数学知识点-学年七年级上学期数学第一次月考试卷-总结
2023-2024学年七年级上学期第一次月考数学试卷
2023-2024学年七年级上学期第一次月考数学试卷一、选择题1.在下列选项中,具有相反意义的量是()A.盈利20元和亏损30元B.上升6米和后退了7米C.向东走3千米与向南走4千米D.足球比赛胜5场与平2场2.如图,数轴上点A、B、C、D表示的树中,表示互为相反数的两个点是()A.点B和点CB.点A和点CC.点B和点DD.点A和点D3.-2022的相反数是()A.−12022B.12022C.-2022D.20224.把−6−(+7)+(−2)−(−9)写成省略加号和的形式后的式子是()A.−6−7+2−9B. −6−7−2+9C.−6+7−2−9D. −6+7−2+95.若不为0的有理数a满足|a|=-a,则a的值可以是()A.6B.4C.2D.-26.有理数a,b在数轴上表示的点如图所示,则a,-a,b,-b的大小关系是()A.-b>a>-a>bB.a>-a>b>-bC.b>a>-b>-aD.-b<a<-a<b7. 若|a -4|与|3+b|互为相反数,则b -a+(-1)的结果为( )A. -6B.-7C.-8D.-98. 数轴上A ,B 两点,点A 对应的实数是-3,线段AB=4,则点B 对应的实数为( )A.1B.-7C.1或-7D.0二、填空题9.计算:1-(-2)=_________10.比较大小:−23_______−12 (填“<”、“=”、“>”) 11.一批大米,每个包装袋上标有:(20±0.1)kg ,则任意两袋大米最多相差_________kg12.化简:-[+(-6)]=_________13.一个点从数轴上表示-1的点开始,先向右移动6个单位长度,再向左移动8个单位长度,则此时这个点表示的数是_______14.绝对值小于2的所有整数的和是________三、简答题15.计算:(1)(+1734)+(+6.25)+(−8) (2)−(−7)+9.8+(−4.2)+(−7)16.(−2.1)+(−3.2)−(−2.4)−(−4.3)17.将下列各数填在相应的集合里。
七年级数学第一次月考卷(沪科版2024)(解析版)【测试范围:第一章】
2024-2025学年七年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟 试卷满分:120分)考前须知:1.本卷试题共24题,单选10题,填空6题,解答8题。
2.测试范围:第一章(沪科版2024)。
第Ⅰ卷一、单选题1.―12024的相反数是( )A .―2024B .12024C .―12024D .以上都不是【答案】B【分析】本题主要考查了相反数的定义,解题的关键是熟练掌握“只有符号不同的两个数互为相反数”.根据相反数的定义解答即可.【详解】解:―12024的相反数是12024,故选:B .2.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没·逆转时空》《第二十条》在网络上持续 引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为( )A .80.16×108B .8.016×109C .0.8016×1010D .80.16×1010【答案】B【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:80.16亿=8.016×109,故选:B .3.有下列说法:①一个有理数不是正数就是负数;②整数和分数统称为有理数;③零是最小的有理数;④正分数一定是有理数;⑤―a一定是负数,其中正确的个数是()A.1B.2C.3D.4【答案】B【分析】根据有理数的分类逐项分析判断即可求解.【详解】解:①一个有理数不是正数就是负数或0,故①不正确;②整数和分数统称为有理数,故②正确;③没有最小的有理数,故③不正确;④正分数一定是有理数,故④正确;⑤―a不一定是负数,故④不正确,故选:B.【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.4.两江新区正加快打造智能网联新能源汽车产业集群,集聚了长安、长安福特、赛力斯、吉利、理想等10家整车企业,200余家核心零部件企业.小虎所在的生产车间需要加工标准尺寸为4.5 mm的零部件,其中(4.5±0.2)mm范围内的尺寸为合格,则下列尺寸的零部件不合格的是( )A.4.4mm B.4.5mm C.4.6mm D.4.8mm【答案】D【分析】本题考查正数和负数,根据正数和负数的实际意义求得合格尺寸的范围,然后进行判断即可,结合已知条件求得合格尺寸的范围是解题的关键.【详解】解:由题意可得合格尺寸的范围为4.3mm∼4.7mm,4.8mm不在尺寸范围内,故选:D.5.下列各组数相等的有()A.(―2)2与―22B.(―1)3与―(―1)2C.―|―0.3|与0.3D.|a|与a【答案】B【分析】根据负数的奇次幂是负数,负数的偶次幂是正数,可得答案.【详解】解∶ A.(―2)2=4,―22=―4,故(―2)2≠―22;B.(―1)3=―1,―(―1)2=―1,故(―1)3=―(―1)2;C.―|―0.3|=―0.3,0.3,故―|―0.3|≠0.3;D.当a小于0时,|a|与a不相等,;故选∶B.【点睛】本题考查了有理数的乘方,熟练求解一个数的乘方是解题的关键.6.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.6cm”对应数轴上的数为()A.―1.4B.―1.6C.―2.6D.1.6【答案】C【分析】本题考查了数轴,熟练掌握在数轴上右边点表示的数减去左边点表示的数等于这两点间的距离是解题关键.利用点在数轴上的位置,以及两点之间的距离分析即可求解.【详解】解:设刻度尺上“5.6cm”对应数轴上的数的点在原点的左边,距离原点有5.6―3=2.6的单位长度,所以这个数是―2.6故选:C.7.观察下图,它的计算过程可以解释( )这一运算规律A.加法交换律B.乘法结合律C.乘法交换律D.乘法分配律【答案】D【分析】根据图形,可以写出相应的算式,然后即可发现用的运算律.【详解】解:由图可知,6×3+4×3=(6+4)×3,由上可得,上面的式子用的是乘法分配律,故选:D.【点睛】本题考查有理数的混合运算,熟练掌握运算律是解答本题的关键.8.如图,A、B两点在数轴上表示的数分别为a,b,有下列结论:①a―b<0;②a+b>0;>0.其中正确的有( )个.③(b―1)(a+1)>0;④b―1|a―1|A.4个B.3个C.2个D.1个【答案】A【分析】本题主要考查了数轴,有理数的加减,乘除运算.先根据a、b在数轴上的位置判断出a、b的取值范围,再比较出各数的大小即可.【详解】解:观察数轴得:―1<a<0<1<b,∴a―b<0,故①正确;a+b>0,故②正确;b―1>0,a+1>0,∴(b―1)(a+1)>0,故③正确;b―1>0故④正确.|a―1|故选:A9.定义运算:a⊗b=a(1―b).下面给出了关于这种运算的几种结论:①2⊗(―2)=6,②a⊗b=b⊗a,③若a+b=0,则(a⊗a)+(b⊗b)=2ab,④若a⊗b=0,则a=0或b=1,其中结论正确的序号是()A.①④B.①③C.②③④D.①②④【答案】A【分析】各项利用题中的新定义计算得到结果,即可做出判断.此题考查了新定义运算,以及整式的混合运算、以及有理数的混合运算,熟练掌握运算法则是解本题的关键.【详解】解:根据题目中的新定义计算方法可得,①2⊗(―2)=2×(1+2)=6,①正确;②a⊗b=a(1―b)=a―ab,b⊗a=b(1―a)=b―ab,故a⊗b与b⊗a不一定相等,②错误;③(a⊗a)+(b⊗b)=a(1―a)+b(1―b)=a+b―a2―b2≠2ab,③错误;④若a⊗b=a(1―b)=0,则a=0或b=1,④正确,故选:A.10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48【答案】A【分析】先计算出6×6方格纸片中共含有多少个3×2方格纸片,再乘以4即可得.【详解】由图可知,在6×6方格纸片中,3×2方格纸片的个数为5×4×2=40(个)则n=40×4=160故选:A.【点睛】本题考查了图形类规律探索,正确得出在6×6方格纸片中,3×2方格纸片的个数是解题关键.第II卷(非选择题)二、填空题11.甲地海拔高度为―50米,乙地海拔高度为―65米,那么甲地比乙地.(填“高”或者“低”).【答案】高【分析】先计算甲地与乙地的高度差,再根据结果进行判断即可.【详解】解:由题意可得:(―50)―(―65)=―50+65=15>0,∴甲地比乙地高.故答案为:高【点睛】本题考查的是有理数的大小比较,有理数的减法运算的实际应用,理解题意是解本题的关键.12.绝对值大于1且不大于5的负整数有.【答案】―2,―3,―4,―5【分析】本题考查了绝对值的意义,根据绝对值的意义即可求解,掌握绝对值的意义是解题的关键.【详解】解:绝对值大于1且不大于5的负整数有―2,―3,―4,―5,故答案为:―2,―3,―4,―5.13.若(2a ―1)2与2|b ―3|互为相反数,则a b = .【答案】18【分析】本题考查相反数的概念及绝对值的知识.根据互为相反数的两个数的和为0,可得(2a ―1)2与2|b ―3|的和为0,再根据绝对值和偶次方的非负性即可分别求出a ,b .【详解】∵ (2a ―1)2与2|b ―3|互为相反数∴ (2a ―1)2+2|b ―3|=0∵ (2a ―1)2≥0,2|b ―3|≥0∴2a ―1=0,2|b ―3|=0∴ a =12,b =3∴ a b =(12)3=18.故答案为:18.14.电影《哈利•波特》中,小哈利波特穿越墙进入“934站台”的镜头(如示意图的Q 站台),构思奇妙,能给观众留下深刻的印象.若A 、B 站台分别位于―23,83处,AP =2PB ,则P 站台用类似电影的方法可称为“ 站台”.【答案】159或6【分析】先根据两点间的距离公式得到AB 的长度,再根据AP =2PB 求得AP 的长度,再用―23加上该长度即为所求.【详解】解:AB =|83――=103,AP =|103×22+1|=209,或AP =|103×2|=203,P :―23+209=149=159,或―23+203=183=6.故P 站台用类似电影的方法可称为“159站台”或者“6站台”.故答案为:159或6.【点睛】本题考查了数轴,关键是用几何方法借助数轴来求解,非常直观,且不容易遗漏,其中题干表达模糊,并没有明确指出P在AB中间,所以有两个答案(P在AB中间,或者P在AB的右侧).但题目需要用类似电影的方法表达,故而答案可以仅为“159站台”,这个题体现了数形结合的优点.15.若a|a|+b|b|+c|c|+d|d|=2,则|abcd|abcd的值为.【答案】-1【分析】先根据a|a|+b|b|+c|c|+d|d|=2,a|a|,b|b|,c|c|,d|d|的值为1或-1,得出a、b、c、d中有3个正数,1个负数,进而得出abcd为负数,即可得出答案.【详解】解:∵当a、b、c、d为正数时,a|a|,b|b|,c|c|,d|d|的值为1,当a、b、c、d为负数时,a|a|,b |b|,c|c|,d|d|的值为-1,又∵a|a|+b|b|+c|c|+d|d|=2,∴a、b、c、d中有3个正数,1个负数,∴abcd为负数,∴|abcd|abcd=-1.故答案为:-1.【点睛】本题主要考查了绝对值的意义和有理数的乘法,根据题意得出a、b、c、d中有3个正数,1个负数,是解题的关键.16.如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示―1的点重合,再将圆沿着数轴向右滚动,则圆周上表示数字的点与数轴上表示2023的点重合.【答案】0【分析】圆周上的0点与―1重合,滚动到2023,圆滚动了2024个单位长度,用2024除以4,余数即为重合点.【详解】解:圆周上的0点与―1重合,2023+1=2024,2024÷4=506,圆滚动了506 周到2023,圆周上的0与数轴上的2023重合,故答案为:0.【点睛】本题考查了数轴,找出圆运动的规律与数轴上的数字的对应关系是解决此类题目的关键.三、解答题17.计算.(1)(―59)―(―46)+(―34)―(+73)(2)(―334)―(―212)+(―416)―(―523)―1【答案】(1)―120(2)―34【分析】本题考查了有理数的混合运算.(1)去括号,再计算加减即可.(2)去括号,通分,再计算加法即可.【详解】(1)(―59)―(―46)+(―34)―(+73)=―59+46―34―73=―120(2)(―334)―(―212)+(―416)―(―523)―1=―334―2―416―5―1=―54+32―1=―3418.计算:(1)4×―12―34+2.5―|―6|;(2)―14―(1―0.5)×13―2―(―3)2.【答案】(1)―1;(2)356.【分析】(1)利用乘法分配律、绝对值的性质分别运算,再合并即可;(2)按照有理数的混合运算的顺序进行计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【详解】(1)解:原式=4×――4×34+4×2.5―6=―2―3+10―6,=―1;(2)解:原式=―1―12×13―(2―9)=―1―16+7,=6―16,=356.19.如图,数轴上每个刻度为1个单位长度上点A 表示的数是―3.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,―4,512,―212,|―1.5|,―(+1.6).【答案】(1)见解析,4(2)2或6(3)数轴表示见解析,―4<―212<―(+1.6)<|―1.5|<2.5<512【分析】本题主要考查了在数轴上表示有理数以及有理数的比较大小:(1)根据点A 表示―3即可得原点位置,进一步得到点B 所表示的数;(2)分两种情况讨论即可求解;(3)首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把这些数连接起来即可.【详解】(1)如图,O 为原点,点B 所表示的数是4,故答案为:4;(2)点C 表示的数为4―2=2或4+2=6.故答案为:2或6;(3)|―1.5|=1.5,―(+1.6)=―1.6,在数轴上表示,如图所示:由数轴可知:―4<―212<―(+1.6)<|―1.5|<2.5<51220.(1)已知|a |=5,|b |=3,且|a ―b |=b ―a ,求a ―b 的值.(2)已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值等于2,求式子: x ―(a +b +cd )+a+b cd 的值.【答案】(1)―8或―2;(2)1或―3【分析】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.(1)根据|a |=5,|b |=3,且|a ―b |=b ―a ,可以得到a 、b 的值,然后代入所求式子计算即可;(2)根据a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,可以得到a +b =0,cd =1,x =±2,然后代入所求式子计算即可.【详解】解:(1)∵|a |=5,|b |=3,∴a =±5,b =±3,∵|a ―b |=b ―a ,∴b ≥a ,∴a =―5,b =±3,当a =―5,b =3时,a ―b =―5―3=―8,当a =―5,b =―3时,a ―b =―5―(―3)=―5+3=―2,由上可得,a +b 的值是―8或―2;(2)∵a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,∴a +b =0,cd =1,x =±2,∴当x =2时,x ―(a +b +cd )+a +b cd=2―(0+1)+0=2―1=1;当x =―2时,x―(a+b+cd)+a+b cd=―2―(0+1)+0=―2―1=―3.综上所述,代数式的值为1或―3.21.某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减+5―2―4+13―6+6―3(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?【答案】(1)四(2)19(3)14225【分析】(1)根据表格中的数据求解即可;(2)最高一天的产量减去最少一天的产量求解即可;(3)根据题意列出算式求解即可.【详解】(1)由表格可得,星期四生产的风筝数量是最多的,故答案为:四.(2)13―(―6)=19,∴产量最多的一天比产量最少的一天多生产19只风筝;(3)700+5―2―4+13―6+6―3=709(只)709×20+9×5=14225(元).∴该厂工人这一周的工资总额是14225元【点睛】本题考查了正数和负数,有理数的加减和乘法运算的实际应用.解决本题的关键是理解题意正确列式.22.阅读下面材料:点A、B在数轴上分别表示数a、b.A、B两点之间的距离表示为|AB|.则数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 ;数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;(3)当|x+1|+|x﹣2|取最小值时,符合条件的整数x有 ;(4)令y=|x+1|+|x﹣2|+|x﹣3|,问当x取何值时,y最小,最小值为多少?请求解.【答案】(1)4;3;(2)|x+1|,1或﹣3;(3)﹣1,0,1,2;(4)x=2时,y最小,最小值为4【分析】(1)根据两点间的距离的求解列式计算即可得解;(2)根据两点之间的距离表示列式并计算即可;(3)根据数轴上两点间的距离的意义解答;(4)根据数轴上两点间的距离的意义解答.【详解】解:(1)数轴上表示1和﹣3的两点之间的距离是:|1―(―3)|=1+3=4;数轴上表示﹣2和﹣5的两点之间的距离是:|―2―(―5)|=5―2=3;(2)∵A,B分别表示的数为x,﹣1,∴数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,则|x+1|=2,解得:x=1或﹣3;(3)当|x+1|+|x﹣2|取最小值时,﹣1≤x≤2,∴符合条件的整数x有﹣1,0,1,2;(4)当|x+1|+|x﹣2|+|x﹣3|取最小值时,x=2,∴当x=2时,y最小,即最小值为:|2+1|+|2﹣2|+|2﹣3|=4.故x=2时,y最小,最小值为4.【点睛】本题考查数轴与绝对值,熟练掌握数轴上两点之间距离的计算方法是解题的关键.23.观察下列三列数:―1、+3、―5、+7、―9、+11、……①―3、+1、―7、+5、―11、+9、……②+3、―9、+15、―21、+27、―33、……③(1)第①行第10个数是,第②行第10个数是;(2)在②行中,是否存在三个连续数,其和为83?若存在,求这三个数;若不存在,说明理由;(3)若在每行取第k个数,这三个数的和正好为―101,求k的值.【答案】(1)+19;―21(2)存在,这三个数分别为85,―91,89(3)k=―49【分析】本题主要考查了数字规律,一元一次方程的应用,做题的关键是找出数字规律.(1)第①和②行规律进行解答即可;(2)设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,根据题意列出方程,即可出答案;(3)设k为奇数和偶数两种情况,分别列出方程进行解答.【详解】(1)解:根据规律可得,第①行第10个数是2×10―1=19;第②行第10个数是―(2×10+1)=―21;故答案为:+19;―21;(2)解:存在.理由如下:由(1)可知,第②行数的第n个数是(―1)n(2n―1)―2,设三个连续整数为(―1)n﹣1(2n――2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,当n为奇数时,则2n―3―2―2n+1―2+2n+1―2=83,化简得2n―7=83,解得n=45,这三个数分别为85,―91,89;当n为偶数时,则―(2n―3)―2+(2n―1)―2―(2n+1)―2=83,化简得―2n―5=83,解得n=―44(不符合题意舍去),这三个数分别为85,―91,89;综上,存在三个连续数,其和为83,这三个数分别为85,―91,89;(3)解:当k为奇数时,根据题意得,―(2k ―1)―(2k +1)+3×(2k ―1)=―101,解得:k =―49,当k 为偶数时,根据题意得,(2k +1)+(2k ―3)―3(2k ―1)=―101,解得,k =51(舍去),综上,k =―49.24.如图,数轴上有A ,B ,C 三个点,分别表示数―20,―8,16,有两条动线段PQ 和MN (点Q 与点A 重合,点N 与点B 重合,且点P 在点Q 的左边,点M 在点N 的左边),PQ =2,MN =4,线段MN 以每秒1个单位的速度从点B 开始向右匀速运动,同时线段PQ 以每秒3个单位的速度从点A 开始向右匀速运动.当点Q 运动到点C 时,线段PQ 立即以相同的速度返回;当点Q 回到点A 时,线段PQ 、MN 同时停止运动.设运动时间为t 秒(整个运动过程中,线段PQ 和MN 保持长度不变).(1)当t =20时,点M 表示的数为 ,点Q 表示的数为 .(2)在整个运动过程中,当CQ =PM 时,求出点M 表示的数.(3)在整个运动过程中,当两条线段有重合部分时,速度均变为原来的一半,当重合部分消失后,速度恢复,请直接写出当线段PQ 和MN 重合部分长度为1.5时所对应的t 的值.【答案】(1)8,―8(2)―2.8或2(3)5.5或8.5或18.25或19.75【分析】本题考查一元一次方程的应用,解题的关键是读懂题意,能用含t 的代数式表示点运动后所表示的数.(1)当t =20时,根据起点位置以及运动方向和运动速度,即可得点M 表示的数为8、点Q 表示的数为―8;(2)当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,36―3t =|―10+2t|,此时―12+t =―12+465=―145,当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,3t ―36=|62―4t |,(3)当PQ 从A 向C 运动时,―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,当PQ 从C 向A 运动时,132+―――=1.5或172――――=1.5,解方程即可得到答案.【详解】(1)解:依题意,∵―8―4+20×1=8,∴当t =20时,点M 表示的数为8;∵16―{20×3―[16―(―20)]}=―8,∴当t =20时,点Q 表示的数为―8;故答案为:8,―8;(2)解:当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,∴CQ =16―(―20+3t )=36―3t ,PM =|―22+3t ―(―12+t )|=|―10+2t |,∴36―3t =|―10+2t |,解得t =465或t =26(舍去),此时―12+t =―12+465=―145当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,∴CQ =16―(52―3t )=3t ―36,PM =|50―3t ―(―12+t )|=|62―4t |,∴3t ―36=|62―4t |,解得t =14或t =26(舍去),此时―12+t =―12+14=2,∴当CQ =PM 时,点M 表示的数是―145或2;(3)解:当PQ 从A 向C 运动时,t =4时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为―8+32(t ―4),P 表数为―10+32(t ―4),M 表示的数为―8+12(t ―4),N 表示的数是―4+12(t ―4),若线段PQ 和MN 重合部分长度为1.5则―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,解得t =5.5或t =8.5,由―10+32(t ―4)=―4+12(t ―4)得t =10,∴当t =10时,PQ 与MN 的重合部分消失,恢复原来的速度,此时Q 表示的数是1,再过(16―1)÷3=5(秒),Q 到达C ,此时t =15,则M 所在点表示的数是―12+4+10―42+5=0,N 所在点表示的数4,当PQ 从C 向A 运动时,t =352时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为172――P 表示的数为132―M 表示的数为52N 表示的数是132―若线段PQ 和MN 重合部分长度为1.5,132+―――=1.5或172―――=1.5,解得t =18.25或t =19.75,∴重合部分长度为1.5时所对应的t 的值是5.5或8.5或18.25或19.75.。
2024-2025学年初中七年级上学期数学第一次月考卷及答案(北师大版)
2024-2025学年北师大新课标七年级上册数学第一次月考测试卷(一)一、选择题:本题共10小题,每小题3分,共30分.每小题给出的选项中,只有一项是符合题目要求的.1. 在下列各数中,最小的数是( )A. 1.5−B. 3−C. 1−D. 5−2. 若数据3150000000用科学记数法表示为10n a ×,则a 和n 值分别是( )A. 3.15,8B. 3.15,9C. 3.15,10D. 0.315,10 3. 不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥 4. 如图,四个有理数在数轴上分别对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最大的数的点是( )A 点M B. 点N C. 点P D. 点Q5. 下列运算中,错误的是( ) A. ()()15555÷−=×− B. ()()()15522 −÷−=−×−C. ()18484 ÷−=×−D. 080÷=6. 下列判断正确的是( )A. 一个有理数不是正数就是负数B. 绝对值等于它本身的数是正数C. 若两个有理数的和为0,则它们必定互为相反数D. 倒数是它本身的数只有17. 下列各组数中,互为相反数的一组是( )A. 2(3) 与23−B. 23−与23C. 213 − 与213D. 23−−与23− 8. 如图,一个正方体纸盒的六个面上分别印有1,2,3,4,5,6,并且相对面上的两数之和为7,它的表的.面展开图可能是( )A. B. C. D. 9. 有理数,a b 在数轴上的位置如图所示,则化简a b a −+的结果为( )A. bB. b −C. 2a b −−D. 2a b −10. a 是不为1的有理数,我们把11a−称为a 的差倒数,如:2的差倒数是1112=−−,1−的差倒数是()11112=−−,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数……以此类推,则2024a =( )A 3 B. 23 C. 12− D. 无法确定二、填空题:本题共5小题,每小题3分,共15分.11. 硬币在桌面上快速地转动时,看上去像球,这说明了_________.12. 在桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看得到的形状如图所示,设组成这个几何体的小正方体的个数为n ,则n 的最小值为__________.13. 数学家发明了一个魔术盒,当任意 “数对 ” (,)a b 进入其中时,会得到一个新的数:21a b −+,例如把(3,2)−放入其中,就会得到23(2)112−−+=,现将 “数对”(3,2)−−放入其中后,得到的数是__________.14. 已知:2x =,3y =,且0xy <,0x y +<,则x y −=____________.15. 如图,在数轴上点A 表示的数是a ,点B 表示的数是b ,且a ,b 满足|2||1|0a b +++=,点C表示.的数是17的倒数.若将数轴折叠,使得点A 与点C 重合,则与点B 重合的点表示的数是______.三、计算题:本大题共2小题,共30分.16. 计算:(1)()()2832+−×−;(2)()()22100223 ÷−−−÷−; (3)()()3434⎛⎫ ⎪-÷-⨯- ⎪⎝⎭; (4)231114332 −÷−−×−. 17. 计算: (1)1564358−÷×; (2)35344 +−−−−; (3)()()0.350.60.25 5.4+−++−;(4)()457369612 −×−+− ; (5)18991819−×; (6)22218134333 ×−+×−×. 四、解答题:本题共6小题,共45分.解答应写出文字说明,证明过程或演算步骤. 18. (1)指出图中数轴上A B C D E ,,,,各点分别表示的有理数,并用“<”将它们连接起来;(2)在数轴上把下列各数表示出来,并比较它们的大小:447 3.5053−−,,,,.19. 计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.20. 用棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,第1个几何体的表面积为6,第2个几何体的表面积为18.(1)求第3个几何体的表面积;(2)求第10个几何体的表面积.21 如图,一辆货车从超市出发,向东走了3 km 到达小彬家,继续走了1.5 km 到达小颖家,然后向西走了9.5 km 到达小明家,最后回到超市.(1)小明家在超市什么方向,距超市多远?以超市为原点,以向东的方向为正方向.用1个单位长度表示1 km ,你能在数轴上表示出小明家、小彬家和小颖家的位置吗?(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?22. 小明在学习《展开与折叠》这一课后,明白了正方体能展开成多种平面图形.课后,小明用剪刀将一个正方体纸盒剪开,一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的(1)和(2),根据你所学的知识解答:(1)小明想把剪断的(2)重新粘贴到(1)上去,而且经过折叠后,仍然可以还原成一个正方体纸盒,你认为他应该将剪断的纸盒粘贴到(1)中的什么位置?请在图(1)的备用图上补全(画出所有可能的情.的况);(2)小明将若干个同样大小的正方体纸盒搭建成一个几何体,该几何体的三视图如下:①请你观察:小明用了多少个正方体盒子组成这个几何体?②若正方体纸盒的棱长为10cm ,求出小明所搭的几何体的表面积(包括底面).23. 已知有理数a ,b ,c 在数轴上的位置如图所示且||||a b =,(1)求值:a b +=__________; (2)分别判断以下式子的符号(填“>”或“<”或“=”):b c +__________0;a c −__________0;ac __________0;(3)化简:|2|||||||c b c a b c −+−+−+−.2024-2025学年北师大新课标七年级上册数学第一次月考测试卷(一)一、选择题:本题共10小题,每小题3分,共30分.每小题给出的选项中,只有一项是符合题目要求的.1. 在下列各数中,最小的数是( )A. 1.5−B. 3−C. 1−D. 5−【答案】D【解析】【分析】根据正数大于0,0大于负数,两个负数比较,绝对值大的反而小,进行比较判断即可. 【详解】解:53 1.51−>−>−>− 53 1.51∴−<−<−<−故选D .【点睛】本题考查了有理数比较大小,解决本题的关键是掌握有理数间的大小比较方法. 2. 若数据3150000000用科学记数法表示为10n a ×,则a 和n 的值分别是( )A. 3.15,8B. 3.15,9C. 3.15,10D. 0.315,10 【答案】B【解析】【分析】本题考查了绝对值大于1的科学记数法的表示,解题的关键在于确定a n ,的值. 根据绝对值大于1的数,用科学记数法表示为10n a ×,其中110a ≤<,n 的值为整数位数少1,即可得出结果.【详解】解:3150000000大于1,用科学记数法表示为10n a ×,其中 3.15a =,9n =, 故选:B .3. 不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥【答案】D【解析】【详解】解:根据有四个三角形的面,且有8条棱,可知是四棱锥,而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.4. 如图,四个有理数在数轴上分别对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最大的数的点是( )A. 点MB. 点NC. 点PD. 点Q【答案】D【解析】【分析】本题考查了数轴、相反数以及绝对值的意义,解题的关键是确定原点的位置.由“点M ,N 表示的有理数互为相反数”可知原点在点M 与点N 的中点,再根据离原点越远,绝对值越大即可解答.【详解】 点M ,N 表示的有理数互为相反数, ∴原点在点M 与点N 的中点,根据数轴可知,点Q 到原点的距离最大,即点Q 的绝对值最大,故选:D5. 下列运算中,错误的是( )A ()()15555÷−=×− B. ()()()15522 −÷−=−×−C. ()18484 ÷−=×−D. 080÷=【答案】A【解析】 【分析】本题考查有理数的除法.掌握有理数的除法运算的法则是解题关键.根据有理数的除法运算法则逐项计算即可. 【详解】()1115555 ÷−=×−,故A 错误,符合题意; ()()()15522 −÷−=−×−,故B 正确,不符合题意; ()18484 ÷−=×−,故C 正确,不符合题意; 080÷=,故D 正确,不符合题意..6. 下列判断正确的是( )A. 一个有理数不是正数就是负数B. 绝对值等于它本身的数是正数C. 若两个有理数和为0,则它们必定互为相反数D. 倒数是它本身的数只有1【答案】C【解析】【分析】分别利用有理数的定义、绝对值的性质、有理数的加法法则、倒数的定义得出即可.【详解】解:A 、一个有理数可能是正数、0、负数,故此选项错误;B 、绝对值等于它本身的数是非负数,故此选项错误;C 、若两个有理数的和为0,则它们必定互为相反数,此选项正确;D 、倒数等于它本身的数有:±1,故此选项错误.故选:C .【点睛】此题主要考查了有理数的定义、绝对值的性质、有理数的加法、倒数,正确区分它们是解题关键.7. 下列各组数中,互为相反数的一组是( )A. 2(3) 与23−B. 23−与23C. 213 − 与213D. 23−−与23− 【答案】A【解析】【分析】本题考查了相反数的定义,有理数的乘方以及化简绝对值,先分别算出每个选项的值,再结合相反数的定义进行逐个比较分析,即可作答.【详解】解:A 、229(33)9, ,它们是互为相反数,符合题意,故该选项是正确的; B 、223939−==,,它们不是互为相反数,不符合题意,故该选项是错误的; C 、2211113939−== ,,它们不是互为相反数,不符合题意,故该选项是错误的; D 、223939−−=−−=−,,它们不是互为相反数,不符合题意,故该选项是错误的;故选:A .8. 如图,一个正方体纸盒的六个面上分别印有1,2,3,4,5,6,并且相对面上的两数之和为7,它的表的面展开图可能是()A. B. C. D.【答案】D【解析】【分析】正方体的空间图形,从相对面入手,分析及解答问题.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,∵相对面上的两数之和为7,∴3与4相对,5与2相对,6与1相对观察选项,只有选项D符合题意.故选D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9. 有理数,a b在数轴上的位置如图所示,则化简a b a−+的结果为()A. bB. b−C. 2a b−− D. 2a b−【答案】A【解析】【分析】根据数轴上点的位置判断出绝对值里式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【详解】由数轴得:0a b<<,即0a b−<则原式b a a b=−+=故选:A【点睛】本题考查了数轴和绝对值,解答此题的关键是明确绝对值里的数值是正是负,然后根据绝对值的性质进行化简.10. a 是不为1的有理数,我们把11a−称为a 的差倒数,如:2的差倒数是1121=−−,1−的差倒数是()11112=−−,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数……以此类推,则2024a =( )A. 3B. 23C. 12−D. 无法确定 【答案】C【解析】【分析】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出2a 、3a 、4a ,找出数字变化的规律.根据规则计算出2a 、3a 、4a ,即可发现每3个数为一个循环,然后用2024除以3,即可得出答案.【详解】解:由题意可得,13a =,211213a =−=−, 3121312a == −−, 413213a ==−, …,由上可得,每三个数一个循环,202436742÷=⋅⋅⋅,∴202412a =−. 故选:C . 二、填空题:本题共5小题,每小题3分,共15分.11. 硬币在桌面上快速地转动时,看上去像球,这说明了_________.【答案】面动成体【解析】分析】根据点动成面、面动成体原理即可解答.【详解】解:硬币桌面上快速地转动时,看上去像球,这说明了面动成体.【在故答案为:面动成体.【点睛】本题主要考查了面动成体,这是面动成体的原理在现实中的具体表现.12. 在桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看得到的形状如图所示,设组成这个几何体的小正方体的个数为n ,则n 的最小值为__________.【答案】7【解析】【分析】本题主要考查了从不同方向看几何体,从正面看和从左面看可得此几何体底层正方体最少有5个小正方体,第二层最少有2个正方体,得出组成这个几何体的小正方体的个数最少有7个.【详解】解:从正面看和从左面看可得此几何体底层正方体最少有5个小正方体,第二层最少有2个正方体,∴组成这个几何体的小正方体的个数最少有7个,∴n 的最小值为7,故答案为:7.13. 数学家发明了一个魔术盒,当任意 “数对 ” (,)a b 进入其中时,会得到一个新的数:21a b −+,例如把(3,2)−放入其中,就会得到23(2)112−−+=,现将 “数对”(3,2)−−放入其中后,得到的数是__________.【答案】12【解析】【分析】根据题中“数对”的新定义,求出所求即可.【详解】解:根据题中的新定义得:(-3)2+2+1=9+2+1=12,故答案为:12.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.14. 已知:2x =,3y =,且0xy <,0x y +<,则x y −=____________.【答案】5【解析】【分析】根据绝对值的意义和正负数的意义,求出x 和y 的值然后求解即可. 【详解】∵2x =, 3y =,∴xx =2或-2,3y =或-3,∵0xy <,∴x 和y 异号,又∵0x y +<,∴xx =2,3y =−,∴()235x y −=−−=,故答案为:5.【点睛】本题考查了绝对值和正负数的意义,解决本题的关键是正确理解题意,熟练掌握绝对值的意义.15. 如图,在数轴上点A 表示的数是a ,点B 表示的数是b ,且a ,b 满足|2||1|0a b +++=,点C 表示的数是17的倒数.若将数轴折叠,使得点A 与点C 重合,则与点B 重合的点表示的数是______.【答案】6【解析】【分析】先由|2||1|0a b +++=,根据绝对值的非负性,得出a 和b 的值,根据倒数的定义,得出点C 表示的数,再根据对折的要求,得出对折点,从而根据对折的性质得出与点B 重合的点表示的数.【详解】解:∵|2||1|0a b +++=,|2|0a +≥,|1|0b +≥, ∴20a +=,10b +=, ∴2a =−,1b =−,∵点C 表示的数是17的倒数, ∴点C 表示的数是7,∵7(2)9−−=, 将数轴折叠,使得点A 与点C 重合, ∴对折点表示的数为:97 2.52−=, ∴[]2.5(2.5(1) 2.5 3.56+−−=+=.【点睛】本题考查了绝对值非负性、倒数的定义,对折的性质等基础知识,根据题意正确地用数学语言表示相关概念,是解题的关键.三、计算题:本大题共2小题,共30分.16. 计算:(1)()()2832+−×−;(2)()()22100223 ÷−−−÷−; (3)()()3434⎛⎫ ⎪-÷-⨯- ⎪⎝⎭; (4)231114332 −÷−−×−. 【答案】(1)10−(2)22(3)16−(4)52− 【解析】(1)先计算乘方,再计算乘法,最后计算加法即可;(2)先计算乘方,再计算除法,最后计算减法即可;(3)先计算除法,再计算乘法即可;(4)先计算乘方,再计算乘除法,最后计算减法即可.【小问1详解】解:()()2832+−×− ()892=+×−818=−10=−;【小问2详解】解:()()22100223 ÷−−−÷−的()1004232=÷−−×−25322=;【小问3详解】解:()()3434⎛⎫⎪-÷-⨯- ⎪⎝⎭()()4433=−×−×−16=−;【小问4详解】 解:231114332−÷−−×−1811394=−÷−×−132=−+52=−.17. 计算:(1)1564358−÷×;(2)35344+−−−− ;(3)()()0.350.60.25 5.4+−++−;(4)()457369612−×−+− ;(5)18991819−×;(6)22218134333×−+×−× .【答案】(1)252−(2)1−(3) 5.4−(4)7(5)1179919− (6)6−【解析】【分析】本题考查了有理数的混合运算,乘法运算律,绝对值等知识.熟练掌握有理数的混合运算,乘法运算律,绝对值是解题的关键.(1)先进行除法运算,然后进行乘法运算即可;(2)先去括号,计算绝对值,然后进行加减运算即可;(3)利用乘法运算律计算求解即可;(4)利用乘法运算律计算求解即可;(5)利用乘法运算律计算求解即可;(6)利用乘法运算律计算求解即可.【小问1详解】 解:1564358−÷× 5564168=−×× 252=−; 【小问2详解】 解:35344 +−−−− 35344=+− 23=−1=−;【小问3详解】解:()()0.350.60.25 5.4+−++−0.350.60.25 5.4−+−()0.350.250.6 5.4=+−−5.4=−;【小问4详解】解:()457369612 −×−+−()()()4573636369612 =−×−+−×−−×163021=−+7=;【小问5详解】 解:18991819−× 11001819 =−−×1100181819=−×+× 18180019=−+ 1179919=−; 【小问6详解】 解:22218134333 ×−+×−× ()2181343=×−+− ()293=×− 6=−四、解答题:本题共6小题,共45分.解答应写出文字说明,证明过程或演算步骤. 18. (1)指出图中数轴上A B C D E ,,,,各点分别表示的有理数,并用“<”将它们连接起来;(2)在数轴上把下列各数表示出来,并比较它们的大小:447 3.5053−−,,,,. 【答案】(1)3−,3.5,2, 0,0.5;300.52 3.5−<<<<(2)见详解,443.50753−<−<<< 【解析】【分析】本题考查了有理数大小比较,数轴,准确熟练地进行计算是解题的关键.(1)先根据数轴得出各点代表的有理数,然后根据数轴比较有理数的大小即可.(2)先在数轴上把各数表示出来,然后根据数轴比较有理数的大小即可.【详解】解:(1)点A 表示的有理数为:3−,点B 表示的有理数为:3.5,点C 表示的有理数为:2,点D 表示的有理数为:0,点E 表示的有理数为:0.5,用<将它们连接起来为:300.52 3.5−<<<<.(2)各数在数轴上的表示如图:大小如下:443.50753−<−<<< 19. 计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】-36【解析】【分析】根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可.【详解】解:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣12+26) =6÷(﹣16) =6×(﹣6)=﹣36【点睛】本题考查有理数的混合运算,解答本题的关键是掌握乘法分配律.20. 用棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,第1个几何体的表面积为6,第2个几何体的表面积为18.(1)求第3个几何体的表面积;(2)求第10个几何体的表面积.【答案】(1)36 (2)330【解析】【分析】本题主要考查了图形类的规律探索,根据已知图形的面积得出变化规律,第n 个几何体的表面积为:()31n n +是解题的关键.(1)只需要写出第3个几何体露在外面的小正方形面即可得到答案;(2)根据前3个几何体的表面积找到规律第n 个几何体的表面积为:()31n n +,在代入10n =进行求解即可.【小问1详解】解:由题意得,第3个几何体的表面积是66666636+++++=;【小问2详解】解:第1个几何体的表面积为()31116××+=, 第2个几何体的表面积为()322118××+=, 第3个几何体的表面积是()333136××+=, ......,以此类推,第n 个几何体的表面积是()31n n +,∴第10个几何体的表面积为()310101330××+=. 21. 如图,一辆货车从超市出发,向东走了3 km 到达小彬家,继续走了1.5 km 到达小颖家,然后向西走了9.5 km 到达小明家,最后回到超市.(1)小明家在超市的什么方向,距超市多远?以超市为原点,以向东的方向为正方向.用1个单位长度表示1 km,你能在数轴上表示出小明家、小彬家和小颖家的位置吗?(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?【答案】(1)图详见解析,小明家在超市西边,距超市5km;(2)8km;(3)19km.【解析】【分析】(1)根据题意画出数轴,根据数轴信息即可知小明家在超市的方向;(2)根据题意列出算式,计算即可得到结果;(3)将行驶的路程相加即可得到结果.【详解】(1)如图,小明家在超市西边,距超市5km;(2)小明家距小李家3-(-5)=8(千米).答:小明家距小李家有8千米.(3)3+1.5+9.5+5=19(千米).答:货车一共行驶了19千米.【点睛】此题考查了有理数加减混合运算的应用,弄清题意是解本题的关键.22. 小明在学习《展开与折叠》这一课后,明白了正方体能展开成多种平面图形.课后,小明用剪刀将一个正方体纸盒剪开,一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的(1)和(2),根据你所学的知识解答:(1)小明想把剪断的(2)重新粘贴到(1)上去,而且经过折叠后,仍然可以还原成一个正方体纸盒,你认为他应该将剪断的纸盒粘贴到(1)中的什么位置?请在图(1)的备用图上补全(画出所有可能的情况);(2)小明将若干个同样大小的正方体纸盒搭建成一个几何体,该几何体的三视图如下:①请你观察:小明用了多少个正方体盒子组成这个几何体?②若正方体纸盒的棱长为10cm,求出小明所搭的几何体的表面积(包括底面).【答案】(1)见解析(2)①10个;②表面积为3800平方厘米【解析】【分析】本题主要考查了正方体的展开图,求几何体的表面积:(1)根据正方体展开图“33型”有1种,“222型”有1种,“141型”有6种,“132型”有3种,结合已给图形进行求解即可;(2)①根据从不同方向看的图形分别确定每个位置小正方体的个数即可得到答案;②根据几何体表面积计算公式求解即可.【小问1详解】解:如图所示,即为所求;【小问2详解】解:①如图所示,每个位置的小立方体数如下所示:+++++=个正方体盒子组成这个几何体;∴小明用了23111210第16页/共17页 ②()()26662210103800cm ++×+××=,答:表面积为3800平方厘米. 23. 已知有理数a ,b ,c 在数轴上的位置如图所示且||||a b =,(1)求值:a b +=__________; (2)分别判断以下式子的符号(填“>”或“<”或“=”):b c +__________0;a c −__________0;ac __________0;(3)化简:|2|||||||c b c a b c −+−+−+−.【答案】(1)0 (2)<;>;<(3)a【解析】【分析】(1)根据相反数的意义,即可求解;(2)观察数轴得:0c b a <<<,且c b a >=,即可求解; (3)先根据绝对值的性质化简,再合并,即可求解.【小问1详解】解:∵||||a b =,且a ,b 所对应的点分别位于原点的两侧,∴a ,b 互为相反数,∴0a b +=;故答案为:0【小问2详解】解:观察数轴得:0c b a <<<,且c b a >=, ∴0b c +<;0a c −>;0ac <;故答案为:<;>;<【小问3详解】解:|2|||||||c b c a b c −+−+−+−()2c b a c b c =−−−+−+−2c b a c b c −+−+−a =.【点睛】本题主要考查了数轴,绝对值的性质,整式的加减,利用数形结合思想解答是解题的关键.。
七年级数学月考总结(通用8篇)
七年级数学月考总结七年级数学月考总结(通用8篇)总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,写总结有利于我们学习和工作能力的提高,因此,让我们写一份总结吧。
总结你想好怎么写了吗?下面是小编收集整理的七年级数学月考总结,仅供参考,大家一起来看看吧。
七年级数学月考总结篇1顺利完成七年级学生进校以来的第一次半期考,本次半期考,由七年级数学教研组统一出卷对学生半期所学知识进行了测查。
下面就七年级第一学期半期考测试进行如下总结:一、总体分析够积极主动,有时有不按时完成作业的现象,其中有一部分学生属于及格边缘徘徊的,他们的成绩上不去,直接影响班级整体成绩。
这就要求在后半学期的教育教学中,因材施教,狠抓学困生,争取学困生转化,提高整体成绩。
二、取得成绩的主要原因1、重视课堂教学,基础知识掌握比较扎实。
2、能联系实际,学生良好的学习习惯初步形成。
3、通过各种题型的练习,巩固并深化所学知识,使学生达到学以致用。
三、存在的主要问题:1、部分学生学习方法较死板,对所学知识不能举一反三,灵活运用。
2、有的学生想象力不够丰富,分析判断能力差。
3. 个别学生不会审题,不理解题意,原有基础知识功底江薄。
4.有些题型训练不到位,学生失误多。
教师在平时认为这类题简单,而很少设计,殊不知会出现这样的结果。
四、改进措施:1、注重学生学习方法的培养,引导学生用喜欢的方法学习数学。
2、继续加大基础科知识教学的力度,使基础科知识训练成为数学教学中的重中之重。
尤其是对学生自学能力的培养,必须进行培养。
3、加强各类题型训练,培养学生审题和分析判断能力4、抓好中下学生的学习。
5.加强对学生的分析判断能力的训练,贯彻在教学的各个环节中。
6、把好单元检测关,及时弥补不足,以激励表扬的方法让学生在学习中展开竞争,使不同的学生得到不同的发展;7、狠抓后进生,采用多种方法帮辅,给予更多的关心,做到课堂上多提问,课下多关心,对他们的作业争取做到面批面改。
24-25七年级数学第一次月考卷(全解全析)【测试范围:湘教版七上第1章有理数】
2024-2025学年七年级数学上学期第一次月考卷(湘教版2024)(考试时间:90分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:湘教版2024七年级上册,第1章有理数。
5.难度系数:0.68。
第一部分(选择题 共30分)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2024的相反数是( )A .2024-B .12024C .12024-D .2024【答案】A【解析】2024的相反数是2024-A 2.下列图形中是数轴的是( )A .B .C .D .【答案】D【解析】A 、没有正方向,不是数轴,故本选项不符合题意;B 、负半轴的数据标注错误,不是数轴,故本选项不符合题意;C 、单位长度不等,不是数轴,故本选项不符合题意;D 、符合数轴的定义,是数轴,故本选项符合题意;故选D .3.地球上的海洋面积约为2361000000km ,用科学记数法可表示为( )A .723.6110km ´B .823.6110km ´C .820.36110km ´D .923.6110km ´【答案】B【解析】282361000000km 3.6110km ´=,故选B .4.已知下列说法:①绝对值等于它本身的数有无数个;②倒数等于它本身的数只有1;③相反数等于它本身的数是0; ④平方等于它本身的数有三个.其中正确的说法有( )A .1 个B .2 个C .3 个D .4 个【答案】B【解析】①绝对值等于它本身的数是0和正数有无数个,说法正确;②倒数等于它本身的数只有1和1-,说法错误;③相反数等于它本身的数只有0,说法正确;④平方等于它本身的数有0和1共两个,说法错误;综上所述,正确的有①③共2个.故选B .5.实数a ,b ,c ,d 在数轴上对应点的位置如图所示,则正确的结论是( )A .4a >-B .0bd >C .0b c +>D .a b>【答案】D【解析】A .4a <- ,\结论A 错误;B .1b <- ,4d =,0bd \<,结论B 错误;C .21b -<<- ,01c <<,0b c \+<,结论C 错误;D .54a -<<- ,21b -<<-,a b \>,结论D 正确.故选D .6.计算:()154273927æö-´-+ç÷èø的结果为( )A .23B .2C .103D .10【答案】B【解析】原式()()()1542727273927=-´--´+-´9154=-+-2=,故选B .7.下列说法中正确的是( )A .任何数都不等于它的相反数B .互为相反数的两个数立方相等C .如果a b >,那么a 的倒数一定大于b 的倒数D .a 与b 两数和的平方一定是非负数【答案】D【解析】A 、0的相反数为0,所以A 选项错误;B 、互为相反数的两个数的立方也互为相反数,所以B 选项错误;C 、2大于1,而2的倒数12小于1的倒数1,所以C 选项错误;D 、a 与b 两数和的平方一定是非负数,所以D 选项正确.故选D .8.若xy >0,则||x x+||y y +1的值为( )A .﹣2B .3或﹣2C .3D .﹣1或3【答案】D【解析】因为xy >0,所以x >0,y >0,或x <0,y <0,①当x >0,y >0时,原式=1+1+1=3;②当x <0.y <0时,原式=﹣1+(﹣1)+1=﹣1,故选D .9.我们学过+、-、×、÷这四种运算,现在规定“*”是一种新的运算,*A B 表示:5A B -,如:4*354317=´-=,那么()7*6*5= ( ).A .5B .10C .15D .20【答案】B【解析】由题意知,6*556525=´-=,则()7*6*57*255725352510==´-=-=,故选B .10.数形结合是解决一些数学问题的重要思想方法,比如12x x -在数轴上表示数1x ,2x 对应的点之间的距离.现定义一种“H 运算”,对于若干个数,先将每两个数作差,再将这些差的绝对值进行求和.例如:对1-,1,2进行“H 运算”,得.下列说法:①对m ,1-1112126--+--+-=进行“H 运算”的结果是3,则m 的值是4-;②对n ,3-,5进行“H 运算”的结果是16,则n 的取值范围是35n -<<;③对a a b c ,,,进行“H 运算”,化简后的结果可能存在6种不同的表达式.其中正确的个数是( )A .0B .1C .2D .3【答案】B【解析】①因为对m ,1-进行“H 运算”的结果是3,所以13m +=,所以2m =或4m =-,故①错误;②因为对n ,3-,5进行“H 运算”的结果是16,所以()353516n n --+-+--=,所以()358n n --+-=,即数n 对应的点到3-和5对应的点的距离之和等于8,因为()538--=,所以数n 在3-和5之间,且可以和3-、5重合,所以35n -££,故②错误;③对a a b c ,,,进行“H 运算”得,22a a a b a c a b a c b c a b a c b c -+-+-+-+-+-=-+-+-,当a b c >>时,原式222243a b a c b c a b c =-+-+-=--;当a c b >>时,原式222243a b a c c b a b c =-+-+-=--;当b a c >>时,原式222233b a a c b c b c =-+-+-=-;当b c a >>时,原式222243b a c a b c a b c =-+-+-=-++;当c a b >>时,原式222233a b c a c b b c =-+-+-=-+;当c b a >>时,原式222243b a c a c b a b c =-+-+-=-++;所以化简后的结果可能存在6种不同的表达式,故③正确;所以正确的个数是1个,故选B .第二部分(非选择题 共90分)二、填空题:本题共8小题,每小题3分,共24分。
辽宁省大连市第九中学2024-2025学年七年级上学期第一次月考数学试题
辽宁省大连市第九中学2024-2025学年七年级上学期第一次月考数学试题一、单选题1.实数5-的相反数是( )A .5B .5-C .15D .15- 2.如果零上5℃记作5+℃,那么零下3℃可记为( )A .3-℃B .3+℃C .2-℃D .2℃3.下列各式正确的是( )A .55=-B .55-=-C .55-=-D .55=-- 4.亚洲、欧洲、非洲和南美洲的最低海拔如下表所示表,其中最低海拔最小的大洲是( )A .亚洲B .欧洲C .非洲D .南美洲 5.在1318,9,0,12%,7.2,,24---π,7中,非负有理数有( ) A .6个 B .5个 C .4个 D .3个6.化学老师在实验室中发现了四个因操作不规范沾染污垢或被腐蚀的砝码,经过测量,超出标准质量的部分记为正数、不足的部分记为负数,它们中质量最接近标准的是( ) A . B . C . D . 7.数轴上的点A 到原点的距离是5,则点A 表示的数为( )A .-5B .5C .5或-5D .2.5或-2.5 8.某校九年1班期末考试数学的平均成绩是82分,小明得了90分,记作8+分,若小亮的成绩记作4-分,表示小亮得了( )分.A .84B .76C .78D .749.如图,直径为1的圆上有一点A ,且点A 与数轴上表示1-的点重合,将这个圆在数轴上无滑动的滚动,当点A再次与数轴上的某个点重合,那么这个点的位置可能是()A.3与4之间B.6与7之间C.7-与6-之间D.5-与4-之间10.如图,A B C D,,,四个点将数轴上6-与5两点间的线段五等分,这四个等分点位置最靠近原点的是()A.点A B.点B C.点C D.点D二、填空题11.在4-,227,0,2π,3.14159,1.3,0.121121112⋯中,有理数有个.12.比较大小:8-9-(填“>”、“<”或“=”).13.化简14⎡⎤⎛⎫---=⎪⎢⎥⎝⎭⎣⎦.14.如图,在数轴上,点A表示的数为2,若将点A向左移动5个长度单位后,这时点A表示的数是.15.若式子3|2|4x--有最小值,则该最小值为.三、解答题16.把下列各数填在相应的大括号内:41935,0.1,,0,3,1,π,22,0.3,743----.整数集合{…}分数集合{…}正有理数集合{…}负有理数集合{…}17.画一条数轴,并在数轴上表示下列各数:()112,1, 3.5,22+--+-,并用“<”把这些数连接起来.18.近年来,国家越来越重视新能源汽车的发展,为积极响应国家推广节能减排的政策,王老师家买了一辆新能源汽车.王老师连续一星期记录了每天行驶的路程(每天以20km 为基准,超出记为正,不足记为负),如表:(1)该汽车行驶路程最多的一天是,这一天的实际行驶路程是km .(2)若该新能源汽车每行驶100km 耗电量为15度,每度电约为0.5元,求王老师这一星期开新能源汽车的电费.19.已知23a -与5b -互为相反数,求2b a -的值,20.对于一个数x ,我们用(]x 表示小于x 的最大整数,例如(]2.62=,(]34-=-.(1)填空:(]10=__________;(]202-=__________;17⎛⎤= ⎥⎝⎦___________. (2)若a ,b 都是整数,且(]a 和(]b 互为相反数,求a b +的相反数.21.如图1,电脑显示屏上画出了一条不完整的数轴,并标出了表示6-的点A .小明同学设计了一个电脑程序:点M ,N 分别从点A 同时出发,每按一次键盘,点M 向右平移2个单位长度,点N 向左平移1个单位长度.例如,第一次按键后,屏幕显示点M ,N 的位置如图2.(1)第______次按键后,点 M 正好到达原点;(2)第6次按键后,点M 到达的点表示的数字比点N 到达的点表示的数字大多少?(3)第n 次按键后,点M ,N 到达的点表示的数互为相反数,求n 的值.22.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.我们知道,a 可以理解为|0|a -,它表示:数轴上表示数a 的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A 、B ,分别用数a 、b 表示,那么A ,B 两点之间的距离为||AB a b =-,反过来,式子||-a b 的几何意义是:数轴上表示数a 的点和表示数b 的点之间的距离.若数轴上点A 表示数a ,请回答下列问题:(1)如果||5a =,那么a 的值是_____;(2)如果|3|5a -=,那么a 的值是_____;(3)满足|2||3|5a a ++-=整数a 有____个;(4)如果|2||3|8a a ++-=,那么a 的值是_____;(5)|1||2||3||4||5|a a a a a +++++++++的最小值是_____.23.设有理数a ,b 在数轴上所对应的点为A ,B ,记为()A a ,()B b ,将a b -称为点A ,B 的对称指标,记为(),A B μ,即(),A B a b μ=-.对于定点..A ,若动点..B 在线段MN 上,将(),A B μ的最大值...称为线段MN 关于点A 的对称指标,记为(),A MN μ. (1)点()1A ,()1B -,()3C -,()D d 在数轴上,①(),A B μ=__________,(),A C μ=__________.②若(),1C D μ=,则d =__________.(2)点()5E -,()M m ,()N n 在数轴上,m n <,4MN =,①当1m =时,(),E MN μ=__________.②当线段MN 在数轴上运动时,直接写出(),E MN μ的最小值及此时m 的值.。
2024-2025学年初中七年级上学期第一次月考数学试题及答案(人教版)
2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记为2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4− 4. 下列各数中,最小数是( )A. 0B. 153C. ()32−D. 23−5. 在计算11()()23++−时,按照有理数加法法则,需转化成( ) A. 11()23+−B. 1)3+C. 11()23−− D. 1123 −+6. 下列各组数中,互为相反数是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )的的A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 2710. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为( )A. 1−B. 0C. 1D. 2二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 12. 1363−÷×=______. 13. 比较大小:25−______1−(填“>”或“<”). 14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1)把以上各数在下列数轴上用点表示出来:(2)把这些数按照从小到大的顺序排列,并用“<”号连接.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− .根据上述方法,计算:151176061512 −÷−−. 22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津为的是湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −0.3 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 【答案】A【解析】【分析】本题考查正负数的意义,根据规定方向为正相反方向为负直接求解即可得到答案;【详解】解:∵上升2米记为2+米,∴下降3米记为3−米,故选:A .2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 【答案】D【解析】【分析】本题考查了科学记数法,根据科学记数法:10n a ×(110a ≤<,n 为正整数),先确定a 的值,再根据小数点移动的数位确定n 的值即可解答,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:411800 1.1810=×,故选:D .3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4−【答案】A【解析】【分析】根据点A 在数轴上的位置,先确定A 的大致范围,再确定符合条件的数.【详解】解:因为点A 在−2与1−之间,且靠近−2,所以点A 表示的数可能是 1.6−.故选:A .为【点睛】本题考查了数轴上的点表示有理数.题目比较简单.原点左边的点表示负数,原点右边的点表示正数.4. 下列各数中,最小的数是( )A. 0B. 153C. ()32−D. 23−【答案】D【解析】【分析】本题考查了有理数的乘方、有理数的比较大小,先计算出()32−、23−,再根据有理数的大小比较法则:正数大于0,负数小于0,正数大于负数,两个负数进行比较,绝对值大的反而小,进行比较即可得出答案,熟练掌握有理数的大小比较法则是解此题的关键.【详解】解:()328−=−,239−=−, 88−= ,99−=,98>,()32305321∴−<<−<,故选:D .5. 在计算11()()23++−时,按照有理数加法法则,需转化成( )A. 11()23+−B. 1)3+C. 11()23−−D. 1123 −+ 【答案】A【解析】【分析】根据有理数的加法法则计算即可求解. 【详解】解:1123 ++− =1123 +− , 故选:A .【点睛】本题考查了有理数的加法,关键是熟练掌握异号两数相加的计算法则.6. 下列各组数中,互为相反数的是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 【答案】C【解析】【分析】本题主要考查相反数以及绝对值,根据相反数以及绝对值的定义解决此题,熟练掌握相反数以及绝对值的定义是解决本题的关键.【详解】解:A 、2与12互为倒数,故此选项不符合题意;B 、()211−= ,()21∴−与1相等,故此选项不符合题意; C 、211−=− ,()211−=,∴21−与()21−互为相反数,故此选项符合题意; D 、|2|2−=,2∴与|2|−相等,故此选项不符合题意; 故选:C .7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 【答案】A【解析】【分析】求出各种高于或低于标准质量的绝对值,根据绝对值的大小做出判断.【详解】解:∵|+10|<|-15|=|+15|<|20|,∴第1种最接近标准质量.故选:A .【点睛】本题主要考查正数、负数的意义,理解绝对值的意义是正确判断的前提.8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>【答案】A【解析】【分析】根据原点左边的数为负数,原点右边的数为正数.从图中可以看出01a <<,1b <−,||||b a >,再选择即可.【详解】解:由数轴可得:01a <<,1b <−,||||b a >,∴||||a b <−,故A 符合题意;0ab <,故B 不符合题意;22a b <,故C 不符合题意;0a b +<,故D 不符合题意;故选:A .【点睛】本题考查了数轴,绝对值和有理数的运算,数轴上右边表示的数总大于左边表示的数. 9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 27【答案】C【解析】【分析】先求出()2*3−值,再计算()()4*2*3 −− 即可.【详解】解:∵*a b ab b =−,∴()2*3−=()()233×−−−=63−+=3−,∴()()4*2*3 −−=()()4*3−−=()()()433−×−−−=123+=15.故选:C .【点睛】本题考查了新定义下的有理数运算,熟练掌握运算法则是解题的关键.10. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为()A. 1−B. 0C. 1D. 2【答案】B的【分析】绝对值最小的数是0,最小的正整数是1,最大的负整数是1−,依此可得a b c 、、,再相加可得三数之和.【详解】解:由题意可知:011a b c ===−,,,∴()0110a b c ++=++−=.故选:B .【点睛】本题主要考查了有理数的加法,此题的关键是知道绝对值最小的数是0,最小的正整数是1,最大的负整数是1−.二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 【答案】 ①. 23−②. 23 【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据负数的绝对值是它的相反数,可得一个负数的绝对值. 【详解】解:2233−=,23的相反数是23−,23−的绝对值是23. 故答案为(1)23−;(2)23. 【点睛】本题考查了相反数、绝对值的定义.a 的相反数是a −,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0. 12. 1363−÷×=______. 【答案】16− 【解析】【分析】根据有理数的乘除法运算即可. 【详解】解:原式111=236−×=−, 故答案为:16−. 【点睛】本题主要考查有理数的乘除运算,按照乘除为同级运算从左至右求解.13. 比较大小:25−______1−(填“>”或“<”).【解析】【分析】本题考查了有理数的大小比较;根据两个负数比较大小,绝对值大的反而小可得答案. 【详解】解:∵215−<−, ∴215−>−, 故答案为:>.14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.【答案】1.345≤a <1.355【解析】【分析】根据近似数1.35精确到百分位,是从千分位上的数字四舍五入得到的,若干分位上的数字大于或等于5,则百分位上的数字为4;若千分位上的数字小于5,则百分位上的数字为5,即可得出答案.【详解】解:∵近似数1.35是由数a 四舍五入得到的,∴数a 的取值范围是1.345≤a <1.355;故答案为:1.345≤a <1.355.【点睛】本题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度. 15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.【答案】8或4##4或8【解析】【分析】先根据绝对值的含义求解,x y 的值,再根据0,x y +< 分两种情况讨论即可.【详解】解:∵|x |=2,|y |=6,∴x =±2,y =±6,∵x +y <0,∴当x =2,y =﹣6时,x ﹣y =2+6=8;当x =﹣2,y =﹣6时,x ﹣y =﹣2+6=4;故答案为:8或4.【点睛】本题考查的是绝对值的含义,有理数加法的符号的确定,代数式的值,根据绝对值的含义求解,x y 的值,再分类是解本题的关键.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.【答案】4【解析】【分析】由程序图可得第一次输出的数为8,第二次输出的数为4,第三次输出的数为2,第四次输出的数为1,第五次输出的数为4,由此可得规律,进而问题可求解.【详解】解:由程序图可得第一次输出的数为5+3=8,第二次输出的数为1842×=,第三次输出的数为1422×=,第四次输出的数为1212×=,第五次输出的数为1+3=4,第六次输出的数为1422×=,……;由此可得规律为从第二次开始每三次一循环, ∴()202113673.......1−÷=, ∴第2021次输出的数是4;故答案为4.【点睛】本题主要考查有理数的运算及数字规律问题,解题的关键是根据程序图得到数字的一般规律即可.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__. 【答案】15【解析】【分析】根据题意得到0a b +=,1cd =,216m =,代入代数式计算即可.【详解】解:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,0a b ∴+=,1cd =,216m =,22022()a b cd m ∴+−+20220116=×−+0116=−+15=,故答案为:15.【点睛】此题考查了代数式的求值,熟练掌握相反数、倒数、绝对值等知识是解题的关键.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.【答案】 2.5−或4.5【解析】【分析】根据数轴上两点间的距离公式列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:|x +2|+|x -4|=7,当x <-2时,化简得:-x -2-x +4=7,解得:x =-2.5;当-2≤x <4时,化简得:x +2-x +4=7,无解;当x ≥4时,化简得:x +2+x -4=7,解得:x =4.5,综上,x 的值为-2.5或4.5.故答案为:-2.5或4.5.【点睛】此题考查了数轴,弄清数轴上两点间的距离公式是解本题的关键.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1(2)把这些数按照从小到大的顺序排列,并用“<”号连接.【答案】(1)见解析 (2)()1220.502 3.52−<−<−<<<−− 【解析】【分析】(1)利用数轴上表示有理数的方法表示即可.(2)根据数轴上有理数的特点即可求解.【小问1详解】解:0.5−,0,2,122−,( 3.5)−−,2−在数轴上表示为:【小问2详解】由(1)数轴可得:()1220.502 3.52−<−<−<<<−−. 【点睛】本题考查了用数轴表示有理数及利用数轴比较有理数的大小,熟练掌握数轴上有理数的特点:左边的数比右边小是解题的关键.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.【答案】(1)3−(2)27−(3)22(4)11【解析】【分析】(1)根据有理数加减运算法则计算即可求解;(2)根据有理数的运算法则计算即可求解;(3)利用有理数的乘法分配律进行计算即可求解;(4)根据有理数的运算法则计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【小问1详解】解:原式3996=−+− 36=-,3=−;【小问2详解】解:原式()43145=−+÷−−×()4320=−+−−,720=−−,27=−;的【小问3详解】 解:原式1154848486812=×−×+× 8620=−+,220=+,22=;【小问4详解】解:原式()168398=−−−×× ()1639=−−−×,()1627=−−−,1627=−+,11=.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因为237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− . 根据上述方法,计算:13511760461512 −÷+−−. 【答案】116−【解析】 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:111()()41535761260+−−÷− 11()(60)415357126=+−−×− 45504435=−−++16=−, 则13511711660461512 −÷+−−=−. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他的练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后是否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?【答案】(1)守门员最后没有回到初始位置;(2)2次【解析】【分析】(1)根据题意可把记录的数据进行相加,然后问题可求解;(2)根据题意分别得出每次离初始位置的距离,进而问题可求解.【详解】解:(1)由题意得:(+5)+(-3)+(+10)+(-8)+(-6)+(+13)+(-10)=1(m).答:守门员最后没有回到初始位置.(2)第一次离开初始位置的距离为5m ,第二次离开初始位置的距离为5-3=2m ,第三次离开初始位置的距离为2+10=12m ,第四次离开初始位置的距离为12-8=4m ,第五次离开初始位置的距离为4-6=-2m ,第六次离开初始位置的距离为-2+13=11m ,第七次离开初始位置的距离为11-10=1m ,∴守门员离开初始位置达到10m 以上(包括10m)的次数是2次.【点睛】本题主要考查有理数加减混合运算的应用,熟练掌握有理数的加减运算是解题的关键. 23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.【答案】(1)2n −−()(2)第②行的数是第①行相对应的数减2;第③行的数是第①行相对应的数乘以0.5−()(3)每行的第8个数的和是386−【解析】【分析】(1)第①行的每个数是2−的乘方的相反数,其幂指数为数的个数n ;(2)将第①行各项的数减2即得第②行的数,第③行数等于第①行数相应的数乘以0.5−(),即可求解;(3)分别找出每行第8个数,进而计算这三个数的和即可.【小问1详解】解:首先2,4,8,16 很显然后者是前者2倍.由各数符号是交替出现,故考虑到数值的变化可以用(2)n −−表示.【小问2详解】第②行数等于第①行数相应的数减去2,第③行数等于第①行数相应的数乘以0.5−(); 【小问3详解】解:每行的第8个数的和是()()()()88822220.5 −−+−−−+−−×−()2562582560.5=−−−×−386=−.【点睛】本题主要考查了探索数字变化规律,找规律时,善于发现数字之间的共同点,或者是隐藏关系,培养学生的数感是解题的关键.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万的张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −03 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?【答案】(1)2;4 (2)750万元【解析】【分析】(1)把表格中的数据相加,即可得出结论;(2)根据表格得出1日到7日每天的人数,相加后再乘以60即可得到结果.【小问1详解】10月1日的售票量为:1.3+0.6=1.9(万张);10月2日的售票量为:1.9+0.1=2(万张);10月3日的售票量为:2-0.3=1.7(万张);10月4日的售票量为:1.7-0.2=1.5(万张);10月5日的售票量为:(万张);10月6日的售票量为:1.9-0.2=1.7(万张);10月7日的售票量为:1.7+0.1=1.8(万张);所以售票量最多的是10月2日,售票量最少的是10月4日;故答案为:2;4;【小问2详解】由题意得,7天的售票量(单位:万张)分别为:1.9,2.0,1.7,1.5,1.9,1.7,1.8则7日票房:60(1.9+2.0+1.7+1.5+1.9+1.7+1.8)10000=7500000××(元)答:这7天昆明《长津湖》票房共750万元【点睛】本题考查了正数和负数以及有理数的混合运算,掌握正数和负数表示相反意义的量是解答本题的关键..。
2024-2025学年初中七年级上学期(第1-2章) 数学月考试题及答案(新浙教版)
2024-2025学年七年级上学期第一次月考试卷数学试题考试内容:第1至2章,满分120分,难度系数:0.65一、选择题(本大题共10小题,每小题2分,共20分)1.中国是世界上最早提出和采用“正负数表示相反意义的量”的国家,关于正负数的记载最早见于公元一世纪的中国数学著作《九章算术》中,比欧洲早一千余年.如果将“向东走40米”记作“40+米”,那么“向西走30米”记作( ) A .30−米B .30+米C .10−米D .10米2.2024年巴黎奥运会开幕式选择在塞纳河举行.塞纳河包括支流在内的流域总面积为78700平方公里.其中数据78700用科学记数法表示为( ) A .278710×B .37.8710×C .47.8710×D .50.78710×3.在23−、2(3) 、(2)−−、|5|−−、0中,负数的个数是( ) A .1个B .2个C .3个D .4个4.中国人最早使用负数,可追溯到两千多年前的秦汉时期,下列关于负数的计算正确的是( ) A .2=2−−B .()32=8−C .2−的相反数是2D .2−的倒数是0.2−5.下列各对数中,互为相反数的是( ) A .(5)−+与(5)+− B .12−与(0.5)+C .-|-0.01|与1100−−D .13−与0.3 6.在数轴上,点A ,B 在原点O 的同侧,分别表示数a ,1,将点A 向左平移3个单位长度,得到点C .若点C 与点B 互为相反数,则a 的值为( ) A .3B .2C .1−D .07.下列运算过程中,有错误的是( )A .(3﹣412)×2=3﹣412×2B .﹣4×(﹣7)×(﹣125)=﹣(4×125×7)C .91819×16=(10﹣119)×16=160﹣1619D .[3×(﹣25)]×(﹣2)=3×[(﹣25)×(﹣2)]8.定义一种新的运算:如果0a ≠,则有2a b a b =+▲,那么722−▲的值( ) A .34B .32−C .152D .129.如图所示,下列关于a ,b ,c 的说法中正确的个数是( ) ①12a <<②1c <−③2b >−④b a <⑤12c −<<⑥a 到原点的距离大于b 到原点的距离 ⑦在a 与c 之间有2个整数A .3个B .4个C .5个D .6个10.分形的概念是由数学家本华·曼德博提出的.如图是分形的一种,第1个图案有2个三角形;第2个图案有4个三角形;第3个图案有8个二角形;第4个图案有16个三角形;……,下列数据中是按此规律分形得到的三角形的个数是( )A .126B .513C .980D .1024二、填空题(本大题共10小题,每小题3分,共30分)11.12024−的相反数是 . 12.某粮店出售的两种品牌的面粉袋上分别标有质量为()250.1kg ±,()250.2kg ±的字样,从中任意拿出两袋,它们的质量最多相差 kg .1314.按照如图所示的操作步骤,若输入x 的值为10−,则输出的值为 .15.比较两数大小: −76−16.把算式()()()579−−−−+写成省略加号和括号的形式 ,读作 17.比2−小6的数是 .18.当||2,||4x y ==,且2x y +=−,则xy = . 19.已知1xyz xyz =,则x zy x y z++值为 .20.在学习有理数乘法时,李老师和同学们做了这样的游戏,将2023这个数说给第一位同学,第一位同学将它减去它二分之一的结果告诉第二位同学,第二位同学再将听到的结果减去它的三分之一的结果告诉第三位同学.第三位同学再将听到的结果减去它的四分之一的结果告诉第四位同学,…照这样的方法直到全班48人全部传完,则最后一位同学告诉李老师的正确结果是 .三、解答题(本大题共8小题,共70分)21.(本题16分)计算下列各题: (1)()()43772743+−++−;(2)12433−÷−×;(3)()()32211234−+×−+−;(4)()235363412−+×−.22.(本题6分)对于有理数a 、b ,定义新运算:“✞”,a b ab a b ⊗−−. (1)计算:()42⊗−________()24−⊗;()()53−⊗−________()()35−⊗−; 152 −⊗ ________152 ⊗−(填“>”或“=”或“<”); (2)我们知道:有理数的加法运算和乘法运算满足交换律,那么,由(1)计算的结果,你认为这种运算:“✞”是否满足交换律?若满足,请说明理由;若不满足,请举例说明.23.(本题6分)在数轴上画出表示下列各数的点,并用“<”连接下列各数.0,112,3−,()0.5−−,34−−,133+−.24.(本题8分)如图,在数轴上有A、B、C这三个点.回答:(1)A、B、C这三个点表示的数各是多少?A:;B:;C:.(2)A、B两点间的距离是,A、C两点间的距离是.(3)应怎样移动点B的位置,使点B到点A和点C的距离相等?25.(本题8分)“滴滴”司机沈师傅从上午800915:~:在东西方向的江平大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)8636848433+−+−++−−++,,,,,,,,,.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离出发地多少千米?(2)若汽车每千米耗油0.4升,则800915:~:汽车共耗油多少升?(3)若“滴滴”的收费标准为:起步价11元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午800915:~:一共收入多少元?26.(本题8分)观察下列各式: 第1个等式:11111222−×=−+=−;第2个等式:1111123236−×=−+=−; 第3个等式:11111343412−×=−+=−;…… (1)根据上述规律写出第5个等式: ;(2)第n 个等式: ;(用含n 的式子表示) (3)计算:111111112233420222023−×+−×+−×+⋅⋅⋅⋅⋅⋅+−×.27.(本题8分)阅读下列材料:计算111503412÷−+.解法一:原式11150505050350450125503412=÷−÷+÷=×−×+×=.解法二:原式4312505050630012121212÷−+÷×.解法三:原式的倒数为111503412−+÷111111111113412503504501250300=−+×=×−×+×=. 故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的. (2)请你选择两种合适的解法解答下列问题:计算:113224261437−÷−+−28.(本题10分)【概念学习】定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方.比加222÷÷,()()()()3333−÷−÷−÷−等,类比有理数的乘方,我们把222÷÷写作2③,读作“2的圈3次方”,()()()()3333−÷−÷−÷−写作()3−④,读作“()3−的圈4次方”.一般地,把n aa a a a ÷÷÷ 个记作:a ⓝ,读作“a 的圈n 次方”.特别地,规定:a a =①.【初步探究】(1)直接写出计算结果:2023=② ;(2)若n 为任意正整数,下列关于除方的说法中,正确的有 ;(横线上填写序号) A .任何非零数的圈2次方都等于1 B .任何非零数的圈3次方都等于它的倒数 C .圈n 次方等于它本身的数是1或1−D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数()0a a ≠的圈n (3n ≥)次方写成幂的形式:a =ⓝ ;(4)计算:()2111472−−÷−×−④⑥⑧.2024-2025学年七年级上学期第一次月考试卷数学试题考试内容:第1至2章,满分120分,难度系数:0.65一、选择题(本大题共10小题,每小题2分,共20分)1.中国是世界上最早提出和采用“正负数表示相反意义的量”的国家,关于正负数的记载最早见于公元一世纪的中国数学著作《九章算术》中,比欧洲早一千余年.如果将“向东走40米”记作“40+米”,那么“向西走30米”记作( ) A .30−米 B .30+米 C .10−米 D .10米【答案】A【分析】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,根据向东走记为正,则向西走就记为负,直接得出结论即可. 【详解】解:∵向东走40米记作40+米, ∴向西走30米可记作30−米, 故选A .2.2024年巴黎奥运会开幕式选择在塞纳河举行.塞纳河包括支流在内的流域总面积为78700平方公里.其中数据78700用科学记数法表示为( ) A .278710× B .37.8710×C .47.8710× D .50.78710×【答案】C【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中≤<110a ,n 为整数,表示时关键要正确确定a 的值以及n 的值.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:将78700用科学记数法表示为:47.8710× 故选:C .3.在23−、2(3) 、(2)−−、|5|−−、0中,负数的个数是( ) A .1个 B .2个 C .3个 D .4个【答案】B【分析】将每个数进行化简后,得出判断.【详解】解:239−=−,2(93) ,(2)2−−=,|5|5−−=−,因此负数有:23−和|5|−−,共有2个, 故选:B .4.中国人最早使用负数,可追溯到两千多年前的秦汉时期,下列关于负数的计算正确的是( ) A .2=2−− B .()32=8−C .2−的相反数是2D .2−的倒数是0.2−【答案】C【分析】本题考查了绝对值、有理数的乘方、相反数、倒数,熟练掌握这几个定义是解题的关键.根据绝对值、有理数的乘方、相反数、倒数的定义分别计算判断即可. 【详解】解:A 、22−=,故此选项不符合题意; B 、()328−=−,故此选项不符合题意; C 、−2的相反数是2,故此选项符合题意; D 、−2的倒数是0.5−,故此选项不符合题意; 故选:C .5.下列各对数中,互为相反数的是( ) A .(5)−+与(5)+− B .12−与(0.5)−+C .-|-0.01|与1100−−D .13−与0.3 【答案】C【分析】先化简,根据相反数的定义:只有符号不同的两个数即可求解. 【详解】解:A .−(+5)=−5−5)=−5,选项A 不符合题意; B .−(+0.5)=−0.5,与12−相等,选项B 不符合题意;C .−|−0.01|=−0.01,−(1100−)=1100=0.01,−0.01与0.01互为相反数,选项C 符合题意; D .13−与0.3不是相反数,选项D 不符合题意;故选:C .6.在数轴上,点A ,B 在原点O 的同侧,分别表示数a ,1,将点A 向左平移3个单位长度,得到点C .若点C 与点B 互为相反数,则a 的值为( ) A .3 B .2 C .1− D .0【答案】B【分析】先用a 的式子表示出点C ,根据点C 与点B 互为相反数列出方程求解即可. 【详解】解:由题可知:A 点表示的数为a ,B 点表示的数为1, ∵C 点是A 向左平移3个单位长度,∴C 点可表示为:3a −, 又∵点C 与点B 互为相反数,∴310a −+=, ∴2a =. 故选:B .7.下列运算过程中,有错误的是( )A .(3﹣412)×2=3﹣412×2B .﹣4×(﹣7)×(﹣125)=﹣(4×125×7)C .91819×16=(10﹣119)×16=160﹣1619D .[3×(﹣25)]×(﹣2)=3×[(﹣25)×(﹣2)] 【答案】A【分析】各式计算得到结果,即可作出判断.【详解】解:A 、原式=3×2﹣92×2=6﹣9=﹣3,符合题意;B 、原式=﹣(4×125×7),不符合题意;C 、原式=(10﹣119)×16=160﹣1619,不符合题意; D 、原式=3×[(﹣25)×(﹣2)],不符合题意. 故选:A .8.定义一种新的运算:如果0a ≠,则有2a b a b =+▲,那么722−▲的值( ) A .34 B .32− C .152 D .12【答案】C【分析】本题主要考查了有理数的乘方运算,求一个数的绝对值,有理数的加法运算等知识点,熟练掌握相关运算法则是解题的关键. 先计算乘方和绝对值,然后相加即可. 【详解】解:722−▲2722=+−742=+152=,故选:C .9.如图所示,下列关于a ,b ,c 的说法中正确的个数是( ) ①12a << ②1c <− ③2b >− ④b a < ⑤12c −<<⑥a 到原点的距离大于b 到原点的距离 ⑦在a 与c 之间有2个整数A .3个B .4个C .5个D .6个【答案】B【分析】此题考查了利用数轴比较有理数的大小,由a ,b ,c 在数轴上的位置得到1012b c a <−<<<<<,进而逐项求解即可.【详解】解:由题意得,1012b c a <−<<<<<, ∴12a <<,①正确;1c >−,②错误; 2b <−,③错误;b a <,④正确; 12c −<<,⑤正确;a 到原点的距离小于b 到原点的距离,⑥错误;在a 与c 之间有2个整数,⑦正确.∴正确的有4个.故选:B .10.分形的概念是由数学家本华·曼德博提出的.如图是分形的一种,第1个图案有2个三角形;第2个图案有4个三角形;第3个图案有8个二角形;第4个图案有16个三角形;……,下列数据中是按此规律分形得到的三角形的个数是( )A .126B .513C .980D .1024【答案】D【分析】根据前面图案中三角形的个数,找出规律,即可求解. 【详解】解:第1个图案有2个三角形,即12个; 第2个图案有4个三角形,即22个; 第3个图案有8个二角形,即32个; 第4个图案有16个三角形,即42个; 则第n 个图案有2n 个三角形,只有D 选项,当21024n =时,10n =符合题意,其余选项n 都不符合题意, 故选:D二、填空题(本大题共10小题,每小题3分,共30分)11.12024−的相反数是 . 【答案】12024【分析】本题考查了相反数,熟练掌握相反数的概念:“只有符号不同的两个数叫做互为相反数”,是解题的关键. 【详解】解:12024−的相反数是12024. 故答案为:12024. 12.某粮店出售的两种品牌的面粉袋上分别标有质量为()250.1kg ±,()250.2kg ±的字样,从中任意拿出两袋,它们的质量最多相差 kg . 【答案】0.4【分析】本题主要考查正负数的意义,有理数的加减混合运算,根据题意质量相差最多的是()250.2kg ±,再根据有理数的加减运算即可求解,解题的关键理解并掌握正负数的意义,进行有理数的混合运算.【详解】解:根据题可得,质量最少的是少了0.2kg ,质量最多的是多了0.2kg ,∴质量最多相差0.20.20.4(kg)+=, 故答案为:0.4.13 【答案】2−【分析】根据绝对值的意义进行化简即可求解. 【详解】解:2−−=2−, 故答案为:2−.14.按照如图所示的操作步骤,若输入x 的值为10−,则输出的值为 .【答案】25−【分析】本题考查了有理数的混合运算,根据操作步骤列出式子进行计算即可求解. 【详解】解:依题意,()()310529 −÷−×−−()289=×−− 169=−− 25=−故答案为:25−.15.比较两数大小: −76−【答案】>【分析】本题主要考查的是比较有理数的大小,依据两个负数比较大小,绝对值大的反而小比较即可; 【详解】解:∵6677−=,7766−=,6776<, ∴−>−6776, 故答案为:>.16.把算式()()()579−−−−+写成省略加号和括号的形式 ,读作 【答案】 579−+− 负5加7减9【分析】本题主要考查了有理数的加减混合运算,熟练掌握有理数的加减法法则是解题的关键.利用有理数的减法法则和有理数的加法法则解答即可.【详解】()()()()()()579579579−−−−+=−+++−=−+−, 读作:负5加7减9;故答案为:579−+−;负5加7减9. 17.比2−小6的数是 . 【答案】8−【分析】本题考查了有理数的减法,理解题意,根据题意正确列出式子,进行计算即可. 【详解】解:比2−小6的数是268−−=−, 故答案为:8−.18.当||2,||4x y ==,且2x y +=−,则xy = . 【答案】8−【分析】根据绝对值先求出x ,y 的值,再根据2x y +=−得出符合条件的值,计算即可. 【详解】解:∵||2,||4x y ==, ∴2x =±,4y =±, ∵2x y +=−, ∴2,4x y ==−, ∴8xy =−, 故答案为:8−. 19.已知1xyz xyz =,则x zy x y z++值为 . 【答案】1−或3【分析】此题考查了绝对值,以及有理数的除法,熟练掌握运算法则是解本题的关键.根据已知等式得到||xyz xyz =,确定出x ,y ,z 中负因式有0个或2个,原式利用绝对值的代数意义化简即可得到结果. 【详解】解:由1||xyzxyz =,得到||xyz xyz =,x ∴,y ,z 中有0个或2个负数,当2个都为负数时,原式1111=−−+=−; 当0个为负数时,原式1113=++=.∴1x zy xy z++=−或3 故答案为:1−或320.在学习有理数乘法时,李老师和同学们做了这样的游戏,将2023这个数说给第一位同学,第一位同学将它减去它二分之一的结果告诉第二位同学,第二位同学再将听到的结果减去它的三分之一的结果告诉第三位同学.第三位同学再将听到的结果减去它的四分之一的结果告诉第四位同学,…照这样的方法直到全班48人全部传完,则最后一位同学告诉李老师的正确结果是 . 【答案】202348【分析】根据题意列出算式进行计算即可. 【详解】解:根据题意可得:11112023111123448×−×−×−− ……12347202323448=××××……1202348× 202348=. 故答案为:202348. 三、解答题(本大题共8小题,共70分)21.(本题16分)计算下列各题: (1)()()43772743+−++−; (2)12433−÷−× ;(3)()()32211234−+×−+−;(4)()235363412−+×−. 【答案】(1)50− (2)38(3)6(4)12−【分析】(1)根据有理数的加法法则计算即可; (2)根据有理数的混合运算法则解答即可;(3)根据含有乘方的有理数的混合运算法则解答即可; (4)根据乘法运算律解答即可.本题考查了有理数的混合运算,运算律的应用,熟练掌握法则和预算律是解题的关键. 【详解】(1)解:()()43772743+−++− ()43277743=++−− ()70120=+−50=−.(2)解:12433−÷−×()2433=−×−×236=+ 38=.(3)解:()()32211234−+×−+−()11894=−+×−+129=−−+ 6=.(4)解:()235363412−+×−()()()2353636363412=×−−×−+×− 242715=−+−12=−.22.(本题6分)对于有理数a 、b ,定义新运算:“✞”,a b ab a b ⊗−−. (1)计算:()42⊗−________()24−⊗;()()53−⊗−________()()35−⊗−; 152 −⊗ ________152 ⊗−(填“>”或“=”或“<”); (2)我们知道:有理数的加法运算和乘法运算满足交换律,那么,由(1)计算的结果,你认为这种运算:“✞”是否满足交换律?若满足,请说明理由;若不满足,请举例说明. 【答案】(1)=,=,= (2)满足交换律,理由见解析【分析】本题考查有理数的混合运算,新定义,理解新定义是关键. (1)按照题中新定义的运算进行计算即可作出判断; (2)就一般情况根据新定义进行计算即可.【详解】(1)解:∵()424(2)4(2)10⊗−=×−−−−=−,()24(2)4(2)410−⊗=−×−−−=−; ∴()42(2)4⊗−=−⊗;∵()()53(5)(3)(5)(3)23−⊗−=−×−−−−−=,()()35(3)(5)(3)(5)23−⊗−=−×−−−−−=,∴(5)(3)(3)(5)-⊗-=-⨯-;∵1115557222 −⊗=−×−−−=− ,1115557222⊗−=×−−−−=− ; ∴115522 −⊗=⊗− ; 故答案:=,=,=(2)解:运算:“✞”满足交换律 理由如下:由新定义知:a b ab a b ⊗−−,b a ba b a ⊗−−, ∴a b b a ⊗=⊗,表明运算“✞”满足交换律.23.(本题6分)在数轴上画出表示下列各数的点,并用“<”连接下列各数.0,112,3−,()0.5−−,34−−,133+−.【答案】见解析,()11300.5133234<<−−<+−<−<−−【分析】本题考查了有理数的大小比较,解题的关键是先将所给各数化简,在数轴上表示出各数,再根 【详解】解:()33110.50.5,,334433−−=−−=−+−=− . 画出数轴并在数轴上表示出各数如图:根据数轴的特点从左到右用“<”把各数连接起来为: ()1313300.51342+−<−<−−<<−−<24.(本题8分)如图,在数轴上有A 、B 、C 这三个点.回答:(1)A 、B 、C 这三个点表示的数各是多少?A : ;B : ;C : .(2)A 、B 两点间的距离是 ,A 、C 两点间的距离是 . (3)应怎样移动点B 的位置,使点B 到点A 和点C 的距离相等? 【答案】(1)6−、1、4 (2)7;10(3)点B 向左移动2个单位【分析】本题考查了是数轴,运用数轴上点的移动和数的大小变化规律是左减右加是解答此题的关键. (1)本题可直接根据数轴观察出A 、B 、C 三点所对应的数; (2)根据数轴的几何意义,根据图示直接回答;(3)由于10AC =,则点B 到点A 和点C 的距离都是5,此时将点B 向左移动2个单位即可. 【详解】(1)解:根据图示可知:A 、B 、C 这三个点表示的数各是6−、1、4, 故答案为:6−;1;4.(2)解:根据图示知:AB 的距离是()167−−=;AC 的距离是6410−−=, 故答案为:7;10;(3)解:∵A 、C 的距离是10, ∴点B 到点A 和点C 的距离都是5,∴应将点B 向左移动2B 表示的数为1−,5ABBC ==. 25.(本题8分)“滴滴”司机沈师傅从上午800915:~:在东西方向的江平大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)8636848433+−+−++−−++,,,,,,,,,.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离出发地多少千米?(2)若汽车每千米耗油0.4升,则800915:~:汽车共耗油多少升?(3)若“滴滴”的收费标准为:起步价11元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午800915:~:一共收入多少元? 【答案】(1)将最后一批乘客送到目的地时,沈师傅在第一批乘客出发地的东面,距离是5千米 (2)800915:~:汽车共耗油21.2升(3)沈师傅在上午800915:~:一共收入156元【分析】本题考查了正数和负数在实际问题中的应用,明确正负数的含义及题中的数量关系,是解题的关键.(1)把记录的数字相加即可得到结果,结果为正则在东面,结果为负则在西面; (2)把记录的数字的绝对值相加,再乘以0.4,即可得答案;(3)先计算起步费总额,再将超过3千米的路程相加,所得的和乘以2,将起步费加上超过3千米的费用总额,即可得答案.【详解】(1)解:∵(8)(6)(3)(6)(8)(4)(8)(4)(3)(3)5++−+++−+++++−+−++++=, ∴将最后一批乘客送到目的地时,沈师傅在第一批乘客出发地的东面,距离是5千米; (2)解:|8||6||3||6||8||4||8||4||3||3|+−+++−+++++−+−++++8636848433=+++++++++ 53=,∴0.45321.2×=(升),∴800915:~:汽车共耗油21.2升. (3)解:∵共营运十批乘客, ∴起步费为:1110110×=(元), 超过3千米的收费总额为:[](83)(63)(33)(63)(83)(43)(83)(43)(33)(33)246−+−+−+−+−+−+−+−+−+−×=(元),∴11046156+=(元),∴沈师傅在上午800915:~:一共收入156元 26.(本题8分)观察下列各式: 第1个等式:11111222−×=−+=−;第2个等式:1111123236−×=−+=−; 第3个等式:11111343412−×=−+=−;…… (1)根据上述规律写出第5个等式: ;(2)第n 个等式: ;(用含n 的式子表示) (3)计算:111111112233420222023−×+−×+−×+⋅⋅⋅⋅⋅⋅+−× .【答案】(1)11111565630−×=−+=− (2)()11111111n n n n n n −×=−+=−+++ (3)20222023−【分析】本题考查了有理数的乘法运算,(1)根据题干,模仿写出第5个等式,即可作答;(2)由(1)以及题干条件,即得第n 个等式:()11111111n n n n n n −×=−+=−+++;(3) 由(2)的结论,先化简再运算,即可作答,掌握第n 个等式:()11111111n n n n n n −×=−+=−+++是解题的关键. 【详解】(1)解:依题意,第5个等式: 11111305656−×=−+=−; (2)解:第1个等式:11111222−×=−+=−; 第2个等式:1111123236−×=−+=−; 第3个等式:11111343412−×=−+=−; 第4个等式:11111454520−×=−+=−; 第5个等式:11111565630−×=−+=−; ……故第n 个等式:()11111111n n n n n n −×=−+=−+++; (3)解:由(2)知第n ()11111111n n n n n n −×=−+=−+++;则111111112233420222023−×+−×+−×+⋅⋅⋅⋅⋅⋅+−×111111112233420222023=−++−++−++⋅⋅⋅⋅⋅⋅+−+111111112022202322334=−+−+−++⋅⋅⋅⋅⋅⋅−+112023=−+ 20222023=−27.(本题8分)阅读下列材料:计算111503412÷−+.解法一:原式11150505050350450125503412=÷−÷+÷=×−×+×=.解法二:原式4312505050630012121212÷−+÷×.解法三:原式的倒数为111503412−+÷111111111113412503504501250300=−+×=×−×+×= . 故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的. (2)请你选择两种合适的解法解答下列问题:计算:113224261437−÷−+−【答案】(1)没有除法分配律,故解法一错误; (2)过程见解析,114−.【分析】本题考查了有理数的除法乘法分配律; (1)根据有理数的运算法则进行判断,可得答案;(2)根据有理数的运算顺序,计算原式的倒数,和按照先计算括号内的,最后计算除法,两种方法求解,即可得出答案.【详解】(1)解:没有除法分配律,故解法一错误; (2)解法一:原式的倒数为: 132216143742 −+−÷− , ()132********=−+−×−()()()()13224242424261437=×−−×−+×−−×− 14=−;所以原式114=−; 解法二:原式=17928124242424242 −÷−+−17928124242−+− =−÷1424214=−×114=−. 28.(本题10分)【概念学习】定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方.比加222÷÷,()()()()3333−÷−÷−÷−等,类比有理数的乘方,我们把222÷÷写作2③,读作“2的圈3次方”,()()()()3333−÷−÷−÷−写作()3−④,读作“()3−的圈4次方”.一般地,把n aa a a a ÷÷÷ 个记作:a ⓝ,读作“a 的圈n 次方”.特别地,规定:a a =①.【初步探究】(1)直接写出计算结果:2023=② ;(2)若n 为任意正整数,下列关于除方的说法中,正确的有 ;(横线上填写序号) A .任何非零数的圈2次方都等于1B .任何非零数的圈3次方都等于它的倒数C .圈n 次方等于它本身的数是1或1−D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数()0a a ≠的圈n (3n ≥)次方写成幂的形式:a =ⓝ ;(4)计算:()2111472 −−÷−×− ④⑥⑧. 【答案】(1)1;(2)ABD ;(3)21n a − ;(4)1149− 【分析】(1)根据题意,计算出所求式子的值即可;(2(3)根据题意,可以计算出所求式子的值.(4)根据题意,可以计算出所求式子的值.【详解】解:(1)由题意可得,2023202320231=÷=②,故答案为:1;(2)A .因为()10a a a a =÷=≠②,所以任何非零数的圈2次方都等于1,正确;B .因为()10a a a a a a=÷÷=≠③,所以任何非零数的圈3次方都等于它的倒数,正确; C .圈n 次方等于它本身的数是1或1−,说法错误,()11−=②;D .根据新定义以及有理数的乘除法法则可知,负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数,正确;故答案为:ABD ;(3)21111n a a a a a a a a a a − =÷÷÷÷=⋅⋅= ⓝ,故答案为:21n a −; (4)解:()2114172 −−÷−×− ④⑥⑧ ()()()()711111111967772222− =−÷÷⋅⋅⋅÷−÷−÷−÷−÷−×−÷−÷⋅⋅⋅÷−8个16个 41119647=−−÷×1149=−−4950=−.。
七年级数学上学期第一次月考试卷含答案(2020新教材)
——教学资料参考参考范本——七年级数学上学期第一次月考试卷含答案(2020新教材)______年______月______日____________________部门(时间:120分钟 总分:150分) 第一部分 基础题(100分)一.选择题(每题3分,共12分)1. (午练10T1变式) 计算×(-3)的结果是( )31A .-1B .-2C .2D .-322. (课本P28习题T4变式)下列化简错误的是( )A .-(-5)=5B .-|-|=C .-(-3.2)=3.2D .+(+7)=754543. (课本P36练一练T1变式)下列各式中,计算结果为正确的是( )A .6-(-11)=-5B .6-11=5C .-6-11=-17D .(-6)-(-11)=174. (课本P29习题T7变式)下列比较大小结果正确的是( ) A .3<-7 B .-5.3<-5.4 C .−>− D .-|-3.71|>-(-0.84)8385二.填空题(每题3分,共18分)5. (午练4T4变式)-的倒数是 .716. (课本P14习题T4变式)在一次军事训练中,一架直升机“停”在离海面80m 的低空,一艘潜水艇潜在水下50m. 若直升机的高度记作+80m 则潜水艇的高度记作 .7. (午练2T8变式) 正常人行走时的步长大约是50 (填单位). 8. (午练5T12变式)若|m|=|-5|,则m= .9. (午练6T10变式)绝对值大于2且不大于4的整数有 个. 10. (午练10T10变式)从-3,-4,0,5中取出两个数,所得的最大乘积是 . 三.解答题(共70分)11. (8分) (课本P17练一练变式)把下列各数填入相应的集合中: -6, 9.3, -, 15, 0, -0.33, -0.333…, 1.41421356, -3,3.3030030003…, -3.1415926.61正数集合:{ … } 负数集合: { … } 有理数集合: { … } 无理数集合: { … }12. (10分) (午练6T11变式)在数轴上表示下列各数,并用“<”号连接起来.-(-5), -|2|, -1, 0.5, -(-3), -|-4|, 3.5.2113. (12分)(课本习题2.5-2.6)计算:(1) (-73)-41 (2) (-)×(-8) 167(3) (-)-(-0.2)+1 (4) 1÷(-)×56727114.(12分) (午练10,11变式)计算:(1)(+−)×(-60) (2) (-)×(-3)÷(-1)÷3;4112565232141(3) (-5)×(-3)+(-7)×(-3)+12×(-3) (4) 19×(-8)767676161515. (8分)(午练11T12变式)根据下列语句列式并计算:(1)40加上-25的和与-3所得的积(2)32与61的商减去-所得的差.316. (8分) (课本P36T2) 在图中输入-1,按所示的程序运算.试根据运算程序写出算式,并算出输出的结果.17. (12分) (午练8T13变式)高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,-9,+7,-17,-3,+12,-6,-8,+5,+16.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为8升/千米,则这次养护共耗油多少升?第二部分提高题(50分)一.选择题(每题3分,共6分)18.下列说法中,正确的有()①两个有理数的和不小于每个加数②两个有理数的差不大于被减数③相反数等于本身的数为零④多个不为零的有理数相乘,当负因数有奇数个时积为负.A.0个 B.1个 C.2个D.3个19.计算: 1-2+3-4+…+99-100的值为()A.5050 B.100 C.50 D.-50二.填空题(每题3分,共12分)20.小红在写作业时,不慎将一滴墨水滴在数轴上,根据图中的数据,请确定墨迹遮盖住的整数的和为 .21. 若|a|=3,|b|=5,ab<0,则a+b= .22.有三个互不相等的整数a,b,c,如果abc=3,那么a+b+c= .23.将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中C的位置是有理数 .三.解答题(共32分)24. (10分) 如图,小明有5张写着不同数的卡片,请你按照题目要求抽出卡片,完成下列问题:(1)从中取出3张卡片,使这3张卡片上数字的乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?25. (12分) (1)已知-[-(-a)]=5,求a的相反数(2)已知x的相反数是2,且2x+3a=5,求a的值.26.(10分)已知点A,B 是数轴上的点,且点A 表示数-3,请参照图并思考,完成下列各题:(1)将A 点向右移动4个单位长度,那么终点B 表示的数是 ,此时 A,B 两点间的距离是 .(2)若把数轴绕点A 对折,则对折后,点B 落在数轴上的位置所表示的数为 .(3)若(1)中点B 以每秒2个单位长度沿数轴向左运动,A 不动,多长时间后,点B 与点A 距离为2个单位长度?试列式计算.七年级数学答案第一部分1.A2.B3.C4.C5.-76. -50m7.厘米.8. ±5.9.4 10.1211.正数集合:{ 9.3, 15, 1.41421356, 3.3030030003… … } 负数集合: {-6, -, -0.33, -0.333…, -3, -3.1415926. … }61有理数集合: {-6, 9.3, -, 15, 0, -0.33, -0.333…,1.41421356, -3.1415926 … }61无理数集合: { -3, 3.3030030003…, … } 12.图略-|-4|<-|2|<-1<0.5<-(-3)<3.5<-(-5)2113.(1)-114 (2) (3)0 (4)-272114.(1)10 (2)- (3)0 (4)-159572115.(1)(40-25)×(-3)= 15×(-3)=-45 (2) 32÷6-(-)=+=313163131716.解:输入-1, -1+4-(-3)-5=3+3-5=1<2重新输入1, 1+4-(-3)-5=5+3-5=3>2,可以输出. 输出的结果为3. 17.(1)根据题意可得:向东走为“+”,向西走为“-”;则收工时距离等于+17-9+7-17-3+12-6-8+5+16=+14(千米), 所以最后到达出发点正东方向移动14千米处. (2)最远处离出发点有17千米;(3)从开始出发,一共走的路程为|+17|+|-9|+|+7|+|-17|+|-3|+|+12|+|-6|+|-8|+|+5|+|+16|=100(千米), 故从出发开始到结束油耗为100×8=800(升).第二部分18.C 19.D 20.-5 21.±2 22.-323.-2924.(1)抽取的3张卡片是-7、-5、+4,乘积的最大值为140.(2)抽取的2张卡片是-7、1,商的最小值-7.25.(1)由-[-(-a)]=5,得-a=5,则a=-5.∴a的相反数是8.(2)由x的相反数是2,知x=-2,则-4+3a=5,有3a=9,解得:a=326.(1)1,4.(2)-7(3)[ 1-(-3)-2]÷2=1, [ 1-(-3)+2]÷2=3,所以,1或3秒钟后,点B与点A距离为2个单位长度.。
河南省郑州市2024-2025学年七年级上学期第一次月考数学试题(含答案解析)
河南省郑州市2024-2025学年七年级上学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下图是由7个小正方体组合而成的几何体,从正面看,所看到的图形是()A .B .C .D .2.正方体的截面不可能是()A .四边形B .五边形C .六边形D .七边形3.据2021年5月12日《天津日报》报道,第七次全国人口普查数据公布,普查结果显示,全国人口共141178万人.将141178用科学记数法表示应为()A .60.14117810⨯B .51.4117810⨯C .414.117810⨯D .3141.17810⨯4.下列每对式子中,计算结果相等的一组是()A .()23--与()32--B .23-与()23-C .332-⨯与232-⨯D .32-与()32-5.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是()A .a b >B .0ab <C .0b a ->D .0a b +>6.若有理数a ,b ,c 满足10abc =,0a b c ++=,则a ,b ,c 中负数的个数是()A .3B .2C .1D .07.一个几何体的三视图如图所示,那么这个几何体的侧面积是()A .4πB .6πC .8πD .12π8.已知32x y ==,,且x y >,则x y +的值为()A .5-B .1-C .5或1-D .59.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是()A .B .C .D .10.观察下列整数:在上述“整数宝塔”中,第4层第2个数是17,则第19层第20个数是()A .372B .376-C .380D .384-二、填空题11.如果盈利350元记作+350元,那么亏损80元记作元.12.一个棱柱有21条棱,则它有个面.13.已知2(2)|3|0a b -++=,则a b 的值是.14.规定一种运算a bad bc c d=-,例如232534245=⨯-⨯=-,请你按照这种运算的规定,计算()2141.259--的值为.15.把一个圆柱体的侧面展开后得到一个长方形,长方形的长是4π厘米,宽是2π厘米,这个圆柱体的底面半径是厘米.三、解答题16.计算:(1)3171112142127⎛⎫⎛⎫---⨯- ⎪ ⎪⎝⎭⎝⎭;(2)()323383234278⎡⎤⎛⎫--÷-⨯÷⎢⎥ ⎪⎝⎭⎢⎥⎣⎦;(3)()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭.17.画出数轴,并解答下列问题:(1)在数轴上表示下列各数:5,3.5,122-,-1;(2)在数轴上标出表示-1的点A ,写出将点A 沿数轴平移4个单位长度后得到的数.18.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值为1,求2a b x cdx++-19.如图是由几个小正方体所搭成的几何体上面看到的图形,小正方形中的数字表示在该位置的小正方体的个数,请你画出从正面、左面可以看到的图形.20.如图,把一根底面半径为2dm ,高为6dm 的圆柱形木料沿相互垂直的两条直径锯成大小相等的4块,每块木料的表面积是多少平方分米?21.某登山队以二号营地为基准,开始向距二号营地500米的顶峰冲击,他们记向上为正,行进过程记录如下:(单位:米):+150,﹣35,﹣40,+210,﹣32,+20,﹣18,﹣5,+20,+85,﹣25(1)他们最终有没有登上顶峰?若没有,距顶峰还有多少米?(2)登山时,若5名队员在记录的行进路线上都使用了氧气,且每人每米要消耗氧气0.05升,则他们共耗氧多少升?22.【背景知识】数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A 点、B 点表示的数为a 、b ,则A ,B 两点之间的距离AB a b =-,若a >b ,则可简化为AB a b =-;线段AB 的中点M 表示的数为2a b+.【问题情境】已知数轴上有A 、B 两点,分别表示的数为10-,8,点A 以每秒3个单位的速度沿数轴向右匀速运动,点B 以每秒2个单位向左匀速运动.设运动时间为t 秒(t >0).【综合运用】(1)运动开始前,A 、B 两点的距离S 为多少;线段AB 的中点M 所表示的数是多少?(2)点A 运动t 秒后所在位置的点C 表示的数为多少;点B 运动t 秒后所在位置的点D 表示的数为多少;(用含t 的式子表示)(3)它们按上述方式运动,A 、B 两点经过多少秒会相距4个单位长度?参考答案:题号12345678910答案ADBDABBDCC1.A【分析】根据主视图是从物体正面看所得到的图形解答即可.【详解】解:根据主视图的定义可知,此几何体的主视图是A 中的图形,故选A .【点睛】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.2.D【分析】用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,据此判断即可.【详解】用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,不可能为七边形.故选D .【点睛】本题考查正方体的截面.正方体有六个面,截面与其六个面相交最多得六边形,不可能是七边形或多于七边的图形.3.B【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:141178=1.41178×105,故选:B .【点睛】此题考查科学记数法的表示方法,关键是确定a 的值以及n 的值.4.D【分析】本题主要考查了有理数的乘方计算,乘法计算,分别计算出对应选项中的两个数的结果即可得到答案.【详解】解:A 、()239--=-与()328--=不相等,不符合题意;B 、239-=-与()239-=不相等,不符合题意;C 、33224-⨯=-与23218-⨯=-不相等,不符合题意;D 、()328-=-与()328-=-相等,符合题意;故选:D .5.A【分析】本题考查了利用数轴比较大小.根据图示知0b a <<,然后利用有理数的加、减、乘的法则对以下选项进行一一分析、判断.【详解】解:如图:根据数轴可知,0b a <<,∴a b >,0ab >,0b a -<,0a b +<,观察四个选项,选项A 符合题意.故选:A .6.B【分析】本题考查利用有理数乘法和加法的符号,来判断有理数的符号.熟练掌握有理数的乘法运算法则:“同号为正,异号为负.”加法法则:“同号相加,取相同的符号,异号相加,取绝对值大的符号.”是解题的关键.根据有理数的乘法法则:同号为正,异号为负,以及互为相反数的两数之和为0,进行判断即可.【详解】解:∵100abc =>,∴三数均为正,或两数为负,一数为正,当三数均为正时:0a b c ++>,不符合题意;∴三数中有两数为负,一数为正.故选:B .7.B【分析】根据三视图可知,该几何体是圆柱,利用圆柱的侧面积公式为S =2πrh 进行计算;【详解】∵一个圆柱的底面直径为2,高为3,∴这个圆柱的侧面积是:πd×3=6π.故选:B.【点睛】考查由三视图还原几何体,圆柱体侧面积求法,正确记忆圆柱体的侧面积公式是解题关键;在计算这类题时要清楚圆柱的侧面是一个矩形,底面圆的周长为矩形的长,高为宽,计算即可.8.D【分析】本题主要考查了绝对值、代数式求值等知识点,正确确定x 的值成为解题的关键.先根据绝对值以及已知条件确定x 的值,然后代入计算即可.【详解】解:∵3x =,∴3x =±,∵2y =,且x y >,∴3x =,∴5x y +=.故选D .9.C【详解】A 、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B 、剪去阴影部分后,无法组成长方体,故此选项不合题意;C 、剪去阴影部分后,能组成长方体,故此选项正确;D 、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选C .10.C【分析】本题考查数字的变化类,根据题目中的数字,可以发现数字的变化规律,从而可以求得第19层第20个数,本题得以解决.解答本题的关键是明确题意,发现题目中数字的变化规律,求出相应的数字.【详解】解:由题目中的数字可知,第1层有2个数,最后的数字是122⨯=,第2层有3个数,最后的数字是()236⨯-=,第3层有4个数,最后的数字是3412⨯=,第4层有5个数,最后的数字是()4520⨯-=,…,故第19层第20个数是:1920380⨯=,故选:C .11.80-【分析】根据相反意义的量的定义即可得.【详解】因为盈利和亏损是一对相反意义的量,所以亏损80元记作80-元,故答案为:80-.【点睛】本题考查了相反意义的量,熟记定义是解题关键.12.9【分析】设该棱柱为n 棱柱,则棱的条数为3n ,面数为2n +,由此可求得n 和面数.【详解】解:设该棱柱为n 棱柱,由题意,得:321n =,解得:7n =,∴该棱柱有729+=个面,故答案为:9.【点睛】本题考查棱柱,熟知n 棱柱的棱数和面数与n 的关系是解答的关键.13.9【分析】先根据偶次幂和绝对值的非负性求得a 、b 的值,最后计算即可.【详解】解:∵2(2)|3|0a b -++=∴a-2=0,b+3=0,即a=2,b=-3∴()2=3=9a b -.故答案为9.【点睛】本题考查了偶次幂和绝对值的非负性,运用偶次幂和绝对值的非负性求得a 、b 的值成为解答本题的关键.14.14-【分析】本题主要考查了有理数混合运算,利用新运算法则得到有理数混合运算,然后进行计算即可.先将()2141.259--化成有理数四则混合运算计算即可.【详解】解:()2141.259--()()2194 1.25=-⨯--⨯()195=⨯--95=--14=-.故答案为:14-.15.1或2【分析】本题考查了圆柱的侧面展开图与底面周长,利用分类讨论的思想解决问题是关键.根据圆柱的底面周长大于圆柱的高和圆柱的底面周长小于圆柱的高分别求解即可.【详解】解:当圆柱的底面周长大于圆柱的高时,圆柱的底面周长为4π厘米,则底面半径是422ππ÷÷=(厘米),当圆柱的底面周长小于圆柱的高时,圆柱的底面周长为2π厘米,则底面半径是221ππ÷÷=(厘米),即这个圆柱体的底面半径是2厘米或1厘米,故答案为:2或1.16.(1)1121-(2)93(3)6【分析】本题考查有理数的混合运算.(1)先利用有理数乘法分配律计算乘法,再去括号,计算加减法即可;(2)先计算乘方,再计算括号内减法运算和乘除法运算,最后再计算除法即可;(3)先计算乘方,求绝对值,再计算乘法,最后计算减法即可.【详解】(1)解:原式7578142127⎛⎫⎛⎫=---⨯- ⎪ ⎪⎝⎭⎝⎭78587814727127⎡⎤⎛⎫⎛⎫⎛⎫=-⨯--⨯--⨯- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2021273⎛⎫=--++ ⎪⎝⎭2021273=+--1121=-;(2)解:原式()278842764273⎡⎤⎛⎫=--÷-⨯⨯ ⎪⎢⎥⎝⎭⎣⎦1313⎛⎫=-÷- ⎪⎝⎭93=;(3)解:原式()11884=⨯+-⨯82=-6=.17.(1)见解析;(2)3或5-【分析】(1)画出数轴,在数轴上用点表示出已知数据;(2)画出数轴,根据题意平移,分左右平移两种情况,写出平移后的点表示的数即可.【详解】解:(1)如图:(2)如图:将点A 向左平移得到的点表示的数是5-,将点A 向右平移得到的点表示的数是3;将点A 平移4个单位长度后得到的数是3或5-.【点睛】本题考查了数轴的应用,掌握数轴的三要素是解题的关键.18.0或2.【分析】根据相反数,绝对值,倒数的概念和性质求得a 与b ,c 与d 及x 的关系或值后,代入代数式求值.【详解】∵a ,b 互为相反数,c ,d 互为倒数,∴a+b=0,cd=1,∵|x|=1,∴x=±1,当x=1时,a+b+x 2-cdx=0+12-1×1=0;当x=-1时,a+b+x 2+cdx=0+(-1)2-1×(-1)=2.【点睛】本题主要考查相反数,绝对值,倒数的概念及性质.(1)相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;(2)倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;(3)绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.19.见解析【分析】本题考查了几何体的三视图,理解主视图和左视图的概念是解题的关键.由已知条件可知,主视图有3列,每列小正方数形数目分别为2,3,4;左视图有2列,每列小正方形数目分别为4,2.据此可画出图形.【详解】解:作图如下:20.每块木料的表面积是()824π+平方分米【分析】圆柱形木料沿相互垂直的两条直径锯成大小相等的4块,每块木料的上下底面是半径为2dm 的14圆,侧面展开图是长为12222dm 4π⎛⎫⨯⨯++ ⎪⎝⎭,宽为6dm 的矩形,将底面与侧面面积相加可得表面积.【详解】解:每块木料的上下底面的面积为:()221222dm 4ππ⨯⨯⨯=,侧面的面积为:()2122226624dm 4ππ⎛⎫⨯⨯++⨯=+ ⎪⎝⎭故每块木料的表面积是:()2262424dm 8πππ++=+.答:柱形木料沿相互垂直的两条直径锯成大小相等的4块,每块木料的表面积是()824π+平方分米.【点睛】本题主要考查几何体表面的计算方法,抓住圆柱体切割后的几何体的构成特点与展开情况是解题关键.21.(1)没有登顶,距离顶峰还有170米;(2)他们共耗氧气160升.【分析】(1)根据有理数的加法,可得到达的地点,再根据有理数的减法,可得他们距顶峰的距离;(2)根据路程乘以5个人的单位耗氧量,可得答案.【详解】(1)解:+150﹣35﹣40+210﹣32+20﹣18﹣5+20+85﹣25=330(米),500﹣330=170(米).答:他们最终没有登顶,距顶峰还有170米;(2)解:(+150+|﹣35|+|﹣40|+210+|﹣32|+20+|﹣18|+|﹣5|+20+85+|﹣25|)×(5×0.05)=640×0.25=160(升).答:他们共耗氧气160升.【点睛】本题考查了正数和负数以及有理数的混合运算,利用有理数的加法是解题关键,注意路程乘以5个人的单位耗氧量是总耗氧量.22.(1)18,1-(2)103t-+;8-2t(3)2.8秒或4.4秒【分析】(1)根据数轴两点距离求AB的距离,利用数轴中点坐标公式计算即可;(2)先求距离,再利用起点表示的数加或减距离即可求解;(3)根据相遇前与相遇后的等量关系分类讨论列一元一次方程,解方程即可.【详解】(1)解:S=|-10-8|=18∵1081 2-+=-∴M表示的数是:-1;(2)解:AC=3t,BD=2t,C表示的数:-10+3t,D表示的数:8-2t;(3)设它们按上述方式运动,A、B两点经过t秒会相距4个单位长度,当点A在点B左侧时∶依题意列式,得3t+2t=18-4,解得t=2.8;当点A在点B右侧时∶3t+2t=18+4,解得t=4.4,答:它们按上述方式运动,A、B两点经过2.8秒或4.4秒会相距4个单位长度.【点睛】本题考查数轴上点数轴上点表示数,数轴上两点间距离,中点表示的数,用代数式表示线段的长,一元一次方程,数轴上点表示数,数轴上两点间距离,中点表示的数,用代数式表示线段的长,一元一次方程是解题关键.。
安徽省合肥市蜀山区2024-2025学年七年级上学期第一次月考数学试题(含答案解析)
安徽省合肥市蜀山区2024-2025学年七年级上学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.2-的相反数是()A .2B .2-C .12D .12-2.把()()()()12834--+--++写成省略括号的和的形式应为()A .12834---+B .12834--++C .12834-+++D .12834---3.下列计算正确的是()A .235-+=B .()1818⎛⎫-÷-= ⎪⎝⎭C .()236-=-D .()743---=-4.计算()()2024202511-+-等于()A .2B .0C .1-D .2-5.下列各题中,数值相等的是()A .32和23B .()26-和26-C .()47--和47D .()32-和32-6.下列说法中,不正确的是()A .0是绝对值最小的数.B .绝对值是它本身的数是正数.C .相反数是它本身的数是0D .平方是它本身的数是0与1.7.已知a 、b 互为相反数,c 、d 互为倒数,x 等于4的2次方,则式子()2cd a b x x --+的值为()A .23B .45C .48D .328.在()2024--,2024--,0,3524⎛⎫- ⎪⎝⎭,22024-,202-各数中,负数的个数是()A .6个B .5个C .4个D .3个9.有理数a 在数轴上的位置如图所示,下列各数中,可能在0到1之间的是()A .|a|-1B .|a|C .-aD .a +110.如果0a b c ++=,且||||||a b c >>,那么下列式子可能成立的是()A .0c >,0a <B .0b <,0c >C .0b >,0c <D .0b =二、填空题11.若5a =-,则a =.12.比较大小:32-213-.(用“>”“=”或“<”填空).13.已知|2||3|0x y -+-=,则x y +=.14.已知a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,d 表示倒数等于本身的数,则a b c d --+的值为.15.设a 是不为1的有理数,我们把11a-称为a 的差倒数.如−2的差倒数是()11123=--,2的差倒数是1112=--.已知125a a =,是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,则2024a 的值为.三、解答题16.(1)7.38.2 5.1 1.2-+-+(2)()151104⎡⎤⎣⎦----(3)52100.5339⎛⎫-⨯-÷⎪⎝⎭(4)1341114272856⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭(5)()()32140.515--⨯----(6)()32222 2.4323⎡⎤⎛⎫⎡⎤--⨯⨯--- ⎪⎢⎥⎣⎦⎝⎭⎣⎦17.把下列各数填入相应的大括号内:()()211,4,0.01,0,2,7,,1,3355----+---正数集合:{};负数集合:{};整数集合:{};分数集合:{};非负整数集合:{}18.在数轴上表示下列各数,并把它们用“<”连接起来.-(+4)、1、-(-3.5)、0、-∣-2∣、12-19.某粮食加工厂从生产的粮食中抽出20袋检查质量,以每袋50千克为标准,将超过的千克数记为正数,不足的千克数记为负数,结果记录如下:与标准质量的偏差:单位(千克)0.7-0.5-0.2-00.4+0.5+0.7+袋数1345331问:这20袋大米共超重或不足多少千克?总质量为多少千克?20.小明同学在查阅大数学家高斯的资料时,知道了高斯如何求1+2+3+…+100.小明于是对从1开始连续奇数的和进行了研究,发现如下式子:第1个等式:211=;第2个等式:2132+=;第3个等式:21353++=探索以上等式的规律,解决下列问题:(1)13549++++=…(2);(2)完成第n 个等式的填空:2135()n ++++=…;(3)利用上述结论,计算51+53+55+ (109)21.足球比赛中,根据场上攻守形势,守门员会在门前来回跑动,如果以球门线为基准,向前记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m ):7+,3-,8+,4+,6-,8-,14+,15-.(假定开始计时时,守门员正好在球门线上)(1)守门员最后是否回到球门线上?(2)假设守门员每跑1米消耗0.1卡路里的能量,守门员在这段时间内共消耗了多少卡路里的能量?(3)如果守门员离开球门线的距离超过10m (不包括10m ),则对方球员挑射极可能造成破门.问:在这一时间段内,对方球员有几次挑射破门的机会?简述理由.22.如图,数轴上的点A ,B ,C 分别表示3,1,2--,点P 是数轴上一动点.(1)若动点P 从点B 出发以每秒3个单位长度的速度沿数轴向右运动,经过5秒后,点P 到点A,B,C的距离之和为多少?(2)若点P先向左平移3个单位长度,再向右平移5个单位长度,平移后点P与点A之间的距离和点B,C之间的距离相等,则平移前点P表示的数是多少?(3)若动点M以每秒1个单位长度的速度从点A出发,动点N以每秒2个单位长度的速度从点C同时出发且与点M相向而行,多少秒后动点M与N重合,重合时的点到点B的距离是多少?参考答案:题号12345678910答案ABDBDBCCAA1.A【分析】本题考查相反数的定义,只有符号不同的两个数叫做互为相反数.根据相反数的定义解答即可.【详解】解:2-的相反数是2.故选:A .2.B【分析】根据有理数的加减法法则及去括号直接进行求解.【详解】解:根据去括号法则,把()()()()12834--+--++写成省略括号的和的形式为12834--++.故选B .【点睛】本题主要考查有理数的加减法,熟练掌握有理数的加减法是解题的关键.3.D【分析】根据有理数的运算法则依次计算然后逐一判断即可.【详解】A :231-+=,故选项错误;B :()1111888864⎛⎫⎛⎫⎛⎫-÷-=-⨯-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选项错误;C :()239-=,故选项错误;D :()743---=-,故选项正确;故选:D.【点睛】本题主要考查了有理数的运算,熟练掌握相关运算法则是解题关键.4.B【分析】本题主要考查有理数的乘方运算,熟练掌握有理数的乘方是解题的关键;根据有理数的乘方可进行求解.【详解】解:()()2024202511110-+-=-=;故选B .5.D【分析】本题考查了有理数的乘方运算,相反数的意义,掌握计算是解题的关键.据有理数的乘方运算,相反数的意义,分别计算求解即可.【详解】解:A 、328=,239=,由89≠知,本选项不符合题意;B 、()2636-=,2636-=-,由3636≠-知,本选项不符合题意;C 、()4477--=-,与47不相等,本选项不符合题意;D 、()328-=-,382-=-,故()32-和32-相等,本选项符合题意.故选:D .6.B【分析】此题分别考查了相反数、绝对值等定义和平方运算,分别利用这几个定义或运算法则即可解决问题.根据相反数、绝对值等定义和平方运算依次判断即可.【详解】解:A 、0是绝对值最小的数,故选项正确,不符合题意;B 、绝对值等于本身的数有正数和0,故选项错误,符合题意;C 、相反数是它本身的数是0,故选项正确,不符合题意;D 、平方是它本身的数是0与1,故选项正确,不符合题意;故选:B .7.C【分析】本题考查已知式子的值,求代数式的值,涉及相反数、倒数、平方运算.互为相反数的两个数和为0,互为倒数的两个数积为1,4的2次方为16,据此解题.【详解】解:由题意得,0a b +=,1cd =,2416x ==,()2cd a b x x--+()1016216=-⨯+⨯1632=+48=.故选:C .8.C【分析】本题考查负数的判断,根据相反数的概念、绝对值的性质、负数的奇数次幂等相关知识点正确判断是解题关键.根据负数的相反数为正、绝对值的意义、幂的运算等相关原则,进行计算分析即可.【详解】解:()20242024--=,为正数;20242024--=-,为负数;0,既不是正数,也不是负数;34(5125212)438-=-,为负数;22024-,为负数;202-,为负数所以负数个数为4个.故选:C 9.A【分析】根据数轴得出-2<a <-1,再逐个判断即可.【详解】解:A 、∵从数轴可知:-2<a <-1,∴|a|-1大约0<|a|-1<1,故本选项符合题意;B 、∵从数轴可知:-2<a <-1,∴|a|>1,故本选项不符合题意;C 、∵从数轴可知:-2<a <-1,∴-a >1,故本选项不符合题意;D 、∵从数轴可知:-2<a <-1,∴a+1<0,故本选项不符合题意;故选A .【点睛】本题考查了数轴和绝对值、有理数的大小,能根据数轴得出-2<a <-1是解此题的关键.10.A【分析】此题考查了有理数的加法,以及绝对值.根据不等式||||||a b c >>及等式0a b c ++=,利用特殊值法,验证即得到正确答案.【详解】解:由题目答案可知a ,b ,c 三数中只有两正一负或两负一正两种情况,如果假设两负一正情况合理,要使0a b c ++=成立,则必是0b <、0c <、0a >,否则0a b c ++≠,但题中并无此答案,则假设不成立.于是应在两正一负的答案中寻找正确答案,若a ,b 为正数,c 为负数时,则:a b c +>,0∴++≠a b c ,若a ,c 为正数,b 为负数时,则:a c b +>,只有A 符合题意.故选:A .11.5或5-【分析】本题考查绝对值的意义,熟练掌握绝对值的意义,是解题的关键.根据5a =-,得到5a =±.【详解】解:∵55a =-=,∴5a =或5a =-,故答案为:5或5-.12.>【分析】根据负数比较大小的方法求解即可.两个负数比较大小,绝对值大的反而小.【详解】解:∵32<123--,∴32->213-.故答案为:>.【点睛】此题考查了比较负数大小,解题的关键是熟练掌握比较负数大小的方法.两个负数比较大小,绝对值大的反而小.13.5【分析】根据绝对值的非负性可进行求解.【详解】解:∵|2||3|0x y -+-=,∴20,30x y -=-=,∴2,3x y ==,∴5x y +=;故答案为5.【点睛】本题主要考查代数式的值及绝对值的非负性,熟练掌握绝对值的非负性是解题的关键.14.3或1/1或3【分析】根据题意得:1,1,0,1a b c d ==-==±,然后代入求值即可.【详解】解:根据题意得:1,1,0,1a b c d ==-==±,当1d =时,()11013a b c d --+=---+=,当1d =-时,()()11011a b c d --+=---+-=,故答案为:3或1.【点睛】本题考查了整数、绝对值、倒数、有理数的加减法,熟练掌握各定义和运算法则是解题关键.15.14-【分析】本题考查了定义新运算,数字规律,根据差倒数的计算方法,分别求出12345a a a a a ,,,,值,找出规律即可求解.【详解】解:根据题意,15a =,211154a ==--,3141514a ==⎛⎫-- ⎪⎝⎭,415415a ==-,511154a ==--,∴每三个循环一次,∵202436742÷= ,∴2024a 的值为14-,故答案为:14-.16.(1)3-;(2)0;(3)14;(4)50;(5)1;(6) 1.6-【分析】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握与运用.(1)利用有理数的加减法计算即可;(2)利用有理数的加减法计算,注意去括号变号;(3)先计算小括号的减法,再进行乘法除法计算,需将除法化为乘法运算;(4)将除法化为乘法,利用分配律进行计算;(5)先计算乘方和化简绝对值,然后计算乘法,最后进行减法计算;(6)先计算乘法和乘法运算,然后计算小括号内的加减运算,最后进行乘法运算.【详解】解:(1)7.38.2 5.1 1.2-+-+()()7.3 5.18.2 1.2=-+++12.49.4=-+3=-;(2)()151104⎡⎤⎣⎦----()15114=---⎡⎤⎣⎦()15114=-+1515=-0=;(3)52100.5339⎛⎫-⨯-÷⎪⎝⎭512932310⎛⎫=-⨯-⨯⎪⎝⎭534936610⎛⎫=-⨯-⨯⎪⎝⎭5193610=⨯⨯14=;(4)1341114272856⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭()()()()134156565656142728=⨯--⨯-+⨯--⨯-484322=-+-+50=;(5)()()32140.515--⨯----186=-+-1=;(6)()32222 2.4323⎡⎤⎛⎫⎡⎤--⨯⨯--- ⎪⎢⎥⎣⎦⎝⎭⎣⎦()()22 1.698=--⨯-+⎡⎤⎣⎦()1.61=⨯-1.6=-.17.()112,7,,355--;()2,4,0.01,13----+-;()()4,0,7,1,3--+---;211,0.01,2,355--;()0,7,3--【分析】本题考查了有理数的分类,熟练掌握正数,负数,非负整数,分数,整数的概念是解题关键,注意0既不是正数,也不是负数,是非负数,在有理数分类时,能化简的要化简.根据正数,负数,非负整数,分数,整数的定义分类即可.【详解】解:44--=-,()11+-=-,()33--=,∴正数有()112,7,,355--,负数有()2,4,0.01,13----+-,整数有()()4,0,7,1,3--+---,分数有211,0.01,2,355--,非负整数有()0,7,3--,故答案为:()112,7,,355--;()2,4,0.01,13----+-;()()4,0,7,1,3--+---;211,0.01,2,355--;()0,7,3--.18.见解析,-(+4)<-∣-2∣<12-<0<1<-(-3.5)【分析】先在数轴上表示出各数,再由数轴左边的数小于右边的数进行排序即可.【详解】解:(4)=4-+-;-(-3.5)=3.5;-∣-2∣=-2;如图所示:用“<”连接为:1(4)|2|01(3.5)2-+<--<-<<<--.【点睛】本题考查了有理数的大小比较,正确化简各数并在数轴上表示出各数是解题关键.19.20袋粮食共超重0.4千克,总质量为1000.4千克【分析】此题考查正数和负数的应用,有理数的混合运算,解题关键是注意表格中的数据的处理,尤其是袋数要注意.根据题目中给出的信息和表格,可以算出这20袋大米实际质量与标准质量的偏差之和与0比较,可得是否超重或不足.求总质量,先求20袋粮食的总质量,再加上超出部分即可.【详解】解:()()()()()()10.730.540.20530.430.510.70.4⨯-+⨯-+⨯-+⨯+⨯++⨯++⨯+=(千克),∴20袋粮食共超重0.4千克,∴总质量为:20500.41000.4⨯+=(千克)答:20袋粮食共超重0.4千克,总质量为1000.4千克.20.(1)25;(2)2n -1;(3)2400.【分析】(1)根据题目中的规律,写出答案即可.(2)根据题目中的规律,反推答案即可.(3)利用规律通式,代入计算即可.【详解】(1)由题意规律可以得,连续奇数的和为中间相的平方,所以13549++++= (2)2149252+⎛⎫= ⎪⎝⎭.(2)设最后一项为x ,由题意可推出:12x n +=,x =2n-1.(3)根据上述结论,51+53+55+…+109=(1+3+5+···+109)-(1+3+5+···+49)=552-252=2400.【点睛】本题为找规律题型,关键在于通过题意找到规律.21.(1)守门员最后不能回到球门线上(2)6.5(3)5【分析】(1)将记录的数字相加,即可求解;(2)利用记录的数字的绝对值的和,再乘以0.1即可;(3)求出每次离球门的距离,再判断即可.【详解】(1)解:7384681415=1-++--+-,答:守门员最后不能回到球门线上;(2)解:()73846814150.1=6.5+-+++-+-++-⨯(卡路里),答:守门员在这段时间内共消耗了6.5卡路里.(3)解:根据题意可得,守门员每次离开球门线的距离7、4、12、16、10、2、16、1,∴对方球员有5次挑射破门的机会.【点睛】本题考查正负数的实际应用,熟练掌握正负数是一对具有相反意义的量及有理数的加减混合运算法则是解题的关键.22.(1)点P 到点A ,B ,C 的距离之和为44(2)平移前点P 表示的数为2-或8-(3)53秒后动点M 与N 重合,重合时的点到点B 的距离是13【分析】本题主要考查数轴上的两点距离及一元一次方程的应用,熟练掌握数轴上两点距离及行程问题是解题的关键;(1)根据数轴上两点距离及路程=速度×时间可进行求解;(2)设平移前点P 表示的数是x ,然后根据题意可列方程进行求解;(3)根据相遇路程=速度和×相遇时间及数轴上两点距离可进行求解.【详解】(1)解:由题意得:点P 经过运动后所表示的数是15314-+⨯=,∴点P 到点A 、B 、C 的距离之和为()()14314114244--+--+-=;(2)解:设平移前点P 表示的数是x ,由题意得:()()35321x -+--=--解得:2x =-或8x =-,即平移前点P 表示的数为2-或8-;(3)解:设t 秒后动点M 与N 重合,由题意可得:35t =,解得:53t =,∴此时动点M 所表示的数为543133-+⨯=-,∴此时该点与点B 之间的距离为41133⎛⎫---= ⎪⎝⎭.。
河南省安阳市第八中学2023-2024学年七年级上学期第一次月考数学试卷(含解析)
2023-2024学年河南省安阳八中七年级(上)第一次月考数学试卷一、选择题(每题3分共36分)1.(3分)如果收入90元记作+90 元,则﹣50元表示( )A.收入50元B.收入40元C.支出50元D.支出40元2.(3分)下列各数中,相反数为﹣1的数是( )A.B.﹣C.D.﹣3.(3分)下列语句错误的是( )A.相反数是它本身的数是0B.负数的绝对值是正数C.0是最小的有理数D.绝对值等于它本身的数是非负数4.(3分)下列各数中,比﹣2小3的数是( )A.1B.﹣1C.﹣5D.﹣65.(3分)在数轴上与﹣3的距离等于4的点表示的数是( )A.1B.﹣7C.1或﹣7D.无数个6.(3分)检测足球时,超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,下图中最接近标准的是( )A.B.C.D.7.(3分)下列各组数中,互为相反数的是( )A.(﹣5)2和﹣52B.+(﹣6)和﹣(+6)C.(﹣4)3和﹣43D.﹣|﹣2|和+(﹣2)8.(3分)下列运算正确的是( )A.23=6B.﹣22=﹣4C.(﹣1)5=1D.()2=9.(3分)已知|a+13|+|b﹣10|=0,则a+b的值是( )A.﹣3B.3C.23D.﹣2310.(3分)设a=(﹣3)2,b=﹣32,c=|﹣3|,则a,b,c的大小关系是( )A.a>b>c B.a>c>b C.b>a>c D.c>a>b 11.(3分)若ab≠0,则的取值不可能是( )A.0B.1C.2D.﹣212.(3分)已知a,b,c三个数在数轴上对应点的位置如图所示,下列几个判断:①a<b<c;②﹣a<b;③a+b>0;④c﹣a>0中,正确的个数是( )A.1B.2C.3D.4二、填空题(每题3分共18分)13.(3分)的相反数是 ,绝对值是 ,倒数是 .14.(3分)绝对值小于4.3的所有整数的积是 .15.(3分)计算×3÷×3的结果是 .16.(3分)若|x|=2,则x= .17.(3分)定义a⊗b=2a+b,则﹣2⊗3= .18.(3分)观察下列计算的结果:请用你发现的结论计算:= (直接填写计算结果).三、解答题(共7小题)19.(8分)在数轴上表示下列各数,并用“<”把这些数连接起来.﹣(﹣4),|﹣3.5|,,0,+(+2.5)20.(24分)计算:(1)26+(﹣15)+8﹣(﹣13);(2);(3);(4).21.(6分)已知|a|=3,|b|=2,且a<b,求a+b的值.22.(6分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.(1)直接写出a +b ,cd ,m 的值;(2)求m +cd +的值.23.(6分)计算与解释.小杨同学做一道计算题的解题过程如下:解:原式=①=②=6+4﹣6③=4④根据小杨同学的计算过程,回答下列问题:(1)他的计算过程是否正确? (填写“正确”或“错误”);(2)如有错误,他在第 步出错了(只填写序号),并请写出正确的解答过程.24.(8分)有20筐白菜,以每筐25kg 为标准,超过或不足的千克数分别用正、负来表示,记录如表:与标准质量的差值(单位:kg )﹣3﹣2﹣1.5012.5筐数142328(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克?(2)与标准质量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,购进这批白菜一共花了1000元,则售出这20筐白菜可赚多少元?25.(8分)操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使表示的1点与﹣1表示的点重合,则表示﹣3的点与表示 的点重合;操作二:(2)折叠纸面,使表示﹣1的点与表示3的点重合,回答以下问题:①表示5的点与表示 的点重合;②若数轴上A、B两点之间距离为12,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.2023-2024学年河南省安阳八中七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分共36分)1.(3分)如果收入90元记作+90 元,则﹣50元表示( )A.收入50元B.收入40元C.支出50元D.支出40元【解答】解:收入90元记作+90 元,则﹣50元表示支出50元,故选:C.2.(3分)下列各数中,相反数为﹣1的数是( )A.B.﹣C.D.﹣【解答】解:﹣1的相反数是1=,故选:A.3.(3分)下列语句错误的是( )A.相反数是它本身的数是0B.负数的绝对值是正数C.0是最小的有理数D.绝对值等于它本身的数是非负数【解答】解:A、0的相反数是0,故A正确;B、负数的绝对值是它的相反数,故B正确;C、没有最小的有理数,故C错误;D、非负数的绝对值等于它本身,故D正确.故选:C.4.(3分)下列各数中,比﹣2小3的数是( )A.1B.﹣1C.﹣5D.﹣6【解答】解:根据题意得:﹣2﹣3=﹣5,故选:C.5.(3分)在数轴上与﹣3的距离等于4的点表示的数是( )A.1B.﹣7C.1或﹣7D.无数个【解答】解:根据数轴的意义可知,在数轴上与﹣3的距离等于4的点表示的数是﹣3+4=1或﹣3﹣4=﹣7.故选:C.6.(3分)检测足球时,超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,下图中最接近标准的是( )A.B.C.D.【解答】解:|﹣0.8|<|+0.9|<|+2.5|<|﹣3.6|,故选:C.7.(3分)下列各组数中,互为相反数的是( )A.(﹣5)2和﹣52B.+(﹣6)和﹣(+6)C.(﹣4)3和﹣43D.﹣|﹣2|和+(﹣2)【解答】解:A:(﹣5)2=25,﹣52=﹣25,∴符合题意B:+(﹣6)=﹣6,﹣(+6)=﹣6,∴不符合题意;C:(﹣4)3=﹣64,﹣43=﹣64,∴不符合题意;D:﹣|﹣2|=﹣2,+(﹣2)=﹣2,∴不符合题意;故选:A.8.(3分)下列运算正确的是( )A.23=6B.﹣22=﹣4C.(﹣1)5=1D.()2=【解答】解:A.23=8,故本选项错误;B.﹣22=﹣4,故本选项正确;C.(﹣1)5=﹣1,故本选项错误;D.=,故本选项错误;故选:B.9.(3分)已知|a+13|+|b﹣10|=0,则a+b的值是( )A.﹣3B.3C.23D.﹣23【解答】解:根据题意得:,解得:,则a+b=﹣13+10=﹣3.故选:A.10.(3分)设a=(﹣3)2,b=﹣32,c=|﹣3|,则a,b,c的大小关系是( )A.a>b>c B.a>c>b C.b>a>c D.c>a>b【解答】解:∵a=(﹣3)2=9,b=﹣32=﹣9,c=|﹣3|=3,∵9>3>﹣9,∴a>c>b,故选:B.11.(3分)若ab≠0,则的取值不可能是( )A.0B.1C.2D.﹣2【解答】解:若ab≠0,当a>0,b>0时,原式=1+1=2;当a<0,b<0时,原式=﹣1﹣1=﹣2;当a>0,b<0时,原式=1﹣1=0;当a<0,b>0时,原式=﹣1+1=0,∴若ab≠0,则的值为0或±2,故选:B.12.(3分)已知a,b,c三个数在数轴上对应点的位置如图所示,下列几个判断:①a<b<c;②﹣a<b;③a+b>0;④c﹣a>0中,正确的个数是( )A.1B.2C.3D.4【解答】解:由图可知:a<b<c,故①正确;∵a<b<0,∴b<0<﹣a,故②不正确;a+b<0,故③不正确;∵a<0,c>0,∴c﹣a>0,故④正确,∴正确的由①④,故选:B.二、填空题(每题3分共18分)13.(3分)的相反数是 ﹣ ,绝对值是 ,倒数是 .【解答】解:因为+(﹣)=0,所以的相反数为﹣,因为正数的绝对值等于它本身,所以的绝对值是,因此×=1,所以的倒数是,故答案为:﹣,,.14.(3分)绝对值小于4.3的所有整数的积是 0 .【解答】解:绝对值小于4.3的所有整数为:±4,±3,±2,±1,0,所有整数的积为:(﹣4)×(﹣3)×(﹣2)×(﹣1)×0×1×2×3×4=0.故答案为:0.15.(3分)计算×3÷×3的结果是 9 .【解答】解:原式=×3×3×3=9.故答案为:916.(3分)若|x|=2,则x= ±2 .【解答】解:因为|x|=2代表与原点的距离为2,而与原点距离为2的点有两个:2与﹣2,所以x=±2,故答案为:±2.17.(3分)定义a⊗b=2a+b,则﹣2⊗3= ﹣1 .【解答】解:∵a⊗b=2a+b,∴﹣2⊗3=2×(﹣2)+3=﹣4+3=﹣1,故答案为:﹣1.18.(3分)观察下列计算的结果:请用你发现的结论计算:= (直接填写计算结果).【解答】解:,=1﹣+﹣+﹣+﹣+﹣+﹣+﹣,=1﹣,=.故答案为:.三、解答题(共7小题)19.(8分)在数轴上表示下列各数,并用“<”把这些数连接起来.﹣(﹣4),|﹣3.5|,,0,+(+2.5)【解答】解:如图所示:.20.(24分)计算:(1)26+(﹣15)+8﹣(﹣13);(2);(3);(4).【解答】解:(1)26+(﹣15)+8﹣(﹣13)=26﹣15+8+13=32;(2)=﹣5﹣2﹣2+3=﹣7;(3)=2﹣5×4×(﹣4)=2+80=82;(4)=﹣1+(1﹣2)2×()2=﹣1+(﹣)2×()2=﹣1+×=﹣1+1=0.21.(6分)已知|a|=3,|b|=2,且a<b,求a+b的值.【解答】解:∵|a|=3,|b|=2,且a<b,∴a=﹣3,b=2或﹣2,则a+b=﹣1或﹣5.22.(6分)若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求m+cd+的值.【解答】解:(1)∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2.(2)当m=2时,m+cd+=2+1+0=3;当m=﹣2时,m+cd+=﹣2+1+0=﹣1.23.(6分)计算与解释.小杨同学做一道计算题的解题过程如下:解:原式=①=②=6+4﹣6③=4④根据小杨同学的计算过程,回答下列问题:(1)他的计算过程是否正确? 错误 (填写“正确”或“错误”);(2)如有错误,他在第 ① 步出错了(只填写序号),并请写出正确的解答过程.【解答】解:(1)由小杨的解答过程可知,他的计算过程是错误的,故答案为:错误;(2)由小杨的解答过程可知,他在第①步出错了,正确解答过程:=24×+2÷=6+2×6=6+12=18,故答案为:①.24.(8分)有20筐白菜,以每筐25kg 为标准,超过或不足的千克数分别用正、负来表示,记录如表:与标准质量的差值(单位:kg )﹣3﹣2﹣1.501 2.5筐数142328(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克?(2)与标准质量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,购进这批白菜一共花了1000元,则售出这20筐白菜可赚多少元?【解答】解:(1)最重的一筐比最轻的一筐多重2.5﹣(﹣3)=2.5+3=5.5(千克),答:20筐白菜中,最重的一筐比最轻的一筐多重5.5千克;(2)﹣3×1+(﹣2)×4+(﹣1.5)×2+0×3+1×2+2.5×8=8(千克),答:20筐白菜总计超过8千克;(3)[25×20+8]×2.6=508×2.6=1016(元),答:售出这20筐白菜可赚1016元.25.(8分)操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使表示的1点与﹣1表示的点重合,则表示﹣3的点与表示 3 的点重合;操作二:(2)折叠纸面,使表示﹣1的点与表示3的点重合,回答以下问题:①表示5的点与表示 ﹣3 的点重合;②若数轴上A、B两点之间距离为12,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.【解答】解:(1)根据题意,得对称中心是原点,则﹣3示的点与数3表示的点重合,故答案为:3;(2)∵﹣1表示的点与3表示的点重合,∴①5表示的点与数﹣3表示的点重合,故答案为:﹣3;②若数轴上A、B两点之间的距离为11(A在B的左侧),则点A表示的数是1﹣6=﹣5,点B表示的数是1+5=7.所以A、B两点表示的数分别是﹣5,7.。
长郡外国语实验中学2024-2025学年七年级上学期第一次月考数学试题(解析版)
七年级数学素养能力初赛一、单选题(每题3分,共30分)1. 龙年春晚分会场,“长沙元素”吸引八方来客,春节假日接待旅游人数278.94万人次,同比增长109.25%,其中数据278.94万用科学记数法表示为( )A. 62.789410×B. 70.2789410×C. 72.789410×D. 527.89410× 【答案】A【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:278.94万62789400 2.789410=×,故选:A .2. 刘徽在《九章算术注》中有“今两算得失相反,要令正负以名之.”可翻译为“今有两数若 其意义相反,则分别叫做正数和负数.”如果气温为“零上20℃”记作20+℃,那么气温为“零下10℃”应表示为( ) A. 20℃B. 10℃C. 10−℃D. 20−℃【答案】C【解析】【分析】此题主要用正负数来表示具有意义相反的两种量:零上温度记作“+”,零下温度记作“−”,由此求解.【详解】解:气温为“零上20℃”记作20+℃,那么气温为“零下10℃”应表示为10−℃,故选:C .3. 0.8,()4−−, 1.5−−,20%,0,()26−,26−,()24−−这八个数中,非负数有( ) A. 7个B. 6个C. 5个D. 4个【答案】C【解析】 【分析】本题主要考查了有理数的分类.解题的关键是熟练掌握绝对值的化简,符号化简,乘方运算法则,有理数的分类.化简符号,根据有理数的分类进行解答即可.【详解】解:∵()44−−=, 1.5 1.5−−=−,()2636−=,2636−=−,()2416−−−,∴这八个数中,非负数有:0.8,()4−−,20%,0,()26−, 共5个.故答案为:C .4. 备受瞩目的郡外篮球社团即将开始招新,为保证后续社团活动的顺利开展,该社团负责人采购了一批篮球备用,现随机检测了4个篮球,其中质量超过标准的克数记为正数,不足的克数记为负数,从轻重的角度看,最接近标准的篮球是( )A. B. C. D.【答案】D【解析】【分析】本题考查了绝对值的意义和性质,先计算各选项的绝对值,然后比较即可,熟练掌握绝对值的意义是解题的关键. 【详解】解:∵1010+=,1212−=,+88=,55−=, ∴581012<<<,∴最接近标准的篮球是标记5g −球,故选:D .5. 有理数a 、b 在数轴上的位置如图所示,则下列各式的符号为正的是( )A. a b +B. a bC. abD. a b −【答案】D【解析】 【分析】本题主要考查了有理数与数轴,有理数的四则运算,先根据数轴得到0b a <<,b a >,再根据有理数的四则运算法则求解即可.【详解】解;由题意得,0b a <<,b a >,∴0000aa b ab a b b+<<<−>,,,,∴四个选项中只有D 选项中式子符号为正,故选:D .6. 现规定一种新运算“*”:1*a b b a =−,如145*1155=−=−,计算(2)*3−=( ) A. 5−B. 1−C. 72−D. 52【答案】C【解析】 【分析】此题考查了新定义运算,有理数的减法,根据新定义运算列式求解即可. 【详解】17(2)*3322−=−−=−. 故选:C . 7. 下列说法中,正确的有( )①任何数乘以0,其积为零;②0除以任何一个数,其商为零;③任何有理数的绝对值都是正数;④两个有理数相比较,绝对值大的反而小.A. 2个B. 3个C. 4个D. 1个【答案】D【解析】【分析】有理数的除法法则,绝对值的性质,有理数的大小比较法则等知识点,能熟记知识点是解此题的关键,①0乘以任何数都等于0,0除以任何一个不等于0的数都得0,③两个负数比较大小,其绝对值大的反而小,④正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值等于0.根据有理数的乘法法则即可判断①;根据有理数的除法法则即可判断②;根据绝对值的性质即可判断③;根据有理数的大小比较法则即可判断④.【详解】解:任何数乘以0,其积为零,故①正确;0除以任何一个不等于0的数,其商为零,故②错误;0的绝对值是0,不是正数,故③错误; 如2200||==,, ∵20>,∴20>,即两个有理数比较大小,绝对值大的反而小不对,故④错误;所以正确的有1个,故选:D的8. 若9,4x y ==,且0x y +<,那么x y −的值是( ) A. 5或1B. 5或13−C. 5−或13D. 5−或13−【答案】D【解析】 【分析】本题考查了绝对值的化简计算,有理数的加减运算;根据9x =,4y =,且0x y +<,得到9x =−,4y =±,代入计算即可. 【详解】∵9x =,4y =,且0x y +<,∴9x =−,4y =±,∴9413x y −=−−=−或()945x y −=−−−=− 故选D .9. 已知非零实数a ,b ,c ,满足1b a c a b c ++=−,则||abc abc等于( ) A. ±1B. ﹣1C. 0D. 1 【答案】D【解析】 【详解】1b a c a b c++=− ,∴a,b,c 两个是负数,一个是正数,0abc ∴>, 1abcabc ∴=.选D.点睛:(1)b a c a b c++需要分类讨论,a,b,c 同正,同负,两正一负,两负一正. (2)化简绝对值公式:|x |,0,0x x x x −< = ≥ . 10. 如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示1−的点重合,再将圆沿着数轴向右滚动,则数轴上表示100的点与圆周上表示( )的点重合.A. 0B. 1C. 2D. 3【答案】B【解析】【分析】本题考查数轴,有理数的减法与除法,圆周上表示数字0的点与数轴上表示1−的点重合,滚动到100时,滚动了101个单位长度,用101除以4,余数即为重合点.【详解】解:圆周上表示数字0的点与数轴上表示1−的点重合,()1001101−−=,1014251÷= ,∴数轴上表示100的点与圆周上表示1的点重合.故选:B二、填空题(每题3分,共18分)11. 比较大小:23−____34−(填“>”“<”或“=”) 【答案】>【解析】【分析】本题考查了有理数的大小比较,根据两个负数,绝对值大的反而小即可判断求解,掌握有理数的大小比较法则是解题的关键. 【详解】解:2233−=,3344−=, ∵2334<, ∴2334−>−, 故答案为:>.12. a 的相反数是23−,则a 的倒数是______. 【答案】32【解析】【分析】本题考查了相反数和倒数的概念,先根据相反数的概念求出a 的值,再求倒数即可.熟练掌握概念是解题的关键. 【详解】解: a 的相反数是23−, 23a ∴=,a ∴的倒数是32. 故答案为:32. 13. 近似数46.1510×精确到______位.【答案】百【解析】【分析】本题考查了近似数,将数字46.1510×进行还原,然后再判断精确到的位数即可求解,正确还原数字是解题的关键.【详解】解:∵46.151061500×=,∴近似数46.1510×精确到百位,故答案为:百.14. 在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________.【答案】-5【解析】【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5.【详解】∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5,故答案为:-5.【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.15. 在(-1)3,(-1)2,-22,(-2)3这四个数中,最大的数与最小的数的和等于_________.【答案】-7【解析】【详解】解:(-1)3=-1,(-1)2=1,-22=-4,(-2)3=-8,最大的数为1,最小的数为-8,故最大的数与最小的数的和=1+(-8)=-7.故答案为-7.16. 已知满足2a 3(ab 5)0−+−−=,则a b =________. 【答案】-8【分析】根据偶次幂具有非负性,绝对值具有非负性可得a -3=0,a -b -5=0,再解即可.【详解】解:由题意得:a -3=0,a -b -5=0,解得:a =3,b =-2,b a =-8,故答案为:-8.【点睛】此题主要考查了非负数的性质,关键是掌握偶次幂和绝对值具有非负性.三、解答题17. 计算:(1)()()()()7192315++−+++−;(2)313217524528−−+−+−; (3)111135532114×−×÷ ; (4)753719641836 −+−÷. 【答案】(1)4−(2)98−(3)225− (4)11【解析】【分析】本题考查了有理数的四则混合运算,有理数的乘法简便运算,掌握有理数的运算法则与运算律是解题的关键.(1)根据有理数的加减混合运算进行计算即可;(2)根据有理数的加减混合运算进行计算即可;(3)根据有理数的四则混合运算进行计算即可;(4)根据有理数的乘法分配律进行简便运算.【小问1详解】解:原式7192315=−+−7231519=+−−【小问2详解】 解:原式323711554822=−−+−−+ 118=−− 98=−; 【小问3详解】 解:原式1113456115=−××× 225=−; 【小问4详解】 解:原式75373696418 −+−× 75373636363696418=×−×+×−× 28302714=−+−11=.18(6分).已知m 的绝对值为1,a 和b 互为倒数,c 和d 互为相反数,求()()202450ab c d m −++−的值.18. 如图,数轴上每个刻度为1个单位长度上点A 表示的数是3−.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,4−,152,122−,| 1.5|−,( 1.6)−+. 【答案】(1)见解析,4 (2)2或6 (3)数轴表示见解析,()11421.6 1.52.5522−<−<−+<−<< 【解析】【分析】本题主要考查了在数轴上表示有理数以及有理数的比较大小:(1)根据点A 表示3−即可得原点位置,进一步得到点B 所表示的数;(2)分两种情况讨论即可求解;(3)首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把这些数连接起来即可.【小问1详解】如图,O 为原点,点B 所表示的数是4,故答案为:4;【小问2详解】点C 表示的数为422−=或426+=. 故答案为:2或6;【小问3详解】| 1.5| 1.5 ,()1.6 1.6−+=−,在数轴上表示,如图所示:由数轴可知:()1142 1.6 1.5 2.5522−<−<−+<−<< 19. 今年“十•一”黄金周是7天的长假,梅花山虎园在7天假期中每天旅游人数变化如表(正号表示人数比前一天多,负号表示比前一天少) 日期 1日2日3日 4日 5日 6日 7日人数变化单位:万人 +1.8﹣0.6 +0.2 ﹣07 ﹣0.3 +0.5 ﹣0.7若9月30日的游客人数为0.2万人,问:(1)10月4日的旅客人数为 万人;(2)七天中旅客人数最多的一天比最少的一天多 万人?(3)如果每万人带来的经济收入约为150万元,则黄金周七天的旅游总收入约为多少万元?【答案】(1)0.9;(2)1.6;(3)1200万元.【解析】的.【分析】(1)根据题意列得算式,计算即可得到结果;(2)根据表格找出旅客人数最多的与最少的,相减计算即可得到结果;(3)根据表格得出1日到7日每天的人数,相加后再乘以100即可得到结果.【详解】解:(1)根据题意列得:0.2+(+1.8﹣0.6+0.2﹣0.7)=0.9;故答案是:0.9;(2)根据表格得:7天中旅客最多的是1日为2万人,最少的是7日为0.4万人,则七天中旅客人数最多的一天比最少的一天多2﹣0.4=1.6(万人);故答案是:1.6;(3)10月1日有游客:0.2+1.8=2 (万);10月2日有游客:2﹣0.6=1.4(万);10月3日有游客:1.4+0.2=1.6(万);10月4日有游客:1.6﹣0.7=0.9 (万);10月5日有游客:0.9﹣0.3=0.6 (万);10月6日有游客:0.6+0.5=1.1 (万);10月7日有游客:1.1﹣0.7=0.4 (万);黄金周七天游客:2+1.4+1.6+0.9+0.6+1.1+0.4=8(万),8×150=1200(万元),答:黄金周七天旅游总收入约为1200万元.【点睛】此题考查了有理数的混合运算的应用,弄清题意是解本题的关键.20. 观察下列三列数:1−、3+、5−、+7、9−、11+、…①-3、1+、7−、5+、11−、9+、…②3+、9−、15+、21−、27+、33−、…③(1)第①行第10个数是 ,第②行第15个数是 ;(2)在②行中,是否存在三个连续数,其和为1001?若存在,求这三个数;若不存在,说明理由; (3)若在每行取第k 个数,这三个数的和正好为599,求k 的值.【答案】(1)19+,31−(2)不存在,见解析 (3)301k =【解析】【分析】本题主要考查了数字规律,一元一次方程的应用,关键是找出数字规律.(1)根据规律进行计算即可;(2)设三个连续整数为()()11232n n −−−−,()()1212n n −−−,()()11212n n +−+−,根据题意分n 为奇数和偶数分别列出方程,根据方程的解的情况进行判断即可;的(3)分k 为奇数和偶数,分别列出方程,解方程即可求解.【小问1详解】解:根据规律可得,第①行第10个数是210119×−=;第②行第15个数是()215131−×+=−; 故答案为:19+;31−.【小问2详解】解:不存在.理由如下:由(1)可知,第②行数的第n 个数是()()1212n n −−−, 设三个连续整数为()()11232n n −−−−,()()1212n n −−−,()()11212n n +−+−, 当n 为奇数时,则2322122121001n n n −−−+−++−=,化简得,271001n −=,解得,504n =(舍)当n 为偶数时,则()()()2322122121001n n n −−−+−−−+−=, 化简得,251001n −−=,解得,503n =−(不合题意,舍去), 综上,不存在三个连续数,其和为1001.【小问3详解】解:当k 为奇数时,根据题意得,()()()2121321599k k k −−−++×−=, 解得,301k =,当k 为偶数时,根据题意得,()()()2123321599k k k ++−−−=, 解得,299k =−(舍去), 综上,301k =.21. 【概念学习】定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方、比加222÷÷,()()()()3333−÷−÷−÷−等,类比有理数的乘方,我们把222÷÷写作2③,读作“2的圈3次方”,()()()()3333−÷−÷−÷−写作()3−④,读作“()3−的圈4次方”.一般地,把n aa a a a÷÷÷ 个记作:a ⓝ,读作“a 的n 次方”,特别地,规定:a a =①.【初步探究】(1)直接写出计算结果:2023=②______;(2)若n 为任意正整数,下列关于除方的说法中,正确的有______:(横线上填写序号)A .任何非零数的圈2次方都等于1B .任何非零数的圈3次方都等于它的倒数C .圈n 次方等于它本身的数是1或1−D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数(0)a a ≠的圈()3n n ≥次方写成幂的形式:a =ⓝ______;(4)计算:()2111472 −−÷−×− ④⑧⑨. 【答案】(1)1;(2)ABD ;(3)21n a − ;(4)24022401− 【解析】【分析】本题考查有理数的混合运算、新定义,解答本题的关键是明确新定义的内容,计算出所求式子的值.(1)根据题意,计算出所求式子的值即可;(2)根据题意,可以分别判断各个选项中的说法是否正确,从而可以解答本题;(3)根据题意,可以计算出所求式子的值.(4)根据题意,可以计算出所求式子的值.【详解】解:(1)由题意可得,2023202320231=÷=②,故答案为:1;(2)A .因为()10aa a a =÷=≠②,所以任何非零数的圈2次方都等于1,正确; B .因为()10a a a a a a =÷÷=≠③,所以任何非零数的圈3次方都等于它的倒数,正确; C .如()11−=②,则圈n 次方等于它本身的数是1或1−,说法错误;D .根据新定义以及有理数的乘除法法则可知,负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数,正确;故答案为:ABD ;(3)21111n a a a a a a a a a a − =÷÷÷÷=⋅⋅= ⓝ, 故答案为:21n a −; (4)解:()2111472 −−÷−×− ④⑧⑨ ()()()()918711111111967772222− =−÷÷⋅⋅⋅÷−÷−÷−÷−÷−×−÷−÷⋅⋅⋅÷−个个 61119647=−−÷× 112401=−− 24022401=−. 22. 定义:若A ,B ,C 为数轴上三点,若点C 到点A 的距离是点C 到点B 的距离2倍,我们就称点C 是[],A B 的美好点.例如;如图1,点A 表示数为1−,点B 表示的数为2,表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是[],A B 的美好点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是[],A B 的美好点,但点D 是[],B A 的美好点.如图2,M ,N 为数轴上两点,点M 所表示的数为7−,点N 所表示的数为2.(1)点E ,F ,G 表示的数分别是3−,6.5,11,其中是[],M N 美好点的是________;写出[],N M 美好点H 所表示的数是___________.(2)现有一只电子蚂蚁P 从点N 开始出发,以2个单位每秒的速度向左运动.当t 为何值时,点P 恰好为M 和N 的美好点?【答案】(1)G ,4−或16−(2)1.5或3或9【解析】的【分析】(1)根据美好点的定义即可求解;(2)根据美好点的定义,分三种情况分别确定P 点的位置,进而可确定t 的值.【小问1详解】解:根据题意得∶()()()374,235EM EN =−−−==−−=,此时2EM EN ≠,故点E 不是[,]M N 美好点;()6.5713.5, 6.52 4.5FM FN =−−==−=,此时2FM FN ≠,故点F 不是[,]M N 美好点;()11718,1129GM GN =−−==−=,此时2GM GN =,故点G 是[,]M N 美好点;故答案是:G .设点H 所表示的数是x ,则7,2HM x HN x =+=−, ∵点H 为[],N M 美好点,∴2HN HM =, ∴227x x −=+,解得:4x =−或16−;故答案是:4−或16−.【小问2详解】解:第一情况:当P 为[],M N 的美好点,点P 在M ,N 之间,如图1,∵2MP PN =,()279MN =−−=,∴3PN =, ∴3 1.52t ==秒; 第二种情况,当P 为[],N M 的美好点,点P 在M ,N 之间,如图2,∵2PM PN =,()279MN =−−=,∴6PN =, ∴632t ==秒; 第三种情况,P 为[],N M 的美好点,点P 在M 左侧,如图3,∵22PN PM MN ==,()279MN =−−=,∴18PN =, ∴1892t ==秒; 综上所述,t 的值为:1.5或3或9.【点睛】本题考查实数与数轴、美好点的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.。
2023-2024学年西安某交大附中七年级上学期第一次月考数学试卷附详细答案
2023-2024学年西安某交大附中七年级上学期第一次月考数学试卷ー、选择题(本大题共8小题,每小题3分,共24分) 1.−13的倒数是( )A.−3B.3C.−13D.132.下列几何体从上面和左面看到的图形完全相同的是( )3.如表是几种液体在标准大气压下的沸点: 则沸点最高的液体是( )A.液态氧B.液态氦C.液态氢D.液态二氧化碳 4.一个有盖的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,水面形状不可能是( )A.圆形B.长方形C.椭圆D.三角形5.如图,有三个正方体木块,每一块的各面都写上不同的数字,三块的写法完全相同,现把它们摆放成如图所示的位置.请你判断数字1对面的数字是( ) A.2 B.3 C.4 D.66.有理数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )523 4 16 第5题图624B. C.D.A.|a|−|b|<0B.−b >−aC.a+b −c <0D.abc >07.如图,半径为1个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点0到达点0´,则点O ´对应的数是( )A.πB.2πC.2+πD.2+2π8.底部为圆柱形的密封瓶子里装着一些水如左图所示,颠倒瓶子后如右图,则瓶子的容积( )A.24πB.32πC.36πD.40π 二、填空题(共6小题,每小题3分,共18分)9.比较大小:−45______−79(用“>”“=”或“<”连接).10.一个几何体的表面展开图如图所示,则这个几何体是______.11.在图中剪去1个小正方形,使得到的图形经过折叠能够围成一个正方体,则要剪去的正方形对应的数字是______.12.已知数轴上点A 表示的数字为2,点B 到点A 的距离为6个单位长度,C 为A ,B 的中点,则点C 表示的数为______.第10题图第11题图13 24第13题图第7题图第8题图第6题图13.如图,加工一个长8cm ,宽4cm ,高6cm 的长方体铁块,选择面积最小的一个面,从该面的正中间打一个直径为2cm 的圆孔,一直贯穿到对面做成一个零件.则这个零件的体积是______cm 3.(结果保留π)14.①若|a|=a ,则a >0;②若a=b ,则|a|=|b|;③0除以任何数都得0;④若a+b=0, 则a=b=0;⑤若ab=0,则a=b=0;⑥绝对值等于它本身的数是0;⑦相反数等于它本身的数是0;⑧倒数等于它本身的数是1.以上说法正确的有______(填写序号). 三、解答题(共7小题,共58分)15.(8分)计算:(1)(−2)+3+1+(−13)+2: (2)−(−2.5)−(+2.4)+(−312)−1.616.(8分)计算:(1)(−4)×(−213)÷16×(−67) (2)−45×(−123+25−115)17.(6分)如图是由10个小正方体组合成的简单几何体,请画出该几何体从三个方向看到的形状图.18.(6分)已知|a|=5,|b|=2,且ab >0,求a+b 的值.19.(8分)中秋节是我国的传统节日,临近中秋月饼的销量大幅增加,某月饼加工店为满足市场需求,计划每天销售月饼800块,实际每天的销量与计划相比有出入,下表是某一周的销量情况(超出为+,不足为−,单位:块):(1)销量最多的一天比销量最少的一天多销售多少块月饼? (2)本周实际销量是多少?20.(10分)根据科学测定,如果高度每加1千米,气温大约降低6℃,现在某地的地从正面看面气温是22℃.(1)某飞机正飞行在该地的上空6千米处,此时飞机所在的高度的气温是多少? (2)探测到高空时气球的气温为−2℃,求气球所在处的高度.21.(12分)在数轴上点A 对应的数为−10,点B 在点A 右侧距离A 点16个单位长度,0为原点.(1)A ,B 两点的中点是______.(2)若点B 以每秒2个单位长度的速度沿数轴负方向运动,则t 秒时,点B 走到的位置所对应的数是______(用含t 的代数式表示).(3)在(2)的条件下,若点A 同时以每秒3个单位长度的速度沿数轴正方向运动,t 秒时,A ,B ,O 中有一点是三点所在线段的中点,求t 的值.2023-2024学年西安某交大附中七年级上学期第一次月考数学试卷ー、选择题(本大题共8小题,每小题3分,共24分) 1.−13的倒数是( )A.−3B.3C.−13D.131.解:互为倒数的乘积为1,故其倒数为1÷(−13)= −3,选A 。
江苏省镇江市外国语学校2024-2025学年七年级上学期第一次月考数学试卷(含详解)
江苏省镇江市外国语学校2024-2025学年七上数学第一次月考试卷一.选择题(共5小题)1.如图,如果点A表示的数为﹣2,那么点B表示的数是( )A.﹣1B.0C.3D.42.已知有理数a、b、c,其中a是最大的负整数,b是绝对值最小的数,c是倒数等于本身的数,则a+b+c的值是( )A.0B.﹣2C.﹣2或0D.﹣1或13.如图,数轴上的点M,P,N,Q分别表示四个有理数,若点M,N表示的有理数互为相反数,则图中表示正数的点的个数是( )A.1B.2C.3D.44.将化成小数,则小数点后第2020个数字为( )A.1B.4C.2D.85.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是( )A.ab>0B.a+b>0C.|a|﹣|b|<0D.a﹣b<0二.填空题(共10小题)6.下列各数中:12,,,﹣|﹣1|,0.1010010001…(每两个1之间的0依次加1),其中,无理数有 个.7.数轴上,若A、B两点的距离为8,并且点A、B表示的数是互为相反数,则这两点所表示的数分别是 .8.如果|a+2|+|b﹣1|=0,那么(a+b)2021的值是 .9.如图,若输入的x的值为1,则输出的y值为 .10.如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个数中,绝对值最大的一个是数 .11.若a=(﹣2020)3,b=(﹣2020)4,c=(﹣2020)5,则a、b、c的大小关系是 (用“<”连接).12.如图,P是长方形ABCD外一点,△ABP的面积为a.若△BPD的面积为b,则△BPC 的面积为 .(用含a、b的代数式表示)13.已知a,b互为倒数,m,n互为相反数,则的值是 .14.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第五个图形需要黑色棋子的个数是 ,第n个图形需要黑色棋子的个数是 (n≥1,且n为整数).15.已知有理数a、b、c满足a+b+c=0,则++= .三.解答题(共5小题)16.定义☆运算观察下列运算:(+3)☆(+15)=+18(﹣14)☆(﹣7)=+21(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣230☆(﹣15)=+15(+13)☆0=+13(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号 ,异号 .特别地,0和任何数进行☆运算,或任何数和0进行☆运算, .(2)计算:(+11)☆[0☆(﹣12)]= .(3)若2×(2☆a)﹣1=3a,求a的值.17.如图,半径为1个单位长度的圆片上有一点Q与数轴上的原点重合(提示:计算结果保留π)(1)把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,点A表示的数是 (2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+3,﹣1, ,+4,﹣3, ①第3次滚动 周后,Q点回到原点.第6次滚动 周后,Q点距离原点4π;②当圆片结束运动时,Q点运动的路程共有多少?18.已知数轴上A、B两点表示的数分别为a、b,请回答问题:(1)①若a=3,b=2,则A、B两点之间的距离是 ;②若a=﹣3,b=﹣2,则A、B两点之间的距离是 ;③若a=﹣3,b=2,则A、B两点之间的距离是 ;(2)若数轴上A、B两点之间的距离为d,则d与a、b满足的关系式是 ;(3)若|3﹣2|的几何意义是:数轴上表示数3的点与表示数2的点之间的距离,则|2+5|的几何意义: ;(4)若|a|<b,化简:|a﹣b|+|a+b|= .19.若(a+1)2+|2a+b|=0,且|c﹣1|=2,求c(a3﹣b)的值.20.已知a,b,c在数轴上的位置如图,化简2|a﹣b|﹣|b+c|﹣|c+2a|.参考答案与试题解析一.选择题(共5小题)1.【解答】解:点B在点A右侧5个单位距离,即点B所表示的数为﹣2+5=3.故选:C.2.【解答】解:由题意得:a=﹣1,b=0,c=±1,∴当c=1时,a+b+c=0,当c=﹣1时,a+b+c=﹣2,∴a+b+c的值是:0或﹣2,故选:C.3.【解答】解:点M,N表示的有理数互为相反数,∴原点O在M、N的中点处,∴图中在原点O右边为正数的点是P、N、Q三个点.故选:C.4.【解答】解:=3.142857142857……,2020÷6=336…4,余数是4,所以第2020个数是循环节的第四个数8.故选:D.5.【解答】解:根据图示,可得a<0<b,而且|a|>|b|,∵a<0<b,∴ab<0,∴选项A不正确;∵a<0<b,而且|a|>|b|,∴a+b<0,∴选项B不正确,选项D正确;∵|a|>|b|,∴|a|﹣|b|>0,∴选项C不正确;故选:D.二.填空题(共10小题)6.【解答】解:无理数有,0.1010010001…(每两个1之间的0依次加1),共有2个,故答案为:2.7.【解答】解:∵点A、B表示的数是互为相反数,∴设一个数为x,另一个数为﹣x,∴|x﹣(﹣x)|=8,∴x=±4,当x=4时,﹣x=﹣4,当x=﹣4时,﹣x=4,故答案为:4或﹣4.8.【解答】解:∵|a+2|+|b﹣1|=0,∴a+2=0,b﹣1=0,解得a=﹣2,b=1,∴(a+b)2021=(﹣1)2021=﹣1.故答案为:﹣1.9.【解答】解:把x=1代入得:12﹣4=1﹣4=﹣3<0,把x=﹣3代入得:(﹣3)2﹣4=9﹣4=5>0,则输出的y值为5.故答案为:510.【解答】解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的点P表示的数p,故答案为:p.11.【解答】解:a=(﹣2020)3=﹣20203,b=(﹣2020)4=20204,c=(﹣2020)5=﹣20205,∵|﹣20203|=20203,|﹣20205|=20205,20203<20205,∴﹣20205<﹣20203<20204,∴c<a<b.故答案为:c<a<b.12.【解答】解:作PM⊥BC于M,交AD于N,∵四边形ABCD是长方形,∴AD∥BC,AD=BC,∴PN⊥AD,MN=AB,∵△ABP的面积为a.△BPD的面积为b,∴S四边形ABDP=S△ABP+S△BPD=a+b,∵S四边形ABDP=S△APD+S△ABD,∴AD•PN+MN=a+b,即BC•PM=a+b,∴S△PBC=a+b,故答案为a+b.13.【解答】解:由题意可知:ab=1,m+n=0,∴=﹣1∴原式=2×0﹣3×1+(﹣1)=﹣4,故答案为:﹣4.14.【解答】解:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子2×3﹣3个,第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子3×4﹣4个,第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子4×5﹣5个,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n(n+2);当n=5时,5×(5+2)=35,故答案为:35,n(n+2).15.【解答】解:∵有理数a、b、c满足a+b+c=0,且a、b、c都不能为0,∴a、b、c异号,①当其中一个数为正数,另外两个数为负数时,原式=1﹣1﹣1=﹣1.②当其中一个数为负数,另外两数为正数时,原式=﹣1+1+1=1.综上,++=±1,故答案为±1.三.解答题(共5小题)16.【解答】解:(1)两数进行☆运算时,同号两数运算取正号,再把绝对值相加,异号两数运算取负号,再把绝对值相加,特别地,0和任何数进行☆运算,或任何数和0进行☆运算,等于这个数的绝对值,故答案为:两数运算取正号,再把绝对值相加;两数运算取负号,再把绝对值相加;等于这个数的绝对值;(2)(+11)☆[0☆(﹣12)]=(+11)☆12=11+12=23,故答案为:23;(3)①当a=0时,左边=2×2﹣1=3,右边=0,左边≠右边,所以a≠0;②当a>0时,2×(2+a)﹣1=3a,a=3;③当a<0时,2×(﹣2+a)﹣1=3a,a=﹣5;综上所述,a为3或﹣5.17.【解答】解:(1)把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,点A表示的数是﹣2π;故答案为:﹣2π;(2)①∵+3﹣1=2,2﹣2=0,∴第3次滚动﹣2周后,Q点回到原点;∵+3﹣1﹣2+4﹣3=1,1+1=2或1﹣3=﹣2,∴第6次滚动1或﹣3周后,Q点距离原点4π故答案为﹣2,1或﹣3;②根据题意列得:3+1+2+4+3+1=14,14×2π=28π,或3+1+2+4+3+3=16,16×2π=32π.当圆片结束运动时,Q点运动的路程共有28π或32π.18.【解答】解:(1)①|3﹣2|=1,②|﹣3﹣(﹣2)|=1,③|﹣3﹣2|=5;(2)d=|a﹣b|;(3)∵|2+5|=|2﹣(﹣5)|,∴|2+5|的几何意义:数轴上表示数2的点与表示数﹣5的点之间的距离;(4)∵|a|<b,∴a﹣b<0,a+b>0,∴|a﹣b|+|a+b|=b﹣a+a+b=2b;故答案为:(1)①1,②1,③5;(2)d=|a﹣b|;(3)数轴上表示数2的点与表示数﹣5的点之间的距离;(4)2b.19.【解答】解:∵(a+1)2+|2a+b|=0,且|c−1|=2,∴a=﹣1,b=2,c=3或−1,当c=3时,c(a3−b)=3×(﹣1﹣2)=﹣9;当c=−1时,c(a3−b)=−1×(﹣1﹣2)=3.综上,c(a3﹣b)的值为﹣9或3.20.【解答】解:由a,b,c在数轴上的位置可知a﹣b<0,b+c>0,c+2a<0,∴2|a﹣b|﹣|b+c|﹣|c+2a|=2(b﹣a)﹣(b+c)﹣(﹣c﹣2a)=2b﹣2a﹣b﹣c+c+2a=b.。
苏州市吴中区临湖实验中学2024-2025学年七年级上学期第一次月考数学试题及答案
江苏省苏州市吴中区临湖实验中学2024-2025学年七上数学第一次月考试卷一.选择题(共8小题)1.实数a 、b 在数轴上的位置如图所示,下列各式成立的是A.a <0b B.a ﹣b >0 C.ab >0 D.a+b >02.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,…,通过观察,找出规律,确定32021的个位数字是( )A.3B.9C.7D.13.下列说法中,正确的有( )①任何数乘以0,其积为零;②0除以任何一个数,其商为零;③任何有理数绝对值都是正数;④两个有理数相比较,绝对值大的反而小.A.2个B.3个C.4个D.1个4.已知15a −=,则a 的值为( ) A.6 B.-4 C.6或-4 D.-6或45.有理数a ,b 在数轴上对应位置如图所示,则a +b 值为( ).A.大于0B.小于0C.等于0D.大于a 6.数轴上点A ,B 表示的数分别是5,2−,它们之间的距离可以表示为( )A. 25−− B.25−− C.25−+ D. 25−+7.现定义两种运算“⊕”,“∗”.对于任意两个整数,1,1a b a b a b a b ⊕=+−∗=×−,则(68)(35)⊕∗⊕的结果是( )A.69B.90C.100D.1128.若01x <<,则1x 、x 、2x 的大小关系是()A.21x x x << B. 21x x x << C. 21x x x << D. 21x x x<<二.填空题(共8小题)的的9.若212()03x y −++=,则x y 的值是__________.10.若m 、n 互为相反数,a 、b 互为倒数,则|m ﹣3+n|+ab=______11.有一列数1234,,,,251017−−…,那么第7个数是_______.12.若|a ﹣2|与|b+3|互为相反数,则a+b 值为______.13.数轴上有两点M 、N ,点M 到点E 的距离为2,点N 到点E 距离为6,则M 、N 之间的距离为________.14.已知:3,4,a b ==且a 、b 异号,则a b −的值=________. 15.将23222333m n ×××+++个个写成幂的形式 ____________________. 16.在数-5,1,-3,5,-2中任取三个数相乘,其中最大的积是____,最小的积是_____.三.解答题(共8小题)17.|5-2|表示5与2两个数在数轴上所对应的两个点之间的距离.探索:(1)求|5-(-2)|的值.(2)如果|x+2|=1,请写出x 的值.(3)求适合条件|x-1|<3的所有整数x 的值.18. “滴滴”司机沈师傅从上午800915:~:在东西方向的江平大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)8636848433+−+−++−−++,,,,,,,,,.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离出发地多少千米?(2)若汽车每千米耗油0.4升,则800915:~:汽车共耗油多少升?(3)若“滴滴”的收费标准为:起步价11元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午800915:~:一共收入多少元?19.如图,点P 、Q 在数轴上表示的数分别是-8、4,点P 以每秒2个单位的速度运动,点Q 以每秒1个单位的速度运动.设点P 、Q 同时出发,运动时间为t 秒.(1)若点P 、Q 同时向右运动2秒,则点P 表示的数为_______,点P 、Q 之间的距离是______个单位;(2)经过__________秒后,点P 、Q 重合;的(3)试探究:经过多少秒后,点P 、Q 两点间的距离为14个单位.20.计算(1)214336−++;(2)()28 4.53−++;(3)1141334734 +−++−+−;(4)()()()24216453 −+×−−−÷−;(5)()211214412252236 −+−+−×−−+;(6)()22213151441417 −−−×−−.21.某市某公交车从起点到终点共有六个站,一辆公交车由起点开往终点,规定上车人数为正,下车人数为负,在起点站始发时上了部分乘客,到终点站时,乘客全部下车从第二站开始下车、上车的乘客数如表:(1)求本趟公交车在起点站上车的人数;(2)若公交车的收费标准是上车每人2元,计算此趟公交车从起点到终点的总收入.22.已知数轴上的点A 和点B 之间的距离为32个单位长度,点A 在原点的左边,距离原点5个单位长度,点B 在原点的右边.(1)点A 所对应的数是 ,点B 对应的数是 ;(2)若已知在数轴上的点E 从点A 出发向左运动,速度为每秒2个单位长度,同时点F 从点B 出发向左运动,速度为每秒4个单位长度,在点C 处点F 追上了点E ,求点C 对应的数.23.如图所示,有理数a ,b ,c 在数轴上对应点分别是A 、B 、C ,原点为点O .①化简:|a ﹣c |+2|c ﹣b |﹣|b ﹣a |.②若B 为线段AC 中点,OA =6,OA =4OB ,求c 的值.24.“幸福是奋斗出来的”,在数轴上,若C 到A 的距离刚好是3,则C 点叫做A 的“幸福点”,若C 到A 、B 的距离之和为6,则C 叫做A 、B 的“幸福中心”(1)如图1,点A 表示的数为﹣1,则A 的幸福点C 所表示的数应该是;(2)如图2,M 、N 为数轴上两点,点M 所表示的数为4,点N 所表示的数为﹣2,点C 就是M 、N 的幸福中心,则C 所表示的数可以是 (填一个即可);(3)如图3,A 、B 、P 为数轴上三点,点A 所表示的数为﹣1,点B 所表示的数为4,点P 所表示的数为8,现有一只电子蚂蚁从点P 出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A 和B 的幸福中心?的的江苏省苏州市吴中区临湖实验中学2024-2025学年七上数学第一次月考试卷一.选择题(共8小题)1.实数a 、b 在数轴上位置如图所示,下列各式成立的是A.a <0b B.a ﹣b >0 C.ab >0 D.a+b >0【答案】A【解析】【详解】试题分析:由图可知,﹣2<a <﹣1,0<b <1,因此,A 、a <0b,正确,故本选项正确; B 、a ﹣b <0,故本选项错误;C 、ab <0,故本选项错误;D 、a+b <0,故本选项错误.故选A .2.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,…,通过观察,找出规律,确定32021的个位数字是( )A.3B.9C.7D.1【答案】A【解析】【分析】观察不难发现,每4个数为一个循环组,个位数字依次循环,用2021÷3,根据商和余数的情况确定答案即可.【详解】解:个位数字分别为3、9、7、1依次循环,∵2021÷4=505余1,∴32021的个位数字与循环组的第1个数的个位数字相同,是3.故选A .【点睛】本题考查了数字变化类规律的归纳能力,尾数特征,观察数据发现每4个数为一个循环组,个位数字依次循环是解题的关键.3.下列说法中,正确的有( )①任何数乘以0,其积为零;②0除以任何一个数,其商为零;③任何有理数的绝对值都是正数;④两个的有理数相比较,绝对值大的反而小.A.2个B.3个C.4个D.1个【答案】D【解析】【分析】本题考查了有理数的乘法法则,有理数的除法法则,绝对值的性质,有理数的大小比较法则等知识点,能熟记知识点是解此题的关键,①0乘以任何数都等于0,0除以任何一个不等于0的数都得0,③两个负数比较大小,其绝对值大的反而小,④正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值等于0.根据有理数的乘法法则即可判断①;根据有理数的除法法则即可判断②;根据绝对值的性质即可判断③;根据有理数的大小比较法则即可判断④.【详解】解:任何数乘以0,其积零,故①正确;0除以任何一个不等于0的数,其商为零,故②错误;0的绝对值是0,不是正数,故③错误; 如2200||==,, ∵20>,∴20>,即两个有理数比较大小,绝对值大反而小不对,故④错误;所以正确的有1个,故选:D4. 已知15a −=,则a 的值为( ) A.6B.-4C.6或-4D.-6或4【答案】C【解析】【分析】本题根据绝对值的定义,由已知15a −=,可得a-1= ±5,解这个关于a 的方程即可求得a 的值. 【详解】解:因为15a −=, 当a-1大于0时,则a-1=5,则a=6,当a-1小于0时,则a-1= -5,则a= -4,故选C.【点睛】此题考查了绝对值的性质,特别注意:互为相反数的两个数的绝对值相等.5.有理数a ,b 在数轴上对应位置如图所示,则a +b 的值为( ).为的A.大于0B.小于0C.等于0D.大于a【答案】B【解析】【详解】根据题意和图形可知a ,b 取值范围,则a<|b|,可知a<-b ,所以a+b<0.故选B .6.数轴上点A ,B 表示的数分别是5,2−,它们之间的距离可以表示为( )A. 25−− B.25−− C.25−+ D. 25−+【答案】A【解析】【分析】本题考查了绝对值的意义,数轴上两点间的距离,掌握数轴上两点间的距离与绝对值的关系是解答本题的关键.由距离的定义和绝对值的关系得到它们之间的距离为:257−−=,由此选出答案. 【详解】解: 点A ,B 表示的数分别是5,2−,∴它们之间的距离为:257−−=.故选:A .7.现定义两种运算“⊕”,“∗”.对于任意两个整数,1,1a b a b a b a b ⊕=+−∗=×−,则(68)(35)⊕∗⊕的结果是( )A.69B.90C.100D.112【答案】B【解析】【分析】首先理解两种运算“⊕”“*”的规定,然后按照混合运算的顺序,有括号的先算括号里面的,本题先算6⊕8,3⊕5,再把它们的结果用“*”计算.【详解】解:由题意知,(6⊕8)*(3⊕5)=(6+8-1)*(3+5-1)=13*7=13×7-1=90.故选:B .【点睛】本题考查了学生读题做题的能力.理解两种运算“⊕”“*”的规定是解题的关键.8.若01x <<,则1x 、x 、2x 的大小关系是( )A.21x x x <<B. 21x x x <<C. 21x x x <<D. 21x x x<<【答案】A【解析】【分析】令x =0.5,分别求出1x =2,x =0.5,2x =0.25,即可比较. 【详解】解:∵01x <<,∴可令x =0.5, ∴1x=2,x =0.5,2x =0.25, ∴2x <x <1x,故选:A .【点睛】此题考查了有理数的大小比较,有理数的倒数及乘方计算,根据题意令x =0.5进行计算比较,方法简单灵活,更易解决问题.二.填空题(共8小题)9. 若212()03x y −++=,则x y 的值是__________. 【答案】19【解析】【分析】根据绝对值与偶数次方的非负性可求得x 与y 的值,从而可求得结果. 【详解】20x −≥ ,21()03y +≥,且212()03x y −++=, 20x ∴−=,21()03y +=, 即20x −=,103y +=, 得:2x =,13y =−, 21139x y ∴=−= ;故答案为:19.【点睛】本题考查了绝对值与偶数次方的非负性质:即两个非负数的和为零,则它们都为零,乘方的计算,关键是由非负性质求得x 与y 的值.10.若m 、n 互为相反数,a 、b 互为倒数,则|m ﹣3+n|+ab=______【答案】4【解析】【详解】由m 、n 互为相反数,得m+n=0.由a 、b 互为倒数,得ab=1.则原式=|0﹣3|+1=3+1=4.故答案为4.点睛:熟记互为相反数的两数和为0,互为倒数的两数积为1.11.有一列数1234,,,,251017−−…,那么第7个数是_______.【答案】750−【解析】【详解】解:先看符号,奇数个为负数,偶数个为正数,再看绝对值,第一个数的分子是1,分母是211+,第二个数的分子是2,分母是221+,第7个数的分子是7,分母是271+=50.则第7个数为750−,故答案为:750−.12.若|a ﹣2|与|b+3|互为相反数,则a+b 的值为______.【答案】-1【解析】【详解】解:因为|a -2|与|b +3|互为相反数,所以|a -2|+|b +3|=0,又2030a b ≥≥|-|,|+|,所以2=03=0a b |-|,|+|,所以a=2,b=-3,所以a +b=-1.故答是:-1.13.数轴上有两点M 、N ,点M 到点E 的距离为2,点N 到点E 距离为6,则M 、N 之间的距离为________.【答案】8或4【解析】【分析】分类讨论:E 在线段MN 上,E 在线段MN 的反向延长线上,根据线段的差,可得答案.【详解】解:当E 在线段MN 上时,MN =ME +NE =2+6=8.当E 在线段MN 的反向延长线上时,MN =NE -ME =6-2=4,综上所述:MN =8或MN =4,故答案为:8或4.【点睛】本题考查了数轴上两点间的距离,分类讨论是解题关键.14.已知:3,4,a b ==且a 、b 异号,则a b −的值=________. 【答案】7或-7【解析】【分析】先根据绝对值的性质求出a 、b 的值,再根据a 、b 异号讨论a 、b 的值,代入a-b 进行计算即可.【详解】解:∵|a |=3,|b |=4,∴a =±3,b =±4,∵a 、b 异号,∴当a =3时,b =-4,此时原式=3-(-4)=3+4=7,当a =-3时,b =4,此时原式=-3-4=-7,故答案为:7或-7.【点睛】本题考查了有理数的减法和绝对值的性质,即一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.15.将23222333m n ×××+++个个写成幂的形式 . 【答案】23mn【解析】【分析】本题主要考查乘方,根据乘方的定义解答此题即可【详解】解:根据乘方的定义,2322...2233...33m mn n ×××=+++个个.故答案为:23mn16.在数-5,1,-3,5,-2中任取三个数相乘,其中最大的积是____,最小的积是_____.【答案】①.75; ②. -30.【解析】【分析】根据两数相乘,同号得正,异号得负,再由有理数的大小比较,即可解得最大积与最小积.【详解】在数-5,1,-3,5,-2中任取三个数相乘,其中最大的积是()()53575−×−×=,最小的积是()()53?(-2)30−×−=−,故答案为:75;-30.【点睛】本题考查有理数的乘法,是重要考点,难度较易,掌握相关知识是解题关键.三.解答题(共8小题)17.|5-2|表示5与2两个数在数轴上所对应的两个点之间的距离.探索:(1)求|5-(-2)|的值.(2)如果|x+2|=1,请写出x 的值.(3)求适合条件|x-1|<3的所有整数x 的值.【答案】(1)7;(2)-3或-1;(3)-1,0,1,2,3【解析】【分析】(1)根据5与-2两数在数轴上所对的两点之间的距离为7得到答案; (2)根据绝对值的意义,知绝对值是一个正数的数有2个,且互为相反数,即可求得x 的值;(3)根据绝对值的意义,即在数轴上明确到表示1的点的距离小于3的所有点表示的数.把|x-1|表示x 与1之差的绝对值;【详解】解:(1)|5-(-2)|=7.故答案为:7;(2)∵|x+2|=1,∴x+2=±1,解得x=-3或x=-1;(3)∵|x-1|<3,∴-3<x-1<3,解得-2<x <4,其中整数有-1,0,1,2,3.【点睛】本题考查了绝对值和数轴.绝对值具有非负性,绝对值是正数的数有两个,且互为相反数.数轴上两点之间的距离,即表示两点的数的差的绝对值.18. “滴滴”司机沈师傅从上午800915:~:在东西方向的江平大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)8636848433+−+−++−−++,,,,,,,,,.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离出发地多少千米?:~:汽车共耗油多少升?(2)若汽车每千米耗油0.4升,则800915(3)若“滴滴”的收费标准为:起步价11元(不超过3千米),超过3千米,超过部分每千米2元.则沈:~:一共收入多少元?师傅在上午800915【答案】(1)将最后一批乘客送到目的地时,沈师傅在第一批乘客出发地的东面,距离是5千米:~:汽车共耗油21.2升(2)800915:~:一共收入156元(3)沈师傅在上午800915【解析】【分析】本题考查了正数和负数在实际问题中的应用,明确正负数的含义及题中的数量关系,是解题的关键.(1)把记录的数字相加即可得到结果,结果为正则在东面,结果为负则在西面;(2)把记录的数字的绝对值相加,再乘以0.4,即可得答案;(3)先计算起步费总额,再将超过3千米的路程相加,所得的和乘以2,将起步费加上超过3千米的费用总额,即可得答案.【小问1详解】++−+++−+++++−+−++++=,解:∵(8)(6)(3)(6)(8)(4)(8)(4)(3)(3)5∴将最后一批乘客送到目的地时,沈师傅在第一批乘客出发地的东面,距离是5千米;【小问2详解】+−+++−+++++−+−++++解:|8||6||3||6||8||4||8||4||3||3|=+++++++++8636848433=,53×=(升),∴0.45321.2:~:汽车共耗油21.2升.∴800915【小问3详解】解:∵共营运十批乘客,×=(元),∴起步费为:1110110超过3千米的收费总额为:[]−+−+−+−+−+−+−+−+−+−×=(元),(83)(63)(33)(63)(83)(43)(83)(43)(33)(33)246+=(元),∴11046156:~:一共收入156元∴沈师傅在上午80091519.如图,点P 、Q 在数轴上表示的数分别是-8、4,点P 以每秒2个单位的速度运动,点Q 以每秒1个单位的速度运动.设点P 、Q 同时出发,运动时间为t 秒.(1)若点P 、Q 同时向右运动2秒,则点P 表示的数为_______,点P 、Q 之间的距离是______个单位;(2)经过__________秒后,点P 、Q 重合;(3)试探究:经过多少秒后,点P 、Q 两点间的距离为14个单位.【答案】(1)-4,10(2)4,12(3)①23②26③2④263【解析】【分析】(1)点P 表示的数为根据数在数轴的移动列算式计算即可. 点P 、Q 之间的距离是先求出移动后P 、Q 表示的数再相减即可.(2)运动问题分为相遇和追及两种情况,分别列方程求出即可.相遇:P 的路程+Q 的路程=PQ ;追及P 的路程-Q 的路程=PQ【详解】(1)P 表示的数:-8+2×2=-4,P 表示的数:4+1×2=6 所以点P 、Q 之间的距离是6-(-4)= 10; (2)设经t 秒点P 、Q 重合 相遇时:2t+t=12解得t=4;追及时:2t-t=12解得t=12;(3)P 向左运动,Q 向右运动时:①2t +t +12=14 解得 t =23.点P 、Q 同时向左运动②2t =26+解得t =26点P 、Q 同时向右运动 ③2t +12=14+t 解得t =2.点P 向右运动,Q 向左运动时:④2t+t=12+14 解得t=263答:经过23、26、2、263秒时,P 、Q 相距14个单位.考点:有理数的运算,数轴.20.计算(1)214336−++;(2)()28 4.53−++;(3)1141334734 +−++−+− ;(4)()()()24216453−+×−−−÷− ;(5)()211214412252236 −+−+−×−−+;(6)()22213151441417 −−−×−−.【答案】(1)112−(2)146−(3)37−(4)3 (5)8.5−(6)1−【解析】【分析】本题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序.(1)根据有理数的加减法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据有理数加减法可以解答本题;(4)先算乘方,再算乘除,最后算加减;如果有括号,要先做括号内的运算;(5(6)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【小问1详解】 解:214336−++ 214336 =−− 112=−;【小问2详解】 解:()28 4.53 −++的28 4.53 =−− 146=−; 【小问3详解】 解:1141334734 +−++−+− 1113433447=−+−−+ 417=−+37=−; 【小问4详解】 解:()()()24216453−+×−−−÷− ()1416(5)−−÷=−+−14=−+3=;【小问5详解】 解:()211214412252236 −+−+−×−−+()1682452=+−+−−−0.545=−−8.5=−;【小问6详解】 解:()22213151441417 −−−×−−=−−101=−.21.某市某公交车从起点到终点共有六个站,一辆公交车由起点开往终点,规定上车人数为正,下车人数为负,在起点站始发时上了部分乘客,到终点站时,乘客全部下车从第二站开始下车、上车的乘客数如表:站次二三四五六人数下车-3-6-10-7-19(人)上车12 10 9 4 0(人)(1)求本趟公交车在起点站上车的人数;(2)若公交车的收费标准是上车每人2元,计算此趟公交车从起点到终点的总收入.【答案】(1)本趟公交车在起点站上车的人数10人;(2)此趟公交车从起点到终点的总收入为90元.【解析】【分析】(1)根据有理数的混合运算的运算方法,用第六站的乘客人数减去第二、三、四、五站.上车的人数与下车的人数的差,求出本趟公交车在起点站上车的人数是多少即可.(2)首先求出车上的总人数是多少;然后用它乘公交车的收费标准,求出此趟公交车从起点到终点的总收入是多少即可.−−−−−=−,【详解】解:(1)361071945+++=,12109435−+=−,45351010100−+=.答:本趟公交车在起点站上车的人数10人.×=(元),(2)45290答:此趟公交车从起点到终点的总收入为90元.【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.22.已知数轴上的点A和点B之间的距离为32个单位长度,点A在原点的左边,距离原点5个单位长度,点B在原点的右边.(1)点A所对应的数是,点B对应的数是;(2)若已知在数轴上的点E从点A出发向左运动,速度为每秒2个单位长度,同时点F从点B出发向左运动,速度为每秒4个单位长度,在点C处点F追上了点E,求点C对应的数.【答案】(1)﹣5, 27;(2)-37.【分析】(1)根据题意找出A 与B 点对应的数即可;(2)设经过x 秒F 追上点E ,根据题意列出方程,求出方程的解得到x 的值,即可确定出C 点对应的数.【详解】(1)根据题意得:A 点所对应的数是﹣5;B 对应的数是27;(2)设经过x 秒F 追上点E ,根据题意得:2x+32=4x ,解得:x=16,则点C 对应的数为﹣5﹣2×16=﹣37.【点睛】本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.如图所示,有理数a ,b ,c 在数轴上的对应点分别是A 、B 、C ,原点为点O .①化简:|a ﹣c |+2|c ﹣b |﹣|b ﹣a |.②若B 为线段AC 的中点,OA =6,OA =4OB ,求c 的值.【答案】①3b -3c ;②-3【解析】【分析】由数轴可知0c <,0a b >>,则0a c −>,0c b −<,0b a −<,由此化简绝对值求解即可; 先确定a 和b 的值,然后根据B 为AC 的中点得到b c a b −=−即可求解.【详解】解:①由有理数a ,b ,c 在数轴上对应的位置可知0c <,0a b >>∴0a c −>,0c b −<,0b a −<, ∴()()222233a c c b b a a c b c a b a c b c a b b c −+−−−=−+−−−=−+−−+=−;②∵46OA OB ==,∴32OB =, ∴6a =,32b =, ∵B 为AC 的中点,∴BC =AB ,即b c a b −=−, ∴33622c −=−,【点睛】本题主要考查了有理数与数轴,化简绝对值,线段中点的和与差,解题的关键在于能够准确判断出式子的符号.24. “幸福是奋斗出来”,在数轴上,若C 到A 的距离刚好是3,则C 点叫做A 的“幸福点”,若C 到A 、B 的距离之和为6,则C 叫做A 、B 的“幸福中心”(1)如图1,点A 表示的数为﹣1,则A 的幸福点C 所表示的数应该是;(2)如图2,M 、N 为数轴上两点,点M 所表示的数为4,点N 所表示的数为﹣2,点C 就是M 、N 的幸福中心,则C 所表示的数可以是 (填一个即可);(3)如图3,A 、B 、P 为数轴上三点,点A 所表示的数为﹣1,点B 所表示的数为4,点P 所表示的数为8,现有一只电子蚂蚁从点P 出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A 和B 的幸福中心?【答案】(1)﹣4或2;(2)﹣2或﹣1或0或1或2或3或4(答案不唯一);(3)当经过1.75秒或4.75秒时,电子蚂蚁是A 和B 的幸福中心.【解析】【分析】(1)根据题干中幸福点的定义计算即可; (2)根据题干中幸福中心的定义计算即可;(3)根据AB 之间的距离确定A 和B 的幸福中心有两种情况:①在点B 的右侧,②在点A 的左侧,分类讨论后根据幸福中心的定义列方程计算即可.【详解】解:(1)A 的幸福点C 所表示的数应该是﹣1﹣3=﹣4或﹣1+3=2;的(2)∵4﹣(﹣2)=6,∴M,N之间的所有数都是M,N的幸福中心.故C所表示的数可以是﹣2或﹣1或0或1或2或3或4(答案不唯一);(3)设经过x秒时,电子蚂蚁是A和B的幸福中心,依题意有:①幸福中心在点B右侧时,8﹣2x﹣4+(8﹣2x+1)=6,解得x=1.75;②幸福中心在点A侧3时,4﹣(8﹣2x)+[﹣1﹣(8﹣2x)]=6,解得x=4.75.故当经过1.75秒或4.75秒时,电子蚂蚁是A和B的幸福中心.【点睛】本题考查数轴上两点之间的距离,一元一次方程的应用,根据题意列出方程是解题关键,特别注意分类讨论思想的使用.。
河南省郑州星源外国语学校2023-2024学年七年级上学期第一次月考数学试卷(含解析)
2023-2024学年河南省郑州星源外国语中学七年级(上)第一次月考数学试卷一、选择题(每小题2分,共16分)1.(2分)下面的说法错误的是( )A.0是最小的整数B.1是最小的正整数C.0是最小的自然数D.自然数就是非负整数2.(2分)计算:﹣3﹣|﹣6|的结果为( )A.﹣9B.﹣3C.3D.93.(2分)比较(﹣4)3和﹣43,下列说法正确的是( )A.它们底数相同,指数也相同B.它们底数相同,但指数不相同C.它们所表示的意义相同,但运算结果不相同D.虽然它们底数不同,但运算结果相同4.(2分)如图是5个城市的国际标准时间(单位:时间)那么,北京时间2015年9月28日上午11时( )A.汉城时间是2015年9月28日上午10时B.伦敦时间是2015年9月28日凌晨3时C.多伦多时间是2015年9月27日晚22时D.纽约时间是2015年9月27日晚20时5.(2分)﹣|﹣32|的值是( )A.﹣3B.3C.9D.﹣96.(2分)如图,数轴的单位长度为1,如果P,那么图中的4个点中,哪一个点表示的数的平方值最大( )A.P B.R C.Q D.T7.(2分)已知两个有理数的和比其中任何一个加数都小,那么一定是( )A.这两个有理数同为正数B.这两个有理数同为负数C.这两个有理数异号D.这两个有理数中有一个为零8.(2分)a为有理数,下列说法中正确的是( )A.是正数B.是正数C.是负数D.的值不小于二、填空题(每小题3分,共30分)9.(3分)﹣5的相反数是 ,绝对值是 ,倒数是 .10.(3分)绝对值不大于4.6的整数有 个,他们的和是 .11.(3分)绝对值等于其本身的数是 ,绝对值等于其相反数的数是 .12.(3分)已知|x﹣5|=|﹣3|,则x的值为 .13.(3分)若|a﹣4|+(b+1)2=0,则a= ,b= .14.(3分)在数轴上点A到原点的距离是4,把点A向左移动3个单位,再向右移动6个单位得到点B .15.(3分)的相反数与绝对值等于3.45的数的和是 .16.(3分)据统计,2014年我国高新技术产品出口总额40570亿元,将数据40570亿用科学记数法表示为 .17.(3分)已知|x|=1,|y|=2,且xy>0 .18.(3分)你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再拉伸,反复几次,如草图所示.这样捏合到第8次后可拉出 根细面条.三、解答题(54分)19.(9分)计算:(1)﹣18﹣6÷(﹣2)×;(2)()×(﹣8+﹣);(3)﹣14﹣(1﹣0.5)××[2﹣(﹣3)2];(4)﹣22+(﹣2)3×5﹣(﹣0.28)÷(﹣2)2;(5)×[﹣32×()2﹣|﹣2|3];(6)用简便方法计算:99×(﹣9).20.(9分)请把下列各数表示在数轴上,并用“<”号把它们连接起来.,﹣4,,﹣521.(9分)已知|a|=7,|b|=3,且|a﹣b|=b﹣a22.(9分)某登山队登珠穆朗玛峰成功后返回一号营地,在海拔8000m时测得温度是﹣47℃,在到达一号营地后测得温度是﹣20℃,问:一号营地的海拔高度是多少米?23.(9分)检修小组从A地出发,在东西方向的公路上检修公路,如果规定向东行驶为正,一天中行驶记录如下:(单位:千米)﹣4,﹣9,+8,﹣4,﹣3.(1)求收工时距离A地多少千米?(2)若每千米耗油0.3升,这天共耗油多少升?24.(9分)观察下列等式:;;,将这三个等式两边分别相加得.(1)猜想并写出:= ;(2)直接写出+++…+= ;(3)探究并计算:.参考答案与试题解析一、选择题(每小题2分,共16分)1.(2分)下面的说法错误的是( )A.0是最小的整数B.1是最小的正整数C.0是最小的自然数D.自然数就是非负整数【解答】解:A、没有最小的整数;B、1是最小的正整数;C、0是最小的自然数;D、自然数是8和正整数的统称,正确.故选:A.2.(2分)计算:﹣3﹣|﹣6|的结果为( )A.﹣9B.﹣3C.3D.9【解答】解:﹣3﹣|﹣6|=﹣6﹣6=﹣9.故选:A.3.(2分)比较(﹣4)3和﹣43,下列说法正确的是( )A.它们底数相同,指数也相同B.它们底数相同,但指数不相同C.它们所表示的意义相同,但运算结果不相同D.虽然它们底数不同,但运算结果相同【解答】解:比较(﹣4)3=(﹣7)×(﹣4)×(﹣4)=﹣64,﹣33=﹣4×8×4=﹣64,底数不相同,表示的意义不同,故选:D.4.(2分)如图是5个城市的国际标准时间(单位:时间)那么,北京时间2015年9月28日上午11时( )A.汉城时间是2015年9月28日上午10时B.伦敦时间是2015年9月28日凌晨3时C.多伦多时间是2015年9月27日晚22时D.纽约时间是2015年9月27日晚20时【解答】解:A、11+1=12,故本选项不合题意;B、11﹣8=5,故本选项符合题意;C、11﹣(8+4)=﹣6,故本选项不合题意;D、11﹣(8+5)=﹣5,故本选项不合题意;故选:B.5.(2分)﹣|﹣32|的值是( )A.﹣3B.3C.9D.﹣9【解答】解:﹣|﹣32|=|﹣8|=﹣9.故选:D.6.(2分)如图,数轴的单位长度为1,如果P,那么图中的4个点中,哪一个点表示的数的平方值最大( )A.P B.R C.Q D.T【解答】解:∵点P,Q表示的数是互为相反数,而PQ=5,∴点P表示的数为﹣2.7,B点表示的数为2.5,∴点R表示的数为﹣2.5,T点表示的数为3.5,∵2.52=6.25,(﹣2.4)2=6.25,(﹣8.5)2=3.25,3.53=12.25,∴表示的数的平方值最大的点是T.故选:D.7.(2分)已知两个有理数的和比其中任何一个加数都小,那么一定是( )A.这两个有理数同为正数B.这两个有理数同为负数C.这两个有理数异号D.这两个有理数中有一个为零【解答】解:根据有理数的加法法则可知,两个有理数相加,那么这两个加数都是负数.故选:B.8.(2分)a为有理数,下列说法中正确的是( )A.是正数B.是正数C.是负数D.的值不小于【解答】解:∵a2≥0,∴,即是正数.故选:B.二、填空题(每小题3分,共30分)9.(3分)﹣5的相反数是 5 ,绝对值是 5 ,倒数是 ﹣ .【解答】解:根据相反数、绝对值和倒数的定义得:﹣5的相反数为5;﹣8的绝对值为5;﹣5×(﹣)=1.10.(3分)绝对值不大于4.6的整数有 9 个,他们的和是 0 .【解答】解:绝对值不大于4.6的整数有3、1、2、3、4、﹣1、﹣2,共9个.故答案为:9,2.11.(3分)绝对值等于其本身的数是 非负数 ,绝对值等于其相反数的数是 非正数 .【解答】解:根据绝对值和相反数的意义,如:1,0,25,8,25,…﹣1,﹣25,…的绝对值是它们的相反数1,85,…所以,绝对值等于其本身的数是非负数,绝对值等于其相反数的数是非正数.故答案分别为:非负数,非正数.12.(3分)已知|x﹣5|=|﹣3|,则x的值为 8或2 .【解答】解:∵|x﹣5|=|﹣3|,∴|x﹣6|=3,∴x﹣5=5或x﹣5=﹣3,∴x=4或2.故答案为:8或6.13.(3分)若|a﹣4|+(b+1)2=0,则a= 4 ,b= ﹣1 .【解答】解:∵|a﹣4|+(b+1)7=0,而|a﹣4|≥72≥0,∴a﹣6=0,b+1=6,∴a=4,b=﹣1,故答案为:3,﹣1.14.(3分)在数轴上点A到原点的距离是4,把点A向左移动3个单位,再向右移动6个单位得到点B 7或﹣1 .【解答】解:根据题意,点A表示的数是4或﹣4,当点A表示的是2时,B点表示的数是:4﹣3+4=7,当点A表示的是﹣4时,B点表示的数是:﹣3﹣3+6=﹣7,∴B点表示的数是:7或﹣1.故答案为:5或﹣1.15.(3分)的相反数与绝对值等于3.45的数的和是 3.85或﹣3.05 .【解答】解:﹣的相反数是,∴,=﹣5.05.故答案为:3.85或﹣3.05.16.(3分)据统计,2014年我国高新技术产品出口总额40570亿元,将数据40570亿用科学记数法表示为 4.0570×1012 .【解答】解:40570亿=4.0570×1012,故答案为:4.0570×1012.17.(3分)已知|x|=1,|y|=2,且xy>0 ﹣3或3 .【解答】解:|x|=1,|y|=2,x=5,y=2,y=﹣2,x+y=7+2=3,x+y=﹣8+(﹣2)=﹣3,故答案为:±7.18.(3分)你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再拉伸,反复几次,如草图所示.这样捏合到第8次后可拉出 256 根细面条.【解答】解:根据题意得:28=256,故答案为:256三、解答题(54分)19.(9分)计算:(1)﹣18﹣6÷(﹣2)×;(2)()×(﹣8+﹣);(3)﹣14﹣(1﹣0.5)××[2﹣(﹣3)2];(4)﹣22+(﹣2)3×5﹣(﹣0.28)÷(﹣2)2;(5)×[﹣32×()2﹣|﹣2|3];(6)用简便方法计算:99×(﹣9).【解答】解:(1)原式=18+6××=18+6=19;(2)原式=6﹣0.7+0.25=5.75;(3)原式=﹣4﹣0.5××(﹣7)=﹣2+=;(4)原式=﹣4﹣3×5+0.28÷4=﹣44+0.07=﹣43.93;(5)原式=﹣1.4×(﹣9×﹣8)=1.7×12=18;(6)原式=(100﹣)×(﹣9)=100×(﹣3)+=﹣900=﹣899.20.(9分)请把下列各数表示在数轴上,并用“<”号把它们连接起来.,﹣4,,﹣5【解答】解:如图所示:故.21.(9分)已知|a|=7,|b|=3,且|a﹣b|=b﹣a【解答】解:∵|a|=7,|b|=3,∴a=±6,b=±3,∵|a﹣b|=b﹣a,∴a﹣b≤0,∴a≤b,∴当a=﹣4,b=3时;当a=﹣7,b=﹣7时;∴a+b的值为﹣4或﹣10.22.(9分)某登山队登珠穆朗玛峰成功后返回一号营地,在海拔8000m时测得温度是﹣47℃,在到达一号营地后测得温度是﹣20℃,问:一号营地的海拔高度是多少米?【解答】解:(﹣20)﹣(﹣47)=27(℃),27÷0.6×100=45×100=4500(米),8000﹣4500=3500(米).答:一号营地的海拔是3500米.23.(9分)检修小组从A地出发,在东西方向的公路上检修公路,如果规定向东行驶为正,一天中行驶记录如下:(单位:千米)﹣4,﹣9,+8,﹣4,﹣3.(1)求收工时距离A地多少千米?(2)若每千米耗油0.3升,这天共耗油多少升?【解答】解:(1)由题知,﹣4+7﹣3+8+6﹣5﹣3=1(千米),所以收工时距离A地8千米.(2)因为|﹣4|+|+7|+|﹣8|+|+8|+|+6|+|﹣3|+|﹣3|=41(千米),所以41×0.5=12.3(升),故这天共耗油12.3升.24.(9分)观察下列等式:;;,将这三个等式两边分别相加得.(1)猜想并写出:= ﹣ ;(2)直接写出+++…+= ;(3)探究并计算:.【解答】解:(1),故答案为:;(2)+++…+=1﹣+﹣+﹣+...+﹣=1﹣=,故答案为:;(3)=====.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
塔前中学2011~2012学年 七年级第一学期数学月考试卷
一、选择题(下列各题的四个选项中,只有一个正确答案,请将正确答案的字母代
A.1个
B.3个
C.6个
D.4个
2.-2011的相反数是 ( )
A.2011
B.-2011
C.
20111 D.20111- 3.如果a 是不等于零的有理数,那么a
a a 2|
|-化简的结果是 ( )
A.0或1
B.0或-1
C.0
D.1
4.下列说法正确的是 ( ) A.-|a|一定是负数 B.互为相反数的两个数的符号必相反 C.0.5与2是互为相反数 D.任何一个有理数都有相反数
5.下面不等式正确的是 ( ) A.4332-<-
B.|11
3
||61|-<- C.22)7()8(-<- D.-0.91<-1.1 6.若a 的相反数等于2,则a 的倒数的相反数是 ( ) A.2
1-
B.-2
C.21
D.2
7.如果a 、b 都是有理数,且a-b 一定是正数,那么 ( )
A.a 、b 一定都是正数
B.a 的绝对值大于b 的绝对值
C.b 的绝对值小,且b 是负数
D.a 一定比b 大.
8.在数轴上,把表示-4的点移动2个单位长度后,所得到的对应点表示的数是( ) A.-1 B.-6 C.-2或-6 D.无法确定
9.若x 与3互为相反数,则|x|+3等于 ( ) A.-3 B.0 C.3 D.6
10.一个数的立方等于它本身,这个数是 ( ) A.1 B.-1,1 C.0 D.-1,1,0
二、认真填一填(每小题3分,共30分)
11.数轴上a 、b 、c 三点分别表示-7,-3,4,则这三点到原点的距离之和是 12.一个数是2的相反数,另一个数比-2大-3,则这两个数的和是 13.若x 为整数,且x ≥3,|x|<5,则x= 14.若|a-3|=4,则a=
学校-----------------------------班级-------------------------------姓名-----------------------------考号----------------------
---------------------------------------------------密----------------------------------------封--------------------------------------线------------------------------------------
15.已知|a-b|+|b+5|=0,则a b
+=
16、5
2-的底数是 ,指数是 。
17、-2
3
的倒数是 ;绝对值是 。
18、在近似数0.6048中,精确到 位,有 个有效数字。
19、温度由4-℃上升7℃,达到的温度是______℃。
20、观察下面一列数,按某种规律填上适当的数:1,-2,4,-8, , 。
三、计算题(每题5分,共30分) 21、206137+-+- 22、()()()()499159--+--+-
23、-18÷(-3)2
+5× (-1
2
)3-(-15 ) ÷5
24、)2()1(3)2(64
---⨯+-
25、(241-42
1
-181)×(-98)
26、2
3
2
)3
1
()6()2(31-÷-+-⨯+-
四、解答题(每题5分,共10分) 27、把下列各数分别填入相应的集合里。
-14 、
98 、0 、3.6 、-42
1
、+37 、-0.314 、8812 . (1)正数集合:{ …}; (2)负数集合:{ …}; (3)整数集合:{ …}; (4)分数集合:{ …}
28、某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:
的总质量是多少?。