练习2:导数
导数基础练习题(2)
2导数基础练习题一选择题1函数f (x) =(2nx )的导数是(C )2 2(A) f (x) =4二x (B) f (X) =4二x (C) f (x) =8二x (D) f (x) =16二x2.函数f(x)二X €公的一个单调递增区间是( A )(A) 1-1,0 1 (B) 2,8 1 (C) 1,21 (D) 0,213 .已知对任意实数x,有f(-x)--f( ,x) g卜x)二g(且x 0时,f ( x) ,0 g (x ),则x 0 时(B )A. f (x) 0, g (x) 0B. f (x) 0, g (x) :: 0C. f (x) :: 0, g (x) 0D. f (x) ::0, g (x) :: 034.若函数f (x) = x -3bx 3b在0,1内有极小值,则(A )1(A) 0 : b :1 (B) b 1(C) b 0 (D) b :-25•若曲线y =x4的一条切线I与直线x • 4y-8 = 0垂直,则I的方程为(A )A. 4x-y-3=0 B . x 4y-5=0 C . 4x-y 3 = 0 D . x 4y 3 = 06.曲线y =e x在点(2, e2)处的切线与坐标轴所围三角形的面积为( D )A. 2 2B. 2e c. eD.7.设f (x)是函数f (x)的导函数,将y二f (x)和y二f(x)的图象画在同一个直角坐标系B. C. D.2&已知二次函数f(x)=ax bx c 的导数为f'(x) , f'(O).O ,对于任意实数 x 都有f (x) Z 0,则丄^的最小值为(C )f'(0)c5 c3A . 3B .C . 2D .-2 29. 设 p: f (x^ e x ln x • 2x 2 mx 1 在(0, •::)内单调递增,q : m > -5,则 p 是 q 的 (B )A.充分不必要条件 E.必要不充分条件C.充分必要条件D.既不充分也不必要条件10. 已知函数f (x^ax 3 bx 2 c ,其导数f (x)的图像如图所示,则函数 是( )A. a b cB. 3a 4b cC. 3a 2bD. c11. 函数y=f(x)的图象如图所示,则导函数 y = f (x)的图象可能是() 12.函数f(x)=(x-3) 的单调递增区间是( )A. (2, ::)B. (0,3)C. (1,4)D. (一::,2)13.函数f (x) =2x 3 -6x 2 m ( m 为实数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为A -3B -27C -37D -5414三次函数 f(x)3 ..=mx — x 在(—8,+^ )上是减函数,则 m 的取值范围是()A. m<0B. m<1C. m< 0D. mC 1[答案]A[解析]f ' (x) =3mx — 1,由条件知f ' (x) <0在(—8,+8 )上恒成立,f (x)的极小值yxy = 3x 3 + x 在点(1 , 4)处的切线斜率k = y ,|3 34• k = 2,切线方程为 y — 3= 2(x — 1),即 6x — 3y — 2= 0, 2 1 112 1令 x = 0 得 y = — 3,令 y = 0 得 x =命二 S = X 3 X 2= &216.若函数f(x)的导数为.f'(x)=-2x+1,则f(x)可能是 ( D )17.已知曲线y=£-3lnx 的一条切线的斜率为J ,则切点的横坐标为(B A -2 B 3 C 118.正弦曲线y 二sinx 上一点P,以点P 为切点的切线为直线 L ,则直线是(A )21已知直线y = x + 1与曲线y = In(x + a)相切,则a 的值为(C. — 1222已知函数f (x )在R 上满足f(x)=2f (2-x)-x &-8,则曲线y= f(x)在点m<0△ = 12m<0,二 m<0,故选 A.15曲线y = ]x 3+ x 在点j 1, 4处的切线与坐标轴围成的三角形面积为3i 3 ;A. 1 1 B .9 1 C.3 2 D.3[答案][解析] ••• y '= x 2+ 1,•••曲线 x =1= 1 + 1 = 2,A.-2 x 3+1B.-X+1C.-4xD.-3x 3+xL 的倾斜角的范围A [0,-][注二)B [0,二)C4 4n [419 yx =3处的导数值为(B. -D.-20若曲线y = x 2+ ax + b 在点(0, b)处的切线方程是 x — y + 1 = 0,则()A . a = 1, b = 1 b = 1C . a = 1, b =— 1D . a =— 1, b =— 1二.填空题32 •已知函数 f(x)二x -12x 8在区间[-3, 3]上的最大值与最小值分别为 M,m ,则M -m= —32.3 23.点P 在曲线y = x —x —上移动,设在点P 处的切线的倾斜角为为 〉,则〉的取值范3围是 ------------------------------ 0/ |; ” ,|—,二 --------IL 2 _41 3 24 •已知函数y x x • ax -5(1)若函数在-:= 总是单调函数,则 a 的取值范围3是 _________ a^1 ______ .⑵若函数在[1,+处)上总是单调函数,则a 的取值范围(1,f(1))处的切线方程是 () A 『=2X — 1 B 『=x c y=3x-2 D y = -2 x + 323•函数f(x)的定义域为开区间(a,b),导函数f (x)在(a,b)内的图象如图所示, 极小值点 (f(x) 4 B.—312 D.—325.以下四图, 的序号是都是同一坐标系中三次函数及其导函数的图像, 、④1.函数f(x)=xlnx(x 0)的单调递增区间是.内有8 C.—324.如图是函数2A.—3=x 34个bx 2 cx d 的大致图象,则x其中一定不正确④① ②③ C .D . 3(3 )若函数在区间(-3 , 1 )上单调递减,则实数a的取值范围是a _ -3. _________ .5. 函数f(x)=x3—ax在[1 , +m)上是单调递增函数,则a的取值范围是__________________ 。
高中数学选修22:第一章导数及其应用单元测试题.doc
数学选修 2-2 第一章单元测试题一、选择题 ( 本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f ( x) 的定义域为开区间 ( a,b) ,导函数f′(x) 在( a,b) 内的图像如图所示,则函数 f ( x)在开区间( a,b)内有极小值点()A.1 个B.2 个C.3 个D.4 个1 12.在区间[ 2,2] 上,函数 f ( x)=x2+px+q 与g( x)=2x+x2在1同一点处取得相同的最小值,那么f(x)在[2,2]上的最大值是()C.8D.423.点P在曲线y=x3-x+3上移动,设点P处的切线的倾斜角为α,则α 的取值范围是( )ππ3A.[0 ,2 ] B.[0 ,2 ] ∪[ 4π,π)3 π 3C.[ 4π,π ) D.[ 2,4π]14.已知函数f ( x) =2x4-2x3+3m,x∈R,若f ( x) +9≥0恒成立,则实数 m的取值范围是()3 3A.m≥2 B.m>23 3C.m≤2 D.m<2x2 25.函数f ( x) =cos x-2cos 2的一个单调增区间是 ()f x 0+3 -f x 06.设f ( x) 在x=x0 处可导,且lim Δx=1,Δx→0则 f ′(x0)等于( )A.1 B.0C.3x+97.经过原点且与曲线y=x+5相切的切线方程为()A.x+y=0B.x+25y=0C.x+y= 0 或x+25y=0D.以上皆非8.函数f ( x) =x3+ax2+bx+c,其中a,b,c为实数,当a2-3b<0 时,f ( x) 是()A.增函数B.减函数C.常数D.既不是增函数也不是减函数13 29.若a>2,则方程3x -ax +1=0 在(0,2) 上恰好有 ()A.0 个根B.1 个根C.2 个根D.3 个根1 10.一点沿直线运动,如果由始点起经过t s 后距离为s=4t 4-53t 3+2t 2,那么速度为零的时刻是( )A.1 s 末B.0 sC.4 s 末D.0,1,4 s 末x2,x∈[0,1],2f(x) d x 等于 () 11.设f ( x) =则2-x,x∈ 1,2] ,0D.不存在sin x sin x1 sin x2 12.若函数 f(x) =x,且 0<x1<x2 <1,设 a=x1 ,b=x2 ,则 a,b 的大小关系是 ( )A.a>b B.a<bC.a=b D.a、b的大小不能确定二、填空题 ( 本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题中横线上 )1 3 213.若 f(x) =3x -f ′(1)x +x+5,则 f ′(1) = ________.π π14.已知函数 f(x) 满足 f(x) =f( π-x) ,且当 x∈ -2,2 时,f(x) =x+sin x,设a=f(1) ,b=f(2) ,c=f(3) ,则a、b、c 的大小关系是 ________.15.已知函数f(x) 为一次函数,其图像经过点(2,4) ,且1f(x) d x=3,则函数f(x) 的解析式为________.16.(2010 ·江苏卷) 函数2y=x(x>0)的图像在点 2(a k,a k) 处的切线与x 轴的交点的横坐标为a k+1,其中k∈N*. 若a1=16,则a1+a3+a5的值是________.三、解答题 ( 本大题共 6 小题,共 70 分,解答应出写文字说明、证明过程或演算步骤 )17.(10 分) 如图,直线y=kx分抛物线y=x-x2与x轴所围成图形为面积相等的两部分,求k 的值.18.(12 分) 已知函数 f(x) =x4-4x3+ax2-1 在区间 [0,1] 上单调递增,在区间 [1,2) 上单调递减.(1)求 a 的值;(2)若点 A(x0,f(x0)) 在函数 f(x) 的图像上,求证:点 A关于直线x=1 的对称点 B 也在函数 f(x) 的图像上.19.(12 分) 设 x=- 2 与 x=4 是函数 f(x) =x3+ax2+bx 的两个极值点.(1)求常数 a,b;(2)试判断 x=- 2,x= 4 是函数 f(x) 的极大值还是极小值,并说明理由.20.(12 分) 已知 f(x) =ax3-6ax2+b,x∈[ -1,2] 的最大值为 3,最小值为- 29,求 a,b 的值.21.(12 分)(2010 ·重庆卷 ) 已知函数 f(x) =ax3+x2+ bx( 其中常数a,b∈R) ,g( x) =f ( x) +f′(x) 是奇函数.(1)求 f ( x)的表达式;(2)讨论 g( x)的单调性,并求 g( x)在区间[1,2]上的最大值与最小值.1-x22.(12 分) 已知函数f ( x) =ln( ax+1) +1+x,x≥0,其中a>0.(1)若 f ( x)在 x=1处取得极值,求 a 的值;(2)求 f ( x)的单调区间;(3)若 f ( x)的最小值为1,求 a 的取值范围.参考答案1.答案 A解析设极值点依次为 x1,x2,x3且 a<x1<x2<x3<b,则 f ( x) 在( a,x1) ,( x2,x3) 上递增,在 ( x1,x2) ,( x3,b) 上递减,因此,x1、x3是极大值点,只有x2是极小值点.2.答案 D3.答案 B4.答案 A1解析因为函数 f ( x)=2x4-2x3+3m,所以 f ′(x)=2x3-6x2.令 f ′(x)=0,得 x=0或 x=3,经检验知 x=3是函数的一个最27小值点,所以函数的最小值为 f (3)=3m-2.不等式 f ( x)+9≥0恒成27 3立,即 f ( x)≥-9恒成立,所以3m-2≥-9,解得 m≥2.5.答案 A解析 f ( x)=cos2x-cos x-1,∴f′(x)=-2sin x·cos x+sin x=sin x·(1-2cos x).令 f ′(x)>0,结合选项,选A.6. 答案 D7. 答案 D8. 答案 A9. 答案 B解析 1 3 2设 f ( x ) =3x -ax +1,则2f ′(x )=x -2ax =x ( x -2a ) ,当 x ∈(0,2) 时, f ′(x )<0,f ( x ) 在(0,2) 上为减函数,又 f (0) f (2) =8 111 3-4a +1 = 3 -4a <0,f ( x ) =0 在(0,2) 上恰好有一个根,故选 B.10. 答案 D11. 答案 C解析 数形结合,如图.2f(x) d x = 1x 2d x + 2(2 -x) d x0 11 3 11 22= 3x+ 2x -2x11 1= 3+(4 -2-2+2)5= 6,故选 C .12. 答案Af ′(x) =x cos x -sin x解析 x 2, 令 g(x) =x cos x -sin x ,则g ′(x) =- x sin x +cos x -cos x =- x sin x.∵0<x<1,∴ g ′(x)<0 ,即函数 g(x) 在 (0,1) 上是减函数,得 g(x)<g(0) =0,故 f ′(x)<0 ,函数 f(x) 在(0,1) 上是减函数,得 a>b ,故选A .213. 答案 32 2解析 f ′(x) = x -2f ′(1)x + 1,令 x=1,得 f ′(1) =3.14. 答案 c<a<b解析f(2) = f( π-2) , f(3) = f( π- 3) ,因为 f ′(x) = 1+π ππcos x≥0,故f(x)在-2,2上是增函数,∵2 >π-2>1>π-3>0,∴f( π-2)>f(1)>f( π-3) ,即 c<a<b.2815.答案 f(x) =3x+3解析设函数 f(x) =ax+b(a ≠0) ,因为函数 f(x) 的图像过点(2,4) ,所以有 b=4-2a.∴1 f(x) d x= 1 (ax +4-2a) d x0 01 2 1 1=[ ax +(4 -2a)x] | 0=a+4-2a=1.2 22 8 2 8∴a=3. ∴b=3. ∴f(x) =3x+3.16. 答案21解析2 2∵y′=2x,∴过点( a k,a k)处的切线方程为y-a k=2a k( x1-a k),又该切线与 x 轴的交点为( a k+1,0),所以 a k+1=2a k,即数列{ a k}1是等比数列,首项a1=16,其公比q=2,∴ a3=4,a5=1,∴ a1+a3 +a5=21.17. 解析抛物线 y =x -x 2 与 x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与 x 轴所围图形面积 S = 12) d x =x 2 x 3 11 (x -x 2 -3 0=2-1 13=6.y =x -x 2,又 由此可得抛物线 y =x -x 2 与 y =kx 两交点的横y =kx ,S- 2 x 3 -坐标 x 3= , 4= - ,所以 = 1-k (x - x 2 kx) d x =1 k x - 1k -0 x 1 k 2 02313=6(1 -k) .3又 S = ,所以 (1 -k) 3=1,∴ k =1- 4.622118. 解析 (1) 由函数 f(x) =x4-4x3+ax2-1 在区间 [0,1] 单调递增,在区间 [1,2) 单调递减,∴x =1 时,取得极大值,∴ f ′(1) = 0.又 f ′(x) = 4x3-12x2+2ax ,∴4-12+2a = 0? a = 4.(2) 点 A(x0,f(x0)) 关于直线 x =1 的对称点 B 的坐标为 (2 -x0, f(x0)) ,f(2 -x0) =(2 -x0)4 -4(2 -x0)3 +4(2 -x0)2 -1= (2 -x0)2[(2 -x0) -2]2 -1= x 40-4x30+ ax20- 1=f(x0) ,∴A 关于直线 x =1 的对称点 B 也在函数 f(x) 的图像上.19.解析 f ′(x) =3x2+2ax+b.(1) 由极值点的必要条件可知:12-4a+b=0,f ′( - 2) =f ′(4) = 0,即48+8a+b=0,解得 a=- 3,b=- 24.或f ′(x) = 3x2+2ax+b=3(x +2)(x -4)=3x2-6x-24,也可得 a=- 3,b=- 24.(2) 由 f ′(x) = 3(x +2)(x -4) .当 x<- 2 时, f ′(x) > 0,当- 2<x<4 时, f ′(x) < 0. ∴x=- 2 是极大值点,而当x>4 时, f ′(x) > 0,∴x=4 是极小值点.20.解析 a≠0( 否则 f(x) =b 与题设矛盾 ) ,由f ′(x) = 3ax2-12ax=0 及 x∈[ - 1,2] ,得 x=0. (1) 当 a>0 时,列表:x ( -1,0) 0 (0,2)f ′(x) +0 -f(x) 增极大值 b 减由上表知, f(x) 在[ - 1,0] 上是增函数,f(x) 在[0,2] 上是减函数.则当 x=0 时, f(x) 有最大值,从而b=3.又f( -1) =- 7a+3,f(2) =- 16a+3,∵a>0,∴ f( -1) >f(2) .从而 f(2) =- 16a+3=- 29,得a=2.(2)当 a<0 时,用类似的方法可判断当 x=0 时 f(x) 有最小值.当x=2 时, f(x) 有最大值.从而 f(0) =b=- 29, f(2)=-16a-29=3,得a=- 2.综上, a= 2,b=3 或 a=- 2,b=- 29.21.解析 (1) 由题意得f′(x) = 3ax2+2x+b. 因此g( x) =f ( x) +f′(x)=ax3+(3 a+1) x2+( b+2) x+b.因为函数 g( x)是奇函数,所以g(-x)=- g( x),即对任意实数x,有 a(- x)3+(3 a+1)(-x)2+( b +2)( -x) +b=- [ ax3+(3 a+1) x2+( b+2) x+b] ,从而 3a+1=0,b=0,解得a=-1,b=0,因此f ( x) 的解析式为f ( x) =-x3+x2. 331(2)由(1) 知g( x) =-1x3+2x,所以g′(x) =-x2+2. 3令g′(x)=0,解得x1=-2,x2=2,则当x<-2或x> 2时,g′(x)<0,从而 g( x)在区间(-∞,-2],[ 2,+∞)上是减函数;当- 2<x< 2时,g′(x)>0 ,从而g( x) 在[ - 2, 2] 上是增函数.由前面讨论知, g( x)在区间[1,2] 上的最大值与最小值只能在x=1,2,2 时取得,而g(1)5=3,g( 2) =4 23,g(2)4=3. 因此g( x)在区间 [1,2] 上的最大值为g( 2) =4 2,最小值为3g(2)4=3.22. 分析解答本题,应先正确求出函数 f ( x)的导数f ′(x),再利用导数与函数的单调性、导数与极值、导数与最值等知识求解,并注意在定义域范围内求解.a 2 ax2+a-2解析 (1) f′(x) =ax+1-1+x 2=ax+1 1+x 2,∵f ( x)在 x=1处取得极值,2∴f ′(1)=0,即 a·1+a-2=0,解得 a=1.(2) f′(x) =ax2+a-22,ax+1 1+x∵x≥0, a>0,∴ ax+1>0.①当 a≥2时,在区间[0,+∞)上, f ′(x)>0,∴f( x)的单调增区间为[0,+∞).②当 0<a<2 时,由 f ′(x)>0,解得 x> 2-a a.由 f ′(x)<0,解得 x< 2-a a.∴f ( x)的单调减区间为(0, 2-a 2-a a ) ,单调增区间为 ( a,+∞ ) .(3) 当a≥2时,由 (2) ①知,f ( x) 的最小值为f (0) =1;当 0<a<2,由 (2) ②知,f ( x) 在x=2-aa 处取得最小值,且2-af ( a )< f (0) =1.综上可知,若 f ( x)的最小值为1,则 a 的取值范围是[2,+∞).。
(完整版)导数的计算练习题及答案
【巩固练习】一、选择题1.设函数310()(12)f x x =-,则'(1)f =( )A .0B .―1C .―60D .602.(2014 江西校级一模)若2()2ln f x x x =-,则'()0f x >的解集为( )A.(0,1)B.()(),10,1-∞-C. ()()1,01,-+∞D.()1,+∞3.(2014春 永寿县校级期中)下列式子不正确的是( )A.()'23cos 6sin x x x x +=-B. ()'1ln 22ln 2x x x x -=- C. ()'2sin 22cos 2x x = D.'2sin cos sin x x x x x x -⎛⎫= ⎪⎝⎭ 4.函数4538y x x =+-的导数是( ) A .3543x + B .0 C .3425(43)(38)x x x ++- D .3425(43)(38)x x x +-+- 5.(2015 安徽四模)已知函数()f x 的导函数为'()f x ,且满足关系式2'()3(2)ln f x x xf x =++,则'(2)f 的值等于( )A. 2B.-2C.94 D.94- 6.设曲线1(1)1x y x x +=≠-在点(3,2)处的切线与直线ax+y+1=0垂直,则a=( ) A .2 B .12 C .―12D .―2 7.23log cos (cos 0)y x x =≠的导数是( )A .32log tan e x -⋅B .32log cot e x ⋅C .32log cos e x -⋅D .22log cos e x 二、填空题8.曲线y=sin x 在点,12π⎛⎫ ⎪⎝⎭处的切线方程为________。
9.设y=(2x+a)2,且2'|20x y ==,则a=________。
10.31sin x x '⎛⎫-= ⎪⎝⎭____________,()2sin 25x x '+=⎡⎤⎣⎦____________。
导数的运算法则及复合函数的导数公式(课堂PPT)
1 x 2. 求y= 3 x 的导数
1 x2
3. 求y= sin x 的导数
4. 求y=2x2+3x+1的导数
18
课外作业:
P18页习题1 .2 A组第4、6、7题
公 式 5 .若 f ( x ) a x , 则 f '( x ) a x ln a ( a 0 );
公 式 6 .若 f ( x ) e x , 则 f '( x ) e x ;
公 式 7 .若 f ( x ) lo g a
x,则 f
'( x )
1 (a x ln a
0,且 a
1);
上导乘下,下导乘上,差比下方 7
[ f( x ) g ( x ) ] f ( x ) g ( x ) f( x ) g ( x )
如果上式中f(x)=c,则公式变为:
[c(g x)]cg(x)
8
练习2、求下列函数的导数。
(1) y = x3·ex
ln x (2)(3) y =x
(2) y = x2·2x
公 式 8 .若 f ( x ) ln x , 则 f '( x ) 1 ;
x
16
课堂小结
一、导数的四则运算法则
(1) (uv) uv
(2) (uv) uvuv
(3)
(
u v
)
uvuv v2
(v0).
二、复合函数的求导法则
yx yu ux,
17
达标练习
1.函数y=x2cosx的导数为( )
二阶导数高三练习题
二阶导数高三练习题在高三数学学习中,二阶导数是一个重要的概念,它在函数的图像研究中起着关键的作用。
为了帮助同学们更好地理解和掌握二阶导数的应用,以下是一些二阶导数的练习题。
1.已知函数f(x)在区间(-∞, +∞)上具有连续一阶和二阶导数,且满足f(0)=2,f'(0)=1,f''(0)=-2。
求函数f(x)在点x=0处的极值类型。
解析:根据题意,f'(0)=1,f''(0)=-2。
根据导数的定义,f'(x)表示函数在某一点的斜率,f''(x)表示斜率的变化率(即斜率的导数)。
当f''(x)<0时,说明斜率递减,此时函数形成一个局部极大值。
因此,在x=0处,函数f(x)具有一个局部极大值。
2.已知函数g(x)=x^3-2x^2+3x-4,求函数g(x)的极值点。
解析:为了求函数g(x)的极值点,首先需要求导数g'(x),然后找出导数为零的点,即g'(x)=0的点。
g'(x)的计算如下:g'(x) = 3x^2 - 4x + 3将g'(x)设为零并求解方程:3x^2 - 4x + 3 = 0通过求解得到x的两个解:x = -1 和 x = 1将求得的x值代入原函数g(x),得到相应的y值:当x = -1 时,g(-1) = (-1)^3 - 2(-1)^2 + 3(-1) - 4 = -3当x = 1 时,g(1) = (1)^3 - 2(1)^2 + 3(1) - 4 = -1因此,函数g(x)的极值点为(-1, -3)和(1, -1)。
3.已知函数h(x)满足h''(x) = 2,且h'(0) = 3,h(0) = -1。
求函数h(x)的表达式。
解析:根据题意,h''(x) = 2。
根据二阶导数的定义,我们可以得到h'(x) = 2x + C1。
高考数学(理)二轮专题练习【专题2】(3)导数及其应用(含答案)
第3讲导数及其应用考情解读 1.导数的意义和运算是导数应用的基础,是高考的一个热点.2.利用函数的单调性和最值确定函数的解析式或参数的值,突出考查导数的工具性作用.1.导数的几何意义函数y=f(x)在点x=x0处的导数值就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,其切线方程是y-f(x0)=f′(x0)(x-x0).2.导数与函数单调性的关系(1)f′(x)>0是f(x)为增函数的充分不必要条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0.(2)f′(x)≥0是f(x)为增函数的必要不充分条件,当函数在某个区间内恒有f′(x)=0时,则f(x)为常函数,函数不具有单调性.3.函数的极值与最值(1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题.(2)函数在其定义区间的最大值、最小值最多有一个,而函数的极值可能不止一个,也可能没有.(3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的最值.4.定积分的三个公式与一个定理(1)定积分的性质:①ʃb a kf(x)d x=kʃb a f(x)d x;②ʃb a[f1(x)±f2(x)]d x=ʃb a f1(x)d x±ʃb a f2(x)d x;③ʃb a f(x)d x=ʃc a f(x)d x+ʃb c f(x)d x(其中a<c<b).(2)微积分基本定理:一般地,如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a).热点一导数的运算和几何意义例1 (1)(2014·广东)曲线y =e-5x+2在点(0,3)处的切线方程为________.(2)在平面直角坐标系xOy 中,设A 是曲线C 1:y =ax 3+1(a >0)与曲线C 2:x 2+y 2=52的一个公共点,若C 1在A 处的切线与C 2在A 处的切线互相垂直,则实数a 的值是________. 思维启迪 (1)先根据导数的几何意义求出切线的斜率,写出点斜式方程,再化为一般式方程.(2)A 点坐标是解题的关键点,列方程求出. 答案 (1)5x +y -3=0 (2)4 解析 (1)因为y ′=e -5x(-5x )′=-5e-5x,所以y ′|x =0=-5,故切线方程为y -3=-5(x -0), 即5x +y -3=0.(2)设A (x 0,y 0),则C 1在A 处的切线的斜率为f ′(x 0)=3ax 20,C 2在A 处的切线的斜率为-1k OA =-x 0y 0, 又C 1在A 处的切线与C 2在A 处的切线互相垂直, 所以(-x 0y 0)·3a 20=-1,即y 0=3ax 30, 又ax 30=y 0-1,所以y 0=32, 代入C 2:x 2+y 2=52,得x 0=±12,将x 0=±12,y 0=32代入y =ax 3+1(a >0),得a =4.思维升华 (1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.(1)已知函数y =f (x )的导函数为f ′(x )且f (x )=x 2f ′(π3)+sin x ,则f ′(π3)=________.(2)若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 等于________. 答案 (1)36-4π(2)2 解析 (1)因为f (x )=x 2f ′(π3)+sin x ,所以f ′(x )=2xf ′(π3)+cos x .所以f ′(π3)=2×π3f ′(π3)+cos π3.所以f ′(π3)=36-4π.(2)f ′(x )=sin x +x cos x ,f ′(π2)=1,即函数f (x )=x sin x +1在点x =π2处的切线的斜率是1,直线ax +2y +1=0的斜率是-a2,所以(-a2)×1=-1,解得a =2.热点二 利用导数研究函数的性质例2 已知函数f (x )=(x +a )e x ,其中e 是自然对数的底数,a ∈R . (1)求函数f (x )的单调区间;(2)当x ∈[0,4]时,求函数f (x )的最小值.思维启迪 (1)直接求f ′(x ),利用f ′(x )的符号确定单调区间;(2)讨论区间[0,4]和所得单调区间的关系,一般情况下,f (x )的最值可能在极值点或给定区间的端点处取到. 解 (1)因为f (x )=(x +a )e x ,x ∈R ,所以f ′(x )=(x +a +1)e x . 令f ′(x )=0,得x =-a -1.当x 变化时,f (x )和f ′(x )的变化情况如下:故f (x )单调增区间为(-a -1,+∞).(2)由(1)得,f (x )的单调减区间为(-∞,-a -1); 单调增区间为(-a -1,+∞).所以当-a -1≤0,即a ≥-1时,f (x )在[0,4]上单调递增,故f (x )在[0,4]上的最小值为f (x )min =f (0)=a ;当0<-a -1<4,即-5<a <-1时, f (x )在(0,-a -1)上单调递减, f (x )在(-a -1,4)上单调递增,故f (x )在[0,4]上的最小值为f (x )min =f (-a -1)=-e-a -1;当-a -1≥4,即a ≤-5时,f (x )在[0,4]上单调递减, 故f (x )在[0,4]上的最小值为f (x )min =f (4)=(a +4)e 4.所以函数f (x )在[0,4]上的最小值为f (x )min =⎩⎪⎨⎪⎧a , a ≥-1,-e-a -1, -5<a <-1,(a +4)e 4, a ≤-5.思维升华 利用导数研究函数性质的一般步骤: (1)确定函数的定义域; (2)求导函数f ′(x );(3)①若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0.②若已知函数的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题来求解.(4)①若求极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右函数值的符号. ②若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况来求解. (5)求函数f (x )在闭区间[a ,b ]的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.已知函数f (x )=ln x +2ax,a ∈R .(1)若函数f (x )在[2,+∞)上是增函数,求实数a 的取值范围; (2)若函数f (x )在[1,e]上的最小值为3,求实数a 的值. 解 (1)∵f (x )=ln x +2a x ,∴f ′(x )=1x -2ax 2.∵f (x )在[2,+∞)上是增函数,∴f ′(x )=1x -2ax 2≥0在[2,+∞)上恒成立,即a ≤x2在[2,+∞)上恒成立.令g (x )=x2,则a ≤[g (x )]min ,x ∈[2,+∞),∵g (x )=x2在[2,+∞)上是增函数,∴[g (x )]min =g (2)=1.∴a ≤1.所以实数a 的取值范围为(-∞,1]. (2)由(1)得f ′(x )=x -2ax2,x ∈[1,e].①若2a <1,则x -2a >0,即f ′(x )>0在[1,e]上恒成立, 此时f (x )在[1,e]上是增函数.所以[f (x )]min =f (1)=2a =3,解得a =32(舍去).②若1≤2a ≤e ,令f ′(x )=0,得x =2a . 当1<x <2a 时,f ′(x )<0,所以f (x )在(1,2a )上是减函数,当2a <x <e 时,f ′(x )>0,所以f (x )在(2a ,e)上是增函数. 所以[f (x )]min =f (2a )=ln(2a )+1=3, 解得a =e 22(舍去).③若2a >e ,则x -2a <0,即f ′(x )<0在[1,e]上恒成立,此时f (x )在[1,e]上是减函数. 所以[f (x )]min =f (e)=1+2ae=3,得a =e.适合题意. 综上a =e.热点三 导数与方程、不等式例3 已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ).(1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图象上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值;(3)是否存在实数m ,使得函数y =g (2ax 2+1)+m -1的图象与函数y =f (1+x 2)的图象恰有四个不同交点?若存在,求出实数m 的取值范围;若不存在,说明理由.思维启迪 (1)利用F ′(x )确定单调区间;(2)k =F ′(x 0),F ′(x 0)≤12分离a ,利用函数思想求a的最小值;(3)利用数形结合思想将函数图象的交点个数和方程根的个数相互转化. 解 (1)F (x )=f (x )+g (x )=ln x +a x (x >0),F ′(x )=1x -a x 2=x -ax 2.∵a >0,由F ′(x )>0⇒x ∈(a ,+∞), ∴F (x )在(a ,+∞)上是增函数. 由F ′(x )<0⇒x ∈(0,a ), ∴F (x )在(0,a )上是减函数. ∴F (x )的单调递减区间为(0,a ), 单调递增区间为(a ,+∞). (2)由F ′(x )=x -ax2(0<x ≤3)得k =F ′(x 0)=x 0-a x 20≤12(0<x 0≤3)恒成立⇔a ≥-12x 20+x 0恒成立.∵当x 0=1时,-12x 20+x 0取得最大值12,∴a ≥12,a 的最小值为12.(3)若y =g (2a x 2+1)+m -1=12x 2+m -12的图象与y =f (1+x 2)=ln(x 2+1)的图象恰有四个不同交点,即12x 2+m -12=ln(x 2+1)有四个不同的根,亦即m =ln(x 2+1)-12x 2+12有四个不同的根.令G (x )=ln(x 2+1)-12x 2+12.则G ′(x )=2xx 2+1-x =2x -x 3-x x 2+1=-x (x +1)(x -1)x 2+1当x 变化时G ′(x )、G (x )的变化情况如下表:由上表知:G (x )极小值=G (0)=12,G (x )极大值=G (-1)=G (1)=ln 2>0.又由G (2)=G (-2)=ln 5-2+12<12可知,当m ∈(12,ln 2)时,y =G (x )与y =m 恰有四个不同交点.故存在m ∈(12,ln 2),使函数y =g (2ax 2+1)+m -1的图象与y =f (1+x 2)的图象恰有四个不同交点.思维升华 研究方程及不等式问题,都要运用函数性质,而导数是研究函数性质的一种重要工具.基本思路是构造函数,通过导数的方法研究这个函数的单调性、极值和特殊点的函数值,根据函数的性质推断不等式成立的情况以及方程实根的个数,必要时画出函数的草图辅助思考.已知函数f (x )=a (x 2+1)+ln x .(1)讨论函数f (x )的单调性;(2)若对任意a ∈(-4,-2)及x ∈[1,3],恒有ma -f (x )>a 2成立,求实数m 的取值范围.解 (1)由已知,得f ′(x )=2ax +1x =2ax 2+1x(x >0).①当a ≥0时,恒有f ′(x )>0,则f (x )在(0,+∞)上是增函数. ②当a <0时,若0<x < -12a,则f ′(x )>0, 故f (x )在(0,-12a]上是增函数; 若x >-12a,则f ′(x )<0,故f (x )在[-12a,+∞)上是减函数. 综上,当a ≥0时,f (x )在(0,+∞)上是增函数; 当a <0时,f (x )在(0,-12a]上是增函数,在[ -12a,+∞)上是减函数. (2)由题意,知对任意a ∈(-4,-2)及x ∈[1,3], 恒有ma -f (x )>a 2成立, 等价于ma -a 2>f (x )max . 因为a ∈(-4,-2),所以24< -12a <12<1. 由(1),知当a ∈(-4,-2)时,f (x )在[1,3]上是减函数, 所以f (x )max =f (1)=2a , 所以ma -a 2>2a ,即m <a +2.因为a ∈(-4,-2),所以-2<a +2<0. 所以实数m 的取值范围为m ≤-2. 热点四 定积分 例4 (1)已知a =ʃ10(e x+2x )d x (e为自然对数的底数),函数f (x )=⎩⎪⎨⎪⎧ln x ,x >02-x ,x ≤0,则f (a )+f (log 216)=________.(2)(2014·山东)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2 D .4思维启迪 (1)利用微积分基本定理先求出a ,再求分段函数的函数值;(2)利用图形将所求面积化为定积分. 答案 (1)7 (2)D 解析 (1)因为a =ʃ10(e x +2x )d x =(e x +x 2)|1=e +1-1=e ,f (x )=⎩⎪⎨⎪⎧ln x ,x >02-x ,x ≤0,所以f (a )+f (log 216)=f (e)+f (-log 26)=ln e +2-(-log 26)=1+6=7. (2)令4x =x 3,解得x =0或x =±2,∴S =ʃ20(4x -x 3)=⎪⎪⎝⎛⎭⎫2x 2-x 4420=8-4=4,故选D.思维升华 (1)直接使用微积分基本定理求定积分时,要根据求导运算与求原函数运算互为逆运算的关系,运用基本初等函数的求导公式和导数的四则运算法则从反方向上求出原函数. (2)利用定积分求所围成的阴影部分的面积时,要利用数形结合的方法确定出被积函数和积分的上限与下限.同时,有的定积分不易直接求出,需要借用其几何意义求出.(1)若ʃa1(2x +1x)d x =3+ln 2,且a >1,则a 的值为( )A .6B .4C .3D .2 (2)如图,阴影部分的面积是( )A .2 3B .9-2 3 C.323D.353答案 (1)D (2)C解析 (1)ʃa 1(2x +1x )d x =(x 2+ln x )|a 1=a 2+ln a -1,由题意,可得a 2+ln a -1=3+ln 2, 解得a =2.(2)由题图,可知阴影部分面积为ʃ1-3(3-x 2-2x )d x =(3x -13x 3-x 2)|1-3=(3-13-1)-(-9+9-9)=323.1.函数单调性的应用(1)若可导函数f (x )在(a ,b )上单调递增,则f ′(x )≥0在区间(a ,b )上恒成立; (2)若可导函数f (x )在(a ,b )上单调递减,则f ′(x )≤0在区间(a ,b )上恒成立; (3)可导函数f (x )在区间(a ,b )上为增函数是f ′(x )>0的必要不充分条件. 2.可导函数极值的理解(1)函数在定义域上的极大值与极小值的大小关系不确定,也有可能极小值大于极大值; (2)对于可导函数f (x ),“f (x )在x =x 0处的导数f ′(x )=0”是“f (x )在x =x 0处取得极值”的必要不充分条件;(3)注意导函数的图象与原函数图象的关系,导函数由正变负的零点是原函数的极大值点,导函数由负变正的零点是原函数的极小值点. 3.利用导数解决优化问题的步骤(1)审题设未知数;(2)结合题意列出函数关系式;(3)确定函数的定义域;(4)在定义域内求极值、最值;(5)下结论. 4.定积分在几何中的应用被积函数为y =f (x ),由曲线y =f (x )与直线x =a ,x =b (a <b )和y =0所围成的曲边梯形的面积为S .(1)当f (x )>0时,S =ʃb a f (x )d x ; (2)当f (x )<0时,S =-ʃb a f (x )d x ;(3)当x ∈[a ,c ]时,f (x )>0;当x ∈[c ,b ]时,f (x )<0,则S =ʃc a f (x )d x -ʃb c f (x )d x .真题感悟1.(2014·江西)若曲线y =e -x上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________. 答案 (-ln 2,2)解析 设P (x 0,y 0),∵y =e -x =1e x ,∴y ′=-e -x ,∴点P 处的切线斜率为k =-e -x 0=-2, ∴-x 0=ln 2,∴x 0=-ln 2,∴y 0=e ln 2=2,∴点P 的坐标为(-ln 2,2).2.(2014·浙江)已知函数f (x )=x 3+3|x -a |(a >0),若f (x )在[-1,1]上的最小值记为g (a ). (1)求g (a );(2)证明:当x ∈[-1,1]时,恒有f (x )≤g (a )+4. (1)解 因为a >0,-1≤x ≤1,所以 ①当0<a <1时,若x ∈[-1,a ],则f (x )=x 3-3x +3a , f ′(x )=3x 2-3<0,故f (x )在(-1,a )上是减函数; 若x ∈[a,1],则f (x )=x 3+3x -3a , f ′(x )=3x 2+3>0, 故f (x )在(a,1)上是增函数. 所以g (a )=f (a )=a 3.②当a ≥1时,有x ≤a ,则f (x )=x 3-3x +3a , f ′(x )=3x 2-3<0,故f (x )在(-1,1)上是减函数, 所以g (a )=f (1)=-2+3a .综上,g (a )=⎩⎪⎨⎪⎧a 3,0<a <1,-2+3a ,a ≥1.(2)证明 令h (x )=f (x )-g (a ). ①当0<a <1时,g (a )=a 3.若x ∈[a,1],则h (x )=x 3+3x -3a -a 3, h ′(x )=3x 2+3,所以h (x )在(a,1)上是增函数,所以,h (x )在[a,1]上的最大值是h (1)=4-3a -a 3, 且0<a <1,所以h (1)≤4.故f (x )≤g (a )+4.若x ∈[-1,a ],则h (x )=x 3-3x +3a -a 3,h ′(x )=3x 2-3, 所以h (x )在(-1,a )上是减函数,所以,h (x )在[-1,a ]上的最大值是h (-1)=2+3a -a 3. 令t (a )=2+3a -a 3,则t ′(a )=3-3a 2>0, 知t (a )在(0,1)上是增函数. 所以,t (a )<t (1)=4,即h (-1)<4. 故f (x )≤g (a )+4.②当a ≥1时,g (a )=-2+3a , 故h (x )=x 3-3x +2,h ′(x )=3x 2-3, 此时h (x )在(-1,1)上是减函数,因此h (x )在[-1,1]上的最大值是h (-1)=4. 故f (x )≤g (a )+4.综上,当x ∈[-1,1]时,恒有f (x )≤g (a )+4. 押题精练1.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是__________. 答案 ⎣⎡⎭⎫94,+∞解析 由于f ′(x )=1+1(x +1)2>0,因此函数f (x )在[0,1]上单调递增,所以x ∈[0,1]时,f (x )min =f (0)=-1.根据题意可知存在x ∈[1,2],使得g (x )=x 2-2ax +4≤-1, 即x 2-2ax +5≤0,即a ≥x 2+52x 能成立,令h (x )=x 2+52x ,则要使a ≥h (x )在x ∈[1,2]能成立,只需使a ≥h (x )min , 又函数h (x )=x 2+52x 在x ∈[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94.2.已知函数f (x )=x 28-ln x ,x ∈[1,3].(1)求f (x )的最大值与最小值;(2)若f (x )<4-at 对任意的x ∈[1,3],t ∈[0,2]恒成立,求实数a 的取值范围;解 (1)∵函数f (x )=x 28-ln x ,∴f ′(x )=x 4-1x,令f ′(x )=0得x =±2, ∵x ∈[1,3],当1<x <2时,f ′(x )<0;当2<x <3时,f ′(x )>0;∴f (x )在(1,2)上是单调减函数,在(2,3)上是单调增函数,∴f (x )在x =2处取得极小值f (2)=12-ln 2; 又f (1)=18,f (3)=98-ln 3, ∵ln 3>1,∴18-(98-ln 3)=ln 3-1>0, ∴f (1)>f (3),∴x =1时f (x )的最大值为18,x =2时函数取得最小值为12-ln 2. (2)由(1)知当x ∈[1,3]时,f (x )≤18, 故对任意x ∈[1,3],f (x )<4-at 恒成立,只要4-at >18对任意t ∈[0,2]恒成立,即at <318恒成立,记g (t )=at ,t ∈[0,2]. ∴⎩⎨⎧ g (0)<318g (2)<318,解得a <3116, ∴实数a 的取值范围是(-∞,3116).(推荐时间:60分钟)一、选择题1.曲线y =x 3-2x 在(1,-1)处的切线方程为( )A .x -y -2=0B .x -y +2=0C .x +y -2=0D .x +y +2=0答案 A解析 由已知,得点(1,-1)在曲线y =x 3-2x 上,所以切线的斜率为y ′|x =1=(3x 2-2)|x =1=1,由直线方程的点斜式得x -y -2=0,故选A.2.(2014·课标全国Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a 等于( )A .0B .1C .2D .3答案 D解析 令f (x )=ax -ln(x +1),则f ′(x )=a -1x +1.由导数的几何意义可得在点(0,0)处的切线的斜率为f ′(0)=a -1.又切线方程为y =2x ,则有a -1=2,∴a =3.3.(2014·陕西)如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为( )A .y =1125x 3-35x B .y =2125x 3-45x C .y =3125x 3-x D .y =-3125x 3+15x 答案 A解析 函数在[-5,5]上为减函数,所以在[-5,5]上y ′≤0,经检验只有A 符合.故选A.4.函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为( )A .{x |x >0}B .{x |x <0}C .{x |x <-1,或x >1}D .{x |x <-1,或0<x <1}答案 A解析 构造函数g (x )=e x ·f (x )-e x ,因为g ′(x )=e x ·f (x )+e x ·f ′(x )-e x=e x [f (x )+f ′(x )]-e x >e x -e x =0,所以g (x )=e x ·f (x )-e x 为R 上的增函数.又因为g (0)=e 0·f (0)-e 0=1,所以原不等式转化为g (x )>g (0),解得x >0.5.若函数f (x )=log a (x 3-ax )(a >0,a ≠1)在区间(-12,0)内单调递增,则a 的取值范围是( ) A .[14,1) B .[34,1) C .(94,+∞) D .(1,94) 答案 B解析 由x 3-ax >0得x (x 2-a )>0.则有⎩⎪⎨⎪⎧ x >0,x 2-a >0或⎩⎪⎨⎪⎧x <0,x 2-a <0, ∴x >a 或-a <x <0,即函数f (x )的定义域为(a ,+∞)∪(-a ,0).令g (x )=x 3-ax ,则g ′(x )=3x 2-a .由g ′(x )<0得-3a 3<x <0. 从而g (x )在x ∈(-3a 3,0)上是减函数,又函数f (x )在x ∈(-12,0)内单调递增,则有⎩⎨⎧ 0<a <1,-a ≤-12,-3a 3≤-12,∴34≤a <1. 6.如图所示,曲线y =x 2-1,x =2,x =0,y =0围成的阴影部分的面积为( )A .ʃ20|x 2-1|d xB .|ʃ20(x 2-1)d x |C .ʃ20(x 2-1)d xD .ʃ10(x 2-1)d x +ʃ21(1-x 2)d x答案 A解析 由曲线y =|x 2-1|的对称性,所求阴影部分的面积与如图图形的面积相等,即ʃ20|x 2-1|d x ,选A.二、填空题7.已知f (x )=x 3+f ′(23)x 2-x ,则f (x )的图象在点(23,f (23))处的切线斜率是________. 答案 -1解析 f ′(x )=3x 2+2f ′(23)x -1,令x =23,可得f ′(23)=3×(23)2+2f ′(23)×23-1,解得f ′(23)=-1,所以f (x )的图象在点(23,f (23))处的切线斜率是-1. 8.若函数f (x )=ax +1x +2在x ∈(2,+∞)上单调递减,则实数a 的取值范围是________. 答案 a <12解析 f ′(x )=(ax +1)′(x +2)-(x +2)′(ax +1)(x +2)2=a (x +2)-(ax +1)(x +2)2=2a -1(x +2)2,令f ′(x )<0,即2a -1<0,解得a <12. 9.已知函数f (x )=mx 3+nx 2的图象在点(-1,2)处的切线恰好与直线3x +y =0平行,若f (x )在区间[t ,t +1]上单调递减,则实数t 的取值范围是__________.答案 [-2,-1]解析 由题意知,点(-1,2)在函数f (x )的图象上,故-m +n =2.①又f ′(x )=3mx 2+2nx ,则f ′(-1)=-3,故3m -2n =-3.②联立①②解得:m =1,n =3,即f (x )=x 3+3x 2,令f ′(x )=3x 2+6x ≤0,解得-2≤x ≤0,则[t ,t +1]⊆[-2,0],故t ≥-2且t +1≤0,所以t ∈[-2,-1].10.已知函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是____________. 答案 0<t <1或2<t <3解析 f ′(x )=-x +4-3x =-x 2+4x -3x=-(x -1)(x -3)x,由f ′(x )=0得函数的两个极值点1,3,则只要这两个极值点在区间(t ,t +1)内,函数在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,解得0<t <1或2<t <3.三、解答题11.(2014·重庆)已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x . (1)求a 的值;(2)求函数f (x )的单调区间与极值.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x, 由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54. (2)由(1)知f (x )=x 4+54x -ln x -32, 则f ′(x )=x 2-4x -54x 2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数.由此知函数f (x )在x =5时取得极小值f (5)=-ln 5.12.已知f (x )=x 2+3x +1,g (x )=a -1x -1+x . (1)a =2时,求y =f (x )和y =g (x )图象的公共点个数;(2)a 为何值时,y =f (x )和y =g (x )的公共点个数恰为两个.解 (1)当a =2时,联立⎩⎪⎨⎪⎧y =f (x ),y =g (x ), 得x 2+3x +1=1x -1+x , 整理得x 3+x 2-x -2=0(x ≠1),即联立⎩⎪⎨⎪⎧y =0,y =x 3+x 2-x -2(x ≠1), 求导得y ′=3x 2+2x -1=0得x 1=-1,x 2=13, 得到极值点分别在-1和13处, 且极大值、极小值都是负值,图象如图,故交点只有一个.(2)联立⎩⎪⎨⎪⎧y =f (x ),y =g (x ),得x 2+3x +1=a -1x -1+x , 整理得a =x 3+x 2-x (x ≠1),即联立⎩⎪⎨⎪⎧y =a ,y =h (x )=x 3+x 2-x (x ≠1),对h (x )求导可以得到极值点分别在-1和13处,画出草图如图.h (-1)=1,h (13)=-527, 当a =h (-1)=1时,y =a 与y =h (x )仅有一个公共点(因为(1,1)点不在y =h (x )曲线上),故a =-527时恰有两个公共点. 13.设函数f (x )=a e x (x +1)(其中,e =2.718 28……),g (x )=x 2+bx +2,已知它们在x =0处有相同的切线.(1)求函数f (x ),g (x )的解析式;(2)求函数f (x )在[t ,t +1](t >-3)上的最小值;(3)若对∀x ≥-2,kf (x )≥g (x )恒成立,求实数k 的取值范围.解 (1)f ′(x )=a e x (x +2),g ′(x )=2x +b .由题意,得两函数在x =0处有相同的切线.∴f ′(0)=2a ,g ′(0)=b ,∴2a =b ,f (0)=a ,g (0)=2,∴a =2,b =4,∴f (x )=2e x (x +1),g (x )=x 2+4x +2.(2)f ′(x )=2e x (x +2),由f ′(x )>0得x >-2,由f ′(x )<0得x <-2,∴f (x )在(-2,+∞)单调递增,在(-∞,-2)单调递减.∵t >-3,∴t +1>-2.①当-3<t <-2时,f (x )在[t ,-2]单调递减,在[-2,t +1]单调递增,∴f (x )min =f (-2)=-2e -2. ②当t ≥-2时,f (x )在[t ,t +1]单调递增,∴f (x )min =f (t )=2e t (t +1);∴f (x )=⎩⎪⎨⎪⎧-2e -2(-3<t <-2)2e t (t +1)(t ≥-2) (3)令F (x )=kf (x )-g (x )=2k e x (x +1)-x 2-4x -2,由题意当x ≥-2时,F (x )min ≥0.∵∀x ≥-2,kf (x )≥g (x )恒成立,∴F (0)=2k -2≥0,∴k ≥1.F ′(x )=2k e x (x +1)+2k e x -2x -4=2(x +2)(k e x -1),∵x ≥-2,由F ′(x )>0得e x >1k ,∴x >ln 1k; 由F ′(x )<0得x <ln 1k ,∴F (x )在(-∞,ln 1k )单调递减,在[ln 1k,+∞)单调递增. ①当ln 1k<-2, 即k >e 2时,F (x )在[-2,+∞)单调递增,F (x )min =F (-2)=-2k e -2+2=2e 2(e 2-k )<0, 不满足F (x )min ≥0.当ln 1k =-2,即k =e 2时,由①知,F (x )min =F (-2)=2e 2(e 2-k )=0,满足F (x )min ≥0. ③当ln 1k >-2,即1≤k <e 2时,F (x )在[-2,ln 1k )单调递减,在[ln 1k,+∞)单调递增. F (x )min =F (ln 1k)=ln k (2-ln k )>0, 满足F (x )min ≥0.综上所述,满足题意的k 的取值范围为[1,e 2].。
第2章 导数与微分 题目
第二章导数与微分一、考试大纲考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数。
当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径. 二、主要内容三、基础题1.如果()f x 为偶函数,且(0)f '存在,证明(0)0f '=. 2.求曲线cos y x =上点1(,)32π处的切线方程和法线方程.3.讨论下列函数在0x =处的连续性与可导性:(1) |sin |y x = ; (2)21sin ,00,0x x y xx ⎧≠⎪=⎨⎪=⎩. 4.已知sin ,0(),0x x f x x x <⎧=⎨≥⎩,求'()f x .5.证明:双曲线2xy a =上任一点处的切线与两坐标轴构成的三角形的面积都等于22a .6.以初速度0v 竖直上抛的物体,其上升高度s 与时间t 的关系是2012s v t gt =-,求: (1) 该物体的速度;(2) 该物体达到最高点的时刻.7.设函数()f x 和()g x 可导,且22()()0f x g x +≠,试求函数y =的导数.8.设()f x 可导,求下列函数y 的导数dy dx: (1)2()y f x =; (2) 22(sin )(cos )y f x f x =+.9.若()f x ''存在,求下列函数y 的二阶导数22d ydx:(1) 2()y f x = (2) ln[()]y f x =.10.求由下列方程所确定的隐函数的导数:dydx(1)+-=3330x y ax ; (2)=-1y y xe . 11.求下列参数方程所确定的函数的导数:(1) 23x aty bt⎧=⎪⎨=⎪⎩; (2)2223131at x t at t ⎧=⎪+⎪⎨⎪⎪+⎩. 12.求下列参数方程所确定的函数的二阶导数22d ydx:(1)cos sin x a ty b t =⎧⎨=⎩ (2)32t tx e y e-⎧=⎨=⎩ 13.求下列函数的微分:(1) =sin2y x x ; (2) 2ln (1)y x =-. 14.计算下列反三角函数值的近似值::(1) arcsin 0.5002; (2) arccos 0.4995.四、提高题1.试从1dx dy y ='导出: (1) 223"(')d x y dy y =-; (2) 32353(")''''(')d x y y y dy y -=. 2.求下列函数所指定的阶的导数:(1) cos ,x y e x =求 (4)y ; (2) ,y xshx =求(100)y ;(3) 2sin 2,y x x =求 (50)y . 3.求函数2sin y x =的n 阶导数的一般表达式.4.求曲线222333x y a +=在点)处的切线方程. 5.求下列方程所确定的隐函数y 的二阶导数22d ydx:(1) tan()y x y =+:(2)1yy xe =+.6.用对数求导法求下列函数的导数:(1);(2)1xx y y x ⎛⎫==⎪+⎝⎭7.求下列参数方程所确定的函数的三阶导数33d ydx:(1) 231,;x t y t t ⎧=-⎨=-⎩ (2) 2ln(1),arctan .x t y t t ⎧=+⎨=-⎩ 8.溶液自水深18cm 顶直径12cm 的正圆锥形漏斗中漏入一直径为10cm 的圆柱形筒中,开始时漏斗中盛满了溶液,已知当溶液在漏斗中深为12cm 时,其表面下降的速率为1/min cm ,问此时圆柱形筒中溶液表面上升的速率为多少?9.设3,0()||0,0x x f x x x ⎧≠⎪=⎨⎪=⎩,求复合函数()[()]x f f x Φ=的导数,并讨论'()x Φ的连续性.三、考研题1.(01,3分) 设=(0)0f ,则()f x 在点0x =可导的充要条件为(A) 201lim (1cosh)h f h→-存在. (B) 01lim (1)h h f e h →-存在.(C) 201lim (1sinh)h f h→-存在. (D) 01lim [(2h)()]h f f h h →-存在.2.(04.4分)设函数()f x 连续,且'(0)0,f >则存在0δ>,使得(A )()f x 在(,0)δ-内单调增加. (B) ()f x 在(0,)δ内单调减少.(C) 对任意的(0,)x δ∈有()(0).f x f > (D) 对任意的(,0)x δ∈-有()(0).f x f >3.(02.3分)已知函数()y y x =由方程2610y e x y x ++-=确定,则(0)y ''= .4.(03.12分)设函数()y y x =在(,)-∞+∞内具有二阶导数,且'0,()y x x y ≠=是()y y x =的反函数.(1) 试将()x x y =所满足的微分方程322(sin )0d xdx y x dy dy ⎛⎫++= ⎪⎝⎭变换为()y y x =满足的微分方程;(2) 求变换后的微分方程满足初始条件3(0)0,'(0)2y y ==的解. 5.(92.3分) 设22()3||f x x x x =+,则使()(0)n f 存在的最高阶数n 为(A) 0. (B) 1. (C) 2. (D) 3.6.(05.3分)设函数()lim n f x =()f x 在(,)-∞+∞内 ( )( A )处处可导 ( B )恰有一个不可导点. ( C ) 恰有两个不可导点 (D)至少有三个不可导点. 7.(06.3分)设函数()=y f x 具有二阶导数,且'''>>∆()0,()0,f x f x x 为自变量x 在点0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应增量与微分,若0x ∆>,则 ( )( A )0.dy y <<∆ ( B )0y dy <∆<. ( C )0y dy ∆<<. ( D ) 0.dy y <∆< 8.(98.3分)函数23()(2)||f x x x x x =---不可导点的个数是(A )3. (B ) 2 ( C ) 1 . ( D ) 0 9.(97.3分) 对数螺旋线e θρ=在点2(,)(,)2e ππρθ=处的切线的直角坐标方程为.10.(04.3分) 曲线ln y x =上与直线1x y +=垂直的切线方程为 .四、测试题1.填空题(1).已知函数()y y x =由方程2610y e xy x ++-=确定,由''=(0)y . (2.)设函数()y y x =由方程2xy x y =+所确定,则0|x dy == .(3) 曲线33cos sin x t y t⎧=⎪⎨=⎪⎩,上对应于6t π=点处的法线方程是 .(4). 设函数()y y x =由方程2cos()1x y e xy e +-=-所确定,则曲线()y f x =在点(1,0)处的法线方程为 .2.单项选择题(1).设函数()y y x =在任意点x 处的增量2,1y xy a x∆∆=++且当0x ∆→时,a 是x ∆的高阶无穷小,(0),y π=则(1)y 等于(A) 442.().().().B C e D e πππππ(2).()f x 在0x 处存在左、右导数,则()f x 在0x 点( A ) 可导 ( B ) 连续. ( C ) 不可导. ( D ) 不连续.(3).设''0lim ()lim ()x x f x f x a +-→→==,则(A) ()f x 在0x x =处必可导且'0().f x a = ( B ) ()f x 在0x x =处必连续,但未必可导. ( C ) ()f x 在0x x =处必E 有极限但未必连续. ( D ) 以上结论都不对. (4).设()f x 可导,且满足 0(1)(1)lim 1,2x f f x x→=-=-则曲线()y f x =在(1,(1))f 处的切线斜率为: ( A )2. ( B ) -2. (C )12. ( D ) -1.3.讨论2|2|,1(),1x x f x x x -≥⎧⎪=⎨<⎪⎩的可导性.4.求下列函数的导数:(1)0y a => (2) tan (tan )x x y x x =+(3)y =(4)|(3)|y x x x =-5.求下列隐函数的导数'y(1)y x x y = (2)2y x x y =6.求参数式函数的导数'y :2arctan 25tx ty ty e =⎧⎪⎨-+=⎪⎩ 7.求下列函数的微分:(1)(0)x y x x =>(2)21ln(12sin ),(2y x x θθ=-+为常数).8.设()f x 在[,)a +∞可导,lim ()x f x →+∞存在,→+∞'=lim ()x f x b ,求证:0b =.。
导数练习题及答案
导数练习题及答案导数练习题及答案导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
以下是导数练习题及答案,欢迎阅读。
一、选择题1.函数在某一点的导数是( )A.在该点的函数值的增量与自变量的增量的比B.一个函数C.一个常数,不是变数D.函数在这一点到它附近一点之间的平均变化率[答案] C[解析] 由定义,f′(x0)是当Δx无限趋近于0时,ΔyΔx无限趋近的常数,故应选C.2.如果质点A按照规律s=3t2运动,则在t0=3时的瞬时速度为( )A.6 B.18C.54 D.81[答案] B[解析] ∵s(t)=3t2,t0=3,∴Δs=s(t0+Δt)-s(t0)=3(3+Δt)2-332=18Δt+3(Δt)2∴ΔsΔt=18+3Δt.当Δt→0时,ΔsΔt→18,故应选B.3.y=x2在x=1处的导数为( )A.2x B.2C.2+Δx D.1[答案] B[解析] ∵f(x)=x2,x=1,∴Δy=f(1+Δx)2-f(1)=(1+Δx)2-1=2Δx+(Δx)2∴ΔyΔx=2+Δx当Δx→0时,ΔyΔx→2∴f′(1)=2,故应选B.4.一质点做直线运动,若它所经过的路程与时间的关系为s(t)=4t2-3(s(t)的单位:m,t的单位:s),则t=5时的`瞬时速度为( ) A.37 B.38C.39 D.40[答案] D[解析] ∵ΔsΔt=4(5+Δt)2-3-4×52+3Δt=40+4Δt,∴s′(5)=limΔt→0 ΔsΔt=limΔt→0 (40+4Δt)=40.故应选D.5.已知函数y=f(x),那么下列说法错误的是( )A.Δy=f(x0+Δx)-f(x0)叫做函数值的增量B.ΔyΔx=f(x0+Δx)-f(x0)Δx叫做函数在x0到x0+Δx之间的平均变化率C.f(x)在x0处的导数记为y′D.f(x)在x0处的导数记为f′(x0)[答案] C[解析] 由导数的定义可知C错误.故应选C.6.函数f(x)在x=x0处的导数可表示为y′|x=x0,即( )A.f′(x0)=f(x0+Δx)-f(x0)B.f′(x0)=limΔx→0[f(x0+Δx)-f(x0)]C.f′(x0)=f(x0+Δx)-f(x0)ΔxD.f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx[答案] D[解析] 由导数的定义知D正确.故应选D.7.函数y=ax2+bx+c(a≠0,a,b,c为常数)在x=2时的瞬时变化率等于( )A.4a B.2a+bC.b D.4a+b[答案] D[解析] ∵ΔyΔx=a(2+Δx)2+b(2+Δx)+c-4a-2b-cΔx=4a+b+aΔx,∴y′|x=2=limΔx→0 ΔyΔx=limΔx→0 (4a+b+aΔx)=4a+b.故应选D.8.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( ) A.圆 B.抛物线C.椭圆 D.直线[答案] D[解析] 当f(x)=b时,f′(x)=0,所以f(x)的图象为一条直线,故应选D.9.一物体作直线运动,其位移s与时间t的关系是s=3t-t2,则物体的初速度为( )A.0 B.3C.-2 D.3-2t[答案] B[解析] ∵ΔsΔt=3(0+Δt)-(0+Δt)2Δt=3-Δt,∴s′(0)=limΔt→0 ΔsΔt=3.故应选B.10.设f(x)=1x,则limx→a f(x)-f(a)x-a等于( )A.-1a B.2aC.-1a2 D.1a2[答案] C[解析] limx→a f(x)-f(a)x-a=limx→a 1x-1ax-a=limx→a a-x(x-a)xa=-limx→a 1ax=-1a2.二、填空题11.已知函数y=f(x)在x=x0处的导数为11,则limΔx→0f(x0-Δx)-f(x0)Δx=________;limx→x0 f(x)-f(x0)2(x0-x)=________.[答案] -11,-112[解析] limΔx→0 f(x0-Δx)-f(x0)Δx=-limΔx→0 f(x0-Δx)-f(x0)-Δx=-f′(x0)=-11;limx→x0 f(x)-f(x0)2(x0-x)=-12limΔx→0 f(x0+Δx)-f(x0)Δx=-12f′(x0)=-112.12.函数y=x+1x在x=1处的导数是________.[答案] 0[解析] ∵Δy=1+Δx+11+Δx-1+11=Δx-1+1Δx+1=(Δx)2Δx+1,∴ΔyΔx=ΔxΔx+1.∴y′|x=1=limΔx→0 ΔxΔx+1=0.13.已知函数f(x)=ax+4,若f′(2)=2,则a等于______.[答案] 2[解析] ∵ΔyΔx=a(2+Δx)+4-2a-4Δx=a,∴f′(1)=limΔx→0 ΔyΔx=a.∴a=2.14.已知f′(x0)=limx→x0 f(x)-f(x0)x-x0,f(3)=2,f′(3)=-2,则limx→3 2x-3f(x)x-3的值是________.[答案] 8[解析] limx→3 2x-3f(x)x-3=limx→3 2x-3f(x)+3f(3)-3f(3)x-3=limx→3 2x-3f(3)x-3+limx→3 3(f(3)-f(x))x-3.由于f(3)=2,上式可化为limx→3 2(x-3)x-3-3limx→3 f(x)-f(3)x-3=2-3×(-2)=8.三、解答题15.设f(x)=x2,求f′(x0),f′(-1),f′(2).[解析] 由导数定义有f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx=limΔx→0 (x0+Δx)2-x20Δx=limΔx→0 Δx(2x0+Δx)Δx=2x0,16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s2,枪弹从枪口射出时所用时间为1.6×10-3s,求枪弹射出枪口时的瞬时速度.[解析] 位移公式为s=12at2∵Δs=12a(t0+Δt)2-12at20=at0Δt+12a(Δt)2∴ΔsΔt=at0+12aΔt,∴limΔt→0 ΔsΔt=limΔt→0 at0+12aΔt=at0,已知a=5.0×105m/s2,t0=1.6×10-3s,∴at0=800m/s.所以枪弹射出枪口时的瞬时速度为800m/s.17.在曲线y=f(x)=x2+3的图象上取一点P(1,4)及附近一点(1+Δx,4+Δy),求(1)ΔyΔx (2)f′(1).[解析] (1)ΔyΔx=f(1+Δx)-f(1)Δx=(1+Δx)2+3-12-3Δx=2+Δx.(2)f′(1)=limΔx→0 f(1+Δx)-f(1)Δx=limΔx→0 (2+Δx)=2.18.函数f(x)=|x|(1+x)在点x0=0处是否有导数?若有,求出来,若没有,说明理由.[解析] f(x)=x+x2 (x≥0)-x-x2 (x<0)Δy=f(0+Δx)-f(0)=f(Δx)=Δx+(Δx)2 (Δx>0)-Δx-(Δx)2 (Δx<0)∴limx→0+ΔyΔx=limΔx→0+ (1+Δx)=1,limΔx→0-ΔyΔx=limΔx→0- (-1-Δx)=-1,∵limΔx→0-ΔyΔx≠limΔx→0+ΔyΔx,∴Δx→0时,ΔyΔx无极限.∴函数f(x)=|x|(1+x)在点x0=0处没有导数,即不可导.(x→0+表示x从大于0的一边无限趋近于0,即x>0且x趋近于0)。
人大附数学 选修2-2导数练习册(学生用)
()
A. a b
B. a b
C. a b
D.不确定
二、填空题
7.函数 y x2 在区间1, 2上的平均变化率为__________.
8.已知函数
y
x3
-2
,当
x0
=2
时,则
y x
=
__________.
9.将半径为 R 的球加热,若球的半径增加量为 R ,则球的体积增量 V __________.
2.过曲线 f (x) x3 上两点 P(1,1) 和 Q(1 x,1 y) 作曲线的割线,当 x 0.1时割线的
斜率为
()
A. 3.31
B. 3
C.1
D. 1
3.曲线
y
1
x2
在点 (1,
1 )
处切线的倾斜角为
2
2
A.1
B. 4
C. 4
()
D. 5 4
4.曲线 C: y=x3 在点 P 处的切线的斜率等于 3 ,则点 P 的坐标为
率为 b ,则下列结论中正确的是
()
A. a b
B. a b
C. a b
D.不确定
5.如果质点 M 按规律 s 3 t 2 运动,则在一小段时间 2,2.1 中相应的平均速度是
()
A.4
B.4.1
C.0.41
D.3
6.已知 f (x) 2x 1和 g(x) 3x 2 在区间m, n 上的平均变化率分别为 a 和 b ,则
1.1 导数
一、选择题:
1.1.1 函数的平均变化率
1.在函数平均变化率的定义中,自变量的增量 x 满足
()
A. x>0
B. x<0
导数练习题2
1. 已知函数32()1f x x ax x =+++,(a ∈R ) (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间内是减函数,求a 的取值范围. 解:(1)2()321f x x ax '=++2124a -∆= 当0∆≤时,即时,()0f x '≥,()f x 在(,)-∞+∞上递增; 当0∆>时,即时,()0f x '>,由()0f x '=求得两根为即()f x 在∴()f x 的单调递增区间是:当时,(,)-∞+∞()f x的单调递减区间是:(2)[2,)a ∴+∞的取值范围为2,其中a 为大于零的常数.(1)当4a =时,求函数()f x 的单调区间和极值; (2)若在区间[1,2]上至少存在一点0x ,使得0()2f x >成立,求a 的取值范围.【答案】(1)单调减区间为(0,2),极小值 ;(2)【解析】(1)先求出导函数,然后再利用求极值的步骤逐步求解;(2)把问题转化为函数恒成立问题求解。
解:(1)当4a =时,∴ 分)令/()0f x >,得2x >,∴()f x 的单调增区间为(2,)+∞, 令/()0f x <,得02x <<,∴()f x 的单调减区间为(0,2),(4分)∴ 当2x =时,()f x 取极小值 (6分)(2)原问题等价于在区间[1,2]上至少存在一点0x ,使得 ,即求max ()a g x <(8分) 又12x ≤≤,∴ /()0g x > 即()g x 在区间[1,2]上单调递增,(12分)3.(本小题14分) 已知函数x x f ln )(=,若(1)求曲线)(x f y =在点))1(,1(f P 处的切线方程;(2)若函数()g x 在区间1[,]e e -上有两个零点,求实数b 的取值范围; (3试题解析:(1)因为0)1(,1)1('===f f k ,所以曲线)(x f y =在点))1(,1(f P 处的切线方程为1-=x y (2 ,由)(x g '>0得x>1, 由)(x g '<0得0<x<1. 所以)(x g 的单调递增区间是(1,+∞),单调递减区间(0, 1) x=1时,)(x g 取得极小值)1(g .所以b (3构造函数:)1,0(1ln )(∈+-=x x x x h所以)单调递增,在(10)(x h ,4.(16分)设函数432()2f x x ax x b =+++, 时,讨论函数()f x 的单调性; ⑵若函数()f x 仅在0x =处有极值,试求a 的取值范围。
2020年高考数学 大题专项练习 导数与函数 二(15题含答案解析)
2020年高考数学 大题专项练习导数与函数 二1.已知函数f(x)=e x -x 2-ax 有两个极值点x 1,x 2(e 为自然对数的底数).12(1)求实数a 的取值范围;(2)求证:f(x 1)+f(x 2)>2.2.设函数f(x)=lnx-0.5ax 2-bx.(1)当a=b=0.5时,求f(x)的最大值;(2)令,其图像上任意一点P(x 0,y 0)处切线的斜率k ≤0.5恒成立,求实数a 的取值范围.3.已知函数f(x)=e x -(x+a)ln(x+a)+x,(x ∈R).(1)当a=1时,求函数f(x)的图像在x=0处的切线方程;(2)若函数f(x)在定义域上为单调递增函数,①求a 的最大整数;②证明:4.已知函数f(x)=kx 3+3(k ﹣1)x 2﹣k 2+1在x=0,x=4处取得极值.(1)求常数k 的值;(2)求函数f(x)的单调区间与极值;(3)设g(x)=f(x)+c ,且∀x ∈[﹣1,2],g(x)≥2c+1恒成立,求c 的取值范围.5. (1)已知函数f(x)=x 3+bx 2+cx +d 的单调减区间为[-1,2],求b ,c 的值.(2)设f(x)=ax 3+x 恰好有三个单调区间,求实数a 的取值范围.6.已知函数f (x )=+x 在x=1处的切线方程为2x ﹣y+b=0.(Ⅰ)求实数a ,b 的值;(Ⅱ)设函数g (x )=f (x )+x 2﹣kx ,且g (x )在其定义域上存在单调递减区间(即g /(x )<0在其定义域上有解),求实数k 的取值范围.7.已知f(x)=x 2-a 2ln x ,a>0.12(1)若f(x)≥0,求a 的取值范围;(2)若f(x 1)=f(x 2),且x 1≠x 2,证明:x 1+x 2>2a.8.若函数f(x)+g(x)和f(x)·g(x)同时在x=t 处取得极小值,则称f(x)和g(x)为一对“P(t)函数”.(1)试判断f(x)=x 与g(x)=x 2+ax+b 是否是一对“P(1)函数”;(2)若f(x)=e x 与g(x)=x 2+ax+1是一对“P(t)函数”.①求a 和t 的值;②若a <0,若对于任意x ∈ [1,+∞),恒有f(x)+g(x)<m·f(x)g(x),求实数m 的取值范围.9.已知函数f(x)=ae x -ln x -1.(1)设x=2是f(x)的极值点,求a ,并求f(x)的单调区间;(2)证明:当a≥时,f(x)≥0.1e10.已知函数f(x)=x-1-alnx(其中a 为参数).(1) 求函数f(x)的单调区间;(2) 若对任意x ∈(0,+∞)都有f(x)≥0成立,求实数a 的取值集合;(3) 证明:n <e<n +1(其中n ∈N *,e 为自然对数的底数).(1+1n )(1+1n )11.已知函数.(1)若a=e ,求函数f(x)的极值;(2)若函数f(x)有两个零点,求实数a 的取值范围.12.设函数f(x)=e 2x -aln x.(1)讨论f(x)的导函数f′(x)零点的个数;(2)证明:当a>0时,f(x)≥2a+aln .2a 13.已知函数在处的切线与轴平行,()(1)试讨论在上的单调性;(2)①设,求的最小值;②证明:.14.已知函数①若函数f(x)在定义域内单调递增,求的取值范围;②若且关于x的方程在[1,4]上恰有两个不相等的实数根,求实数b 取值范围;③设各项为正的数列满足:求证:.15.设函数f(x)=x2e x-1+ax3+bx2,已知x=-2和x=1为f(x)的极值点.(1)求a和b的值.(2)设试比较f(x)与g(x)的大小.答案解析1.解:(1)∵f(x)=e x -x 2-ax ,∴f′(x)=e x -x -a .12设g(x)=e x -x -a ,则g′(x)=e x -1.令g′(x)=e x -1=0,解得x=0.∴当x ∈(-∞,0)时,g′(x)<0,函数g(x)单调递减;当x ∈(0,+∞)时,g′(x)>0,函数g(x)单调递增.∴g(x)min =g(0)=1-a .当a≤1时,f′(x)=g(x)≥0,函数f(x)单调递增,无极值点;当a>1时,g(0)=1-a<0,且当x→+∞时,g(x)→+∞;当x→-∞时,g(x)→+∞.∴当a>1时,f′(x)=g(x)=e x -x -a 有两个零点x 1,x 2.不妨设x 1<x 2,则x 1<0<x 2.∴函数f(x)有两个极值点时,实数a 的取值范围是(1,+∞).(2)证明:由(1)知,x 1,x 2为g(x)=0的两个实数根,x 1<0<x 2,且g(x)在(-∞,0)上单调递减.下面先证x 1<-x 2<0,只需证g(-x 2)<0.∵g(x 2)=ex2-x 2-a=0,得a=ex2-x 2,∴g(-x 2)=e -x2+x 2-a=e -x2-ex2+2x 2.设h(x)=e -x -e x +2x(x>0),则h′(x)=--e x +2<0,1ex∴h(x)在(0,+∞)上单调递减,∴h(x)<h(0)=0,∴g(-x 2)<0,即x 1<-x 2<0.∵函数f(x)在(x 1,0)上单调递减,∴f(x 1)>f(-x 2),∴要证f(x 1)+f(x 2)>2,只需证f(-x 2)+f(x 2)>2,即证ex2+e -x2-x -2>0.2设函数k(x)=e x +e -x -x 2-2(x>0),则k′(x)=e x -e -x -2x .设φ(x)=k′(x)=e x -e -x -2x ,φ′(x)=e x +e -x -2>0,∴φ(x)在(0,+∞)上单调递增,∴φ(x)>φ(0)=0,即k′(x)>0,∴k(x)在(0,+∞)上单调递增,k(x)>k(0)=0,∴当x ∈(0,+∞)时,e x +e -x -x 2-2>0,则ex2+e -x 2-x -2>0,2∴f(-x 2)+f(x 2)>2,∴f(x 1)+f(x 2)>2.2.解:3.解:4.解:5.解:(1)∵函数f(x)的导函数f ′(x)=3x 2+2bx +c ,由题设知-1<x<2是不等式3x 2+2bx +c<0的解集.∴-1,2是方程3x 2+2bx +c=0的两个实根,∴-1+2=-b ,(-1)×2=,即b=-1.5,c=-6.23c 3(2)∵f ′(x)=3ax 2+1,且f(x)有三个单调区间,∴方程f ′(x)=3ax 2+1=0有两个不等的实根,∴Δ=02-4×1×3a>0,∴a<0.∴a 的取值范围为(-∞,0).6.7.解:(1)f′(x)=x-=(x>0).a2x x +a x -a x当x ∈(0,a)时,f′(x)<0,f(x)单调递减;当x ∈(a ,+∞)时,f′(x)>0,f(x)单调递增.当x=a 时,f(x)取最小值f(a)=a 2-a 2ln a.12令a 2-a 2ln a≥0,解得0<a<.12e 故a 的取值范围是(0,].e (2)证明:由(1)知,f(x)在(0,a)上单调递减,在(a ,+∞)上单调递增,不失一般性,设0<x 1<a<x 2<2a ,则2a-x 2<a.要证x 1+x 2>2a ,即x 1>2a-x 2,则只需证f(x 1)<f(2a-x 2).因为f(x 1)=f(x 2),则只需证f(x 2)<f(2a-x 2).设g(x)=f(x)-f(2a-x),a≤x≤2a.则g′(x)=x-+2a-x-=-≤0,a2x a22a -x 2a a -x 2x 2a -x所以g(x)在[a,2a)上单调递减,从而g(x)≤g(a)=0.又a<x 2<2a ,于是g(x 2)=f(x 2)-f(2a-x 2)<0,即f(x 2)<f(2a-x 2).因此x 1+x 2>2a.8.解:9.解:(1)f(x)的定义域为(0,+∞),f ′(x)=ae x -.1x由题设知,f ′(2)=0,所以a=.12e2从而f(x)=e x -ln x -1,f ′(x)=e x -.12e212e21x当0<x <2时,f ′(x)<0;当x >2时,f ′(x)>0.所以f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明:当a≥时,f(x)≥-ln x -1.1e ex e设g(x)=-ln x -1,则g′(x)=-.ex e ex e 1x当0<x <1时,g ′(x)<0;当x >1时,g ′(x)>0.所以x=1是g(x)的最小值点.故当x >0时,g(x)≥g(1)=0.因此,当a≥时,f(x)≥0.1e10.解:(1) f ′(x)=1-=(x>0),a x x -a x当a ≤0时,f ′(x)=1-=>0,所以f(x)在(0,+∞)上是增函数;a x x -a x当a>0时,所以f(x)的增区间是(a ,+∞),减区间是(0,a).综上所述, 当a ≤0时,f(x)的单调递增区间是(0,+∞);当a>0时,f(x)的单调递增区间是(a ,+∞),单调递减区间是(0,a).(2) 由题意得f(x)min ≥0.当a ≤0时,由(1)知f(x)在(0,+∞)上是增函数,当x →0时,f(x)→-∞,故不合题意;(6分)当a>0时,由(1)知f(x)min =f(a)=a-1-alna ≥0.令g(a)=a-1-alna ,则由g ′(a)=-lna=0,得a=1,所以g(a)=a-1-alna ≤0,又f(x)min =f(a)=a-1-alna ≥0,所以a-1-alna=0,所以a=1,即实数a 的取值集合是{1}.(10分)(3) 要证不等式1+n <e<1+n +1,1n 1n两边取对数后,只要证nln1+<1<(n +1)ln1+,即只要证<ln1+<,1n 1n 1n +11n 1n令x=1+,则只要证1-<lnx<x-1(1<x ≤2).1n 1x由(1)知当a=1时,f(x)=x-1-lnx 在(1,2]上递增,因此f(x)>f(1),即x-1-lnx>0,所以lnx<x-1(1<x ≤2)令φ(x)=lnx +-1(1<x ≤2),则φ′(x)=>0,1x x -1x2所以φ(x)在(1,2]上递增,故φ(x)>φ(1),即lnx +-1>0,所以1-<lnx(1<x ≤2).1x 1x综上,原命题得证.11.解:12.解:(1)f(x)的定义域为(0,+∞),f′(x)=2e 2x -(x >0).a x当a≤0时,f ′(x)>0,f ′(x)没有零点;当a >0时,设u(x)=e 2x ,v(x)=-,a x因为u(x)=e 2x 在(0,+∞)上单调递增,v(x)=-在(0,+∞)上单调递增,a x所以f′(x)在(0,+∞)上单调递增.又f′(a)>0,当b 满足0<b <且b <时,f ′(b)<0,a 414故当a >0时,f ′(x)存在唯一零点.(2)证明:由(1)可设f′(x)在(0,+∞)上的唯一零点为x 0,当x∈(0,x 0)时,f ′(x)<0;当x∈(x 0,+∞)时,f ′(x)>0.故f(x)在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以当x=x 0时,f(x)取得最小值,最小值为f(x 0).由于2e2x 0-=0,所以f(x 0)=+2ax 0+aln ≥2a +aln .a x0a 2x02a 2a故当a >0时,f(x)≥2a+aln .2a 13.14.解:15.解:。
新人教版高中数学选择性必修第二册培优班精讲《导数的运算》练习含答案解析
5.2 导数的运算考点一 初等函数求导【例1】(2020·林芝市第二高级中学高二期末(文))求下列函数的导函数.(1)()3224f x x x =-+(2)()32113f x x x ax =-++(3)()cos ,(0,1)f x x x x =+∈ (4)2()3ln f x x x x =-+-(5)sin y x = (6)11x y x +=-【答案】(1)2()68f x x x =-+ (2)2()2f x x x a '=-+ (3)()sin 1f x x '=-+ (4)1()23f x x x'=--+ (5)cos y x '= (6)22(1)y x '=--【解析】(1)由()3224f x x x =-+,则()'268f x x x =-+;(2)由()32113f x x x ax =-++,则()'22f x x x a =-+;(3)由()cos ,(0,1)f x x x x =+∈ ,则()1sin ,(0,1)f x x x =-∈;(4)由2()3ln f x x x x =-+-,则'1()23f x x x=-+-;(5)由sin y x =,则 'cos y x =;(6)由11x y x +=-,则'''22(1)(1)(1)(1)2(1)(1)x x x x y x x +⨯--+⨯-==---.【一隅三反】1.(2020·西藏高二期末(文))求下列函数的导数.(1)2sin y x x =;(2)n 1l y x x=+;(3)322354y x x x =-+-.【答案】(1)22sin cos y x x x x '=+(2)211y x x'=-(3)2665y x x '=-+【解析】(1)2sin y x x =22sin cos y x x x x '=+(2)n 1l y x x =+211y x x'=-(3)322354y x x x x =-+-2665y x x '=-+2.(2020·通榆县第一中学校高二月考(理))求下列函数的导数:(Ⅰ)22ln cos y x x x =++;(Ⅱ)3e x y x =.【答案】(Ⅰ)14sin x x x+-;(Ⅱ)()233e xx x +.【解析】(Ⅰ)由导数的计算公式,可得()212(ln )(cos )4sin y x x x x x x'=++=+-'''.(Ⅱ)由导数的乘法法则,可得()()()3323e e 3e x xx y x x xx ''=+=+'.3.(2020·山东师范大学附中高二期中)求下列函数在指定点的导数:(1)4ln(31)y x =++ ,1x =; (2)2cos 1sin x y x=+,π2x =.【答案】(1)12x y ='=(2)21ln 2x y π==+'【解析】(1)321231y x x -'=-++,12x y ='=(2)21sin y x+'=,21ln2x y π==+'考点二 复合函数求导【例2】.(2020·凤阳县第二中学高二期末(理))求下列函数的导数:(1)2=e x y ;(2)()313y x =-.【答案】(1)22x e ;(2)29(13)x --或281549y x x '=-+-.【解析】(1)2'22e (2)e 22e x x x y x =⋅=⋅=';(2)()()22'313(13)913y x x x =--=--'.或281549y x x '=-+-. 【一隅三反】1.(2020·陕西碑林·西北工业大学附属中学高二月考(理))求下列函数的导数:(1)()*()2+1ny x n N ∈=,;(2)(ln y x =+;(3)11x x e y e +=-;(4)2)2(+5y xsin x =.【答案】(1)()1'221n y n x -=+;(2)'y =;(3)()221xxe y e-'=-;(4)2sin(25)4cos(25)y x x x '=+++.【解析】(1)()()()11'2121'221n n y n x x n x ⋅--=++=+;(2)1y ⎛=+= ⎝'(3)∵12111xx xe y e e +==+--∴()()222211xxx xe e y e e'-=-=--;(4)()()2sin 254cos 25y x x x =+'++.2.(2020·横峰中学高二开学考试(文))求下列各函数的导数:(1)ln(32)y x =-;(2)()212x x f x ee e -+=++(3)y【答案】(1)332y x '=-;(2)21()2x x f x e e -+'=-+.(3)y '=【解析】(1)因为ln(32)y x =-令32t x =-,ln y t =所以()()1332ln 332y x t t x '''=-⋅=⋅=-(2)()21221,()2x x x x f x e f x ee e e -+-+∴'=-+++= .(3)令212t x =-,则12y t =,所以112211()(4)22y t t t x -'''==⋅=-=;考点三 求导数值【例3】.(2020·甘肃城关·兰州一中高二期中(理))已知函数()f x 的导函数为()'f x ,且满足()3(1)ln f x xf x '=+,则(1)f '=A .12-B .12C .1-D .e【答案】A【解析】()()31ln f x xf x '=+ ,求导得()()131f x f x''=+,则()()1311f f ''=+,解得()112f '=-.故选:A.【一隅三反】1.(2020·广东湛江·高二期末(文))已知函数()cos x f x x =,则2f π⎛⎫= ⎪⎝⎭'( )A .2π-B .2πC .3πD .3π-【答案】A【解析】()cos x f x x = ,()2sin cos x x x f x x --'∴=,因此,2sin 22222f πππππ⎛⎫⎛⎫--- ⎪ ⎪⎛⎫⎝⎭⎝⎭'-==- ⎪⎝⎭⎛⎫- ⎪⎝⎭.故选:A.2.(2020·四川高二期中(理))若函数()()22co 102s x f x x f x '=++,则6f π⎛⎫' ⎪⎝⎭的值为( )A .0B .6πC .3πD .π【答案】B【解析】因为()()20sin 1f x x f x ''=-+,所以令0x =,则()01f '=,所以()2sin 1f x x x '=-+,则66f ππ⎛⎫'=⎪⎝⎭,故选: B.3.(2020·广西桂林·高二期末(文))已知函数2()f x x x =+,则()1f '=( )A .3B .0C .2D .1【答案】A【解析】由题得()21(1)3f x x f ''=+∴=,.故选:A 考点四 求切线方程【例4】.(2020·郸城县实验高中高二月考(理))已知曲线31433y x =+(1)求曲线在点(2,4)P 处的切线方程;(2)求曲线过点(2,4)P 的切线方程【答案】(1)440x y --=;(2)20x y -+=或440x y --=.【解析】(1)∵2y x '=,∴在点()2,4P 处的切线的斜率2|4x k y ='==,∴曲线在点()2,4P 处的切线方程为()442y x -=-,即440x y --=.(2)设曲线31433y x =+与过点()2,4P 的切线相切于点30014,33A x x ⎛⎫+ ⎪⎝⎭,则切线的斜率020|x x k y x =='=,∴切线方程为()320001433y x x x x ⎛⎫-+=-⎪⎝⎭,即23002433y x x x =⋅-+.∵点()2,4P 在该切线上,∴2300244233x x =-+,即320340x x -+=,∴322000440x x x +-+=,∴()()()2000014110x x x x +-+-=,∴()()200120x x +-=,解得01x =-或02x =.故所求切线方程为440x y --=或20x y -+=.【一隅三反】1.(2020·黑龙江大庆实验中学高三月考(文))曲线2xy x =-在点()1,1-处的切线方程为A .21y x =-+B .32y x =-+C .23y x =-D .2y x =-【答案】A【解析】2xy x =-的导数为22'(2)y x =--,可得曲线22y x =-在点()1,1-处的切线斜率为1'|2x k y ===-,所以曲线2xy x =-在点()1,1-处的切线方程为12(1)y x +=--,即21y x =-+,故选A.2.(2020·河南高三其他(理))曲线()21ln 22y x x =-在某点处的切线的斜率为32-,则该切线的方程为()A .3210x y +-=B .3210x y ++=C .6450x y +-=D .12870x y +-=【答案】D【解析】求导得1y x x '=-,根据题意得132y x x '=-=-,解得2x =-(舍去)或12x =,可得切点的坐标为11,28⎛⎫⎪⎝⎭,所以该切线的方程为131822y x ⎛⎫-=-- ⎪⎝⎭,整理得12870x y +-=.故选:D.3.(2020·北京高二期末)过点P (0,2)作曲线y =1x 的切线,则切点坐标为( )A .(1,1)B .(2,12)C .(3,13)D .(0,1)【答案】A【解析】设切点001(,)x x ,022001112(0)y x x x x '=-∴-=--Q 01x ∴=,即切点(1,1)故选:A4.(2020·吉林洮北·白城一中高二月考(理))已知函数f(x)=x 3-4x 2+5x -4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.【答案】(1)x -y -4=0(2)x -y -4=0或y +2=0【解析】(1)∵f′(x)=3x 2-8x +5,∴f′(2)=1,又f(2)=-2,∴曲线f(x)在点(2,f(2))处的切线方程为y -(-2)=x -2,即x -y -4=0.(2)设切点坐标为(x 0,x 03-4x 02+5x 0-4),∵f′(x 0)=3x 02-8x 0+5,∴切线方程为y -(-2)=(3x 02-8x 0+5)(x -2),又切线过点(x 0,x 03-4x 02+5x 0-4),∴x 03-4x 02+5x 0-2=(3x 02-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0,解得x 0=2或x 0=1,∴经过A(2,-2)的曲线f(x)的切线方程为x -y -4=0或y +2=0.考点五 利用切线求参数【例5】.(2020·全国高三其他(理))已知曲线()ln xy e ax x =-在点()1,ae 处的切线方程为y kx =,则k =()A .1-B .0C .1D .e【答案】D【解析】令()()ln xy f x eax x ==-,则()()1ln x xf x e ax x e a x'=-+-(,所以()12f ea e ='-,因为曲线()ln xy eax x =-在点()1,ae 处的切线方程为y kx =,所以该切线过原点,所以()12f ea e ae ='-=,解得1a =,即k e =.故选:D.【一隅三反】1.(2020·岳麓·湖南师大附中月考)已知函数()2ln xf x ax x=-,若曲线()y f x =在()()1,1f 处的切线与直线210x y -+=平行,则a =______.【答案】12-【解析】因为函数()2ln x f x ax x =-,所以()21ln 2xf x ax x-'=-,又因为曲线()y f x =在()()1,1f 处的切线与直线210x y -+=平行,所以()1122f a '=-=,解得12a =-,故答案为:12-2.(2020·安徽庐阳·合肥一中高三月考(文))曲线(1)x y ax e =+在点(0,1)处的切线的斜率为2,则a =_____.【答案】1【解析】 (1)x y ax e =+,∴(1)x y ax a e '=++ 012x y a =∴=+=',1a \=.故答案为:1.3.(2020·山东莱州一中高二月考)已知直线y x b =+是曲线3x y e =+的一条切线,则b =________.【答案】4【解析】设()3xf x e =+,切点为()00,+3xx e ,因为()xf x e '=,所以01x e =,解得00x =,所以0034y e =+=,故切点为(0,4),又切点在切线y x b =+上,故4b =.故答案为:4。
第二章导数与微分习题
第二章-导数与微分习题第二章 导数与微分【内容提要】1.导数的概念设函数y =f (x )在x 0的某邻域(x 0-δ,x 0 + δ)(δ>0)内有定义,当自变量x 在点x 0处有改变量Δx 时,相应地,函数有改变量00()()y f x x f x ∆=+∆-.若0→∆x 时,极限xyx ∆∆→∆0lim 存在,则称函数y =f (x )在x =x 0处可导,称此极限值为f(x)在点x 0 处的导数,记为)(0x f '或)(0x y '或|x x y ='或0|d d x x xy=或0|d d x x xf=+→∆0x 时,改变量比值的极限xyx ∆∆+→∆0lim 称f(x)在x 0处的右导数,记为)(0x f +'。
-→∆0x 时,改变量比值的极限xy x ∆∆-→∆0lim 称f(x)在x 0处的左导数,记为)(0x f -'。
2.导数的意义导数的几何意义:)(0x f '是曲线y =f (x )在点(x 0,y 0)处切线的斜率,导数的几何意义给我们提供了直观的几何背景,是微分学的几何应用的基础。
导数的物理意义:路程对时间的导数)(0t s '是瞬时速度v (t 0) 。
以此类推,速度对时间的导数)(0t v '是瞬时加速度a (t 0)。
3.可导与连续的关系定理 若函数)(x f y =在点x 0处可导,则函数在点x 0处一定连续。
此定理的逆命题不成立,即连续未必可导。
4.导数的运算定理1(代数和求导法则)若u (x )和v (x )都在点x 处可导,则v u v u '±'='±)(定理2(积的求导法则)若u (x )和v (x )都在点x 处可导,则v u v u uv '+'=')(定理3(商的求导法则)若u (x )和v (x )都在点x 处可导,且v (x )≠0,则2v v u v u v u '-'='⎪⎭⎫ ⎝⎛定理4 若函数)(x g u =在点x 处可导,且)(u f y =在其相应点u 处可导,则复合函数)]([x g f y =在x 处可导,且xu x u y y '⋅'=' 或d d d d d d y y u x u x=⋅5.基本初等函数求导公式本节中我们已求出了所有基本初等函数的导数,整理所下:)(='C1)(-='μμμx xaa a x x ln )(=' xx e )e (='ax x a ln 1)(log =' xx 1)(ln ='xx cos )(sin =' xx sin )(cos -=' xx 2sec )(tan =' xx 2csc )(cot -=' xx x tan sec )(sec =' xx x cot csc )(csc -= 211)(arcsin x x -='211)(arccos x x --='211)(arctan xx +=' 211)cot arc (x+-='这些基本导数公式必须熟记,与各种求导法则、求导方法配合,可求初等函数的导数。
2.导数复习
3 .由 2 知,f x 在x 1处取得极小值 3 c,
此时极小值也是最小值,要使对,只需 3 c 2c , 即2c 2 c 3 0, 从而 2c 3 c 1 0, 3 解得c 或c 1, 2 3 c的取值范围是 , 1 , . 2
注意正弦函数在[0,2π]上的定积分为0,但 是它不等于我们所求的阴影部分的面积. S=
0
sin xdx +|
2
sin xdx |
=2+2=4.
例4.计算:(1) 1
(2)0 ( x 1)dx
2 2
4
1 dx ; x
1 解:(1)因为 (2 x ) ' x 4 1 dx 2 4 2 1 2 所以 1 x 3
1 ln( x 1). 2 当a 1时,f ( x) n (1 x) 1 当x 2时,对任意正整数n, 恒有 1. n (1 x) 故只需证明1+ln(x-1) x-1. 令h( x) x 1 (1 ln( x 1)) x 2 ln( x 1), x 2, 1 x2 则h( x) 1 , 当x 2时,h( x) 0, x 1 x 1 故h( x)在 2, 单调递增,因此,当x 2时,h x h 2 0 即1+ln(x-1) x-1成立,故当x 2时, 1 有 ln( x 1) x-1.即f x x-1. n (1 x)
1 n f xi x b a i 1
1 b f x d x a ba
2.微积分基本定理
b
a
第二章 导数与微分
第二章 导数与微分第一节 导数概念习题2.11、设26)(x x f =,试按定义求)1(-'f2、证明x x sin )(cos -='3、下列各题中均假定)(0x f '存在,按导数的定义观察下列极限,并指出a 表示什么:(1)a xx f x x f x =∆-∆-→∆)()(lim 000(2)a xx f x =→)(lim,其中0)0(=f ,且)0(f '存在。
(3)a hh x f h x f h =-+--→)()(lim0004、求下列函数的导数:(1)52x y = (2)53x y =(3)4.2x y = (4)xy 2=(5)31xy = (6)35x x y ⋅=(7)3533xxx y ⋅=5、已知物体的运动规律为3t s =(m),求这物体在2=t 秒(s)时的速度。
6、如果)(x f 为偶函数,且)0(f '存在,证明)0(f '0=。
7、求曲线x y sin =在具在下列横坐标的各点处切线的斜率: π32=x ,π=x8、求曲线x y cos =上点)21,3(π处的切线方程和法线方程。
9、求曲线2x e y =在点)1,0(处的切线方程和法线方程。
10、在抛物线2x y =上取横坐标为11=x 及2x 3=的两点,作过这两点的割线。
问该抛物线上哪一点的切线平行于这条割线?11、讨论下列函数在0=x 处的连续性与可导性: (1)x y sin =;(2)⎪⎩⎪⎨⎧=≠=0,00,1sin 3x x xx y ; (3)⎪⎩⎪⎨⎧=≠=0,00,1sin x x xx y 。
12、设函数⎩⎨⎧>+≤=1,1,)(3x b ax x x x f为了使函数)(x f 在1=x 处连续且可导,b a ,应取什么值?13、已知)(x f =⎩⎨⎧<-≥0,0,3x x x x ,求)0(+'f 及)0(-'f ,又)0(f '是否存在?14、已知⎩⎨⎧≥<0,0,sin 2x x x x ,)(x f '15、证明:双曲线2a xy =上任一点处的切线与两坐标轴构成的三角形的面积都等于22a 。
2第二章导数与微分1
2第二章导数与微分1 D0x x =.根据导数的几何意义及直线的点斜式方程,可得曲线()y f x =在点00(,)M x y 处的切线方程和法线方程分别为:切线方程:000()()y y f x x x '-=-; 法线方程:0001()()y y x x f x -=--'. 5.函数可导性与连续性的关系 如果函数()y f x =在点0x 处可导,则()f x 在点0x 处必连续,但反之不一定成立,即函数()y f x =在点0x 处连续,它在该点不一定可导.(二)基本求导法则与导数公式1.常数和基本初等函数的导数公式(1)()0C '= ; (2)1()x x μμμ-'=; (3)(sin )cos x x '= ; (4)(cos )sin x x '=-; (5)2(tan )sec x x '= ; (6)(cot )csc x x '=-;(7)(sec )sec tan x x x'= ; (8)(csc )csc cot x x x '=-;(9)()ln x x a a a '= ; (10)()x x e e '= ; (11)1(log )ln a x x a'= ;(12)1(ln )x x'=;(13)2(arcsin )1x x'=- ; (14)2(arccos )1x x'=- ;(15)21(arctan )1x x '=+ ; (16)21(arccot )1x x'=-+ .2.函数的和、差、积、商的求导法则 设函数()u u x =,()v v x =都可导,则 (1)()u v u v '''±=± ; (2)()Cu Cu ''=(C 是常数); (3)()uv u v uv '''=+ ;(4)2()u u v uv v v''-'= (0v ≠).3.复合函数的求导法则 设()y f u =,而()u g x =且()f u 及()g x 都可导,则复合函数[()]y f g x =的导数为dy dy dudx du dx=⋅ 或()()()y x f u g x '''=⋅.(三)高阶导数1.定义一般的,函数()y f x =的导数()y f x ''=仍然是x 的函数.我们把()y f x ''=的导数叫做函数()y f x =的二阶导数,记作y ''或22d ydx ,即()y y ''''=或22d y d dy dx dx dx ⎛⎫= ⎪⎝⎭.相应地,把()y f x =的导数()f x '叫做函数()y f x =的一阶导数.类似地,二阶导数的导数叫做三阶导数,三阶导数的导数叫做四阶导数,,一般的,(1)n -阶导数的导数叫做n 阶导数,分别记作y ''',(4)y,,()n y 或33d y dx ,44d ydx,,n nd ydx.函数()y f x =具有n 阶导数,也常说成函数()f x 为n 阶可导.如果函数()f x 在点x 处具有n 阶导数,那么()f x 在点x 的某一邻域内必定具有一切低于n 阶的导数.二阶及二阶以上的导数统称为高阶导数.(四)隐函数的导数函数的对应法则由方程(,)0F x y =所确定,即如果方程(,)0F x y =确定了一个函数关系()y f x =,则称()y f x =是由方程(,)0F x y =所确定的隐函数形式.隐函数的求导方法主要有以下两种:1.方程两边对x 求导,求导时要把y 看作中间变量.例如:求由方程0y e xy e +-=所确定的隐函数的导数dy dx.解:方程两边分别对x 求导,()(0)y x x e xy e ''+-= ,得0ydy dy e y x dx dx++= , 从而ydy ydx x e =-+.2.一元隐函数存在定理x y F dydx F '=-'. 例如:求由方程0y e xy e +-=所确定的隐函数的导数dydx. 解:设(,)y F x y e xy e =+-,则()()yx yy y e xy e F dy y x dx F e x e xy e y∂+-'∂=-=-=-∂'++-∂ .(五)由参数方程所确定的函数的导数一般地,若参数方程()()x t y t ϕφ=⎧⎨=⎩确定y 是x 的函数,则称此函数关系所表达的函数为由该参数方程所确定的函数,其导数为()()dy t dx t φϕ'=',上式也可写成dy dy dt dxdx dt=.其二阶导函数公式为223()()()()()d y t t t t dx t φϕφϕϕ''''''-=' .(六)幂指函数的导数一般地,对于形如()()v x u x (()0u x >,()1u x ≠)的函数,通常称为幂指函数.对于幂指函数的导数,通常有以下两种方法: 1.复合函数求导法将幂指函数()()v x u x 利用指数函数和对数函数的性质化为()ln ()v x u x e 的形式,然后利用复合函数求导法进行求导,最后再把结果中的()ln ()v x u x e 恢复为()()v x u x 的形式.例如:求幂指函数xy x =的导数dydx.解:因ln x x xx e = ,故()ln ln (ln )(1ln )x xx x x dy d e e x x x x dx dx'==⋅=+. 2.对数求导法对原函数两边取自然对数,然后看成隐函数来求y 对x 的导数.例如:求幂指函数x y x =的导数dy dx.解:对幂指函数x y x =两边取对数,得 ln ln y x x =,该式两边对x 求导,其中y 是x 的函数,得11ln dy x y dx ⋅=+,故 (1ln )(1ln )x dy y x x x dx=+=+. 二、函数的微分1.定义:可导函数()y f x =在点0x 处的微分为00()x x dy f x dx ='= ;可导函数()y f x =在任意一点x 处的微分为()dy f x dx '=.2.可导与可微的关系 函数()y f x =在点x 处可微的充分必要条件是()y f x =在点x 处可导,即可微必可导,可导必可微.3.基本初等函数的微分公式(1)()0d C dx = ; (2)1()d x x dx μμμ-=; (3)(sin )cos d x xdx = ; (4)(cos )sin d x xdx =-; (5)2(tan )sec d x xdx = ; (6)(cot )csc d x xdx =-;(7)(sec )sec tan d x x xdx= ; (8)(csc )csc cot d x x xdx =- ;(9)()ln x x d a a adx = ; (10)()x x d e e dx =;(11)1(log )ln a d x dxx a= ; (12)1(ln )d x dx x=;(13)2(arcsin )1d x dxx=- ; (14)2(arccos )1d x dx x=- ;(15)21(arctan )1d x dx x=+ ; (16)21(arccot )1d x dx x=-+ .4.函数和、差、积、商的微分法则 设函数()u u x =,()v v x =都可导,则 (1)()d u v du dv ±=± ; (2)()d Cu Cdu =(C 是常数); (3)()d uv vdu udv =+ ; (4)2()u vdu udv d vv-= (0v ≠).5.复合函数的微分法则 设()y f u =及()u g x =都可导,则复合函数[()]y f g x =的微分为()()x dy y dx f u g x dx'''==.由于()g x dx du '=,所以复合函数[()]y f g x =的微分公式也可写成()dy f u du '=或udy y du '=. 由此可见,无论u 是自变量还是中间变量,微分形式()dy f u du '=保持不变.这一性质称为微分形式的不变性.该性质表明,当变换自变量时,微分形式()dy f u du '=并不改变.【典型例题】【例2-1】以下各题中均假定0()f x '存在,指出A 表示什么.1.000()()lim x f x x f x A x∆→-∆-=∆. 解:根据导数的定义式,因0x ∆→时,0x -∆→,故0000000()()()()lim lim ()x x f x x f x f x x f x f x x x∆→∆→-∆--∆-'=-=-∆-∆, 即0()A f x '=-.2.设0()lim x f x A x→=,其中(0)0f =,且(0)f '存在. 解:因(0)0f =,且(0)f '存在,故0()()(0)limlim (0)0x x f x f x f f x x →→-'==-,即(0)A f '=. 3.000()()lim h f x h f x h A h→+--=. 解:根据导数的定义式,因0h →时,0h -→,故00000000()()()()()()limlimh h f x h f x h f x h f x f x f x h h h→→+--+-+--= 00000()()[()()]limh f x h f x f x h f x h →+----= 000000()()()()limlimh h f x h f x f x h f x h h→→+---=+- 000()()2()f x f x f x '''=+=,即 02()A f x '=.【例2-2】分段函数在分界点处的导数问题. 1.讨论函数322,1()3,1x x f x x x ⎧≤⎪=⎨⎪>⎩在1x =处的可导性.解:根据导数的定义式,3211122()(1)233(1)lim lim lim(1)2113x x x x f x f f x x x x ----→→→--'===++=--, 2112()(1)3(1)lim lim 11x x x f x f f x x +++→→--'===+∞--, 故()f x 在1x =处的左导数(1)2f -'=,右导数不存在,所以()f x 在1x =处不可导. 2.讨论函数21sin ,0()0,0x x f x xx ⎧≠⎪=⎨⎪=⎩ 在0x =处的可导性. 解:因20001sin 0()(0)1(0)lim lim lim sin 00x x x x f x f x f x x x x→→→--'====-, 故函数()f x 在0x =处可导. 3.已知函数2,1(),1x x f x ax b x ⎧≤=⎨+>⎩ 在1x =处连续且可导,求常数a 和b 的值.解:由连续性,因(1)1f =,211(1)lim ()lim 1x x f f x x ---→→===, 11(1)lim ()lim()x x f f x ax b a b +++→→==+=+,从而1a b +=① 再由可导性,2111()(1)1(1)lim lim lim(1)211x x x f x f x f x x x ----→→→--'===+=--, 11()(1)1(1)lim lim 11x x f x f ax b f x x +++→→-+-'==--,而由①可得1b a =-,代入(1)f +',得11()(1)(1)lim lim 11x x f x f ax af a x x +++→→--'===--,再由(1)(1)f f -+''=可得2a =,代入①式得1b =-.【例2-3】已知sin ,0(),0x x f x x x <⎧=⎨≥⎩ ,求()f x '.解:当0x <时,()(sin )cos f x x x''==,当0x ≥时,()()1f x x ''==,当0x =时的导数需要用导数的定义来求.0()(0)sin (0)lim lim 10x x f x f xf x x ---→→-'===-, 00()(0)0(0)lim lim 10x x f x f x f x x+++→→--'===-, (0)(0)1f f -+''==,故 (0)1f '=,从而 cos ,0()1,0x x f x x <⎧'=⎨≥⎩.【例2-4】求下列函数的导数. 1.(sin cos )x y e x x =+.解: ()(sin cos )(sin cos )x x y e x x e x x '''=+++(sin cos )(cos sin )x x e x x e x x =++-2cos x e x =.2.22sin 1xy x=+.解:222222sin cos 111x x x y x x x ''⎛⎫⎛⎫'==⋅ ⎪ ⎪+++⎝⎭⎝⎭2222222(1)(2)cos 1(1)x x x x x +-=⋅++22222(1)2cos (1)1x x x x -=++.3.ln cos()x y e =. 解:1ln cos()cos()cos()xxx y e e e '''⎡⎤⎡⎤==⋅⎣⎦⎣⎦1sin()()cos()x xx e e e '⎡⎤=⋅-⋅⎣⎦ 1sin()cos()x x x e e e ⎡⎤=⋅-⋅⎣⎦ tan()x x e e =-. 4.2ln(1)y x x =++.解:222ln(1)(1)1y x x x x x x '⎡⎤''=++=++⎣⎦++ 2221121x x x ⎡⎤'=⋅+⎢+++⎣ 22111x x x ⎡⎤=⋅+⎢+++⎣ 222111x x x x+=+++21x=+.【例2-5】求下列幂指函数的导数. 1.sin x y x = (0x >). 解:sin sin ln sin ln ()()(sin ln )x x x x x y x e e x x ''''===⋅ sin ln 1(cos ln sin )x xex x x x=⋅+⋅sin sin (cos ln )x xx x x x=+. 说明:本题也可采用对数求导法,即:对幂指函数sin x y x =两边取对数,得ln sin ln y x x =,该式两边对x 求导,其中y 是x 的函数,得11cos ln sin y x x x y x'⋅=+⋅, 故1(cos ln sin )y y x x x x '=+⋅sin sin (cos ln )x xx x x x=+.2.1xx y x ⎛⎫= ⎪+⎝⎭(0x >).解:ln ln 11ln 11x x x x x x xx x y e e x x x ++'''⎡⎤⎡⎤⎛⎫⎛⎫'===⋅⎢⎥ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎢⎥⎣⎦⎣⎦ ln11ln 11xx xx x x ex x x x +⎡⎤'+⎛⎫⎢⎥=⋅+⋅⋅ ⎪++⎢⎥⎝⎭⎣⎦()ln1211ln 11x x xx x x x ex x x x +⎡⎤++-=⋅+⋅⋅⎢⎥++⎢⎥⎣⎦1ln 111xx x x x x ⎛⎫⎛⎫=+ ⎪ ⎪+++⎝⎭⎝⎭.说明:本题也可采用对数求导法,即:对幂指函数1xx y x ⎛⎫= ⎪+⎝⎭两边取对数,得ln ln 1xy x x=+,该式两边对x 求导,其中y 是x 的函数,得111ln ln 1111x x x x y x y x x x x x'+⎛⎫'⋅=+⋅⋅=+ ⎪++++⎝⎭ , 故11ln ln 11111xx x x y y x x x x x ⎛⎫⎛⎫⎛⎫'=+=+ ⎪ ⎪ ⎪+++++⎝⎭⎝⎭⎝⎭.【例2-6】用对数求导法求下列函数的导数.1.x y y x = (0x >).解:等式两边取对数,得ln ln x y y x =,两边对x 求导,注意y 是x 的函数,得ln ln x yy y y x y x ''+⋅=+ ,整理得(ln )ln x yx y y y x'-=-, 则22ln ln ln ln yy y xy yx y xx xy x x y--'==-- .2.22512x y x +=+.解:等式两边取对数,得22225511ln lnln 222x y x x +==++,即2212ln ln(1)ln(2)5y x x =+-+,也即 2210ln 5ln(1)ln(2)y x x =+-+, 两边对x求导,注意y是x的函数,得221010212x x y y x x '=-++ ,故22222251021101215102y x x x x x y x x x x x +⎛⎫⎛'=-=- ⎪ ++++⎝⎭⎝+ .【例2-7】求下列抽象函数的导数.1.已知函数()y f x =可导,求函数1sin ()xy f e =的导数dy dx. 解:111sin sin sin ()()()x x x dy d f e f e e dx dx ⎡⎤'==⋅⎢⎥⎣⎦11sin sin 1()()sin x xf e e x '=⋅⋅1111sin sin sinsin 22cos cos ()()sin sin xxx xx x f e ee f e x x-=⋅⋅=- .2.设函数()f x 和()g x 可导,且22()()0f x g x +≠,试求函数22()()y f x g x =+dydx.解:222222()()()()2()()f xg x dy d f x g x dx dxf xg x '⎡⎤+⎣⎦=+=+22222()()()()f xg x f x g x ''''==++ .【例2-8】求由下列方程所确定的隐函数()y y x =的导数.1.220x xy y -+=.解:方程两边分别对x求导,得220dy dyx y x y dx dx--⋅+⋅=,整理得(2)2dyx y x y dx-=-,故22dy x y dx x y -=- .说明:此题也可用隐函数存在定理来求解,即:设22(,)F x y x xy y =-+, 则2222x y F dy x y x ydx F x y x y'--=-=-='-+- .2.1y y xe =+.解:方程两边分别对x 求导,得 0y y dy dy e xe dx dx=++⋅,整理的(1)yydy xe e dx-=,故1y y dy e dx xe =- .说明:此题也可用隐函数存在定理来求解,即:设(,)1y F x y xe y =+-, 则11y yx y yy F dy e e dx F xe xe'=-=-='-- .【例2-9】求由下列参数方程所确定的函数()y y x =的导数.1.2ttx e y e-⎧=⎨=⎩ .解:()()21222t t t t t dy e dy e dt dx dx e e e dt--'-====-' .2.111x t t y t ⎧=⎪⎪+⎨⎪=⎪+⎩.解:()()2211111111t t t dy t dy t dt dx dx dt t t '+-⎛⎫ ⎪++⎝⎭====--'⎛⎫ ⎪++⎝⎭.【例2-10】求下列函数的微分. 1.22()tan (12)f x x =+. 解:因22222()tan (12)2tan(12)sec (12)4f x x x x x ''⎡⎤=+=+⋅+⋅⎣⎦, 故222()8tan(12)sec (12)dy f x dx x x x dx '==++.2.21()x f x -=解:因()22211122()211x xxxef x ee x x---''==⋅=---故212()1x dy f x dx dx x-'==-.3.2()arctan 1f x x x =-解:因(2221()arctan 12arctan 1x f x x x x x x '-'=-=-+,故2()2arctan 121dy f x dx x x dx x x ⎡'==-+⎢-⎣. 4.22()sin ln(1)f x x x =+. 解:因222222()sin ln(1)2sin cos ln(1)sin 1x f x x x x x x x x ''⎡⎤=+=++⎣⎦+,故2222sin ()sin 2ln(1)1x x dy f x dx x x dx x ⎡⎤'==++⎢⎥+⎣⎦. 【例2-11】求曲线x y xe -=在点(0,1)处的切线方程和法线方程.解:()x x x y xe e xe ---''==-,01x y ='=,故曲线在点(0,1)处的切线方程为11(0)y x -=⋅-,即 10x y -+=;法线方程为11(0)y x -=-⋅-即 10x y +-=.【例2-12】求曲线224x xy y ++=在点(2,2)-处的切线方程和法线方程.解:这是由隐函数所确定的曲线,按隐函数求导数,有220x y xy y y ''+++⋅=,即 22x yy x y+'=-+ ;由导数的几何意义,曲线在点(2,2)-处的斜率为2222212x x y y x y y x y===-=-+'=-=+,故曲线在点(2,2)-处的切线方程为 21(2)y x +=⋅-,即 40x y --=;法线方程为21(2)y x +=-⋅-,即 0x y +=.【例2-13】求椭圆2cos 4sin x t y t=⎧⎨=⎩在点4t π=处的切线方程和法线方程.解:将4t π=代入椭圆方程,得曲线上对应的点为(2,22),又4cos 2cot 2sin t t y ty tx t''===-'-,切线斜率为442cot 2t t y tππ=='=-=-,故所求切线方程为222(2)y x -=--,即 2420x y +-=;所求法线方程为 122(2)2y x -=--,即 2520x y +-=.【历年真题】一、选择题1.(2010年,1分)已知(1)1f '=,则0(12)(1)limx f x f x∆→-∆-∆等于( )(A )1 (B )1-(C )2 (D )2-解:根据导数的定义,0(12)(1)[1(2)](1)lim2lim2x x f x f f x f x x∆→∆→-∆-+-∆-=-∆-∆ 2(1)2f '=-=-,选(D ).2.(2010年,1分)曲线2y x =在点(1,1)处的法线方程为( )(A )y x =(B )322x y =-+(C )322x y =+(D )322x y =--解:根据导数的几何意义,切线的斜率1122x x k y x=='===,故法线方程为11(1)2y x -=--,即 322x y =-+,选(B ). 3.(2010年,1分)设函数()f x 在点0x 处不连续,则( )(A )0()f x '存在 (B )0()f x '不存在(C )lim ()x f x →∞必存在 (D )()f x 在点0x 处可微解:根据“可导必连续”,则“不连续一定不可导”,选项(B )正确. 4.(2009年,1分)若000()()lim h f x h f x h A h→+--=,则A =()(A )0()f x ' (B )02()f x ' (C )0(D )01()2f x '解:000()()lim h f x h f x h A h→+--= 00000()()[()()]limh f x h f x f x h f x h →+----= 000000()()()()limlimh h f x h f x f x h f x h h→→+---=+- 000()()2()f x f x f x '''=+=,选项(B )正确.5.(2008年,3分)函数()f x x =,在点0x =处()f x ( )(A )可导 (B )间断 (C )连续不可导 (D )连续可导解:由()f x x =的图象可知,()f x 在点0x =处连续但不可导,选项(C )正确.说明:()f x x =的连续性和可导性,也可根据连续和导数的定义推得.6.(2008年,3分)设()f x 在0x 处可导,且0()0f x '≠,则0()f x '不等于( ) (A )000()()limx xf x f x x x →-- (B )000()()limx f x x f x x∆→+∆-∆(C )000()()limx f x x f x x∆→-∆-∆ (D )000()()lim()x f x x f x x ∆→-∆--∆解:根据导数的定义,选项(C )符合题意. 7.(2007年,3分)下列选项中可作为函数()f x 在点0x 处的导数定义的选项是( )(A )001lim [()()]n n f x f x n→∞+- (B )000()()limx xf x f x x x →--(C )000()()limx f x x f x x x ∆→+∆--∆∆ (D )000(3)()limx f x x f x x x∆→+∆-+∆∆ 解:选项(A )000001()()1lim [()()]lim ()1n n f x f x n n f x f x f x nn+→∞→∞+-'+-==,选项(C )0000()()lim 2()x f x x f x x f x x∆→+∆--∆'=∆, 选项(D )0000(3)()lim 2()x f x x f x x f x x∆→+∆-+∆'=∆,故选(B ). 8.(2007年,3分)若()f u 可导,且(2)x y f =,则dy =( )(A )(2)x f dx ' (B )(2)2x x f d '(C )[(2)]2x x f d ' (D )(2)2x x f dx '解:因(2)(2)2(2)2ln 2x x x x x dy df f d f dx ''===,故选项(B )正确.9.(2006年,2分)设()u x ,()v x 为可导函数,则()ud v=( )(A )dudv(B )2vdu udvu- (C )2udv vduu + (D )2udv vduu- 解:222()()u u u v uv u vdx uv dx vdu udvd dx dx v v v v v''''---'====,选(B ).10.(2005年,3分)设()(1)(2)(99)f x x x x x =---,则(0)f '=( )(A )99!- (B )0 (C )99!(D )99解:当0x =时,()f x '中除(1)(2)(99)x x x ---项外,其他全为零,故(0)(01)(02)(099)99!f '=---=-,选项(A )正确.11.(2005年,3分)设ln y x =,则()n y =( ) (A )(1)!n n n x -- (B )2(1)(1)!n n n x ---(C )1(1)(1)!n n n x ---- (D )11(1)!n n n x --+-解:由ln y x =可得,1y x'=,21y x''=-,433222!xy xx x-'''=-==, 2(4)64233!x yx x⋅=-=-,,对比可知,选项(C )正确.12.(2005年,3分)2sin ()d xd x =()(A )cos x (B )sin x - (C )cos 2x(D )cos 2x x解:2sin cos cos ()22d x xdx x d x xdxx==,选项(D )正确. 二、填空题1.(2010年,2分)若曲线()y f x =在点00(,())x f x 处的切线平行于直线23y x =-,则0()f x '= . 解:切线与直线平行,则切线的斜率与直线的斜率相等,故0()2f x '=.2.(2010年,2分)设cos(sin )y x =,则dy = . 解:cos(sin )sin(sin )cos dy d x x xdx ==-.3.(2008年,4分)曲线21y x =+在点(1,2)的切线的斜率等于 .解:由导数的几何意义可知,切线斜率(1,2)(1,2)22k y x'===.4.(2008年,4分)由参数方程cos sin x ty t=⎧⎨=⎩确定的dy dx= .解:(sin )cos cot (cos )sin t t y dy t tt dx t tx ''====-'-'. 5.(2006年,2分)曲线2sin y x x =+在点(,1)22ππ+处的切线方程是 .解:切线的斜率(,1)(,1)2222(12sin cos )1k y x x ππππ++'==+=,故切线方程为(1)1()22y x ππ-+=⋅-,即1y x =+.6.(2006年,2分)函数2()(1)f x x x x =-不可导点的个数是 .解:2222(1),0()(1),0x x x f x x x x ⎧+≥=⎨-+<⎩ ,显然,当0x ≠时,()f x 可导; 当0x =时,2200()(0)(1)(0)lim lim 00x x f x f x x f x x+++→→-+'===-, 2200()(0)(1)(0)lim lim 00x x f x f x x f x x-+-→→--+'===-,故 (0)0f '=. 故函数()f x 的不可导点的个数为0.7.(2006年,2分)设1(1)x y x=+,则dy = .解:因11ln(1)ln(1)21111[(1)][][ln(1)()]11x x x x xy e e x x x x x++'''=+==++⋅⋅-+111(1)[ln(1)]1x x x x =++-+,故 111(1)[ln(1)]1x dy dx x x x =++-+.三、计算题1.(2010年,5分)设函数()y y x =由方程2xy x y=+所确定,求x dy dx=.解:方程2xy x y =+两边对x 求导,考虑到y 是x 的函数,得2ln 2()1xy dy dy y xdx dx⋅+=+,整理得2ln 22ln 21xyxydy dyy x dx dx+⋅=+,故2ln 2112ln 2xy xydy y dx x -=-.当0x =时,代入原方程可得1y =,所以012ln 21ln 21ln 2112ln 21xy x x xy y dy y dxx ===--===--. 说明:当得到2ln 2()1xy dy dy y x dxdx⋅+=+后,也可直接将0x =,1y =代入,得ln 21dydx =+,故 0ln 21x dy dx==-.2.(2010年,5分)求函数sin x y x =(0x >)的导数.解:sin sin ln sin ln sin ln 1()()()(cos ln sin )x x x x x x xy x e e e x x x x ''''====+⋅sin sin (cos ln )x xx x x x=+. 3.(2009年,5分)设22sin 1xy x=+,求dy dx.解:因22sin1xy x =+,故22(sin )1dy x dx x'=+ 2222222222(1)22222cos cos 1(1)(1)1x x x x x xx x x x+-⋅-=⋅=++++. 4.(2006年,4分)设()f x 可导,且22()f x a x'=-,求22()df a x dx-.解:222222()()df a x f a x a x dx''-=-⋅- 22222222222()a x xx a xa a x -==----. 5.(2005年,5分)已知sin ,0(),0x tdtx f x xa x ⎧⎪≠=⎨⎪=⎩⎰ .(1)()f x 在0x =处连续,求a ; (2)求()f x '. 解:(1)因 0sin lim ()lim limsin 0x x x x tdt f x x x→→→===⎰,故由()f x在0x =处连续可得,0lim ()(0)x f x f →=,即 0a =.(2)当0x ≠时,002sin sin sin ()x x tdt x x tdtf x x x '⎛⎫- ⎪'== ⎪⎝⎭⎰⎰;当0x =时,02000sin sin ()(0)(0)limlim limxxx x x tdt tdt f x f xf x xx→→→-'===-⎰⎰0sin 1lim22x x x →==. 故02sin sin ,0()1,02x x x tdtx x f x x ⎧-⎪≠⎪'=⎨⎪=⎪⎩⎰ .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学先修课程《微积分》基础练习二
基础练习1 导数概念 函数的求导法则
1、下列各题中均假定0()f x '存在,按照导数的定义,A 分别表示什么?
(1) 000()()
lim x f x x f x A x
∆→-∆-=∆,则A =___________
(2) 0()
lim
x f x A x
→=,且(0)f '存在,则A =___________ (3) 000()()
lim
h f x h f x h A h
→+--=,则A =___________
2、讨论下列函数在0x =处的连续性与可导性:
(1) sin y x = (2) 2
1sin ,00,
0x x y x
x ⎧≠⎪
=⎨⎪=⎩
3、设函数2
,1
,
1ax b x y x x +>⎧=⎨≤⎩,若函数()f x 在1x =处可导,求,a b 的值。
4、设sin ,0
(),
0x x f x x x >⎧=⎨≤⎩,求()f x '.
5、已知函数()f x 可导,且对任何实数,x y 满足:(1) ()()()x y f x y e f y e f x +=+;(2) (0)f e '=. 证明:1
()()x f x f x e +'=+.
6、求下列函数在给定点处的导数:
(1) sin cos y x x =-,求6
x y π='; (2) 2
3()5x f x x =+,求(0)f '和(2)f '.
基础练习2 函数的求导法则(二) 高阶导数
1、求下列函数的导数:
(1) 35232x x y x e =-++ (2) 232x x y e +-=⋅ (3) ()3
arcsin y x = (4) ()
22ln y x a x =+- (5) 2ln ln ln(1)y x =+ (6) 1arcsin 1x
y x
-=+ (7) y x x =+ (8) 1
arccos arctan y x x
=+
2、设()f x 可导,求
dy dx
: (1) ()()x f x y f e e =⋅ (2) 22(sin )(cos )y f x f x =+
3、求下列函数的二阶导数:
(1) 21sin x y x e -=⋅ (2) ()
2ln 1y x x =++
4、设6()(10)f x x =+,求(6)(20)(2),(2),(2)f f f '''.
5、求2
234
x y x x =--的n 阶导数。
基础练习3 隐函数及由参数方程所确定的函数的导数 函数的微分
1、求由下列方程所确定的隐函数的导数
dy dx
: (1) sin()cos ln x y x y += (2) x y y x =
2、用对数求导法求下列函数的导数: (1) tan (sin )x
y x = (2) 4
5
2(3)(1)x x y x +-=
+
3、求下列参数方程所确定的函数的导数22
,dy d y dx dx : (1) 2
3
x at y bt
⎧=⎨=⎩ (2) (1sin )
cos x y θθθθ=-⎧⎨
=⎩
4、求曲线在所给参数值相应的点处的切线及法线方程:
(1) sin ,cos 4x t t y t π=⎧=⎨=⎩ (4) 2
2
231,231at x t t at
y t ⎧=⎪⎪+=⎨⎪=⎪+⎩
5、求下列函数的微分:
(1) 2arcsin 1y x =- (2) 22ln arctan
y
x y x
+=
6、求y x x =的微分。
小结练习二
1、设3,0
()sin ,0
x e b x f x ax x ⎧+≤=⎨>⎩,且()f x 在0x =处可导,求,a b 的值。
2、求下列函数的导数: (1) 2arccot 2y x x =- (2) ()
ln 1x x y e e -=++
3、设2200()sin 1sin 2sin 200222f t t t t π
ππ⎛⎫⎛⎫⎛⎫
=--- ⎪⎪ ⎪⎝
⎭⎝⎭⎝⎭
,求(1)f '.
4、设(())u f g x y =+,其中()y y x =由方程2sin()y y e x y +=+确定,且,f g 一阶可导,求du
dx
.
5、设()f x 在x e =处有连续的一阶导数,且2()f e e
'=,求(
)cos
0lim
x
x d f e dx +→.
6、已知ln cos sin cos x t y t t t
=⎧⎨=-⎩,求22
4
,t dy d y
dx dx π=.
7、设3
cos y x =,求()
n y .。