2020年高考文科数学一轮复习精品练习 第八篇 平面解析几何 第7节 圆锥曲线的综合问题 Word版含解析
2020年高考数学一轮总复习 第八章平面解析几何 课时规范练理含解析
8-1 直线的倾斜角与斜率、直线的方程课时规范练(授课提示:对应学生用书第299页)A 组 基础对点练1.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( D )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 22.如果AB <0,且BC <0,那么直线Ax +By +C =0不通过( D ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( D ) A .x +y -2=0 B .x -y +2=0 C .x +y -3=0D .x -y +3=04.设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +2y +4=0平行”的( C ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件5.直线(2m +1)x +(m +1)y -7m -4=0过定点( C ) A .(1,-3) B .(4,3) C .(3,1)D .(2,3)6.直线x +(a 2+1)y +1=0的倾斜角的取值范围是( B )A.⎣⎢⎡⎦⎥⎤0,π4B .⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎭⎪⎫0,π4∪⎝ ⎛⎭⎪⎫π2,π D .⎣⎢⎡⎭⎪⎫π4,π2∪⎣⎢⎡⎭⎪⎫3π4,π 7.直线3x -4y +5=0关于x 轴对称的直线的方程是( A )A .3x +4y +5=0B .3x +4y -5=0C .-3x +4y -5=0D .-3x +4y +5=08.已知两点M (2,-3),N (-3,-2),直线l 过点P (1,1),且与线段MN 相交,则直线l的斜率k 的取值范围是( A ) A .k ≥34或k ≤-4B .-4≤k ≤34C.34≤k ≤4 D .-34≤k ≤4解析:如图所示,∵k PN =1--1--=34,k PM =1--1-2=-4,∴要使直线l 与线段MN 相交, 当l 的倾斜角小于90°时,k ≥k PN ; 当l 的倾斜角大于90°时,k ≤k PM , ∴k ≥34或k ≤-4.9.已知过点P (2,2)的直线与圆(x -1)2+y 2=5相切,且与直线ax -y +1=0垂直,则a =( C ) A .-12B .1C .2D .1210.垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是( A ) A .x +y -2=0 B .x +y +1=0 C .x +y -1=0D .x +y +2=011.平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( A ) A .2x +y +5=0或2x +y -5=0 B .2x +y +5=0或2x +y -5=0 C .2x -y +5=0或2x -y -5=0 D .2x -y +5=0或2x -y -5=012.“a =14”是“直线(a +1)x +3ay +1=0与直线(a -1)x +(a +1)y -3=0互相垂直”的( A )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件13.已知点M (0,-1),点N 在直线x -y +1=0上,若直线MN 垂直于直线x +2y -3=0, 则点N 的坐标是( B ) A .(-2,-1) B .(2,3) C .(2,1)D .(-2,1)14.已知m ,n 为正整数,且直线2x +(n -1)y -2=0与直线mx +ny +3=0互相平行,则2m +n 的最小值为 9 .解析:由题意知,2n =m (n -1),即m +2n =mn , 得2m +1n=1,又m ,n 为正整数,∴2m +n =(2m +n )⎝ ⎛⎭⎪⎫2m +1n =5+2n m +2m n ≥9.当且仅当2n m =2m n时取等号.B 组 能力提升练1.已知f (x )=a sin x -b cos x ,若f ⎝ ⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x ,则直线ax -by +c =0的倾斜角为( D ) A.π3 B .π6C.π4D .3π4解析:令x =π4,得f (0)=f ⎝ ⎛⎭⎪⎫π2,得a =-b ,易得直线斜率k =a b =-1. 2.过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( A ) A .x +y -2=0 B .y -1=0 C .x -y =0D .x +3y -4=03.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( A ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0D .4x +y -3=04.一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( D ) A .-53或-35B .-32或-23C .-54或-45D .-43或-345.已知点O (0,0),A (0,b ),B (a ,a 3).若△OAB 为直角三角形,则必有( C ) A .b =a 3B .b =a 3+1aC .(b -a 3)⎝ ⎛⎭⎪⎫b -a 3-1a =0D .|b -a 3|+⎪⎪⎪⎪⎪⎪b -a 3-1a =06.若θ是直线l 的倾斜角,且sin θ+cos θ=55,则l 的斜率为( D ) A .-12B .-12或-2C.12或2 D .-2解析:∵sin θ+cos θ=55,① ∴(sin θ+cos θ)2=1+sin 2θ=15,∴2sin θcos θ=-45,∴(sin θ-cos θ)2=95,易知sin θ>0,cos θ<0,∴sin θ-cos θ=355,②由①②解得⎩⎪⎨⎪⎧sin θ=255,cos θ=-55,∴tan θ=-2,即l 的斜率为-2,故选D.7.已知倾斜角为θ的直线与直线x -3y +1=0垂直,则23sin 2θ-cos 2θ=( C ) A.103 B .-103C.1013D .-10138.已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( B ) A .(0,1) B .⎝ ⎛⎭⎪⎫1-22,12 C.⎝ ⎛⎦⎥⎤1-22,13 D .⎣⎢⎡⎭⎪⎫13,129.过点A (1,2)且与直线x -2y +3=0垂直的直线方程为 2x +y -4=0 .解析:直线x -2y +3=0的斜率为12,所以由垂直关系可得要求直线的斜率为-2,所以所求方程为y -2=-2(x -1),即2x +y -4=0.10.已知直线l 经过点(-5,0)且方向向量为(2,-1),则直线l 的方程为 x +2y +5=0 .解析:∵直线l 的方向向量为(2,-1),∴直线l 的斜率为-12,∵直线l 过点(-5,0),∴直线l 的方程为x +2y +5=0.11.直线y =k (x -1)与以A (3,2),B (2,3)为端点的线段有公共点,则k 的取值范围是 [1,3] .解析:直线y =k (x -1)恒过点P (1,0),且与以A (3,2),B (2,3)为端点的线段有公共点,画出图形(如图所示),则直线落在阴影区域内.∵k PA =2-03-1=1,k PB =3-02-1=3,∴k 的取值范围是[1,3].12.若ab >0,且A (a,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为 16 .解析:根据A (a,0),B (0,b )确定直线的方程为x a +y b=1,又C (-2,-2)在该直线上,故-2a+-2b=1,所以-2(a +b )=ab .又ab >0,故a <0,b <0.根据基本不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号,即ab 的最小值为16.8-2 直线的交点与距离公式课时规范练(授课提示:对应学生用书第301页)A 组 基础对点练1.(2016·高考北京卷)圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为( C ) A .1 B .2 C. 2D .2 22.(2018·邢台模拟)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的 ( C )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由题意得,直线ax +3y +3=0和直线x +(a -2)y +1=0平行的充要条件是⎩⎪⎨⎪⎧a a -=3×1,a ×1≠3×1,解得a =-1,故选C.3.过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( D )A.⎝ ⎛⎦⎥⎤0,π6B .⎝ ⎛⎦⎥⎤0,π3C.⎣⎢⎡⎦⎥⎤0,π6 D .⎣⎢⎡⎦⎥⎤0,π3 4.若直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限,则实数k 的取值范围是( A ) A .-6<k <-2 B .-5<k <-3 C .k <-6D .k >-25.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2过定点( B ) A .(0,4) B .(0,2) C .(-2,4)D .(4,-2)6.已知点A (x,5)关于点(1,y )的对称点是(-2,-3),则点P (x ,y )到原点的距离是( D ) A .4 B .13 C.15D .177.已知直线3x +2y -3=0与直线6x +my +7=0互相平行,则它们之间的距离是( B )A .4B .132C.21313D .713268.圆C :x 2+y 2-4x -4y -10=0上的点到直线l :x +y -14=0的最大距离与最小距离的差是( C ) A .36 B .18 C .6 2D .5 2解析:圆x 2+y 2-4x -4y -10=0的圆心为(2,2),半径为32, 圆心到直线x +y -14=0的距离为|2+2-14|2=52>32,圆上的点到直线的最大距离与最小距离的差是2R =6 2.9.若直线3x -4y +5=0与圆x 2+y 2=r 2(r >0)相交于A ,B 两点,且∠AOB =120°(O 为坐标原点),则r = 2 .解析:圆x 2+y 2=r 2的圆心为原点,则圆心到直线3x -4y +5=0的距离为|0-0+5|32+-2=1,在△OAB 中,点O 到边AB 的距离d =r sin 30°=r2=1,所以r =2.10.若在平面直角坐标系内过点P (1,3)且与原点的距离为d 的直线有两条,则d 的取值范围为 0<d <2 .解析:|OP |=2,当直线l 过点P (1,3)且与直线OP 垂直时,有d =2,且直线l 有且只有一条;当直线l 与直线OP 重合时,有d =0,且直线l 有且只有一条;当0<d <2时,有两条. 11.已知直线l 1与直线l 2:4x -3y +1=0垂直且与圆C :x 2+y 2=-2y +3相切,则直线l 1的方程是 3x +4y +14=0或3x +4y -6=0 .解析:圆C 的方程为x 2+(y +1)2=4,圆心为(0,-1),半径r =2.由已知可设直线l 1的方程为3x +4y +c =0,则|3×0+-+c |32+42=2,解得c =14或c =-6.即直线l 1的方程为3x +4y +14=0或3x +4y -6=0. 12.已知直线l 经过直线2x +y -5=0与x -2y =0的交点. (1)若点A (5,0)到l 的距离为3,求l 的方程; (2)求点A (5,0)到l 的距离的最大值.解析:(1)易知点A 到直线x -2y =0的距离不等于3,可设经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0, 即(2+λ)x +(1-2λ)y -5=0.由题意得|10+5λ-5|+λ2+-2λ2=3,即2λ2-5λ+2=0,∴λ=2或12.∴l 的方程为4x -3y -5=0或x =2.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点为P (2,1),如图,过P 作任一直线l ,设d 为点A 到l 的距离,则d ≤|PA |(当l ⊥PA 时等号成立).∴d max =|PA |=10.B 组 能力提升练1.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则|PA |2+|PB |2|PC |2=( D ) A .2 B .4 C .5D .102.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( C ) A .(-2,4) B .(-2,-4) C .(2,4)D .(2,-4)解析:设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧y -2x +4×2=-1,y +22=2×-4+x2,解得⎩⎪⎨⎪⎧x =4,y =-2,∴BC 所在直线方程为y -1=-2-14-3(x -3),即3x +y -10=0. 联立y =2x ,解得⎩⎪⎨⎪⎧x =2,y =4,则C (2,4).故选C.3.已知圆C :(x -1)2+(y -2)2=2与y 轴在第二象限所围区域的面积为S ,直线y =2x +b 分圆C 的内部为两部分,其中一部分的面积也为S ,则b =( D ) A .- 6B .± 6C .- 5D .± 54.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是 5 .解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,不难验证PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),当P 与A 或B 重合时,|PA |·|PB |=0,故|PA |·|PB |的最大值是5.5.已知动直线l :ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),且Q (4,0)到动直线l 的最大距离为3,则12a +2c 的最小值为 94.解析:因为动直线l :ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),所以a +bm +c -2=0,又Q (4,0)到动直线l 的最大距离为3, 所以-2+-m2=3,解得m =0.所以a +c =2,则12a +2c =12(a +c )·⎝ ⎛⎭⎪⎫12a +2c =12⎝ ⎛⎭⎪⎫52+c 2a +2a c ≥12⎝ ⎛⎭⎪⎫52+2c 2a ·2a c =94, 当且仅当c =2a =43时取等号.6.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是 (2,4) .解析:由已知得k AC =6-23-1=2,k BD =5--1-7=-1,所以AC 的方程为y -2=2(x -1), 即2x -y =0,①BD 的方程为y -5=-(x -1),即x +y -6=0,②联立①②解得⎩⎪⎨⎪⎧x =2,y =4.所以直线AC 与直线BD 的交点为P (2,4), 此点即为所求点.因为|PA |+|PB |+|PC |+|PD |=|AC |+|BD |, 取异于P 点的任一点P ′,则|P ′A |+|P ′B |+|P ′C |+|P ′D | =(|P ′A |+|P ′C |)+(|P ′B |+|P ′D |)>|AC |+|BD |=|PA |+|PB |+|PC |+|PD |. 故P 点就是到A ,B ,C ,D 的距离之和最小的点.7.在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位,沿y 轴正方向平移5个单位,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位,沿y 轴负方向平移2个单位,又与直线l 重合.若直线l 与直线l 1关于点(2,3)对称,则直线l 的方程是 6x -8y +1=0 . 解析:由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b ,将直线l 沿x 轴正方向平移3个单位,沿y 轴正方向平移5个单位,得到直线l 1:y =k (x -3)+5+b ,再将直线l 1沿x 轴正方向平移1个单位,沿y 轴负方向平移2个单位,则平移后的直线方程为y =k (x-3-1)+b +5-2,即y =kx +3-4k +b .∴b =3-4k +b ,解得k =34.∴直线l 的方程为y=34x +b ,直线l 1为y =34x +114+b ,设直线l 上的一点P ⎝ ⎛⎭⎪⎫m ,b +3m 4,则点P 关于点(2,3)的对称点为⎝ ⎛⎭⎪⎫4-m ,6-b -34m ,∴6-b -34m =34(4-m )+b +114,解得b =18.∴直线l 的方程是y =34x +18,即6x -8y +1=0.8.著名数学家华罗庚曾说过:“数形结合百般好,割裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:x -a2+y -b2可以转化为平面上点M (x ,y )与点N (a ,b )的距离.结合上述观点,可得f (x )=x 2+4x +20+ x 2+2x +10的最小值为 5 2 .解析:∵f (x )=x 2+4x +20+x 2+2x +10=x +2+-2+x +2+-2,∴f (x )的几何意义为点M (x,0)到两定点 A (-2,4)与B (-1,3)的距离之和.设点 A (-2,4)关于x 轴的对称点为A ′,则A ′为(-2,-4).要求f (x )的最小值,可转化为|MA |+|MB |的最小值,利用对称思想可知|MA |+|MB |≥|A ′B |=-1+2++2=52,即f (x )=x 2+4x +20+x 2+2x +10的最小值为5 2.9.已知直线l :(2+m )x +(1-2m )y +4-3m =0. (1)求证:不论m 为何实数,直线l 过一定点M ;(2)过定点M 作一条直线l 1,使夹在两坐标轴之间的线段被M 点平分,求直线l 1的方程. 解析:(1)证明:直线l 的方程整理得(2x +y +4)+m (x -2y -3)=0,由⎩⎪⎨⎪⎧2x +y =-4,x -2y =3,解得⎩⎪⎨⎪⎧x =-1,y =-2,所以无论m 为何实数,直线l 过定点M (-1,-2).(2)过定点M (-1,-2)作一条直线l 1,使夹在两坐标轴之间的线段被M 点平分,则直线l 1过点(-2,0),(0,-4), 设直线l 1的方程为y =kx +b ,把两点坐标代入得⎩⎪⎨⎪⎧-2k +b =0,b =-4,解得⎩⎪⎨⎪⎧k =-2,b =-4,∴直线方程为y =-2x -4.8-3 圆的方程课时规范练(授课提示:对应学生用书第303页)A 组 基础对点练1.圆心为(1,1)且过原点的圆的方程是( D ) A .(x -1)2+(y -1)2=1 B .(x +1)2+(y +1)2=1 C .(x +1)2+(y +1)2=2 D .(x -1)2+(y -1)2=22.直线x -2y -2k =0与直线2x -3y -k =0的交点在圆x 2+y 2=9的外部,则k 的取值范围为( A )A .k <-35或k >35B .-35<k <35C .-34<k <34D .k <-34或k >343.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( B ) A .6-2 2 B .52-4 C.17-1D .174.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( A ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=15.(2018·长沙二模)圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2的距离的最大值是( A ) A .1+ 2 B .2 C .1+22D .2+2 2解析:将圆的方程化为(x -1)2+(y -1)2=1,圆心坐标为(1,1),半径为1,则圆心到直线x -y =2的距离d =|1-1-2|2=2,故圆上的点到直线x -y =2的距离的最大值为d +1=2+1,故选A.6.(2016·高考天津卷)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为 (x -2)2+y 2=9 .解析:设圆心为(a,0)(a >0),则圆心到直线2x -y =0的距离d =|2a -0|4+1=455,得a =2,半径r =a -2+-52=3,所以圆C 的方程为(x -2)2+y 2=9.7.(2016·高考浙江卷)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是 (-2,-4) ,半径是 5 .解析:由题可得a 2=a +2,解得a =-1或a =2.当a =-1时,方程为x 2+y 2+4x +8y -5=0,表示圆,故圆心为(-2,-4),半径为5.当a =2时,方程不表示圆.8.(2018·高考天津卷)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为x 2+y 2-2x =0 .解析:设圆的方程为x 2+y 2+Dx +Ey +F =0,圆经过三点(0,0),(1,1),(2,0),则⎩⎪⎨⎪⎧F =0,1+1+D +E +F =0,4+0+2D +F =0,解得⎩⎪⎨⎪⎧D =-2,E =0,F =0,则圆的方程为x 2+y 2-2x =0.9.过点M (1,2)的直线l 与圆C :(x -3)2+(y -4)2=25交于A ,B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程是 x +y -3=0 .解析:验证得M (1,2)在圆内,当∠ACB 最小时,直线l 与CM 垂直,又圆心为(3,4),则k CM =4-23-1=1,则k l =-1,故直线l 的方程为y -2=-(x -1),整理得x +y -3=0. 10.已知圆C 经过点(0,1),且圆心为C (1,2). (1)写出圆C 的标准方程;(2)过点P (2,-1)作圆C 的切线,求该切线的方程及切线长. 解析:(1)由题意知,圆C 的半径r =-2+-2=2,所以圆C 的标准方程为(x -1)2+(y -2)2=2.(2)由题意知切线斜率存在,故设过点P (2,-1)的切线方程为y +1=k (x -2),即kx -y -2k -1=0,则|-k -3|1+k 2=2,所以k 2-6k -7=0,解得k =7或k =-1,故所求切线的方程为7x -y -15=0或x +y -1=0.由圆的性质易得所求切线长为PC 2-r 2=-2+-1-2-2=2 2.11.在平面直角坐标系xOy 中,经过函数f (x )=x 2-x -6的图象与两坐标轴交点的圆记为圆C .(1)求圆C 的方程;(2)求经过圆心C 且在坐标轴上截距相等的直线l 的方程.解析:(1)设圆的方程为x 2+y 2+Dx +Ey +F =0,函数f (x )=x 2-x -6的图象与两坐标轴交点为(0,-6),(-2,0),(3,0), 由⎩⎪⎨⎪⎧ 36-6E +F =0,4-2D +F =0,9+3D +F =0,解得⎩⎪⎨⎪⎧D =-1,E =5,F =-6,所以圆的方程为x 2+y 2-x +5y -6=0.(2)由(1)知圆心坐标为⎝ ⎛⎭⎪⎫12,-52,若直线经过原点,则直线l 的方程为5x +y =0;若直线不过原点,设直线l 的方程为x +y =a ,则a =12-52=-2,即直线l 的方程为x +y +2=0.综上可得,直线l 的方程为5x +y =0或x +y +2=0.B 组 能力提升练1.方程|y |-1=1-x -2表示的曲线是( D )A .一个椭圆B .一个圆C .两个圆D .两个半圆2.圆C 的圆心在y 轴正半轴上,且与x 轴相切,被双曲线x 2-y 23=1的渐近线截得的弦长为3,则圆C 的方程为( A )A .x 2+(y -1)2=1 B .x 2+(y -3)2=3 C .x 2+(y +1)2=1D .x 2+(y +3)2=33.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( B ) A .7 B .6 C .5D .44.已知圆M 的圆心在抛物线x 2=4y 上,且圆M 与y 轴及抛物线的准线都相切,则圆M 的方程是( A )A .x 2+y 2±4x -2y +1=0 B .x 2+y 2±4x -2y -1=0 C .x 2+y 2±4x -2y +4=0 D .x 2+y 2±4x -2y -4=05.已知△ABC 的三个顶点坐标分别为A (-2,3),B (-2,-1),C (6,-1),以原点为圆心的圆与此三角形有唯一的公共点,则该圆的方程为( D ) A .x 2+y 2=1 B .x 2+y 2=4 C .x 2+y 2=4D .x 2+y 2=1或x 2+y 2=37解析:直线AC 为x +2y -4=0,点O 到直线AC 的距离为d =|-4|5=455>1,又|OA |=13,|OB |=5,|OC |=37.由题意知公共点为(0,-1)或(6,-1).故半径为1或37. 6.圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为 (x -2)2+(y -1)2=4 .解析:依题意,设圆心的坐标为(2b ,b )(其中b >0),则圆C 的半径为2b ,圆心到x 轴的距离为b ,所以24b 2-b 2=23,b >0,解得b =1,故所求圆C 的标准方程为(x -2)2+(y -1)2=4.7.(2018·运城二模)已知圆C 截y 轴所得的弦长为2,圆心C 到直线l :x -2y =0的距离为55,且圆C 被x 轴分成的两段弧长之比为3∶1,则圆C 的方程为 (x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2 .解析:设圆C 的方程为(x -a )2+(y -b )2=r 2,则点C 到x 轴,y 轴的距离分别为|b |,|a |.由题意可知⎩⎪⎨⎪⎧r 2=2b 2,r 2=a 2+1,|a -2b |5=55,∴⎩⎪⎨⎪⎧ a =-1,b =-1,r 2=2或⎩⎪⎨⎪⎧a =1,b =1,r 2=2.故所求圆C 的方程为(x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2.8.在平面直角坐标系xOy 中,以点(2,1)为圆心且与直线mx +y -2m =0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为 (x -2)2+(y -1)2=1 .解析:直线mx +y -2m =0过定点(2,0),则以点(2,1)为圆心且与直线mx +y -2m =0(m ∈R )相切的所有圆中,半径最大的圆的半径为1,∴半径最大的圆的标准方程为(x -2)2+(y -1)2=1.9.已知平面区域⎩⎪⎨⎪⎧x ≥0,y ≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内部所覆盖,则圆C 的方程为 (x -2)2+(y -1)2=5 .解析:由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,∴覆盖它的且面积最小的圆是其外接圆.∵△OPQ 为直角三角形,∴圆心为斜边PQ 的中点(2,1),半径r =|PQ |2=5,∴圆C 的方程为(x -2)2+(y -1)2=5.10.如图,已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2.(1)圆C 的标准方程为 (x -1)2+(y -2)2=2 ; (2)圆C 在点B 处的切线在x 轴上的截距为 -2-1 .解析:(1)过点C 作CM ⊥AB 于M ,连接AC (图略),则|CM |=|OT |=1,|AM |=12|AB |=1,所以圆的半径r =|AC |=|CM |2+|AM |2=2,从而圆心C (1,2),即圆的标准方程为(x -1)2+(y -2)2=2.(2)令x =0得,y =2±1,则B (0,2+1), 所以直线BC 的斜率为k =2+-20-1=-1,由直线与圆相切的性质知,圆C 在点B 处的切线的斜率为1,则圆C 在点B 处的切线方程为y -(2+1)=1×(x -0),即y =x +2+1, 令y =0得,x =-2-1,故所求切线在x 轴上的截距为-2-1.11.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程; (2)若P 点到直线y =x 的距离为22,求圆P 的方程. 解析:(1)设P (x ,y ),圆P 的半径为r . 由题意可得y 2+2=r 2,x 2+3=r 2, 从而y 2+2=x 2+3.故P 点的轨迹方程为y 2-x 2=1. (2)设P (x 0,y 0).由已知得|x 0-y 0|2=22. 又P 点在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧|x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧x 0-y 0=1,y 20-x 20=1得⎩⎪⎨⎪⎧x 0=0,y 0=-1.此时,圆P 的半径r = 3. 由⎩⎪⎨⎪⎧x 0-y 0=-1,y 20-x 20=1得⎩⎪⎨⎪⎧x 0=0,y 0=1.此时,圆P 的半径= 3.∴圆的方程为x 2+(y +1)2=3或x 2+(y -1)2=3.12.如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围.解析:(1)由题意知,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2),于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3, 由题意得,|3k +1|k 2+1=1, 解得k =0或-34,故所求切线方程为y =3或3x +4y -12=0. (2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1. 设点M (x ,y ),因为|MA |=2|MO |, 所以x 2+y -2=2x 2+y 2,化简得x 2+y 2+2y -3=0, 即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上. 由题意,点M (x ,y )在圆C 上, 所以圆C 与圆D 有公共点, 则|2-1|≤|CD |≤2+1, 即1≤a 2+a -2≤3.整理,得-8≤5a 2-12a ≤0. 由5a 2-12a +8≥0,得a ∈R ; 由5a 2-12a ≤0,得0≤a ≤125. 所以圆心C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125.8-4 直线与圆、圆与圆的位置关系课时规范练(授课提示:对应学生用书第305页)A组基础对点练1.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是( B ) A.相切B.相交C.相离D.不确定2.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为( B )A.6 B.4C.3 D.23.直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是( D )A.-2或12 B.2或-12C.-2或-12 D.2或124.圆x2+2x+y2+4y-3=0上到直线x+y+1=0的距离为2的点共有( C )A.1个B.2个C.3个D.4个解析:圆的方程可化为(x+1)2+(y+2)2=8,圆心(-1,-2)到直线的距离d=|-1-2+1|2=2,半径是22,结合图形可知有3个符合条件的点.5.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是( C ) A.[-3,-1]B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞)6.(2016·高考山东卷)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是22,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是( B )A.内切B.相交C.外切D.相离7.过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为( B )A .2x +y -5=0B .2x +y -7=0C .x -2y -5=0D .x -2y -7=08.过点(1,-2)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( B ) A .y =-34 B .y =-12C .y =-32D .y =-149.已知圆C :(x -1)2+(y -2)2=2,y 轴被圆C 截得的弦长与直线y =2x +b 被圆C 截得的弦长相等,则b =( D ) A .- 6 B .± 6 C .- 5D .± 5解析:易求得圆C 被y 轴截得的弦长为2,得|2×1-2+b |5=1,解得b =± 5.10.若圆x 2+y 2-4mx +(2m -3)y +4=0被直线2x -2y -3=0所截得的弦最长,则实数m 的值为 1 .解析:圆x 2+y 2-4mx +(2m -3)y +4=0的圆心坐标为⎝⎛⎭⎪⎫2m ,-m +32.∵圆x 2+y 2-4mx +(2m -3)y +4=0被直线2x -2y -3=0所截得的弦最长,∴圆心在直线上, ∴4m +2m -3-3=0,解得m =1,满足圆的方程, ∴m =1.11.已知矩形ABCD 的对角线交于点P (2,0),边AB 所在的直线方程为x +y -2=0,点(-1,1)在边AD 所在的直线上. (1)求矩形ABCD 的外接圆方程;(2)已知直线l :(1-2k )x +(1+k )y -5+4k =0(k ∈R ),求证:直线l 与矩形ABCD 的外接圆相交,并求最短弦长.解析:(1)依题意得AB ⊥AD ,∵k AB =-1, ∴k AD =1,∴直线AD 的方程为y -1=x +1, 即y =x +2.联立方程⎩⎪⎨⎪⎧x +y -2=0,x -y +2=0,解得⎩⎪⎨⎪⎧x =0,y =2,即A (0,2).∵矩形ABCD 的外接圆是以P (2,0)为圆心,|AP |=22为半径的圆,∴方程为(x -2)2+y 2=8.(2)直线l 的方程可整理为(x +y -5)+k (y -2x +4)=0,k ∈R ,∴联立方程⎩⎪⎨⎪⎧x +y -5=0,y -2x +4=0,解得⎩⎪⎨⎪⎧x =3,y =2,∴直线l 过定点M (3,2).又∵点M (3,2)在圆内,∴直线l 与圆相交. ∵圆心P 与定点M 的距离d =5, ∴最短弦长为28-5=2 3. 12.已知方程x 2+y 2-2x -4y +m =0. (1)若此方程表示圆,求实数m 的取值范围;(2)若(1)中的圆与直线x +2y -4=0相交于M ,N 两点,且OM ⊥ON (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.解析:(1)由D 2+E 2-4F >0得(-2)2+(-4)2-4m >0,解得m <5.(2)设M (x 1,y 1),N (x 2,y 2),由x +2y -4=0得x =4-2y .将x =4-2y 代入x 2+y 2-2x -4y +m =0得5y 2-16y +8+m =0,∴y 1+y 2=165,y 1y 2=8+m 5.∵OM ⊥ON ,∴x 1x 2+y 1y 2=0.∵x 1x 2=(4-2y 1)(4-2y 2)=16-8(y 1+y 2)+4y 1y 2, ∴x 1x 2+y 1y 2=16-8(y 1+y 2)+5y 1y 2=0, 即(8+m )-8×165+16=0,解得m =85.(3)设圆心C 的坐标为(a ,b ),则a =12(x 1+x 2)=45,b =12(y 1+y 2)=85,半径r =|OC |=455,∴所求圆的方程为⎝ ⎛⎭⎪⎫x -452+⎝ ⎛⎭⎪⎫y -852=165.B 组 能力提升练1.在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( A ) A.45π B .34π C .(6-25)πD .54π 2.已知直线l :y =kx +b ,曲线C :x 2+y 2=1,则“b =1”是“直线l 与曲线C 有公共点”的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.若圆x 2+y 2+Dx +Ey +F =0关于直线l 1:x -y +4=0和直线l 2:x +3y =0都对称,则D +E 的值为( D ) A .-4 B .-2 C .2D .44.过点P (1,3)作圆O :x 2+y 2=1的两条切线,切点分别为A 和B ,则弦长|AB |=( A ) A. 3 B .2 C. 2D .45.过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则PA →·PB →= 32.解析:由题意,得圆心为O (0,0),半径为1.如图所示. ∵P (1,3),∴PB ⊥x 轴,|PA |=|PB |= 3. ∴△POA 为直角三角形,其中|OA |=1,|AP |=3, 则|OP |=2,∴∠OPA =30°,∴∠APB =60°.∴PA →·PB →=|PA →||PB →|·cos∠APB =3×3×cos 60°=32.6.(2016·高考全国卷Ⅲ)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点.则|CD |= 4 .解析:设A (x 1,y 1),B (x 2,y 2),C (x 3,0),D (x 4,0),由x -3y +6=0,得x =3y -6,代入圆的方程,并整理,得y 2-33y +6=0,解得y 1=23,y 2=3,所以x 1=0,x 2=-3,所以直线AC 的方程为y -23=-3x ,令y =0得x 3=2,直线BD 的方程为y -3=-3(x +3),令y =0得x 4=-2,则|CD |=|x 3-x 4|=4.7.已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称,直线4x -3y -2=0与圆C 相交于A ,B 两点,且|AB |=6,则圆C 的方程为 x 2+(y -1)2=10 .解析:设所求圆的半径是r ,依题意得,抛物线y 2=4x 的焦点坐标是(1,0),则圆C 的圆心坐标是(0,1),圆心到直线4x -3y -2=0的距离d =|4×0-3×1-2|42+-2=1,则r 2=d 2+⎝ ⎛⎭⎪⎫|AB |22=10,故圆C 的方程是x 2+(y -1)2=10.8.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 43 .解析:圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0). 由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2,整理得3k 2-4k ≤0,解得0≤k ≤43.故k 的最大值是43.9.若圆O :x 2+y 2=5与圆O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是 4 .解析:圆O 1与圆O 在A 处的切线互相垂直,如图,可知两切线分别过另一圆的圆心,∴O 1A ⊥OA .又∵|OA |=5,|O 1A |=25,∴|OO 1|=5. 又A ,B 关于OO 1所在直线对称, ∴AB 长为Rt △OAO 1斜边上的高的2倍, ∴|AB |=2×5×255=4. 10.已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |. 解析:(1)设直线l 的方程为y =kx +1. 因为直线l 与圆交于两点,所以|2k -3+1|1+k 2<1,解得4-73<k <4+73. 所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入圆C 的方程(x -2)2+(y -3)2=1,整理得(1+k 2)x 2-4(1+k )x +7=0,所以x 1+x 2=+k 1+k 2,x 1x 2=71+k2.OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k +k1+k2+8. 由题设可得4k+k1+k2+8=12,解得k =1, 所以l 的方程为y =x +1.又因为圆C 的圆心(2,3)在l 上,所以|MN |=2.11.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方. (1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由. 解析:(1)设圆心C (a,0)⎝ ⎛⎭⎪⎫a >-52,则|4a +10|5=2,解得a =0或a =-5(舍).所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =k x -,得(k 2+1)x 2-2k 2x +k 2-4=0,所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN , 即y 1x 1-t +y 2x 2-t=0,则k x 1-x 1-t+k x 2-x 2-t=0,即2x 1x 2-(t +1)(x 1+x 2)+2t =0, 即k 2-k 2+1-2k 2t +k 2+1+2t =0,解得t =4,所以当点N 坐标为(4,0)时,能使x 轴平分∠ANB .8-5 椭圆课时规范练(授课提示:对应学生用书第307页)A 组 基础对点练1.已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( B )A .2B .3C .4D .92.方程kx 2+4y 2=4k 表示焦点在x 轴上的椭圆,则实数k 的取值范围是( D ) A .k >4 B .k =4 C .k <4D .0<k <43.若对任意k ∈R ,直线y -kx -1=0与椭圆x 22+y 2m=1恒有公共点,则实数m 的取值范围是( C ) A .(1,2] B .[1,2)C .[1,2)∪(2,+∞)D .[1,+∞)4.(2017·河北衡水中学二调)设椭圆x 216+y 212=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,且满足PF 1→·PF 2→=9,则|PF 1|·|PF 2|的值为( D ) A .8 B .10 C .12D .15解析:由椭圆方程x 216+y 212=1,可得c 2=4,所以|F 1F 2|=2c =4,而F 1F 2→=PF 2→-PF 1→,所以|F 1F 2→|=|PF 2→-PF 1→|,两边同时平方,得|F 1F 2→|2=|PF 1→|2-2PF 1→·PF 2→+|PF 2→|2,所以|PF 1→|2+|PF 2→|2=|F 1F 2→|2+2PF 1→·PF 2→=16+18=34.根据椭圆定义,得|PF 1|+|PF 2|=2a =8,(|PF 1|+|PF 2|)2=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=64,所以34+2|PF 1|·|PF 2|=64,所以|PF 1|·|PF 2|=15,故选D.5.已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( A ) A.x 24+y 23=1 B.x 28+y 26=1C.x 22+y 2=1 D.x 24+y 2=1 6.若椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点F 是抛物线y 2=4x 的焦点,两曲线的一个交点为P ,且|PF |=4,则该椭圆的离心率为( A ) A.7-23B .2+13C.23 D .127.椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,若F 关于直线3x +y =0的对称点A 是椭圆C上的点,则椭圆C 的离心率为( D ) A.12 B .3-12C.32D .3-18.若x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是 (0,1) .解析:将椭圆的方程化为标准形式得y 22k+x 22=1,因为x 2+ky 2=2表示焦点在y 轴上的椭圆,所以2k>2,解得0<k <1.9.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是63.解析:由题意可得B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F (c,0),则由∠BFC =90°得BF →·CF →=⎝ ⎛⎭⎪⎫c +32a ,-b 2·⎝ ⎛⎭⎪⎫c -32a ,-b 2=c 2-34a 2+14b 2=0,化简得3c =2a ,则离心率e =c a =23=63.10.(2018·湖南江西十四校联考)已知椭圆E :x 2a 2+y 2b2=1()a >b >0上的点到椭圆一个焦点的距离的最大值是最小值的3倍,且点P ⎝ ⎛⎭⎪⎫1,32在椭圆E 上. (1)求椭圆E 的方程;(2)过点M ()1,1任作一条直线l ,l 与椭圆E 交于不同于P 点的A ,B 两点,l 与直线m :3x +4y -12=0交于C 点,记直线PA ,PB ,PC 的斜率分别为k 1,k 2,k 3.试探究k 1+k 2与k 3的关系,并证明你的结论.解析:(1)∵椭圆E :x 2a 2+y 2b2=1()a >b >0上的点到椭圆一个焦点的距离的最大值和最小值分别为a +c ,a -c ,依题意有a +c =3()a -c ⇒a =2c , ∵a 2=b 2+c 2,∴b =3c .故可设椭圆E 的方程为x 24c 2+y 23c2=1,∵点P ⎝ ⎛⎭⎪⎫1,32在椭圆E 上,所以将其代入椭圆E 的方程得14c 2+943c 2=1⇒c 2=1.∴椭圆E 的方程为x 24+y 23=1.(2)依题意,直线l 不可能与x 轴垂直,故可设直线l 的方程为y -1=k ()x -1,即y =kx -k +1,设A ()x 1,y 1,B ()x 2,y 2为l 与椭圆E 的两个交点.将y =kx -k +1代入方程3x 2+4y 2-12=0,化简得()4k 2+3x 2-8()k 2-k x +4k 2-8k -8=0.∴x 1+x 2=8k 2-8k 4k 2+3,x 1x 2=4k 2-8k -84k 2+3. ∴k 1+k 2=y 1-32x 1-1+y 2-32x 2-1=k ()x 1-1-12x 1-1+k ()x 2-1-12x 2-1=2k -12⎝ ⎛⎭⎪⎫1x 1-1+1x 2-1=2k -12x 1+x 2-2x 1x 2-()x 1+x 2+1=2k -128k 2-8k -2()4k 2+34k 2-8k -8-()8k 2-8k +()4k 2+3=6k -35. 又由⎩⎪⎨⎪⎧y =kx -k +1,3x +4y -12=0⇒3x +4()kx -k +1-12=0,解得x =4k +84k +3,y =9k +34k +3,即C 点的坐标为C ⎝⎛⎭⎪⎫4k +84k +3,9k +34k +3,∴k 3=9k +34k +3-324k +84k +3-1=6k -310.∴k 1+k 2与k 3的关系为k 1+k 2=2k 3.B 组 能力提升练1.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( D )A.x 245+y 236=1 B .x 236+y 227=1 C.x 227+y 218=1 D .x 218+y 29=1 2.设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则椭圆E 的离心率为( C ) A.12 B .23 C.34D .453.从椭圆x 2a 2+y 2b2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( C ) A.24 B .12 C.22D .32解析:易得P ⎝⎛⎭⎪⎫-c ,b 2a ,k AB =k OP ,即-b a =-b 2ac , 又a 2=b 2+c 2,可得c a =22. 4.已知直线l :y =kx +2过椭圆x 2a 2+y 2b2=1(a >b >0)的上顶点B 和左焦点F ,且被圆x 2+y 2=4截得的弦长为L ,若L ≥455,则椭圆离心率e 的取值范围是( B )A.⎝ ⎛⎭⎪⎫0,55 B .⎝⎛⎦⎥⎤0,255C.⎝ ⎛⎦⎥⎤0,355D .⎝⎛⎦⎥⎤0,4555.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( A ) A.⎝ ⎛⎦⎥⎤0,32 B .⎝ ⎛⎦⎥⎤0,34 C.⎣⎢⎡⎭⎪⎫32,1 D .⎣⎢⎡⎭⎪⎫34,1 6.(2016·高考浙江卷)已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( A ) A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m <n 且e 1e 2>1 D .m <n 且e 1e 2<17.(2018·湖北重点中学联考)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与椭圆C 2:y 2a 2+x 2b2=1(a >b >0)相交于A ,B ,C ,D 四点,若椭圆C 1的一个焦点F (-2,0),且四边形ABCD 的面积为163,则椭圆C 1的离心率e 为22. 解析:联立⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y 2a 2+x2b 2=1,两式相减得x 2-y 2a 2=x 2-y 2b 2,又a ≠b ,所以x 2=y 2=a 2b 2a 2+b 2,故四边形ABCD 为正方形,面积为4x 2=4a 2b 2a 2+b 2=163,(*)又由题意知a 2=b 2+2,将其代入(*)式整理得3b 4-2b 2-8=0,所以b 2=2,则a 2=4, 所以椭圆C 的离心率e =22.8.(2017·湖南东部六校联考)设P ,Q 分别是圆x 2+(y -1)2=3和椭圆x 24+y 2=1上的点,则P ,Q 两点间的最大距离是733. 解析:由圆的性质可知,P ,Q 两点间的最大距离可以转化为圆心到椭圆上点的距离的最大值加上圆的半径3,设Q (x ,y ),则圆心(0,1)到椭圆上点的距离为d =x 2+y -2=-3y 2-2y +5=-3⎝ ⎛⎭⎪⎫y +132+163, ∵-1≤y ≤1,∴当y =-13时,d 取最大值433,∴P ,Q 两点间的最大距离为d max +3=733. 9.(2018·高考天津卷)设椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点为A ,上顶点为B .已知椭圆的离心率为53,|AB |=13. (1)求椭圆的方程;(2)设直线l :y =kx (k <0)与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若△BPM 的面积是△BPQ 面积的2倍,求k 的值.解析:(1)设椭圆的焦距为2c ,由已知得c 2a 2=59,又由a 2=b 2+c 2,可得2a =3b .由|AB |=a 2+b 2=13,从而a =3,b =2. 椭圆的方程为x 29+y 24=1.(2)设点P 的坐标为(x 1,y 1),点M 的坐标为(x 2,y 2),由题意知x 2>x 1>0,点Q 的坐标为(-x 1,-y 1).由△BPM 的面积是△BPQ 面积的2倍, 可得|PM |=2|PQ |,从而x 2-x 1=2[x 1-(-x 1)],即x 2=5x 1.易知直线AB 的方程为2x +3y =6,由方程组⎩⎪⎨⎪⎧2x +3y =6,y =kx消去y ,可得x 2=63k +2.由方程组⎩⎪⎨⎪⎧x 29+y 24=1,y =kx消去y ,可得x 1=69k 2+4.由x 2=5x 1,可得9k 2+4=5(3k +2),两边平方,整理得18k 2+25k +8=0,解得k =-89或k =-12.。
2023版高考数学一轮复习真题精练第八章平面解析几何pptx课件
【疑难点拨】 破解本题的疑难点是对最值问题如何进行转化,只需把|PM|·|AB|的最小值问题层层转化,最终
转化为|PM|的最小值问题,从而转化为点到直线的距离的最小值问题.
5 (多选)[2021新高考Ⅱ卷·11,5分,难度★★☆☆☆]
已知直线l:ax+by-r2=0(r>0)与圆C:x2+y2=r2,点A(a,b),则下列说法正确的是
1
连接AM,BM,易知四边形PAMB的面积为2|PM|·|AB|,欲使|PM|·|AB|最小,只需四边形PAMB的面积最小,即只需
△PAM的面积最小.因为|AM|=2,所以只需|PA|最小.
又|PA|= ||2 −||2 = ||2 −4,所以只需|PM|最小,此时PM⊥l.因为PM⊥AB,所以l∥AB,所以kAB=-2,排除
5
−2 + 1 = 0
= −1,
得ቊ
所以P(-1,0).易知P,A,M,B四点共圆,所以以PM为直径的圆的方程为
= 0,
1
5
x2+(y-2)2=( 2 )2,即x2+y2-y-1=0 ②,由①②得,直线AB的方程为2x+y+1=0,故选D.
优解 因为☉M:(x-1)2+(y-1)2=4,所以圆心M(1,1).
A.若点A在圆C上,则直线l与圆C相切
B.若点A在圆C内,则直线l与圆C相离
C.若点A在圆C外,则直线l与圆C相离
D.若点A在直线l上,则直线l与圆C相切
答案
5.ABD
对于A,若点A(a,b)在圆C上,则a2+b2=r2,所以圆心C(0,0)到直线l的距离d=
正确;对于B,若点A(a,b)在圆C内,则a2+b2<r2,所以圆心C(0,0)到直线l的距离d=
2020版高三文科数学第一轮复习第八篇平面解析几何第八篇 第7节 第二课时
返回导航
第7节 圆锥曲线的综合问题
课时作业
S
△
OPQ
=
1 2
d
·
|PQ|
=
1 2
·
m 1+k2
1+k2
16(4k2+1-m2) 1+4k2
=
2 (4k2+19)k2(5k2-1)=29 20+k12-k14,
当k12=12时,△OPQ 的面积取最大值 1,此时 k= 2,m=322,
∴直线方程为 y= 2x+322.
返回导航
第7节 圆锥曲线的综合问题
课时作业
【反思归纳】 解决圆锥曲线中的取值范围问题的五种常用解法 (1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定 参数的取值范围. (2)利用已知参数的范围,求新参数的范围,解这类问题的核心 是建立两个参数之间的等量关系.
返回导航
第7节 圆锥曲线的综合问题
返回导航
第7节 圆锥曲线的综合问题
课时作业
y1+2 y2+12=14(x21+x22+2)≥14(2|x1x2|+2)=1, 当且仅当 x1=-x2=1 时等号成立. 据此可得线段 AB 的中点到抛物线准线的距离的最小值为 1. 故选 B.
返回导航
第7节 圆锥曲线的综合问题
课时作业
利用判别式构造不等关系求范围 已知 A,B,C 是椭圆 M:ax22+by22=1(a>b>0)上的三点, 其中点 A 的坐标为(2 3,0),BC 过椭圆的中心,且A→C·B→C=0,|B→C |=2|A→C|.
返回导航
第7节 圆锥曲线的综合问题
课时作业
建立目标函数求最值 已知椭圆x42+y22=1 上的两个动点 P,Q,设 P(x1,y1), Q(x2,y2)且 x1+x2=2. (1)求证:线段 PQ 的垂直平分线经过一个定的最小值及相应的 P 点坐标.
2020届高考数学一轮复习第八章平面解析几何8
第八章⎪⎪⎪平面解析几何第八节抛物线1.抛物线的定义满足以下三个条件的点的轨迹是抛物线:(1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离相等; (3)定点不在定直线上.2.抛物线的标准方程和几何性质1.(2018·杭州七校联考)抛物线C :y =ax 2的准线方程为y =-14,则其焦点坐标为________,实数a 的值为________.解析:由题意得焦点坐标为⎝⎛⎭⎫0,14,抛物线C 的方程可化为x 2=1a y ,由题意得-14a =-14,解得a =1. 答案:⎝⎛⎭⎫0,14 1 2.焦点在直线2x +y +2=0上的抛物线的标准方程为________. 答案:y 2=-4x 或x 2=-8y3.(教材习题改编)抛物线y =4x 2的焦点坐标为__________;准线方程为____________. 解析:抛物线的标准方程为x 2=14y ,所以焦点坐标为⎝⎛⎭⎫0,116,准线方程为y =-116. 答案:⎝⎛⎭⎫0,116 y =-1161.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p 易忽视,只有p >0才能证明其几何意义是焦点F 到准线l 的距离,否则无几何意义.3.抛物线的标准方程的形式要注意,根据方程求焦点坐标或准线方程时,要注意标准形式的确定.[小题纠偏]1.平面内到点(1,1)与到直线x +2y -3=0的距离相等的点的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .一条直线答案:D2.抛物线8x 2+y =0的焦点坐标为________. 解析:由8x 2+y =0,得x 2=-18y .∴2p =18,p =116,∴焦点为⎝⎛⎭⎫0,-132. 答案:⎝⎛⎭⎫0,-132考点一 抛物线定义及应用(重点保分型考点——师生共研)[典例引领]1.(2019·温州十校联考)设抛物线C :y =14x 2的焦点为F ,直线l 交抛物线C 于A ,B 两点,|AF |=3,线段AB 的中点到抛物线C 的准线的距离为4,则|BF |=( )A.72 B .5 C .4D .3解析:选B 抛物线C 的方程可化为x 2=4y ,由线段AB 的中点到抛物线C 的准线的距离为4,可得|AF |+|BF |=8,又|AF |=3,所以|BF |=5.2.已知M 是抛物线x 2=4y 上一点,F 为其焦点,点A 在圆C :(x +1)2+(y -5)2=1上,则|MA |+|MF |的最小值是( )A .4B .5C .6D .7解析:选B 依题意,由点M 向抛物线x 2=4y 的准线l :y =-1引垂线,垂足为M 1(图略),则有|MA |+|MF |=|MA |+|MM 1|,结合图形可知|MA |+|MM 1|的最小值等于圆心C (-1,5)到y =-1的距离再减去圆C 的半径,即等于6-1=5,因此|MA |+|MF |的最小值是5,故选B.[由题悟法]应用抛物线定义的2个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P (x ,y )到焦点F 的距离|PF |=|x |+p 2或|PF |=|y |+p 2.[即时应用]1.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1 B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1解析:选A 由图形可知,△BCF 与△ACF 有公共的顶点F ,且A ,B ,C 三点共线,易知△BCF 与△ACF 的面积之比就等于|BC ||AC |.由抛物线方程知其焦点F (1,0),作准线l ,则l 的方程为x =-1.∵点A ,B 在抛物线上,过A ,B 分别作AK ,BH 与准线垂直,垂足分别为点K ,H ,且与y 轴分别交于点N ,M .由抛物线定义,得|BM |=|BF |-1,|AN |=|AF |-1.在△CAN 中,BM ∥AN ,∴|BC ||AC |=|BM ||AN |=|BF |-1|AF |-1. 2.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A.355B .2 C.115D .3解析:选B 由题可知l 2:x =-1是抛物线y 2=4x 的准线,设抛物线的焦点为F (1,0),则动点P 到l 2的距离等于|PF |,则动点P 到直线l 1和直线l 2的距离之和的最小值,即焦点F 到直线l 1:4x -3y +6=0的距离,所以最小值是|4-0+6|5=2.考点二 抛物线的标准方程与几何性质(题点多变型考点——多角探明) [锁定考向]抛物线的标准方程及性质是高考的热点,多以选择题、填空题形式出现. 常见的命题角度有: (1)求抛物线方程;(2)抛物线的对称性.[题点全练]角度一:求抛物线方程1.(2019·台州重点校联考)已知直线l 过抛物线y 2=-2px (p >0)的焦点,且与抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线的方程是( )A .y 2=-12xB .y 2=-8xC .y 2=-6xD .y 2=-4x解析:选B 过A ,B 分别作抛物线的准线的垂线,垂足分别为A 1,B 1,由抛物线定义知|AF |=|AA 1|,|BF |=|BB 1|,则|AA 1|+|BB 1|=2⎝⎛⎭⎫2+p2=8,解得p =4,所以此抛物线的方程是y 2=-8x .角度二:抛物线的对称性2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)分别交于O ,A ,B 三点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( )A .1 B.32C .2D .3解析:选B 双曲线的渐近线方程为y =±ba x , 因为双曲线的离心率为2, 所以1+b 2a 2=2,ba = 3.由⎩⎨⎧y =3x ,y 2=2px , 解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =2p 3,y =23p 3.由曲线的对称性及△AOB 的面积得, 2×12×23p 3×2p 3=3, 解得p 2=94,即p =32⎝⎛⎭⎫p =-32舍去. [通法在握]求抛物线方程的3个注意点(1)当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种; (2)要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系; (3)要注意参数p 的几何意义是焦点到准线的距离,利用它的几何意义来解决问题.[演练冲关]1.(2019·宁波质检)已知点M 是抛物线C :y 2=2px (p >0)上一点,F 为C 的焦点,MF 的中点坐标是(2,2),则p 的值为( )A .1B .2C .3D .4解析:选D 抛物线C :y 2=2px (p >0)的焦点为F ⎝⎛⎭⎫p 2,0,设M ⎝⎛⎭⎫y 212p ,y 1,由中点坐标公式可知p 2+y 212p=2×2,y 1+0=2×2,解得p =4.2.(2019·丽水高三质检)过抛物线C :y 2=4x 的焦点F 的直线l 与抛物线C 交于P ,Q 两点,与抛物线准线交于M ,且FM =3FP ,则|FP |=( )A.32B.23C.43D.34解析:选C 设直线l 的倾斜角为θ,如图所示,过点P 作PN 垂直准线于点N ,由抛物线定义知|PN |=|PF |.∵FM =3FP ,∴|FM |=3|FP |,即|PM |=2|PN |.在Rt △MNP 中,cos ∠MPN =12,∵PN ∥x 轴,∴cos θ=12,由抛物线焦半径的性质可得|PF |=p 1+cos θ=21+12=43,即|FP |=43. 考点三 直线与抛物线的位置关系(重点保分型考点——师生共研)[典例引领](2018·长兴中学模拟)已知抛物线C 1:y 2=2px (p >0)的焦点为F ,P 为C 1上一点,|PF |=4,点P 到y 轴的距离等于3.(1)求抛物线C 1的标准方程;(2)设A ,B 为抛物线C 1上的两个动点,且使得线段AB 的中点D 在直线y =x 上,P (0,2)为定点,求△PAB 面积的最大值.解:(1)由题意,p2+3=4,∴p =2,所以抛物线C 1的标准方程为y 2=4x .(2)设直线AB :x =ty +b ,A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧x =ty +b ,y 2=4x消元化简得y 2-4ty -4b =0, Δ=16t 2+16b >0.且y 1+y 2=4t ,x 1+x 2=t (y 1+y 2)+2b =4t 2+2b , 所以D (2t 2+b,2t ),2t 2+b =2t . 由Δ>0得0<t <2.所以点P 到直线AB 的距离d =|-2t -b |1+t 2=|2t 2-4t |1+t 2, 所以|AB |=1+t 216t 2+16b =41+t 22t -t 2,所以S △ABP =12|AB |d =12×41+t 22t -t 2|2t 2-4t |1+t2=22t -t 2·|2t 2-4t |. 令m =2t -t 2,则m ∈(0,1],且S △ABP =4m 3. 由函数单调性可知,(S △ABP )max =4.[由题悟法]解决直线与抛物线位置关系问题的2种常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用弦长公式.[即时应用]如图所示,已知抛物线C :y 2=4x 的焦点为F ,直线l 经过点F 且与抛物线C 相交于A ,B 两点.(1)若线段AB 的中点在直线y =2上,求直线l 的方程; (2)若线段|AB |=20,求直线l 的方程. 解:(1)由已知,得抛物线的焦点为F (1,0). 因为线段AB 的中点在直线y =2上, 所以直线l 的斜率存在,设直线l 的斜率为k ,A (x 1,y 1),B (x 2,y 2),AB 的中点M (x 0,y 0),由⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),所以2y 0k =4.又y 0=2,所以k =1,故直线l 的方程是y =x -1.(2)设直线l 的方程为x =my +1,与抛物线方程联立得⎩⎪⎨⎪⎧x =my +1,y 2=4x ,消去x ,得y 2-4my-4=0,所以y 1+y 2=4m ,y 1y 2=-4,Δ=16(m 2+1)>0. |AB |=m 2+1|y 1-y 2| =m 2+1·(y 1+y 2)2-4y 1y 2 =m 2+1·(4m )2-4×(-4) =4(m 2+1).所以4(m 2+1)=20,解得m =±2,所以直线l 的方程是x =±2y +1,即x ±2y -1=0.一抓基础,多练小题做到眼疾手快1.(2019·湖州质检)已知抛物线y 2=2px (p >0),点C (-4,0),过抛物线的焦点作垂直于x 轴的直线,与抛物线交于A ,B 两点,若△CAB 的面积为24,则以直线AB 为准线的抛物线的标准方程是( )A .y 2=4xB .y 2=-4xC .y 2=8xD .y 2=-8x解析:选D ∵AB ⊥x 轴,且AB 过点F ,∴AB 是焦点弦,∴|AB |=2p ,∴S △CAB =12×2p ×⎝⎛⎭⎫p 2+4=24,解得p =4或p =-12(舍去),∴直线AB 的方程为x =2,∴以直线AB 为准线的抛物线的标准方程是y 2=-8x ,故选D.2.(2018·江山质检)在抛物线y 2=2px (p >0)上,横坐标为4的点到焦点的距离为5,则p 的值为( )A.12 B .1 C .2D .3解析:选C 由抛物线的定义可知,4+p2=5,解得p =2.3.(2018·珠海模拟)已知抛物线y 2=4x 的焦点为F ,准线为l ,点P 为抛物线上一点,且在第一象限,PA ⊥l ,垂足为A ,|PF |=4,则直线AF 的倾斜角等于( )A.7π12B.2π3C.3π4D.5π6解析:选B 由抛物线y 2=4x 知焦点F (1,0),准线l 的方程为x =-1,由抛物线定义知|PA |=|PF |=4,所以点P 的坐标为(3,23),因此点A 的坐标为(-1,23),所以k AF =23-0-1-1=-3,所以直线AF 的倾斜角为2π3.4.(2019·宁波六校联考)已知抛物线C :y 2=23x ,过焦点F 且斜率为3的直线与C 相交于P ,Q 两点,且P ,Q 两点在准线上的投影分别为M ,N 两点,则S △MFN =( )A .8B .2 3C .4 3D .8 3解析:选B 法一:由题意可得p =3,F⎝⎛⎭⎫32,0.不妨设点P 在x 轴上方,由抛物线定义可知|PF |=|PM |,|Q F |=|Q N |,设直线P Q 的倾斜角为θ,则tan θ=3,∴θ=π3,由抛物线焦半径的性质可知,|PF |=p 1-cos θ=31-cos π3=23,|Q F |=p 1+cos θ=31+cosπ3=233,∴|MN |=|P Q |sin θ=(|PF |+|Q F |)·sin π3=833×32=4,∴S △MFN =12|MN |·p =12×4×3=2 3.法二:由题意可得F⎝⎛⎭⎫32,0,直线P Q 的方程为y =3⎝⎛⎭⎫x -32=3x -32,与抛物线方程y 2=23x 联立,得⎝⎛⎭⎫3x -322=23x ,即3x 2-53x +94=0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=533,∴|P Q |=x 1+x 2+p =533+3=833,∵直线P Q 的斜率为3,∴直线P Q 的倾斜角为π3.∴|MN |=|P Q |sinπ3=833×32=4,∴S △MFN =12×4×3=2 3. 5.已知点P 在抛物线y 2=4x 上,且点P 到y 轴的距离与其到焦点的距离之比为12,则点P 到x 轴的距离为________.解析:设点P 的坐标为(x P ,y P ),抛物线y 2=4x 的准线方程为x =-1,根据抛物线的定义,点P 到焦点的距离等于点P 到准线的距离,故x P x P -(-1)=12,解得x P =1,所以y 2P =4,所以|y P |=2. 答案:2二保高考,全练题型做到高考达标1.(2018·临海期初)动圆过点(0,1),且与直线y =-1相切,则动圆圆心的轨迹方程为( ) A .y =0 B .x 2+y 2=1 C .x 2=4yD .y 2=4x解析:选C 设动圆圆心M (x ,y ),则x 2+(y -1)2=|y +1|,解得x 2=4y .2.(2018·绍兴二模)已知抛物线C :y 2=4x 的焦点为F ,直线y =3(x -1)与抛物线C 交于A ,B 两点(A 在x 轴上方).若AF =mFB ,则m 的值为( )A. 3B.32C .2D .3解析:选D 直线方程为x =33y +1,代入y 2=4x 可得y 2-433y -4=0,则y A =23,y B =-233,所以|y A |=3|y B |,因为AF =mFB ,所以m =3.3.(2018·宁波十校联考)已知抛物线x 2=4y ,过焦点F 的直线l 交抛物线于A ,B 两点(点A 在第一象限),若直线l 的倾斜角为30°,则|AF ||BF |的值等于( )A .3B.52C .2D.32解析:选A 由题可得,F (0,1),设l :y =33x +1,A (x 1,y 1),B (x 2,y 2).将直线方程与抛物线方程联立,消去x ,化简得3y 2-10y +3=0,解得y 1=3,y 2=13.由抛物线的定义可知|AF ||BF |=y 1+1y 2+1=3+113+1=3. 4.已知P 为抛物线y =12x 2上的动点,点P 在x 轴上的射影为点M ,点A 的坐标是⎝⎛⎭⎫6,172,则|PA |+|PM |的最小值是( )A .8 B.192C .10D.212解析:选B 依题意可知焦点F ⎝⎛⎭⎫0,12,准线方程为y =-12,延长PM 交准线于点H (图略).则|PF |=|PH |,|PM |=|PF |-12,|PM |+|PA |=|PF |+|PA |-12,即求|PF |+|PA |的最小值. 因为|PF |+|PA |≥|FA |, 又|FA |=62+⎝⎛⎭⎫172-122=10.所以|PM |+|PA |≥10-12=192,故选B.5.(2019·嘉兴六校联考)已知抛物线C :y 2=2px (p >0)的焦点为F ,点M 在抛物线C 上,且|MO |=|MF |=32(O 为坐标原点),则OM ·MF =( )A .-74B.74C.94D .-94解析:选A 设M (m ,2pm ),抛物线C 的焦点F 的坐标为⎝⎛⎭⎫p 2,0,因为|MO |=|MF |=32,所以m 2+2pm =94 ①,m +p 2=32 ②,由①②解得m =12,p =2,所以M ⎝⎛⎭⎫12,2,F (1,0),所以OM =⎝⎛⎭⎫12,2,MF =⎝⎛⎭⎫12,-2,故OM ·MF =14-2=-74.6.(2018·宁波期初)已知抛物线x 2=4y 的焦点为F ,若点M 在抛物线上,|MF |=4,O 为坐标原点,则∠MFO =________.解析:由题可得,p =2,焦点在y 轴正半轴,所以F (0,1). 因为|MF |=4,所以M (±23,3).所以tan ∠MFO =-tan(π-∠MFO )=-233-1=-3,所以∠MFO =2π3. 答案:2π37.设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为________.解析:如图,由题可知F ⎝⎛⎭⎫p 2,0,设P 点坐标为⎝⎛⎭⎫y 202p ,y 0(y 0>0),则OM ―→=OF ―→+FM ―→=OF ―→+13FP ―→=OF ―→+13(OP ―→-OF ―→)=13OP ―→+23OF ―→=⎝⎛⎭⎫y 206p +p 3,y 03,k OM =y 03y 206p +p 3=2y 0p +2p y 0≤222=22,当且仅当y 2=2p 2时等号成立,所以直线OM 的斜率的最大值为22. 答案:228.(2018·嵊州一模)设抛物线y 2=4x 的焦点为F ,过点M (5,0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于C 点,|BF |=3,则△BCF 与△ACF 的面积之比S △BCFS △ACF=________.解析:设点A 在第一象限,B 在第四象限,A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =my + 5.由y 2=4x ,得p =2,因为|BF |=3=x 2+p2=x 2+1,所以x 2=2,则y 22=4x 2=4×2=8,所以y 2=-22,由⎩⎨⎧y 2=4x ,x =my +5,得y 2-4my -45=0,则y 1y 2=-45,所以y 1=10,由y 21=4x 1,得x 1=52.过点A 作AA ′垂直于准线x =-1,垂足为A ′,过点B 作BB ′垂直于准线x =-1,垂足为B ′,易知△CBB ′∽△CAA ′,所以S △BCF S △ACF =|BC ||AC |=|BB ′||AA ′|.又|BB ′|=|BF |=3,|AA ′|=x 1+p 2=52+1=72,所以S △BCF S △ACF =372=67.答案:679.(2018·杭州高三检测)如图,过抛物线M :y =x 2上一点A (点A 不与原点O 重合)作抛物线M 的切线AB 交y 轴于点B ,点C 是抛物线M 上异于点A 的点,设G 为△ABC 的重心(三条中线的交点),直线CG 交y 轴于点D .(1)设A (x 0,x 20)(x 0≠0),求直线AB 的方程; (2)求|OB ||OD |的值. 解:(1)因为y ′=2x ,所以直线AB 的斜率k =y ′|x =x 0=2x 0, 所以直线AB 的方程为y -x 20=2x 0(x -x 0), 即y =2x 0x -x 20.(2)由(1)得,点B 的纵坐标y B =-x 20, 所以AB 的中点坐标为⎝⎛⎭⎫x 02,0.设C (x 1,y 1),G (x 2,y 2),直线CG 的方程为x =my +x 02.由⎩⎪⎨⎪⎧x =my +x 02,y =x 2,得m 2y 2+(mx 0-1)y +x 204=0.因为G 为△ABC 的重心,所以y 1=3y 2. 由根与系数的关系,得y 1+y 2=4y 2=1-mx 0m 2,y 1y 2=3y 22=x 204m 2. 所以y 22=(1-mx 0)216m4=x 2012m 2, 解得mx 0=-3±2 3.所以点D 的纵坐标y D =-x 02m =x 206±43,故|OB ||OD |=⎪⎪⎪⎪y B y D =43±6. 10.(2018·台州模拟)已知抛物线C 1:y 2=4x 和C 2:x 2=2py (p >0)的焦点分别为F 1,F 2,点P (-1,-1),且F 1F 2⊥OP (O 为坐标原点).(1)求抛物线C 2的方程;(2)过点O 的直线交C 1的下半部分于点M ,交C 2的左半部分于点N ,求△PMN 面积的最小值.解:(1)由题意知F 1(1,0),F 2⎝⎛⎭⎫0,p 2,则F 1F 2―→=⎝⎛⎭⎫-1,p 2, ∵F 1F 2⊥OP ,∴F 1F 2―→·OP ―→=⎝⎛⎭⎫-1,p 2·(-1,-1)=1-p 2=0, ∴p =2,∴抛物线C 2的方程为x 2=4y . (2)设过点O 的直线为y =kx (k <0),联立⎩⎪⎨⎪⎧ y =kx ,y 2=4x 得M ⎝⎛⎭⎫4k 2,4k , 联立⎩⎪⎨⎪⎧y =kx ,x 2=4y得N (4k,4k 2),从而|MN |=1+k 2·⎪⎪⎪⎪4k 2-4k =1+k 2·⎝⎛⎭⎫4k 2-4k , 又点P 到直线MN 的距离d =|k -1|1+k 2,故S △PMN =12·|k -1|1+k 2·1+k 2·⎝⎛⎭⎫4k 2-4k =2(1-k )(1-k 3)k 2=2(1-k )2(1+k +k 2)k 2=2⎝⎛⎭⎫k +1k -2⎝⎛⎭⎫k +1k +1, 令t =k +1k (t ≤-2), 则S △PMN =2(t -2)(t +1)≥8,当t =-2,即k =-1时,S △PMN 取得最小值.即当过点O 的直线为y =-x 时,△PMN 面积的最小值为8. 三上台阶,自主选做志在冲刺名校1.(2018·台州高三模拟)已知抛物线x 2=2py (p >0),点M 是抛物线的准线与y 轴的交点,过点A (0,λp )(λ∈R)的动直线l 交抛物线于B ,C 两点.(1)求证:MB ·MC ≥0,并求等号成立时实数λ的值;(2)当λ=2时,设分别以OB ,OC (O 为坐标原点)为直径的两圆相交于另一点D ,求|DO |+|DA |的最大值.解:(1)由题意知动直线l 的斜率存在,且过点A (0,λp ), 则可设动直线l 的方程为y =kx +λp ,代入x 2=2py (p >0),消去y 并整理得x 2-2pkx -2λp 2=0, Δ=4p 2(k 2+2λ)>0, 设B (x 1,y 1),C (x 2,y 2), 则x 1+x 2=2pk ,x 1x 2=-2λp 2,y 1y 2=(kx 1+λp )(kx 2+λp )=k 2x 1x 2+λpk (x 1+x 2)+λ2p 2=λ2p 2,y 1+y 2=k (x 1+x 2)+2λp =2pk 2+2λp =2p (k 2+λ). 因为抛物线x 2=2py 的准线方程为y =-p2,所以点M 的坐标为⎝⎛⎭⎫0,-p 2, 所以MB =⎝⎛⎭⎫x 1,y 1+p 2,MC =⎝⎛⎭⎫x 2,y 2+p2, 所以MB ·MC =x 1x 2+⎝⎛⎭⎫y 1+p 2⎝⎛⎭⎫y 2+p2 =x 1x 2+y 1y 2+p 2(y 1+y 2)+p 24=-2λp 2+λ2p 2+p 2[2p (k 2+λ)]+p 24=p 2⎣⎡⎦⎤k 2+⎝⎛⎭⎫λ-122≥0, 当且仅当k =0,λ=12时等号成立.(2)由(1)知,当λ=2时,x 1x 2=-4p 2,y 1y 2=4p 2, 所以OB ·OC =x 1x 2+y 1y 2=0, 所以OB ⊥OC .设直线OB 的方程为y =mx (m ≠0),与抛物线的方程x 2=2py 联立可得B (2pm,2pm 2), 所以以OB 为直径的圆的方程为x 2+y 2-2pmx -2pm 2y =0. 因为OB ⊥OC ,所以直线OC 的方程为y =-1m x .同理可得以OC 为直径的圆的方程为 x 2+y 2+2p m x -2pm2y =0, 即m 2x 2+m 2y 2+2pmx -2py =0,将两圆的方程相加消去m ,得x 2+y 2-2py =0, 即x 2+(y -p )2=p 2,所以点D 的轨迹是以OA 为直径的圆, 所以|DA |2+|DO |2=4p 2, 由|DA |2+|DO |22≥⎝⎛⎭⎫|DA |+|DO |22, 得|DA |+|DO |≤22p ,当且仅当|DA |=|DO |=2p 时,等号成立. 故(|DA |+|DO |)max =22p .2.如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程.(2)当PA 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率.解:(1)由已知条件,可设抛物线的方程为y 2=2px (p >0). 因为点P (1,2)在抛物线上, 所以22=2p ×1, 解得p =2.故所求抛物线的方程是y 2=4x ,准线方程是x =-1. (2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB . 则k PA =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1), 因为PA 与PB 的斜率存在且倾斜角互补, 所以k PA =-k PB .由A (x 1,y 1),B (x 2,y 2)均在抛物线上,得⎩⎪⎨⎪⎧y 21=4x 1, ①y 22=4x 2, ②所以y 1-214y 21-1=-y 2-214y 22-1,所以y 1+2=-(y 2+2). 所以y 1+y 2=-4.由①-②得,y 21-y 22=4(x 1-x 2),所以k AB =y 1-y 2x 1-x 2=4y 1+y 2=-1(x 1≠x 2).。
2020高考数学一轮复习第八章平面解析几何8-7双曲线课时提升作业理
【2019最新】精选高考数学一轮复习第八章平面解析几何8-7双曲线课时提升作业理(25分钟50分)一、选择题(每小题5分,共35分)1.(2016·铜仁模拟)已知双曲线-=1(a>0,b>0)的离心率为,则双曲线的渐近线方程为( )A.y=±2xB.y=±xC.y=±xD.y=±x【解析】选C.因为e==,故可设a=2k,c=k,则得b=k,所以渐近线方程为y=±x=±x.2.已知0<θ<,则双曲线C1:-=1与C2:-=1的( )A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等【解析】选D.由双曲线C1知:a2=sin2θ,b2=cos2θ⇒c2=1,由双曲线C2知:a2=cos2θ,b2=sin2θ⇒c2=1.3.(2016·新乡模拟)如果双曲线-=1(m>0,n>0)的渐近线方程为y=±x,则双曲线的离心率为( )A. B. C. D.【解析】选D.因为双曲线方程为-=1(m>0,n>0),所以a2=m,b2=n,得a=,b=,因此双曲线的渐近线方程y=±x,即y=±x,所以=,得m=4n,所以c==.故双曲线的离心率e====.【加固训练】(2016·忻州模拟)已知双曲线C:-=1的离心率为,则C的渐近线方程为( )A.y=±2xB.y=±xC.y=±xD.y=±x【解析】选B.由双曲线的方程-=1知,双曲线的焦点在x轴上,所以=()2=3,所以n=,所以a2=,b2=4-=,从而双曲线的渐近线方程是y=±x.4.(2014·全国卷Ⅰ)已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为( )A. B.3 C.m D.3m【解析】选A.双曲线C:-=1,则c2=3m+3,c=,设焦点F(,0),一条渐近线方程为y=x,即x-y=0,所以点F到渐近线的距离为d==.5.(2016·开封模拟)设F1,F2分别为双曲线-=1(a>0,b>0)的左、右焦点.若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的离心率为( )A. B. C. D.【解析】选B.易知|PF2|=|F1F2|=2c,所以由双曲线的定义知|PF1|=2a+2c,因为F2到直线PF1的距离等于双曲线的实轴长,所以(a+c)2+(2a)2=(2c)2,即3c2-2ac-5a2=0,两边同除以a2,得3e2-2e-5=0,解得e=或e=-1(舍去).【加固训练】(2016·唐山模拟)已知双曲线C:-=1(a>0,b>0)的焦点为F1,F2,且C上点P满足·=0,||=3,||=4,则双曲线C的离心率为( )A. B. C. D.5【解析】选D.依题意得,2a=|PF2|-|PF1|=1,|F1F2|==5,因此该双曲线的离心率e==5.6.过双曲线C:-=1的右顶点作x轴的垂线,与C的一条渐近线相交于点A.若以C的右焦点为圆心、4为半径的圆经过A,O两点(O为坐标原点),则双曲线C的方程为( )A.-=1B.-=1C.-=1D.-=1【解析】选A.由得所以A(a,-b).由题意知右焦点与原点的距离为c=4,所以=4,即(a-4)2+b2=16.而a2+b2=16,所以a=2,b=2.所以双曲线C的方程为-=1.7.直线y=x与双曲线C:-=1(a>0,b>0)左右两支分别交于M,N两点,F是双曲线C的右焦点,O是坐标原点,若|FO|=|MO|,则双曲线的离心率等于( )A.+B.+1C.+1D.2【解析】选B.由题意知|MO|=|NO|=|FO|,所以△MFN为直角三角形,且∠MFN=90°,取左焦点为F0,连接NF0,MF0,由双曲线的对称性知,四边形NFMF0为平行四边形.又因为∠MFN=90°,所以四边形NFMF0为矩形,所以|MN|=|F0F|=2c,又因为直线MN的倾斜角为60°,即∠NOF=60°,所以∠NMF=30°,所以|NF|=|MF0|=c,|MF|=c,由双曲线定义知|MF|-|MF0|=c-c=2a,所以e==+1.二、填空题(每小题5分,共15分)8.在平面直角坐标系xOy中,若双曲线-=1的离心率为,则m的值为.【解析】由-=1,得a=,b=,c=,所以e===,即m2-4m+4=0,解得m=2.答案:29.已知F为双曲线C:-=1的左焦点,P,Q为C上的点.若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PQF的周长为.【解题提示】可利用双曲线的定义,再借助于三角形的图形,即可得出结论.【解析】由-=1,得a=3,b=4,c=5,所以|PQ|=4b=16>2a,又因为A(5,0)在线段PQ上,所以P,Q在双曲线的一支上,且PQ所在直线过双曲线的右焦点,由双曲线定义知:所以|PF|+|QF|=28.即△PQF的周长是|PF|+|QF|+|PQ|=28+16=44.答案:4410.设直线x-3y+m=0(m≠0)与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.【解析】联立双曲线-=1渐近线与直线方程x-3y+m=0可解得:A,B,则kAB=,设AB的中点为E,由|PA|=|PB|,可得AB的中点E与点P两点连线的斜率为-3,化简得4b2=a2,所以e=.答案:(15分钟30分)1.(5分)(2016·新乡模拟)若双曲线-=1(a>0,b>0)的渐近线与圆(x-2)2+y2=2相切,则此双曲线的离心率等于( )A. B. C. D.2【解析】选B.由题意可知双曲线的渐近线方程之一为:bx+ay=0,圆(x-2)2+y2=2的圆心为(2,0),半径为,双曲线-=1(a>0,b>0)的渐近线与圆(x-2)2+y2=2相切,可得:=,可得a2=b2,c=a,e==.2.(5分)设a,b是关于t的方程t2cosθ+tsinθ=0的两个不等实根,则过A(a,a2),B(b,b2)两点的直线与双曲线-=1的公共点的个数为( )A.0B.1C.2D.3【解析】选A.关于t的方程t2cosθ+tsinθ=0的两个不等实根为0,-tanθ(tanθ≠0),所以A(0,0),B(-tanθ,tan2θ),则过A,B两点的直线方程为y=-xtanθ,双曲线-=1的渐近线方程为y=±xtanθ,所以直线y=-xtanθ与双曲线没有公共点.【加固训练】P为双曲线x2-=1右支上一点,M,N分别是圆(x+4)2+y2=4和(x-4)2+y2=1上的点,则|PM|-|PN|的最大值为.【解析】已知两圆圆心坐标分别为(-4,0)和(4,0)(记为F1和F2)恰为双曲线x2-=1的两焦点.当|PM|最大,|PN|最小时,|PM|-|PN|最大,|PM|最大值为P到圆心F1的距离|PF1|与圆F1半径之和,同样|PN|min=|PF2|-1,从而|PM|max-|PN|min=|PF1|+2-(|PF2|-1)=|PF1|-|PF2|+3=2a+3=5.答案:53.(5分)(2016·吕梁模拟)设F1和F2是双曲线-y2=1的两个焦点,点P在双曲线上,且满足∠F1PF2=90°,则△F1PF2的面积是.【解析】设|PF1|=m,|PF2|=n,(m>n),根据双曲线性质可知m-n=4,因为∠F1PF2= 90°,所以m2+n2=20,所以2mn=m2+n2-(m-n)2=4,所以mn=2,所以△F1PF2的面积为mn=1.答案:14.(15分)(2016·哈尔滨模拟)在平面直角坐标系xOy中,己知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.(1)求圆心P的轨迹方程.(2)若P点到直线y=x的距离为,求圆P的方程.【解析】(1)设圆心P(x,y),由题意得x2+3=y2+2,整理得y2-x2=1,即为圆心P的轨迹方程,此轨迹是等轴双曲线.(2)由P点到直线y=x的距离为,得=,即|x-y|=1,即x=y+1或y=x+1,分别代入y2-x2=1,解得P(0,-1)或P(0,1).若P(0,-1),此时点P在y轴上,故半径为,所以圆P的方程为(y+1)2+x2=3;若P(0,1),此时点P在y轴上,故半径为,所以圆P的方程为(y-1)2+x2=3.综上,圆P的方程为(y+1)2+x2=3或(y-1)2+x2=3.【加固训练】1.(2016·长沙模拟)已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(1)求a,b.(2)设过F2的直线l与C的左、右两支分别相交于A,B两点,且|AF1|=|BF1|,证明:|AF2|,|AB|,|BF2|成等比数列.【解析】(1)由题设知=3,即=9,故b2=8a2.所以C的方程为8x2-y2=8a2.将y=2代入上式,求得x=±.由题设知,2=,解得,a2=1.所以a=1,b=2.(2)由(1)知,F1(-3,0),F2(3,0),C的方程为8x2-y2=8. ①由题意可设l的方程为y=k(x-3),|k|<2,代入①并化简得,(k2-8)x2-6k2x+9k2+8=0.设A(x1,y1),B(x2,y2),则x1≤-1,x2≥1,x1+x2=,x1·x2=.于是|AF1|===-(3x1+1),|BF1|===3x2+1.由|AF1|=|BF1|得-(3x1+1)=3x2+1,即x1+x2=-.故=-,解得k2=,从而x1·x2=-.由于|AF2|===1-3x1,|BF2|===3x2-1,故|AB|=|AF2|-|BF2|=2-3(x1+x2)=4,|AF2|·|BF2|=3(x1+x2)-9x1x2-1=16.因而|AF2|·|BF2|=|AB|2,所以|AF2|,|AB|,|BF2|成等比数列.2.直线l:y=kx+1与双曲线C:2x2-y2=1的右支交于不同的两点A,B.(1)求实数k的取值范围.(2)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.【解析】(1)将直线l的方程y=kx+1代入双曲线C的方程2x2-y2=1后,整理得(k2-2)x2+2kx+2=0. ①依题意,直线l与双曲线C的右支交于不同两点,故解得k的取值范围是-2<k<-.(2)设A,B两点的坐标分别为(x1,y1),(x2,y2),则由①式得②假设存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F(c,0).则由FA⊥FB得:(x1-c)(x2-c)+y1y2=0.即(x1-c)(x2-c)+(kx1+1)(kx2+1)=0.整理得(k2+1)x1x2+(k-c)(x1+x2)+c2+1=0. ③把②式及c=代入③式化简得5k2+2k-6=0.解得k=-或k=∉(-2,-)(舍去),可知存在k=-使得以线段AB为直径的圆经过双曲线C 的右焦点.。
2020版高考文科数学(北师大版)一轮复习试题:第八章+立体几何+课时规范练35+Word版含答案
2020版高考文科数学(北师大版)一轮复习试题课时规范练35空间几何体的三视图、直观图基础巩固组1.(2018四川成都期中,4)下列说法中正确的是()A.斜三棱柱的侧面展开图一定是平行四边形B.水平放置的正方形的直观图有可能是梯形C.一个直四棱柱的主视图和左视图都是矩形,则该直四棱柱就是长方体D.用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分形成的几何体就是圆台2.(2018河北衡水中学二调,4)一个几何体的三视图如图所示,则这个几何体的直观图是()3.(2018黑龙江实验中学期末,6)某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M在主视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.24.(2018重庆一中月考,7)已知一个三棱柱高为3,其底面用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图所示),则此三棱柱的体积为()A. B.6 C. D.35.(2018上海浦东新区三模,14)正方体ABCD-A1B1C1D1中,E为棱AA1的中点(如图)用过点B、E、D1的平面截去该正方体的上半部分,则剩余几何体的左视图为()6.(2018山东济南一模,8)如图,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△PAC在该正方体各个面上的正投影可能是()A.①②B.①④C.②③D.②④7.(2018四川南充高中模拟,6)在正方体中,M,N,P分别为棱DD1、D1A1、A1B1的中点(如图),用过点M,N,P的平面截去该正方体的顶点C1所在的部分,则剩余几何体的主视图为()8.(2018北京通州三模,6)某三棱锥的三视图如图所示,则该三棱锥的最长棱的长度为()A.1B.C.D.29.一水平放置的平面四边形OABC,用斜二测画法画出它的直观图O'A'B'C'如图所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC的面积为.10.如图,在正四棱柱ABCD-A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P-BCD的主视图与左视图的面积之比为.。
2020届新高考高三数学试题分项汇编专题8 平面解析几何(原卷版+解析版)
物线上的另一点 B 射出,则 ABM 的周长为( )
71 A. 26
12
B. 9 10
83 C. 26
12
D. 9 26
x2 y2 11.(2020 届山东省菏泽一中高三 2 月月考)已知双曲线 C: 1 ,( a 0 , b 0 )的左、右焦点分别为
a2 b2
F1 , F2 , O 为坐标原点,P 是双曲线在第一象限上的点, PF1 2 PF2 2m ,( m 0 ), PF1 PF2 m2 ,则双曲线
专题 8 平面解析几何
纵观近几年的高考试题,考查圆锥曲线的题目有小有大,其中小题以考查圆、椭圆、双曲线、抛物线的方 程及几何性质为主,难度在中等或以上;大题则主要考查直线与椭圆、直线与抛物线的位置关系问题;命 题的主要特点有:一是以过特殊点的直线与圆锥曲线相交为基础设计“连环题”,结合曲线的定义及几何性质, 利用待定系数法先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;二是以不同 曲线(圆、椭圆、抛物线)的位置关系为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法 先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;三是直线与圆锥曲线的位置 关系问题,综合性较强,往往与向量(共线、垂直、数量积)结合,涉及方程组联立,根的判别式、根与 系数的关系、弦长问题等. 预测 2021 年将保持稳定,一大二小.其中客观题考查圆、椭圆、双曲线、抛物线问题,难度在中等或以下. 主观题考查或直线与椭圆的位置关系、直线与抛物线的位置关系,相关各种综合问题应有充分准备.
7
7 A.直线 l 倾斜角的余弦值为
8
4 B.若 F1P F1F2 ,则 C 的离心率 e
3
C.若 PF2 F1F2 ,则 C 的离心率 e 2 D. △PF1F2 不可能是等边三角形
(新课标)2020年高考数学一轮总复习第八章平面解析几何8_1直线的倾斜角与斜率、直线的方程课件文新人教A版
=
a b
<0,又倾斜角的取值范围为[0,π),故直线PQ的倾斜
角的取值范围为π2,π.
(2)当 a=-1 时,直线 l 的倾斜角为 90°,符合要求;当 a≠-1 时,直线 l 的斜率 为-a+a 1, 则有-a+a 1>1 或-a+a 1<0,解得-1<a<-12或 a<-1 或 a>0.综上可知,实数 a 的 取值范围是-∞,-12∪(0,+∞).
考点三|两条直线的位置关系 (方法突破)
【例3】 (1)“a=0”是“直线l1:(a+1)x+a2y-3=0与直线l2:2x+ay-2a-1
=0平行”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
(2)直线l过点(-1,2)且与直线2x-3y+4=0垂直,则l的方程是( )
名师点拨 判断两直线平行或垂直的两个策略 (1)设A2B2C2≠0,两直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0平行的充要条 件为AA12=BB12≠CC12.更一般地,两直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0平行 的充要条件为A1B2-A2B1=0,A1C2-A2C1≠0. (2)利用两直线的斜率判定两直线的平行、垂直关系时,注意斜率不存在的情况不 能忽略.
ax+by=1 (a≠0,b≠0)
一般式
Ax+By+C=0 (A2+B2≠0)
不含直线x=x1(x1=x2) 和直线y=y1(y1=y2)
不含垂直于坐标轴和 过原点的直线 平面直角坐标系内的 直线都适用
5.线段的中点坐标公式
若点P1,P2的坐标分别为(x1,y1),(x2,y2),线段P1,P2的中点M的坐标为(x,
2020年高考文科数学一轮复习大题篇—圆锥曲线综合问题
2020年高考文科数学一轮复习大题篇—圆锥曲线综合问题【归类解析】题型一 范围问题【解题指导】 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.【例】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与双曲线x 23-y 2=1的离心率互为倒数,且直线x -y -2=0经过椭圆的右顶点.(1)求椭圆C 的标准方程;(2)设不过原点O 的直线与椭圆C 交于M ,N 两点,且直线OM ,MN ,ON 的斜率依次成等比数列,求△OMN 面积的取值范围.【解】 (1)∵双曲线的离心率为233, ∴椭圆的离心率e =c a =32. 又∵直线x -y -2=0经过椭圆的右顶点,∴右顶点为点(2,0),即a =2,c =3,b =1,∴椭圆方程为x 24+y 2=1. (2)由题意可设直线的方程为y =kx +m (k ≠0,m ≠0),M (x 1,y 1),N (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1, 消去y ,并整理得(1+4k 2)x 2+8kmx +4(m 2-1)=0,则x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-11+4k 2, 于是y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2.又直线OM ,MN ,ON 的斜率依次成等比数列,故y 1x 1·y 2x 2=k 2x 1x 2+km x 1+x 2+m 2x 1x 2=k 2, 则-8k 2m 21+4k2+m 2=0. 由m ≠0得k 2=14,解得k =±12. 又由Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0,得0<m 2<2,显然m 2≠1(否则x 1x 2=0,x 1,x 2中至少有一个为0,直线OM ,ON 中至少有一个斜率不存在,与已知矛盾).设原点O 到直线的距离为d ,则S △OMN =12|MN |d =12·1+k 2·|x 1-x 2|·|m |1+k 2故由m 的取值范围可得△OMN 面积的取值范围为(0,1).【训练】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△P AB 面积的取值范围. (1)【证明】 设P (x 0,y 0),A ⎝⎛⎭⎫14y 21,y 1,B ⎝⎛⎭⎫14y 22,y 2. 因为P A ,PB 的中点在抛物线上,所以y 1,y 2为方程⎝⎛⎭⎫y +y 022=4·14y 2+x 02,即y 2-2y 0y +8x 0-y 20=0的两个不同的实根.所以y 1+y 2=2y 0,所以PM 垂直于y 轴.(2)【解】 由(1)可知⎩⎪⎨⎪⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20,所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0, |y 1-y 2|=22y 20-4x 0. 所以△P AB 的面积S △P AB =12|PM |·|y 1-y 2|=()322003244y x -.因为x 20+y 204=1(-1≤x 0<0), 所以y 20-4x 0=-4x 20-4x 0+4∈[4,5],所以△P AB 面积的取值范围是⎣⎡⎦⎤62,15104. 题型二 最值问题1 利用三角函数有界性求最值【解题指导】 处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.【例】过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是坐标原点,则|AF |·|BF |的最小值是【解】 设直线AB 的倾斜角为θ,可得|AF |=21-cos θ,|BF |=21+cos θ, 则|AF |·|BF |=21-cos θ×21+cos θ=4sin 2θ≥4. 2 数形结合利用几何性质求最值【例】在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,求实数c 的最大值为。
2020版高三文科数学第一轮复习第八篇平面解析几何第八篇 第7节 第三课时
返回导航
第7节 圆锥曲线的综合问题
课时作业
从特殊到一般方法求定值 已知 F1,F2 为椭圆 C:ax22+by22=1(a>b>0)的左、右焦 点,过椭圆右焦点 F2 且斜率为 k(k≠0)的直线 l 与椭圆 C 相交于 E, F 两点,△EFF1 的周长为 8,且椭圆 C 与圆 x2+y2=3 相切. (1)求椭圆 C 的方程; (2)设 A 为椭圆的右顶点,直线 AE,AF 分别交直线 x=4 于点 M, N,线段 MN 的中点为 P,记直线 PF2 的斜率为 k′,求证:k·k′为定值.
解得|MF1|+|MF2|=4 2.
从而 2a=|MF1|+|MF2|=4 2,即 a=2 2.
由|F1F2|=4 得 c=2,从而 b=2,
故椭圆 C 的方程为x82+y42=1.
返回导航
第7节 圆锥曲线的综合问题
课时作业
(2)当直线 l 的斜率存在时,设斜率为 k,则其方程为 y+2=k(x
+1),
课时作业
y=kx+m, (2)设 A(x1,y1),B(x2,y2),由x42+y32=1, 消去 y 得(3+4k2)x2+8mkx+4(m2-3)=0,
Δ=64m2k2-16(3+4k2)(m2-3)>0,化为 3+4k2>m2.
所以 x1+x2=3-+84mkk2,x1x2=4(3m+2-4k32 ). y1y2=(kx1+m)(kx2+m)=k2x1x2+mk(x1+x2)+m2 =3(m3+2-4k42k2).
第7节 圆锥曲线的综合问题
课时作业
解:(1)在△F1MF2 中,由12|MF1||MF2|sin 60°=433,
得|MF1||MF2|=136.
由余弦定理,得|F1F2|2=|MF1|2+|MF2|2-2|MF1||MF2|·cos 60°
2020届高考数学一轮复习:教师用书-第八章 平面解析几何
第八章⎪⎪⎪平面解析几何第一节直线的倾斜角与斜率、直线的方程1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)直线l 的倾斜角为α(α≠π2),则斜率k =tan_α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.直线方程的五种形式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.[小题体验]1.设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45°,得到直线l 1,则直线l 1的倾斜角为( )A .α+45°B .α-135°C .135°-αD .α+45°或α-135°解析:选D 由倾斜角的取值范围知,只有当0°≤α+45°<180°,即0°≤α<135°时,l 1的倾斜角才是α+45°.而0°≤α<180°,所以当135°≤α<180°时,l 1的倾斜角为α-135°,故选D.2.下列说法中正确的是( )A.y -y 1x -x 1=k 表示过点P 1(x 1,y 1),且斜率为k 的直线方程 B .直线y =kx +b 与y 轴交于一点B (0,b ),其中截距b =|OB | C .在x 轴和y 轴上的截距分别为a 与b 的直线方程是x a +yb=1D .方程(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1)表示过点P 1(x 1,y 1),P 2(x 2,y 2)的直线 解析:选D 对于A ,直线不包括点P 1,故A 不正确;对于B ,截距不是距离,是B 点的纵坐标,其值可正可负,故B 不正确;对于C ,经过原点的直线在两坐标轴上的截距都是0,不能表示为x a +yb =1,故C 不正确;对于D ,此方程为直线两点式方程的变形,故D 正确.故选D.3.(2018·嘉兴检测)直线l 1:x +y +2=0在x 轴上的截距为________;若将l 1绕它与y 轴的交点顺时针旋转90°,则所得到的直线l 2的方程为________________.解析:对于直线l 1:x +y +2=0,令y =0,得x =-2,即直线l 1在x 轴上的截距为-2;令x =0,得y =-2,即l 1与y 轴的交点为(0,-2),直线l 1的倾斜角为135°,∴直线l 2的倾斜角为135°-90°=45°,∴l 2的斜率为1,故l 2的方程为y =x -2,即x -y -2=0.答案:-2 x -y -2=01.点斜式、斜截式方程适用于不垂直于x 轴的直线;两点式方程不能表示垂直于x ,y 轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.2.截距不是距离,距离是非负值,而截距可正可负,可为零,在与截距有关的问题中,要注意讨论截距是否为零.3.求直线方程时,若不能断定直线是否具有斜率时,应注意分类讨论,即应对斜率是否存在加以讨论.[小题纠偏]1.直线x cos α+3y +2=0的倾斜角的范围是( ) A.⎣⎡⎦⎤π6,π2∪⎣⎡⎦⎤π2,5π6B.⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,πC.⎣⎡⎦⎤0,5π6D.⎣⎡⎦⎤π6,5π6解析:选B 设直线的倾斜角为θ,则tan θ=-33cos α, 又cos α∈[-1,1],所以-33≤tan θ≤33, 又0≤θ<π,且y =tan θ在⎣⎡⎭⎫0,π2和⎝⎛⎭⎫π2,π上均为增函数, 故θ∈⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π.故选B. 2.过点(5,10),且到原点的距离为5的直线方程是________. 解析:当斜率不存在时,所求直线方程为x -5=0满足题意; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +10-5k =0.由距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0. 答案:x -5=0或3x -4y +25=0考点一 直线的倾斜角与斜率(基础送分型考点——自主练透)[题组练透]1.若直线l 经过A (2,1),B (1,-m 2)(m ∈R )两点,则直线l 的倾斜角α的取值范围是( ) A.⎣⎡⎦⎤0,π4 B.⎝⎛⎭⎫π2,π C.⎣⎡⎭⎫π4,π2D.⎝⎛⎦⎤π2,3π4解析:选C 因为直线l 的斜率k =tan α=1+m 22-1=m 2+1≥1,所以π4≤α<π2.故倾斜角α的取值范围是⎣⎡⎭⎫π4,π2.2.经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点,则直线l 的斜率k 和倾斜角α的取值范围分别为________,________.解析:如图所示,结合图形,若l 与线段AB 总有公共点,则k PA ≤k ≤k PB ,而k PB >0,k PA <0,故k <0时,倾斜角α为钝角,k=0时,α=0,k >0时,α为锐角.又k PA =-2-(-1)1-0=-1,k PB =1-(-1)2-0=1,∴-1≤k ≤1.又当0≤k ≤1时,0≤α≤π4;当-1≤k <0时,3π4≤α<π.故倾斜角α的取值范围为α∈⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. 答案:[-1,1] ⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π 3.若A (2,2),B (a,0),C (0,b )(ab ≠0)三点共线,求1a +1b 的值.解:∵k AB =0-2a -2=-2a -2,k AC =b -20-2=-b -22,且A ,B ,C 三点共线,∴k AB =k AC ,即-2a -2=-b -22,整理得ab =2(a +b ),将该等式两边同除以2ab 得1a +1b =12.[谨记通法]1.倾斜角与斜率的关系当α∈⎣⎡⎭⎫0,π2且由0增大到π2⎝⎛⎭⎫α≠π2时,k 的值由0增大到+∞. 当α∈⎝⎛⎭⎫π2,π时,k 也是关于α的单调函数,当α在此区间内由π2⎝⎛⎭⎫α≠π2增大到π(α≠π)时,k 的值由-∞趋近于0(k ≠0).2.斜率的3种求法(1)定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率. (2)公式法:若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率.(3)方程法:若已知直线的方程为Ax +By +C =0(B ≠0),则l 的斜率k =-AB .考点二 直线的方程(重点保分型考点——师生共研)[典例引领]求适合下列条件的直线方程:(1)经过点(4,1),且在两坐标轴上的截距相等;(2)经过点(-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍; (3)经过点(3,4),且与两坐标轴围成一个等腰直角三角形.解:(1)设直线方程在x ,y 轴上的截距均为a , 若a =0,即直线方程过点(0,0)和(4,1), ∴直线方程为y =14x ,即x -4y =0;若a ≠0,则设直线方程为x a +ya =1, ∵直线方程过点(4,1),∴4a +1a =1,解得a =5,∴直线方程为x +y -5=0.综上可知,所求直线的方程为x -4y =0或x +y -5=0.(2)由已知,设直线y =3x 的倾斜角为α ,则所求直线的倾斜角为2α. ∵tan α=3,∴tan 2α=2tan α1-tan 2α=-34. 又直线经过点(-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3). 即所求直线的方程为x -y +1=0或x +y -7=0.[由题悟法]求直线方程的2个注意点(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).[即时应用]求适合下列条件的直线方程:(1)经过点A (-3,3),且倾斜角为直线3x +y +1=0的倾斜角的一半的直线方程为________.(2)过点(2,1)且在x 轴上的截距与在y 轴上的截距之和为6的直线方程为________. 解析:(1)由3x +y +1=0,得此直线的斜率为-3, 所以倾斜角为120°,从而所求直线的倾斜角为60°, 所以所求直线的斜率为 3. 又直线过点A (-3,3),所以所求直线方程为y -3=3(x +3), 即3x -y +6=0.(2)由题意可设直线方程为x a +yb=1,则⎩⎪⎨⎪⎧a +b =6,2a +1b=1,解得a =b =3,或a =4,b =2.故所求直线方程为x +y -3=0或x +2y -4=0. 答案:(1)3x -y +6=0 (2)x +y -3=0或x +2y -4=0 考点三 直线方程的综合应用(题点多变型考点——多角探明) [锁定考向]直线方程的综合应用是常考内容之一,它常与函数、导数、不等式、圆相结合,命题多为客观题.常见的命题角度有:(1)与基本不等式相结合的最值问题; (2)与导数的几何意义相结合的问题; (3)由直线方程解决参数问题.[题点全练]角度一:与基本不等式相结合的最值问题1.过点P (2,1)作直线l ,与x 轴和y 轴的正半轴分别交于A ,B 两点,求: (1)△AOB 面积的最小值及此时直线l 的方程;(2)直线l 在两坐标轴上截距之和的最小值及此时直线l 的方程; (3)|PA |·|PB |的最小值及此时直线l 的方程. 解:(1)设直线l 的方程为y -1=k (x -2), 则可得A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k ). ∵直线l 与x 轴,y 轴正半轴分别交于A ,B 两点, ∴⎩⎪⎨⎪⎧2k -1k >0,1-2k >0,得k <0. ∴S △AOB =12·|OA |·|OB |=12·⎝⎛⎭⎫2-1k ·(1-2k )=12⎝⎛⎭⎫4-1k -4k ≥12⎣⎡⎦⎤4+2 ⎝⎛⎭⎫-1k ·(-4k ) =4,当且仅当-1k =-4k ,即k =-12时,△AOB 的面积有最小值4,此时直线l 的方程为y -1=-12(x -2),即x+2y -4=0.(2)∵A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k )(k <0), ∴截距之和为2-1k +1-2k =3-2k -1k ≥3+2(-2k )·⎝⎛⎭⎫-1k =3+22,当且仅当-2k =-1k ,即k =-22时等号成立.故截距之和的最小值为3+22, 此时直线l 的方程为y -1=-22(x -2), 即x +2y -2-2=0.(3)∵A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k )(k <0), ∴|PA |·|PB |=1k 2+1·4+4k 2=2⎣⎡⎦⎤1-k +(-k )≥4,当且仅当-k =-1k ,即k =-1时上式等号成立.故|PA |·|PB |的最小值为4,此时直线l 的方程为y -1=-(x -2),即x +y -3=0. 角度二:与导数的几何意义相结合的问题2.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为( ) A.⎣⎡⎦⎤-1,-12 B.[]-1,0 C .[0,1]D.⎣⎡⎦⎤12,1解析:选A 由题意知y ′=2x +2,设P (x 0,y 0), 则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,所以0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.角度三:由直线方程解决参数问题3.已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值.解:由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×(2-a )×2+12×(a 2+2)×2=a 2-a +4=⎝⎛⎭⎫a -122+154,当a =12时,四边形的面积最小,故a =12.[通法在握]处理直线方程综合应用的2大策略(1)含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.(2)求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.[演练冲关]1.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且易知两直线垂直,则PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),当P 与A 或B 重合时,|PA |·|PB |=0,故|PA |·|PB |的最大值是5.答案:52.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.解:(1)证明:直线l 的方程可化为y =k (x +2)+1,故无论k 取何值,直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k ≥0,故k 的取值范围为[)0,+∞.(3)依题意,直线l 在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k , ∴A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ). 又-1+2kk <0且1+2k >0,∴k >0.故S =12|OA ||OB |=12×1+2k k ×(1+2k )=12⎝⎛⎭⎫4k +1k +4≥12(4+4)=4,当且仅当4k =1k ,即k =12时取等号.故S 的最小值为4,此时直线l 的方程为x -2y +4=0.一抓基础,多练小题做到眼疾手快1.(2019·金华一中模拟)直线x +(a 2+1)y +1=0的倾斜角的取值范围为( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎭⎫3π4,πC.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫π2,π D.⎣⎡⎭⎫π4,π2∪⎣⎡⎭⎫3π4,π解析:选B 由直线方程可知斜率k =-1a 2+1,设倾斜角为α,则tan α=-1a 2+1,而-1≤-1a 2+1<0,∴-1≤tan α<0,又∵α∈[0,π),∴3π4≤α<π,故选B.2.直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4 D.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫π2,π 解析:选B 设直线的倾斜角为θ,则有tan θ=-sin α,其中sin α∈[-1,1].又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π.3.(2018·湖州质检)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段P Q 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13C .-32D.23解析:选B 依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可得直线l 的斜率为-3-17+5=-13.4.如图中的直线l1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ) A .k 1<k 2<k 3 B .k 3<k 1<k 2 C .k 3<k 2<k 1D .k 1<k 3<k 2解析:选D 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.5.(2018·豫西五校联考)曲线y =x 3-x +5上各点处的切线的倾斜角的取值范围为________.解析:设曲线上任意一点处的切线的倾斜角为θ(θ∈[0,π)), 因为y ′=3x 2-1≥-1,所以tan θ≥-1, 结合正切函数的图象可知, θ的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 答案:⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π 二保高考,全练题型做到高考达标1.已知A (-1,1),B (3,1),C (1,3),则△ABC 的BC 边上的高所在直线方程为( ) A .x +y =0 B .x -y +2=0 C .x +y +2=0D .x -y =0解析:选B 因为B (3,1),C (1,3), 所以k BC =3-11-3=-1,故BC 边上的高所在直线的斜率k =1,又高线经过点A ,所以其直线方程为x -y +2=0.2.已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为( )A .y =3x +2B .y =3x -2C .y =3x +12D .y =-3x +2 解析:选A ∵直线x -2y -4=0的斜率为12,∴直线l 在y 轴上的截距为2, ∴直线l 的方程为y =3x +2,故选A.3.(2018·温州五校联考)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0的图象可能是( )解析:选B 当a >0,b >0时,-a <0,-b <0,选项B 符合.4.若直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞)解析:选C 令x =0,得y =b 2,令y =0,得x =-b ,所以所求三角形面积为12⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,因为14b 2≤1,所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2]. 5.函数y =a 1-x (a >0,a ≠1)的图象恒过定点A ,若点A 在mx +ny -1=0(mn >0)上,则1m +1n 的最小值为( )A .2B .4C .8D .1解析:选B ∵函数y =a 1-x (a >0,a ≠1)的图象恒过定点A (1,1). ∴把A (1,1)代入直线方程得m +n =1(mn >0). ∴1m +1n =⎝⎛⎭⎫1m +1n (m +n )=2+n m +m n ≥2+2 n m ·m n =4(当且仅当m =n =12时取等号), ∴1m +1n 的最小值为4.6.(2018·温州调研)已知三角形的三个顶点为A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.解析:∵BC 的中点坐标为⎝⎛⎭⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x +13y +5=0.答案:x +13y +5=07.若直线ax +y +3a -1=0恒过定点M ,则直线2x +3y -6=0关于M 点对称的直线方程为________________.解析:由ax +y +3a -1=0,可得a (x +3)+(y -1)=0,令⎩⎪⎨⎪⎧ x +3=0,y -1=0,可得⎩⎪⎨⎪⎧x =-3,y =1,∴M (-3,1),M 不在直线2x +3y -6=0上,设直线2x +3y -6=0关于M 点对称的直线方程为2x +3y +c =0(c ≠-6),则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c =-6(舍去),∴所求直线方程为2x +3y +12=0.答案:2x +3y +12=08.若圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b 的最小值是________.解析:由圆x 2+y 2+2x -6y +1=0知其标准方程为(x +1)2+(y -3)2=9, ∵圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称, ∴该直线经过圆心(-1,3),即-a -3b +3=0, ∴a +3b =3(a >0,b >0). ∴1a +3b =13(a +3b )⎝⎛⎭⎫1a +3b =13⎝⎛⎭⎫1+3a b +3b a +9≥13⎝⎛⎭⎫10+23a b ·3b a =163, 当且仅当3b a =3ab ,即a =b 时取等号.故1a +3b 的最小值是163.答案:1639.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.解:(1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4,由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6, 解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.10.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)的直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解:由题意可得k OA =tan 45°=1, k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ),所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3). 又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1), 即直线AB 的方程为(3+3)x -2y -3-3=0.三上台阶,自主选做志在冲刺名校 1.已知曲线y =1e x+1,则曲线的切线中斜率最小的直线与两坐标轴所围成的三角形的面积为________.解析:y ′=-e x(e x +1)2=-1e x+1ex +2, 因为e x >0,所以e x +1e x ≥2e x ·1e x =2(当且仅当e x =1e x ,即x =0时取等号),所以e x +1ex+2≥4,故y ′=-1e x +1ex +2≥-14(当且仅当x =0时取等号).所以当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝⎛⎭⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.该切线在x 轴上的截距为2,在y 轴上的截距为12,所以该切线与两坐标轴所围成的三角形的面积S =12×2×12=12.答案:122.已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,当△ABO 的面积取最小值时,求直线l 的方程.解:法一:设A (a,0),B (0,b )(a >0,b >0), 则直线l 的方程为x a +yb =1.因为l 过点P (3,2),所以3a +2b =1.因为1=3a +2b≥26ab,整理得ab ≥24, 所以S △ABO =12ab ≥12,当且仅当3a =2b ,即a =6,b =4时取等号. 此时直线l 的方程是x 6+y4=1,即2x +3y -12=0.法二:依题意知,直线l 的斜率k 存在且k <0, 可设直线l 的方程为y -2=k (x -3)(k <0), 则A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎡⎦⎤12+(-9k )+4-k ≥12⎣⎢⎡⎦⎥⎤12+2 (-9k )·4-k=12×(12+12)=12, 当且仅当-9k =4-k,即k =-23时,等号成立.所以所求直线l 的方程为2x +3y -12=0.第二节两条直线的位置关系1.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 3.三种距离公式1.(2018·金华四校联考)直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m =( )A .2B .-3C .2或-3D .-2或-3解析:选C ∵直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,∴2m =m +13≠4-2,解得m =2或-3.2.“a =14”是“直线(a +1)x +3ay +1=0与直线(a -1)x +(a +1)y -3=0相互垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 由直线(a +1)x +3ay +1=0与直线(a -1)x +(a +1)y -3=0相互垂直,得(a +1)(a -1)+3a (a +1)=0,即4a 2+3a -1=0,解得a =14或-1,∴“a =14”是“直线(a +1)x+3ay +1=0与直线(a -1)x +(a +1)y -3=0相互垂直”的充分不必要条件,故选A.3.(2018·浙江五校联考)已知动点P 的坐标为(x,1-x ),x ∈R ,则动点P 的轨迹方程为________,它到原点距离的最小值为________.解析:设点P 的坐标为(x ,y ),则y =1-x ,即动点P 的轨迹方程为x +y -1=0.原点到直线x +y -1=0的距离为d =|0+0-1|1+1=22,即为所求原点到动点P 的轨迹的最小值.答案:x +y -1=0221.在判断两条直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的x ,y 的系数分别相等这一条件盲目套用公式导致出错.[小题纠偏]1.已知P :直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行,Q :a =-1,则P 是Q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选A 由于直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行的充要条件是1×a -(-1)×1=0,即a =-1.所以P 是Q 的充要条件.2.(2018·安庆模拟)若直线l 1:x +3y +m =0(m >0)与直线l 2:2x +6y -3=0的距离为10,则m =( )A .7B.172C .14D .17解析:选B 直线l 1:x +3y +m =0(m >0),即2x +6y +2m =0,因为它与直线l 2:2x +6y -3=0的距离为10,所以|2m +3|4+36=10,解得m =172.考点一 两条直线的位置关系(基础送分型考点——自主练透)[题组练透]1.已知a ≠0,直线ax +(b +2)y +4=0与直线ax +(b -2)y -3=0互相垂直,则ab 的最大值为( )A .0B .2C .4D. 2解析:选B 若b =2,两直线方程分别为y =-a 4x -1和x =3a ,此时两直线相交但不垂直.若b =-2,两直线方程分别为x =-4a 和y =a 4x -34,此时两直线相交但不垂直.若b ≠±2,两直线方程分别为y =-a b +2x -4b +2和y =-a b -2x +3b -2,此时两直线的斜率分别为-a b +2,-a b -2,由-a b +2·⎝⎛⎭⎫-a b -2=-1,得a 2+b 2=4.因为a 2+b 2=4≥2ab ,所以ab ≤2,且当a =b =2或a =b =-2时取等号,故ab 的最大值为2.2.(2018·诸暨模拟)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0平行,则2a +3b 的最小值为________.解析:由两直线平行可得,a (b -3)=2b ,即2b +3a =ab ,2a +3b=1.又a ,b 为正数,所以2a +3b =(2a +3b )·⎝⎛⎭⎫2a +3b =13+6a b +6b a≥13+2 6a b ·6ba =25,当且仅当a =b =5时取等号,故2a +3b 的最小值为25.答案:253.已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m ,n 的值,使 (1)l 1与l 2相交于点P (m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.解:(1)由题意得⎩⎪⎨⎪⎧m 2-8+n =0,2m -m -1=0,解得m =1,n =7.即m =1,n =7时,l 1与l 2相交于点P (m ,-1).(2)∵l 1∥l 2,∴⎩⎪⎨⎪⎧m 2-16=0,-m -2n ≠0,解得⎩⎪⎨⎪⎧ m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2.即m =4,n ≠-2或m =-4,n ≠2时,l 1∥l 2. (3)当且仅当2m +8m =0, 即m =0时,l 1⊥l 2. 又-n8=-1,∴n =8.即m =0,n =8时,l 1⊥l 2,且l 1在y 轴上的截距为-1.[谨记通法]1.已知两直线的斜率存在,判断两直线平行垂直的方法 (1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等; (2)两直线垂直⇔两直线的斜率之积等于-1.[提醒] 当直线斜率不确定时,要注意斜率不存在的情况. 2.由一般式确定两直线位置关系的方法[提醒] 在判断两直线位置关系时,比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答选择、填空题时,建议多用比例式来解答.考点二 距离问题(重点保分型考点——师生共研)[典例引领]1.(2018·衢州模拟)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( )A.2B.823 C. 3D.833解析:选B 因为l 1∥l 2,所以1a -2=a 3≠62a,解得a =-1,所以l 1:x -y +6=0,l 2:x -y +23=0,所以l 1与l 2之间的距离d =⎪⎪⎪⎪6-232=823.2.直线3x +4y -3=0上一点P 与点Q (2,-2)的连线的最小值是________. 解析:∵点Q 到直线的距离即为P ,Q 两点连线的最小值, ∴|P Q |min =|3×2+4×(-2)-3|32+42=1.答案:13.若直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________.解析:法一:当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|,∴k =-13.∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意. 故所求直线l 的方程为x +3y -5=0或x =-1. 法二:当AB ∥l 时,有k =k AB =-13,∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 中点时,AB 的中点为(-1,4). ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1. 答案:x +3y -5=0或x =-1[由题悟法]处理距离问题的2大策略(1)点到直线的距离问题可直接代入点到直线的距离公式去求.(2)动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而使计算简便.[即时应用]1.已知P 是直线2x -3y +6=0上一点,O 为坐标原点,且点A 的坐标为(-1,1),若|PO |=|PA |,则P 点的坐标为________.解析:法一:设P (a ,b ),则⎩⎨⎧2a -3b +6=0,a 2+b 2=(a +1)2+(b -1)2, 解得a =3,b =4.∴P 点的坐标为(3,4). 法二:线段OA 的中垂线方程为x -y +1=0,则由⎩⎪⎨⎪⎧ 2x -3y +6=0,x -y +1=0.解得⎩⎪⎨⎪⎧x =3,y =4,则P 点的坐标为(3,4).答案:(3,4)2.已知直线l :ax +y -1=0和点A (1,2),B (3,6).若点A ,B 到直线l 的距离相等,则实数a 的值为________.解析:法一:要使点A ,B 到直线l 的距离相等, 则AB ∥l ,或A ,B 的中点(2,4)在直线l 上. 所以-a =6-23-1=2或2a +4-1=0,解得a =-2或-32.法二:要使点A ,B 到直线l 的距离相等, 则|a +1|a 2+1=|3a +5|a 2+1,解得a =-2或-32.答案:-2或-32考点三 对称问题(题点多变型考点——多角探明) [锁定考向]对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型. 常见的命题角度有: (1)点关于点对称; (2)点关于线对称; (3)线关于线对称.[题点全练]角度一:点关于点对称1.过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.解析:设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,把B 点坐标代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上, 所以由两点式得直线l 的方程为x +4y -4=0. 答案:x +4y -4=02.已知直线l :2x -3y +1=0,点A (-1,-2),则直线l 关于点A (-1,-2)对称的直线l ′的方程为________.解析:法一:在l :2x -3y +1=0上任取两点,如M (1,1),N (4,3), 则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上.易知M ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0.法二:设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0. 答案:2x -3y -9=0 角度二:点关于线对称3.已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程. 解:(1)设A ′(x ,y ),则⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413.∴A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝⎛⎭⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0.得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0. 角度三:线关于线对称4.直线2x -y +3=0关于直线x -y +2=0对称的直线方程是( ) A .x -2y +3=0 B .x -2y -3=0 C .x +2y +1=0D .x +2y -1=0解析:选A 设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-(y -y 0),得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0, 即x -2y +3=0.[通法在握]1.中心对称问题的2个类型及求解方法 (1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. 2.轴对称问题的2个类型及求解方法 (1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2). (2)直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[演练冲关]1.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)解析:选C 设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧y -2x +4×2=-1,y +22=2×-4+x2,解得⎩⎪⎨⎪⎧x =4,y =-2,∴BC 所在直线的方程为y -1=-2-14-3(x -3),即3x +y -10=0.同理可得点B (3,1)关于直线y =2x 的对称点为(-1,3), ∴AC 所在直线的方程为y -2=3-2-1-(-4)(x +4),即x -3y +10=0.联立⎩⎪⎨⎪⎧ 3x +y -10=0,x -3y +10=0,解得⎩⎪⎨⎪⎧x =2,y =4,可得C (2,4). 2.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. 答案:6x -y -6=03.已知△ABC 中,顶点A (4,5),点B 在直线l :2x -y +2=0上,点C 在x 轴上,求△ABC 周长的最小值.解:设点A 关于直线l :2x -y +2=0的对称点为A 1(x 1,y 1),点A关于x 轴的对称点为A 2(x 2,y 2),连接A 1A 2交l 于点B ,交x 轴于点C ,则此时△ABC 的周长取最小值,且最小值为||A 1A 2.∵A 1与A 关于直线l :2x -y +2=0对称,∴⎩⎪⎨⎪⎧y 1-5x 1-4×2=-1,2×x 1+42-y 1+52+2=0,解得⎩⎪⎨⎪⎧x 1=0,y 1=7.∴A 1(0,7).易求得A 2(4,-5),∴△ABC 周长的最小值为||A 1A 2=(4-0)2+(-5-7)2=410.一抓基础,多练小题做到眼疾手快1.(2018·浙江名校协作体联考)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 因为直线ax +3y +3=0和直线x +(a -2)y +1=0平行的充要条件是⎩⎪⎨⎪⎧a (a -2)=3×1,a ×1≠3×1,解得a =-1,故选C. 2.(2018·丽水调研)已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( )A .(3,3)B .(2,3)C .(1,3)D.⎝⎛⎭⎫1,32 解析:选C 直线l 1的斜率为k 1=tan 30°=33,因为直线l 2与直线l 1垂直,所以k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x -2).两式联立,解得⎩⎨⎧x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3).3.(2018·诸暨期初)已知点A (7,-4)关于直线l 的对称点为B (-5,6),则该对称直线l 的方程为( )A .6x +5y -1=0B .5x +6y +1=0C .5x -6y -1=0D .6x -5y -1=0解析:选D 由题可得,直线l 是线段AB 的垂直平分线.因为A (7,-4),B (-5,6),所以k AB =6+4-5-7=-56,所以k l =65.又因为A (7,-4),B (-5,6)的中点坐标为(1,1).所以直线l 的方程为y -1=65(x -1),即6x -5y -1=0.4.已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________. 解析:由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.因为|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].答案:[0,10]5.若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________.解析:依题意知,63=a-2≠c -1,解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c2=0,又两平行直线之间的距离为21313, 所以⎪⎪⎪⎪c 2+132+(-2)2=21313,解得c =2或-6. 答案:2或-6二保高考,全练题型做到高考达标1.(2018·舟山调研)在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|M Q |2的值为( )A.102B.10C .5D .10解析:选D 由题意知P (0,1),Q (-3,0),∵过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直, ∴M 位于以P Q 为直径的圆上, ∵|P Q |=9+1=10, ∴|MP |2+|M Q |2=|P Q |2=10.2.(2018·慈溪模拟)曲线y =2x -x 3在x =-1处的切线为l ,则点P (3,2)到直线l 的距离为( )A.722B.922C.1122D.91010解析:选A 由题可得,切点坐标为(-1,-1).y ′=2-3x 2,由导数的几何意义可知,该切线的斜率为k =2-3=-1,所以切线的方程为x +y +2=0.所以点P (3,2)到直线l 的距离为d =|3+2+2|12+12=722.3.(2018·绵阳模拟)若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|P Q |的最小值为( )A.95B.185C.2910D.295解析:选C 因为36=48≠-125,所以两直线平行,由题意可知|P Q |的最小值为这两条平行直线间的距离, 即|-24-5|62+82=2910,所以|P Q |的最小值为2910.4.(2018·厦门模拟)将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n 等于( )A.345B.365C.283D.323解析:选A 由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,则⎩⎪⎨⎪⎧3+n 2=2×7+m2-3,n -3m -7=-12,解得⎩⎨⎧m =35,n =315,故m +n =345.5.(2018·钦州期中)已知直线l 的方程为f (x ,y )=0,P 1(x 1,y 1)和P 2(x 2,y 2)分别为直线l 上和l 外的点,则方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示( )A .过点P 1且与l 垂直的直线B .与l 重合的直线C .过点P 2且与l 平行的直线D .不过点P 2,但与l 平行的直线解析:选C 由直线l 的方程为f (x ,y )=0,知方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示与l 平行的直线,P 1(x 1,y 1)为直线l 上的点,则f (x 1,y 1)=0,f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0化为f (x ,y )-f (x 2,y 2)=0,显然P 2(x 2,y 2)满足方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0,所以f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示过点P 2且与l 平行的直线.故选C.6.已知三角形的一个顶点A (4,-1),它的两条角平分线所在直线的方程分别为l 1:x-y -1=0和l 2:x -1=0,则BC 边所在直线的方程为________________.解析:A 不在这两条角平分线上,因此l 1,l 2是另两个角的角平分线.点A 关于直线l 1的对称点A 1,点A 关于直线l 2的对称点A 2均在边BC 所在直线l 上.设A 1(x 1,y 1),则有⎩⎪⎨⎪⎧y 1+1x 1-4×1=-1,x 1+42-y 1-12-1=0,解得⎩⎪⎨⎪⎧x 1=0,y 1=3,所以A 1(0,3).同理设A 2(x 2,y 2),易求得A 2(-2,-1). 所以BC 边所在直线方程为2x -y +3=0. 答案:2x -y +3=07.(2018·余姚检测)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析:显然直线l 的斜率不存在时,不满足题意; 设所求直线方程为y -4=k (x -3), 即kx -y +4-3k =0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2,∴k =2或k =-23.∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0. 答案:2x -y -2=0或2x +3y -18=08.如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程为________.解析:易得AB 所在的直线方程为x +y =4,由于点P 关于直线AB 对称的点为A 1(4,2),点P 关于y 轴对称的点为A 2(-2,0),则光线所经过的路程即A 1与A 2两点间的距离.于是|A 1A 2|=(4+2)2+(2-0)2=210.答案:2109.(2018·绍兴一中检测)两平行直线l 1,l 2分别过点P (-1,3),Q (2,-1),它们分别绕P ,Q 旋转,但始终保持平行,则l 1,l 2之间的距离的取值范围是________.解析:∵l 1∥l 2,且P ∈l 1,Q ∈l 2,∴l 1,l 2间的最大距离为|P Q |=[2-(-1)]2+(-1-3)2=5,又l 1与l 2不重合,∴l 1,l 2之间距离的取值范围是(0,5].答案:(0,5]10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1), ∴l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,得C (4,3).设B (x 0,y 0),则AB 的中点M ⎝⎛⎭⎫x 0+52,y 0+12, 代入2x -y -5=0, 得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),∴k BC =65,∴直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.三上台阶,自主选做志在冲刺名校1.已知线段AB 的两个端点A (0,-3),B (3,0),且直线y =2λx +λ+2与线段AB 总相交,则实数λ的取值范围为________.解析:如图所示,因为y =2λx +λ+2恒过定点C ⎝⎛⎭⎫-12,2,连接AC ,CB ,所以直线AC 的斜率k AC =-10,直线BC 的斜率k BC =-47. 又直线y =2λx +λ+2与线段AB 总相交,所以k AC ≤2λ≤k BC ,所以λ的取值范围为⎣⎡⎦⎤-5,-27. 答案:⎣⎡⎦⎤-5,-27 2.已知直线l :(2a +b )x +(a +b )y +a -b =0及点P (3,4). (1)证明直线l 过某定点,并求该定点的坐标. (2)当点P 到直线l 的距离最大时,求直线l 的方程. 解:(1)证明:直线l 的方程可化为 a (2x +y +1)+b (x +y -1)=0,由⎩⎪⎨⎪⎧ 2x +y +1=0,x +y -1=0,得⎩⎪⎨⎪⎧x =-2,y =3,。
2020年高考数学(文科)一轮复习 第八单元 听课手册答案
第八单元解析几何1.编写意图解析几何在高考中一般有2道客观题,1道解答题.选择题、填空题主要考查直线与圆的方程、圆锥曲线的方程及其简单的几何性质,考查点较单一;解答题主要考查圆锥曲线的方程、直线与圆锥曲线的位置关系以及解决解析几何问题的基本方法,具有一定的难度.根据考试说明和一轮复习的特点,在编写该部分时注意到了如下几点:(1)注重基础.在本单元的大部分讲次中设置的都是基础性试题,目的是使学生掌握好解析几何的基本知识和基本方法,提高解题的基本技能.(2)强化能力.选用了一些具有一定难度的推理论证试题和计算性试题,试图通过这些题目的练习,提高学生解决解析几何试题的能力.(3)关注热点.定点、定值、最值、范围、探索、证明等问题是高考中的热点问题,本书对这些问题给予了高度关注,通过对这些问题的讲解,使学生掌握解决这些热点问题的基本思想方法.2.教学建议(1)充分重视运算环节.运算复杂是解析几何题目的特点,在学生运算能力较弱的情况下,解题较困难,并容易出现畏惧情绪.教学中,对本单元的例题和习题要给予学生足够的时间完成其中的运算环节,在学生有困难的运算中教师要与学生一起逐步完成其运算,一定要把运算这个环节落到实处.(2)充分重视学生的主体作用.本单元的绝大多数内容学生都可以独立地完成,因此教师不要包办代替,应让学生在解题过程中认识解析几何试题的特点,掌握解析几何试题的解题方法.(3)充分重视重点和难点的教学.以椭圆和抛物线为载体,与直线、圆等知识结合的解答题是解析几何的难点,在这个问题上应根据学生的实际情况因材施教、区别对待,提高整个班级的复习质量.3.课时安排本单元包括8讲(其中第51讲安排3个课时)、2个小题必刷卷、1个解答必刷卷、1个单元测评卷(八),大约共需15课时.第44讲直线的倾斜角与斜率、直线的方程考试说明1.在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.【课前双基巩固】知识聚焦1.(1)0°(2)0°≤α<180°2.(1)正切值tan α不存在(2)--不存在3.y-y0=k(x-x0)y=kx+b --=--+=1Ax+By+C=0(A2+B2≠0)对点演练1.45°1[解析] 由题意得,k=tan α=1,所以α=45°,又---=1,解得m=1.2.x-y+1=0[解析] ∵斜率k=tan 60°=,直线l过点(0,1),∴直线l的方程为y-1=(x-0),即x-y+1=0.3.三[解析] 由已知得直线Ax+By+C=0在x轴上的截距->0,在y轴上的截距->0,故直线经过第一、二、四象限,不经过第三象限.4.k 2>k 3>k 1 [解析] 设l 1,l 2,l 3的倾斜角分别为α1,α2,α3.由题图易知0<α3<α2<90°<α1<180°,∴tanα2>tan α3>0>tan α1,即k 2>k 3>k 1.5. ,∪, [解析] 设直线l 的倾斜角为α,则有tan α= - -=1-m 2≤1.又因为0≤α<π,所以0≤α≤或 <α<π. 6. ,[解析] ∵点A (2,2),B (-1,3),直线l 过点P (1,1)且与线段AB 相交,∴边界直线PA 的斜率k PA = - - =1,边界直线PB 的斜率k PB =-- -=-1,∴直线PA 的倾斜角为 ,直线PB 的倾斜角为.∵直线l 与线段AB 相交,∴直线l 的倾斜角的取值范围为 ,. 7.x+y-2=0或x-y=0 [解析] 若直线过原点,则直线方程为y=x ;若直线不过原点,设直线方程为 +=1,代入点M (1,1),解得m=2,则直线方程为x+y-2=0. 【课堂考点探究】例1 [思路点拨] (1)利用过两点的直线的斜率公式,求出直线AB 的斜率,再根据倾斜角求出斜率,构造方程,求出m ;(2)直线l :x+my+m=0经过定点A (0,-1),利用斜率公式可得k AP ,k AQ ,再利用斜率的意义即可得出m 的取值范围.(1)A (2) - ,[解析] (1)∵直线过A (2,4),B (1,m )两点,∴直线的斜率为 - -=4-m ,又∵直线的倾斜角为45°,∴直线的斜率为1,即4-m=1,∴m=3,故选A .(2)易知直线l :x+my+m=0过定点A (0,-1).当m ≠0时,k QA = ,k PA =-2,k l =- ,∴- ≤-2或- ≥,解得0<m ≤ 或- ≤m<0;当m=0时,直线l 的方程为x=0,与线段PQ 有交点.∴实数m 的取值范围为- ≤m ≤. 变式题 (1)B (2)B [解析] (1)直线2x cos α-y-3=0的斜率k=2cos α,因为α∈,,所以≤cos α≤,因此k=2cos α∈[1, ].设直线的倾斜角为θ,则有tan θ∈[1, ].又θ∈[0,π),所以θ∈,,即倾斜角的取值范围是,.故选B .(2)设点P (a ,1),Q (7,b ),则有, - ,解得 - ,- ,从而可知直线l 的斜率为- - =- .故选B . 例2 [思路点拨] (1)由题意求解题中所给的直线方程,对比选项,利用排除法即可求得最终结果;(2)当直线不过原点时,设所求直线方程为 +=1,将(-5,2)代入所设方程,求出a 即得直线方程;当直线过原点时,设直线方程为y=kx ,将(-5,2)代入所设方程,求出k 即得直线方程.(1)C (2)2x+5y=0或x+2y+1=0 [解析] (1)如图所示,可知A ( ,0),B (1,1),C (0, ),D (-1,1),所以直线AB ,BC ,CD 的方程分别为y=-(x- ),y=(1- )x+ ,y=( -1)x+ ,即x+( -1)y- =0,(1- )x-y+ =0,( -1)x-y+ =0,分别对应题中的A,B,D 选项.故选C .(2)当直线不过原点时,设所求直线方程为+=1,将(-5,2)代入所设方程,解得a=-,所以直线方程为x+2y+1=0;当直线过原点时,设直线方程为y=kx,则-5k=2,解得k=-,所以直线方程为y=-x,即2x+5y=0.故所求直线方程为2x+5y=0或x+2y+1=0.变式题(1)x+2y-4=0(2)2x-3y+6=0(3)2x-y+2=0[解析] (1)因为直线BC经过B(2,1)和C(-2,3)两点,由两点式得直线BC的方程为--=---,即x+2y-4=0.(2)设BC边的中点D的坐标为(x,y),则x=-=0,y==2.直线AD过A(-3,0),D(0,2)两点,由截距式得AD所在直线的方程为-+=1,即2x-3y+6=0.(3)由已知可知,直线BC的斜率k1=-,则BC的垂直平分线DE的斜率k2=2.由(2)知,点D的坐标为(0,2).由点斜式得直线DE的方程为y-2=2(x-0),即2x-y+2=0.例3[思路点拨] (1)先求出两条动直线经过的定点,即A和B,注意到两条动直线相互垂直,则有PA⊥PB,再利用基本不等式即可得出|PA|·|PB|的最大值.(2)①设出点A,B的坐标,写出直线AB的方程,利用基本不等式求出|OA|+|OB|的最小值,写出对应的直线方程;②设直线方程为y-1=k(x-1)(k<0),利用基本不等式求出|MA|2+|MB|2的最小值,写出对应的直线方程.解:(1)易求得定点A(0,0),B(1,3).当P与A和B均不重合时,因为P为直线x+my=0与mx-y-m+3=0的交点,且易知两直线垂直,即PA⊥PB,所以|PA|2+|PB|2=|AB|2=10,所以|PA|·|PB|≤=5(当且仅当|PA|=|PB|=时,等号成立);当P与A或B重合时,|PA|·|PB|=0.故|PA|·|PB|的最大值是5.(2)①设A(a,0),a>0,B(0,b),b>0,则直线l的方程为+=1,则+=1,所以|OA|+|OB|=a+b=(a+b)·=2++≥2+2·=4,当且仅当a=b=2时取等号.故当|OA|+|OB|取得最小值时,直线l的方程为x+y-2=0.②设直线l的斜率为k,则k<0,直线l的方程为y-1=k(x-1),则A-,,B(0,1-k),所以|MA|2+|MB|2=1-1+2+12+12+(1-1+k)2=2+k2+≥2+2·=4,当且仅当k2=,即k=-1时,|MA|2+|MB|2取得最小值4,此时直线l的方程为x+y-2=0.变式题(1)(2)[解析] (1)已知点A(2,0),B(0,1),则线段AB的方程为y=-x+1,x∈[0,2],即x+2y-2=0,x∈[0,2],由x+2y=2≥2当且仅当x=1,y=时取等号,得xy≤.故xy的最大值为.(2)由题意知直线l 1,l 2过定点(2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S=×2×(2-a )+×2×(a 2+2)=a 2-a+4=a-2+ ,当a=时,四边形的面积最小.【备选理由】 例1考查对斜率公式的灵活运用,充分发掘斜率公式的几何意义,帮助学生解决形如- -结构的取值范围问题;例2为求直线的方程问题,注意截距的概念,需要分情况讨论;例3是将直线方程与基本不等式结合的问题.例1 [配例1使用]已知实数x ,y 满足2x+y=8,当2≤x ≤3时,-的取值范围是 .[答案], [解析] 由- 的几何意义知,它表示点A (1,-1)与线段CD 上任一点P (x ,y )连线的斜率,如图.因为线段CD 的端点为C (2,4),D (3,2),所以k AC = -=5,k AD =- =,所以k AD ≤k AP ≤k AC ,即 ≤-≤5.例2 [配例2使用]设直线l 的方程为(a+1)x+y+2-a=0(a ∈R).(1)若l 在两坐标轴上的截距相等,求直线l 的方程;(2)若l 在两坐标轴上的截距互为相反数,求a 的值.解:(1)当直线l 过原点时,直线l 在x 轴和y 轴上的截距均为0,∴a=2,直线l 的方程为3x+y=0. 当直线l 不经过原点时,l 在x 轴和y 轴上的截距存在且均不为0,直线l 的方程可写为-+-=1,∴ -=a-2,即a+1=1,∴a=0,直线l 的方程为x+y+2=0.综上,直线l 的方程为3x+y=0或x+y+2=0. (2)由-=-(a-2),得a-2=0或a+1=-1,∴a=2或a=-2.例3 [配例3使用] [2019·河北滦县一中月考] 已知直线l 过点M (2,1),且与x 轴、y 轴的正半轴分别交于点A ,B ,O 为坐标原点,求当| |·| |取得最小值时直线l 的方程. 解:设A (a ,0),B (0,b ),则a>0,b>0,直线l 的方程为 +=1,所以 +=1.||·| |=- · =-(a-2,-1)·(-2,b-1)=2(a-2)+b-1=2a+b-5=(2a+b ) +-5= +≥4,当且仅当a=b=3时取等号,故当| |·| |取得最小值时,直线l 的方程为x+y-3=0.第45讲 两直线的位置关系 考试说明 1. 能根据两条直线的斜率判定这两条直线平行或垂直. 2. 能用解方程组的方法求两条相交直线的交点坐标.3. 掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.【课前双基巩固】知识聚焦1.k1=k2且b1≠b2k1·k2=-1k1≠k22.交点坐标相交无公共点平行3.(-)(-)对点演练1.1[解析] 由题意得=,即|a+1|=2,解得a=-1+2=1或a=-1-2=-3,∵a>0,∴a=1.2.1[解析] 由题意知---=1,所以t-4=-2-t,解得t=1.3.[解析] 解方程组--,,可得-,-,所以直线2x-y=-10与y=x+1的交点坐标为(-9,-8),代入y=ax-2,得-8=a·(-9)-2,所以a=.4.0或1[解析] 由两条直线垂直,得(3a+2)(5a-2)+(1-4a)(a+4)=0,即a2-a=0,解得a=0或a=1.5.0或-[解析] 由l1∥l2,得-3a-2a(3a-1)=0,即6a2+a=0,所以a=0或a=-,经检验都成立.6.0或1[解析] 直线l1的斜率k1=----=a.当a≠0时,l2的斜率k2=---=-,因为l1⊥l2,所以k1k2=-1,即a·-=-1,解得a=1;当a=0时,E(0,1),F(0,0),这时直线l2为y轴,M(2,0),N(-1,0),直线l1为x轴,显然l1⊥l2.综上可知,实数a的值为0或1.7.[解析] 由直线3x-4y-3=0和mx-8y+5=0平行,得m=6,则6x-8y+5=0可化为3x-4y+=0,则两条平行直线之间的距离d=--(-)=.8.[解析] 点A(1,1)关于x轴的对称点为A'(1,-1),则|PA|+|PB|的最小值是线段A'B的长,即为.【课堂考点探究】例1[思路点拨] (1)由直线x+y=0和直线x-ay=0互相垂直得1×1+1×(-a)=0,求出a再判断;(2)三条直线中若有两条直线平行或三线共点,则不能构成三角形.(1)C(2)D[解析] (1)直线x+y=0和直线x-ay=0互相垂直的充要条件是1×1+1×(-a)=0,即a=1,故选C.(2)∵三条直线不能构成三角形,∴①l1∥l3,此时m=,l2∥l3,此时m=-;②三线共点,l1:2x-3y+1=0与l2:4x+3y+5=0的交点是-,-,代入mx-y-1=0,解得m=-.故实数m的取值集合为-,-,.故选D.变式题(1)A(2)x-2y+3=0[解析] (1)当m=2时,代入两直线方程,易知两直线平行,即充分性成立.当l1∥l2时,显然m≠0,从而有=m-1,解得m=2或m=-1,经检验,当m=2或m=-1时,l1∥l2,故必要性不成立.故选A.(2)设垂直于直线2x+y-3=0的直线l的方程为x-2y+c=0,∵直线l经过点P(1,2),∴1-4+c=0,解得c=3,∴直线l的方程是x-2y+3=0.例2 [思路点拨] (1)(方法一)当直线l 的斜率存在时,设直线l 的方程为y-2=k (x+1),可得=,解方程即可得出k ,当直线l 为x=-1时,也满足题意;(方法二)分两种情况讨论求解,一种是直线l 过P 且与AB 平行的情况,另一种是直线l 过P 与AB 中点的情况. (2)因为 =≠-,所以两直线平行,|PQ|的最小值为这两条平行直线间的距离,利用两平行线间的距离公式求解即可.(1)x+3y-5=0或x=-1 (2)[解析] (1)(方法一)当直线l 的斜率存在时,设直线l 的方程为y-2=k (x+1),即kx-y+k+2=0.由题意知=,即|3k-1|=|-3k-3|,∴k=-,∴直线l 的方程为y-2=-(x+1),即x+3y-5=0.当直线l 的斜率不存在时,直线l 的方程为x=-1,也符合题意.故直线l 的方程为x+3y-5=0或x=-1.(方法二)当直线AB ∥l 时,有k l =k AB =-,直线l 的方程为y-2=-(x+1),即x+3y-5=0.线段AB 的中点为(-1,4),当直线l 过线段AB 的中点时,直线l 的方程为x=-1.故直线l 的方程为x+3y-5=0或x=-1. (2)因为 =≠-,所以两直线平行.由题意可知|PQ|的最小值为这两条平行直线间的距离,即 = ,所以|PQ|的最小值为. 变式题 (1)C (2)-1或4 [解析] (1)设点P (x ,y ),由题意知 ( - )=|x+1|,且=,所以, - ,即 , - ①或 , - - ②,解①得 - , - 或 ,,解②得 , ,因此,这样的点P 共有3个.(2)设直线l 1的方程为x-2y+m=0,则有(- )= ,解得m=-2或8,故直线l 1的方程为x-2y-2=0或x-2y+8=0,所以直线l 1在y 轴上的截距是-1或4.例3 [思路点拨] (1)根据关于原点对称的点的坐标特点可得m-1=-2,n-1=-1,即可得到m ,n 的值,进而得到答案;(2)设l 1与l 的交点为A (a ,8-2a ),可得l 2与l 的交点B (-a ,2a-6),代入l 2的方程可得a=4,从而得到点A 的坐标,然后得出直线l 的方程.(1)B (2)x+4y-4=0 [解析] (1)∵点A (m-1,1)和点B (2,n-1)关于原点对称,∴m -1=-2,n-1=-1,∴m=-1,n=0,∴m+n=-1.(2)设直线l 1与l 的交点为A (a ,8-2a ),则由题意知点A 关于点P 的对称点B (-a ,2a-6)在l 2上,代入l 2的方程得-a-3(2a-6)+10=0,解得a=4,即点A (4,0)在直线l 上,所以直线l 的方程为x+4y-4=0.例4 [思路点拨] (1)设点P (2,5)关于直线x+y+1=0的对称点为Q (a ,b ),则由直线PQ 与直线x+y+1=0垂直及线段PQ 的中点在直线x+y+1=0上列方程组,求得a ,b 的值,即得对称点的坐标;(2)设出点P 关于直线l 的对称点P'的坐标,根据线段PP'的中点在直线l 上,且直线PP'与直线l 垂直,列出方程组,求出点P'的坐标.(1)C (2)(-2,7)[解析] (1)设点P (2,5)关于直线x+y+1=0的对称点为Q (a ,b ),则 --(- ) - ,,解得- , - ,即点P (2,5)关于直线x+y+1=0的对称点的坐标为(-6,-3),故选C .(2)设点P(x,y)关于直线l:3x-y+3=0的对称点为P'(x',y').∵直线PP'与l垂直,∴k PP'·k l=-1,即--×3=-1①.又线段PP'的中点在直线3x-y+3=0上,∴3×-+3=0②.由①②得-- ,.把x=4,y=5代入得x'=-2,y'=7,∴点P(4,5)关于直线l的对称点的坐标为(-2,7).例5[思路点拨] (方法一)在直线l上任取两点(一般取l与坐标轴的交点),找这两点关于点(1,2)的对称点,利用两点式写出所求直线的方程;(方法二)在直线l:3x-y+3=0上取点M(0,3),点M关于点(1,2)的对称点为M'(2,1),由于l关于点(1,2)的对称直线平行于l,利用点斜式写出所求直线的方程即可;(方法三)设所求对称直线上任意一点为(x,y),它关于点(1,2)的对称点(2-x,4-y)在直线l上,将(2-x,4-y)代入l的方程即得对称直线的方程.解:(方法一)在直线l:3x-y+3=0上取点M(0,3),N(-1,0),设点M,N关于点(1,2)的对称点分别为M'(x1,y1),N'(x2,y2).由,,得,,∴M (2,1).由-,,得,,∴N (3,4),∴对称直线的方程为--=--,即3x-y-5=0.(方法二)在直线l:3x-y+3=0上取点M(0,3),设点M关于点(1,2)的对称点为M'(x1,y1),由, ,得,,∴M (2,1).∵l关于点(1,2)的对称直线平行于l,∴对称直线的斜率k=3,∴对称直线的方程为y-1=3×(x-2),即3x-y-5=0.(方法三)设所求对称直线上任意一点为(x,y),它关于点(1,2)的对称点(2-x,4-y)在直线l上,将(2-x,4-y)代入l的方程得3(2-x)-(4-y)+3=0,即3x-y-5=0.例6[思路点拨] (1)设直线l上任意一点P(x,y),则点P关于直线x+y-4=0的对称点P'(m,n)在直线2x-y-2=0上,由对称性可得--(-)-,-,解得-,-,将其代入2x-y-2=0,化简得到直线l的方程;(2)设P(x,y)是直线l上任意一点,则由点P到直线l1:3x-y+1=0和直线l2:3x-y+7=0的距离相等,即可求解.(1)x-2y+2=0(2)3x-y+4=0[解析] (1)设P(x,y)为直线l上任意一点,则点P关于直线x+y-4=0的对称点P'(m,n)在直线2x-y-2=0上,由对称性可得--(-)-,-,解得-,-,将其代入2x-y-2=0可得2(4-y)-(4-x)-2=0,化简可得直线l的方程为x-2y+2=0.(2)依题意知l1∥l2,所以l上的点P(x,y)到两直线的距离相等,即=,化简得3x-y+4=0,即为所求直线l的方程.例7[思路点拨] 根据光线反射的对称性,先找到点A关于x轴的对称点A',再找到点D关于y轴的对称点D',连接A'D',则A'D'所在直线的方程即为直线BC的方程,光线所经过的路程为|A'D'|.解:(1)如图所示,∵A(-2,1),∴点A关于x轴的对称点为A'(-2,-1).∵D(-2,7),∴点D关于y轴的对称点为D'(2,7).由对称性可得,线段A'D'所在直线的方程即为BC所在直线的方程, 由两点式得直线BC的方程为---=---,整理得2x-y+3=0.(2)由图可得,光线从A点到达D点所经过的路程即为|A'D'|=(--)(--)=4.应用演练1.B[解析] 直线l1:y=k(x-4)经过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l1:y=k(x-4)与直线l2关于点(2,1)对称,故直线l2经过定点(0,2).2.A[解析] 点A(0,2)关于点(1,2)对称的点为B(2,2),所以m+n=,mn≤=当且仅当m=n=时,取等号,故选A.3.-4[解析] 由已知得直线AB⊥l,所以k AB=-,即-=-①,又线段AB的中点,在直线l上,所以a+b-b+1=0②.由①②得a=-1,b=3,所以a-b=-4.4.[解析] 由题意可知坐标纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y=2x-3,它也是点(7,3)与点(m,n)连线的中垂线,于是-,---,解得,,故m+n=.5.x-2y-1=0[解析] 由,,得-,-,即所求直线过点(-1,-1).又直线y=2x+1上一点(0,1)关于直线y=x对称的点(1,0)在所求直线上,∴所求直线方程为---=---,即x-2y-1=0.【备选理由】例1是两条直线的相交问题;例2是点到直线的距离问题;例3是新概念下的“距离”问题;例4是点关于线对称的问题;例5考查对称问题的应用.例1[配例1使用](1)当k>1时,直线l1:kx-y=k-1与直线l2:ky-x=2k的交点在第象限. (2)若直线2x-y=-4,y=x+1,y=ax-2交于一点,则a的值为.[答案] (1)一(2)0[解析] (1)由--,-,得-,--,又∵k>1,∴x=->0,y=-->0,故直线l1:kx-y=k-1与直线l2:ky-x=2k的交点在第一象限.(2)由- - , ,得 - - ,∴交点坐标为(-3,-2),代入y=ax-2,得-2=a×(-3)-2,故a=0.例2 [配例2使用](1)过直线x- y+1=0与 x+y- =0的交点,且与原点的距离等于1的直线有条.(2)直线l 经过点P (2,-5)且与点A (3,-2)和点B (-1,6)的距离之比为1∶2,则直线l 的方程为 . [答案] (1)1 (2)x+y+3=0或17x+y-29=0[解析] (1)由 - ,- ,得,.由于 +=1,故所求直线只有1条. (2)当直线l 与x 轴垂直时,直线l 的方程为x=2,点A 到直线l 的距离d 1=1,点B 到直线l 的距离d 2=3,不符合题意,故直线l 的斜率存在.∵直线l 过点P (2,-5),∴设直线l 的方程为y+5=k (x-2),即kx-y-2k-5=0,∴点A (3,-2)到直线l 的距离d 1==,B (-1,6)到直线l 的距离d 2==.∵d 1∶d 2=1∶2,∴ -=,∴k 2+18k+17=0,∴k 1=-1,k 2=-17.∴直线l 的方程为x+y+3=0或17x+y-29=0.例3 [配例2使用]在平面直角坐标系中,定义两点P (x 1,y 1)与Q (x 2,y 2)之间的“直角距离”为d (P ,Q )=|x 1-x 2|+|y 1-y 2|.给出下列说法: ①若P ,Q 是x 轴上的两点,则d (P ,Q )= - ;②若点P (1,2),Q (sin α,cos α)(α∈R),则d (P ,Q )的最大值为3- ; 若P ,Q 是圆x 2+y 2=1上的任意两点,则d (P ,Q )的最大值为2 ; 若点P (1,3),点Q 为直线y=2x 上的动点,则d (P ,Q )的最小值为. 其中正确的说法是 .(填序号)[答案] ①[解析] 对于①,若P ,Q 是x 轴上的两点,则两点的纵坐标均为0,所以d (P ,Q )=|x 1-x 2|+|y 1-y 2|=|x 1-x 2|,所以①正确.对于②,d (P ,Q )=|1-sin α + 2-cos α =3- sin α+,因为α∈R,所以d (P ,Q )的最大值为3+ ,故②不正确.对于 ,要使d (P ,Q )最大,则P ,Q 两点是圆上关于原点对称的两点,由圆的对称性,不妨设P (cos θ,sin θ),Q (-cos θ,-sin θ) ∈ ,,则d (P ,Q )=|cos θ-(-cos θ)|+|sin θ-(-sinθ)|=2(cos θ+sin θ)=2 sin,所以d (P ,Q )的最大值为2 ,故 正确.对于 ,设Q (x 0,2x 0),则d (P ,Q )= - + - ,可知当x 0=时,d (P ,Q )取得最小值,故 正确.例4 [配例4使用]点P (2,5)关于直线x+y=0对称的点的坐标是 ( )A .(5,2)B .(2,-5)C .(-5,-2)D .(-2,-5)[解析] C 设点P (2,5)关于直线x+y=0的对称点为P 1,则线段PP 1的中点在直线x+y=0上,可排除选项A,B;而点(-2,-5)与点P (2,5)显然关于原点对称,而不关于直线x+y=0对称.故选C .例5 [配例7使用]已知点A (-2,1),B (1,2),点C 为直线y=x 上的动点,则|AC|+|BC|的最小值为( )A .2B .2C .2D .2[解析] C设点B关于直线y=x的对称点为B'(x0,y0),则---,,解得,-,故B'(2,-1).由平面几何知识得|AC|+|BC|的最小值是|B'A|=()(--)=2.故选C.第46讲圆的方程考试说明1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2.能用直线和圆的方程解决一些简单的问题.【课前双基巩固】知识聚焦1.定点定长(a,b)r -,--2.> = <对点演练1.(x-1)2+(y-1)2=2[解析] 因为圆心为(1,1)且过原点,所以该圆的半径r==,则该圆的方程为(x-1)2+(y-1)2=2.2.,-|a| [解析] 根据圆的一般方程,可得圆的圆心坐标为,-a,半径为|a|.3.-1<a<1[解析] 因为点(1,1)在圆(x-a)2+(y+a)2=4的内部,所以点(1,1)到圆心(a,-a)的距离小于2,即(-)[-(-) <2,两边平方得(1-a)2+(a+1)2<4,化简得a2<1,解得-1<a<1.4.x2+y2-2x+2y-6=0[解析] 依题意得=,设P(x,y),则(-)=,整理得x2+y2-2x+2y-6=0.5.(2,4)(x-1)2+(y+3)2=1[解析] 原方程可化为(x-1)2+(y+t)2=-t2+6t-8,则r2=-t2+6t-8=-(t-2)(t-4)>0,解得2<t<4.r2=-(t-3)2+1,当t=3时,r取得最大值1,此时圆的方程为(x-1)2+(y+3)2=1.6.(x±2)2+(y±2)2=4[解析] 由题意知,圆心有四种情况,即圆心坐标分别为(2,2),(-2,2),(-2,-2),(2,-2),所以圆的方程为(x±2)2+(y±2)2=4.7.27[解析] 由x2+y2-2x-3=0得y2=3+2x-x2≥0,解得-1≤x≤3,所以3x2+4y2=3x2+4(3+2x-x2)=-x2+8x+12=-(x-4)2+28(-1≤x≤3),所以当x=3时,3x2+4y2取得最大值27. 8.(x-2)2+(y-1)2=1或+(y-1)2=1或(x+2)2+(y+1)2=1或x-2+(y+1)2=1[解析] 由圆与x轴相切,半径为1,可设圆心坐标为(a,1),又圆与直线4x-3y=0相切,∴-=1,解得a=2或a=-.同理,设圆心坐标为(b,-1),解得b=-2或b=,∴圆的标准方程为(x-2)2+(y-1)2=1或+(y-1)2=1或(x+2)2+(y+1)2=1或x-2+(y+1)2=1.【课堂考点探究】例1[思路点拨] (1)由圆的方程得到C点坐标,利用中点坐标公式与两点间距离公式求出圆心坐标与半径,可得圆的方程,或利用圆的直径式方程直接写出圆的方程;(2)设圆的方程为x2+y2+Dx+Ey+F=0,由O,A,B三点在圆上,将三点坐标代入所设方程,解方程组可得D,E,F的值,从而可得三角形OAB的外接圆方程.(1)C(2)x2+y2-6x-2y=0[解析] (1)由题意可知O(0,0),C(6,-8),则圆心坐标为(3,-4),圆的直径为(-)=10,据此可得圆的方程为(x-3)2+(y+4)2=,即(x-3)2+(y+4)2=25.故选C.(2)设三角形OAB的外接圆的方程是x2+y2+Dx+Ey+F=0,由点O(0,0),A(2,4),B(6,2)在圆上,可得,,,解得,-,-,故三角形OAB的外接圆的方程为x2+y2-6x-2y=0.变式题(1)B(2)C(3)B[解析] (1)由圆的性质可知,该圆经过坐标原点,所以圆的半径r=(-)(--)=,故所求圆的方程为(x-2)2+(y+3)2=13.(2)由抛物线定义知,以A1B1为直径的圆一定经过焦点F(1,0),因此可设圆心C的坐标为(-1,y),则(-)(-)=(--)(-),解得y=1,于是|CF|=,所以圆C的方程为(x+1)2+(y-1)2=5.故选C.(3)设圆C2的圆心坐标为(a,b),因为圆C1的圆心坐标为(-1,1),半径为2,所以--,---,解得,-,则圆C2的方程为(x-2)2+(y+2)2=4,故选B.例2[思路点拨] 因为表示圆上的点(x,y)和点(0,0)连线的斜率,所以利用直线与圆相切时得到最大值和最小值.0[解析] 可视为点(x,y)与坐标原点连线的斜率,∴的最大值和最小值就是与该圆有公共点且过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y=kx,由题知该直线斜率存在,由直线与圆相切得圆心到直线的距离等于半径,即=3,解得k=0或k=,∴的最大值为,最小值为0.例3[思路点拨] (1)设x-2y=b,则问题转化为求直线x-2y=b在y轴上的截距的最值,易知当直线与圆相切时,b取得最大值或最小值;(2)直线z=2x+ay与圆相切时,z取得最大值8,从而得出a的值,进而求出2x+ay的最小值.(1)100(2)-2[解析] (1)原方程可化为(x-1)2+(y+2)2=5,表示以(1,-2)为圆心,为半径的圆.设x-2y=b,即x-2y-b=0,当直线x-2y-b=0与圆相切时,纵截距-b取得最大值或最小值,此时圆心到直线的距离d==,解得b=10或b=0,所以x-2y的最大值为10,最小值为0.(2)依题意知,直线2x+ay=8与圆(x-1)2+(y-1)2=5相切,所以圆心到直线的距离d==,解得a=1或a=-4(舍去),所以2x+ay=2x+y.令2x+y=k,由圆心(1,1)到直线2x+y-k=0的距离d=≤,化简得|k-3|≤5,解得-2≤k≤8,所以k的最小值为-2,即2x+y的最小值为-2.例4[思路点拨] (1)圆上一点到定直线距离的最小值等于圆心到直线的距离减去半径;(2)(x-5)2+(y+4)2表示点P(x,y)到点(5,-4)的距离的平方,又点(5,-4)到圆心(2,0)的距离d=(-)(-)=5,即得点P(x,y)到点(5,-4)的距离最大值为6,进而求得(x-5)2+(y+4)2的最大值.(1)D (2)D[解析] (1)将x2+y2-4x-2y+4=0化为(x-2)2+(y-1)2=1,则圆心C(2,1),半径为1,所以圆心到直线x-2y-5=0的距离为(-)=,所以圆上一点P到直线x-2y-5=0的距离的最小值是-1.故选D.(2)(x-5)2+(y+4)2表示点P(x,y)到点(5,-4)的距离的平方,又点(5,-4)到圆心(2,0)的距离d=(-)(-)=5,则点P(x,y)到点(5,-4)的距离最大值为6,所以(x-5)2+(y+4)2的最大值为36.故选D.例5[思路点拨] 根据条件将所求问题转化为在x轴上找一点使得到点C1与C2的距离和最短,此最短距离减去两圆半径即为所求,求此最短距离利用对称性来解决.A[解析] 圆心C1(2,2),C2(5,2),半径r1=1,r2=2,作C1关于x轴的对称点C'1(2,-2),连接C'1C2与x轴交于点A,此时|AM|+|AN|取得最小值,最小值为|C'1C2|-1-2=5-3=2,故选A.应用演练1.B[解析] 原方程可化为(x-1)2+(y-1)2=1,--表示圆上的点和点(2,4)连线的斜率.设--=k,即kx-y-2k+4=0,则有≤1,解得k≥,故选B.2.B[解析] 设直线l:y=kx-1,由题意得,直线l过定点A(0,-1).圆C:(x+3)2+(y-3)2=1的圆心为C(-3,3),半径r=1.由几何知识可得当直线l与直线CA垂直时,圆心C到直线l的距离最大,此时k CA=-(-)-=-,故k=,所以直线l的方程为y=x-1,即3x-4y-4=0,所以圆心C到直线l的距离d==5,故点P到直线y=kx-1的距离的最大值为d+r=5+1=6.故选B.3.A[解析] 依题意可得,点A关于x轴的对称点为A1(-1,-1),圆心为C(2,3),则|A1C|=()()=5,所以最短路径为5-1=4.故选A.4.B[解析] 由题知,直线AB的方程为-+=1,即2x-y+2=0,圆心(1,0)到直线AB的距离d==,则点P到直线AB的距离的最大值为+1,最小值为-1.又|AB|=,所以(S△PAB)max=×=(4+),(S△PAB)min=×-=(4-),故选B.5.6+26-2[解析] 设x+y=b,则b表示动直线y=-x+b在y轴上的截距,显然当动直线y=-x+b 与圆(x-3)2+(y-3)2=4相切时,b取得最大值或最小值,由圆心C(3,3)到切线x+y=b的距离等于圆的半径2,可得=2,即|b-6|=2,解得b=6±2,所以x+y的最大值为6+2,最小值为6-2.6.1[解析] 由题意知,圆心为C(-2,-t+4),半径r=1,所以|OC|=(-)(-).当t=4时,|OC|取得最小值2,故当t变化时,圆C上的点与原点O的最短距离是|OC|min-r=2-1=1.例6[思路点拨] 设P(x,y),N(x0,y0),根据中点坐标公式求得线段OP,MN的中点坐标关于x,y和x0,y0的式子,再根据平行四边形对角线互相平分建立关系式,解出用x,y表示x0,y0的式子,最后将点N的坐标代入已知圆的方程,化简即得所求点P的轨迹方程,最后去除不满足题意的点,可得到答案.解:如图所示,连接OP,MN,设P(x,y),N(x0,y0),且M,O,N三点不共线,则线段OP的中点坐标为,,线段MN的中点坐标为-,.由平行四边形的对角线互相平分,得=-,=,所以, -,又N(x+3,y-4)在圆上,所以(x+3)2+(y-4)2=4,因此点P的轨迹为圆(x+3)2+(y-4)2=4.当M,O,N三点共线时,直线OM与圆(x+3)2+(y-4)2=4交于两点-,,-,,不满足题意,所以除去两点-,和-,.所以点P的轨迹是以(-3,4)为圆心,半径为2的圆去掉两个点-,和-,.变式题解:(1)设M(x,y),B(x',y'),则由题意可得,,解得-,,∵点B在圆C1:x2+(y-4)2=16上,∴(2x-4)2+(2y-4)2=16,即(x-2)2+(y-2)2=4.∴M点的轨迹C2的方程为(x-2)2+(y-2)2=4.(2)由方程组(-)(-),(-),得直线CD的方程为x-y-1=0,∴圆C1的圆心(0,4)到直线CD的距离d==,又圆C1的半径为4,∴线段CD的长为2-=.【备选理由】例1考查圆的方程的基本知识;例2是针对与圆有关的斜率型最值问题;例3是与圆有关的距离型最值问题;例4综合考查圆的一般方程、直线与圆相切的关系、轨迹问题及最值问题,需要综合分析,在求最值时,还要结合基本不等式求解.例1[配例1使用](1)若点(2,1)在圆(x-a)2+(y+a)2=9的内部,则实数a的取值范围是.(2)已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则圆C的方程为.[答案] (1)(-1,2)(2)(x-2)2+y2=10[解析] (1)因为点(2,1)在圆(x-a)2+(y+a)2=9的内部,所以(2-a)2+(1+a)2<9,即a2-a-2<0,解得-1<a<2.(2)依题意,设圆心C的坐标为(a,0),则|CA|=|CB|,即(-)(-)=(-)(-),解得a=2,故圆心为C(2,0),半径为,所以圆C的方程为(x-2)2+y2=10.例2[配例2使用]已知点P(x,y)在圆x2+(y-1)2=1上运动,则--的最大值与最小值分别为. [答案] ,-[解析] 由题意,--表示点P(x,y)与点A(2,1)连线的斜率,当直线PA与圆相切时,--取得最大值与最小值.设--=k,则过(2,1)的直线的方程为y-1=k(x-2),即kx-y+1-2k=0,由=1,解得k=±,所以--的最大值为,最小值为-.例3[配例4使用]设P是函数y=--(-)的图像上的任意一点,点Q的坐标为(2a,a-3)(a∈R),则|PQ|的最小值为.[答案] -2[解析] 函数y=--(-)的图像表示圆(x-1)2+y2=4在x轴及下方的部分,令点Q的坐标为(x,y),则,-,化简得y=-3,即x-2y-6=0,如图所示.由于圆心(1,0)到直线x-2y-6=0的距离d=(-)=>2,所以直线x-2y-6=0与圆(x-1)2+y2=4相离,因此|PQ|的最小值是-2.例4[配例6使用]已知与曲线C:x2+y2-2x-2y+1=0相切的直线l分别交x轴、y轴于A,B两点,O为坐标原点,|OA|=a,|OB|=b,且a>2,b>2.(1)求证:曲线C与直线l相切的条件是(a-2)(b-2)=2;(2)求线段AB中点的轨迹方程;(3)求△AOB的面积的最小值.解:(1)证明:将曲线C的方程化为(x-1)2+(y-1)2=1,由题知直线l的方程为+=1,即bx+ay-ab=0.因为曲线C与直线l相切,所以圆心(1,1)到直线l的距离等于1,即=1,整理得(a-2)(b-2)=2.(2)由题知A(a,0),B(0,b),设线段AB的中点为M(x,y),则由中点坐标公式得,,即,.由(1)知(a-2)(b-2)=2,故(2x-2)(2y-2)=2,即(x-1)(y-1)=,故所求的轨迹方程为(x-1)(y-1)=. (3)由(1)可知ab=2a+2b-2,所以△=ab=[-2+2(a+b)]=-1+a+b=(a-2)+(b-2)+3≥3+2(-)(-)=3+2,当且仅当a=b=2+时,等号成立,所以△的最小值为3+2.第47讲直线与圆、圆与圆的位置关系考试说明1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.2.初步了解用代数方法处理几何问题的思想.【课前双基巩固】知识聚焦1.0d>r 1两组相同实数解d<r 两组不同实数解2.d>R+r d=R+r R-r<d<R+r d=R-r d<R-r对点演练1.[-3,1][解析] 由题意可得,圆(x-a)2+y2=2的圆心坐标为(a,0),半径为,∴(-)≤,即|a+1|≤2,解得-3≤a≤1.2.x-y+2=02[解析] 由-,--,得两圆的公共弦所在直线的方程为x-y+2=0.又圆x2+y2=4的圆心(0,0)到直线x-y+2=0的距离为=,由勾股定理得弦长的一半为-=,所以所求弦长为2.3.相交[解析] 由题意知点M在圆外,则a2+b2>1,所以圆心(0,0)到直线ax+by=1的距离d=<1,故直线与圆相交.4.x-y+2=0[解析] 将圆的方程化为(x-2)2+y2=4,则圆心坐标为(2,0),半径为2,点P在圆上.设点P处的切线方程为y-=k(x-1),即kx-y-k+=0,则=2,解得k=,∴所求切线的方程为y-=(x-1),即x-y+2=0.5.2[解析] 将圆的方程化为(x-3)2+(y-4)2=5,设切点为A,圆心为B,则|OB|=5,由题意知|OB|2=|BA|2+|OA|2,即25=5+|OA|2,∴ OA =2,即切点到O的距离为2.6.9或1[解析] 由题意,圆C1的圆心坐标为(a,-2),半径r1=2,圆C2的圆心坐标为(-b,-2),半径r2=1,则圆心距为|a+b|.当两圆外切时,|a+b|=2+1=3,当两圆内切时,|a+b|=2-1=1,所以(a+b)2=9或1.7.5x-12y+45=0或x-3=0[解析] 将x2+y2-2x-4y+1=0化为标准方程,得(x-1)2+(y-2)2=4,其圆心坐标为(1,2),∵ CA =(-)(-)=>2,∴点A(3,5)在圆外.显然,当切线斜率不存在时,直线与圆相切,即切线的方程为x-3=0,当切线斜率存在时,可设所求切线的方程为y-5=k(x-3),即kx-y+5-3k=0.又圆心坐标为(1,2),半径r=2,∴圆心到切线的距离d==2,即|3-2k|=2,解得k=.故所求切线的方程为5x-12y+45=0或x-3=0.8.3x+4y-12=0或x=0[解析] 当直线l的斜率不存在,即直线l的方程为x=0时,弦长为2,符合题意;当直线l的斜率存在时,可设直线l的方程为y=kx+3,由弦长为2,半径为2可知,圆心到该直线的距离为1,即=1,解得k=-.综上可得,直线l的方程为x=0或3x+4y-12=0.【课堂考点探究】例1[思路点拨] (1)利用圆心到直线的距离、弦长的一半、圆的半径构成的直角三角形求解;(2)首先利用正弦定理把边角关系转化为边的关系,再比较圆心到直线的距离和半径的大小关系,最后得出结论.。
2020版高考数学一轮复习第8章平面解析几何第7讲作业课件理
解析
2.如图,已知直线与抛物线 x2=2py 交于 A,B 两点,且 OA⊥OB,OD ⊥AB 交 AB 于点 D,点 D 的坐标为(2,4),则 p 的值为( )
A.2
B.4
3 C.2
5 D.2
答案 D
答案
解析 ∵OD⊥AB,∴kOD·kAB=-1.又 kOD=42=2,∴kAB=-12,∴直线 AB 的方程为 y-4=-12(x-2),即 y=-12x+5,由xy2==-2p12yx,+5, 消去 y 可 得 x2+px-10p=0,∴Δ=p2+40p>0,设 A(x1,y1),B(x2,y2),∴x1+x2=- p,x1x2=-10p,则 x1x2+y1y2=0,又 x1x2+y1y2=x1x2+-21x1+5-21x2+5= 54x1x2-52(x1+x2)+25=54×(-10p)-52×(-p)+25=0,∴p=52.
解析
10.过抛物线 C:x2=2y 的焦点 F 的直线 l 交抛物线 C 于 A,B 两点, 若抛物线 C 在点 B 处的切线的斜率为 1,则|AF|=________.
答案 1
答案
解析 把抛物线 C 的方程 x2=2y 改写为 y=x22求导得 y′=x,因为抛物 线 C 在点 B 处的切线斜率为 1,即 y′=xB=1,所以点 B 的坐标为1,12,抛 物线的焦点 F 的坐标为0,12,所以直线 l 的方程为 y=12,所以 A-1,21,|AF| =1.
解析
4.设抛物线 C:y2=4x 的焦点为 F,准线 l 与 x 轴的交点为 A,过抛物
线 C 上一点 P 作准线 l 的垂线,垂足为 Q.若△QAF 的面积为 2,则点 P 的
坐标为( )
A.(1,2)或(1,-2) B.(1,4)或(1,-4)
2020高考数学一轮复习讲义《专题07 平面解析几何(选择题、填空题)》(解析版)
专题07 平面解析几何(选择题、填空题)1.【2019年高考全国Ⅰ卷理数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y += C .22143x y +=D .22154x y += 【答案】B【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得n =22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.2.【2019年高考全国Ⅱ卷理数】若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .8【答案】D【解析】因为抛物线22(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以23()2p p p -=,解得8p =,故选D .【名师点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.解答时,利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,从而解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,从而得到选D .3.【2019年高考全国Ⅱ卷理数】设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为A BC .2D 【答案】A【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==Q ,||,2cPA PA ∴=∴为以OF 为直径的圆的半径, ∴||2c OA =,,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .【名师点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.解答本题时,准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 的关系,可求双曲线的离心率.4.【2019年高考全国Ⅲ卷理数】双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .4B .2C .D .【答案】A【解析】由2,,a b c ===,P PO PF x =∴=Q ,又P 在C 的一条渐近线上,不妨设为在b y x a =上,则222P P b y x a =⋅==,1122PFO P S OF y ∴=⋅==△,故选A .【名师点睛】本题考查以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用数形结合、转化与化归和方程思想解题.忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅,采取列方程组的方式解出三角形的高,便可求三角形面积.5.【2019年高考北京卷理数】已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【答案】B【解析】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B.【名师点睛】本题考查椭圆的标准方程与几何性质,属于容易题,注重基础知识、基本运算能力的考查.由题意利用离心率的定义和,,a b c 的关系可得满足题意的等式.6.【2019年高考北京卷理数】数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 A .① B .② C .①②D .①②③【答案】C【解析】由221x y x y +=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭厔,所以x 可取的整数有0,−1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,−1),(1,0),(1,1), (−1,0),(−1,1),共6个整点,结论①正确.由221x y x y +=+得,222212x y x y +++…,解得222x y +≤,所以曲线C 上任意一点到原点的距离. 结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -, 四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=四边形,很明显“心形”区域的面积大于2ABCD S 四边形,即“心形”区域的面积大于3,说法③错误.故选C.【名师点睛】本题考查曲线与方程、曲线的几何性质,基本不等式及其应用,属于难题,注重基础知识、基本运算能力及分析问题、解决问题的能力考查,渗透“美育思想”.将所给方程进行等价变形确定x 的范围可得整点坐标和个数,结合均值不等式可得曲线上的点到坐标原点距离的最值和范围,利用图形的对称性和整点的坐标可确定图形面积的范围.7.【2019年高考天津卷理数】已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为A BC .2D【答案】D【解析】抛物线24y x =的准线l 的方程为1x =-, 双曲线的渐近线方程为by x a=±, 则有(1,),(1,)b b A B a a ---,∴2b AB a =,24ba=,2b a =,∴c e a a===故选D.【名师点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出AB 的长度.解答时,只需把4AB OF =用,,a b c 表示出来,即可根据双曲线离心率的定义求得离心率. 8.【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是A B .1C D .2【答案】C【解析】因为双曲线的渐近线方程为0x y ±=,所以a b =,则c ==,所以双曲线的离心率ce a== 【名师点睛】本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率,属于容易题,注重了双曲线基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.9.【2018年高考北京卷理数】在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 A .1 B .2 C .3D .4【答案】C【解析】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点A (2,0),所以d 的最大值为OA +1=2+1=3,故选C.【名师点睛】与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.10.【2018年高考全国故卷理数】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣【答案】A【解析】Q 直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,()()2,0,0,2A B ∴--,则AB =.Q 点P 在圆22(2)2x y -+=上,∴圆心为(2,0),则圆心到直线的距离1d ==.故点P 到直线20x y ++=的距离2d 的范围为,则[]2212,62ABP S AB d ==∈△.故答案为A.【名师点睛】本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.先求出A ,B 两点坐标得到AB ,再计算圆心到直线的距离,得到点P 到直线距离的范围,由面积公式计算即可.11.【2017年高考浙江卷】椭圆22194x y +=的离心率是A .3B .3C .23D .59【答案】B【解析】椭圆22194x y +=的离心率e =,故选B . 【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题,其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.12.【2018年高考全国Ⅱ理数】已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23 B .12 C .13D .14【答案】D【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以212||2||PF F F c ==,由AP的斜率为6可得2tan 6PAF ∠=,所以2sin PAF ∠=,2cos PAF ∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以2225sin()3c a c PAF ==+-∠, 所以4a c =,14e =,故选D . 【名师点睛】解决椭圆的离心率的求值及范围问题的关键就是确立一个关于a,b,c 的方程或不等式,再根据a,b,c 的关系消掉b 得到a,c 的关系式,而建立关于a,b,c 的方程或不等式,要充分利用椭圆的几何性质、点的坐标的范围等.13.【2017年高考全国Ⅲ理数】已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 ABC.3D .13【答案】A【解析】以线段12A A 为直径的圆的圆心为坐标原点(0,0),半径为r a =,圆的方程为222x y a +=, 直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即d a ==,整理可得223a b =,即2223()a a c =-即2223a c =,从而22223c e a ==,则椭圆的离心率c e a ===,故选A . 【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见的有两种方法:①求出a ,c ,代入公式e =ca; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).14.【2018年高考浙江卷】双曲线2213x y -=的焦点坐标是A .,0),0)B .(−2,0),(2,0)C .(0,,(0D .(0,−2),(0,2) 【答案】B【解析】设2213x y -=的焦点坐标为(,0)c ±,因为222314c a b =+=+=,2c =,所以焦点坐标为(2,0)±,故选B .15.【2017年高考天津卷理数】已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F .若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为A .22144x y -=B .22188x y -=C .22148x y -=D .22184x y -=【答案】B【解析】由题意得2240,14,10()88x y a b c a b c -==⇒===⇒-=--, 故选B .【名师点睛】利用待定系数法求圆锥曲线的方程是高考的常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于,,a b c 的方程(组),解方程(组)求出,a b 的值.另外要注意巧设双曲线方程的技巧:①双曲线过两点可设为221(0)mx ny mn -=>,②与22221x y a b-=共渐近线的双曲线可设为2222x y a b-(0)λλ=≠,③等轴双曲线可设为22(0)x y λλ-=≠.16.【2018年高考全国故理数】双曲线22221(0,0)x y a b a b-=>>,则其渐近线方程为A .y =B .y =C .2y x =±D .y x = 【答案】A【解析】因为c e a ==,所以2222221312b c a e a a-==-=-=,所以b a =因为渐近线方程为by x a=±,所以渐近线方程为y =,故选A . 17.【2017年高考全国故理数】若双曲线:C 22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为A .2 BC D 【答案】A【解析】由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线的距离为d =,则点()2,0到直线0bx ay +=的距离为2bd c===2224()3c a c -=, 整理可得224c a =,则双曲线的离心率2e ===. 故选A .【名师点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).18.【2017年高考全国III 理数】已知双曲线C :22221x y a b-=(a >0,b >0)的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=【答案】B【解析】双曲线C :22221x y a b -=(a >0,b >0)的渐近线方程为by x a=±,在椭圆中:2212,3a b ==,2229,3c a b c ∴=-==,故双曲线C 的焦点坐标为(3,0)±,据此可得双曲线中的方程组:2223,b c c a b a ===+,解得224,5a b ==,则双曲线C 的方程为2145x y 2-=.故选B . 【名师点睛】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为()2220x y a bλλ2-=≠,再由条件求出λ的值即可.19.【2018年高考全国III 理数】设1F ,2F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP ,则C 的离心率为A B .2C D【答案】C【解析】由题可知2PF b =,2OF c =,PO a ∴=, 在2Rt POF △中,222cos PF bPF O OF c∠==, Q 在12Rt PF F △中,22221212212cos 2PF F F PF b PF O PF F F c∠+-==,b c=,即223c a =,e ∴=C .20.【2018年高考全国I 理数】设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅u u u u r u u u r= A .5 B .6 C .7D .8【答案】D【解析】根据题意,过点(–2,0)且斜率为23的直线方程为()223y x =+,与抛物线方程联立得()22234y x y x ⎧=+⎪⎨⎪=⎩,消元整理得:2680y y -+=,解得()()1,2,4,4M N ,又()1,0F ,所以()()0,2,3,4FM FN ==u u u u r u u u r,从而可以求得03248FM FN ⋅=⨯+⨯=u u u u r u u u r,故选D.【名师点睛】该题考查的是有关直线与抛物线相交求交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程,消元化简求解,从而确定出()()1,2,4,4M N ,之后借助于抛物线的方程求得()1,0F ,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M 、N 的坐标,应用根与系数的关系得到结果.21.【2017年高考全国I 理数】已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16 B .14 C .12D .10【答案】A【解析】设11223344(,),(,),(,),(,)A x y B x y D x y E x y ,直线1l 的方程为1(1)y k x =-,联立方程214(1)y x y k x ⎧=⎨=-⎩,得2222111240k x k x x k --+=,∴21122124k x x k --+=-212124k k +=, 同理直线2l 与抛物线的交点满足22342224k x x k ++=, 由抛物线定义可知2112342124||||2k AB DE x x x x p k ++=++++=+2222244k k ++=2212448k k ++≥816+=,当且仅当121k k =-=(或1-)时,取等号. 故选A .【名师点睛】对于抛物线弦长问题,要重点抓住抛物线定义,将到定点的距离转化到准线上;另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为α,则22||sin p AB α=,则2222||πcos sin (+)2p pDE αα==,所以222221||||4(cos sin cos p p AB DE ααα+=+=+ 222222222111sin cos )4()(cos sin )4(2)4(22)16sin cos sin cos sin ααααααααα=++=++≥⨯+=. 22.【2018年高考全国I 理数】已知双曲线22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则||MN = A .32B .3 C.D .4【答案】B【解析】由题可知双曲线C的渐近线的斜率为,且右焦点为(2,0)F ,从而可得30FON ∠=︒,所以直线MN 的倾斜角为60︒或120︒,根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线3y x =和3y x =-联立,求得M,3(,22N -,所以||3MN ==,故选B . 23.【2018年高考天津卷理数】已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A .221412x y -= B .221124x y -= C .22139x y -= D .22193x y -= 【答案】C【解析】设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,由22221c y a b -=可得:2b y a=±,不妨设:22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为:0bx ay -=,据此可得:21bc b d c -==,22bc b d c +==, 则12226bcd d b c+===,则23,9b b ==,双曲线的离心率:2c e a ====, 据此可得:23a =,则双曲线的方程为22139x y -=.本题选择C 选项.【名师点睛】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为()22220x y a bλλ-=≠,再由条件求出λ的值即可.解答本题时,由题意首先求得A ,B 的坐标,然后利用点到直线距离公式求得b 的值,之后求解a 的值即可确定双曲线方程.24.【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________. 【答案】2-【解析】由题意可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入直线AC 的方程得2m =-,此时||r AC ===【名师点睛】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0,)m 代入后求得m ,计算得解.解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.25.【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍), 又点P 在椭圆上且在x轴的上方,求得3,22P ⎛- ⎝⎭,所以212PFk ==方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =, 由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-,从而可求得3,22P ⎛- ⎝⎭,所以212PFk ==【名师点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用,利用数形结合思想,是解答解析几何问题的重要途径.结合图形可以发现,利用三角形中位线定理,将线段长度用圆的方程表示,与椭圆方程联立可进一步求解.故故利用焦半径及三角形中位线定理解决,则更为简洁.26.【2019年高考全国Ⅲ卷理数】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y =, 22013620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(.【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.解答本题时,根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标.27.【2019年高考全国Ⅰ卷理数】已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB=u u u r u u u r ,120F B F B ⋅=u u ur u u u u r ,则C 的离心率为____________. 【答案】2 【解析】如图,由1,F A AB =u u u r u u u r得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22,2.BF OA BF OA =∥ 由120F B F B ⋅=u u u r u u u u r,得121,,F B F B OA F A ⊥∴⊥∴1OB OF =,1AOB AOF ∠=∠,又OA 与OB 都是渐近线,∴21,BOF AOF ∠=∠又21πBOF AOB AOF ∠+∠+∠=,∴2160,BOF AOF BOA ∠=∠=∠=o又渐近线OB 的斜率为tan 60b a =︒=∴该双曲线的离心率为2c e a ====. 【名师点睛】本题结合平面向量考查双曲线的渐近线和离心率,渗透了逻辑推理、直观想象和数学运算素养,采取几何法,利用数形结合思想解题.解答本题时,通过向量关系得到1F A AB =和1OA F A ⊥,从而可以得到1AOB AOF ∠=∠,再结合双曲线的渐近线可得21,BOF AOF ∠=∠进而得到2160,BOF AOF BOA ∠=∠=∠=o 从而由tan 60ba=︒=. 28.【2019年高考江苏卷】在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .【答案】y =【解析】由已知得222431b-=,解得b =b =因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.【名师点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的,a b 密切相关,事实上,标准方程中化1为0,即得渐近线方程.29.【2019年高考江苏卷】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ . 【答案】4【解析】当直线x +y =0平移到与曲线4y x x=+相切位置时,切点Q 即为点P ,此时到直线x +y =0的距离最小.由2411y x '=-=-,得)x x ==,y =Q ,则切点Q 到直线x +y =04=,故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.30.【2018年高考江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r,则点A 的横坐标为________. 【答案】3【解析】设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=e ,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭u u u r u u u r , 由0AB CD ⋅=u u u r u u u r 得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-, 因为0a >,所以 3.a =【名师点睛】以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.31.【2018年高考浙江卷】已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP u u u u r =2PB u u u u r ,则当m =___________时,点B 横坐标的绝对值最大. 【答案】5【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =u u u r u u u r得122x x -=,1212(1)y y -=-, 所以1223y y -=-,因为A ,B 在椭圆上,所以22114x y m +=,22224x y m +=,所以22224(23)4x y m +-=,所以224x +22324()m y -=,与22224x y m +=对应相减得234m y +=,2221(109)44x m m =--+≤, 当且仅当5m =时取最大值.【名师点睛】解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.32.【2017年高考北京卷理数】若双曲线221y x m-=,则实数m =_______________.【答案】2【解析】221,a b m ==,所以c a ==2m =. 【名师点睛】本题主要考查的是双曲线的标准方程和双曲线的简单几何性质,属于基础题.解题时要注意、、的关系,即,以及当焦点在x 轴时,哪些量表示22,a b ,否则很容易出现错误.最后根据离心率的公式计算即可.33.【2018年高考江苏卷】在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c,则其离心率的值是________________. 【答案】2【解析】因为双曲线的焦点(,0)F c 到渐近线by x a =±,即0bx ay ±=bc b c ==,所以2b c =,因此2222223144a c b c c c =-=-=,12a c =,2e =.34.【2018年高考北京卷理数】已知椭圆2222:1(0)x y M a b a b +=>>,双曲线2222:1x y N m n-=.若双曲线N的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________________;双曲线N 的离心率为________________.1 2a b c 222c a b =+【解析】由正六边形性质得椭圆上一点到两焦点距离之和为c +,再根据椭圆定义得2c a +=,所以椭圆M的离心率为1c a ==.双曲线N 的渐近线方程为ny x m=±,由题意得双曲线N 的一条渐近线的倾斜角为π3,所以222πtan 33n m ==,所以222222234m n m m e m m ++===,所以2e =.35.【2017年高考山东卷理数】在平面直角坐标系中,双曲线22221(0,0)x y a b a b-=>>的右支与焦点为的抛物线交于两点,若,则该双曲线的渐近线方程为_____________.【答案】2y x =±【解析】由抛物线定义可得:||||=4222A B A B p p pAF BF y y y y p ++++=⨯⇒+=, 因为22222222221202x y a y pb y a b a bx py⎧-=⎪⇒-+=⎨⎪=⎩,所以222A B pb y y p a a +==⇒=⇒渐近线方程为y x =. 【名师点睛】1.在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数. 求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都与椭圆的有关问题相类似.因此,双曲线与椭圆的标准方程可统一为的形式,当,,时为椭圆,当时为双曲线.2.凡涉及抛物线上的点到焦点的距离,一般运用定义转化为到准线的距离处理.36.【2017年高考江苏卷】在平面直角坐标系xOy 中,双曲线2213x y -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是12,F F ,则四边形12F PF Q 的面积是_______________.【答案】xOy F ()220x px p =>,A B 4AF BF OF +=122=+By Ax 0>A 0>B B A ≠0<AB【解析】右准线方程为x==,渐近线方程为y x=,设(1010P,则(1010Q,1(F,2F,所以四边形12F PF Q的面积S==【名师点睛】(1)已知双曲线方程22221(0,0)x ya ba b-=>>求渐近线:2222x y by xa b a-=⇒=±;(2)已知渐近线y mx=可设双曲线方程为222(0)m x yλλ-=≠;(3)双曲线的焦点到渐近线的距离为b,垂足为对应准线与渐近线的交点.37.【2017年高考全国I理数】已知双曲线C:22221(0,0)x ya ba b-=>>的右顶点为A,以A为圆心,b 为半径作圆A,圆A与双曲线C的一条渐近线交于M,N两点.若故MAN=60°,则C的离心率为_______________.【解析】如图所示,作AP MN⊥,因为圆A与双曲线C的一条渐近线交于M、N两点,则MN为双曲线的渐近线by xa=上的点,且(,0)A a,||||AM AN b==,而AP MN⊥,所以30PAN∠=o,点(,0)A a到直线by xa=的距离||AP=,在Rt PAN △中,||cos ||PA PAN NA ∠=,代入计算得223a b =,即a =,由222c a b =+得2c b =,所以3c e a ===. 【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题备受出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b ;③双曲线的顶点到渐近线的距离是abc. 38.【2017年高考全国II 理数】已知F 是抛物线:C 28y x =的焦点,M 是C 上一点,FM 的延长线交y轴于点N .若M 为FN 的中点,则FN =_______________. 【答案】6【解析】如图所示,不妨设点M 位于第一象限,设抛物线的准线与x 轴交于点F',作MB l ⊥于点B ,NA l ⊥于点A ,由抛物线的解析式可得准线方程为2x =-,则||2,||4AN FF'==,在直角梯形ANFF'中,中位线||||||32AN FF'BM +==,由抛物线的定义有:||||3MF MB ==,结合题意,有||||3MN MF ==, 故336FN FM NM =+=+=.【名师点睛】抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.39.【2018年高考全国故理数】已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=︒,则k =________.【答案】2【解析】设()()1122,,,A x y B x y ,则21122244y x y x ⎧=⎪⎨=⎪⎩,所以22121244y y x x -=-,所以1212124y y k x x y y -==-+. 取AB 中点()00M x y ',,分别过点A ,B 作抛物线准线1x =-的垂线,垂足分别为,A B '',设F 为C 的焦点. 因为90AMB ︒∠=,所以()()111222MM AB AF BF AA BB ''==++'=. 因为M '为AB 中点,所以MM '平行于x 轴.因为M (−1,1),所以01y =,则122y y +=,即2k =. 故答案为2.【名师点睛】本题主要考查直线与抛物线的位置关系,考查了抛物线的性质,设()()1122,,,A x y B x y ,利用点差法得到1212124y y k x x y y -==-+,取AB 中点()00M x y ',,分别过点A ,B 作抛物线准线1x =-的垂线,垂足分别为,A B '',由抛物线的性质得到()12MM AA BB '=''+,进而得到斜率.。
2020版高考数学(文)大一轮复习导学案:第八章 平面解析几何
第一节直线的倾斜角与斜率、直线的方程[基础梳理]1.直线的倾斜角(1)定义:(2)范围:直线的倾斜角α的取值范围是:[0,π).2.直线的斜率3.两直线的平行、垂直与其斜率的关系4.直线方程的五种形式续表5.线段的中点坐标公式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1,P 2的中点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.1.斜率与倾斜角的两个关注点(1)倾斜角α的范围是[0,π),斜率与倾斜角的函数关系为k =tan α,图象为:(2)当倾斜角为时,直线垂直于x 轴,斜率不存在.2.直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0垂直的充要条件为A 1A 2+B 1B 2=0. [四基自测]1.直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33 B. 3 C .- 3 D .-33 答案:A2.已知直线l 经过点P (-2,5),且斜率为-34,则直线l 的方程为( ) A .3x +4y -14=0 B .3x -4y +14=0 C .4x +3y -14=0 D .4x -3y +14=0答案:A3.已知直线斜率的绝对值为1,其倾斜角为________. 答案:π4或34π4.过点(5,0),且在两轴上的截距之差为2的直线方程为________. 答案:3x +5y -15=0或7x +5y -35=0考点一 直线的倾斜角与斜率◄考基础——练透 [例1] (1)(2019·常州模拟)若ab <0,则过点P ⎝ ⎛⎭⎪⎫0,-1b 与Q ⎝ ⎛⎭⎪⎫1a ,0的直线PQ 的倾斜角的取值范围是________.(2)直线l :ax +(a +1)y +2=0的倾斜角大于45°,求a 的取值范围.解析:(1)k PQ =-1b -00-1a=a b <0,又倾斜角的取值范围为[0,π),故直线PQ 的倾斜角的取值范围为⎝ ⎛⎭⎪⎫π2,π.(2)当a =-1时,直线l 的倾斜角为90°,符合要求;当a ≠-1时,直线l 的斜率为-aa +1.则有-a a +1>1或-a a +1<0,解得-1<a <-12或a <-1或a >0.综上可知,实数a的取值范围是⎝ ⎛⎭⎪⎫-∞,-12∪(0,+∞).答案:(1)(π2,π) (2)见解析1.三个不同的点A (2,3),B (-1,5),C (x ,x 2+2x +6)共线,则实数x 的值为________.解析:因为三个不同的点A (2,3),B (-1,5),C (x ,x 2+2x +6)共线,所以由斜率公式得5-3-1-2=x 2+2x +6-3x -2,解得x =-1或-53,当x =-1时,点C ,B 重合,舍去.所以x =-53. 答案:-53 2.(2019·太原模拟)已知点A (2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 有交点,则直线l 的斜率k 的取值范围为________. 解析:如图所示,k P A =1+31-2=-4,k PB =1+21+3=34.要使直线l 与线段AB 有交点,则有k ≥34或k ≤-4.答案:(-∞,-4]∪⎣⎢⎡⎭⎪⎫34,+∞考点二 求直线方程◄考能力——知法 [例2] 求适合下列条件的直线方程:(1)经过点P (3,2),且在两坐标轴上的截距相等;(2)求过点(2,1)且在x 轴上的截距与在y 轴上的截距之和为6的直线方程. (3)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. 解析:(1)设直线l 在x ,y 轴上的截距均为a ,若a =0,即l 过点(0,0)和P (3,2), ∴l 的方程为y =23x ,即2x -3y =0. 若a ≠0,则设l 的方程为x a +ya =1,∵l 过点(3,2),∴3a +2a =1,∴a =5,即l 的方程为x +y -5=0,综上可知,直线l 的方程为2x -3y =0或x +y -5=0. (2)法一:由题意可设直线方程为x a +yb =1.则⎩⎨⎧a +b =6,2a +1b =1,解得a =b =3,或a =4,b =2.故所求直线方程为x +y -3=0或x +2y -4=0.法二:设直线方程为y =kx +b ,则在x 轴上的截距为-b k ,所以b +⎝ ⎛⎭⎪⎫-b k =6,①又直线过点(2,1),则2k +b =1.② 由①②得⎩⎪⎨⎪⎧k =-1,b =3或⎩⎨⎧k =-12,b =2.故所求直线方程为x +y -3=0或x +2y -4=0. (3)当直线不过原点时, 设所求直线方程为x 2a +ya =1,将(-5,2)代入所设方程,解得a =-12, 此时,直线方程为x +2y +1=0. 当直线过原点时,斜率k =-25, 直线方程为y =-25x ,即2x +5y =0,综上可知,所求直线方程为 x +2y +1=0或2x +5y =0.1.求直线方程的方法2.考虑问题的特殊情况,如斜率不存在的情况,截距等于零的情况.1.在本例(1)中,过点(3,2),且在两轴上截距互为相反数的直线方程是什么? 解析:(1)若直线过原点,适合题意,其方程为y =23x , 即2x -3y =0.(2)若直线不过原点,设直线方程为x a +y-a =1,∴3a -2a =1,∴a =1,方程为x -y -1=0.综上,直线方程为2x -3y =0或x -y -1=0.2.在本例(3)中,改为“过点A (-5,2),且与两坐标轴形成的三角形面积为92”,求直线方程.解析:设所求直线在x 轴的截距为a ,在y 轴上的截距为b , 则⎩⎪⎨⎪⎧-5a +2b =112|ab |=92,∴⎩⎪⎨⎪⎧a =-3b =-3,或⎩⎪⎨⎪⎧a =152b =65.∴方程为x +y +3=0或4x +25y -30=0. 考点三 两条直线的位置关系◄考基础——练透[例3] (1)“a =0”是“直线l 1:(a +1)x +a 2y -3=0与直线l 2:2x +ay -2a -1=0平行”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:(1)当a =0时,l 1:x -3=0,l 2:2x -1=0,故l 1∥l 2. 当l 1∥l 2时,若l 1与l 2斜率不存在,则a =0;若l 1与l 2斜率都存在,则a ≠0,有-a +1a 2=-2a 且3a 2≠2a +1a ,解得a ∈,故当l 1∥l 2时,有a =0.故选C. 答案:C(2)已知直线l 1:(a +2)x +(1-a )y -3=0与直线l 2:(a -1)x +(2a +3)y +2=0,则“a =1”是“l 1⊥l 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:l 1⊥l 2的充要条件是(a +2)(a -1)+(1-a )·(2a +3)=0,即a 2-1=0,故有(a -1)(a +1)=0,解得a =±1.显然“a =1”是“a =±1”的充分不必要条件,故选A. 答案:A两直线位置关系的判断方法1.如果直线ax +(1-b )y +5=0和(1+a )x -y -b =0同时平行于直线x -2y +3=0,求ab .解析:法一:由题意, 得⎩⎨⎧a ·(-2)-(1-b )·1=0,(1+a )·(-2)-(-1)×1=0.解得a =-12,b =0.易知此时它们的截距也不相等,所以ab =0.法二:直线x -2y +3=0的斜率为12,则另两条直线的斜率一定存在且等于12,所以12=-a 1-b =-1+a -1,解得a =-12,b =0,易知此时它们的截距也不相等,所以ab =0.2.若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m 的值为________.解析:∵过点A ,B 的直线平行于直线2x +y +2=0, ∴k AB =4-mm +2=-2,解得m =-8.答案:-8逻辑推理、直观想象_求直线方程的易错问题(一)直线方程是解析几何的入门内容,基本概念、公式较多,由于学生对直线的构成要素理解不清或方程形式认识欠缺,而导致错误.1.对倾斜的概念与范围理解有误[例1]已知直线l过点(2,1),且与x轴的夹角为45,求直线l的方程.解析:由直线l与x轴的夹角为45知,直线l的倾斜角为45或135.当直线l的倾斜角为45时,其斜率为k=tan 45=1,而直线l过点(2,1),故其方程为y-1=x-2,即y=x-1;当直线l的倾斜角为135时,其斜率为k=tan 135=-1,而直线l过点(2,1),故其方程为y-1=-(x-2),即y=-x+3.综上所述,所求直线方程为y=x-1或y=-x+3.2.忽略两直线平行与重合的区别例 2 已知直线l1:x+m2y+6=0与l2:(m-2)x+3my+2m=0平行,则实数m=______ __.解析:(1)若两直线的斜率都存在,设斜率分别为k1,k2,截距分别为b1,b2,则k1=-1m2,k2=-m-23m,b1=-6m2,b2=-23.因为l1∥l2,故k1=k2且b1≠b2,即-1m2=-m-23m且-6m2≠-23,解得m=-1.(2)若两直线的斜率都不存在,则m=0. 综上所述,m=-1或0.答案:-1或0课时规范练 A 组 基础对点练1.设直线ax +by +c =0的倾斜角为α,且sin α+cos α=0,则a ,b 满足( ) A .a +b =1 B .a -b =1 C .a +b =0D .a -b =0解析:因为sin α+cos α=0, 所以tan α=-1.又因为α为倾斜角,所以斜率k =-1. 而直线ax +by +c =0的斜率k =-ab , 所以-ab =-1,即a -b =0. 答案:D2.直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围是( ) A .[-3,1]B .(-∞,-3]∪[1,+∞) C.⎣⎢⎡⎦⎥⎤-33,1 D.⎝⎛⎦⎥⎤-∞,-33∪[1,+∞)解析:因为k AP =1-02-1=1,k BP =3-00-1=-3,所以k ∈(-∞,-3]∪[1,+∞). 答案:B3.(2019·开封模拟)过点A (-1,-3),斜率是直线y =3x 的斜率的-14的直线方程为( ) A .3x +4y +15=0 B .3x +4y +6=0 C .3x +y +6=0D.3x-4y+10=0解析:设所求直线的斜率为k,依题意k=-34,又直线经过点A(-1,-3),因此所求直线方程为y+3=-34(x+1),即3x+4y+15=0.答案:A4.直线l经过点A(1,2),在x轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A.-1<k<1 5B.k>1或k<1 2C.k>1或k<1 5D.k>12或k<-1解析:设直线的斜率为k,则直线方程为y-2=k(x-1),令y=0,得直线l在x轴上的截距为1-2k,则-3<1-2k <3,解得k>12或k<-1.答案:D5.(2019·张家口模拟)若直线mx+ny+3=0在y轴上的截距为-3,且它的倾斜角是直线3 x-y=33的倾斜角的2倍,则( )A.m=-3,n=1B.m=-3,n=-3C.m=3,n=-3D.m=3,n=1解析:对于直线mx+ny+3=0,令x=0得y=-3n,即-3n=-3,n=1.因为3x-y=33的倾斜角为60°,直线mx+ny+3=0的倾斜角是直线3x-y =33的2倍,所以直线mx +ny +3=0的倾斜角为120°,即-mn =-3,m = 3. 答案:D6.经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程为( )A .5x +2y =0或x +2y +1=0B .x +2y +1=0C .2x +5y =0或x +2y +1=0D .2x +5y =0解析:当截距为零时,直线方程为y =-25x ;当截距不为零时,设直线方程为x 2b +y b =1,因为直线过点A (-5,2),所以-52b +2b =1,计算得b =-12,所以直线方程为x -1+y-12=1,即x +2y +1=0,所以所求直线方程为2x +5y =0或x +2y +1=0. 答案:C7.若直线y =kx +1与以A (3,2),B (2,3)为端点的线段有公共点,则k 的取值范围是________.解析:由题可知直线y =kx +1过定点P (0,1),且k PB =3-12-0=1,k P A =2-13-0=13,结合图象可知,当直线y =kx +1与以A (3,2),B (2,3)为端点的线段有公共点时,k 的取值范围是⎣⎢⎡⎦⎥⎤13,1.答案:⎣⎢⎡⎦⎥⎤13,18.将直线y =x +3-1绕它上面一点(1,3)沿逆时针方向旋转15°,所得到的直线方程是________.解析:由y =x +3-1得直线的斜率为1,倾斜角为45°.因为沿逆时针方向旋转15°,角变为60°,所以所求直线的斜率为 3.又因为直线过点(1,3),所以直线方程为y -3=3(x -1),即y =3x . 答案:y =3x9.已知点A (-1,t ),B (t,4),若直线AB 的斜率为2,则实数t 的值为________. 解析:由题意知,k AB =2,即4-t t +1=2,解得t =23.答案:2310.已知直线l 1:mx +y +4=0和直线l 2:(m +2)x -ny +1=0(m ,n >0)互相垂直,则mn 的取值范围为________.解析:因为l 1⊥l 2,所以m (m +2)+1×(-n )=0,得n =m 2+2m ,因为m >0,所以mn =m m 2+2m =1m +2,则0<1m +2<12,故m n 的取值范围为(0,12). 答案:(0,12)B 组 能力提升练11.若直线l :kx -y +2+4k =0(k ∈R )交x 轴负半轴于A ,交y 轴正半轴于B ,则当△AOB 的面积取最小值时直线l 的方程为( ) A .x -2y +4=0 B .x -2y +8=0 C .2x -y +4=0D .2x -y +8=0解析:由l 的方程,得A ⎝ ⎛⎭⎪⎫-2+4k k ,0,B (0,2+4k ).依题意得⎩⎪⎨⎪⎧-2+4k k <0,2+4k >0,解得k >0.因为S =12|OA |·|OB |=12⎪⎪⎪⎪⎪⎪2+4k k ·|2+4k |=12(2+4k )2k =12⎝ ⎛⎭⎪⎫16k +4k +16≥12×(2×8+16)=16.当且仅当16k =4k ,即k =12时,等号成立.此时l 的方程为x -2y +8=0. 答案:B12.设直线l 的方程为x +y cosθ+3=0(θ∈R ),则直线l 的倾斜角α的取值范围是( ) A .[0,π) .⎝ ⎛⎭⎪⎫π4,π2 C.⎣⎢⎡⎦⎥⎤π4,3π4 .⎝ ⎛⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫π2,3π4 解析:当cos θ=0时,方程变为x +3=0,其倾斜角为π2; 当cos θ≠0时,由直线l 的方程,可得斜率k =-1cos θ. 因为cos θ∈[-1,1]且cos θ≠0, 所以k ∈(-∞,-1]∪[1,+∞), 即tan α∈(-∞,-1]∪[1,+∞),又α∈[0,π),所以α∈⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎦⎥⎤π2,3π4,综上知,直线l 的倾斜角α的取值范围是⎣⎢⎡⎦⎥⎤π4,3π4.答案:C 13.(2019·西安临潼区模拟)已知直线x +a 2y -a =0(a 是正常数),当此直线在x 轴,y 轴上的截距和最小时,正数a 的值是( ) A .0 B .2 C. 2D .1解析:直线x +a 2y -a =0(a 是正常数)在x 轴,y 轴上的截距分别为a 和1a,此直线在x 轴,y 轴上的截距和为a +1a ≥2,当且仅当a =1时,等号成立.故当直线x +a 2y -a =0在x 轴,y 轴上的截距和最小时,正数a 的值是1,故选D. 答案:D14.(2019·北京二十四中模拟)已知点M (0,-1),点N 在直线x -y +1=0上,若直线MN 垂直于直线x +2y -3=0, 则点N 的坐标是( ) A .(-2,-1) B .(2,3) C .(2,1)D .(-2,1)解析:∵点N 在直线x -y +1=0上, ∴可设点N 坐标为(x 0,x 0+1).根据经过两点的直线的斜率公式,得k MN =(x 0+1)+1x=x 0+2x 0.∵直线MN 垂直于直线x +2y -3=0,直线x +2y -3=0的斜率k =-12, ∴k MN ×⎝ ⎛⎭⎪⎫-12=-1,即x 0+2x 0=2,解得x 0=2.因此点N 的坐标是(2,3),故选B. 答案:B15.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.解析:动直线x +my =0(m ≠0)过定点A (0,0),动直线mx -y -m +3=0过定点B (1,3).由题意易得直线x +my =0与直线mx -y -m +3=0垂直,即P A ⊥PB .所以|P A |·|PB |≤|P A |2+|PB |22=|AB |22=12+322=5,即|P A |·|PB |的最大值为5. 答案:5 16.已知直线x =π4是函数f (x )=a sinx -b cosx (ab ≠0)图象的一条对称轴,则直线ax +by +c =0的倾斜角为________. 解析:f (x )=a 2+b 2sin(x -φ),其中tan φ=b a ,将x =π4代入,得sin(π4-φ)=±1,即π4-φ=k π+π2,k ∈Z ,解得φ=-k π-π4,k ∈Z .所以tan φ=tan ⎝ ⎛⎭⎪⎫-k π-π4=-1=b a ,所以直线ax +by +c =0的斜率为-a b =1,故倾斜角为π4.答案:π4第二节 直线的交点与距离公式[基础梳理] 三种距离1.点到直线的距离公式 (1)直线方程为一般式. (2)公式中分母与点无关. (3)分子与点及直线方程都有关. 2.两平行直线间的距离(1)是一条直线上任意一点到另一条直线的距离. (2)也可以看成是两条直线上各取一点的最短距离. [四基自测]1.点(1,-1)到直线x -y +1=0的距离是( ) A.12B.32C.22D.322答案:D2.直线2x -y =-10,y =x +1,y =ax -2交于一点,则a 的值为________. 答案:233.已知点A (3,2)和B (-1,4)到直线ax +y +1=0的距离相等,则a 的值为________.答案:-4或124.已知两平行线l 1:2x +3y =6,l 2:2x +3y -1=0,则l 1与l 2间距离为________.答案:51313考点一 直线的交点及应用◄考基础——练透 [例1] 求满足下列条件的直线方程:(1)经过两条直线2x -3y +10=0和3x +4y -2=0的交点,且垂直于直线3x -2y +2 019=0.(2)经过两条直线2x +y -8=0和x -2y +1=0的交点,且平行于直线4x -3y +2 018=0.(3)已知直线l 经过点P (3,1),且被两条平行直线l 1:x +y +1=0和l 2:x +y +6=0截得的线段长为5,求直线l 的方程.解析:(1)解方程组⎩⎪⎨⎪⎧2x -3y +10=0,3x +4y -2=0得两条直线的交点坐标为(-2,2),因为所求直线垂直于直线3x -2y +2 019=0,所以所求直线的斜率为k =-23,所以所求直线方程为y -2=-23(x +2),即2x +3y -2=0.(2)解方程组⎩⎪⎨⎪⎧2x +y -8=0,x -2y +1=0得两条直线的交点坐标为(3,2),因为所求直线平行于直线4x -3y +2 018=0,所以所求直线的斜率为k =43,所以所求直线方程为y -2=43(x -3),即4x -3y -6=0. (3)法一:若直线l 的斜率不存在,则直线l 的方程为x =3,此时与l 1,l 2的交点分别为A ′(3,-4),B ′(3,-9),截得的线段A ′B ′的长|A ′B ′|=|-4+9|=5,符合题意.若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1. 解方程组⎩⎨⎧y =k (x -3)+1,x +y +1=0,得A⎝ ⎛⎭⎪⎫3k -2k +1,-4k -1k +1, 解方程组⎩⎨⎧y =k (x -3)+1,x +y +6=0,得B ⎝ ⎛⎭⎪⎫3k -7k +1,-9k -1k +1.由|AB |=5,得⎝ ⎛⎭⎪⎫3k -2k +1-3k -7k +12+⎝ ⎛⎭⎪⎫-4k -1k +1+9k -1k +12=52. 解之,得k =0,即所求的直线方程为y =1. 综上可知,所求直线l 的方程为x =3或y =1.法二:如图所示,作直线l 1:x +y +1=0,l 2:x +y +6=0. l 1与x 、y 轴的交点A (-1,0)、B (0,-1), l 2与x 、y 轴交点C (-6,0)、D (0,-6). ∴|BD |=5,|AC |=5.过点(3,1)与l 1、l 2截得的线段长为5. 即平行x 轴或y 轴.∴所求直线方程为x =3或y =1.1.两直线交点的求法求两直线的交点坐标,就是解由两直线方程组成的方程组,以方程组的解为坐标的点即为交点.2.求过两直线交点的直线方程的方法(1)直接法:①先求出两直线的交点坐标;②结合题设中的其他条件,写出直线方程;③将直线方程化为一般式.(2)直线系法:①设过两直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0交点的直线方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0. ②利用题设条件,求λ的值,得出直线方程. ③验证A 2x +B 2y +C 2=0是否符合题意. (3)数形结合法,求直线截得的线段长.1.将(1)中的条件改为“经过两条直线2x -3y +10=0和3x +4y -2=0的交点,且与坐标轴围成的三角形的面积为1”.解析:解方程组⎩⎪⎨⎪⎧2x -3y +10=0,3x +4y -2=0得两条直线的交点坐标为(-2,2),设所求直线的斜率为k (k ≠0),直线方程为y -2=k (x +2),所以两个截距分别为2k +2,-2k +2k ,所以直线与坐标轴围成三角形的面积为S =12|2k +2|⎪⎪⎪⎪⎪⎪2k +2k =1,解方程得k =-2或-12,所以所求直线方程为2x +y +2=0或x +2y -2=0. 2.本例(3)改为过点M (0,1)作直线,使它被两条直线l 1:x -3y +10=0,l 2:2x +y -8=0所截得的线段恰好被M 所平分,则此直线方程为________.解析:过点M 且与x 轴垂直的直线是x =0,它和直线l 1,l 2的交点分别是⎝ ⎛⎭⎪⎫0,103,(0,8),显然不符合题意,故可设所求直线方程为y =kx +1,其图象与直线l 1,l 2分别交于A ,B 两点,则有①⎩⎪⎨⎪⎧y A =kx A +1,x A -3y A +10=0,②⎩⎪⎨⎪⎧y B =kx B +1,2x B +y B -8=0. 由①解得x A =73k -1,由②解得x B =7k +2. 因为点M 平分线段AB ,所以x A +x B =2x M , 即73k -1+7k +2=0,解得k =-14. ∴所求直线为y =-14x +1,即x +4y -4=0. 答案:x +4y -4=0考点二 距离问题◄考能力——知法[例2] (1)已知两条平行直线l 1:mx +8y +n =0与l 2:2x +my -1=0间的距离为5,则直线l 1的方程为________. 解析:因为l 1∥l 2,所以m 2=8m ≠n-1,所以⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2.①当m =4时,直线l 1的方程为4x +8y +n =0, 把l 2的方程写成4x +8y -2=0, 所以|n +2|16+64=5,解得n =-22或18.故所求直线l 1的方程为2x +4y -11=0或2x +4y +9=0. ②当m =-4时,直线l 1的方程为4x -8y -n =0,把l 2的方程写成4x -8y -2=0, 所以|-n +2|16+64=5,解得n =-18或22.故所求直线l 1的方程为2x -4y +9=0或2x -4y -11=0. 答案:2x ±4y +9=0或2x ±4y -11=0 (2)(2019·昆明模拟)点P 到点A ′(1,0)和直线x =-1的距离相等,且P 到直线y =x 的距离等于22,这样的点P 共有( ) A .1个 B .2个 C .3个D .4个解析:设点P (x ,y ),由题意知(x -1)2+y 2=|x +1|,且22=|x -y |2,所以⎩⎪⎨⎪⎧y 2=4x ,|x -y |=1,即⎩⎪⎨⎪⎧y 2=4x ,x -y =1, ①或⎩⎪⎨⎪⎧y 2=4x ,x -y =-1,② 解①得⎩⎪⎨⎪⎧ x =3-22,y =2-22或⎩⎪⎨⎪⎧x =3+22,y =2+22,解②得⎩⎪⎨⎪⎧x =1,y =2,因此,这样的点P 共有3个.答案:C (3)(2018·高考全国卷Ⅲ)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( ) A .[2,6] B .[4,8] C .[2,32]D .[22,32]解析:设圆(x -2)2+y 2=2的圆心为C ,半径为r ,点P 到直线x +y +2=0的距离为d ,则圆心C (2,0),r =2,所以圆心C 到直线x +y +2=0的距离为22,可得d max =22+r =32,d min =22-r = 2.由已知条件可得|AB |=22,所以△ABP 面积的最大值为12|AB |·d max =6,△ABP 面积的最小值为12AB ·d min =2. 综上,△ABP 面积的取值范围是[2,6]. 故选A. 答案:A1.用点到直线的距离公式,直线方程必须为一般式;2.两平行线间的距离公式,两直线方程中x ,y 的系数分别相同; 3.两个公式中的“绝对值”号不可盲目去掉,要等价变化.1.(2019·厦门模拟)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________.解析:依题意知,63=a -2≠c-1,解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c2=0, 又两平行线之间的距离为21313,所以⎪⎪⎪⎪⎪⎪c 2+132+(-2)2=21313,解得c =2或-6.答案:2或-62.已知直线l 在两坐标轴上的截距相等,且点A (1,3)到直线l 的距离为2,则直线l 的方程为________.解析:当直线过原点时,设直线方程为y =kx ,由点A (1,3)到直线l 的距离为2,得|k -3|1+k2=2,解得k =-7或k =1,此时直线l 的方程为y =-7x 或y =x ;当直线不过原点时,设直线方程为x +y =a ,由点A (1,3)到直线l 的距离为2,得|4-a |2=2,解得a =2或a =6,此时直线l 的方程为x +y -2=0或x +y-6=0.综上所述,直线l 的方程为y =-7x 或y =x 或x +y -2=0或x +y -6=0.答案:y =-7x 或y =x 或x +y -2=0或x +y -6=0 考点三 对称问题◄考基础——练透 角度1 对称问题的求法[例3] 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A 的对称直线l ′的方程. 解析:(1)设对称点A ′的坐标为(m ,n ),由已知可得⎩⎪⎨⎪⎧n +2m +1·23=-1,2·m -12-3·n -22+1=0,解得⎩⎪⎨⎪⎧m =-3313,n =413,即A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如B (2,0),则B 关于l 的对称点必在m ′上,设对称点为B ′(a ,b ),则由⎩⎪⎨⎪⎧2·a +22-3·b +02+1=0,b -0a -2·23=-1,得B ′⎝ ⎛⎭⎪⎫613,3013.设m 与l 的交点为N ,由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).设直线m ′上任意一点的坐标为(x ,y ),由两点式得直线m ′的方程为y -33013-3=x -4613-4,即9x -46y +102=0. (3)法一:在l :2x -3y +1=0上任取两点,如M (1,1),N (4,3).则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上.易知M ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0.法二:设直线l 关于点A 的对称直线l ′上的任意一点P (x ,y ),则点P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ). ∵点P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0. 角度2 对称问题的应用[例4] (1)(2019·淮安模拟)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.(2)已知直线l :x -2y +8=0和两点A (2,0),B (-2,-4).在直线l 上求一点P ,使|P A |+|PB |最小.解析:(1)设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′, 所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6). 所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.(2)设A 关于直线l 的对称点为A ′(m ,n ),则⎩⎪⎨⎪⎧n -0m -2=-2,m +22-2·n +02+8=0,解得⎩⎪⎨⎪⎧m =-2,n =8,故A ′(-2,8). P 为直线l 上的一点,则|P A |+|PB |=|P A ′|+|PB |≥|A ′B |,当且仅当B ,P ,A ′三点共线时,|P A |+|PB |取得最小值,为|A ′B |,点P 即是直线A ′B 与直线l 的交点,解方程组⎩⎪⎨⎪⎧ x =-2,x -2y +8=0,得⎩⎪⎨⎪⎧x =-2,y =3,故所求的点P的坐标为(-2,3).答案:(1)6x-y-6=0 (2)见解析有关对称问题的规律方法续表1.(2019·岳阳模拟)直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0D .x +2y -3=0解析:法一:设所求直线上任一点为(x ,y ),则它关于x =1的对称点(2-x ,y )在直线x -2y +1=0上,所以2-x -2y +1=0,化简得x +2y -3=0.法二:根据直线x -2y +1=0关于直线x =1对称的直线斜率是互为相反数得答案A 或D ,再根据两直线交点在直线x =1上知选D. 答案:D2.已知三角形的一个顶点A (4,-1),它的两条角平分线所在直线的方程分别为l 1:x -y -1=0和l 2:x -1=0,则BC 边所在直线的方程为__________________________________________________________________.解析:A 不在这两条角平分线上,因此l 1,l 2是另两个角的角平分线.点A 关于直线l 1的对称点A 1,点A 关于直线l 2的对称点A 2均在边BC 所在直线l 上. 设A 1(x 1,y 1),则有⎩⎪⎨⎪⎧y 1+1x 1-4×1=-1,x 1+42-y 1-12-1=0,解得⎩⎪⎨⎪⎧x 1=0,y 1=3,所以A 1(0,3).同理设A 2(x 2,y 2),易求得A 2(-2,-1). 所以BC 边所在直线方程为2x -y +3=0. 答案:2x -y +3=直观想象、逻辑推理——求直线方程易错问题(二) 一、混淆截距与距离[例1] 求过点(-5,-4)且与两坐标轴围成的三角形的面积为5的直线方程.解析:利用直线的截距式方程求解 可得4a +5b =-ab .又直线与两坐标轴围成的三角形的面积为5,则12|a |·|b |=5,即|ab |=10. 联立方程组⎩⎪⎨⎪⎧ 4a +5b =-ab ,|ab |=10,解得⎩⎨⎧a =-52,b =4或⎩⎪⎨⎪⎧a =5,b =-2.所以,所求直线的方程为x-52+y 4=1或x 5+y-2=1,即8x -5y +20=0或2x -5y -10=0.二、对位置情形考虑不全[例2] 求过点P (1,2)且与点A (2,3),B (4,-5)距离相等的直线方程.解析:(1)若A ,B 两点位于所求直线的同一侧,则所求直线与直线AB 平行,故其斜率与直线AB 的斜率相等,即k =k AB =-4.又所求直线过点P (1,2),故其方程为y -2=-4(x -1),即y =-4x +6.(2)若A ,B 两点位于所求直线的两侧,则所求直线经过线段AB 的中点(3,-1).又所求直线过点P (1,2),故其方程为y -(-1)2-(-1)=x -31-3,即y =-32x +72.综上所述,所求直线方程为y =-4x +6或y =-32x +72. 3.忽略平行线间距离公式的应用条件[例3] 已知两平行直线l 1:3x +4y +5=0与l 2:6x +8y -15=0,求与l 1,l 2等距离的直线l 的方程.解析:l 2:6x +8y -15=0的方程等价变形为l 2:3x +4y -152=0.由题意,直线l 与两条平行直线l 1:3x +4y +5=0、l 2:3x +4y -152=0平行,故可设其方程为3x +4y +C =0.因为l 与l 1,l 2的距离相等,即|5-C |32+42=|-152-C |32+42,解得C =-54.所以,直线l 的方程为3x +4y -54=0,即12x +16y -5=0.课时规范练 A 组 基础对点练1.若直线2x +3y -1=0与直线4x +my +11=0平行,则m 的值为( ) A.83 B .-83 C .-6D .6解析:由题设可得,m 3=42≠11-1,则m =6.答案:D 2.(2019·长沙模拟)已知M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪y -3x -2=3,N ={(x ,y )}|ax +2y +a =0}且M ∩N =,则a =( )A .-2B .-6C .2D .-2或-6解析:由题意可知,集合M 表示过点(2,3)且斜率为3的直线,但除去点(2,3),而集合N 表示一条直线,该直线的斜率为-a2,且过点(-1,0),若M ∩N =,则有两种情况:①集合M 表示的直线与集合N 表示的直线平行,即-a2=3,解得a =-6;②集合N 表示的直线过点(2,3),即2a +2×3+a =0,解得a =-2.综上,a =-2或-6. 答案:D 3.(2019·石家庄模拟)直线2x +3y -k =0和直线x -ky +12=0的交点在x 轴上,则k 的值为( ) A .-24 B .24 C .6D .±6解析:直线2x +3y -k =0和直线x -ky +12=0的交点在x 轴上,可设交点坐标为(a,0),则⎩⎪⎨⎪⎧ 2a -k =0,a +12=0即⎩⎪⎨⎪⎧a =-12,k =-24.答案:A 4.(2019·郑州模拟)已知直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,则直线l 1与l 2的距离为( ) A.85 B.32 C .4D .8解析:因为直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,即3x +4y +12=0,所以直线l 1与l 2的距离为⎪⎪⎪⎪⎪⎪12+732+42=32. 答案:B5.垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是( )A.x+y-2=0 B.x+y+1=0C.x+y-1=0 D.x+y+2=0解析:由题意可设圆的切线方程为y=-x+m,因为与圆相切于第一象限,所以m>0且d=|m|2=1,故m=2,所以切线方程为x+y-2=0,故选A.答案:A6.(2019·哈尔滨模拟)已知直线3x+2y-3=0与直线6x+my+7=0互相平行,则它们之间的距离是( )A.4 B.13 2C.21313 D.71326解析:由直线3x+2y-3=0与6x+my+7=0互相平行,得m=4,所以直线分别为3x+2y-3=0与3x+2y+72=0.它们之间的距离是⎪⎪⎪⎪⎪⎪72+332+22=132,故选B.答案:B7.若在平面直角坐标系内过点P(1,3)且与原点的距离为d的直线有两条,则d 的取值范围为________.解析:|OP|=2,当直线l过点P(1,3)且与直线OP垂直时,有d=2,且直线l有且只有一条;当直线l与直线OP重合时,有d=0,且直线l有且只有一条;当0<d<2时,有两条.答案:0<d<28.已知直线l过点P(3,4)且与点A(-2,2),B(4,-2)等距离,则直线l的方程为__ ______.解析:设所求直线的方程为y-4=k(x-3),即kx-y-3k+4=0,由已知及点到直线的距离公式可得|-2k -2+4-3k |1+k2=|4k +2+4-3k |1+k2,解得k =2或k=-23,即所求直线的方程为2x +3y -18=0或2x -y -2=0. 答案:2x +3y -18=0或2x -y -2=09.已知直线x +2y =2分别与x 轴、y 轴相交于A ,B 两点,若动点P (a ,b )在线段A B 上,则ab 的最大值为________.解析:由题得A (2,0),B (0,1),由动点P (a ,b )在线段AB 上,可知0≤b ≤1,且a +2b =2,从而a =2-2b ,故ab =(2-2b )b =-2b 2+2b =-2⎝ ⎛⎭⎪⎫b -122+12. 由于0≤b ≤1,故当b =12时,ab 取得最大值12.答案:1210.已知直线l 1与直线l 2:4x -3y +1=0垂直且与圆C :x 2+y 2=-2y +3相切,则直线l 1的方程是________.解析:圆C 的方程为x 2+(y +1)2=4,圆心为(0,-1),半径r =2.由已知可设直线l 1的方程为3x +4y +c =0,则|3×0+4×(-1)+c |32+42=2,解得c =14或c =-6.即直线l 1的方程为3x +4y +14=0或3x +4y -6=0. 答案:3x +4y +14=0或3x +4y -6=0B 组 能力提升练11.已知A (-2,1),B (1,2),点C 为直线y =13x 上的动点,则|AC |+|BC |的最小值为( ) A .2 2 B .2 3 C .2 5D .27解析:设B 关于直线y =13x 的对称点为B ′(x 0,y 0),则⎩⎪⎨⎪⎧y 0-2x 0-1=-3,y 0+22=13×x 0+12,解得B ′(2,-1).由平面几何知识得|AC |+|BC |的最小值即是|B ′A |=(2+2)2+(-1-1)2=2 5.故选C. 答案:C12.直线mx +4y -2=0与直线2x -5y +n =0垂直,垂足为(1,p ),则n 的值为( )A .-12B .-14C .10D .8解析:由直线mx +4y -2=0与直线2x -5y +n =0垂直,得2m -20=0,m =10,直线10x +4y -2=0过点(1,p ),有10+4p -2=0,解得p =-2,点(1,-2)又在直线2x -5y +n =0上,则2+10+n =0,解得n =-12.故选A. 答案:A13.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则|P A |2+|PB |2|PC |2=( ) A .2 B .4 C .5D .10解析:如图所示,以C 为原点,CB ,CA 所在直线为x 轴,y 轴,建立平面直角坐标系.设A (0,a ),B (b,0),则D (b 2,a 2),P (b 4,a4),由两点间的距离公式可得|P A |2=b 216+9a 216,|PB |2=9b 216+a 216,|PC |2=b 216+a216.所以|P A |2+|PB |2|PC |2=1016(a 2+b 2)a 2+b 216=10.答案:D14.已知直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5=0截得的线段的中点为P (-1,2),则直线l 的一般式方程为( ) A .3x -y +5=0 B .3x +y +1=0 C .x -3y +7=0D .x +3y -5=0解析:设直线l 与l 1的交点为A (x 0,y 0),由已知条件,得直线l 与l 2的交点为B (-2-x 0,4-y 0),并且满足 ⎩⎪⎨⎪⎧4x 0+y 0+3=0,3(-2-x 0)-5(4-y 0)-5=0, 即⎩⎪⎨⎪⎧4x 0+y 0+3=0,3x 0-5y 0+31=0,解得⎩⎪⎨⎪⎧x 0=-2,y 0=5.因此直线l 的方程为y -2=5-2-2+1(x +1),即3x +y +1=0.答案:B15.光线从点A (-4,-2)射出,到直线y =x 上的点B 后被直线y =x 反射到y 轴上的点C ,又被y 轴反射,这时反射光线恰好过点D (-1,6),则BC 所在的直线方程为________.解析:作出草图,如图所示,设A 关于直线y =x 的 对称点为A ′,D 关于y 轴的对称点为D ′,则易得 A ′(-2,-4),D ′(1,6).由反射角等于入射角可得 A ′D ′所在直线经过点B 与C .故BC 所在的直线方 程为y -6=-4-6-2-1(x -1),即10x -3y +8=0.答案:10x -3y +8=016.△ABC 的边AB ,AC 所在直线方程分别为2x -y +1=0,x +3y -9=0,边BC的中点为D (2,-1),则这个三角形的面积是________. 解析:设点B (x ,y ),则C (4-x ,-2-y ),所以⎩⎪⎨⎪⎧ 2x -y +1=0,4-x +3(-2-y )-9=0,解这个方程组得⎩⎪⎨⎪⎧x =-2,y =-3,,所以B (-2,-3),C (6,1). 所以边BC 所在直线方程为y +1-3+1=x -2-2-2,即x -2y -4=0,由方程组⎩⎪⎨⎪⎧2x -y +1=0,x +3y -9=0,解得顶点A ⎝ ⎛⎭⎪⎫67,197,所以高为d =⎪⎪⎪⎪⎪⎪67-2×197-45=6075,|BC |=82+42=45,所以三角形的面积为S =12|BC |d =12×45×6075=1207.答案:1207第三节 圆的方程[基础梳理] 1.圆的定义、方程2.点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)点M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)点M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)点M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.1.方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件:A =C ≠0,B =0,且D 2+E 2-4F >0.2.以A (x 1,y 1),B (x 1,y 2)为直径的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0. [四基自测]1.圆x 2+y 2-4x +6y =0的圆心坐标是( ) A .(2,3) B .(-2,3) C .(-2,-3) D .(2,-3)答案:D2.过点A (1,-1),B (-1,1),且圆心在直线x +y -2=0上的圆的方程是( ) A .(x -3)2+(y +1)2=4B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=4 答案:C3.△AOB 中,A (4,0),B (0,3),O (0,0),则△AOB 外接圆的方程为________. 答案:x 2+y 2-4x -3y =04.圆x 2+y 2+2y -3=0的圆心到直线y =x +1的距离为________. 答案:2考点一 求圆的方程◄考基础——练透[例1] (1)圆心为(1,1)且过原点的圆的方程是( ) A .(x -1)2+(y -1)2=1 B .(x +1)2+(y +1)2=1 C .(x +1)2+(y +1)2=2 D .(x -1)2+(y -1)2=2 (2)(2019·长沙模拟)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( )A.53 B.213 C.253D.43(3)在平面直角坐标系xOy 中,以点A (1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________.解析:(1)由题意可得圆的半径为r =2,则圆的标准方程为(x -1)2+(y -1)2=2. (2)圆心在直线BC 的垂直平分线,即x =1上,设圆心D (1,b ), 由|DA |=|DB |得|b |=1+(b -3)2,解得b =233,所以圆心到原点的距离为d =12+⎝⎛⎭⎪⎫2332=213. (3)因为直线与圆相切,所以半径等于圆心到直线的距离,r =|m -0-2m -1|1+m2=|m +1|1+m 2=(1+m )21+m 2=1+2m 1+m 2,因为1+m 2≥2m ,所以2m 1+m2≤1,所以r ≤1+1=2,所以半径最大的圆的标准方程为(x -1)2+y 2=2.答案:(1)D (2)B (3)见解析求圆的方程的方法续表1.将本例(1)改为圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是( )A .x 2+y 2+10y =0B .x 2+y 2-10y =0C .x 2+y 2+10x =0D .x 2+y 2-10x =0解析:根据题意,设圆心坐标为(0,r ),半径为r ,则32+(r -1)2=r 2,解得r =5,可得圆的方程为x 2+y 2-10y =0,故选B. 答案:B2.本小题(3)改为:在平面直角坐标系xOy 中,过点A (1,0)作直线mx -y -2m -1=0(m ∈R )的垂线,垂足为B ,以A ,B 的连线段为直径的所有圆中,半径最大的圆的一般方程为________.解析:因为直线mx -y -2m -1=0(m ∈R )过定点 C (2,-1),所以直径AB 的最大值为|AC |=2, 所以所求半径最大的圆的标准方程为 ⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y +122=12, 化为一般方程为x 2+y 2-3x +y +2=0. 答案:x 2+y 2-3x +y +2=0考点二与圆有关的最值问题◄考能力——知法[例2](1)已知在圆x2+y2-4x+2y=0内,过点E(1,0)的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为()A.35B.6 5C.415 D.215解析:圆x2+y2-4x+2y=0,即(x-2)2+(y+1)2=5,圆心M(2,-1),半径r =5,最长弦AC为圆的直径为25,BD为最短弦,则AC与BD互相垂直,ME=2,BD=2BE=2×5-2=23,四边形ABCD的面积S=S△ABD+S△BDC=12×BD×EA+12×BD×EC=12×BD×AC=12×23×2 5=215,选D.答案:D(2)已知实数x、y满足x2+y2-4x+1=0.①求yx的最大值与最小值;②求y-x的最大值、最小值;③求x2+y2的最大值、最小值.解析:①原方程可化为(x-2)2+y2=3,表示以(2,0)为圆心,3为半径的圆.yx的几何意义是圆上一点与原点连线的斜率,所以设yx=k,即y=kx.如图所示,当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1=3,解得k =±3.所以yx 的最大值为3,最小值为- 3.②y -x 可看作是直线y =x +b 在y 轴上的截距,如图所示,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6.所以y -x 的最大值为-2+6,最小值为-2- 6.③如图所示,x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值. 又圆心到原点的距离为(2-0)2+(0-0)2=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3.1.(2019·广西南宁联考)在平面直角坐标系xOy 中,已知(x 1-2)2+y 21=5,x 2-2y 2+4=0,则(x 1-x 2)2+(y 1-y 2)2的最小值为( ) A.55 B.15 C.1215D.1155解析:由已知得点(x 1,y 1)在圆(x -2)2+y 2=5上,点(x 2,y 2)在直线x -2y +4=0上,故(x 1-x 2)2+(y 1-y 2)2表示圆(x -2)2+y 2=5上的点和直线x -2y +4=0上点的距离平方,而距离的最小值为|2+4|1+4-5=55,故(x 1-x 2)2+(y 1-y 2)2的最小值为15.故选B. 答案:B2.(2019·聊城模拟)已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点, (1)求m +2n 的最大值; (2)求n -3m +2的最大值和最小值.解析:(1)因为x 2+y 2-4x -14y +45=0的圆心C (2,7),半径r =22, 设m +2n =t ,将m +2n =t 看成直线方程, 因为该直线与圆有公共点,所以圆心到直线的距离d =|1×2+2×7-t |12+22≤22,解上式得:16-210≤t ≤16+210, 所以,所求的最大值为16+210. (2)记点Q (-2,3).因为n -3m +2表示直线MQ 的斜率,设直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0,则n -3m +2=k .由直线MQ 与圆C 有公共点, 所以|2k -7+2k +3|1+k 2≤2 2.可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3.数学运算、直观想象——利用圆求最值的学科素养在数学中,涉及的代数式或者线段长度最值时,如果动点在圆上运动,可借助圆求解.[例1] 已知实数a ,b ,c 满足a +c =2b ,点P (-1,0)在动直线ax +by +c =0上的射影为M ,点N (3,3),则线段MN 的长度的最大值是________.解析:由已知a +c =2b ,可知动直线ax +by +c =0过定点Q (1,-2),所以点M 在以PQ 为直径的圆x 2+(y +1)2=2上,因为圆心(0,-1)到点N 的距离为5,故可得MN 的长度的最大值是5+ 2. 答案:5+ 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考文科数学一轮复习精品练习第7节圆锥
曲线的综合问题
【选题明细表】
基础巩固(时间:30分钟)
1.设AB为过抛物线y2=2px(p>0)的焦点的弦,则|AB|的最小值为( C )
(A)(B)p
(C)2p (D)无法确定
解析:当弦AB垂直于对称轴时|AB|最短,这时x=,所以y=±p,|AB|min=2p.选C.
2.(2018·兰州一中模拟)已知过抛物线y2=4x焦点F的直线l交抛物线于A,B两点(点A在第一象限),若=3,则直线l的斜率为( A ) (A) (B) (C)(D)2
解析:设过抛物线y2=4x焦点F的直线l:x=ty+1交抛物线于A(x1,y1),
B(x2,y2)两点,
因为点A在第一象限且=3,
所以y1=-3y2>0,
联立得y2-4ty-4=0,
则解得
即直线l的斜率为.故选A.
3.若直线y=kx+2与双曲线x2-y2=6的右支交于不同的两点,则k的取值范围是( D )
(A)(-,) (B)(0,)
(C)(-,0) (D)(-,-1)
解析:由得(1-k2)x2-4kx-10=0.设直线与双曲线右支交于不同的两点A(x1,y1),B(x2,y2),
则
解得-<k<-1.即k的取值范围是(-,-1).选D.
4.(2018·广西三市第二次调研)过点(2,1)的直线交抛物线y2=x于A,B两点(异于坐标原点O),若OA⊥OB,则该直线的方程为( B ) (A)x+y-3=0 (B)2x+y-5=0
(C)2x-y+5=0 (D)x+2y-5=0
解析:观察选项知AB不垂直于x轴,
设AB:y-1=k(x-2)与y2=x联立化为
2ky2-5y+(5-10k)=0,
所以y1·y2=,y1+y2=,
x1=,x2=,
由OA⊥OB,所以x1x2+y1y2=0,
所以(y1y2)2+y1y2=0即()2+=0,
解得k=-2或,当k=时直线过原点,舍去,
所以k=-2,只有选项B满足.选B.
5.(2017·安徽马鞍山三模)已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB 的中点坐标为(1,-1),则E的方程为( D )
(A)+=1 (B)+=1
(C)+=1 (D)+=1
解析:设A(x1,y1),B(x2,y2),直
线AB的斜率k==,
两式相减得+=0,
即+=0⇔+×()×=0,即a2=2b2,又c2=9,a2=b2+c2,
解得a2=18,b2=9,方程是+=1,故选D.
6.(2018·昆明一中模拟)设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M是线段PF上的点,且|PM|=2|MF|,则直线OM 的斜率的最大值为( A )
(A) (B)(C) (D)1
解析:由题意可得F(,0),设P(,y0),(y0>0),
则=+=+=+(-)=+=(+,),可得
k OM==≤=.当且仅当=时取得等号,选A.
7.(2018·山西省六校第四次联考)已知抛物线C:x2=8y,直线l:y=x+2与C交于M,N两点,则|MN|= .
解析:所以(y-2)2=8y,
所以y2-12y+4=0,
所以y1+y2=12,y1y2=4.
因为直线l:y=x+2,过抛物线的焦点F(0,2),
所以|MN|=(y1+2)+(y2+2)=y1+y2+4=16.
答案:16
8.(2018·大庆一模)已知抛物线C:y2=4x,过其焦点F作一条斜率大于0的直线l,l与抛物线交于M,N两点,且|MF|=3|NF|,则直线l的斜率为.
解析:抛物线C:y2=4x,焦点F(1,0),准线为x=-1,
分别过M和N作准线的垂线,垂足分别为C和D,作NH⊥CM,垂足为H, 设|NF|=x,则|MF|=3x,
由抛物线的定义可知:|NF|=|DN|=x,|MF|=|CM|=3x,
所以|HM|=2x,由|MN|=4x,
所以∠HMF=60°,
则直线MN的倾斜角为60°,
则直线l的斜率k=tan 60°=.
答案:
能力提升(时间:15分钟)
9.(2018·云南玉溪模拟)已知点F1,F2是椭圆x2+2y2=2的两个焦点,点P
是该椭圆上的一个动点,那么|+|的最小值是( C )
(A)0 (B)1 (C)2 (D)2
解析:因为O为F1F2的中点,
所以+=2,可得|+|=2||,
当点P到原点的距离最小时,||达到最小值,
|+|同时达到最小值.
因为椭圆x2+2y2=2化成标准形式,得+y2=1,
所以a2=2且b2=1,可得a=,b=1,
因此点P到原点的距离最小值为短轴一端到原点的距离,
即||最小值为b=1,
所以|+|=2||的最小值为2,
故选C.
10.(2015·江苏卷)在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点.若点P到直线x-y+1=0的距离大于c恒成立,则实数c 的最大值为.
解析:双曲线x2-y2=1的一条渐近线为直线y=x,显然直线y=x与直线
x-y+1=0平行,且两直线之间的距离为=.因为点P为双曲线x2-y2=1的右支上一点,所以点P到直线y=x的距离恒大于0,结合图形
可知点P到直线x-y+1=0的距离恒大于,即c≤,可得c的最大值为
.
答案:
11.(2018·海淀区校级三模)如图,已知椭圆C:+=1(a>b>0)的上顶
点为A(0,1),离心率为.
(1)求椭圆C的方程;
(2)若过点A作圆M:(x+1)2+y2=r2(圆M在椭圆C内)的两条切线分别与椭圆C相交于B,D两点(B,D不同于点A),当r变化时,试问直线BD是否过某个定点?若是,求出该定点;若不是,请说明理由.
解:(1)因为e===,
由题设知⇒
故所求椭圆C的方程是+y2=1.
(2)设切线方程为y=kx+1,则得=r,
即(1-r2)k2-2k+1-r2=0,
设两条切线的斜率分别为k1,k2,于是k1,k2是方程(1-r2)k2-2k+1-r2=0的两实根,
故k1·k2=1.
设直线BD的方程为y=mx+t,
由
得(1+2m2)x2+4tmx+2t2-2=0,
所以x 1+x 2=,x 1x 2=,
又k 1k 2=
·
=1,
即(mx 1+t-1)(mx 2+t-1)=x 1x 2
⇒(m 2-1)x 1x 2+m(t-1)(x 1+x 2)+(t-1)2=0 ⇒(m 2-1)+m(t-1)
+(t-1)2=0
⇒t=-3.
所以直线BD 过定点(0,-3).
12.(2018·广东省海珠区一模)已知椭圆C:+=1(a>b>0)的焦距为2,且过点A(2,1). (1)求椭圆C 的方程;
(2)若不经过点A 的直线l:y=kx+m 与C 交于P,Q 两点,且直线AP 与直线AQ 的斜率之和为0,证明:直线PQ 的斜率为定值. (1)解:因为椭圆C 的焦距为2,且过点A(2,1),
所以+=1,2c=2. 因为a 2=b 2+c 2,解得a 2=8,b 2=2,
所以椭圆C 的方程为+=1.
(2)证明:设点P(x 1,y 1),Q(x 2,y 2),y 1=kx 1+m,y 2=kx 2+m,
由
消去y 得(4k 2+1)x 2+8kmx+4m 2-8=0,(*)
则x1+x2=-,x1x2=,
因为k PA+k AQ=0,
即=-,
化简得x1y2+x2y1-(x1+x2)-2(y1+y2)+4=0.
即2kx1x2+(m-1-2k)(x1+x2)-4m+4=0(**).
代入得--4m+4=0,整理得(2k-1)(m+2k-1)=0, 所以k=或m=1-2k.若m=1-2k,可得方程(*)的一个根为2,不合题意,所以直线PQ的斜率为定值,该值为.
13.(2018·西城区一模)已知椭圆C:+=1(a>b>0)的离心率为,以椭圆C的任意三个顶点为顶点的三角形的面积是2.
(1)求椭圆C的方程;
(2)设A是椭圆C的右顶点,点B在x轴上,若椭圆C上存在点P,使得∠APB=90°,求点B横坐标的取值范围.
解:(1)设椭圆C的半焦距为c.
依题意,得=,ab=2,且a2=b2+c2.
解得a=2,b=.
所以椭圆C的方程为+=1.
(2)“椭圆C上存在点P,使得∠APB=90°”等价于“存在不是椭圆左、
右顶点的点P,使得·=0成立”,
依题意,A(2,0),
设B(t,0),P(m,n),则m2+2n2=4,
且(2-m,-n)·(t-m,-n)=0,
即(2-m)(t-m)+n2=0.
将n2=代入上式,得(2-m)(t-m)+=0. 因为-2<m<2,
所以t-m+=0,即m=2t+2.
所以-2<2t+2<2,
解得-2<t<0,
所以点B横坐标的取值范围是(-2,0).。