的角或其补角.再代入余弦定理公式计算即可得到答案.【详解】在原三棱柱基础上,补形构造直四棱柱1111ABCD A B C D -,如图,使得底面ABCD 为菱形,取12D M MD =,连接MF ,1A M ,由已知可得AE 平行于MF ,且AE MF =,所以1A FM ∠就是异面直线1A F 与AE 所成的角或其补角. 因为2214225A F MF ==+=2214442A M =+=所以由余弦定理得22211111cos 25A F MF A M A FM A F MF +-∠==⋅, 所以异面直线1A F 与AE 26. 26【点睛】本题主要考查异面直线成角问题,平移找角为解题的关键,属于中档题.15.若函数()11sin πx x f x e ea x --+=-+(x ∈R ,e 是自然对数的底数,0a >)存在唯一的零点,则实数a 的取值范围为______.【答案】20,π⎛⎤⎥⎝⎦【解析】函数()11sin πx x f x e ea x --+=-+存在唯一的零点等价于函数()sin πx a x ϕ=与函数()11xx g x ee --=-的图像只有一个交点.∵()10ϕ=,()10g =,∴函数()sin πx a x ϕ=与函数()11x x g x e e --=-的图像的唯一交点为()1,0.对()g x 求导,可得()g x 的单调性及斜率范围,又()x ϕ是最小正周期为2.最大值为a 的正弦型函数,画出草图,比较()g x 与()x ϕ在x =1处斜率即可. 【详解】函数()11sin πx x f x e ea x --+=-+(x ∈R ,e 是自然对数的底数,0a >)存在唯一的零点等价于函数()sin πx a x ϕ=与函数()11xx g x e e --=-的图像只有一个交点.∵()10ϕ=,()10g =,∴函数()sin πx a x ϕ=与函数()11xx g x e e --=-的图像的唯一交点为()1,0.又∵()11xx g x e e --'=--,且10x e ->,10x e ->,∴()11x x g x ee --'=--在R 上恒小于零,即()11x x g x e e --=-在R 上为单调递减函数.又∵()1112xxg x ee --'=--≤-,当且仅当111x xe e --=,即1x =时等号成立,且()()sin π0x a x a ϕ=>是最小正周期为2.最大值为a 的正弦型函数,∴可得函数()sin πx a x ϕ=与函数()11xx g x ee --=-的大致图像如图所示.∴要使函数()sin πx a x ϕ=与函数()11xx g x ee --=-的图像只有唯一一个交点,则()()11g ϕ''≥.∵()πcos π1πa a ϕ'==-,()21g '=-, ∴π2a -≥-,解得2πa ≤.对∵0a >,∴实数a 的取值范围为20,π⎛⎤ ⎥⎝⎦. 故答案为:20,π⎛⎤ ⎥⎝⎦. 【点睛】本题由函数的零点入手,转化成求两个已知函数交点的问题,并利用导函数判断函数的单调性,结合题意,画出()g x 与()x ϕ的图像,并根据斜率的大小,进行求解,考查整理化简,计算求值,分析作图的能力,属难题.三、双空题16.某农户建造一个室内面积为150m 2的矩形蔬菜温室.如图,在温室内,沿左、右两侧与后侧内墙各保留1m 宽的通道,沿前侧内墙保留2m 宽的空地,中间区域为菜地.当温室的长为______m 时,菜地的面积最大,最大面积是______m 2.【答案】15 96【解析】设温室的左侧边长为()x m ,则温室的后侧边长为150()m x,所以菜地的面积()()150300231563250y x x x x x ⎛⎫⎛⎫=--=-+<< ⎪ ⎪⎝⎭⎝⎭,利用基本不等式,即可求得最大值. 【详解】设温室的左侧边长为()x m ,菜地的面积为2()y m ,则温室的后侧边长为150()m x, 所以()()150300231563250y x x x x x ⎛⎫⎛⎫=--=-+<<⎪ ⎪⎝⎭⎝⎭. 因为3003003360x x x x+≥⋅=,当且仅当3003x x =,即10x =时取等号, 所以1566096y ≤-=,即y 的最大值为96,此时温室的长为()15015m x=. 所以当温室的长为15()m 时,菜地的面积最大,最大面积为296()m . 【点睛】本题主要考查基本不等式的实际应用,考查学生的分析问题能力和转化求解能力.四、解答题17.已知数列{}n a 中,11a =,前n 项和为n S ,对任意的自然数2n ≥,n a 是34n S -与1322n S --的等差中项. (1)求{}n a 的通项公式; (2)求n S .【答案】(1)()()111122n n n a n -⎧=⎪=⎨⎛⎫--≥⎪ ⎪⎝⎭⎩;(2)1411332n n S -⎛⎫=-- ⎪⎝⎭.【解析】(1)已知条件用等式表示为当2n ≥时,()1323422n n n a S S -⎛⎫=-+-⎪⎝⎭,用1n +替换n 得1132(34)22n n n a S S ++⎛⎫=-+- ⎪⎝⎭,两式相减可得{}n a 从第二项开始成等比数列,求出通项公式,1a 不适合此式,用分段函数形式表示数列的通项公式; (2)2n ≥时,分组求和12()n n S a a a =+++,然后验证1S 也适合上式,即得n S 表达式. 【详解】解:(1)由已知,当2n ≥时,()1323422n n n a S S -⎛⎫=-+-⎪⎝⎭①, 所以1132(34)22n n n a S S ++⎛⎫=-+-⎪⎝⎭②, 由②-①得1132232n n n n a a a a ++-=-,∴112n n a a +=-. ∴2a ,3a ,…,n a 成等比数列,其中22123323423(1)4222a S a a ⎛⎫=-+-=+-+- ⎪⎝⎭,∴212a =, ∴当2n ≥时,21111222n n n a --⎛⎫⎛⎫=-=-- ⎪⎪⎝⎭⎝⎭,又11a =不符合此式,∴()()111122n n n a n -⎧=⎪=⎨⎛⎫--≥⎪ ⎪⎝⎭⎩.(2)当2n ≥时,()11212111221112n n n nS aa a a a a -⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=+++=++⋅⋅⋅+=+⎛⎫-- ⎪⎝⎭ (1)1114111132332n n --⎡⎤⎛⎫⎛⎫=+--=--⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦. 当1n =时,014111332S ⎛⎫==-- ⎪⎝⎭也符合上述公式.∴1411332n n S -⎛⎫=-- ⎪⎝⎭.【点睛】本题考查由n S 与n a 的关系求数列通项公式,考查分组求和法.已知n S 与n a 的关系求数列通项公式一般都是利用1n n n a S S -=-,化已知等式为{}n a 的递推式,得出数列的性质,从而求得其通项公式.但此种方法要注意1a 1S =与此法不相同,故需验证1a . 18.如图,在梯形ABCD 中,//AB CD ,1===AD DC CB ,60ABC ∠=︒,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,1CF =.(1)求证:BC ⊥平面ACFE .(2)点M 在线段EF 上运动,设平面MAB 与平面FCB 所成二面角的平面角为()90θθ≤︒,试求cos θ的取值范围.【答案】(1)证明见解析;(2)71cos 2θ⎤∈⎥⎣⎦. 【解析】(1)在底面ABCD 中证明BC AC ⊥即可证得线面垂直;(2)分别以直线CA ,CB ,CF 为x 轴、y 轴、z 轴建立空间直角坐标系,令(03FM λλ=≤≤,然后写出各点坐标,求出平面MAB 和平面FCB 的法向量,由法向量夹角与二面角的关系求得cos θ(为λ的函数),由函数知识可得最大值和最小值,即得取值范围.【详解】(1)证明:在梯形ABCD 中,∵//AB CD ,1===AD DC CB ,60ABC ∠=︒, ∴2AB =.∴2222cos603AC AB BC AB BC =+-⋅⋅︒=, ∴222AB AC BC =+,∴BC AC ⊥.∵平面ACFE ⊥平面ABCD ,平面ACFE ⋂平面ABCD AC =,BC ⊂平面ABCD , ∴BC ⊥平面ACFE .(2)解:分别以直线CA ,CB ,CF 为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,令(03FM λλ=≤≤,则()0,0,0C ,()3,0,0A ,()0,1,0B ,(),0,1M λ,∴()3,1,0AB =-,(),1,1BM λ=-.设()1,,n x y z =为平面MAB 的一个法向量,由110,0,n AB n BM ⎧⋅=⎪⎨⋅=⎪⎩,得30,0.x y x y z λ⎧+=⎪⎨-+=⎪⎩取1x =,则()11,3,3n λ=. ∵()21,0,0n =是平面FCB 的一个法向量,∴()()122212cos 133134n n n n θλλ⋅===⋅++-⨯-+.∵03λ≤≤∴当0λ=时,cos θ7; 当3λ=cos θ有最大值12. ∴71cos 72θ⎤∈⎥⎣⎦. 【点睛】本题考查证明线面垂直,考查二面角问题,求二面角时,可建立空间直角坐标系,得出两平面的法向量,由法向量夹角求得二面角.19.在一次数学考试中,从甲,乙两个班级各抽取10名同学的成绩进行统计分析,他们成绩的茎叶图如图所示,成绩不小于90分为及格.(1)从两班10名同学中各抽取一人,在有人及格的情况下,求乙班同学不及格的概率; (2)从甲班10人中取一人,乙班10人中取两人,三人中及格人数记为X ,求X 的分布列和数学期望.【答案】(1)27;(2)分布列见解析,75.【解析】(1)从茎叶图知甲班有4人及格,乙班有5人及格.事件“从两班10名同学中各抽取一人,有人及格”记作A ,事件“从两班10名同学中各抽取一人,乙班同学不及格”记作B ,求出()P A 和()P A B ⋂可由条件概率公式可得结论;(2)X 的取值为0,1,2,3,分别计算概率得概率分布列,再由公式计算期望. 【详解】解:(1)甲班有4人及格,乙班有5人及格.事件“从两班10名同学中各抽取一人,有人及格”记作A , 事件“从两班10名同学中各抽取一人,乙班同学不及格”记作B ,则()()()2021003071100P A B P B A P A ⋂===-. (2)X 的取值为0,1,2,3,()12651210102015C C P X C C ==⋅=;()111216555412121010101019145C C C C C P X C C C C ==⋅+⋅=;()121116555412121010101016245C C C C C P X C C C C ==⋅+⋅=;()21541210104345C C P X C C ==⋅=.所以X 的分布列为所以()1932127455E X ++==.【点睛】本题考查条件概率,考查随机变量的概率分布列和数学期望.考查学生的数据处理能力,运算求解能力,本题属于中档题.20.过x 轴正半轴上的动点P 作曲线C :21y x =+的切线,切点为A ,B ,线段AB 的中点为Q ,设曲线C 与y 轴的交点为D . (1)求ADB ∠的大小及Q 的轨迹方程;(2)当动点Q 到直线y x =的距离最小时,求PAB △的面积.【答案】(1)90ADB ∠=︒;()2220y x x =+>;(2. 【解析】(1)设过点()(),00P p p >,斜率为k 的直线l 的方程为()y k x p =-,代入21y x =+得210x kx kp -++=,由相切得2440k kp --=,同时得到切点坐标为2(,1)24k k +,设切线PA ,PB 的斜率分别为1k ,2k ,则可得1212,k k k k +,同时得出切点,A B 的坐标,利用1212,k k k k +计算DA DB ⋅可得90ADB ∠=︒.再由,A B 两点坐标得中点Q 坐标,消去参数可得Q 点轨迹方程;(2)由点到直线距离公式求得Q 到直线y x =的距离后可得其最小值及此时Q 点坐标,P 点坐标,从而得直线AB 方程,代入已知抛物线方程应用韦达定理可求得弦长AB ,再求出P 到直线AB 的距离后可得三角形面积. 【详解】解:(1)设过点()(),00P p p >,斜率为k 的直线l 的方程为()y k x p =-,代入21y x =+得210x kx kp -++=,当直线和抛物线相切时,有0∆=,即2440k kp --=,此时切点坐标为2,124k k ⎛⎫+ ⎪⎝⎭. 设切线PA ,PB 的斜率分别为1k ,2k ,则124k k p +=,124k k ⋅=-,相应点的坐标为211,124k k A ⎛⎫+ ⎪⎝⎭,222,124k k B ⎛⎫+ ⎪⎝⎭,()0,1D , 所以222211221212,,024242244k k k k k k k k DA DB ⎛⎫⎛⎫⋅=⋅=⋅+⋅= ⎪ ⎪⎝⎭⎝⎭,所以90ADB ∠=︒. 中点Q 的横坐标为12222k k x p+==,纵坐标为()22122221212212112441122288k k k k k k k k y p ++++-+==+=+=+, 所以Q 的轨迹方程为()2220y x x =+>.(2)动点Q 到直线y x =的距离为d ==≥,当且仅当14x =时取等号,此时14p =,1(,0)4P ,∴由(1)得AB 中点Q 坐标是117(,)48,设1122(,),(,)A x y B x y ,则由21122211y x y x ⎧=+⎨=+⎩得121212()()y y x x x x -=-+,所以12121211242AB y y k x x x x -==+=⨯=-,所以直线AB 的方程为1711()824y x -=-,即122y x =+,代入曲线C 的方程得21102x x --=,则1212x x +=,121x x =-.AB ===, 点1,04P ⎛⎫⎪⎝⎭到直线AB=,所以PAB △的面积为12432=. 【点睛】本题考查直线与抛物线的位置关系,考查切点弦中点轨迹,考查直线与抛物线相交中三角形面积问题.采取设而不求的思想结合韦达定理解决交点坐标问题.角的确定可通过向量的数量积公式求解.21.已知函数()222ln f x a x x =-(常数0a >).(1)当1a =时,求曲线()y f x =在1x =处的切线方程; (2)讨论函数()f x 在区间()21,e上零点的个数(e 为自然对数的底数). 【答案】(1)10y +=;(2)答案见解析.【解析】(1)先根据导数几何意义得切线斜率,再根据点斜式得结果;(2)先求函数最小值,再根据最小值分类讨论,结合零点存在定理确定零点个数 【详解】(1)当1a =时,()22ln f x x x =-,∴()22f x x x'=-, ∴()10f '=. 又∵()11f =-,∴曲线()y f x =在1x =处的切线方程为10y +=.(2)∵()222ln f x a x x =-,∴()()()22222222x a x a a a x f x x x x x--+-'=-==. ∵0x >,0a >,∴当0x a <<时,()0f x '>,当x a >时,()0f x '<, ∴()f x 在()0,a 上是增函数,在(),a +∞上是减函数.∴()()()2max 2ln 10f x f a a a ==-=.讨论函数()f x 的零点情况如下:①当()22ln 10aa -<,即0a <=()f x 无零点,在()21,e 上也无零点.②当()22ln 10aa =-,即a =()f x 在()0,∞+内有唯一零点a ,而21a e <=, ∴()f x 在()21,e 内有一个零点.③当()22ln 10aa >-,即a >由于()110f =-<,()()22ln 10f a a a =->,()()()222424222ln 422f e a e e a e a e a e =-=-=-+,当220a e-<22e a <<时,2212e a e <<<<,()20f e <.由单调性可知,函数()f x 在()1,a 内有唯一零点1x ,在()2,a e 内有唯一零点2x ,则()f x 在()21,e 内有两个零点;当220a e-≥,即22e a ≥>()20f e ≥,而且221202f a e a e =⋅-=->,()110f =-<,由单调性可知()f x 在(内有唯一的一个零点,在)2e 内没有零点,所以()f x 在()21,e内只有一个零点.综上所述,当0a <<()f x 在区间()21,e 上无零点;当a =22e a ≥时,函数()f x 在区间()21,e 上有一个零点;22e a <<时,函数()f x 在区间()21,e 上有两个零点.【点睛】本题考查导数几何意义以及利用导数研究函数零点,考查综合分析求解能力,属中于档题目.22.在直角坐标系xOy 中,倾斜角为α的直线l 经过坐标原点O ,曲线1C 的参数方程为22cos 2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数).以点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4sin ρθ=. (1)求l 与1C 的极坐标方程;(2)设l 与1C 的交点为O 、A ,l 与2C 的交点为O 、B ,且AB =,求α值.【答案】(1)l 的极坐标方程为()R θαρ=∈.1C 的极坐标方程为4cos ρθ=.(2)34πα= 【解析】(1)倾斜角为α的直线l 经过坐标原点O ,可以直接写出()R θαρ=∈; 利用22sin cos 1φφ+=,把曲线1C 的参数方程化为普通方程,然后再利用 222sin ,cos ,y x x y ρθρθρ===+,把普通方程化成极坐标方程;(2)设()1,A ρα,()2,B ρα,则14cos ρα=,24sin ρα=,已知AB =以有12ρρ-=运用二角差的正弦公式,可以得到sin 14πα⎛⎫-=± ⎪⎝⎭,根据倾斜角的范围,可以求出α值.【详解】解:(1)因为l 经过坐标原点,倾斜角为α,故l 的极坐标方程为()R θαρ=∈. 1C 的普通方程为()2224x y -+=,可得1C 的极坐标方程为4cos ρθ=.(2)设()1,A ρα,()2,B ρα,则14cos ρα=,24sin ρα=.所以124cos sin AB ρραα=-=- 4πα⎛⎫=- ⎪⎝⎭. 由题设sin 14πα⎛⎫-=± ⎪⎝⎭,因为0απ<<,所以34πα=. 【点睛】 本题考查了已知曲线的参数方程化成极坐标方程.重点考查了极坐标下求两点的距离. 23.已知()34f x x x =-+-.(1)如果关于x 的不等式()f x a <的解集不是空集,求参数a 的取值范围;(2)解不等式:()277f x x x ≥+-.【答案】(1)1a >;(2)(][),07,-∞⋃+∞.【解析】(1)作出函数()f x 的图象得其值域,从而得a 的范围;(2)作出函数()f x 和2()77g x x x =+-的图象,求出两图象交点坐标,后由图象可得不等式的解.【详解】解:(1)函数()34f x x x =-+-的图象如图①所示,所以()34f x x x =-+-的值域为[)1,+∞.所以关于x 的不等式()f x a <的解集不是空集的充要条件为1a >.(2)画出两个函数的图象,如图②所示.由方程22777x x x -=+-,(4x >),解得7x =(2x =-舍去).由方程27277x x x -=+-,(3x <),解得0x =(9x =舍去).()277f x x x ≥+-的解集为(][),07,-∞⋃+∞.【点睛】本题考查绝对值不等式,解题方法作出函数图象,通过图象得出参数范围,得出不等式的解.。

2004高考数学试题(全国4理)及答案

2004高考数学试题(全国4理)及答案

2004年高考试题全国卷Ⅳ理科数学(必修+选修Ⅱ)第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3 5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( )A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n ;B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //;D .如果m n m ,//,//αα、n 共面,那么n m //8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π 其中R 表示球的半径A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值.C19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率. 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围. 22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x ex f x将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.43 16.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++= 当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α 18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令 ,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f 在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512,图2Cy所以ξ的概率分布为根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD , 所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--=BD PA 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得EO=3,AE=23知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是.525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分. (Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x e x x e x x ex f x x x----=+-++-='由,0)(='x f 得.0sin 2=--x e x解出n n x ,π=为整数,从而,3,2,1,==n n x n π .)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=eq 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++= ),21(1-+++=n nq q q π),11()21(),2(122n nnn n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ 而).11(1n nn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq qq q n q q q q n q q q nq q q n q qq q n q q qn n n nn n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以.)1()1(lim 2221+-=-=+++∞→ππππe e q q n S S S n n。

高考数学全国普通高等学校招生统一考试4

高考数学全国普通高等学校招生统一考试4

高考数学全国普通高等学校招生统一考试上海 数学试卷(理工农医类)一.填空题(本大题满分48分)1.已知集合A ={-1,3,2m -1},集合B ={3,2m }.若B ⊆A ,则实数m = . 2.已知圆2x -4x -4+2y =0的圆心是点P ,则点P 到直线x -y -1=0的距离是 . 3.若函数)(x f =xa (a >0,且a ≠1)的反函数的图像过点(2,-1),则a = .4.计算:1lim 33+∞→n C nn = .5.若复数z 同时满足z --z =2i ,-z =iz (i 为虚数单位),则z = .6.如果αcos =51,且α是第四象限的角,那么)2cos(πα+= . 7.已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .8.在极坐标系中,O 是极点,设点A (4,3π),B (5,-65π),则△OAB 的面积是 .9.两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是 (结果用分数表示).10.如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是 . 11.若曲线2y =|x |+1与直线y =kx +b 没有公共点,则k 、b 分别应满足的条件是 . 12.三个同学对问题“关于x 的不等式2x +25+|3x -52x |≥ax 在[1,12]上恒成立,求实数a 的取值范围”提出各自的解题思路.甲说:“只须不等式左边的最小值不小于右边的最大值”.乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值”. 丙说:“把不等式两边看成关于x 的函数,作出函数图像”.参考上述解题思路,你认为他们所讨论的问题的正确结论,即a 的取值范围是 .二.选择题(本大题满分16分)13.如图,在平行四边形ABCD 中,下列结论中错误的是 [答]( ) (A )→--AB =→--DC ;(B )→--AD +→--AB =→--AC ;(C )→--AB -→--AD =→--BD ;(D )→--AD +→--CB =→0.14.若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的 [答]( )(A )充分非必要条件;(B )必要非充分条件;(C )充要条件;(D )非充分非必要条件.15.若关于x 的不等式x k )1(2+≤4k +4的解集是M ,则对任意实常数k ,总有[答]( ) (A )2∈M ,0∈M ; (B )2∉M ,0∉M ; (C )2∈M ,0∉M ; (D )2∉M ,0∈M . 16.如图,平面中两条直线1l 和2l 相交于点O ,对于平面上任意一点M ,若p 、q 分别是MA B D 1l M (p ,q )到直线1l 和2l 的距离,则称有序非负实数对(p ,q )是点M 的“距离坐标”.已知常数p ≥0,q ≥0,给出下列命题:①若p =q =0,则“距离坐标”为(0,0)的点 有且仅有1个;②若pq =0,且p +q ≠0,则“距离坐标”为 (p ,q )的点有且仅有2个;③若pq ≠0,则“距离坐标”为(p ,q )的点有且仅有4个. 上述命题中,正确命题的个数是 [答]( ) (A )0; (B )1; (C )2; (D )3.三.解答题(本大题满分86分)本大题共有6题,解答下列各题必须写出必要的步骤. 17.(本题满分12分) 求函数y =2)4cos()4cos(ππ-+x x +x 2sin 3的值域和最小正周期.[解]18.(本题满分12分)如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C 处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B 处救援(角度精确到1 )? [解]19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分)在四棱锥P -ABCD 中,底面是边长为2的菱形,∠DAB =60 ,对角线AC 与BD 相交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成的角为60.北 20 10 A B••C PDE(1)求四棱锥P-ABCD的体积;(2)若E是PB的中点,求异面直线DE与PA所成角的大小(结果用反三角函数值表示).[解](1)(2)20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分)在平面直角坐标系x O y中,直线l与抛物线2y=2x相交于A、B两点.(1)求证:“如果直线l过点T(3,0),那么→--OA→--⋅OB=3”是真命题;(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.[解](1)(2)21.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分)已知有穷数列{n a}共有2k项(整数k≥2),首项1a=2.设该数列的前n项和为n S ,且1+n a =n S a )1(-+2(n =1,2,┅,2k -1),其中常数a >1.(1)求证:数列{n a }是等比数列; (2)若a =2122-k ,数列{n b }满足n b =)(log 1212n a a a n⋅⋅⋅(n =1,2,┅,2k ),求数列{n b }的通项公式;(3)若(2)中的数列{n b }满足不等式|1b -23|+|2b -23|+┅+|12-k b -23|+|k b 2-23|≤4,求k 的值. [解](1)(2)(3)22.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分)已知函数y =x +xa有如下性质:如果常数a >0,那么该函数在(0,a ]上是减函数,在[a ,+∞)上是增函数.(1)如果函数y =x +x b2(x >0)的值域为[6,+∞),求b 的值;(2)研究函数y =2x +2x c (常数c >0)在定义域内的单调性,并说明理由;(3)对函数y =x +x a 和y =2x +2xa (常数a >0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数)(x F =n x x )1(2++n x x)1(2+(n 是正整数)在区间[21,2]上的最大值和最小值(可利用你的研究结论).[解](1)(2)(3)上海数学(理工农医类)参考答案高考上海 数学试卷(理)一.填空题1.解:由2211m m m =-⇒=,经检验,1m =为所求;2.解:由已知得圆心为:(2,0)P ,由点到直线距离公式得:2211d ==+; 3. 解:由互为反函数关系知,)(x f 过点(1,2)-,代入得:1122a a -=⇒=;4.解:33223333321(1)(2)321lim lim lim lim 161(1)3!(1)3!(1)3!n n n n n C n n n n n n n n n n n n→∞→∞→∞→∞-+---+====++++; 5.解:已知2211i Z iZ i Z i i⇒-=⇒==--;6.解:已知226cos()sin (1cos )2πααα⇒+=-=---=;7.解:已知222222242,23161164(23,0)b a bc y x a a b cF =⎧⎪==⎧⎪⎪⇒⇒=⇒+=⎨⎨-=⎪⎪⎩-⎪⎩为所求; 8. 解:如图△OAB 中,554,5,2(())366OA OB AOB ππππ==∠=---= 1545sin 526AOB S π∆⇒== (平方单位);9.解:分为二步完成: 1) 两套中任取一套,再作全排列,有124C P 种方法; 2) 剩下的一套全排列,有4P 种方法; 所以,所求概率为:12448135C P P P =; 10.解:正方体中,一个面有四条棱与之垂直,六个面,共构成24个“正交线面对”;而正方体的六个对角截面中,每个对角面又有两条面对角线与之垂直,共构成12个“正交线面对”,所以共有36个“正交线面对”;11.解:作出函数2||1=+y x 的图象, 如右图所示:所以,0,(1,1)k b =∈-;12.解:由2x +25+|3x -52x |≥225,112|5|ax x a x x x x≤≤⇒≤++-, 而2525210x x x x+≥=,等号当且仅当5[1,12]x =∈时成立; 且2|5|0x x -≥,等号当且仅当5[1,12]x =∈时成立;所以,2min 25[|5|]10a x x x x≤++-=,等号当且仅当5[1,12]x =∈时成立;故(,10]a ∈-∞;二.选择题(本大题满分16分)13.解:由向量定义易得, (C )选项错误;AB AD DB -=; 14.解: 充分性成立: “这四个点中有三点在同一直线上”有两种情况:1)第四点在共线三点所在的直线上,可推出“这四个点在同一平面上”; 2)第四点不在共线三点所在的直线上,可推出“这四点在唯一的一个平面内”;必要性不成立:“四个点在同一平面上”可能推出“两点分别在两条相交或平行直线上”; 故选(A ) 15.解:选(A )方法1:代入判断法,将2,0x x ==分别代入不等式中,判断关于k 的不等式解集是否为R ;方法2:求出不等式的解集; 16.解:选(D )① 正确,此点为点O ② 正确,注意到,p q 为常数,由,p q 中必有一个为零,另一个非零,从而可知有且仅有2个点,这两点在其中一条直线上,且到另一直线的距离为q (或p ); ③ 正确,四个交点为与直线1l 相距为p 的两条平行线和与直线2l 相距为q 的两条平行线的交点;三.解答题(本大题满分86分)本大题共有6题,解答下列各题必须写出必要的步骤. 17.(本题满分12分)求函数2cos()cos()44y x x x ππ=+-的值域和最小正周期.[解]2cos()cos()44y x x x ππ=+-22112(cos sin )22cos22sin(2)6x x xx x x π=-==+ ∴函数2cos()cos()44y x x x ππ=+-的值域是[2,2]-,最小正周期是π;18.(本题满分12分)如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C 处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B 处救援(角度精确到1︒)?A BD[解]连接BC,由余弦定理得BC2=202+102-2×20×10COS120°=700.于是,BC=107. ∵710120sin 20sin ︒=ACB , ∴sin ∠ACB=73,∵∠ACB<90° ∴∠ACB=41°∴乙船应朝北偏东71°方向沿直线前往B 处救援.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分)在四棱锥P -ABCD 中,底面是边长为2的菱形,∠DAB =60 ,对角线AC 与BD 相交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成的角为60 . (1)求四棱锥P -ABCD 的体积; (2)若E 是PB 的中点,求异面直线DE 与PA 所成角的大小(结果用 反三角函数值表示).[解](1)在四棱锥PABCD 中,由PO ⊥平面ABCD,得∠PBO 是PB 与平面ABCD 所成的角, ∠PBO=60°. 在Rt △AOB 中BO=ABsin30°=1, 由PO ⊥BO, 于是,PO=BOtg60°=3,而底面菱形的面积为23. ∴四棱锥PABCD 的体积V=31×23×3=2. (2)解法一:以O 为坐标原点,射线OB 、OC 、OP 分别为x 轴、y 轴、z 轴的正半轴建立 空间直角坐标系.在Rt △AOB 中OA=3,于是,点A 、B 、 D 、P 的坐标分别是A(0,-3,0), B(1,0,0),D(-1,0,0), P(0,0, 3). E 是PB 的中点,则E(21,0,23) 于是DE =(23,0, 23),AP =(0, 3,3).设AP 与DE 的夹角为θ,有cosθ=4233434923=+⋅+,θ=arccos 42,∴异面直线DE 与PA 所成角的大小是arccos42; PAB CDO E解法二:取AB 的中点F,连接EF 、DF.由E 是PB 的中点,得EF ∥PA , ∴∠FED 是异面直线DE 与PA 所成 角(或它的补角),在Rt △AOB 中AO=ABcos30°=3=OP , 于是, 在等腰Rt △POA 中, PA=6,则EF=26. 在正△ABD 和正△PBD 中,DE=DF=3,cos ∠FED=34621=DE EF=42∴异面直线DE 与PA 所成角的大小是arccos42.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分)在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点. (1)求证:“如果直线l 过点T (3,0),那么→--OA →--⋅OB =3”是真命题; (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.[解](1)设过点T(3,0)的直线l 交抛物线y2=2x 于点A(x1,y1)、B(x2,y2).当直线l 的钭率不存在时,直线l 的方程为x=3,此时,直线l 与抛物线相交于点A(3,6)、B(3,-6).∴OB OA ⋅=3;当直线l 的钭率存在时,设直线l 的方程为(3)y k x =-,其中0k ≠,由22(3)y x y k x =⎧⎨=-⎩得 2122606ky y k y y --=⇒=-又∵22112211,22x y x y ==, ∴2121212121()34OA OB x x y y y y y y =+=+=,综上所述,命题“如果直线l 过点T(3,0),那么OB OA ⋅=3”是真命题;(2)逆命题是:设直线l 交抛物线y2=2x 于A 、B 两点,如果OB OA ⋅=3,那么该直线过点T(3,0).该命题是假命题.例如:取抛物线上的点A(2,2),B(21,1),此时OA OB =3, 直线AB 的方程为:2(1)3y x =+,而T(3,0)不在直线AB 上;说明:由抛物线y2=2x 上的点A(x1,y1)、B(x2,y2)满足OB OA ⋅=3,可得y1y2=-6,或y1y2=2,如果y1y2=-6,可证得直线AB 过点(3,0);如果y1y2=2,可证得直线AB 过点(-1,0),而不过点(3,0).22.(本题满分18分,本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分) 已知函数y =x +xa有如下性质:如果常数a >0,那么该函数在(0,a ]上是减函数,在[a ,+∞)上是增函数.(1)如果函数y =x +x b2(x >0)的值域为[6,+∞),求b 的值;(2)研究函数y =2x +2x c (常数c >0)在定义域内的单调性,并说明理由;(3)对函数y =x +x a 和y =2x +2xa (常数a >0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数)(x F=n x x )1(2++n x x)1(2+(n 是正整数)在区间[21,2]上的最大值和最小值(可利用你的研究结论).[解](1)函数y=x+xb 2(x>0)的最小值是2b 2,则2b2=6, ∴b=log29.(2)设0<x1<x2,y2-y1=)1)((2221212221212222x x c x x x c x x c x ⋅--=--+. 当4c <x1<x2时, y2>y1, 函数y=22x cx +在[4c ,+∞)上是增函数; 当0<x1<x2<4c 时y2<y1, 函数y=22xc x +在(0,4c ]上是减函数.又y=22xc x +是偶函数,于是,该函数在(-∞,-4c ]上是减函数, 在[-4c ,0)上是增函数;(3)可以把函数推广为y=n nxax +(常数a>0),其中n 是正整数. 当n 是奇数时,函数y=n nxax +在(0,n a 2]上是减函数,在[n a 2,+∞) 上是增函数, 在(-∞,-n a 2]上是增函数, 在[-n a 2,0)上是减函数; 当n 是偶数时,函数y=nnxa x +在(0,n a 2]上是减函数,在[na 2,+∞) 上是增函数, 在(-∞,-n a 2]上是减函数, 在[-n a 2,0)上是增函数;F(x)=n x x )1(2++n x x )1(2+ =)1()1()1()1(323232321220n n nn r n r n r n n n n n n n x x C x x C x x C x x C ++++++++----因此F(x) 在 [21,1]上是减函数,在[1,2]上是增函数.所以,当x=21或x=2时,F(x)取得最大值(29)n+(49)n ;当x=1时F(x)取得最小值2n+1;21.(本题满分16分,本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分)已知有穷数列{n a }共有2k 项(整数k ≥2),首项1a =2.设该数列的前n 项和为n S ,且1+n a =n S a )1(-+2(n =1,2,┅,2k -1),其中常数a >1.(1)求证:数列{n a }是等比数列; (2)若a =2122-k ,数列{n b }满足n b =)(log 1212n a a a n⋅⋅⋅(n =1,2,┅,2k ),求数列{n b }的通项公式;(3)若(2)中的数列{n b }满足不等式|1b -23|+|2b -23|+┅+|12-k b -23|+|k b 2-23| ≤4,求k 的值. (1) [证明] 当n=1时,a2=2a,则12a a =a ; 2≤n≤2k -1时, an+1=(a -1) Sn+2, an=(a -1) Sn -1+2,an+1-an=(a -1) an, ∴nn a a 1+=a, ∴数列{an}是等比数列. (2)解:由(1)得an=2a 1-n , ∴a1a2…an=2n a )1(21-+++n =2n a 2)1(-n n =212)1(--+k n n n ,bn=1121]12)1([1+--=--+k n k n n n n(n=1,2,…,2k).(3)设bn≤23,解得n≤k+21,又n 是正整数,于是当n≤k 时, bn<23;当n≥k+1时, bn>23.原式=(23-b1)+(23-b2)+…+(23-bk)+(bk+1-23)+…+(b2k -23)=(bk+1+…+b2k)-(b1+…+bk)=]12)10(21[]12)12(21[k k kk k k k k k +--+-+--+=122-k k . 当122-k k ≤4,得k2-8k+4≤0, 4-23≤k≤4+23,又k≥2,∴当k=2,3,4,5,6,7时,原不等式成立.高考数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分)1.(5分)若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i2.(5分)已知集合A={x|x2﹣4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3)B.(1,4)C.(2,3)D.(2,4)3.(5分)要得到函数y=sin(4x﹣)的图象,只需要将函数y=sin4x的图象()个单位.A.向左平移B.向右平移C.向左平移D.向右平移4.(5分)已知菱形ABCD的边长为a,∠ABC=60°,则=()A.﹣a2 B.﹣a2 C.a2 D.a25.(5分)不等式|x﹣1|﹣|x﹣5|<2的解集是()A.(﹣∞,4)B.(﹣∞,1)C.(1,4)D.(1,5)6.(5分)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3 B.2 C.﹣2 D.﹣37.(5分)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.D.2π8.(5分)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P(μ﹣2σ<ξ<μ+2σ)=95.44%)A.4.56% B.13.59% C.27.18% D.31.74%9.(5分)一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为()A.﹣或﹣B.﹣或﹣C.﹣或﹣D.﹣或﹣10.(5分)设函数f(x)=,则满足f(f(a))=2f(a)的a的取值范围是()A.[,1] B.[0,1] C.[,+∞)D.[1,+∞)二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)观察下列各式:C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,当n∈N*时,C+C+C+…+C=.12.(5分)若“∀x∈[0,],tanx≤m”是真命题,则实数m的最小值为.13.(5分)执行右边的程序框图,输出的T的值为.14.(5分)已知函数f(x)=ax+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b=.15.(5分)平面直角坐标系xOy中,双曲线C1:﹣=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB的垂心为C2的焦点,则C1的离心率为.三、解答题16.(12分)设f(x)=sinxcosx﹣cos2(x+).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC 面积的最大值.17.(12分)如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.(Ⅰ)求证:BD∥平面FGH;(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.18.(12分)设数列{an}的前n项和为Sn,已知2Sn=3n+3.(Ⅰ)求{an}的通项公式;(Ⅱ)若数列{bn},满足anbn=log3an,求{bn}的前n项和Tn.19.(12分)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.20.(13分)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E 于A,B两点,射线PO交椭圆E于点Q.(i)求||的值;(ii)求△ABQ面积的最大值.21.(14分)设函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,(Ⅰ)讨论函数f(x)极值点的个数,并说明理由;(Ⅱ)若∀x>0,f(x)≥0成立,求a的取值范围.高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分)1.(5分)若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i【分析】直接利用复数的乘除运算法则化简求解即可.【解答】解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.【点评】本题考查复数的基本运算,基本知识的考查.2.(5分)已知集合A={x|x2﹣4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3)B.(1,4)C.(2,3)D.(2,4)【分析】求出集合A,然后求出两个集合的交集.【解答】解:集合A={x|x2﹣4x+3<0}={x|1<x<3},B={x|2<x<4},则A∩B={x|2<x<3}=(2,3).故选:C.【点评】本题考查集合的交集的求法,考查计算能力.3.(5分)要得到函数y=sin(4x﹣)的图象,只需要将函数y=sin4x的图象()个单位.A.向左平移B.向右平移C.向左平移D.向右平移【分析】直接利用三角函数的平移原则推出结果即可.【解答】解:因为函数y=sin(4x﹣)=sin[4(x﹣)],要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象向右平移单位.故选:B.【点评】本题考查三角函数的图象的平移,值域平移变换中x的系数是易错点.4.(5分)已知菱形ABCD的边长为a,∠ABC=60°,则=()A.﹣a2 B.﹣a2 C.a2 D.a2【分析】由已知可求,,根据=()•=代入可求【解答】解:∵菱形ABCD的边长为a,∠ABC=60°,∴=a2,=a×a×cos60°=,则=()•==故选:D.【点评】本题主要考查了平面向量数量积的定义的简单运算,属于基础试题5.(5分)不等式|x﹣1|﹣|x﹣5|<2的解集是()A.(﹣∞,4)B.(﹣∞,1)C.(1,4)D.(1,5)【分析】运用零点分区间,求出零点为1,5,讨论①当x<1,②当1≤x≤5,③当x>5,分别去掉绝对值,解不等式,最后求并集即可.【解答】解:①当x<1,不等式即为﹣x+1+x﹣5<2,即﹣4<2成立,故x<1;②当1≤x≤5,不等式即为x﹣1+x﹣5<2,得x<4,故1≤x<4;③当x>5,x﹣1﹣x+5<2,即4<2不成立,故x∈∅.综上知解集为(﹣∞,4).故选:A.【点评】本题考查绝对值不等式的解法,主要考查运用零点分区间的方法,考查运算能力,属于中档题.6.(5分)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3 B.2 C.﹣2 D.﹣3【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).则A(2,0),B(1,1),若z=ax+y过A时取得最大值为4,则2a=4,解得a=2,此时,目标函数为z=2x+y,即y=﹣2x+z,平移直线y=﹣2x+z,当直线经过A(2,0)时,截距最大,此时z最大为4,满足条件,若z=ax+y过B时取得最大值为4,则a+1=4,解得a=3,此时,目标函数为z=3x+y,即y=﹣3x+z,平移直线y=﹣3x+z,当直线经过A(2,0)时,截距最大,此时z最大为6,不满足条件,故a=2,故选:B.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.7.(5分)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.D.2π【分析】画出几何体的直观图,利用已知条件,求解几何体的体积即可.【解答】解:由题意可知几何体的直观图如图:旋转体是底面半径为1,高为2的圆柱,挖去一个相同底面高为1的倒圆锥,几何体的体积为:=.故选:C.【点评】本题考查几何体的体积的求法,考查空间想象能力以及计算能力.画出几何体的直观图是解题的关键.8.(5分)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P(μ﹣2σ<ξ<μ+2σ)=95.44%)A.4.56% B.13.59% C.27.18% D.31.74%【分析】由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%,可得P(3<ξ<6)=(95.44%﹣68.26%),即可得出结论.【解答】解:由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%,所以P(3<ξ<6)=(95.44%﹣68.26%)=13.59%.故选:B.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.9.(5分)一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为()A.﹣或﹣B.﹣或﹣C.﹣或﹣D.﹣或﹣【分析】点A(﹣2,﹣3)关于y轴的对称点为A′(2,﹣3),可设反射光线所在直线的方程为:y+3=k(x﹣2),利用直线与圆相切的性质即可得出.【解答】解:点A(﹣2,﹣3)关于y轴的对称点为A′(2,﹣3),故可设反射光线所在直线的方程为:y+3=k(x﹣2),化为kx﹣y﹣2k﹣3=0.∵反射光线与圆(x+3)2+(y﹣2)2=1相切,∴圆心(﹣3,2)到直线的距离d==1,化为24k2+50k+24=0,∴k=或﹣.故选:D.【点评】本题考查了反射光线的性质、直线与圆相切的性质、点到直线的距离公式、点斜式、对称点,考查了计算能力,属于中档题.10.(5分)设函数f(x)=,则满足f(f(a))=2f(a)的a的取值范围是()A.[,1] B.[0,1] C.[,+∞)D.[1,+∞)【分析】令f(a)=t,则f(t)=2t,讨论t<1,运用导数判断单调性,进而得到方程无解,讨论t≥1时,以及a<1,a≥1,由分段函数的解析式,解不等式即可得到所求范围.【解答】解:令f(a)=t,则f(t)=2t,当t<1时,3t﹣1=2t,由g(t)=3t﹣1﹣2t的导数为g′(t)=3﹣2tln2,在t<1时,g′(t)>0,g(t)在(﹣∞,1)递增,即有g(t)<g(1)=0,则方程3t﹣1=2t无解;当t≥1时,2t=2t成立,由f(a)≥1,即3a﹣1≥1,解得a≥,且a<1;或a≥1,2a≥1解得a≥0,即为a≥1.综上可得a的范围是a≥.故选:C.【点评】本题考查分段函数的运用,主要考查函数的单调性的运用,运用分类讨论的思想方法是解题的关键.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)观察下列各式:C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,当n∈N*时,C+C+C+…+C=4n﹣1.【分析】仔细观察已知条件,找出规律,即可得到结果.【解答】解:因为C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,可以看出等式左侧最后一项,组合数的上标与等式右侧的幂指数相同,可得:当n∈N*时,C+C+C+…+C=4n﹣1;故答案为:4n﹣1.【点评】本题考查归纳推理的应用,找出规律是解题的关键.12.(5分)若“∀x∈[0,],tanx≤m”是真命题,则实数m的最小值为1.【分析】求出正切函数的最大值,即可得到m的范围.【解答】解:“∀x∈[0,],tanx≤m”是真命题,可得tanx≤1,所以,m≥1,实数m的最小值为:1.故答案为:1.【点评】本题考查函数的最值的应用,命题的真假的应用,考查计算能力.13.(5分)执行右边的程序框图,输出的T的值为.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:赋值:n=1,T=1,判断1<3,执行T=1+=1+=1+,n=2;判断2<3,执行T=+==,n=3;判断3<3不成立,算法结束,输出T=.故答案为:.【点评】本题考查程序框图,考查定积分的求法,是基础题.14.(5分)已知函数f(x)=ax+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b=.【分析】对a进行分类讨论,分别题意和指数函数的单调性列出方程组,解得答案.【解答】解:当a>1时,函数f(x)=ax+b在定义域上是增函数,所以,解得b=﹣1,=0不符合题意舍去;当0<a<1时,函数f(x)=ax+b在定义域上是减函数,所以,解得b=﹣2,a=,综上a+b=,故答案为:【点评】本题考查指数函数的单调性的应用,以及分类讨论思想,属于中档题.15.(5分)平面直角坐标系xOy中,双曲线C1:﹣=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB的垂心为C2的焦点,则C1的离心率为.【分析】求出A的坐标,可得=,利用△OAB的垂心为C2的焦点,可得×(﹣)=﹣1,由此可求C1的离心率.【解答】解:双曲线C1:﹣=1(a>0,b>0)的渐近线方程为y=±x,与抛物线C2:x2=2py联立,可得x=0或x=±,取A(,),设垂心H(0,),则kAH==,∵△OAB的垂心为C2的焦点,∴×(﹣)=﹣1,∴5a2=4b2,∴5a2=4(c2﹣a2)∴e==.故答案为:.【点评】本题考查双曲线的性质,考查学生的计算能力,确定A的坐标是关键.三、解答题16.(12分)设f(x)=sinxcosx﹣cos2(x+).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC 面积的最大值.【分析】(Ⅰ)由三角函数恒等变换化简解析式可得f(x)=sin2x﹣,由2k≤2x≤2k,k∈Z可解得f(x)的单调递增区间,由2k≤2x≤2k,k∈Z可解得单调递减区间.(Ⅱ)由f()=sinA﹣=0,可得sinA,cosA,由余弦定理可得:bc,且当b=c 时等号成立,从而可求bcsinA≤,从而得解.【解答】解:(Ⅰ)由题意可知,f(x)=sin2x﹣=sin2x﹣=sin2x﹣由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;所以f(x)的单调递增区间是[k,k],(k∈Z);单调递减区间是:[k,k],(k∈Z);(Ⅱ)由f()=sinA﹣=0,可得sinA=,由题意知A为锐角,所以cosA=,由余弦定理a2=b2+c2﹣2bccosA,可得:1+bc=b2+c2≥2bc,即bc,且当b=c时等号成立.因此S=bcsinA≤,所以△ABC面积的最大值为.【点评】本题主要考查了正弦函数的图象和性质,余弦定理,基本不等式的应用,属于基本知识的考查.17.(12分)如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.(Ⅰ)求证:BD∥平面FGH;(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.【分析】(Ⅰ)根据AB=2DE便可得到BC=2EF,从而可以得出四边形EFHB为平行四边形,从而得到BE∥HF,便有BE∥平面FGH,再证明DE∥平面FGH,从而得到平面BDE∥平面FGH,从而BD∥平面FGH;(Ⅱ)连接HE,根据条件能够说明HC,HG,HE三直线两两垂直,从而分别以这三直线为x,y,z轴,建立空间直角坐标系,然后求出一些点的坐标.连接BG,可说明为平面ACFD的一条法向量,设平面FGH的法向量为,根据即可求出法向量,设平面FGH与平面ACFD所成的角为θ,根据cosθ=即可求出平面FGH与平面ACFD所成的角的大小.【解答】解:(Ⅰ)证明:根据已知条件,DF∥AC,EF∥BC,DE∥AB;△DEF∽△ABC,又AB=2DE,∴BC=2EF=2BH,∴四边形EFHB为平行四边形;∴BE∥HF,HF⊂平面FGH,BE⊄平面FGH;∴BE∥平面FGH;同样,因为GH为△ABC中位线,∴GH∥AB;又DE∥AB;∴DE∥GH;∴DE∥平面FGH,DE∩BE=E;∴平面BDE∥平面FGH,BD⊂平面BDE;∴BD∥平面FGH;(Ⅱ)连接HE,则HE∥CF;∵CF⊥平面ABC;∴HE⊥平面ABC,并且HG⊥HC;∴HC,HG,HE三直线两两垂直,分别以这三直线为x,y,z轴,建立如图所示空间直角坐标系,设HC=1,则:H(0,0,0),G(0,1,0),F(1,0,1),B(﹣1,0,0);连接BG,根据已知条件BA=BC,G为AC中点;∴BG⊥AC;又CF⊥平面ABC,BG⊂平面ABC;∴BG⊥CF,AC∩CF=C;∴BG⊥平面ACFD;∴向量为平面ACFD的法向量;设平面FGH的法向量为,则:,取z=1,则:;设平面FGH和平面ACFD所成的锐二面角为θ,则:c osθ=|cos|=;∴平面FGH与平面ACFD所成的角为60°.【点评】考查棱台的定义,平行四边形的定义,线面平行的判定定理,面面平行的判定定理及其性质,线面垂直的性质及线面垂直的判定定理,以及建立空间直角坐标系,利用空间向量求二面角的方法,平面法向量的概念及求法,向量垂直的充要条件,向量夹角余弦的坐标公式,平面和平面所成角的定义.18.(12分)设数列{an}的前n项和为Sn,已知2Sn=3n+3.(Ⅰ)求{an}的通项公式;(Ⅱ)若数列{bn},满足anbn=log3an,求{bn}的前n项和Tn.【分析】(Ⅰ)利用2Sn=3n+3,可求得a1=3;当n>1时,2Sn﹣1=3n﹣1+3,两式相减2an=2Sn﹣2Sn﹣1,可求得an=3n﹣1,从而可得{an}的通项公式;(Ⅱ)依题意,anbn=log3an,可得b1=,当n>1时,bn=31﹣n•log33n﹣1=(n﹣1)×31﹣n,于是可求得T1=b1=;当n>1时,Tn=b1+b2+…+bn=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),利用错位相减法可求得{bn}的前n项和Tn.【解答】解:(Ⅰ)因为2Sn=3n+3,所以2a1=31+3=6,故a1=3,当n>1时,2Sn﹣1=3n﹣1+3,此时,2an=2Sn﹣2Sn﹣1=3n﹣3n﹣1=2×3n﹣1,即an=3n﹣1,所以an=.(Ⅱ)因为anbn=log3an,所以b1=,当n>1时,bn=31﹣n•log33n﹣1=(n﹣1)×31﹣n,所以T1=b1=;当n>1时,Tn=b1+b2+…+bn=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),所以3Tn=1+(1×30+2×3﹣1+3×3﹣2+…+(n﹣1)×32﹣n),两式相减得:2Tn=+(30+3﹣1+3﹣2+…+32﹣n﹣(n﹣1)×31﹣n)=+﹣(n﹣1)×31﹣n=﹣,所以Tn=﹣,经检验,n=1时也适合,综上可得Tn=﹣.【点评】本题考查数列的求和,着重考查数列递推关系的应用,突出考查“错位相减法”求和,考查分析、运算能力,属于中档题.19.(12分)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.【分析】(Ⅰ)根据“三位递增数”的定义,即可写出所有个位数字是5的“三位递增数”;(Ⅱ)随机变量X的取值为:0,﹣1,1分别求出对应的概率,即可求出分布列和期望.【解答】解:(Ⅰ)根据定义个位数字是5的“三位递增数”有:125,135,145,235,245,345;(Ⅱ)由题意知,全部“三位递增数”的个数为,随机变量X的取值为:0,﹣1,1,当X=0时,可以选择除去5以外的剩下8个数字中选择3个进行组合,即;当X=﹣1时,首先选择5,由于不能被10整除,因此不能选择数字2,4,6,8,可以从1,3,7,9中选择两个数字和5进行组合,即;当X=1时,有两种组合方式,第一种方案:首先选5,然后从2,4,6,8中选择2个数字和5进行组合,即;第二种方案:首先选5,然后从2,4,6,8中选择1个数字,再从1,3,7,9中选择1个数字,最后把3个数字进行组合,即.则P(X=0)==,P(X=﹣1)==,P(X=1)==,。

高考数学普通高等学校招生全国统一考试数学理科4

高考数学普通高等学校招生全国统一考试数学理科4

高考数学普通高等学校招生全国统一考试数学(理科)本试卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页,非选择题部分3至4页。

满分150分,考试时间120分钟。

选择题部分(共50分)请考生按规定用笔将所有试题的答案涂、写在答题纸上。

1.答题前,考生务必将自己的姓名、准备考证号用黑色字迹的签字笔或钢笔分别填写在试卷个答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

参考公式:如果事件,A B 互斥,那么 柱体的体积公式()()()P A B P A P B +=+V sh =如果事件,A B 相互独立,那么 其中s 表示柱体的底面积,h 表示柱体的高()()()P A B P A P B ⋅=⋅ 锥体的体积公式 13V sh =一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设函数2,0(),0x x f x x x -≤⎧=⎨>⎩,若()4f a =,则实数a =(A )-4或-2 (B )-4或2 (C )-2或4 (D )-2或2 (2)把复数z 的共轭复数记作z ,i 为虚数单位,若z=1+i,则(1)z z +⋅= (A )3i - (B )3i + (C )13i + (D )3(3)若某几何体的三视图如图所示,则这个几何体的直观图可以是(4)下列命题中错误的是(A )如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β (B )如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β(C )如果平面α⊥平面γ,平面β⊥平面γ,l αβ⋂=,那么l ⊥平面γ (D )如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β(5)若02πα<<,02πβ-<<,1cos()43πα+=,cos ()42πβ-=cos ()2βα+= (A)3 (B)3- (C)9 (D)9-(6)设实数x 、y 是不等式组2502700,0x y x y x y +->⎧⎪+->⎨⎪≥≥⎩,若x 、y 为整数,则34x y +的最小值是(A )14 (B )16 (C )17 (D )19 (7)若a 、b 为实数,则“01ab <<”是“1a b <或1b a>”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(8)已知椭圆22122:1x y C a b+=(a >b >0)与双曲线 222:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则 (A )2132a =(B )2a =13 (C )212b = (D )2b =2(9)有5本不同的书,其中语文书2本,数学书2本,物理书1本。

高中数学试卷分析范文

高中数学试卷分析范文

**年普通高考山东数学卷,继承了以往山东试卷的特点。

试题在具有了连续性和稳定性的基础上,更具有了山东特色,适合山东中学教学实际,对山东省平稳推进素质教育起到很好的导向作用。

不仅如此,试卷还体现新课程改革中对情感、态度、价值观和探究能力考查的理念,丰富了数学试卷的内涵品质,在有利于高校选拔人才的同时,具备了一定的评价功能,同时还有利于课程改革的纵深推进。

试卷形式保持稳定,主要体现在大纲理念、试卷结构、题目数量以及题型等方面与20**年基本相同,保证了试题年度间的连续稳定。

另外在全国20**年全面推进新课程标准的大背景下,作为首批进入课程改革的实验省,20**年的试卷在保持“稳定”的基调下,进一步加深对课程改革的渗透,既体现了知识运用的灵活性和创造性,又兼顾了试题的连续和谐与稳定发展。

一、遵循考试说明,注重基础试卷紧扣我省的考试说明,体现了新课程理念,贴近教学实际,从考生熟悉的基础知识入手,无论是必修内容,还是选修内容,许多试题都属于常规题。

部分题目“源于教材,高于教材”,做足教材文章。

如文、理科的选择、填空以及解答题的入手题(17)和(18)题,均侧重于中学数学学科的基础知识和基本技能的考查,这对正确地引导中学数学教学都起到良好的促进作用。

二、考查全面,注重知识交汇点20**年山东省高考数学文理两科试卷全面考查了《20**年普通高等学校招生全国统一考试山东卷考试说明》中要求的内容,具有较为合理的覆盖面。

集合、复数、常用逻辑、线性规划、向量、算法与框图、排列组合等内容在选择、填空题中得到了有效的考查;三角函数、概率统计、立体几何、解析几何、函数与导数、数列等主干知识在解答题中得到考查,构成试卷的主体内容。

同时,文、理科试卷都注重了考查知识间的内在联系,在知识点的交汇处设计试题,如理科第(20)题,将概率知识和实际背景相结合;如文科第(21)题和理科第(22)题将函数、导数、方程和不等式的知识融为一体。

高考数学理科普通高等学校招生全国统一考试重庆卷4

高考数学理科普通高等学校招生全国统一考试重庆卷4

高考数学(理科)普通高等学校招生全国统一考试(重庆卷)一.填空题:本大题共10小题,每小题5分,共计50分。

在每小题给出的四个备选选项中,只有一个是符合题目要求的1.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S = A.7 B.15 C.20 D.25 【答案】B 【解析】15242451,5551522a a a a a a S ++==⇒=⨯=⨯=2.不等式0121≤+-x x 的解集为 A.⎥⎦⎤ ⎝⎛-1,21 B.⎥⎦⎤⎢⎣⎡-1,21 C.[)+∞⋃⎪⎭⎫ ⎝⎛-∞-,121. D.[)+∞⋃⎥⎦⎤ ⎝⎛-∞-,121,【答案】A【解析】(21)(1)01101210212x x x x x x +-≤⎧-≤⇔⇔-<≤⎨+≠+⎩3.对任意的实数k ,直线y=kx+1与圆222=+y x 的位置关系一定是 A.相离 B.相切 C.相交但直线不过圆心 D.相交且直线过圆心 【答案】C【解析】直线1y kx =+过圆内内一定点(0,1)4.8的展开式中常数项为A.1635 B.835 C.435 D.105 【答案】B取得次数为1:1(4:4),展开式中常数项为448135()28C ⨯=5、设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为(A )3 (B )1 (C )1 (D )3 【答案】A【解析】tan tan tan tan 3,tan tan 2,tan()31tan tan αβαβαβαβαβ++==+==--6、设,x y ∈R ,向量()()()4,2,,1,1,-===c y b x a ,且c b c a //,⊥,则_______=+b a (A )5 (B )10 (C )25 (D )10 【答案】B【解析】2402,//(3,1)10242x x a c b c a b y y -==⎧⎧⊥⇔⇔⇒+=-=⎨⎨=-=-⎩⎩7、已知()f x 是定义在R 上的偶函数,且以2为周期,则“()f x 为[0,1]上的增函数”是“()f x 为[3,4]上的减函数”的(A )既不充分也不必要的条件 (B )充分而不必要的条件 (C )必要而不充分的条件 (D )充要条件 【答案】D【解析】由()f x 是定义在R 上的偶函数及[0,1]双抗的增函数可知在[1,0]减函数,又2为周期,所以【3,4】上的减函数8、设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x '=-的图像如题(8)图所示,则下列结论中一定成立的是(A )函数()f x 有极大值(2)f 和极小值(1)f (B )函数()f x 有极大值(2)f -和极小值(1)f (C )函数()f x 有极大值(2)f 和极小值(2)f - (D )函数()f x 有极大值(2)f -和极小值(2)f 【答案】D【解析】1x >时,()012,()02f x x f x x ''<⇔<<>⇔>1x <时,()021,()02f x x f x x ''<⇔-<<>⇔<-得:()022,()02f x x f x x ''<⇔-<<>⇔<-或2x >函数()f x 有极大值(2)f -和极小值(2)f9、设四面体的六条棱的长分别为1,1,1,1和a ,且长为a 的棱异面,则a 的取值范围是(A ) (B ) (C ) (D ) 【答案】A的棱的中点与长为a 的端点,B C ;则2AB AC a BC ==⇒=<10、设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则A B 所表示的平面图形的面积为(A )34π (B )35π (C )47π (D )2π【答案】D【解析】由对称性:221,,(1)(1)1y x y x y x ≥≥-+-≤围成的面积与221,,(1)(1)1y x y x y x≤≥-+-≤围成的面积相等 得:A B 所表示的平面图形的面积为22,(1)(1)1y x x y ≤-+-≤围成的面积既2122R ππ⨯=二 填空题:本大题共5小题,每小题5分,共25分,把答案分别填写在答题卡相应位置上11、若()()12i i ++=a+bi ,其中,,a b R i ∈为虚数单位,则a b += ; 【答案】4【解析】(1)(2)131,34i i i a bi a b a b ++=+=+⇔==⇒+= 12、n = 。

高考数学试卷4

高考数学试卷4

高考数学试卷一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为.2.(5分)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为.3.(5分)设复数z满足z2=3+4i(i是虚数单位),则z的模为.4.(5分)根据如图所示的伪代码,可知输出的结果S为.5.(5分)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.6.(5分)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为.7.(5分)不等式2<4的解集为.8.(5分)已知tanα=﹣2,tan(α+β)=,则tanβ的值为.9.(5分)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.10.(5分)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.11.(5分)设数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),则数列{}的前10项的和为.12.(5分)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P 到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.13.(5分)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为.14.(5分)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(ak•ak+1)的值为.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.17.(14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.18.(16分)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.19.(16分)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.20.(16分)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括2124题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修41:几何证明选讲】21.(10分)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.【选修42:矩阵与变换】22.(10分)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.【选修44:坐标系与参数方程】23.已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.[选修45:不等式选讲】24.解不等式x+|2x+3|≥2.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.26.(10分)已知集合X={1,2,3},Yn={1,2,3,…,n)(n∈N*),设Sn={(a,b)|a整除b或b整除a,a∈X,B∈Yn},令f(n)表示集合Sn所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5.【分析】求出A∪B,再明确元素个数【解答】解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5【点评】题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.(5分)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6.【分析】直接求解数据的平均数即可.【解答】解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为:6.【点评】本题考查数据的均值的求法,基本知识的考查.3.(5分)设复数z满足z2=3+4i(i是虚数单位),则z的模为.【分析】直接利用复数的模的求解法则,化简求解即可.【解答】解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.【点评】本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5分)根据如图所示的伪代码,可知输出的结果S为7.【分析】模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I <8,退出循环,输出S的值为7.【解答】解:模拟执行程序,可得S=1,I=1满足条件I<8,S=3,I=4满足条件I<8,S=5,I=7满足条件I<8,S=7,I=10不满足条件I<8,退出循环,输出S的值为7.故答案为:7.【点评】本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5分)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.【分析】根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.【解答】解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=,故答案为:.【点评】本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.(5分)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为﹣3.【分析】直接利用向量的坐标运算,求解即可.【解答】解:向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.【点评】本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.7.(5分)不等式2<4的解集为(﹣1,2).【分析】利用指数函数的单调性转化为x2﹣x<2,求解即可.【解答】解;∵2<4,∴x2﹣x<2,即x2﹣x﹣2<0,解得:﹣1<x<2故答案为:(﹣1,2)【点评】本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.8.(5分)已知tanα=﹣2,tan(α+β)=,则tanβ的值为3.【分析】直接利用两角和的正切函数,求解即可.【解答】解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.【点评】本题考查两角和的正切函数,基本知识的考查.9.(5分)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.【分析】由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r.【解答】解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:.【点评】本题考查了圆柱与圆锥的体积公式,是基础的计算题.10.(5分)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2.【分析】求出圆心到直线的距离d的最大值,即可求出所求圆的标准方程.【解答】解:圆心到直线的距离d==≤,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.【点评】本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.11.(5分)设数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),则数列{}的前10项的和为.【分析】数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),利用“累加求和”可得an=.再利用“裂项求和”即可得出.【解答】解:∵数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),∴当n≥2时,an=(an﹣an﹣1)+…+(a2﹣a1)+a1=n+…+2+1=.当n=1时,上式也成立,∴an=.∴=2.∴数列{}的前n项的和Sn===.∴数列{}的前10项的和为.故答案为:.【点评】本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.12.(5分)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P 到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.【分析】双曲线x2﹣y2=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离.【解答】解:由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.【点评】本题考查双曲线的性质,考查学生的计算能力,比较基础.13.(5分)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g (x)|=1实根的个数为4.【分析】:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1,分别作出函数的图象,即可得出结论.【解答】解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有2个交点g(x)与φ(x)=﹣f(x)﹣1的图象如图所示,图象有两个交点;所以方程|f(x)+g(x)|=1实根的个数为4.故答案为:4.【点评】本题考查求方程|f(x)+g(x)|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.14.(5分)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(ak•ak+1)的值为.【分析】利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出.【解答】解:=+=++++=++=++,∴(ak•ak+1)=+++++++…+ ++++++…+=+0+0=.故答案为:9.【点评】本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.【分析】(1)直接利用余弦定理求解即可.(2)利用正弦定理求出C的正弦函数值,然后利用二倍角公式求解即可.【解答】解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+9﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB<BC,BC=,AB=2,角A=60°,在三角形ABC中,大角对大边,大边对大角,>2,∴角C<角A,角C为锐角.sinC>0,cosC>0则cosC===.因此sin2C=2sinCcosC=2×=.【点评】本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.【分析】(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)【方法一】先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.【方法二】建立空间直角坐标系,利用向量数量积证明异面直线垂直.【解答】证明:(1)如图所示,由据题意得,E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)【方法一】因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.【方法二】根据题意,A1C1⊥B1C1,CC1⊥平面A1B1C1,以C1为原点建立空间直角座标系,C1A1为x轴,C1B1为y轴,C1C为z轴,如图所示;设BC=CC1=a,AC=b,则A(b,0,a),B1(0,a,0),B(0,a,a),C1(0,0,0);∴=(﹣b,a,﹣a),=(0,﹣a,﹣a),∴•=﹣b×0+a×(﹣a)﹣a×(﹣a)=0,∴⊥,即AB1⊥BC1.【点评】本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题.17.(14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.【分析】(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,建立方程组,即可求a,b的值;(2)①求出切线l的方程,可得A,B的坐标,即可写出公路l长度的函数解析式f (t),并写出其定义域;②设g(t)=,利用导数,确定单调性,即可求出当t为何值时,公路l的长度最短,并求出最短长度.【解答】解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,得,解得,(2)①由(1)y=(5≤x≤20),P(t,),∴y′=﹣,∴切线l的方程为y﹣=﹣(x﹣t)设在点P处的切线l交x,y轴分别于A,B点,则A(,0),B(0,),∴f(t)==,t∈[5,20];②设g(t)=,则g′(t)=2t﹣=0,解得t=10,t∈(5,10)时,g′(t)<0,g(t)是减函数;t∈(10,20)时,g′(t)>0,g (t)是增函数,从而t=10时,函数g(t)有极小值也是最小值,∴g(t)min=300,∴f(t)min=15,答:t=10时,公路l的长度最短,最短长度为15千米.【点评】本题考查利用数学知识解决实际问题,考查导数知识的综合运用,确定函数关系,正确求导是关键.18.(16分)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.【分析】(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c 的关系,可得b,进而得到椭圆方程;(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.【解答】解:(1)由题意可得,e==,且c+=3,解得c=1,a=,则b=1,即有椭圆方程为+y2=1;(2)当AB⊥x轴,AB=,CP=3,不合题意;当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,则x1+x2=,x1x2=,则C(,),且|AB|=•=,若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;则k≠0,故PC:y+=﹣(x﹣),P(﹣2,),从而|PC|=,由|PC|=2|AB|,可得=,解得k=±1,此时AB的方程为y=x﹣1或y=﹣x+1.【点评】本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.19.(16分)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.【分析】(1)求导数,分类讨论,利用导数的正负,即可得出f(x)的单调性;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f (x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,进一步转化为a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,利用条件即可求c的值.【解答】解:(1)∵f(x)=x3+ax2+b,∴f′(x)=3x2+2ax,令f′(x)=0,可得x=0或﹣.a=0时,f′(x)>0,∴f(x)在(﹣∞,+∞)上单调递增;a>0时,x∈(﹣∞,﹣)∪(0,+∞)时,f′(x)>0,x∈(﹣,0)时,f′(x)<0,∴函数f(x)在(﹣∞,﹣),(0,+∞)上单调递增,在(﹣,0)上单调递减;a<0时,x∈(﹣∞,0)∪(﹣,+∞)时,f′(x)>0,x∈(0,﹣)时,f′(x)<0,∴函数f(x)在(﹣∞,0),(﹣,+∞)上单调递增,在(0,﹣)上单调递减;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)>0,且f(﹣)<0,∴b>0且+b<0,∵b=c﹣a,∴a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,∵函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),∴在(﹣∞,﹣3)上,g(a)<0且在(1,)∪(,+∞)上g(a)>0均恒成立,∴g(﹣3)=c﹣1≤0,且g()=c﹣1≥0,∴c=1,此时f(x)=x3+ax2+1﹣a=(x+1)[x2+(a﹣1)x+1﹣a],∵函数有三个零点,∴x2+(a﹣1)x+1﹣a=0有两个异于﹣1的不等实根,∴△=(a﹣1)2﹣4(1﹣a)>0,且(﹣1)2﹣(a﹣1)+1﹣a≠0,解得a∈(﹣∞,﹣3)∪(1,)∪(,+∞),综上c=1.【点评】本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,难度大.20.(16分)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.【分析】(1)根据等比数列和等差数列的定义即可证明;(2)利用反证法,假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,推出矛盾,否定假设,得到结论;(3)利用反证法,假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,得到a1n(a1+2d)n+2k=(a1+d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),利用等式以及对数的性质化简整理得到ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**),多次构造函数,多次求导,利用零点存在定理,推出假设不成立.【解答】解:(1)证明:∵==2d,(n=1,2,3,)是同一个常数,∴2,2,2,2依次构成等比数列;(2)令a1+d=a,则a1,a2,a3,a4分别为a﹣d,a,a+d,a+2d(a>d,a>﹣2d,d≠0)假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,则a4=(a﹣d)(a+d)3,且(a+d)6=a2(a+2d)4,令t=,则1=(1﹣t)(1+t)3,且(1+t)6=(1+2t)4,(﹣<t<1,t≠0),化简得t3+2t2﹣2=0(*),且t2=t+1,将t2=t+1代入(*)式,t(t+1)+2(t+1)﹣2=t2+3t=t+1+3t=4t+1=0,则t=﹣,显然t=﹣不是上面方程的解,矛盾,所以假设不成立,因此不存在a1,d,使得a1,a22,a33,a44依次构成等比数列.(3)假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,则a1n(a1+2d)n+2k=(a1+d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),分别在两个等式的两边同除以a12(n+k),a12(n+2k),并令t=,(t>,t≠0),则(1+2t)n+2k=(1+t)2(n+k),且(1+t)n+k(1+3t)n+3k=(1+2t)2(n+2k),将上述两个等式取对数,得(n+2k)ln(1+2t)=2(n+k)ln(1+t),且(n+k)ln(1+t)+(n+3k)ln(1+3t)=2(n+2k)ln(1+2t),化简得,2k[ln(1+2t)﹣ln(1+t)]=n[2ln(1+t)﹣ln(1+2t)],且3k[ln(1+3t)﹣ln(1+t)]=n[3ln(1+t)﹣ln(1+3t)],再将这两式相除,化简得,ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**)令g(t)=4ln(1+3t)ln(1+t)﹣ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t),则g′(t)=[(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t)],令φ(t)=(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t),则φ′(t)=6[(1+3t)ln(1+3t)﹣2(1+2t)ln(1+2t)+3(1+t)ln(1+t)],令φ1(t)=φ′(t),则φ1′(t)=6[3ln(1+3t)﹣4ln(1+2t)+ln(1+t)],令φ2(t)=φ1′(t),则φ2′(t)=>0,由g(0)=φ(0)=φ1(0)=φ2(0)=0,φ2′(t)>0,知g(t),φ(t),φ1(t),φ2(t)在(﹣,0)和(0,+∞)上均单调,故g(t)只有唯一的零点t=0,即方程(**)只有唯一解t=0,故假设不成立,所以不存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列.【点评】本题主要考查等差数列、等比数列的定义和性质,函数与方程等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力,属于难题.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括2124题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修41:几何证明选讲】21.(10分)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.【分析】直接利用已知条件,推出两个三角形的三个角对应相等,即可证明三角形相似.【解答】证明:∵AB=AC,∴∠ABD=∠C,又∵∠C=∠E,∴∠ABD=∠E,又∠BAE是公共角,可知:△ABD∽△AEB.【点评】本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力.【选修42:矩阵与变换】22.(10分)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.【分析】利用A=﹣2,可得A=,通过令矩阵A的特征多项式为0即得结论.【解答】解:由已知,可得A=﹣2,即==,则,即,∴矩阵A=,从而矩阵A的特征多项式f(λ)=(λ+2)(λ﹣1),∴矩阵A的另一个特征值为1.【点评】本题考查求矩阵及其特征值,注意解题方法的积累,属于中档题.【选修44:坐标系与参数方程】23.已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.【分析】先根据x=ρcosθ,y=ρsinθ,求出圆的直角坐标方程,求出半径.【解答】解:圆的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,可得ρ2﹣2ρcosθ+2ρsinθ﹣4=0,化为直角坐标方程为x2+y2﹣2x+2y﹣4=0,化为标准方程为(x﹣1)2+(y+1)2=6,圆的半径r=.【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式x=ρcosθ,y=ρsinθ,比较基础,[选修45:不等式选讲】24.解不等式x+|2x+3|≥2.【分析】思路1(公式法):利用|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);思路2(零点分段法):对x的值分“x≥”“x<”进行讨论求解.【解答】解法1:x+|2x+3|≥2变形为|2x+3|≥2﹣x,得2x+3≥2﹣x,或2x+3≤﹣(2﹣x),即x≥,或x≤﹣5,即原不等式的解集为{x|x≥,或x≤﹣5}.解法2:令|2x+3|=0,得x=.①当x≥时,原不等式化为x+(2x+3)≥2,即x≥,所以x≥;②x<时,原不等式化为x﹣(2x+3)≥2,即x≤﹣5,所以x≤﹣5.综上,原不等式的解集为{x|x≥,或x≤﹣5}.【点评】本题考查了含绝对值不等式的解法.本解答给出的两种方法是常见的方法,不管用哪种方法,其目的是去绝对值符号.若含有一个绝对值符号,利用公式法要快捷一些,其套路为:|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);|f(x)|≤g(x)⇔﹣g (x)≤f(x)≤g(x).可简记为:大于号取两边,小于号取中间.使用零点分段法时,应注意:同一类中取交集,类与类之间取并集.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.【分析】以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz.(1)所求值即为平面PAB的一个法向量与平面PCD的法向量的夹角的余弦值的绝对值,计算即可;(2)利用换元法可得cos2<,>≤,结合函数y=cosx在(0,)上的单调性,计算即得结论.【解答】解:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz如图,由题可知B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)∵AD⊥平面PAB,∴=(0,2,0),是平面PAB的一个法向量,∵=(1,1,﹣2),=(0,2,﹣2),设平面PCD的法向量为=(x,y,z),由,得,取y=1,得=(1,1,1),∴cos<,>==,∴平面PAB与平面PCD所成两面角的余弦值为;(2)∵=(﹣1,0,2),设=λ=(﹣λ,0,2λ)(0≤λ≤1),又=(0,﹣1,0),则=+=(﹣λ,﹣1,2λ),又=(0,﹣2,2),从而cos<,>==,设1+2λ=t,t∈[1,3],则cos2<,>==≤,当且仅当t=,即λ=时,|cos<,>|的最大值为,因为y=cosx在(0,)上是减函数,此时直线CQ与DP所成角取得最小值.又∵BP==,∴BQ=BP=.【点评】本题考查求二面角的三角函数值,考查用空间向量解决问题的能力,注意解题方法的积累,属于中档题.26.(10分)已知集合X={1,2,3},Yn={1,2,3,…,n)(n∈N*),设Sn={(a,b)|a整除b或b整除a,a∈X,B∈Yn},令f(n)表示集合Sn所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.【分析】(1)f(6)=6+2++=13;(2)根据数学归纳法的证明步骤,分类讨论,即可证明结论.【解答】解:(1)f(6)=6+2++=13;(2)当n≥6时,f(n)=.下面用数学归纳法证明:①n=6时,f(6)=6+2++=13,结论成立;②假设n=k(k≥6)时,结论成立,那么n=k+1时,Sk+1在Sk的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t﹣1)+5,此时有f(k+1)=f(k)+3=(k+1)+2++,结论成立;2)若k+1=6t+1,则k=6t,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立.综上所述,结论f(n)=n+[]+[]+2,对满足n≥6的自然数n均成立.【点评】本题考查数学归纳法,考查学生分析解决问题的能力,正确归纳是关键.高考数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分)1.(5分)若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i2.(5分)已知集合A={x|x2﹣4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3)B.(1,4)C.(2,3)D.(2,4)3.(5分)要得到函数y=sin(4x﹣)的图象,只需要将函数y=sin4x的图象()个单位.A.向左平移B.向右平移C.向左平移D.向右平移4.(5分)已知菱形ABCD的边长为a,∠ABC=60°,则=()A.﹣a2 B.﹣a2 C.a2 D.a25.(5分)不等式|x﹣1|﹣|x﹣5|<2的解集是()A.(﹣∞,4)B.(﹣∞,1)C.(1,4)D.(1,5)6.(5分)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3 B.2 C.﹣2 D.﹣37.(5分)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.D.2π8.(5分)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P(μ﹣2σ<ξ<μ+2σ)=95.44%)A.4.56% B.13.59% C.27.18% D.31.74%9.(5分)一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为()A.﹣或﹣B.﹣或﹣C.﹣或﹣D.﹣或﹣10.(5分)设函数f(x)=,则满足f(f(a))=2f(a)的a的取值范围是()A.[,1] B.[0,1] C.[,+∞)D.[1,+∞)二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)观察下列各式:C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,当n∈N*时,C+C+C+…+C=.12.(5分)若“∀x∈[0,],tanx≤m”是真命题,则实数m的最小值为.13.(5分)执行右边的程序框图,输出的T的值为.14.(5分)已知函数f(x)=ax+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b=.15.(5分)平面直角坐标系xOy中,双曲线C1:﹣=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB的垂心为C2的焦点,则C1的离心率为.三、解答题16.(12分)设f(x)=sinxcosx﹣cos2(x+).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC 面积的最大值.17.(12分)如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.(Ⅰ)求证:BD∥平面FGH;(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.18.(12分)设数列{an}的前n项和为Sn,已知2Sn=3n+3.(Ⅰ)求{an}的通项公式;(Ⅱ)若数列{bn},满足anbn=log3an,求{bn}的前n项和Tn.19.(12分)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.20.(13分)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E 于A,B两点,射线PO交椭圆E于点Q.(i)求||的值;(ii)求△ABQ面积的最大值.21.(14分)设函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,(Ⅰ)讨论函数f(x)极值点的个数,并说明理由;(Ⅱ)若∀x>0,f(x)≥0成立,求a的取值范围.高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分)1.(5分)若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i【分析】直接利用复数的乘除运算法则化简求解即可.【解答】解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.【点评】本题考查复数的基本运算,基本知识的考查.2.(5分)已知集合A={x|x2﹣4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3)B.(1,4)C.(2,3)D.(2,4)【分析】求出集合A,然后求出两个集合的交集.【解答】解:集合A={x|x2﹣4x+3<0}={x|1<x<3},B={x|2<x<4},则A∩B={x|2<x<3}=(2,3).故选:C.【点评】本题考查集合的交集的求法,考查计算能力.3.(5分)要得到函数y=sin(4x﹣)的图象,只需要将函数y=sin4x的图象()个单位.A.向左平移B.向右平移C.向左平移D.向右平移【分析】直接利用三角函数的平移原则推出结果即可.【解答】解:因为函数y=sin(4x﹣)=sin[4(x﹣)],要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象向右平移单位.故选:B.【点评】本题考查三角函数的图象的平移,值域平移变换中x的系数是易错点.4.(5分)已知菱形ABCD的边长为a,∠ABC=60°,则=()A.﹣a2 B.﹣a2 C.a2 D.a2【分析】由已知可求,,根据=()•=代入可求【解答】解:∵菱形ABCD的边长为a,∠ABC=60°,∴=a2,=a×a×cos60°=,则=()•==故选:D.【点评】本题主要考查了平面向量数量积的定义的简单运算,属于基础试题5.(5分)不等式|x﹣1|﹣|x﹣5|<2的解集是()。

高考数学真题全国卷(汇总5篇)

高考数学真题全国卷(汇总5篇)

高考数学真题全国卷(汇总5篇)1.高考数学真题全国卷第1篇一、正余弦定理正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径余弦定理:a2=b2+c2-2bc*cosA二、两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)三、倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a四、半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))五、和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB2.高考数学真题全国卷第2篇集合与函数内容子交并补集,还有幂指对函数。

2020高考全国卷 4月联考数学(理科)试题(word版,含解析)

2020高考全国卷 4月联考数学(理科)试题(word版,含解析)

2020高考全国卷4月联考数学(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z满足1(ii i z-=-为虚数单位),则2z=()A.1+ iB.1-iC.2iD. -2i2.已知集合A=2{|13},{|2940},x x B y y y-≤<=-+≤则A∩B=()A.{x|-1≤x≤4}1.{|3}2B x x≤< C.{x|-1≤x<3} D.∅3.实数x,y满足不等式组1,22,22,x yx yx y+≤⎧⎪-≥-⎨⎪+≥-⎩则目标函数z=2x+ y的最大值为()A.3B.4C.5D.64.三只小松鼠小芳、小松和点点住在同一-棵大松树上,一天它们在一起玩智力游戏.小芳说:今天我们三个有的吃了松子;小松说:今天我们三个有的没吃松子;点点说:今天我没吃松子.已知它们三个中只有一个说的是真的,则以下判断正确的是()A.全吃了B.全没吃C.有的吃了D.有的没吃5.已知3sin(15),5α︒+=则cos(30)α︒-=()72.A2.B-72.C272.D2-6.已知函数||sin()xxf xe=,则函数y= f(x)的大致图象是7.志愿者团队安排去甲、乙、丙、丁四个精准扶贫点慰问的先后顺序,一位志愿者说:不能先去甲,甲的困难户最多;另一位志愿者说:不能最后去丁,丁离得最远.他们总共有多少种不同的安排方法( )A.14B.12C.24D.288.已知函数()sin()f x A x ωϕ=+(其中A 0,0,||)2πωϕ>>≤离原点最近的对称轴为0,x x =若满足0||,6x π≤,则称f(x)为“近轴函数”.若函数y = 2sin(2x -φ )是"近轴函数" ,则φ的取值范围是( )[,]62A ππ⋅ .[,]26B ππ-- .[,][,]2662C ππππ--⋃ .[,0][0,]66D ππ-⋃ 9.北宋徽宗在崇宁年间(1102年一1106 年)铸造崇宁通宝钱,因为崇宁通宝版别多样、铜质细腻、铸工精良,钱文为宋徽宗亲笔书写的“瘦金体”,所以后人写诗赞美日:“风流天子书崇观,铁线银钩字字端”.崇宁通宝被称为我国钱币铸造史上的一个巅峰铜钱直径3.5厘米,中间穿口为边长为0.9厘米的正方形.用一根细线把铜钱悬挂在树枝上,假定某位射手可以射中铜钱,但是射在什么位置是随机的(箭头的大小不计).这位射手射中穿口的概率最接近()1.6A 1.8B 1.10C 1.12D第9题图 第10题图 10.已知四棱锥S- ABCD 的底面是等腰梯形,AB// CD,AD= DC= BC= 1,AB =SA=2,且SA ⊥平面ABCD ,则四棱锥S - ABCD 的外接球的体积为( )A.8π 82.3B π .82C π 2.3D π 11.已知椭圆2222:1(0)x y E a b a b+=>>,直线20x -=与椭圆E 交于点P,与直线2(a x c c ==22a b -)交于点Q,O 为坐标原点,且2,OQ OP =u u u r u u r 则椭圆E 的离心率为() 1.2A 1.4B 3C 3D12.已知函数32()3f x x ax ax b =+++的图象在点(1,f(1))处的切线方程为y= -12x+ m,若函数f(x)至少有两个不同的零点,则实数b 的取值范围是()A.( -5,27)B.[-5,27]C.(-1,3]D.[-1,3] 二、填空题:本题共4小题,每小题5分,共20分.13.已知函数2,0,()(2),0,x e x f x f x x ⎧+≤=⎨->⎩则f(2020)=____14.已知点O 为坐标原点,向量(1,2),(,),OA OB x y ==u u u r u u u r 且10,OA OB ⋅=u u u r u u u r ||OB uuu r 的最小值____15.已知△ABC 中,角A,B,C 所对的边分别为a,b,c.满足2230,a c b ABC -+=V 的面积S =且A= 60°,则△ABC 的周长为____ 16.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1212,,||10.F F F F =P 为双曲线右支上的一点,直线1PF 交y 轴于点M,交双曲线C 的一条渐近线于点N,且M 是1PF 的中点MN =u u u u r 2,NP uuu r 则双曲线C 的标准方程为____三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知正项数列{}n a 的前n 项和为,n S 满足242n n n S a a =+.等比数列{}n b 满足1122,.a b a b ==( I )求数列{}n a 与数列{n b }的通项公式;(II )若,n n n c a b =⋅,求数列{}n c 的前n 项和.n T18.(12分)如图,已知四棱锥S- ABCD 的底面ABCD 为直角梯形,AB// CD,AD ⊥CD,且AB= AD= 1, SC=2,SD CD SA ===E 为SC 的中点.( I )求证: BE//平面SAD;(II)求平面SAD 与平面SBC 所成的锐二面角的正弦值.19.(12分)已知抛物线2:2(0)C x py p =>与直线l:y= kx+2交于A,B 两点,O 为坐标原点.当k= 1时,OA ⊥OB. ( I )求抛物线C 的标准方程;(II)点F 为抛物线C 的焦点,求△FAB 面积的最小值.20.(12分) 已知函数2()2(1)1x e x e f x x e x e--=+-++ (I)求函数f(x)的单调区间; (II)设函数2ln(1)()()2(1)1x F x f x x e x m x -=-++++-,若F(x)≤0对任意x> 1恒成立,求实数m 的取值范围.21.(12分)2019年6月6日,中国商务部正式下发5G 商用牌照,中国正式进入5G 商用元年.在5G 基站的建设中对零部件的要求非常严格,一次质检人员发现有1个次品部件混入了5个正品部件中.从外观看这6个部件是完全一-样的,5 个正品部件一样重,1 个次品部件略轻一些现有两个方案通过用电子秤称重的办法把次品部件挑出来.A 方案:逐一称重,称重一次不能确定是否是次品部件,称重两次,若重量相同则都是正品部件如果有1个较轻,则是次品部件,结束称重.依次进行,直到挑出次品部件. B 方案:把6个部件任意分成3组,每组2个,然后称重.(I)分析A,B两个方案,分别求出恰好称重3次挑出次品部件的概率;(II)如果称重一次需要2分钟,试比较A, B两个方案哪一个用时更少,并说明原因.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题记分,作答时,请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系x0y中,已知直线l的参数方程为1cos1sinx ty tαα=+⎧⎨=+⎩(α∈R,t为参数).以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ+2cosθ=0.( I )求曲线C的直角坐标方程;(II)若曲线C上的点到直线l1,求tanα的值.23.[选修4-5:不等式选讲](10分)已知函数f(x)= |x+a| +|x-1|.( I )当a=2时,解关于x的不等式f(x)- x≥8;(II )若关于x的不等式f(x)≤|x-5|在[0,2]上恒成立,求实数a的取值范围.。

高考数学普通高等学校招生全国统一考试 江苏卷4

高考数学普通高等学校招生全国统一考试 江苏卷4

(第5高考数学普通高等学校招生全国统一考试 (江苏卷)数学Ⅰ 注意事项绝密★启用前考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题).本卷满分为160分.考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符.4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上. 1.函数42sin(3π-=xy 的最小正周期为▲.解析:2==2T ππ 2.设2)2(i z -=(i 为虚数单位),则复数z 的模为▲.解析:34,Z i Z =-=3.双曲线191622=-y x 的两条渐近线的方程为▲ . 解析:3y=4x ±4.集合{}1,0,1-共有▲个子集. 解析:328=(个)5.右图是一个算法的流程图,则输出的n 的值是 ▲解析:经过了两次循环,n 值变为36.抽样统计甲,乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为▲. 解析:易知均值都是90,乙方差较小,()()()()()()()22222221118990909091908890929025ni i s x xn ==-=-+-+-+-+-=∑7.现有某类病毒记作n m Y X ,其中正整数)9,7(,≤≤n m n m 可以任意选取,则n m ,都取到奇数的概率为▲ . 解析:m 可以取的值有:1,2,3,4,5,6,7共7个 n 可以取的值有:1,2,3,4,5,6,7,8,9共9个所以总共有7963⨯=种可能 符合题意的m 可以取1,3,5,7共4个 符合题意的n 可以取1,3,5,7,9共5个 所以总共有4520⨯=种可能符合题意 所以符合题意的概率为20638.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1,,AA AC AB 的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ▲ .解析:112211111334224ADE ABC V S h S h V ==⨯⨯=所以121:24V V =9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是▲ .解析:易知切线方程为:21y x =-所以与两坐标轴围成的三角形区域三个点为()()()0,00.5,00,1A B C - 易知过C 点时有最小值2-,过B 点时有最大值0.510.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若DE 21λλ+=(21,λλ为实数),则21λλ+的值为▲.解析: 易知()121212232363DE AB BC AB AC AB AB AC =+=+-=-+ 所以1212λλ+=11.已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为▲ . 解析:因为)(x f 是定义在R 上的奇函数,所以易知0x ≤时,2()4f x x x =-- 解不等式得到x x f >)(的解集用区间表示为()()5,05,-+∞12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d .若126d d =,则椭圆的离心率为▲ .解析:由题意知2212,bc a b d d c a c c==-=所以有2b c =两边平方得到2246a b c =,即42246a a c c -= 两边同除以4a 得到2416e e -=,解得213e =,即3e = 13.平面直角坐标系xOy 中,设定点),(a a A ,P 是函数)0(1>=x xy 图像上一动点,若点A P ,之间最短距离为22,则满足条件的实数a 的所有值为▲ . 解析: 由题意设()0001,,0P x x x ⎛⎫> ⎪⎝⎭则有()222222200000200000111112++2=+-2+22PA x a a x a x a x a x a x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 令()001t 2x t x +=≥ 则()222=(t)=t 2222PA f at a t -+-≥ 对称轴t a = 1.2a ≤时,22min 2(2)2422428PA f a a a a ==-+∴-+=1a =- , 3a =(舍去)2.2a >时,22min 2()228PA f a a a ==-∴-=a = ,a =综上1a =-或a =14.在正项等比数列{}n a 中,215=a ,376=+a a .则满足n n a a a a a a a a ......321321>++++的最大正整数n 的值为▲ . 解析:2252552667123123115521155223 (1),.222222011522360022n n n n n n n n n n a a a a a a a a a a q a q q a a n nq n q n q a -------=+=+-+=∴++++>∴->∴->>-∴-><<=>∴==n N +∈112,n n N +∴≤≤∈又12n =时符合题意,所以n 的最大值为12二、解答题:本大题共6小题,共计90分。

高考数学试卷及参考答案理4

高考数学试卷及参考答案理4

高考数学试卷及参考答案(理)果实饱满鲜嫩水灵鸽子、燕子象征和平乳燕初飞婉转悦耳莺歌燕舞翩然归来麻雀、喜鹊枝头嬉戏灰不溜秋叽叽喳喳鹦鹉鹦鹉学舌婉转悦耳笨嘴学舌啄木鸟利嘴如铁钢爪如钉鸡鸭鹅神气活现昂首挺胸肥大丰满自由自在引吭高歌马腾空而起狂奔飞驰膘肥体壮昂首嘶鸣牛瘦骨嶙峋行动迟缓俯首帖耳膘肥体壮车川流不息呼啸而过穿梭往来缓缓驶离船一叶扁舟扬帆远航乘风破浪雾海夜航追波逐浪飞机划破云层直冲云霄穿云而过银鹰展翅学习用品美观实用小巧玲珑造型优美设计独特玩具栩栩如生活泼可爱惹人喜爱爱不释手彩虹雨后彩虹彩桥横空若隐若现光芒万丈雪大雪纷飞大雪封山鹅毛大雪漫天飞雪瑞雪纷飞林海雪原风雪交加霜雪上加霜寒霜袭人霜林尽染露垂露欲滴朝露晶莹日出露干雷电电光石火雷电大作惊天动地春雷滚滚电劈石击雷电交加小雨阴雨连绵牛毛细雨秋雨连绵随风飘洒大雨倾盆大雨狂风暴雨大雨滂沱瓢泼大雨大雨淋漓暴雨如注风秋风送爽金风送爽北风呼啸微风习习寒风刺骨风和日丽雾大雾迷途云雾茫茫雾似轻纱风吹雾散云消雾散云彩云满天天高云淡乌云翻滚彤云密, 布霞彩霞缤纷晚霞如火朝霞灿烂丹霞似锦星最远的地方:天涯海角最远的分离:天壤之别最重的话:一言九鼎最可靠的话:一言为定其它成语一、描写人的品质:平易近人宽宏大度冰清玉洁持之以恒锲而不舍废寝忘食大义凛然临危不俱光明磊落不屈不挠鞠躬尽瘁死而后已二、描写人的智慧:料事如神足智多谋融会贯通学贯中西博古通今才华横溢出类拔萃博大精深集思广益举一反三三、描写人物仪态、风貌:憨态可掬文质彬彬风度翩翩相貌堂堂落落大方斗志昂扬意气风发, 威风凛凛容光焕发神采奕奕四、描写人物神情、情绪:悠然自得眉飞色舞喜笑颜开神采奕奕欣喜若狂呆若木鸡喜出望外垂头丧气无动于衷勃然大怒五、描写人的口才:能说会道巧舌如簧能言善辩滔滔不绝伶牙俐齿, 出口成章语惊四座娓娓而谈妙语连珠口若悬河六、来自历史故事的成语:三顾茅庐铁杵成针望梅止渴完璧归赵四面楚歌负荆请罪精忠报国手不释卷悬梁刺股凿壁偷光七、描写人物动作:走马——花欢呼雀跃扶老携幼手舞足蹈促膝谈心前俯后仰奔走相告跋山涉水前赴后继张牙舞爪八、描写人间情谊:恩重如山深情厚谊手足情深形影不离血浓于水志同道合风雨同舟赤诚相待肝胆相照生死相依九、说明知事晓理方面:循序渐进日积月累温故——新勤能补拙笨鸟先飞学无止境学海无涯滴水穿石发奋图强开卷有益十、来自寓言故事的成语:夏天的, 景色鸟语蝉鸣万木葱茏枝繁叶茂莲叶满池秋天秋高气爽天高云淡秋风送爽秋菊怒放秋菊傲骨秋色迷人秋色宜人金桂飘香秋天的景色果实累累北雁南飞满山红叶五谷丰登芦花飘扬冬天天寒地冻北风呼啸滴水成冰寒冬腊月瑞雪纷飞冰天雪地冬天的景色冰封雪盖漫天飞雪白雪皑皑冰封大地冰天雪地早晨东方欲晓旭日东升万物初醒空气清醒雄鸡报晓晨雾弥漫晨光绚丽中午烈日当头丽日临空艳阳高照万里无云碧空如洗傍晚日落西山夕阳西斜残阳如血炊烟四起百鸟归林华灯初上夜幕低垂日薄西山夜晚夜深人静月明星稀夜色柔美夜色迷人深更半夜漫漫长夜城镇风光秀丽人山人海车水马龙宁静和谐村庄草木苍翠竹篱瓦舍山幽路辟小桥流水大楼、饭店直指青云古色古香青砖素瓦耸入碧云工厂机器轰鸣铁流直泻热气腾腾钢花飞溅商店粉饰一新门可罗雀冷冷清清错落有致馆场富丽堂皇设施齐全气势雄伟金碧辉煌学校风景如画闻名遐迩桃李满天下车站、码头井然有序杂乱无章布局巧妙错落有致街道宽阔平坦崎岖不平拥挤不堪畅通无阻花花红柳绿花色迷人花香醉人花枝招展百花齐放百花盛开百花争艳, 绚丽多彩五彩缤纷草绿草如, 标准答案一、填空题。

2004年高考.全国卷Ⅳ.理科数学试题及答案(甘肃、青海、宁夏、贵州、新疆等地区)

2004年高考.全国卷Ⅳ.理科数学试题及答案(甘肃、青海、宁夏、贵州、新疆等地区)

2.函数 y e2x (x R) 的反函数为
C.{1,2}
D.{0,2}
()
A. y 2 ln x(x 0)
B. y ln(2x)(x 0)
C. y 1 ln x(x 0) 2
D. y 1 ln 2x(x 0) 2
3.过点(-1,3)且垂直于直线 x 2 y 3 0 的直线方程为
回答不正确得-100 分.假设这名同学每题回答正确的概率均为 0.8,且各题回答正确与否相 互之间没有影响.
(Ⅰ)求这名同学回答这三个问题的总得分 的概率分布和数学期望;
(Ⅱ)求这名同学总得分不为负分(即 ≥0)的概率.
20.(本小题满分 12 分)
∠B=30°,△ABC 的面积为 3 ,那么 b= 2
()
购买 1951 年至今各地全部高考数学试卷及答案 word 版+微信 “hehezmv”
资料下载来源:高中数学教师群:247360252,高中数学学生解题交 流群:536036395,高中数学秒杀方法群:677837127,
1 3
A.
2
B.1 3
D.如果 m //, n //, m 、n 共面,那么 m // n 8.已知椭圆的中心在原点,离心率 e 1 ,且它的一个焦点与抛物线 y 2 4x 的焦点重合,
2
则此椭圆方程为
()
x2
A.
y2
1
43
x2
B.
y2
1
86
C. x 2 y 2 1 2
D. x 2 y 2 1 4
9.从 5 位男教师和 4 位女教师中选出 3 位教师,派到 3 个班担任班主任(每班 1 位班主任),
19.(本小题满分 12 分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得 100 分,

高考数学试卷理科0044

高考数学试卷理科0044

高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)是z的共轭复数,若z+=2,(z ﹣)i=2(i为虚数单位),则z=()A.1+i B.﹣1﹣i C.﹣1+i D.1﹣i2.(5分)函数f(x)=ln(x2﹣x)的定义域为()A.(0,1)B.[0,1] C.(﹣∞,0)∪(1,+∞)D.(﹣∞,0]∪[1,+∞)3.(5分)已知函数f(x)=5|x|,g(x)=ax2﹣x(a∈R),若f[g(1)]=1,则a=()A.1 B.2 C.3 D.﹣14.(5分)在△ABC中,内角A,B,C的对边分别为a,b,c,若c2=(a﹣b)2+6,C=,则△ABC的面积为()A.3 B .C .D.35.(5分)一几何体的直观图如图所示,下列给出的四个俯视图中正确的是()A .B .C .D .6.(5分)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()表1成绩不及格及格总计性别男 6 14 20女10 22 32总计16 36 52表2好差总计视力性别男 4 16 20女12 20 32总计16 36 52表3偏高正常总计智商性别男8 12 20女8 24 32总计16 36 52表4阅读量丰富不丰富总计性别男14 6 20女 2 30 32总计16 36 52A.成绩B.视力C.智商D.阅读量7.(5分)阅读如图程序框图,运行相应的程序,则程序运行后输出的结果为()A.7 B.9 C.10 D.118.(5分)若f(x)=x2+2f(x)dx ,则f(x)dx=()A.﹣1 B .﹣C .D.19.(5分)在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y﹣4=0相切,则圆C面积的最小值为()A .πB .πC.(6﹣2)πD .π10.(5分)如图,在长方体ABCD﹣A1B1C1D1中,AB=11,AD=7,AA1=12.一质点从顶点A射向点E(4,3,12),遇长方体的面反射(反射服从光的反射原理),将第i﹣1次到第i次反射点之间的线段记为li(i=2,3,4),l1=AE,将线段l1,l2,l3,l4竖直放置在同一水平线上,则大致的图形是()A.B.C.D.二、选做题:请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题记分,本题共5分,在每小题给出的四个选项中,只有一项是符合题目要求的.不等式选做题11.(5分)对任意x,y∈R,|x﹣1|+|x|+|y﹣1|+|y+1|的最小值为()A.1 B.2 C.3 D.4坐标系与参数方程选做题12.若以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,则线段y=1﹣x (0≤x≤1)的极坐标方程为()A.ρ=,0≤θ≤B.ρ=,0≤θ≤C.ρ=cosθ+sinθ,0≤θ≤D.ρ=cosθ+sinθ,0≤θ≤三、填空题:本大题共4小题,每小题5分,共20分13.(5分)10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是.14.(5分)若曲线y=e﹣x上点P的切线平行于直线2x+y+1=0,则点P的坐标是.15.(5分)已知单位向量与的夹角为α,且cosα=,向量=3﹣2与=3﹣的夹角为β,则cosβ=.16.(5分)过点M(1,1)作斜率为﹣的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于.五、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤17.(12分)已知函数f(x)=sin(x+θ)+acos(x+2θ),其中a∈R,θ∈(﹣,)(1)当a=,θ=时,求f(x)在区间[0,π]上的最大值与最小值;(2)若f()=0,f(π)=1,求a,θ的值.18.(12分)已知首项是1的两个数列{an},{bn}(bn≠0,n∈N*)满足anbn+1﹣an+1bn+2bn+1bn=0.(1)令cn=,求数列{cn}的通项公式;(2)若bn=3n﹣1,求数列{an}的前n项和Sn.19.(12分)已知函数f(x)=(x2+bx+b)(b∈R)(1)当b=4时,求f(x)的极值;(2)若f(x)在区间(0,)上单调递增,求b的取值范围.20.(12分)如图,四棱锥P﹣ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.(1)求证:AB⊥PD;(2)若∠BPC=90°,PB=,PC=2,问AB为何值时,四棱锥P﹣ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.21.(13分)如图,已知双曲线C:﹣y2=1(a>0)的右焦点为F,点A,B分别在C 的两条渐近线AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点).(1)求双曲线C的方程;(2)过C上一点P(x0,y0)(y0≠0)的直线l:﹣y0y=1与直线AF相交于点M,与直线x=相交于点N.证明:当点P在C上移动时,恒为定值,并求此定值.22.(14分)随机将1,2,…,2n(n∈N*,n≥2)这2n个连续正整数分成A、B两组,每组n个数,A组最小数为a1,最大数为a2;B组最小数为b1,最大数为b2;记ξ=a2﹣a1,η=b2﹣b1.(1)当n=3时,求ξ的分布列和数学期望;(2)C表示事件“ξ与η的取值恰好相等”,求事件C发生的概率P(C);(3)对(2)中的事件C,表示C的对立事件,判断P(C)和P()的大小关系,并说明理由.高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)是z的共轭复数,若z+=2,(z﹣)i=2(i为虚数单位),则z=()A.1+i B.﹣1﹣i C.﹣1+i D.1﹣i【分析】由题,先求出z﹣=﹣2i,再与z+=2联立即可解出z得出正确选项.【解答】解:由于,(z﹣)i=2,可得z﹣=﹣2i ①又z+=2 ②由①②解得z=1﹣i故选:D.【点评】本题考查复数的乘除运算,属于基本计算题2.(5分)函数f(x)=ln(x2﹣x)的定义域为()A.(0,1)B.[0,1] C.(﹣∞,0)∪(1,+∞)D.(﹣∞,0]∪[1,+∞)【分析】根据函数成立的条件,即可求出函数的定义域.【解答】解:要使函数有意义,则x2﹣x>0,即x>1或x<0,故函数的定义域为(﹣∞,0)∪(1,+∞),故选:C.【点评】本题主要考查函数定义域的求法,比较基础.3.(5分)已知函数f(x)=5|x|,g(x)=ax2﹣x(a∈R),若f[g(1)]=1,则a=()A.1 B.2 C.3 D.﹣1【分析】根据函数的表达式,直接代入即可得到结论.【解答】解:∵g(x)=ax2﹣x(a∈R),∴g(1)=a﹣1,若f[g(1)]=1,则f(a﹣1)=1,即5|a﹣1|=1,则|a﹣1|=0,解得a=1,故选:A.【点评】本题主要考查函数值的计算,利用条件直接代入解方程即可,比较基础.4.(5分)在△ABC中,内角A,B,C的对边分别为a,b,c,若c2=(a﹣b)2+6,C=,则△ABC的面积为()A.3 B.C.D.3【分析】根据条件进行化简,结合三角形的面积公式进行求解即可.【解答】解:∵c2=(a﹣b)2+6,∴c2=a2﹣2ab+b2+6,即a2+b2﹣c2=2ab﹣6,∵C=,∴cos===,解得ab=6,则三角形的面积S=absinC==,故选:C.【点评】本题主要考查三角形的面积的计算,根据余弦定理求出ab=6是解决本题的关键.5.(5分)一几何体的直观图如图所示,下列给出的四个俯视图中正确的是()A.B.C.D.【分析】通过几何体结合三视图的画图方法,判断选项即可.【解答】解:几何体的俯视图,轮廓是矩形,几何体的上部的棱都是可见线段,所以C、D 不正确;几何体的上部的棱与正视图方向垂直,所以A不正确,故选:B.【点评】本题考查三视图的画法,几何体的结构特征是解题的关键.6.(5分)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()表1成绩不及格及格总计性别男 6 14 20女10 22 32总计16 36 52表2好差总计视力性别男 4 16 20女12 20 32总计16 36 52表3偏高正常总计智商性别男8 12 20女8 24 32总计16 36 52表4丰富不丰富总计阅读量性别男14 6 20女 2 30 32总计16 36 52A.成绩B.视力C.智商D.阅读量【分析】根据表中数据,利用公式,求出X2,即可得出结论.【解答】解:表1:X2=≈0.009;表2:X2=≈1.769;表3:X2=≈1.3;表4:X2=≈23.48,∴阅读量与性别有关联的可能性最大,故选:D.【点评】本题考查独立性检验的应用,考查学生的计算能力,属于中档题.7.(5分)阅读如图程序框图,运行相应的程序,则程序运行后输出的结果为()A.7 B.9 C.10 D.11【分析】模拟程序的运行,由程序框图得出该算法的功能以及S>1时,终止循环;再根据S的值求出终止循环时的i值即可.【解答】解:模拟执行程序,可得i=1,S=0S=lg3,不满足条件1<S,执行循环体,i=3,S=lg3+lg=lg5,不满足条件1<S,执行循环体,i=5,S=lg5+lg=lg7,不满足条件1<S,执行循环体,i=7,S=lg5+lg=lg9,不满足条件1<S,执行循环体,i=9,S=lg9+lg=lg11,满足条件1<S,跳出循环,输出i的值为9.故选:B.【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键,属于基础题.8.(5分)若f(x)=x2+2f(x)dx,则f(x)dx=()A.﹣1 B.﹣C.D.1【分析】把定积分项看成常数对两侧积分,化简求解即可.【解答】解:令f(x)dx=t,对f(x)=x2+2f(x)dx,两边积分可得:t=+2tdx=+2t,解得t=f(x)dx=﹣,故选:B.【点评】本题考查定积分以及微积分基本定理的应用,是基础题.9.(5分)在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y﹣4=0相切,则圆C面积的最小值为()A.πB.πC.(6﹣2)πD.π【分析】如图,设AB的中点为C,坐标原点为O,圆半径为r,由已知得|OC|=|CE|=r,过点O作直线2x+y﹣4=0的垂直线段OF,交AB于D,交直线2x+y﹣4=0于F,则当D恰为AB中点时,圆C的半径最小,即面积最小.【解答】解:如图,设AB的中点为C,坐标原点为O,圆半径为r,由已知得|OC|=|CE|=r,过点O作直线2x+y﹣4=0的垂直线段OF,交AB于D,交直线2x+y﹣4=0于F,则当D恰为OF中点时,圆C的半径最小,即面积最小此时圆的直径为O(0,0)到直线2x+y﹣4=0的距离为:d==,此时r=∴圆C的面积的最小值为:Sm in=π×()2=.故选:A.【点评】本题主要考查了直线与圆的位置关系,考查圆的面积的最小值的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.10.(5分)如图,在长方体ABCD﹣A1B1C1D1中,AB=11,AD=7,AA1=12.一质点从顶点A射向点E(4,3,12),遇长方体的面反射(反射服从光的反射原理),将第i﹣1次到第i次反射点之间的线段记为li(i=2,3,4),l1=AE,将线段l1,l2,l3,l4竖直放置在同一水平线上,则大致的图形是()A.B.C.D.【分析】根据平面反射定理,列出反射线与入射线的关系,得到入射线与反射平面的交点,再利用两点间的距离公式,求出距离,即可求解.【解答】解:根据题意有:A的坐标为:(0,0,0),B的坐标为(11,0,0),C的坐标为(11,7,0),D的坐标为(0,7,0);A1的坐标为:(0,0,12),B1的坐标为(11,0,12),C1的坐标为(11,7,12),D1的坐标为(0,7,12);E的坐标为(4,3,12)(1)l1长度计算所以:l1=|AE|==13.(2)l2长度计算将平面A1B1C1D1沿Z轴正向平移AA1个单位,得到平面A2B2C2D2;显然有:A2的坐标为:(0,0,24),B2的坐标为(11,0,24),C2的坐标为(11,7,24),D2的坐标为(0,7,24);显然平面A2B2C2D2和平面ABCD关于平面A1B1C1D1对称.设AE与的延长线与平面A2B2C2D2相交于:E2(xE2,yE2,24)根据相似三角形易知:xE2=2xE=2×4=8,yE2=2yE=2×3=6,即:E2(8,6,24)根据坐标可知,E2在长方形A2B2C2D2内.根据反射原理,E2在平面ABCD上的投影即为AE反射光与平面ABCD的交点.所以F的坐标为(8,6,0).因此:l2=|EF|==13.(3)l3长度计算设G的坐标为:(xG,yG,zG)如果G落在平面BCC1B1;这个时候有:xG=11,yG≤7,zG≤12根据反射原理有:AE∥FG于是:向量与向量共线;即有:=λ因为:=(4,3,12);=(xG﹣8,yG﹣6,zG﹣0)=(3,yG﹣6,zG)即有:(4,3,12)=λ(3,yG﹣6,zG)解得:yG=,zG=9;故G的坐标为:(11,,9)因为:>7,故G点不在平面BCC1B1上,所以:G点只能在平面DCC1D1上;因此有:yG=7;xG≤11,zG≤12此时:=(xG﹣8,yG﹣6,zG﹣0)=(xG﹣8,1,zG)即有:(4,3,12)=λ(xG﹣8,1,zG)解得:xG=,zG=4;满足:xG≤11,zG≤12故G的坐标为:(,7,4)所以:l3=|FG|==(4)l4长度计算设G点在平面A1B1C1D1的投影为G’,坐标为(,7,12)因为光线经过反射后,还会在原来的平面内;即:AEFGH共面故EG的反射线GH只能与平面A1B1C1D1相交,且交点H只能在A1G';易知:l4>|GG’|=12﹣4=8>l3.根据以上解析,可知l1,l2,l3,l4要满足以下关系:l1=l2;且l4>l3对比ABCD选项,可知,只有C选项满足以上条件.故选:C.【点评】本题主要考察的空间中点坐标的概念,两点间的距离公式,解法灵活,属于难题.二、选做题:请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题记分,本题共5分,在每小题给出的四个选项中,只有一项是符合题目要求的.不等式选做题11.(5分)对任意x,y∈R,|x﹣1|+|x|+|y﹣1|+|y+1|的最小值为()A.1 B.2 C.3 D.4【分析】把表达式分成2组,利用绝对值三角不等式求解即可得到最小值.【解答】解:对任意x,y∈R,|x﹣1|+|x|+|y﹣1|+|y+1|=|x﹣1|+|﹣x|+|1﹣y|+|y+1|≥|x﹣1﹣x|+|1﹣y+y+1|=3,当且仅当x∈[0,1],y∈[﹣1,1]成立.故选:C.【点评】本题考查绝对值三角不等式的应用,考查利用分段函数或特殊值求解不等式的最值的方法.坐标系与参数方程选做题12.若以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,则线段y=1﹣x(0≤x≤1)的极坐标方程为()A.ρ=,0≤θ≤B.ρ=,0≤θ≤C.ρ=cosθ+sinθ,0≤θ≤D.ρ=cosθ+sinθ,0≤θ≤【分析】根据直角坐标和极坐标的互化公式x=ρcosθ,y=ρsinθ,把方程y=1﹣x(0≤x≤1)化为极坐标方程.【解答】解:根据直角坐标和极坐标的互化公式x=ρcosθ,y=ρsinθ,y=1﹣x(0≤x≤1),可得ρcosθ+ρsinθ=1,即ρ=.由0≤x≤1,可得线段y=1﹣x(0≤x≤1)在第一象限,故极角θ∈[0,],故选:A.【点评】本题主要考查把直角坐标方程化为极坐标方程的方法,注意极角θ的范围,属于基础题.三、填空题:本大题共4小题,每小题5分,共20分13.(5分)10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是.【分析】本题是一个等可能事件的概率,试验发生包含的事件是从10件中取4件有C104种结果,满足条件的事件是恰好有1件次品有C73种结果,得到概率.【解答】解:由题意知本题是一个等可能事件的概率,试验发生包含的事件是从10件中取4件有C104种结果,满足条件的事件是恰好有1件次品有C种结果,∴恰好有一件次品的概率是P==故答案为:【点评】本题考查等可能事件的概率,本题解题的关键是利用组合数写出试验发生包含的事件数和满足条件的事件数,本题是一个基础题.14.(5分)若曲线y=e﹣x上点P的切线平行于直线2x+y+1=0,则点P的坐标是(﹣ln2,2).【分析】先设P(x,y),对函数求导,由在在点P处的切线与直线2x+y+1=0平行,求出x,最后求出y.【解答】解:设P(x,y),则y=e﹣x,∵y′=﹣e﹣x,在点P处的切线与直线2x+y+1=0平行,∴﹣e﹣x=﹣2,解得x=﹣ln2,∴y=e﹣x=2,故P(﹣ln2,2).故答案为:(﹣ln2,2).【点评】本题考查了导数的几何意义,即点P处的切线的斜率是该点出的导数值,以及切点在曲线上和切线上的应用.15.(5分)已知单位向量与的夹角为α,且cosα=,向量=3﹣2与=3﹣的夹角为β,则cosβ=.【分析】转化向量为平面直角坐标系中的向量,通过向量的数量积求出所求向量的夹角.【解答】解:单位向量与的夹角为α,且cosα=,不妨=(1,0),=,=3﹣2=(),=3﹣=(),∴cosβ===.故答案为:.【点评】本题考查向量的数量积,两个向量的夹角的求法,考查计算能力.16.(5分)过点M(1,1)作斜率为﹣的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于.【分析】利用点差法,结合M是线段AB的中点,斜率为﹣,即可求出椭圆C的离心率.【解答】解:设A(x1,y1),B(x2,y2),则①,②,∵M是线段AB的中点,∴=1,=1,∵直线AB的方程是y=﹣(x﹣1)+1,∴y1﹣y2=﹣(x1﹣x2),∵过点M(1,1)作斜率为﹣的直线与椭圆C:+=1(a>b>0)相交于A,B两点,M是线段AB的中点,∴①②两式相减可得,即,∴a=b,∴=b,∴e==.故答案为:.【点评】本题考查椭圆的离心率,考查学生的计算能力,正确运用点差法是关键.五、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤17.(12分)已知函数f(x)=sin(x+θ)+acos(x+2θ),其中a∈R,θ∈(﹣,)(1)当a=,θ=时,求f(x)在区间[0,π]上的最大值与最小值;(2)若f()=0,f(π)=1,求a,θ的值.【分析】(1)由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=﹣sin(x﹣),再根据x∈[0,π],利用正弦函数的定义域和值域求得函数的最值.(2)由条件可得θ∈(﹣,),cosθ﹣asin2θ=0 ①,﹣sinθ﹣acos2θ=1 ②,由这两个式子求出a和θ的值.【解答】解:(1)当a=,θ=时,f(x)=sin(x+θ)+acos(x+2θ)=sin(x+)+cos(x+)=sinx+cosx﹣sinx=﹣sinx+cosx=sin(﹣x)=﹣sin(x﹣).∵x∈[0,π],∴x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴﹣sin(x﹣)∈[﹣1,],故f(x)在区间[0,π]上的最小值为﹣1,最大值为.(2)∵f(x)=sin(x+θ)+acos(x+2θ),a∈R,θ∈(﹣,),f()=0,f(π)=1,∴cosθ﹣asin2θ=0 ①,﹣sinθ﹣acos2θ=1 ②,由①求得sinθ=,由②可得cos2θ==﹣﹣.再根据cos2θ=1﹣2sin2θ,可得﹣﹣=1﹣2×,求得 a=﹣1,∴sinθ=﹣,θ=﹣.综上可得,所求的a=﹣1,θ=﹣.【点评】本题主要考查两角和差的正弦公式、余弦公式,正弦函数的定义域和值域,属于中档题.18.(12分)已知首项是1的两个数列{an},{bn}(bn≠0,n∈N*)满足anbn+1﹣an+1bn+2bn+1bn=0.(1)令cn=,求数列{cn}的通项公式;(2)若bn=3n﹣1,求数列{an}的前n项和Sn.【分析】(1)由anbn+1﹣an+1bn+2bn+1bn=0,cn=,可得数列{cn}是以1为首项,2为公差的等差数列,即可求数列{cn}的通项公式;(2)用错位相减法来求和.【解答】解:(1)∵anbn+1﹣an+1bn+2bn+1bn=0,cn=,∴cn﹣cn+1+2=0,∴cn+1﹣cn=2,∵首项是1的两个数列{an},{bn},∴数列{cn}是以1为首项,2为公差的等差数列,∴cn=2n﹣1;(2)∵bn=3n﹣1,cn=,∴an=(2n﹣1)•3n﹣1,∴Sn=1×30+3×31+…+(2n﹣1)×3n﹣1,∴3Sn=1×3+3×32+…+(2n﹣1)×3n,∴﹣2Sn=1+2•(31+…+3n﹣1)﹣(2n﹣1)•3n,∴Sn=(n﹣1)3n+1.【点评】本题为等差等比数列的综合应用,用好错位相减法是解决问题的关键,属中档题.19.(12分)已知函数f(x)=(x2+bx+b)(b∈R)(1)当b=4时,求f(x)的极值;(2)若f(x)在区间(0,)上单调递增,求b的取值范围.【分析】(1)把b=4代入函数解析式,求出函数的导函数,由导函数的零点对定义域分段,由导函数在各区间段内的符号判断原函数的单调性,从而求得极值;(2)求出原函数的导函数,由导函数在区间(0,)上大于等于0恒成立,得到对任意x∈(0,)恒成立.由单调性求出的范围得答案.【解答】解:(1)当b=4时,f(x)=(x2+4x+4)=(x),则=.由f′(x)=0,得x=﹣2或x=0.当x<﹣2时,f′(x)<0,f(x)在(﹣∞,﹣2)上为减函数.当﹣2<x<0时,f′(x)>0,f(x)在(﹣2,0)上为增函数.当0<x<时,f′(x)<0,f(x)在(0,)上为减函数.∴当x=﹣2时,f(x)取极小值为0.当x=0时,f(x)取极大值为4;(2)由f(x)=(x2+bx+b),得:=.由f(x)在区间(0,)上单调递增,得f′(x)≥0对任意x∈(0,)恒成立.即﹣5x2﹣3bx+2x≥0对任意x∈(0,)恒成立.∴对任意x∈(0,)恒成立.∵.∴.∴b的取值范围是.【点评】本题考查了利用导数研究函数的单调性,考查了利用导数求函数的极值,考查了数学转化思想方法,是中档题.20.(12分)如图,四棱锥P﹣ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.(1)求证:AB⊥PD;(2)若∠BPC=90°,PB=,PC=2,问AB为何值时,四棱锥P﹣ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.【分析】(1)要证AD⊥PD,可以证明AB⊥面PAD,再利用面面垂直以及线面垂直的性质,即可证明AB⊥PD.(2)过P做PO⊥AD得到PO⊥平面ABCD,作OM⊥BC,连接PM,由边长关系得到BC=,PM=,设AB=x,则VP﹣ABCD=,故当时,VP﹣ABCD取最大值,建立空间直角坐标系O﹣AMP,利用向量方法即可得到夹角的余弦值.【解答】解:(1)∵在四棱锥P﹣ABCD中,ABCD为矩形,∴AB⊥AD,又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴AB⊥面PAD,∴AB⊥PD.(2)过P做PO⊥AD,∴PO⊥平面ABCD,作OM⊥BC,连接PM∴PM⊥BC,∵∠BPC=90°,PB=,PC=2,∴BC=,PM===,BM==,设AB=x,∴OM=x∴PO=,∴VP﹣ABCD=×x××==,当,即x=,VP﹣ABCD=,建立空间直角坐标系O﹣AMP,如图所示,则P(0,0,),D(﹣,0,0),C(﹣,,0),M(0,,0),B (,,0)面PBC的法向量为=(0,1,1),面DPC的法向量为=(1,0,﹣2)∴cosθ==﹣=﹣.由图可知二面角为锐角,即cos【点评】本题考查线面位置关系、线线位置关系、线面角的度量,考查分析解决问题、空间想象、转化、计算的能力与方程思想.21.(13分)如图,已知双曲线C:﹣y2=1(a>0)的右焦点为F,点A,B分别在C 的两条渐近线AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点).(1)求双曲线C的方程;(2)过C上一点P(x0,y0)(y0≠0)的直线l:﹣y0y=1与直线AF相交于点M,与直线x=相交于点N.证明:当点P在C上移动时,恒为定值,并求此定值.【分析】(1)依题意知,A(c,),设B(t,﹣),利用AB⊥OB,BF∥OA,可求得a=,从而可得双曲线C的方程;(2)易求A(2,),l的方程为:﹣y0y=1,直线l:﹣y0y=1与直线AF相交于点M,与直线x=相交于点N,可求得M(2,),N(,),于是化简=可得其值为,于是原结论得证.【解答】(1)解:依题意知,A(c,),设B(t,﹣),∵AB⊥OB,BF∥OA,∴•=﹣1,=,整理得:t=,a=,∴双曲线C的方程为﹣y2=1;(2)证明:由(1)知A(2,),l的方程为:﹣y0y=1,又F(2,0),直线l:﹣y0y=1与直线AF相交于点M,与直线x=相交于点N.于是可得M(2,),N(,),∴==== =.【点评】本题考查直线与圆锥曲线的综合问题,着重考查直线与圆锥曲线的位置关系等基础知识,推理论证能力、运算求解能力、函数与方程思想,属于难题.22.(14分)随机将1,2,…,2n(n∈N*,n≥2)这2n个连续正整数分成A、B两组,每组n个数,A组最小数为a1,最大数为a2;B组最小数为b1,最大数为b2;记ξ=a2﹣a1,η=b2﹣b1.(1)当n=3时,求ξ的分布列和数学期望;(2)C表示事件“ξ与η的取值恰好相等”,求事件C发生的概率P(C);(3)对(2)中的事件C,表示C的对立事件,判断P(C)和P()的大小关系,并说明理由.【分析】(1)当n=3时,ξ的取值可能为2,3,4,5,求出随机变量ξ的分布列,代入数学期望公式可得其数学期望Eξ.(2)根据C表示事件“ξ与η的取值恰好相等”,利用分类加法原理,可得事件C发生的概率P(C)的表达式;(3)判断P(C)和P()的大小关系,即判断P(C)和的大小关系,根据(2)的公式,可得答案.【解答】解:(1)当n=3时,ξ的取值可能为2,3,4,5其中P(ξ=2)==,P(ξ=3)==,P(ξ=4)==,P(ξ=5)==,故随机变量ξ的分布列为:ξ 2 3 4 5Pξ的数学期望E(ξ)=2×+3×+4×+5×=;(2)∵C表示事件“ξ与η的取值恰好相等”,∴P(C)=2×(3)当n=2时,P(C)=2×=,此时P()<;即P()<P(C);当n≥3时,P(C)=2×<,此时P()>;即P()>P(C);【点评】本题考查离散型随机变量的分布列,求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.高考数学试卷(理科)一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+12.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=15.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.327.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.28.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥9.(5分)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c <010.(5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f(0)<f (2)D.f(2)<f(0)<f(﹣2)二.填空题(每小题5分,共25分)11.(5分)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)执行如图所示的程序框图(算法流程图),输出的n为14.(5分)已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的前n项和等于.15.(5分)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD 的长.17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)设n∈N*,xn是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(Ⅰ)求数列{xn}的通项公式;(Ⅱ)记Tn=x12x32…x2n﹣12,证明:Tn≥.19.(13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.20.(13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM 的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.高考数学试卷(理科)参考答案与试题解析一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先化简复数,再得出点的坐标,即可得出结论.【解答】解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,故选:B.【点评】本题考查复数的运算,考查复数的几何意义,考查学生的计算能力,比较基础.2.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+1【分析】利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择.【解答】解:对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点;对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点;对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D,定义域为R,为偶函数,都是没有零点;故选:A.【点评】本题考查了函数的奇偶性和零点的判断.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断f(﹣x)与f(x)的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x轴的交点以及与对应方程的解的个数是一致的.3.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】运用指数函数的单调性,结合充分必要条件的定义,即可判断.【解答】解:由1<x<2可得2<2x<4,则由p推得q成立,若2x>1可得x>0,推不出1<x<2.由充分必要条件的定义可得p是q成立的充分不必要条件.故选:A.【点评】本题考查充分必要条件的判断,同时考查指数函数的单调性的运用,属于基础题.4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=1【分析】对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.【解答】解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选:C.【点评】本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题.5.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【分析】利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.【解答】解:对于A,若α,β垂直于同一平面,则α与β不一定平行,例如墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选:D.【点评】本题考查了空间线面关系的判断;用到了面面垂直、线面平行的性质定理和判定定理.6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.32【分析】根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.【解答】解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16,故选:C.【点评】本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键.7.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.2【分析】根据几何体的三视图,得出该几何体是底面为等腰直角三角形的三棱锥,结合题意画出图形,利用图中数据求出它的表面积.【解答】解:根据几何体的三视图,得;。

高考数学普通高校招生全国统一考试江苏卷4

高考数学普通高校招生全国统一考试江苏卷4

高考数学普通高校招生全国统一考试(江苏卷)数学1.()cos()6f x wx π=-的最小正周期为5π,其中0w >,则w =▲。

【解读】本小题考查三角函数的周期公式。

2105T w w ππ==⇒=。

答案102.一个骰子连续投2次,点数和为4的概率为▲。

【解读】本小题考查古典概型。

基本事件共66⨯个,点数和为4的有(1,3)、(2,2)、(3,1)共3个,故316612P ==⨯。

答案112 3.11i i-+表示为a bi +(,)a b R ∈,则a b +=▲。

【解读】本小题考查复数的除法运算,1,0,11ii a b i-=∴==+,因此a b +=1。

答案14.{}2(1)37,A x x x =-<-则AZ 的元素个数为▲。

【解读】本小题考查集合的运算和解一元二次不等式。

由2(1)37x x -<-得2580x x -+<因为0∆<,所以A φ=,因此A Z φ=,元素的个数为0。

答案05.,a b 的夹角为0120,1,3a b ==,则5a b -=▲。

【解读】本小题考查向量的线形运算。

因为1313()22a b ⋅=⨯⨯-=-,所以22225(5)2510a b a b a b a b -=-=+-⋅=49。

因此5a b -=7。

答案76.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率为▲。

【解读】本小题考查古典概型。

如图:区域D表示边长为4的正方形ABCD的内部(含边界),区域E表示单位圆及其内部,因此214416Pππ⨯==⨯。

答案16π7.某地区为了解70~80岁老人的日平均睡眠时间(单位:h),随机选择了50位老人进行调查。

下表是这50位老人日睡眠时间的频率分布表。

序号(i)分组(睡眠时间)组中值(iG)频数(人数)频率(iF)1 [4,5) 4.5 6 0.122 [5,6) 5.5 10 0.203 [6,7) 6.5 20 0.404 [7,8) 7.5 10 0.205 [8,9) 8.5 4 0.08在上述统计数据的分析中,一部分计算算法流程图,则输出的S的值是▲。

高考数学普通高等学校招生全国统一考试江苏卷4

高考数学普通高等学校招生全国统一考试江苏卷4

高考数学普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:样本数据12,,,n x x x 的方差221111(),n n i ii i s x x x x n n ===-=∑∑其中一、填空题:本大题共14小题,每小题5分,共70分。

1.若复数12429,69z i z i =+=+,其中i 是虚数单位,则复数12()z z i -的实部为______2.已知向量a和向量b的夹角为30,||2,||==a b ,则向量a和向量b的数量积=a b __________ .3.函数32()15336f x x x x =--+的单调减区间为_____4.函数sin()(,,y A x A ωϕωϕ=+为常数,0,0)A ω>>在闭区间[,0]π-上的图象如图所示,则ω=_______ .5.现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为________ .6.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数则以上两组数据的方差中较小的一个为2s=________ .7.右图是一个算法的流程图,最后输出的W =________ .8.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间,若两个正四面体的棱长的比为1:2,则它们的体积比为________ .9.在平面直角坐标系xoy 中,点P在曲线3:103C y x x =-+上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为________.10.已知12a -=,函数()xf x a =,若实数,m n满足()()f m f n >,则,m n 的大小关系为_______.11.已知集合{}2|log 2A x x =≤,(,)B a =-∞,若A B ⊆则实数a 的取值范围是(,)c +∞,其中c =________ .12.设α和β为不重合的两个平面,给出下列命题:(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l 与α内的一条直线平行,则l 和α平行;(3)设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直;(4)直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直.上面命题中,真命题的序号________(写出所有真命题的序号). 13.如图,在平面直角坐标系xoy 中,1212,,,A A B B 为椭圆22221(0)x y a b a b +=>>的四个顶点,F为其右焦点,直线12A B 与直线1B F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为________. 14.设{}n a 是公比为q的等比数列,||1q >,令1(1,2,)n n b a n =+=若数列{}n b 有连续四项在集合{}53,23,19,37,82--中,则6q =________二、解答题:本大题共6小题,共计90分。

四川省2024年高考理科数学真题及参考答案

四川省2024年高考理科数学真题及参考答案

四川省2024年高考理科数学真题及参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若i z +=5,则()=+z z i ()A.i10B.i2 C.10D.-22.已知集合{}954321,,,,,=A ,{}A x xB ∈=,则()=B AC A ()A.{}9,41,B.{}9,43, C.{}3,2,1D.{}5,3,23.若实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤-+≤--≥--09620220334y x y x y x ,则5z x y =-的最小值为()A.5B.12C.2-D.72-4.记n S 为等差数列{}n a 的前n 项和.已知105S S =,15=a ,则=1a ()A.27B.73C.31-D.117-5.已知双曲线()0,012222>>=-b a b x a y C :的上、下焦点分别为()4,01F ,()402-,F ,点()4,6-P 在该双曲线上,则双曲线的离心率是()A.4B.3C.2D.26.设函数()21sin 2xxe xf x ++=,则曲线()x f y =在点()1,0处的切线与两坐标轴所围成的三角形的面积为()A.61B.31C.12D.327.函数()()2e esin xxf x x x -=-+-在区间[]8.2,8.2-的图像大致为()8.已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭()A.132+B.1-C.23D.31-9.设向量()x x a ,1+=,()2,x b = ,则()A.3-=x 是b a⊥的必要条件 B.3-=x 是b a∥的必要条件C.0=x 是b a⊥的充分条件D.31+-=x 是b a∥的充分条件10.设m 、n 为两条直线,α、β为两个平面,且m =βα ,下述四个命题:①若n m ∥,则α∥n 或β∥n ;②若n m ⊥,则α⊥n 或β⊥n ;③若α∥n 且β∥n ,则n m ∥;④若n 与α,β所成的角相等,则m n ⊥,其中所有真命题的编号是()A.①③B.②④C.①②③D.①③④11.记ABC △的内角A ,B ,C 所对边分别为a ,b ,c ,若3π=B ,294b ac =,则sin sin A C +=()A.23B.2C.2D.2312.已知b 是c a ,的等差中项,直线0=++c by ax 与圆01422=-++y y x 交于A,B 两点,则AB 的最小值为()A.2B.3C.4D.52二、填空题:本题共4小题,每小题5分,共20分.13.1031⎪⎭⎫⎝⎛+x 的展开式中,各项系数中的最大值为.14.已知圆台甲、乙的上底面半径均为1r ,下底面半径均为2r ,圆台的母线长分别为()122r r -,()123r r -,则圆台甲与乙的体积之比为.15.已知1a >,8115log log 42a a -=-,则a =.16.有6个相同的球,分别标有数字1,2,3,4,5,6,从中不放回地随机抽取3次,每次取1个球.设m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m与n 差的绝对值不大于21的概率为.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:(1)填写如下列联表:能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲、乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率5.0=p .设p 为升级改造后抽取的n 件产品的优级品率.如果()np p p p -+>165.1,则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为产品线智能化升级改造后,该工厂产品的优级品率提高了?(247.12150≈)18.(12分)记n S 为数列{}n a 的前n 项和,已知434+=n n a S .(1)求{}n a 的通项公式;(2)设()n n n na b 11--=,求数列{}n b 的前n 项和n T .19.(12分)如图,在以F E D C B A ,,,,,为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,AD EF ∥,AD BC ∥,4=AD ,2===EF BC AB ,10=ED ,32=FB ,M 为AD 的中点.(1)证明:∥BM 平面CDE ;(2)求二面角E BM F --的正弦值.20.(12分)设椭圆()2222:10x y C a b a b +=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求椭圆C 的方程;(2)过点()4,0P 的直线与C 交于A ,B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.21.(12分)已知函数()()()x x ax x f -+-=1ln 1.(1)若2-=a ,求()x f 的极值;(2)当0≥x 时,()0≥x f 恒成立,求a 的极值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年高考试题全国卷 理科数学(必修+选修Ⅱ)(甘肃、青海、宁夏、贵州、新疆等地区)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C k nP k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π 其中R 表示球的半径5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( ) A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交 C .如果m n m ,//,αα⊂、n 共面,那么n m //D .如果m n m ,//,//αα、n 共面,那么n m //8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )A .13422=+y xB .16822=+y x C .1222=+y xD .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任), 要求这3位班主任中男、女教师都要有,则不同的选派方案共有 ( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为 ( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 . 15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值.18.(本小题满分12分) 求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值.C19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响.(Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率.20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°. (Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围.22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x e x f x 将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)(甘肃、青海、宁夏、贵州、新疆等地区)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.4316.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++=当α为第二象限角,且415sin =α时 41c o s ,0c o s s i n-=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小 值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去y图1当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f 在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512, 所以ξ的概率分布为根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析 问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD. 作PO ⊥平面在ABCD ,垂足为O ,连结OE.根据三垂线定理的逆定理得OE ⊥AD ,所以∠PEO 为侧面PAD 与底面所成的二面角的平面角,由已知条件可知∠PEO=60°,PE=6,所以PO=33,四棱锥P —ABCD 的体积V P —ABCD =.963334831=⨯⨯⨯(Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0)图2C所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得AE=23,又知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90°所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分.解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是 .525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以 及综合运用的能力.满分14分.(Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x e x x e x x e x f xx x ----=+-++-='由,0)(='x f 得.0sin 2=--x ex解出n n x ,π=为整数,从而 ,3,2,1,==n n x n π.)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=e q 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++=),21(1-+++=n nq q q π),11()21(),2(122n nn n n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ从而).11(1nnn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq qq q n q q q q n q q q nq q q n q qq q n q q qn n n nn n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以。

相关文档
最新文档