电动汽车自动变速器设计研究

合集下载

自动变速器毕业论文

自动变速器毕业论文

自动变速器毕业论文自动变速器毕业论文引言:自动变速器作为汽车传动系统的重要组成部分,具有自动换挡、提高行驶舒适性等优点,已经成为现代汽车的主流配置之一。

本文旨在探讨自动变速器的原理、发展历程以及未来的趋势,以期对该领域的研究和发展提供一定的参考。

一、自动变速器的原理自动变速器通过液力传动、齿轮传动等方式,实现汽车发动机输出转矩的调节,从而实现车辆的换挡和行驶模式的转换。

其核心原理是利用液力偶合器或离合器,实现发动机和车轮之间的传动。

二、自动变速器的发展历程1. 早期的自动变速器早期的自动变速器采用液力偶合器,由于其构造简单、操作方便,成为最早应用于汽车上的自动变速器。

然而,液力偶合器的效率较低,无法满足高速行驶和燃油经济性的要求。

2. 手自一体变速器的出现为了提高自动变速器的效率和经济性,手自一体变速器应运而生。

手自一体变速器结合了手动变速器和自动变速器的优点,使得驾驶员可以根据需要选择手动换挡或自动换挡。

这种变速器的出现极大地提升了驾驶的乐趣和驾驶员的参与感。

3. CVT变速器的发展连续可变传动(CVT)变速器是近年来自动变速器领域的重要突破。

CVT变速器通过无级变速的方式,实现发动机转速与车速之间的精确匹配,从而提高燃油经济性和驾驶舒适性。

CVT变速器的发展前景广阔,已经成为许多汽车制造商的主要发展方向。

三、自动变速器的未来趋势1. 混合动力技术的应用随着环保意识的增强和对燃油经济性的要求不断提高,混合动力技术成为未来汽车发展的重要方向。

自动变速器在混合动力系统中的应用将进一步提高整体系统的效率和性能。

2. 电动化的发展电动汽车的兴起将对自动变速器的设计和发展产生深远影响。

电动汽车通常采用单速变速器或无变速器的设计,这对传统的自动变速器提出了新的挑战。

因此,未来的自动变速器将需要更加注重电动化技术的研究和应用。

3. 智能化的进一步推进随着人工智能技术的快速发展,智能化的汽车已经成为未来的发展趋势。

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计1. 变速器的基本原理和结构变速器是汽车传动系统的重要组成部分,它能够通过改变汽车发动机输出轴和车轮之间的传动比来实现汽车的加速、减速和行驶。

在纯电动汽车中,由于电机的特性和传动系统的设计,常用的变速器结构是行星齿轮自动变速器。

行星齿轮自动变速器是一种复杂的机械传动系统,由太阳轮、行星轮、外齿圈、离合器、湿式多片离合器和液压控制装置等部件组成。

它的工作原理是通过改变太阳轮、行星轮和外齿圈之间的组合关系来实现不同的传动比,从而达到变速的目的。

行星齿轮自动变速器的工作原理主要包括以下几个部分:(2)外齿圈的定位和控制:外齿圈是由外齿和外齿轴组成的部件,它可以通过液压控制装置来实现定位和控制。

在不同的工况下,外齿圈可以和太阳轮或者行星轮组合,从而改变传动比。

(3)湿式多片离合器的控制:湿式多片离合器是由摩擦片、摩擦板和液压控制装置组成的部件,它可以通过控制液压腔压力来实现离合和结合。

在变速器工作过程中,湿式多片离合器可以实现不同部件之间的相对运动和传动比的变化。

3. 变速器的结构设计要求根据纯电动汽车的特点和发展趋势,变速器的结构设计需要满足以下几个重要的要求:(1)紧凑型设计:由于纯电动汽车的电池和电机布局的限制,变速器的尺寸和重量需要做到尽可能的小和轻。

变速器的结构设计需要尽可能的紧凑,减少部件数量和占用空间。

(2)高效率和长寿命:为了提高纯电动汽车的能效和运行稳定性,变速器的结构设计需要考虑到传动效率和使用寿命。

通常情况下,采用高强度材料和精密加工工艺可以提高变速器的传动效率和使用寿命。

(3)舒适性和智能化:随着汽车科技的不断进步,用户对汽车的舒适性和智能化要求越来越高。

变速器的结构设计需要考虑到变速过程的平稳性和自动化程度,满足用户的驾驶和乘坐需求。

(1)太阳轮和行星轮的布置:在变速器中可以将太阳轮设置在中心位置,行星轮设置在外围位置。

这样可以减少变速器的尺寸和重量,提高传动效率和使用寿命。

电动汽车两档自动变速器的设计与研究

电动汽车两档自动变速器的设计与研究

电动汽车两档自动变速器的设计与研究摘要:本文基于某电动汽车原有固定档变速器,提出了两档自动变速器的结构方案,并根据动力性和经济性指标利用MATLAB软件对其传动比进行了优化设计,最后基于UG软件建立了两档变速器的三维模型。

关键词:两档自动变速器;传动比优化;三维建模引言环境污染和资源短缺近年来成为了以内燃机为动力的汽车目前所面临的两大技术问题,而电动汽车以可再生、清洁的电能作为动力,克服了传统汽车的这些缺点,成为了目前汽车生产商研究的热点。

纯电动汽车以电动机作为动力源,具有良好的调速特性,电动机在低速时恒转矩和高速时恒功率的特性比较适合车辆的运行需求。

鉴于研发成本的考虑,众多在内燃发动机汽车基础上改造的电动汽车,大都沿用了原有变速器的一个或两个档位来传动,不利于变速器的专用化。

山东某汽车公司生产的电动汽车采用固定速比减速器,只有一个档位,使得电动机常工作在低效率区域,既浪费能源,又提高了对牵引电机的要求,还使汽车的续驶里程减少。

因此,对作为传动系统主体的变速器的研究成为改善电动汽车传动性能尤其是经济性能的主要部分。

多档化能够降低对电机的要求,扩大电动机的工作区域,通过对传动系统的控制来保证牵引电机总是能够工作在理想的区域,从而提高整车的动力性、经济性等指标。

随着生活水平的不断提高,人们对驾驶舒适感和容易度也提出了更高的要求,本文基于某电动汽车研究了一种两档无离合式自动变速器,对其传动比进行了以能量消耗最小为目标的优化,并在UG环境下对变速器进行了三维建模,为进一步的动力学仿真和试车运行提供了理论依据。

1.电动汽车两档自动变速器的设计方案档位数的增加有利于增大利用电动机最大功率的机会,提高整车的动力性和经济性,但由于电动机具有良好的调速特性,因此电动汽车的档位数不宜过多,否则会增加整车的体积和重量,降低传动效率,故本文设计两档变速,低档对应整车的起步和爬坡,高档对应整车的最大车速,这样低速档的传动比可以选择的较大,整车的牵引力也较大,动力性较强。

新能源汽车变速箱行业深度研究报告

新能源汽车变速箱行业深度研究报告

【报告】新能源汽车变速箱行业深度研究报告报告综述:近年来新能源汽车销量高速增长,人们普遍担心自动变速箱的发展前景。

我们针对传统、普混及新能源汽车的变速箱进行了详细分析,总体来看,新能源汽车仍然需要变速箱,市场空间依然巨大。

我们预计变速箱整体需求仍将快速增长,总体产能供给充裕,利好万里扬等优势供应商,齿轮及油泵等领域逐步突破,未来发展看好。

•新能源汽车仍然需要变速箱。

新能源汽车分为插混(串联、并联、混联等)、纯电动及燃料电池等,其中串联、纯电动、燃料电池目前多采用单级减速器,未来能耗要求提升,或发展为多级减速器;并联多采用现有自动变速箱进行改造或使用电驱动桥;混联多采用专用混动变速箱。

总体来看,新能源汽车仍然需要变速箱,市场空间依然巨大。

•变速箱需求快速增长。

变速箱需求由汽车销量及结构决定,在双积分、五阶段油耗等政策推动下,预计弱混、强混、新能源占比大幅提升。

结合近年销量占比及车企技术路线,我们预计2025 年自动变速箱、专用混动变速箱、纯电动变速箱销量分布为1888 万、360 万和437万台,较2018 年分别增长16.3%、1145.7%、454.9%。

•产能供给充裕,利好优势供应商。

2020 年国内自动变速箱产能预计将超过2223 万,且改装为并联混动变速箱较为容易,加上专用混动变速箱总产能将超过100 万台,因此传统及新能源变速箱总体产能充裕,技术能力较强、配套关系紧密的变速箱供应商有望受益。

AT 领域爱信合资广汽、吉利并扩建产能,DCT 领域以车企自建为主,CVT 领域万里扬积极拓展吉利等客户,具有较好的发展机会。

•传统CVT、混动并联及混联、纯电动多级减速器发展前景较好。

综合市场空间及增长速度来看,传统CVT 变速箱、混动并联及混联变速箱市场空间均超过百亿且增速较快,纯电动多级减速器有望实现从无到有的突破,均具有较好发展前景,相关供应商及产业链有望大幅受益。

•齿轮及油泵等领域逐步取得突破。

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计【摘要】本文主要讨论了纯电动汽车两挡行星齿轮自动变速器结构设计,通过引言部分介绍了研究背景、研究意义和研究目的。

在正文部分分析了纯电动汽车两挡行星齿轮自动变速器的基本原理、齿轮箱设计、行星齿轮系统设计、动力传递系统设计和结构优化设计。

结论部分归纳了纯电动汽车两挡行星齿轮自动变速器结构设计的重要性,探讨了未来发展方向,并对研究内容进行了总结。

该研究对提高纯电动汽车的性能和节能环保具有重要意义,为未来的汽车工程技术发展提供了有益的参考。

【关键词】纯电动汽车,两挡,行星齿轮,自动变速器,结构设计,基本原理,齿轮箱设计,动力传递系统设计,结构优化设计,重要性,未来发展方向,总结。

1. 引言1.1 研究背景现在汽车已经成为人们日常生活中不可或缺的交通工具,而随着全球对环境保护和节能减排的重视,纯电动汽车逐渐成为汽车行业的发展趋势。

而纯电动汽车的自动变速器作为其关键部件之一,对其性能和效率起着至关重要的作用。

对纯电动汽车两挡行星齿轮自动变速器的结构设计进行研究和优化,将有助于提高纯电动汽车的性能和驾驶体验,推动纯电动汽车技术的发展和普及。

本文将深入探讨纯电动汽车两挡行星齿轮自动变速器的结构设计原理及优化方向,为纯电动汽车的发展提供参考和指导。

1.2 研究意义纯电动汽车是未来汽车发展的趋势,具有零排放、低噪音和高效率的特点,因此受到越来越多消费者的青睐。

而自动变速器作为汽车的重要组成部分,对于提升驾驶舒适性和能效性起着至关重要的作用。

纯电动汽车两挡行星齿轮自动变速器结构设计的研究意义在于,可以提高变速器的效率和可靠性,进一步提升纯电动汽车的整体性能。

通过对变速器结构进行优化设计,可以实现更顺畅的动力传递,减少能量损失,延长汽车的使用寿命。

优化设计也可以减少零部件的磨损和故障率,降低维护成本,提高汽车的可靠性和稳定性。

在当前环保和节能的大环境下,纯电动汽车的发展已经成为汽车行业的主流趋势。

电动汽车两挡减速器工作原理解析

电动汽车两挡减速器工作原理解析

电动汽车两挡减速器⼯作原理解析由于⼯作特性要求,车辆需求动⼒源在低速时输出⼤扭矩,⾼速时输出恒功率,传统内燃机输出特性⽆法与车辆直接匹配,需要匹配⼀个多挡变速器满⾜车辆需求。

对于纯电动汽车⽽⾔,由于电机具有与传统内燃机不同的⼯作特性,在低速时能够输出⼤扭矩,⾼速时能够输出恒功率,因此电机特性能够基本与车辆需求吻合,⽆需增加多挡变速器,只需增加⼀个单级减速器或者两挡变速器即可。

单级减速器⽅案传动效率⾼、资源丰富、开发难度⼩,基本可以满⾜中⼩型纯电动整车要求,⽬前量产车型⼤多采⽤固定速⽐的减速器,但是单级减速器⽅案需求电机扭矩较⼤、转速较⾼,⽆法有效控制电机运⾏状态。

两挡变速器⽅案可减⼩电机输出扭矩,降低电机体积和成本,优化电机运⾏状态,但两挡变速器增加了换挡机构,结构较复杂,效率稍低,需重新开发。

电驱动系统技术发展趋势多挡化:现有电机特性很难满⾜所有⼯况下的整车动⼒性、经济性需求,搭载多挡变速器可以多挡化:有效调节电机的输出表现。

⾼速化:通过提⾼电机的⼯作转速,采⽤适当的变速系统及控制策略,可以使回馈制动的允许⾼速化:范围拓宽,从⽽适应更多⼯况,使整车节能更加有效,提⾼续驶⾥程。

⽬前很多主机⼚的驱动电机最⾼转速已达14000rpm以上,随着驱动电机⾼速化的发展,电动汽车变速器的⾼速化也将成为⼀种趋势。

模块化:模块化:电机、变速器、控制器集成⼀体,使整车结构更紧凑、性能更优异,便于控制和降低成本。

模块化机电耦合传动系统的集成设计和管理控制是电动汽车动⼒传动系统的发展⽅向。

电动汽车单挡减速器存在的问题动⼒性问题:单⼀速⽐设计,低速起步加速性、⾼速巡航速度以及爬坡度等性能不能兼顾动⼒性问题:经济性问题:电机⾼效⼯作区间有限;电池电量有限,⾼速⾏驶时车辆耗电量显著增⼤,单⼀经济性问题:速⽐导致制动能量回收效果⼀般舒适性问题:尤其是车速≥80km/h,动⼒加速表现薄弱,影响驾驶员主观感受舒适性问题:安全性问题:⾼速超车时,不能有效提升驱动加速度,⾏驶安全⽋佳;部分减速器缺少传统燃安全性问题:油车P挡驻车功能可靠性问题:电机⾼转速⼯作时,对电机热管理、NVH、密封性等有很⼤挑战;减速器⾼速运可靠性问题:⾏时,对齿轮加⼯⼯艺、轴承寿命、摩擦磨损润滑等也提出很⾼要求▲某两挡箱两挡变速器技术亮点动⼒性提升:减⼩百公⾥加速时间;提⾼最⾼车速;保证最⼤爬坡度经济性提升:利⽤速⽐调节,扩⼤电机⾼效区间,降低电机⼯作转速;优化换挡策略,增⼤低速挡速⽐,利于扩展制动能量回馈范围,增加电池续航⾥程舒适性提升:全电控操作,⼀挡起步、⾼速⾃动换挡,驾驶平稳;⾼速⼯况下,巡航、超车、NVH性能有保证安全性提升:⼆挡⾼速⾏驶时,利⽤降挡加速超车,保证⾼速下的⾏驶安全;具有P挡驻车功能,保证静⽌状态下的车辆安全驻车▲某两挡箱两挡变速器的换挡平顺性问题在车辆换挡过程中,变速器输出轴扭矩的变化并不是连续的:1. 在处于原挡位阶段,车辆的冲击度取决于电机输出扭矩的变化率2. 摘空挡阶段,⽆冲击3. 同步阶段,取决于同步器摩擦⼒矩4. 挂上⽬标挡位后,车辆冲击度依然取决于电机输出扭矩的变化率。

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计【摘要】本文主要探讨纯电动汽车两挡行星齿轮自动变速器的结构设计。

在我们将介绍研究背景、研究目的和研究意义。

在我们将从电动汽车变速器概述入手,深入介绍行星齿轮自动变速器原理,重点讨论纯电动汽车两挡行星齿轮自动变速器设计要点和结构设计优化,最后进行性能测试与验证。

在我们将评估设计方案的可行性,展望未来研究方向,并对整个研究进行总结。

通过本文的研究,我们旨在提高纯电动汽车的传动效率和性能,推动电动汽车技术的发展和应用。

【关键词】纯电动汽车、两挡行星齿轮自动变速器、结构设计、设计优化、性能测试、可行性、未来展望、结论总结1. 引言1.1 研究背景随着环境污染问题日益严重和对能源消耗的担忧加剧,传统内燃机汽车逐渐不再适应当今社会的需求。

新能源汽车成为了解决这些问题的重要方向之一。

在众多新能源汽车中,纯电动汽车由于其零排放、低噪音等优点逐渐受到消费者的青睐。

纯电动汽车的发展离不开先进的变速器技术。

传统汽车一般采用机械液力变速器或自动变速器,在纯电动汽车中,对变速器的性能、体积、重量等方面提出了更高的要求。

研究并开发适用于纯电动汽车的新型变速器至关重要。

本文旨在探讨纯电动汽车两挡行星齿轮自动变速器的结构设计,通过对其原理和要点进行深入研究,为纯电动汽车变速器技术的发展提供新的思路和方法。

本研究有望为纯电动汽车的性能提升和市场应用打下坚实的基础。

部分为本文研究提供了必要的背景和动机,也为后续内容的展开奠定了基础。

1.2 研究目的本文旨在通过对纯电动汽车两挡行星齿轮自动变速器结构设计的研究,探讨其在电动汽车领域中的应用以及优化方向。

具体研究目的包括以下几点:通过深入分析和研究电动汽车变速器的概念和原理,探讨行星齿轮自动变速器在纯电动汽车中的作用和意义,进一步完善电动汽车的整体性能。

通过研究设计了解纯电动汽车两挡行星齿轮自动变速器的设计要点和结构特点,分析其与传统汽车变速器的不同之处,为纯电动汽车变速器的优化提供参考。

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计纯电动汽车的发展已经日渐成熟,越来越多的汽车制造商开始着手开发和生产纯电动汽车。

对于纯电动汽车来说,自动变速器的设计相当关键,能够对汽车的性能和效率产生深远的影响。

本文将对纯电动汽车的两挡行星齿轮自动变速器结构设计进行详细探讨。

我们需要了解自动变速器的基本原理。

自动变速器是一种能够根据汽车速度和驾驶需求自动调整传动比来实现变速的装置。

在传统燃油汽车中,自动变速器的设计非常复杂,通常采用液压系统和离合器来实现不同档位的变速。

但是在纯电动汽车中,传统的自动变速器并不适用,因为电动汽车的动力输出是线性的,不需要像燃油汽车那样根据转速和负载来进行变速。

在纯电动汽车中,传统的自动变速器被行星齿轮自动变速器所替代。

行星齿轮自动变速器利用行星齿轮组来实现不同档位的变速,通过调节不同齿轮组合的接合方式,从而实现不同的传动比。

行星齿轮自动变速器具有结构简单、体积小、效率高等优点,非常适合于纯电动汽车。

接下来我们将重点介绍纯电动汽车的两挡行星齿轮自动变速器的结构设计。

纯电动汽车一般只需要两挡变速,一挡用于起步和低速行驶,二挡用于高速行驶。

因此两挡行星齿轮自动变速器的设计相对简单,但也需要考虑搅速性能、结构紧凑、传动效率等因素。

首先是两挡行星齿轮自动变速器的基本结构。

两挡行星齿轮自动变速器由行星齿轮组、太阳齿轮、行星架和外壳等部件组成。

其中行星齿轮组包括一个太阳轮、几个行星轮和一个环轮,通过这些组件的灵活组合,可以实现两种不同的传动比。

在纯电动汽车中,一般采用电动马达来驱动行星齿轮组的太阳轮,通过控制电动马达的转速和方向,实现两挡变速。

其次是两挡行星齿轮自动变速器的传动原理。

在起步和低速行驶时,电动汽车需要较大的扭矩输出,因此需要较低的传动比。

这时,控制电动马达带动行星齿轮组的太阳轮,使得行星轮和环轮形成一种特定的组合,从而达到较低的传动比。

而在高速行驶时,需要较高的传动比来提高汽车的行驶速度。

北汽纯电动汽车两档自动变速器换挡参数匹配设计研究

北汽纯电动汽车两档自动变速器换挡参数匹配设计研究
锂离子电池 24.84 138 3.2
(b) 图 3 纯电动汽车驱动特性场和某一换档驱动力曲线
2.2 两档变速器齿轮箱参数匹配 针对两档变速器,特别设计了平行轴式变速器如图 5 所示,动力传递路线如图 6 所示。 变速器匹配过过程中,要使 i12、i11、i22 分配是使变速器 性能最优,通过前面所述的目标函数进行最优确定。经化 简计算求得总目标函数如下:
Internal Combustion Engine & Parts
·3·
图 5 变速器结构 图 6 动力传递路线
一档:
图 7 轴向力计算
二档:
斜齿轮轴向重合系数约束:为保证传动平稳性,要求 斜齿轮传动时的轴向重合度系数不小于 1,即
齿 轮 箱 多 目 标 优 化 匹 配 : 采 用 MATLAB 自 带 的 Optimization tool 模块并用遗传算法仿真。
·2·
内燃机与配件
防滑设计:最大传动比要保证作用驱动力小于地面附 着力,即:
对上述目标函数,通过遗传算法进行优化,得到最终 优化匹配的传动系统参数。
图 2 纯电动汽车换档区间示意图
电机驱动特性场应满足的 vmax 所对应的 F1 要小于等 于在基速时所对应的 F2,即
图 4 遗传算法优化
经图 4 优化圆整,最终优化参数如表 1 所示。
计算得出电池总质量为 md=138kg。 榆传动速比设计。 1)平 顺 性 :换 档 时 不 出 现 动 力 中 断 ,设 计 时 前 一 档 所 能达到的最高车速必须大于等于后一档基速时的车速。
2)传动比选择。 上限:跟最高车速 vmax、与电机最高转速 nmax 相关,具 体为
最小传动比: 下限:传动比满足汽车对爬坡度的要求

一种电动汽车用两档自动变速器传动系统的方案设计

一种电动汽车用两档自动变速器传动系统的方案设计
o f e n e r y ,Wa g s h i n g t o n ,r e l e a s e d :Ma y—J u l y 2 0 0 5 ,d a t a c o n s u l t e d 0 n t h e we b i n
’ , 、 [ 5 ] 朱家诚. 机械设计课程设 计[ M 】 . 合肥工业大学出版社 , 2 0 0 8 . [ 6 ] 薛念文, 高非 . 电动汽 车动力传 动系统参数的匹配 与设计 叨. 重庆交通大学 学 报, 2 0 1 1 , 3 0 ( 2 ) : 3 0 3 — 3 0 5 . [ 7 ] 熊明杰, 胡国强. 纯 电动汽车动力系统参数的匹配与设计叨. 汽车工程师, 2 0 1 1
电磁制动器组成 。 该传动 系统采用单排行星齿轮( 2 K — H ) 的布局形式 , 分别为 : 电机 ( 1 ) 、 动力输入 轴( I ) 、 电磁离合器 ( 2 ) 、 电磁制动器 ( 3 ) 、 太 阳轮 ( 4 ) 、 行星 轮( 5 ) 、 行星架 ( 6 ) 、 齿 圈( 7 ) 和动力 输 出轴 ( I I ) ; 所 述 的
动力输入轴 ( I ) 一端支撑 在箱体上 , 另一端支撑在动力输 出轴 ( I I ) 的内 孔中; 所 述太 阳轮 ( 4 ) J m 过花键安装在 动力输入轴 ( I ) 上; 在 所述动力 输入轴 ( I ) 的外周安装有 电磁 离合器 ( c ) , 所述 电磁离合器 ( c ) 的线 圈 部分与所述动力输入轴( I ) 通过两个平键 固连 , 所述 电磁离合器 ( c ) 的 衔铁与所述左行星架 ( 6 ) 通过螺钉固连 ; 与所述太 阳轮 ( 4 ) 啮合 的行 星 轮( 5 ) 通过轴承支撑在所述左 、 右行 星架 ( 6 ) 1 - , 与所述行 星轮 ( 5 ) 啮合 的齿 圈( 7 ) 通过轴承 支撑在所 述动力输入 轴 ( I ) 上; 在 动力输入轴 ( I ) 的外周通过 轴承安装有 电磁制 动器 ( B ) , 所述 电磁制动器 ( B ) 的线 圈 部分与所 述齿 圈( 8 ) 通过螺钉 固连 , 所 述 电磁 制动器 ( B ) 的衔 铁与箱 体通过 螺钉 固连 ; 整个 系统 的动力输 出轴 ( I I ) 与 所述右行 星架 ( 6 ) 为 体的悬臂结构 , 所述动力输入轴 ( I ) 和动力输出轴( I I ) 同心。

新能源电动汽车两档变速器的设计与实现

新能源电动汽车两档变速器的设计与实现

新能源电动汽车两档变速器的设计与实现一、纯电动汽车两挡自动变速器传动比优化及换挡品质研究摘要:汽车传动系统中,变速器作为关键构件,直接影响整车性能。

为了使电动汽车驱动电机的效率得到提升,对固定速比电动汽车进行改动,采用两挡传动比方案,促使驱动电机工作效率提高,进而使整车动力性能及经济性能得到提升。

主要对纯电动汽车两挡自动变速器传动比优化及换挡品质进行研究。

1、整车基本参数基于传统微型车对电动汽车进行研究,保留原车悬挂系统,动力电池采用锰酸锂电池,驱动电机采用永磁同步电机。

综合研究后,整车参数为:满载质量1 350 m/kg,机械传动效率0.9,轮胎滚动半径0.258 r/min,迎风面积1.868人/川2,空气阻力系数0.31.根据国标GB/T 28382—2012标准及市场定位,整车动力性指标如下:30 min最高车速〉80 km/儿最大爬坡速度>20%, 4%坡度的爬坡车速〉60 km/h,12%坡度的爬坡车速〉30 km/儿工况法行驶里程〉100 km。

2、驱动电机参数确定对电机进行选择时,要确保电机最大限度地工作在高效区,同时也要考虑电池组的峰值放电倍率。

2.1驱动电机功率在最高车速时计算以最高车速在水平道路上行驶,对加速阻力忽略不计,设风速为0,那么电机的输出功率即为尸二1 (第g/OOx I Q加;J 1 一名13 600 76 140 )IP1为最高车速时驱动功率;nt为机械传动效率;mg为整车满载质量;f(U)为滚动阻力系数;umax为最大车速;Cd为空气阻力系数;A为迎风面积。

其中:f (u) =1.2 (0.009 8+0.002 5[u/ (100 km/h) ]+ 0.000 4[u/ (100 km/h) ]4).按照实际需求及国际标准,选择100 km/h车速,根据式(2), 计算结果为0.015 24,代入式(1),计算结果为P1=13.2kW。

如果车速符合国家标准规定的不低于85碗勺,那么电机的功率还可以选择更小的。

e-cvt+at变速箱 工作原理

e-cvt+at变速箱 工作原理

E-CVT+AT变速箱工作原理随着汽车科技的不断发展,汽车变速箱技术也得到了极大的改进和创新。

其中,E-CVT+AT变速箱作为一种先进的变速箱技术,受到了越来越多的关注和应用。

本文将就E-CVT+AT变速箱的工作原理进行介绍,帮助读者更好地了解这一先进的汽车技术。

1. E-CVT+AT变速箱的概念E-CVT+AT变速箱是由电子无级变速器(E-CVT)和自动变速器(AT)结合而成的一种先进的汽车变速箱技术。

它采用了电子控制技术和无级变速技术,能够实现更加平稳、高效的动力传递,提高汽车的燃油经济性和驾驶舒适性。

2. E-CVT+AT变速箱的结构E-CVT+AT变速箱由电动机、电子控制单元、无级变速器和自动变速器组成。

其中,电动机通过电子控制单元控制无级变速器,从而实现对发动机输出扭矩和转速的精确控制;自动变速器则负责将电动机输出的动力传递给车轮,以实现汽车的正常行驶和变速换挡。

3. E-CVT+AT变速箱的工作原理E-CVT+AT变速箱通过电子控制单元对电动机和自动变速器进行精确控制,实现了电动机转矩和转速的无级变化,并将动力传递给车轮以实现车辆行驶。

其工作原理主要包括以下几个方面:3.1 电动机控制E-CVT+AT变速箱中的电动机由电子控制单元进行精确控制,可以根据实际驾驶需求调节电动机的输出扭矩和转速。

这种精确控制能够使车辆在不同驾驶环境下实现最佳的动力输出,提高汽车的燃油经济性和驾驶性能。

3.2 无级变速E-CVT+AT变速箱采用了无级变速技术,在电子控制单元的控制下,可以实现车辆动力输出的无级变化。

这种无级变速技术能够使车辆实现更加平稳的加速和减速,降低动力传递过程中的能量损失,提高汽车的能效和节能性能。

3.3 自动变速E-CVT+AT变速箱中的自动变速器负责接收电动机输出的动力,并将其传递给车轮以实现车辆的行驶。

在行驶过程中,自动变速器能够根据车辆速度和驾驶需求自动调节换挡,保证车辆始终处于最佳的工作状态,提高汽车的驾驶舒适性和性能表现。

新能源汽车变速器

新能源汽车变速器

新能源汽车变速器引言随着环保意识的提升和能源紧缺问题的日益凸显,新能源汽车已经成为了人们关注的热门话题。

而作为新能源汽车的核心部件之一,变速器在汽车行业中起着至关重要的作用。

本文将从新能源汽车变速器的背景、类型、优势和发展前景等多个方面进行阐述。

背景传统燃油汽车使用内燃机作为动力源,而新能源汽车通常采用电动机或混合动力系统。

由于电动机具有高转速、高扭矩和平滑运行等特点,因此传统的机械变速器在新能源汽车中的使用变得更加复杂。

新能源汽车变速器的设计和优化成为了汽车制造商需要面对的重要挑战。

类型新能源汽车变速器主要分为两类:单速变速器和多速变速器。

单速变速器单速变速器也称为固定齿比变速器,它将电动机的输出转矩通过齿轮机构传递到车轮,实现车辆的运动。

单速变速器的特点是结构简单,没有离合器和多个齿比的选择。

因此,单速变速器适用于低速驾驶场景。

多速变速器多速变速器是采用多个齿比组合的变速器,根据车辆行驶的需求自动或手动选择适当的齿比。

多速变速器使得车辆在不同速度范围内能够更加高效地工作,提高了动力输出和能源利用效率。

优势相比传统的内燃机汽车变速器,新能源汽车变速器具有以下优势:1.高效能源利用:新能源汽车变速器的优化设计可以提高功率传输效率,提高电动机的工作效率,从而减少能源的消耗。

2.平稳的行驶体验:新能源汽车变速器的设计可以实现平滑的加速和换挡过程,提供舒适的行车体验。

3.减少零件磨损:由于电动机的工作特性,新能源汽车变速器的工作负载较低,从而减少了零件的磨损和维护成本。

4.可靠性和耐久性:新能源汽车变速器采用先进的材料和制造工艺,提高了整体的可靠性和耐久性,减少了故障和维修次数。

发展前景新能源汽车变速器作为新能源汽车核心技术之一,在未来的发展中具有广阔的前景。

首先,随着新能源汽车市场的快速增长,对变速器的需求也会大幅增加。

尤其在城市交通拥堵的情况下,多速变速器的应用将能够提供更好的操控和驾驶体验。

其次,随着电动汽车技术的不断进步,新能源汽车变速器也将面临更高的要求。

汽车无级变速器设计

汽车无级变速器设计

汽车无级变速器设计引言随着汽车技术的不断发展,无级变速器(CVT)作为一种先进的变速装置,受到了越来越多汽车制造商的青睐。

与传统的手动变速器和自动变速器相比,CVT在车辆的燃油经济性、驾驶舒适性和动力输出上具有显著的优势。

本文将介绍汽车无级变速器的设计原理和相关技术。

无级变速器的工作原理传统的变速器通常是通过一系列固定的齿轮比来实现不同档位的变速。

而无级变速器则采用了一种不同的工作原理。

它通过调整两个带有张紧装置的松紧带或链条的位置来实现无级变速。

具体来说,汽车无级变速器由两个主要部分组成:输入装置和输出装置。

输入装置通常由发动机驱动,而输出装置则传输力量到驱动轴。

中间的传动装置调整输入和输出装置之间的连通性,从而实现不同的变速比。

在CVT中,两个松紧带或链条之间的张力调整可以通过液压装置、链轮直径改变或锥形带来实现。

这样,无级变速器可以根据车辆的需求和实际驾驶条件来实时调整变速比,以提供最佳的性能和燃油经济性。

汽车无级变速器的优势与传统的手动变速器和自动变速器相比,汽车无级变速器具有以下几个显著的优势:1.更高的燃油经济性:由于无级变速器可以实时调整变速比,使发动机在最佳工作范围内运转,从而提供更高的燃油效率。

2.更平顺的驾驶体验:传统的变速器在档位切换时常常伴随着顿挫感,而CVT可以实现连续平稳的变速,使驾驶体验更加舒适。

3.更大的动力输出范围:无级变速器可以实现更宽的变速比范围,从而提供更高的动力输出。

4.更简单的操作:相比于手动变速器,CVT不需要驾驶员进行繁琐的档位操作,只需踩下油门即可获得适当的动力输出。

汽车无级变速器的设计考虑因素在设计汽车无级变速器时,需要考虑以下几个因素:1.承受的扭矩和功率:无级变速器需要能够承受发动机输出的扭矩和功率,并将其传递到驱动轴上。

2.效率和寿命:无级变速器的设计应该尽可能地提高传动效率,同时保证足够的使用寿命。

3.变速比范围:设计应该考虑到车辆在不同驾驶场景下的变速需求,并提供足够的变速比范围。

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计随着汽车工业的不断发展,纯电动汽车已经逐渐成为汽车市场上的新宠。

相比传统燃油汽车,纯电动汽车有着更环保、更节能的优势,并且随着电池技术的不断提升,纯电动汽车的续航里程也得到了显著提高。

在纯电动汽车中,自动变速器的设计和性能至关重要,它直接影响车辆的动力传输效率和性能表现。

在纯电动汽车中,由于电机的工作特性,很多车型采用了两挡行星齿轮自动变速器来实现不同速度的匹配和转速的调节,以提高车辆的动力性和能效。

下面我们将深入探讨纯电动汽车两挡行星齿轮自动变速器的结构设计。

需要了解行星齿轮变速器的基本结构。

行星齿轮变速器由太阳轮、行星轮、内齿轮和外齿轮组成。

它通过不同组合方式实现了多档速比的调节,使得车辆可以在不同速度和负载条件下获得合适的动力输出。

行星齿轮变速器具有结构简单、可靠性高、换挡平顺等优点,因此得到了广泛应用。

在纯电动汽车的两挡行星齿轮自动变速器设计中,需要考虑以下几个方面:1. 齿轮材料和制造工艺。

行星齿轮变速器中的齿轮需要承受高速度和大扭矩的工作环境,因此需要选择高强度、高耐磨的材料来制造。

制造工艺的精度和稳定性也对齿轮的性能有着直接影响。

2. 变速器的传动效率。

在纯电动汽车中,能源的利用效率至关重要,因此两挡行星齿轮自动变速器的传动效率需要尽可能高,以减小能量的损耗和提高车辆的续航里程。

3. 换挡的平顺性和响应性。

两挡行星齿轮自动变速器的设计需要确保换挡的平顺性和响应性,保证车辆在不同速度下的动力输出具有良好的连续性和稳定性。

4. 系统的整体布局。

纯电动汽车的两挡行星齿轮自动变速器需要与电机、电控系统等其他部件进行良好的整体布局,以确保整车系统的协同工作和优化性能。

在实际的设计过程中,需要通过CAD、CAE等工具对两挡行星齿轮自动变速器进行结构设计和仿真分析,以验证设计方案的可行性和优化性能。

还需要进行试验验证和样车测试,不断优化和改进设计方案,最终实现两挡行星齿轮自动变速器的优秀性能和可靠性。

电动汽车变速传动装置设计

电动汽车变速传动装置设计

电动汽车变速传动装置设计摘要随着石油资源的日益减少和环境保护要求的提高,电动汽车的发展越来越受到人们的重视,然而,对动力传动系统部件的设计参数进行研究是提高电动汽车性能的重要手段之一。

变速器是汽车重要的传动系组成,在较大范围内改变汽车行驶速度的大小和汽车驱动轮上扭矩的大小。

电动汽车的变速器与普通变速器相比,其结构有所不同。

因为驱动电机的旋向可以通过电路控制实现变换,所以电动汽车无需内燃机汽车变速器中的倒档而设置倒档轴,只需应用电机反转来实现倒车行驶。

设计中利用已知参数确定变速器各参数,对轴和各挡齿轮进行校核,绘制出装配图及零件图。

同时本设计对电动汽车的动力传动系统进行了匹配设计计算,计算结果表明达到性能要求。

目录第1章绪论 (1)1.1电动汽车的简介.........................................................1 1.2电动汽车传动装置的特点.............................................1 1.3电动汽车变速器的功用 (2)第2章电动汽车动力传动系统匹配计算 (3)2.1计算最高车速.........v.......................................v.........3 2.2车辆加速时间的计算...................................................4 2.3车辆爬坡的计算......................................................4 2.4续驶里程的计算 (4)第3章电动汽车变速嚣设计方案及论证 (5)3.1电动汽车变速器的要求.............................................7 3.2变速器设计方案论证 (8)第4章变速置备主要参数的设计计算及校核 (8)4.1主要参数设计.........................................................8 4.2齿轮强度计算.........................................................13 4.3确定轴的尺寸 (16)第5章同步器的设计 (18)5.1同步器的工作原理...................................................19 5.2同步器的功用同步器的种类.......................................19 5.3同步器的参数的确定 (20)第6章变速器操纵机构................................................23 6.1对变速器操纵机构的要求..........................................23 6.2直接操纵手动换挡变速器..........................................23 6.3远距离操纵手动换挡变速器.......................................24 6.4变速器自锁、互锁、倒挡锁装置 (24)第7章变速器轴承................................................26 第8章变速器的润滑与密封....................................27 第9章零件的加工工艺 (28)9.1齿轮轴加工工艺...................................................28 9.2齿轮加工工艺......................................................28 9.3端盖加工工艺......................................................29 9.4装配图 (30)第1 0章结论......................................................31 参考文献.........................................................32 结束语............................................................33 附录 (34)电动汽车变速传动装置设计第1章绪论1.1电动汽车的简介电动汽车是指以车我电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

井冈山大学学报(自然科学版)100文章编号:1674-8085(2011)01-0100-04电动汽车自动变速器设计研究黄菊花1,徐仕华1,*谢世坤2(1.南昌大学机电工程学院,江西,南昌 330031;2.井冈山大学工学院,江西,吉安 343009)摘 要:由于电池和电机技术的不成熟,电动汽车仍需利用变速器提高整车动力性和经济性。

本文首先简述了常见自动变速器的结构原理和优缺点,结合电动汽车电机特性和双离合器自动变速器的优点,提出将两挡双离合器自动变速器应用于电动汽车,并着重对该自动变速器的系统结构原理及其实现过程进行介绍,并分析了该自动变速器的优点。

经研究表明,两挡自动变速器具有较好的应用前景。

关键词:双离合器;自动变速器;电动汽车中图分类号:TP399 文献标识码:A DOI:10.3969/j.issn.1674-8085.2011.01.023THE DESIGN OF AUTOMATIC TRANSMISSION CONTROL SYSTEM OFELECTRIC VEHICLEHUANG Ju-hua1, XU Shi-hua1, *XIE Shi-kun2(1. School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China;2.School of Technology, Jinggangshan University, Ji’an, Jiangxi 343009, China)Abstract: The battery and motor technology is not enough mature, so electric vehicles still need transmissions to improve its performance. The structure, working principle, advantage and disadvantage of common automatic transmissions are introduced. Considering the characteristics of electric vehicle motor and the advantages of double clutch automatic transmission, we propose two block double clutch transmission in electric vehicle. Particularly, we introduce the basic structure, working principle, realization process and advantages of the automatic transmission. The research results show that this automatic transmission has a good application prospect Key words: double clutch; automatic transmission; electric vehicle0 引言电动汽车以可再生清洁的电能为动力,克服了传统内燃机汽车的环境污染和资源短缺问题;电动汽车牵引电机相对传统内燃机具有较宽的工作范围,并且电机低速时恒转矩和高速时恒功率的特性更适合车辆运行需求。

然而固定速比减速器仅有一个挡位,使得电动汽车电机常处在低效率区域,既浪费宝贵电池能量而使续驶里程减少,又提高了对牵引电机的要求。

电动汽车牵引电机既要在恒转矩区提供较高瞬时转矩,又要在恒功率区提供较高运行速度,才能满足车辆的高速、爬坡和加速等整车性能要求[1]。

为使电动汽车发挥其优越性,并降低电动汽车对动力电池和牵引电机要求,电动汽车传动系统应多挡化。

手动变速器换挡操纵复杂以及换挡过程中需第32卷第1期V ol.32 No.1 井冈山大学学报(自然科学版)2011年1月Jan. 2011 Journal of Jinggangshan University (Natural Science) 100收稿日期:2010-10-27;修改日期:2010-11-20基金项目:江西省科技厅重大战略产品专项(2009006); 江西省科技厅自然基金项目(Z02729); 江西省教育厅科技计划项目(GJJ09025)作者简介:黄菊花(1962-),女,江西南昌人,教授,博士,博士生导师,主要从事汽车电子工程研究(E-mail: huangjuhua6@);徐仕华(1986-),男,江西进贤人,硕士生,主要从事电动汽车自动变速技术研究(E-mail: seefar520@);*谢世坤(1973-),男,江西吉安人,教授,博士,硕士生导师,主要从事材料成型控制与汽车动特性研究(E-mail: xskun@).井冈山大学学报(自然科学版) 101要切断动力源影响电动汽车的驾驶性能和舒适性。

自动变速是车辆变速发展趋势,自动变速器相对手动变速器具有较高整车的安全性、舒适性等性能。

基于平行轴式手动变速器的双离合器自动变速器,不仅继承了手动变速器传动效率高、结构紧凑、价格便宜等许多优点[2];同时还解决了换挡动力中断问题,也保留了液力自动变速器、无级自动变速器等换档品质好的优点。

因此电动汽车采用两挡双离合器自动变速器具有更好的整车性能。

1 电动汽车自动变速器结构原理1.1 系统结构原理图图1 两挡双离合器自动变速器系统原理图Fig.1 System principle chart of automatic transmission of twoblock double clutch图1所示为两挡双离合器自动变速器系统结构原理图,它以变速器电控单元为中心,接收制动踏板、选择开关、加速踏板等传感器获知的信号,同时可以利用CAN总线技术接收来自整车控制器的信号,如车速、电机转速等信号。

变速器电控单元采集当前路况信息,通过一定的换挡规律发出信号指令,控制离合器执行机构操纵离合器的分离与结合等动作。

1.2 传动结构原理根据汽车行驶性能确定IdealⅡ纯电动汽车传动设计采用两挡变速器即可满足整车的动力性和经济性要求[3]。

图2为两挡双离合器自动变速器传动结构图,低速挡1挡与离合器CL1联接,高速挡2挡与CL2联接。

离合器CL1输出轴为实心轴,套在实心轴外面是一个空心轴,即离合器CL2输出轴。

两输出轴同心使得结构使变速器更加紧凑。

通过电机与减速增距结构使两个离合器的接合与分析实现两挡自动变速,不需要再增加换挡机构,简化了系统的结构,倒挡通过整车电机反转实现。

图2 双离合器自动变速器传动结构图件原理图Fig.2 Transmission chart of automatic transmission ofdouble clutch电动汽车处停车状态时,离合器CL1和离合器CL2都处于分离状态,故不传递动力。

当电动汽车起步时,自动变速器电控单元控制离合器CL1电机使离合器CL1接合,当离合器CL1完全接合时,电动汽车进入1挡,此时离合器CL2仍是分离的,不传递动力。

当电动汽车加速并达到2挡的换挡速度值时,通过变速器电控单元控制离合器电机使离合器CL1开始分离的同时,离合器CL2开始接合。

两个离合器交替切换,直到离合器CL1分离完全,离合器CL2接合完全,电动汽车升挡过程结束。

当电动汽车进入2挡车速运行后,变速器电控单元采集相关信号并判断电动汽车即将运行的挡位是否降挡。

降挡过程只需将正接合离合器CL2分离,同时将处分离状态的离合器CL1接合即可。

配合好两个离合器切换时序,按一定的换挡规律进行换挡,整个换挡即可有序完成。

1.3 控制系统原理1.3.1 控制系统硬件原理自动变速箱电控单元TCU是整个双离合器自动变速器系统的控制核心,TCU设计的好坏直接关系到整个双离合器自动变速器的品质和性能。

本设计选用飞思卡尔公司16位MC9S12C64单片机。

MC9S12C64具有高速数字信号处理能力、实时性强、低功耗、集成度高等性能。

它工作环境温度可在-40 ~ 125之间,能克服汽车工作环境恶劣对单片机性能的影响。

MC9S12C64采用16位微处理器S12CPU[4],具有较高的计算和处理能力。

MC9S12C64拥有2KB井冈山大学学报(自然科学版) 102内部RAM、64KB的内部FLASH;一个8路16位TIM(定时器)模块,具有高效处理多路时间事件的能力,满足电动汽车自动变速器控制系统中多路转速信号采集要求;8路10位AD(模数转换)模块,满足多路模拟信号转换精度要求;6路8位PWM (脉宽调制)模块,可以满足电动汽车多路电机驱动信号输出要求;实现与其它电控单元进行通讯的CAN总线模块。

其他可用资源:80脚封装有可用60个通用I/O口、两个8位双向数字I/O口、内部看门狗等。

以MC9S12C64为核心TCU系统主要由主控制器模块、输入模块、电机驱动模块、显示和CAN 通信模块等组成。

信号输入包括模拟信号、开关信号和脉冲信号输入。

其中电机转速采用霍尔脉冲式传感器,转速传感器输出的脉冲信号经过光电隔离、电平转换后输入到单片机引脚上测速。

电机驱动模块采用PWM对两个离合器控制电机进行转速和转向进行控制,PWM具有调速精度高、响应速度快、调速范围宽和耗损低等优点。

CAN通信模块可以将TCU与整车电机控制器和制动防抱死系统进行数据传输,从而实现了双离合器自动变速器系统对电机转速和转矩的控制,不仅简化了设计,降低了系统制造成本,同时提高了TCU的集成度和可靠性,改善了换挡品质和整车的动力性、舒适性。

显示模块采用两个数码管,分别显示挡位和故障代码。

故障报警采用发光二极管和蜂鸣器实现。

MC9S12C64不具有内部EEPROM和时钟,故要增加时钟电路以及掉电存储器。

TCU系统硬件原理图如图3所示。

图3 双离合器自动变速器硬件原理图Fig.3 Hardwere diagram of automatic transmission ofdouble clutch 1.3.2 控制系统软件软件原理双离合器自动变速器软件系统采用模块化程序设计方法,由主程序、信号处理、换挡决策、执行等模块组成。

主程序是一个循环程序,它不断通过采集信号来读取整车状态,实时根据司机的操作,调用相应的子程序进行换挡决策、换挡和故障诊断,并显示挡位和故障代码显示与报警。

TCU系统主程序由上电初始化子程序、停车挡处理子程序、空挡处理子程序、前进挡处理子程序、倒挡处理子程序、以及在线故障诊断显示程序等子程序组成。

相关文档
最新文档