华东师大初中数学八年级下册一次函数的应用(基础)知识讲解(精选)
八年级下册数学一次函数知识点
八年级下册数学一次函数知识点一次函数是初中数学中的一个重要知识点,也是高中数学的基础。
在数学学习中,我们将一次函数作为重点之一,需要在学习中系统地掌握它的定义、性质和应用。
一、一次函数定义一次函数也称为线性函数,其定义为f(x)=kx+b(其中k和b为常数),在数轴上显示为一条直线。
其中,k代表斜率,b代表截距。
当x=0时,f(x)=b,即函数在y轴上的截距。
当k>0时,函数呈现上升趋势,当k<0时,函数呈现下降趋势。
二、一次函数的性质1.斜率的意义斜率k代表函数在x轴上每移动一个单位所对应的y轴上的变化量,即直线的倾斜程度。
当k>0时,函数呈现上升趋势,当k<0时,函数呈现下降趋势。
2.截距的意义截距b代表函数在y轴上的截距,即当x=0时,函数在y轴上的坐标。
3.定义域和值域定义域为所有实数,当k≠0时,函数的值域也为所有实数。
4.单调性和奇偶性当k>0时,函数呈现上升趋势,单调递增;当k<0时,函数呈现下降趋势,单调递减。
一次函数是奇函数,即f(-x)=-f(x)。
三、一次函数的应用1.函数求解一次函数在实际生活中有着广泛的应用。
例如:一辆汽车从A 地出发到B地,行驶了t小时,速度为v千米/小时,设汽车运动的距离为s千米,根据速度公式v=s/t,我们可以得到一次函数f(t)=vt,其中斜率为速度,截距为0。
2.图像分析通过观察函数的图像,我们可以对其斜率和截距有更直观的认识。
例如,一条直线的斜率越大,说明函数的变化越明显;截距越大,说明函数的起点越靠上。
3.解决实际问题一次函数在实际生活和工作中有很好的应用,例如根据统计数据制定生产计划、预测股票趋势等。
此外,一次函数还可以用于计算地图上两点之间的距离、计算物品的价格和数量等。
四、学习建议在学习一次函数时,我们应该从基础开始逐渐深入。
首先学习函数的定义、性质和应用,掌握其相关概念和公式,之后要进行大量的实际计算练习,例如对图像进行分析或根据问题建立函数公式,强化应用能力。
华师版八下数学一次函数知识点总结及典型试题
华东师大版八年级下册数学一次函数知识点总结及经典试题(一)函数1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y 是x的函数。
*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
(二)、平面直角坐标系1、定义:平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
八年级数学一次函数华东师大版知识精讲
初二数学一次函数华东师大版【本讲教育信息】一. 教学内容:§18.3 一次函数二. 重点、难点:1. 重点:⑴体会一次函数的意义,•理解一次函数与正比例函数的联系和区别;⑵会画一次函数的图象,了解一次函数图象与正比例函数图象之间的位置关系; ⑶掌握一次函数的性质.2. 难点:⑴用待定系数法求一次函数的解析式;⑵运用一次函数的图象和性质解决简单的实际问题.三. 知识梳理:1. 一次函数用自变量的一次式表示的函数叫一次函数.由定义可知:形如y =kx +b (k ≠0,k 、b 为常数),则y 是x 的一次函数.一次函数可以表示为y =kx +b (k ≠0,k 、b 为常数),特别地,当b =0时,形如y =kx (k ≠0,k 为常数)的一次函数叫做正比例函数.正比例函数总可以表示为y =kx (k ≠0,k 为常数).2. 一次函数的图象:⑴一次函数的图象特征:一次函数y =kx +b (k ,b 是常数,k ≠0)的图象经过点)0,kb ( 和点(0,b )的一条直线.正比例函数y =kx (k 是常数,k ≠0)的图象是经过点(0,0)和(1,k )的一条直线. 直线y =kx 与y =kx +b (k ≠0)的位置关系:当b>0时,直线y =kx +b 可由直线y =kx (k ≠0)沿y 轴向上平移b 个单位长度而得;当b<0时,直线y =kx +b 可由y =kx (k ≠0)沿y 轴向下平移|b|个单位长度而得.⑵一次函数图象的性质:k 值 函数的图象及性质k >0 y 随x 的增大而增大k <0y 随x 的增大而减小3. 待定系数法及一次函数的应用先设出式子中的未知系数,再根据条件求出未知系数,从而写出这个式子的方法叫做待定系数法.其中未知的系数也叫做待定系数.用待定系数法求函数解析式的一般步骤:⑴写出函数解析式的一般形式;⑵把已知条件(通常是自变量和函数的对应值或函数图象上某点的坐标等)代入函数解析式中,得到关于待定系数的方程或方程组.⑶解方程或解方程组求出待定系数的值,从而写出函数解析式.4. 一次函数图象与二元一次方程和一元一次不等式的关系【典型例题】例1.判断下列函数中,哪些y 是x 的一次函数?哪些y 是x 的正比例函数?⑴y =-x +1; ⑵11-=x y ; ⑶x y 3=; ⑷231+-=xy ; ⑸2x +3y =5; ⑹xy =4; ⑺12+=x y .分析:根据一次函数和正比例函数的定义来解答此题.解:⑴y =x +1 ,⑶x y 3=,⑸2x +3y =5中y 都是x 的一次函数,其中x y 3=,又是正比例函数.例2. 在同一坐标系中画下列函数的图象:⑴y =2x +4;⑵y =2x .并回答:①两直线有何位置关系?②直线y =2x +4是由y =2x 经怎样平移而得?分析:函数y =2x +4与y =2x 的图象都可用描点法描两个点而画出来.解:⑴由y =2x +4知直线过(0,4)和(-2,0)两点;(2)由y =2x 知直线过原点和(1,2)两点,这两个函数的图象如下图:由图象可知:①直线y =2x +4与y =2x 互相平行.②直线y =2x +4可由直线y =2x 沿y 轴向上平移4个单位长度而得.例3. (2006·新疆)如下图,把直线l 向上平移2个单位得到直线l ’,则l ’的表达式为( )A. y =21x +l C. y =21x —lB. y =-21x 一1 D. y =一21x +1分析:两直线平行则k的值相同,向上平移2个单位,只需将原解析式常数项加2即可.解:选D.例4. 等腰三角形的周长为20cm,求底边长y cm与腰长x cm的函数关系式,并画出图象.分析:求实际问题的函数关系式,就是列y与x的方程,再加以变形整理.因为实际问题的自变量取值有一定的限制,所以画出的图象只能是其中的一部分.解:根据题意,得y=20-2x(5<x<10)其图象是过(5,10)和(10,0)两点的线段,如下图所示.例5. 已知y+m与x+n成正比例(m、n为常数):⑴试说明y是x的一次函数;⑵若x=-3时,y=5;x=2时,y=2.求函数关系式.分析:(1)要说明y是x的—次函数,就要说明y与x满足形如y=kx+b(k≠0,k、b为常数)的关系式.而题目中已知y+m与x+n成正比例,便可以设y+m=k(x+n)(k ≠0,k为常数),加以变形整理,便可得到y=kx+kn-m的形式,其中是k≠0,k、n、m 为常数,从而说明y是x的一次函数⑵由⑴可知,y是x的一次函数,我们就可以设解析式为y=px+q(p≠0,p、q为常数)代入已知条件,得p、q的方程,从而求出p、q,进而求出解析式.解:⑴设y+m=k(x+n)(k≠0,k为常数),则y=kx+kn-m因为其中是k≠0,k、m、n为常数,所以y是x的一次函数.⑵因为y是x的一次函数,故设y=px+q(p≠0,p、q为常数).根据题意,得⎩⎨⎧+=+-=,22,35q p q p 解得之 ⎪⎪⎩⎪⎪⎨⎧=-=51653q p 所以函数关系式为51653+-=x y .例6. 一次函数的图象过(3,0),且与坐标轴所围成的图形的面积为9,求一次函数的函数关系式.分析:题目已知了一个点的坐标,要求解析式还需根据另一条件“图象与两坐标轴所围成的三角形面积为9”去求出另一个点的坐标,注意另一个点的坐标的两种情况.解:设一次函数的图象与x 轴交于A (3,0),与y 轴交于B (0,b ),则OA =3,OB =|b |又因为 9=∆AOB S ,所以921=⋅⋅OB OA , 即:9321=⋅⋅b ,解得:b =±6 所以B 的坐标为(0,6)或(0,-6)设一次函数的解析式为y =kx +b (k ≠0,k 、b 为常数),则⎩⎨⎧+==bk b 306 或 ⎩⎨⎧+==-bk b 306 解之得 ⎩⎨⎧=-=62b k 或 ⎩⎨⎧-==62b k 所以一次函数的解析式是y =-2x +6或y =2x -6.例7. 如图,一次函数y =kx +b 与y =kbx 的图象在同一平面直角坐标系里,正确的是( )分析:解这类题的关键是从能确定每个待定系数的符号的函数入手.可以根据正比例函数确定k、b的正负情况再看一次函数的图象是否符合.解:选B.例8. 已知:点(2,m)和(-3,n)都在直线y=-3x+1上,试比较m和n的大小,你能想出几种判断的方法?分析:思路一:分别求出m和n的值.思路二:根据一次函数的增减性比较.思路三:画出图象草图,把(2,m)、(-3,n)描出来再比较.解:方法一:根据题意,得m=-3×2+1=-5n=-3×(-3)+1=10所以m<n方法二:在y=-3x+1中,因为是k=-3<0所以y随x增大而减小,而2>-3所以m<n方法三:如下图所示是直线y=-3x+1的示意图,由图象可知:m<n.例9. 已知点A(2,2)、B(-4,3):⑴在y轴上求一点P,使PA+PB最短;⑵在X轴上求一点Q,使QA+QB最短.分析:⑴如图1所示,连结AB交y轴于点P,由几何知识可知点P就是使PA+PB最短的点,因此,我们可先求出直线AB的解析式,再求出它与y轴的交点.⑵如图2所示,画点B关于x轴的对称点B',连结AB'交x轴于Q,由几何知识可知,点Q就是使QA+QB最短的点.要求这一点的坐标,就是要求直线AB,与x轴的交点坐标,可先求出直线AB'的解析式,已知A的坐标,只需再求出B',而B'与B关于x轴对称,且B(-4,3),所以B'(-4,-3).解:(1)连结AB 交y 轴于P ,设直线AB 解析式为y =kx +b (k ≠0,k 、b 为常数),根据题意得⎩⎨⎧+=+-=b k b k 2243解之得⎪⎪⎩⎪⎪⎨⎧=-=3761b k 所以直线AB 的解析式为3761+-=x y . 由x =0,得37=y , 所以⎪⎭⎫ ⎝⎛37,0P .(2)如图2,画B 关于x 轴的对称点B ',则点B '为(-4,-3),连B A '交x 轴于Q .设直线B A '的解析式为y =mx +n (m ≠0,m 、n 为常数),则 ⎩⎨⎧+=+-=-n m n m 22.43,解之得⎪⎪⎩⎪⎪⎨⎧==3165n m 所以直线B A '的解析式为3165+=x y 令y =0,则52-=x 所以Q 的坐标为(52-,0).【模拟试题】(答题时间:40分钟)一. 选择题:1.直线y =-2x +3是由y =-2x -1怎样平移而得的 ( )A. 沿y 轴向上平移4个单位长度B. 沿y 轴向下平移3个单位长度C. 沿y 轴向上平移3个单位长度D. 沿y 轴向下平移4个单位长度2. ()5612++-=m x m y m 是关于x 的一次函数,则m 的值为( ) 图1图2A. -1或1B. 1C. -1D. ±l 或65- 3. 正比例函数图象过(-3,1),则解析式为 ( )A. y =-3xB. x y 31-=C. x y 3-=D. xy 3= 4. 直线y =2x +3不经过第( )象限.A. 一B. 二C. 三D. 四5. 点(-1,2)在下列哪条直线上 ( )A. y =2xB. y =-2x +1C. y =-2xD. x y 21-= 6. 如图,y =k (x -1)与y =kx 在同一坐标系中图象正确的是 ( )二. 填空题:7. 直线y =3x +6与坐标轴围成的三角形的面积是____________.8. y =kx +b 中k>0,b <0,则图象不经过第________象限.9. 已知一次函数y =-x +2的图象与x 轴交于点A ,与y 轴交于点B .则△AOB 的形状是____________三角形.10. y =5x -10中y 随x 增大而______________.三. 解答题:11. 一次函数y =kx +b ,当-3≤x ≤1时,对应的y 的值为1≤y ≤9,则kb 的积为多少?12. 已知一次函数y =kx +k -1,当k 是取什么实数时:(1)图象过原点;(2)图象过点(2,1);(3)图象过一、三、四象限;(4)图象与y 轴的交点在x 轴下方;(5)y 随x 增大而增大.13. 已知一次函数的图象与坐标轴所围成的三角形的面积为12,且过(0,4).求一次函数的解析式.14. 已知矩形的周长为40cm ,求一边长y (cm )与另一边长x (cm )[注:它们是相邻两边]的函数关系式,并作出函数的图象.【试题答案】一.选择题。
华东师大初中数学八年级下册一次函数的图象和性质(基础)知识讲解
. 分求某段解析式的方法与
求一次函数解析式的方法相同,在整合时要用大括号联结,并在各解析式后注明自变量的 取值范围 .
举一反三:
【变式】小高从家骑自行车去学校上学,先走上坡路到达点
A,再走下坡路到达点 B,最后
走平路到达学校 C,所用的时间与路程的关系如图所示 . 放学后,如果他沿原路返
回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校
为:当某一个一次函数的值为 0 时,求相应的自变量的值 .
从图象上看,这相当于已知直线 y kx b ( k ≠ 0, b 为常数),确定它与 x 轴交点的
横坐标的值
每个二元一次方程组都对应两个一次函数,于是也对应两条直线
. 从“数”的角度看,
解方程组相当于考虑自变量为何值时两个函数的值相等,以及这时的函数为何值;从“形”
1 3
b2
b2
∴该函数的解析式为 y
4 x 2. 3
【总结升华】 用待定系数法时需要根据两个条件列二元一次方程组(以
k 和 b 为未知数),
解方程组后就能具体写出一次函数的解析式 .
举一反三:
【变式 1】已知一次函数的图象与正比例函数 y 2x 的图象平行且经过 (2 ,1) 点,则一次
立条件确定两个关于 k , b 的方程,这两个条件通常为两个点或两对
x , y 的值 .
要点诠释: 先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出
这个式子的方法,叫做待定系数法 . 由于一次函数 y kx b 中有 k 和 b 两个待定系数,所
以用待定系数法时需要根据两个条件列二元一次方程组(以
函数的解析式为 ________.
【答案】 y 2x 3 ;
八年级数学一次函数应用知识点归纳
八年级数学一次函数应用知识点归纳八年级数学一次函数的应用知识点归纳1一、分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际。
二、函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数三、概括整合(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
(2)理清题意是采用分段函数解决问题的关键。
常用公式1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴*行线段的中点:(x1+x2)/23.求与y轴*行线段的中点:(y1+y2)/24.求任意线段的长:√[(x1-x2)^2+(y1-y2)^2]5.求两个一次函数式图像交点坐标:解两函数式两个一次函数y1=k1x+b1y2=k2x+b2令y1=y2得k1x+b1=k2x+b2将解得的x=x0值代回y1=k1x+b1y2=k2x+b2两式任一式得到y=y0则(x0,y0)即为y1=k1x+b1与y2=k2x+b2交点坐标6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]八年级数学一次函数的应用知识点归纳2一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。
二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:(1)用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
八年级下册数学一次函数知识点
八年级下册数学一次函数知识点八年级下册数学一次函数知识点函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
初二下册期末考试知识点归纳一次函数1、函数一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
2、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
3、函数的三种表示法及其优缺点关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
图象法用图象表示函数关系的方法叫做图象法。
4、由函数关系式画其图像的一般步骤列表:列表给出自变量与函数的一些对应值。
描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。
初中数学华东师大八年级下册第章函数及其图象-一次函数的应用PPT
1.一次函数y=kx+b(k≠0)的图象是一条直线,称 直线y=kx+b;
2.一次函数y=kx+b(k≠0)的图象的位置和性质:
当k>0时 y b>0 b=0 b<0
x
• y随x的增大而增大;
当k<0时
y
当k<0时
x
b>0 b=0 b<0 y随x的增大而减小.
2、一次函数的图象与性质
3. 如图: 两条直线L1:y=k1x+b1 和直线L2:y=k2x+b2
那么x的取值范围是(
)B
0
3x
(A)x<-2 (B)x<3
-2
(C) x>3 (D)x>-2
2. 王老师从家里出发,坐出租车到学校上课。出租车计
费方法如图所示,请根据图象回答下面的问题:
(1)出租车的起步价是多少元?在多少路程内只收起步价?
(2)起步价里程走完之后, y费用(元)
每行驶1km需多少车费? 9
一、知识要点
1.一次函数的概念
1.若两个变量x,y的关系可以表示成y=kx+b(k, b是常数,k≠0)的形式,则称y是做x的一次函 数 (x为自变量,y为因变量).
2.特别地,当常数b=0时,一次函数=kx+b(k≠0) 就成为:y=kx(k是常数,k≠0),称y是x的正比 例函数.
2、一次函数的图象与性质
解:设一次函数的解析式为y=kx+b,由题可知经过点 (3,0)和(0,3)代入可得
3k b 0 0 b 3
k 1
解得
b 3
∴此一次函数的解析式为 y= - x+3
■【合作探究】
精编初二数学下册《一次函数的应用》知识点梳理
精编初二数学下册《一次函数的应用》知识
点梳理
知识梳理
1、一次函数的概念若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,kne;0)的形式,则称y是x的一次函数(x为自变量,y为因变量)特别地,当b=0时,称y 是x的正比例函数。
2、一次函数的图象①一次函数y=kx+b的图象是一条经过(0,b)(-bk,0)的直线,正比例函数y=kx的图象是经过原点(0,0)的一条直线。
②在一次函数ykxb#61501;#61483;中当0k#61502;时,y随x的增大而增大,当0b#61502;时,直线交y轴于正半轴,必过一、二、三象限;当0b#61500;时,直线交y轴于负半轴,必过一、三、四象限.当0#61500;k 时,y随x的增大而减小,当0b#61502;时,直线交y轴于正半轴,必过一、二、四象限;当0b#61500;时,直线交y轴于负半轴,必过二、三、四象限.意图:在前面的学习中我们已得到一次函数的图象是一条直线,并且讨论了k、b的正负对图象的影响.通过对上节课学习内容的回顾,为进一步研究一次函数图象和性质的应用做好铺垫.
为大家推荐的一次函数的应用知识点梳理,大家仔细
阅读了吗?更多参考复习资料尽在。
八年级数学第四章知识点归纳:黄金分割
初二数学第四章重点知识之线段的比。
华师大版八年级下册一次函数讲义
华师大版八年级下册一次函数讲义————————————————————————————————作者:————————————————————————————————日期:ﻩ一次函数一、一次函数的概念.一般地,形如b kx y +=)0(≠k 的函数,叫做一次函数。
其中当0=b 时,就是我们学过的正比例函数,所以正比例函数是一种特殊的一次函数。
当0=k 时,即b y =,这是一个常值函数,它不是一次函数。
例一:下列函数中,哪些是一次函数? (1)5x y -= (2)xy 3-= (3))81(82x x x y -+= (4)x y 82+= (5)12+=x y (6)12+=x y例二:已知函数3)3(82+-=-mx m y 是一次函数,求其函数关系式。
例三:已知函数4)2(2-++=m x m y(1) 该函数是一次函数,求m 的取值范围;(2) 该函数是正比例函数,求m 的取值范围;(3) 该函数是常值函数,求m 的取值范围;二、一次函数图象与系数一次函数)0(≠+=k b kx y 的图象是一条直线,图象位置由k 、b 确定,0>k 直线要经过一、三象限,0<k 直线必经过二、四象限,0>b 直线与y轴的交点在正半轴上,0<b 直线与y轴的交点在负半轴上.1.求函数与坐标轴的交点)0(≠+=k b kx y 与y 轴的交点坐标________;与x 轴的交点坐标____________; 例四、求下列函数与坐标轴的两个交点坐标:(1)33-=x y (2)231+-=x y 2.一次函数的图像一次函数图像的确定__________________________ 例五、在直角坐标系中画出321-=x y 的图像:三、一次函数的增减性当0>k 时,y 随x 的增大而增大;当0<k 时,y 随x 的增大而减小;(同正比例函数)当0>k ,0>b 时,图像经过一、二、三象限;当0>k ,0<b 时,图像经过一、三、四象限;当0<k ,0>b 时,图像经过一、二、四象限;当0<k ,0<b 时,图像经过二、三、四象限;例六:填表 增减性象限 331+-=x y42--=x y2)1(3+-=x y1)3(31+--=x y四、函数图象经过点的含义函数图象上的点是由适合函数解析式的一对x 、y 的值组成的,因此,若已知一个点在函数图象上,那么以这个点的横坐标代x,纵坐标代y,方程成立。
一次函数的性质八年级数学华东师大版下册
例2 若点(-1,a),(3,b)都在函数y=x+2的图象上,
则a与b的大小关系是( B )
A.a>b
B.a<b
C.a=b
D.无法确定
导引:解决此题有两种方法,一是将两点的横坐标分别
代入函数关系式,求出a,b的值,直接进行比较;
二是由于k=1>0,故y随x的增大而增大,
由-1<3,得a<b.
归纳小结
3 (中考·娄底)一次函数y=kx-k(k<0)的大致图象是( )
合作探究
新知二 一次函数y=kx+b中x,y间的变化规律与k,b的关系
1.如图,在函数y = 2 x+ 1的图象中, 3
我们看 到:当一个点在直线上从 左向右移动(自变量x从小变 到大) 时,它的位置也在逐步从低到高 变化(函数y的值 也从小变到大). 这就是说,函数值y随自变量x的增大而___________.
k<0,b>0直线经过第一、二、四象限
k<0,b<0直线经过第二、三、四象限
一次函数 图 象 一条直线 增减性 k>0,y随x的增大而增大;(从左向右上升)
k<0,y随x的增大而减小。(从左向右下降) 倾斜度 |k|越大,越接近y轴;|k|越小,越接近x轴 图像的 b>0时,将直线y=kx的图象向上平移 |b|个单位; 平移 b<0时,将直线y=kx的图象向下平移 |b|个单位.
解:(1)点 E(-8,0)代入直线 y=kx+6,得 0=-8k+6,解得 k=34
(2)∵点 P(x,y)是第二象限内直线 y=34 x+6 上的一个动点,OA=6,
点 P 到 OA 的距离是 y,∴S=12
·OA·y=12
3 ·6·(4
x+6)=94
一次函数的实际应用华东师大版数学八年级下册
(2)
因为280>100,所以讲x=280代入y2= 1
1 5
x+20.
得y2= 5 ×280+2交话费76元.
归纳小结
分段函数中,自变量在不同的取值范围内表达式不 同,在解决问题时,要特别注意自变量的取值范围的变 化.分段函数的应用面广,在水费、电费、商品促销等 领域都有广泛应用.本题考查一次函数及识图能力,体 现了数形结合思想.解决问题的关键是由图象挖掘出有 用的信息,利用待定系数法先求出函数表达式,再解决 问题.
1.8x(0≤x≤15), 解:(1)y=2.4x-9(x>15) (2)设二月份的用水量是 x m3, 当 15<x≤25 时,2.4x-9+2.4(40-x)-9=78≠79.8,故此种情况不符合 题意; 当 0<x≤15 时,令 1.8x+2.4(40-x)-9=79.8,解得 x=12,∴40-x=
x>10,
且x为整数).
合作探究
新知二 用一次函数解含图象的实际问题
分析函数图象要结合实际问题背景,理解一次函 数图象与两个坐标的交点、一次函数图象之间的交点、 一次函数图象的关键(特殊)点、几段函数图象的折 点等意义.理解这些点的坐标是解决一次函数图象问题 的重要方法.
例2 某移动公司采用分段计费的方法来计算话费,月通 话时间x(min)与相应话费y(元)之间的函数图象如图. (1)分别求出当0≤x<100和x≥100时,y与x之间的函 数表达式; (2)月通话时间为280 min 时, 应交话费多少元?
∵当x=0时,y=22;当x=200时,y=21, (2)由∴∴(所122)求知12 函y=2b数0,-0关k 2系10b0式, x∴为+y2=bk2(-x22≥2100.02)1,0, 0令x +y=2128(x,≥0得).x=800,
八年级数学下册17.3一次函数求一次函数解析式的常用方法素材华东师大版(new)
求一次函数解析式的常用方法一次函数是初中数学的重要内容之一,要学好它,首先会求它的解析式。
本文举例介绍求一次函数解析式的几种常用方法,供同学们学习时参考。
一、 定义法一次函数y=kx+b (k≠0)的x 的指数等于1,系数k≠0,据此求一次函数的解析式。
例1 求一次函数y=(p+1)x p2-3p —3+2p 的解析式解:由一次函数的定义可知p 2—3p —3=1∴p=4或p=—1又p+1≠0p=4所以所求解析式为y=5x+8点评:用定义法求一次函数解析式关键是抓住“一次”即未知数的指数等于1且它的系数不等于0。
二、 两点坐标法一次函数y=kx+b (k≠0)中,有两个字母需k 、b 要求,而将一次函数y=kx+b (k≠0)图象上的两点坐标代入y=kx+b (k≠0),得关于k 、b 的二元一次方程组解之可得k 、b1、已知两点坐标例2 已知一次函数的图像经过两点(—2,10),(4,-8),求该一次函数的解析式. 解:设所求一次函数解析式为y=kx+b (k≠0)将(—2,10),(4,-8)代入得⎩⎨⎧-=+=+-84102b k b k 解之得⎩⎨⎧-==34k b 所以所求一次函数的解析式为y=—3x+4点评:已知一次函数经过两点,把这两点坐标代入y=kx+b 解出k 、b 即可。
2、已知表格例3 某商店出售一种瓜子,其售价y (元)与瓜子质量x (kg)之间的关系如下表:由上表得y 与x 之间的关系式是 .解:设所求关系式为y=kx+b将(2,3。
8)、(2,7.4)代入得:⎩⎨⎧=+=+4.728.3b k b k 解得:⎩⎨⎧==6.32.0k b ∴y=3。
6x+0.2 将(3,11),(4,14.6)代入也适合故y 与x 之间的关系式是y=3。
6x+0.2点评:一次函数的关系由表格给出时,从表格中选出两组较简数字代入y=kx+b 解出k 、b 即可.3、已知图像例4 如下图是某出租车单程收费y (元)与行程x (km )之间的函数关系图像,求出收费y (元)与行程x (km)(x≥3)之间的函数关系,并求行驶10km 需收费多少元?解:设y 与x 的关系是y=kx+b 将(3,5),(8,11)代入得⎩⎨⎧+=+=bk b k 81135 解得⎩⎨⎧==5756b k ∴y=65x+75(x≥3) 当x=10时,y=65×10+ 75=12+ 75=1325故行驶10km 需收费13元4角。
一次函数的应用知识讲解
一次函数的应用知识讲解一次函数是数学中的基础概念之一,它是形式为f(x) = ax + b的函数,其中a和b是常数。
一次函数也被称为线性函数,因为它的图像是一条直线。
1.直线运动问题:一次函数可以用来描述物体的运动情况。
例如,一个物体在t秒内匀速直线运动,它的初始位置是x0,速度是v,则物体的位置可以用一次函数来表示:x(t) = x0 + vt。
这个函数中的x0是物体的初始位置,vt是速度v与时间t的乘积。
通过对时间t的不同取值,我们可以得到物体在不同时刻的位置。
2.价格和需求关系:在经济学中,一次函数可以用来描述价格和需求之间的关系。
假设商品的价格为p,需求量为d,根据供需理论,商品的需求量和价格之间存在着一定的线性关系。
可以将需求量表示为d(p) = ap + b的一次函数,其中a是需求量随价格的变化率,b是需求量随价格为0时的截距。
通过分析一次函数的图像,可以得出价格对需求量的影响规律,进而指导制定合理的价格策略。
3.利润和成本关系:在管理学和经济学中,一次函数常常用于描述利润和成本之间的关系。
一个企业的利润可以表示为P(x) = ax + b,其中x是生产量,a是单位生产量带来的增加利润,b是无生产时的固定成本。
利润函数的图像可以反映企业在不同生产量下的盈亏情况,通过最大化或最小化利润函数,可以帮助企业制定最优的生产方案和经营策略。
4.数学建模:一次函数是数学建模中最常用的数学模型之一、数学建模是将实际问题抽象化为数学问题,并通过数学方法解决这些问题。
许多实际问题可以通过一次函数来建模,从而得出问题的解析解或近似解。
例如,通过分析市场价格的变化规律,可以建立一次函数来预测未来的价格走势;通过分析股票的历史数据,可以建立一次函数来预测股票的未来涨跌幅度等。
5.统计学分析:一次函数也广泛应用于统计学中的回归分析。
回归分析是用来研究两个或多个变量之间关系的一种统计方法。
简单线性回归模型就是一次函数模型,可以用来描述因变量和自变量之间的线性关系。
华东师大版数学八年级下册专题课堂一次函数的应用课件
租金信息如表:
若设租用A型客车x辆,租车总费用为y元.
(1)请写出y与x的函数关系式(不要求写自变量取值范围);
(2)据资金预算,本次租车总费用不超过11800元,则A型客车至少需租几辆?
(3)在(2)的条件下,要保证全体师生都有座位,问有哪几种租车方案?请选出最省钱的
租车方案.
型号 A B
载客量(人/辆) 16 22
(1)直接写出乙地每天接种的人数及a的值; (2)当甲地接种速度放缓后,求y关于x的函数表达式,并写出自变量x的取值范围; (3)当乙地完成接种任务时,求甲地未接种疫苗的人数.
方案一:A型客车租1辆,B型客车租9辆;方案二:A型客车租2辆,B型客车租8辆; 方案三:A型客车租3辆,B型客车租7辆.∵y=-300x+12000,k<0,∴y随x的增大 而减小,∴当x=3时,y有最小值,∴最省钱的租车方案是A型客车租3辆,B型客车 租7辆
2.(202X·南通)A,B两家超市平时以同样的价格出售相同的商品.暑假期间两家超市 都进行促销活动,促销方式如下: A超市:一次购物不超过300元的打9折,超过300元后的价格部分打7折; B超市:一次购物不超过100元的按原价,超过100元后的价格部分打8折. 例 如 , 一 次 购 物 的 商 品 原 价 为 500元 , 去 A超 市 的 购 物 金 额 为 : 300×0.9+ (500- 300)×0.7=410(元);去B超市的购物金额为:100+(500-100)×0.8=420(元). (1)设商品原价为x元,购物金额为y元,分别就两家超市的促销方式写出y关于x的函数 表达式; (2)促销期间,若小刚一次购物的商品原价超过200元,他去哪家超市购物更省钱?请说 明理由. 解:(1)yA=00..79xx+(6x0≤(3x0>0)30,0), yB=x0(.8xx+≤2100(0)x>,100)
华东师大版数学八年级下册《一次函数的图象的简单应用》课件
1
∴直线y=1.5x-3与x轴的交点坐标为A(2,0),与
y轴的交点坐标为B(0,-3).
∴ ∆ =
y=1.5x-3
|∙ | = × × =3
-1 O
-1
1
A(2,0)x
B(0,-3)
方法总结
注意:|b|,| b |是直线y=kx+b(k≠0)与坐标轴的两交
3.两个一次函数,当k相同b不同时,图象有何关系?当b相同k不同时,
图象又有何关系?
当k相同b不同时,两直线平行;当b相同k不同时,两直线相交于y
轴上同一点(0,b).
新知学习
y
1、画出直线y=-2x+3,借助图象找出:
(1)直线上横坐标是2的点;
(2)直线上纵坐标是-3的点;
(3)直线上到y轴距离等于1的点.
条折线.
3.为了鼓励市民节约用水,自来水公司采取分段收费标准,若某户居民
每月应交水费y(元)是用水量x(吨)的函数, 当0≤x≤5时,y=0.72x;当x>
5时,y=0.9x-0.9.
(1)画出函数的图象;
(2)观察图象,利用函数解析式回答:自来水公司采取的收费标准是什么?
解:(1)函数图象如图.
O
30
60
90
x(千克)
6、2017年暑假小波同学带10元钱去文具店买笔芯,已知每根定价1元8
角,写出买笔芯剩余的钱y(元)与买笔芯的数量x(根)之间的函数关系式,
并画出函数的图象.
解:根据题意得函数关系式为y=10-1.8x,
50
x的范围是0≤x≤
9
中的整数,故函数的图
最新华东师大初中数学八年级下册一次函数的应用(基础)知识讲解
一次函数的应用(基础)【学习目标】1. 能从实际问题的图象中获取所需信息;2. 能够将实际问题转化为一次函数的问题并准确的列出一次函数的解析式;3. 能利用一次函数的图象及其性质解决简单的实际问题;4. 提高解决实际问题的能力.认识数学在现实生活中的意义,发展运用数学知识解决实际问题的能力.【要点梳理】【高清课堂:393616 一次函数的应用,知识要点】要点一、数学建模的一般思路数学建模的关键是将实际问题数学化,从而得到解决问题的最佳方案、最佳策略.在建模的过程中,为了既合乎实际问题又能求解,这就要求在诸多因素中抓住主要因素进行抽象化简,而这一过程恰是我们的分析、抽象、综合、表达能力的体现.函数建模最困难的环节是将实际情景通过数学转化为什么样的函数模型.要点二、正确认识实际问题的应用在实际生活问题中,如何应用函数知识解题,关键是建立函数模型,即列出符合题意的函数解析式,然后根据函数的性质综合方程(组)、不等式(组)及图象求解.要点诠释:要注意结合实际,确定自变量的取值范围,这是应用中的难点,也是中考的热门考点.要点三、选择最简方案问题分析问题的实际背景中包含的变量及对应关系,结合一次函数的解析式及图象,通过比较函数值的大小等,寻求解决问题的最佳方案,体会函数作为一种数学模型在分析解决实际问题中的重要作用.【典型例题】类型一、简单的实际问题1、(2016•吉林)甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,y甲、y乙与x之间的函数图象如图所示.(1)甲的速度是km/h;(2)当1≤x≤5时,求y乙关于x的函数解析式;(3)当乙与A地相距240km时,甲与A地相距km.【思路点拨】(1)根据图象确定出甲的路程与时间,即可求出速度;(2)利用待定系数法确定出y 乙关于x 的函数解析式即可;(3)求出乙距A 地240km 时的时间,乘以甲的速度即可得到结果.【答案与解析】解:(1)根据图象得:360÷6=60km/h ;(2)当1≤x≤5时,设y 乙=kx+b ,把(1,0)与(5,360)代入得:05360k b k b +=⎧⎨+=⎩,解得:k=90,b=﹣90,则y 乙=90x ﹣90;(3)令y 乙=240,得到x= 113, 则甲与A 地相距60×113=220km , 故答案为:(1)60;(3)220【总结升华】本题考查了识别函数图象的能力,解决问题的关键是确定函数解析式.举一反三:【高清课堂:393616 一次函数的应用,例3】【变式】小刚、小强两人进行百米赛跑,小刚比小强跑得快,如果两人同时跑,小刚肯定赢,现在小刚让小强先跑若干米,图中的射线a ,b 分别表示两人跑的路程与时间的关系,根据图象判断:小刚的速度比小强的速度每秒快( )A .1米B .1.5米C .2米D .2.5米【答案】D ;提示:由图象知小刚让小强先跑20米,用8秒时间追上小强,所以每秒快2.5米.故选D .图象的交点表示的实际意义:小刚用时8秒追上小强,距离出发点64米.2、(2015•淮安)小丽的家和学校在一条笔直的马路旁,某天小丽沿着这条马路上学,先从家步行到公交站台甲,再乘车到公交站台乙下车,最后步行到学校(在整个过程中小丽步行的速度不变),图中折线ABCDE 表示小丽和学校之间的距离y (米)与她离家时间x (分钟)之间的函数关系.(1)求小丽步行的速度及学校与公交站台乙之间的距离;(2)当8≤x≤15时,求y 与x 之间的函数关系式.【思路点拨】(1)根据函数图象,小丽步行5分钟所走的路程为3900﹣3650=250米,再根据路程、速度、时间的关系,即可解答;(2)利用待定系数法求函数解析式,即可解答.【答案与解析】解:(1)根据题意得:小丽步行的速度为:(3900﹣3650)÷5=50(米/分钟),学校与公交站台乙之间的距离为:(18﹣15)×50=150(米);(2)当8≤x≤15时,设y=kx+b,把C(8,3650),D(15,150)代入得:,解得:∴y=﹣500x+7650(8≤x≤15).【总结升华】本题考查了一次函数的应用,解决本题的关键是读懂函数图象,获取相关信息,利用得到系数法求函数解析式.类型二、方案选择问题3、某经营世界著名品牌的总公司,在我市有甲、乙两家分公司,这两家公司都销售香水和护肤品.总公司现香水70瓶,护肤品30瓶,分配给甲、乙两家分公司,其中40瓶给甲公司,60瓶给乙公司,且都能卖完,两公司的利润(元)如下表.(1)假设总公司分配给甲公司x瓶香水,求:甲、乙两家公司的总利润W与x之间的函数关系式;(2)在(1)的条件下,甲公司的利润会不会比乙公司的利润高?并说明理由;(3)若总公司要求总利润不低于17370元,请问有多少种不同的分配方案,并将各种方案设计出来【思路点拨】(1)设总公司分配给甲公司瓶香水,用表示出分配给甲公司的护肤品瓶数、乙公司的香水和护肤品瓶数,根据已知列出函数关系式.(2)根据(1)计算出甲、乙公司的利润进行比较说明.(3)由已知求出x的取值范围,通过计算得出几种不同的方案.【答案与解析】解:(1)依题意,甲公司x瓶香水,甲公司的护肤品瓶数为:40-x,乙公司的香水和护肤品瓶数分别是:70-x,30-(40-x)=x-10.W=180x+200(40-x)+160(70-x)+150(x-10)=-30x+17700.故甲、乙两家公司的总利润W 与x 之间的函数关系式W =-30x +17700(2)甲公司的利润为:180x +200(40-x )=8000-20x ,乙公司的利润为:160(70-x )+150(x -10)=9700-10x ,8000-20x -(9700-10x )=-1700-10x <0,∴甲公司的利润不会比乙公司的利润高.(3)由(1)得:0400700100x x x x ≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩ , 解得:10≤x ≤40,再由W =-30x +17700≥17370得:x ≤11,∴10≤x ≤11,∴有两种不同的分配方案.①当x =10时,总公司分配给甲公司10瓶香水,甲公司护肤品30瓶,乙公司60瓶香水,乙公司0瓶护肤品.②当x =11时,总公司分配给甲公司11瓶香水,甲公司29瓶护肤品,乙公司59瓶香水,乙公司1瓶护肤品.【总结升华】此题考查的知识点是一次函数的应用,关键是先求出函数关系式,再对甲乙公司利润进行比较,通过求自变量的取值范围得出方案.举一反三:【变式】健身运动已成为时尚,某公司计划组装A 、B 两种型号的健身器材共40套,捐赠给社区健身中心.组装一套A 型健身器材需甲种部件7个和乙种部件4个,组装一套B 型健身器材需甲种部件3个和乙种部件6个.公司现有甲种部件240个,乙种部件196个.(1)公司在组装A 、B 两种型号的健身器材时,共有多少种组装方案;(2)组装一套A 型健身器材需费用20元,组装一套B 型健身器材需费用18元.求总组装费用最少的组装方案,最少组装费用是多少?【答案】解:(1)设该公司组装A 型器材x 套,则组装B 型器材(40-x )套,依题意,得73(40)24046(40)196x x x x +-≤⎧⎨+-≤⎩ 解得22≤x ≤30.由于x 为整数,∴x 取22,23,24,25,26,27,28,29,30.∴组装A 、B 两种型号的健身器材共有9种组装方案.(2)总的组装费用y =20x +18(40-x )=2x +720.∵k =2>0,∴y 随x 的增大而增大.∴当x =22时,总的组装费用最少,最少组装费用是2×22+720=764元.总组装费用最少的组装方案:组装A 型器材22套,组装B 型器材18套.4、2011年秋冬北方严重干旱,凤凰社区人畜饮用水紧张,每天需从社区外调运饮用水120吨.有关部门紧急部署,从甲、乙两水厂调运饮用水到社区供水点,甲厂每天最多可调出80吨,乙厂每天最多可调出90吨.从两水厂运水到凤凰社区供水点的路程和运费如下表:(1)若某天调运水的总运费为26700元,则从甲、乙两水厂各调运了多少吨饮用水?(2)设从甲厂调运饮用水x 吨,总运费为W 元,试写出W 关于与x 的函数关系式,怎样安排调运方案才能是每天的总运费最省?【答案与解析】解:(1)设从甲厂调运饮用水x 吨,从乙厂调运饮用水y 吨,根据题意得2012141526700,120.x y x y ⨯+⨯=⎧⎨+=⎩ 解得50,70.x y =⎧⎨=⎩∵50<80,70<90,∴符合条件.故从甲、乙两水厂各调用了50吨、70吨饮用水.(2)设从甲厂调运饮用水x 吨,则需从乙厂调运水(120-x )吨,根据题意可得80,12090.x x ⎧⎨-⎩≤≤解得3080x ≤≤. 总运费()201214151203025200W x x x =⨯+⨯-=+,(3080x ≤≤)∵W 随x 的增大而增大,故当30x =时,26100W =最小元.∴每天从甲厂调运30吨,从乙厂调运90吨,每天的总运费最省.【总结升华】本题的最值问题是利用解不等式和一次函数的性质,并要注意自变量的实际取值范围. 举一反三:【变式】(2015•广安)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A 、B 两贫困村的计划.现决定从某地运送152箱鱼苗到A 、B 两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,(2)现安排其中10辆货车前往A 村,其余货车前往B 村,设前往A 村的大货车为x 辆,前往A 、B 两村总费用为y 元,试求出y 与x 的函数解析式.(3)在(2)的条件下,若运往A 村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.【答案】解:(1)设大货车用x 辆,小货车用y 辆,根据题意得:解得:.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400.(3≤x≤8,且x 为整数).(3)由题意得:12x+8(10﹣x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+9400,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+9400=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数的应用(基础)【学习目标】1. 能从实际问题的图象中获取所需信息;2. 能够将实际问题转化为一次函数的问题并准确的列出一次函数的解析式;3. 能利用一次函数的图象及其性质解决简单的实际问题;4. 提高解决实际问题的能力.认识数学在现实生活中的意义,发展运用数学知识解决实际问题的能力.【要点梳理】【高清课堂:393616 一次函数的应用,知识要点】要点一、数学建模的一般思路数学建模的关键是将实际问题数学化,从而得到解决问题的最佳方案、最佳策略.在建模的过程中,为了既合乎实际问题又能求解,这就要求在诸多因素中抓住主要因素进行抽象化简,而这一过程恰是我们的分析、抽象、综合、表达能力的体现.函数建模最困难的环节是将实际情景通过数学转化为什么样的函数模型.要点二、正确认识实际问题的应用在实际生活问题中,如何应用函数知识解题,关键是建立函数模型,即列出符合题意的函数解析式,然后根据函数的性质综合方程(组)、不等式(组)及图象求解.要点诠释:要注意结合实际,确定自变量的取值范围,这是应用中的难点,也是中考的热门考点.要点三、选择最简方案问题分析问题的实际背景中包含的变量及对应关系,结合一次函数的解析式及图象,通过比较函数值的大小等,寻求解决问题的最佳方案,体会函数作为一种数学模型在分析解决实际问题中的重要作用.【典型例题】类型一、简单的实际问题1、(2016•吉林)甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,y甲、y乙与x之间的函数图象如图所示.(1)甲的速度是km/h;(2)当1≤x≤5时,求y乙关于x的函数解析式;(3)当乙与A地相距240km时,甲与A地相距km.【思路点拨】(1)根据图象确定出甲的路程与时间,即可求出速度;(2)利用待定系数法确定出y 乙关于x 的函数解析式即可;(3)求出乙距A 地240km 时的时间,乘以甲的速度即可得到结果.【答案与解析】解:(1)根据图象得:360÷6=60km/h ;(2)当1≤x≤5时,设y 乙=kx+b ,把(1,0)与(5,360)代入得:05360k b k b +=⎧⎨+=⎩, 解得:k=90,b=﹣90,则y 乙=90x ﹣90;(3)令y 乙=240,得到x= 113, 则甲与A 地相距60×113=220km , 故答案为:(1)60;(3)220【总结升华】本题考查了识别函数图象的能力,解决问题的关键是确定函数解析式. 举一反三:【高清课堂:393616 一次函数的应用,例3】【变式】小刚、小强两人进行百米赛跑,小刚比小强跑得快,如果两人同时跑,小刚肯定赢,现在小刚让小强先跑若干米,图中的射线a ,b 分别表示两人跑的路程与时间的关系,根据图象判断:小刚的速度比小强的速度每秒快( )A .1米B .1.5米C .2米D .2.5米【答案】D ;提示:由图象知小刚让小强先跑20米,用8秒时间追上小强,所以每秒快2.5米.故选D .图象的交点表示的实际意义:小刚用时8秒追上小强,距离出发点64米.2、(2015•淮安)小丽的家和学校在一条笔直的马路旁,某天小丽沿着这条马路上学,先从家步行到公交站台甲,再乘车到公交站台乙下车,最后步行到学校(在整个过程中小丽步行的速度不变),图中折线ABCDE 表示小丽和学校之间的距离y (米)与她离家时间x (分钟)之间的函数关系.(1)求小丽步行的速度及学校与公交站台乙之间的距离;(2)当8≤x≤15时,求y 与x 之间的函数关系式.【思路点拨】(1)根据函数图象,小丽步行5分钟所走的路程为3900﹣3650=250米,再根据路程、速度、时间的关系,即可解答;(2)利用待定系数法求函数解析式,即可解答.【答案与解析】解:(1)根据题意得:小丽步行的速度为:(3900﹣3650)÷5=50(米/分钟),学校与公交站台乙之间的距离为:(18﹣15)×50=150(米);(2)当8≤x≤15时,设y=kx+b,把C(8,3650),D(15,150)代入得:,解得:∴y=﹣500x+7650(8≤x≤15).【总结升华】本题考查了一次函数的应用,解决本题的关键是读懂函数图象,获取相关信息,利用得到系数法求函数解析式.类型二、方案选择问题3、某经营世界著名品牌的总公司,在我市有甲、乙两家分公司,这两家公司都销售香水和护肤品.总公司现香水70瓶,护肤品30瓶,分配给甲、乙两家分公司,其中40瓶给甲公司,60瓶给乙公司,且都能卖完,两公司的利润(元)如下表.(1)假设总公司分配给甲公司x瓶香水,求:甲、乙两家公司的总利润W与x之间的函数关系式;(2)在(1)的条件下,甲公司的利润会不会比乙公司的利润高?并说明理由;(3)若总公司要求总利润不低于17370元,请问有多少种不同的分配方案,并将各种方案设计出来数、乙公司的香水和护肤品瓶数,根据已知列出函数关系式.(2)根据(1)计算出甲、乙公司的利润进行比较说明.(3)由已知求出x的取值范围,通过计算得出几种不同的方案.【答案与解析】解:(1)依题意,甲公司x瓶香水,甲公司的护肤品瓶数为:40-x,乙公司的香水和护肤品瓶数分别是:70-x,30-(40-x)=x-10.W =180x +200(40-x )+160(70-x )+150(x -10)=-30x +17700. 故甲、乙两家公司的总利润W 与x 之间的函数关系式W =-30x +17700(2)甲公司的利润为:180x +200(40-x )=8000-20x ,乙公司的利润为:160(70-x )+150(x -10)=9700-10x ,8000-20x -(9700-10x )=-1700-10x <0,∴甲公司的利润不会比乙公司的利润高.(3)由(1)得:0400700100x x x x ≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩ ,解得:10≤x ≤40,再由W =-30x +17700≥17370得:x ≤11,∴10≤x ≤11,∴有两种不同的分配方案.①当x =10时,总公司分配给甲公司10瓶香水,甲公司护肤品30瓶,乙公司60瓶香水,乙公司0瓶护肤品.②当x =11时,总公司分配给甲公司11瓶香水,甲公司29瓶护肤品,乙公司59瓶香水,乙公司1瓶护肤品.【总结升华】此题考查的知识点是一次函数的应用,关键是先求出函数关系式,再对甲乙公司利润进行比较,通过求自变量的取值范围得出方案.举一反三:【变式】健身运动已成为时尚,某公司计划组装A 、B 两种型号的健身器材共40套,捐赠给社区健身中心.组装一套A 型健身器材需甲种部件7个和乙种部件4个,组装一套B 型健身器材需甲种部件3个和乙种部件6个.公司现有甲种部件240个,乙种部件196个.(1)公司在组装A 、B 两种型号的健身器材时,共有多少种组装方案;(2)组装一套A 型健身器材需费用20元,组装一套B 型健身器材需费用18元.求总组装费用最少的组装方案,最少组装费用是多少?【答案】解:(1)设该公司组装A 型器材x 套,则组装B 型器材(40-x )套,依题意,得73(40)24046(40)196x x x x +-≤⎧⎨+-≤⎩解得22≤x ≤30.由于x 为整数,∴x 取22,23,24,25,26,27,28,29,30.∴组装A 、B 两种型号的健身器材共有9种组装方案.(2)总的组装费用y =20x +18(40-x )=2x +720.∵k =2>0,∴y 随x 的增大而增大.∴当x =22时,总的组装费用最少,最少组装费用是2×22+720=764元.总组装费用最少的组装方案:组装A 型器材22套,组装B 型器材18套.4、2011年秋冬北方严重干旱,凤凰社区人畜饮用水紧张,每天需从社区外调运饮用水120吨.有关部门紧急部署,从甲、乙两水厂调运饮用水到社区供水点,甲厂每天最多可调出80吨,乙厂每天最多可调出90吨.从两水厂运水到凤凰社区供水点的路程和运费如下表:(1)若某天调运水的总运费为26700元,则从甲、乙两水厂各调运了多少吨饮用水?(2)设从甲厂调运饮用水x 吨,总运费为W 元,试写出W 关于与x 的函数关系式,怎样安排调运方案才能是每天的总运费最省?【答案与解析】解:(1)设从甲厂调运饮用水x 吨,从乙厂调运饮用水y 吨,根据题意得2012141526700,120.x y x y ⨯+⨯=⎧⎨+=⎩ 解得50,70.x y =⎧⎨=⎩∵50<80,70<90,∴符合条件.故从甲、乙两水厂各调用了50吨、70吨饮用水.(2)设从甲厂调运饮用水x 吨,则需从乙厂调运水(120-x )吨,根据题意可得80,12090.x x ⎧⎨-⎩≤≤解得3080x ≤≤. 总运费()201214151203025200W x x x =⨯+⨯-=+,(3080x ≤≤)∵W 随x 的增大而增大,故当30x =时,26100W =最小元.∴每天从甲厂调运30吨,从乙厂调运90吨,每天的总运费最省.【总结升华】本题的最值问题是利用解不等式和一次函数的性质,并要注意自变量的实际取值范围.举一反三:【变式】(2015•广安)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A 、B 两贫困村的计划.现决定从某地运送152箱鱼苗到A 、B 两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.【答案】解:(1)设大货车用x辆,小货车用y辆,根据题意得:解得:.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400.(3≤x≤8,且x 为整数).(3)由题意得:12x+8(10﹣x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+9400,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+9400=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.。