六年级奥数工程问题教师版

合集下载

学而思-小学六年级奥数教师讲义版-工程问题

学而思-小学六年级奥数教师讲义版-工程问题

六年级奥数第三讲工程问题顾名思义,工程问题指的是与工程建造有关的数学问题。

其实,这类题目的内 容已不仅仅是工程方面的问题,也括行路、水管注水等许多内容。

在分析解答工程问题时,一般常用的数量关系式是:工作量二工作效率X 工作时间,工作时间=工作量+工作效率,工作效率二工作量+工作时间。

工作量指的是工作的多少,它可以是全部工作量,一般用数 1表示,也可以是部分工程量,常用分数表示。

例如,工程的一半表示成孑 工程的三分 之一表示为亍工作效率指的是干工作的快慢,其意义是单位时间里所干的工作量。

单位时间的选取,根据题目需要, 可以是天,也可以是时、分、秒等。

工作效率的单位是一个复合单位, 表示成“工作量/天”,或“工作量/时”等。

但在不引起误会的情况下,一般不写工作效率的单位。

例1单独干某项工程,甲队需100天完成,乙队需150天完成。

甲、乙两队合 干50天后,剩下的工程乙队干还需多少天?分析与解:以全部工程量为单位1。

甲队单独干需100天,甲的工作效 同理,乙队的工作效率是丄。

两队合干的工作效率是(点+占 150 100 150由澤工作量=工作效率x 工作时间-,刃天的工作量是 剰下的工作量是(l-|)c 由“工作时间=工作量+工作效率:剩下的工 作量由乙队干还需例2某项工程,甲单独做需36天完成,乙单独做需45天完成。

如果开工时甲、 乙两队合做,中途甲队退出转做新的工程,那么乙队又做了 18天才完成任务。

率是歸 (而十X50 150 =25 (天)问:甲队干了多少天?分析:将题目的条件倒过来想,变为“乙队先干18天,后面的工作甲、乙两队合干需多少天?”这样一来,问题就简单多了。

黑「存⑹哙诗2 13_ = _x 20 = 12〔天)。

例3单独完成某工程,甲队需10天,乙队需15天,丙队需20天。

开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。

问:甲队实际工作了几天?分析与解:乙、丙两队自始至终工作了6天,去掉乙、丙两队6天的工作量,剩下的是甲队干的,所以甲队实际工作了【一E+命必]+召=3 (天)-例4 一批零件,张师傅独做20时完成,王师傅独做30时完成。

(建筑工程管理]小学六年级奥数教案工程问题二

(建筑工程管理]小学六年级奥数教案工程问题二

(建筑工程管理)小学六年级奥数教学设计—工程问题二小学六年级奥数教学设计— 06 工程问题二本教程共30 讲工程问题(二)上壹讲我们表达的是已知工作效率的较简单的工程问题。

于较复杂的工程问题中,工作效率常常隐蔽于题目条件里,这时,只要我们灵巧运用基本的解析方法,问题也不难解决。

例 1 壹项工程,假如甲先做 5 天,那么乙接着做20 天可完成;假如甲先做 20 天,那么乙接着做 8 天可完成。

假如甲、乙合做,那么多少天能够完成?解析和解:本题没有直接给出工作效率,为了求出甲、乙的工作效率,我们先画出表示图:从上图可直观地见出:甲15 天的工作量和乙12 天的工作量相等,即甲5天的工作量等于乙 4 天的工作量。

于是可用“乙工作 4 天”等量替代题中“甲工作 5 天”这壹条件,经过此替代可知乙单独做这壹工程需用20+4=24(天)甲、乙合做这壹工程,需用的时间为例 2 壹项工程,甲、乙俩队合作需 6 天完成,当下乙队先做 7 天,而后么仍要几日才能完成?解析和解:题中没有告诉甲、乙俩队单独的工作效率,只知道他们合作们把“乙先做 7 天,甲再做 4 天”的过程转变成“甲、乙合做 4 天,乙再单独例 3 单独完成壹件工作,甲按规准时间可提前 2 天完成,乙则要超出规定时间 3 天才能完成。

假如甲、乙二人合做 2 天后,剩下的连续由乙单独做,那么恰好于规准时间完成。

问:甲、乙二人合做需多少天完成?解析和解:乙单独做要超出 3 天,甲、乙合做 2 天后乙连续做,恰好准时完成,说明甲做 2 天等于乙做 3 天,即完成这件工作,乙需要的时间是甲的,乙需要 10+5=15(天)。

甲、乙合作需要例 4 放满壹个水池的水,若同时打开 1,2 ,3 号阀门,则 20 分钟能够完成;若同时打开 2 ,3 ,4 号阀门,则 21 分钟能够完成;若同时打开 1,3 ,4 号阀门,则 28 分钟能够完成;若同时打开1,2,4 号阀门,则 30 分钟能够完成。

奥数思维拓展:工程问题(专项训练)-2024-2025学年六年级上册数学苏教版

奥数思维拓展:工程问题(专项训练)-2024-2025学年六年级上册数学苏教版

奥数思维拓展:工程问题-数学六年级上册苏教版第一部分知识梳理工程问题工程问题公式(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时.(2)用假设工作总量为“1”的方法解工程问题的公式:1÷工作时间=单位时间内完成工作总量的几分之几;1÷单位时间能完成的几分之几=工作时间.(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5….特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便.)解答工程问题利用常见的数学思想方法,如代换法、比例法、列表法、方程法等.抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.第二部分典型例题1.加工一批零件,甲单独做要6天完成,乙单独做要5天完成,现甲乙丙丁四人合做一天完成了任务,已知丙丁两人比甲乙两人多做48个,那么这批零件一共有多少个?【解答】解:48÷[1﹣()﹣()]=48÷[1﹣]=48÷=180(个),答:这批零件一共有180个.2.甲、乙、丙三辆卡车要运送A、B两堆数量相同的货物,若单独运A堆货物,甲车需9时,乙车需12时,丙车需18时.开始时,甲帮乙运A堆,丙单独运B堆,一段时间后,甲又转向B堆帮丙运直至最后,两堆货物被同时运完.甲帮丙运了几时?【解答】解:2÷(++)=2÷=8(小时)(1﹣)÷=÷=5(小时)答:甲帮丙运了5时.第三部分跟踪训练1.有一批货物,如果用5辆大卡车和2辆小卡车正好运完,或者用2辆大卡车和8辆小卡车也正好运完,如果全用大卡车运,要几辆才能运完?2.一项工程甲、乙合作完成了全工程的,剩下的由甲单独完成,甲一共做了10天,这项工程由甲单独做需15天,如果由乙单独做,需多少天?3.一项工程,甲、乙、丙合作6天可完成;如果甲工作6天,乙、丙合作两天可完成这项工程的;如果甲、乙合作3天,丙工作6天,也可完成这项工程的.甲、乙、丙单独做各需多少天?4.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时。

【精品原创】六年级奥数培优教程讲义第10讲-一般工程问题(教师版)

【精品原创】六年级奥数培优教程讲义第10讲-一般工程问题(教师版)

第10讲 工程问题了解工作量、工作时间及工作效率的意思;能够从题目中找出工作量、工作时间及工作效率;理解三者之间的关系,并用三者关系解题。

工程问题指的是与工程建造有关的数学问题。

然而其内容已不仅是工程方面的,还包括水管注水、行路等许多方面。

工程问题常涉及到工作量、工作效率和工作时间,且这三者之间具有如下关系式: 工作量=工作效率×工作时间工作时间=工作量÷工作效率工作效率=工作量÷工作时间工作量指工作的多少,它可以是全部工作量,一般用单位“1”表示;也可是部分工作量,常用分数表示。

例如,工程的一半表示成12,工程的三分之一表示成13。

工作效率指工作的快慢,也就是单位时间里所干的工作量。

工作效率的单位是一个复合单位,用“工作量/天”或“工作量/时”等表示。

但在不引起误会的情况下,一般不写工作效率的单位。

工程问题可分为两类:一类是已知具体工作量,另一类是未给具体工作量。

在解答工程问题时,我们要遵循以下原则:一是工作量没有具体给出的,可设工作量为单位“1”;二是由于工作总量为“1”,那么,参与这项工作的每个人(队)单独做的工作效率可用此人(队)单独做的工作时间的倒数表示。

知识梳理教学目标考点一:用“组合法”解工程问题在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径例1、一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的7 30,乙队单独完成全部工程需要几天?【解析】此题已知甲、乙两队的工作效率和是115,只要求出甲队或乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量730-115×3=130,从而求出甲队的工作效率。

word完整版小学六年级奥数教案06工程问题二

word完整版小学六年级奥数教案06工程问题二

小学六年级奥数教案一06工程问题二本教程共30讲工程问题(二)上一讲我们讲述的是已知工作效率的较简单的工程问题。

在较复杂的工程问题中,工作效率往往隐藏在题目条件里,这时,只要我们灵活运用基本的分析方法,问题也不难解决。

例1 一项工程,如果甲先做5天,那么乙接着做20天可完成;如果甲先做20天,那么乙接着做8天可完成。

如果甲、乙合做,那么多少天可以完成?分析与解:本题没有直接给出工作效率,为了求出甲、乙的工作效率,我们先画出示意图:乙臥从上图可直观地看出:甲15天的工作量和乙12天的工作量相等,即甲5天的工作量等于乙4天的工作量。

于是可用“乙工作4天”等量替换题中“甲工作5天”这一条件,通过此替换可知乙单独做这一工程需用20+4=24 (天)完成,即乙的工作效率为£ °又因为乙工作4天的工作量和甲工作亍天的工作量相等,所以甲的工作效率是乙的孑为存卜非甲、乙合做这一工程,需用的时间为氓G痔t咅〔天〕例2 一项工程,甲、乙两队合作需6天完成,现在乙队先做7天, 然后甲队做4天.共完成这项工程的学,女燥把其亲的工程交给乙队单独做.那么还要几天才能完成?分析与解:题中没有告诉甲、乙两队单独的工作效率,只知道他们合作的工作效率是;’但甲、乙两队一天也没有合作过。

为了解决这个问题,我们把“乙先做7天,甲再做4天”的过程转化为“甲、乙合做4天,乙再做3天",这样,就可以把合作的工作致率;用上了。

单独61 9甲、乙两队合作4天完成的工程量是乙再做3天就可完成工程量的存由此求出乙的工作效率为剩下的工程乙队还需干(1・存存2 (天)0例3单独完成一件工作,甲按规定时间可提前2天完成,乙则要超过规定时间3天才能完成。

如果甲、乙二人合做2天后,剩下的继续由乙单独做,那么刚好在规定时间完成。

问:甲、乙二人合做需多少天完成?分析与解:乙单独做要超过3天,甲、乙合做2天后乙继续做,刚好按时完成,说明甲做2天等于乙做3天,即完成这件工作,乙需要的时间是甲的2因为单独做,乙比甲多用+ =珂天),所以甲需要(天),乙需要10+5=15(天)。

全国通用版 六年级春季奥数培优讲义 6-05-真题汇编-工程问题-教师专用

全国通用版 六年级春季奥数培优讲义 6-05-真题汇编-工程问题-教师专用

第5讲 工程问题【学习目标】1、复习工程问题;2、熟悉小升初的常见题型。

【知识梳理】1、基础公式:(1)工作量=工作效率×工作时间;(2)工作时间=工作量÷工作效率;(3)工作效率=工作量÷工作时间。

2、常用方法:(1)分工法;(2)比例法。

【典例精析】1、修一条公路,计划每天修60米,实际每天多修15米,结果提前4天修完,一共修了多少米?60×4÷15=16(天)(60+15)×16=1200(米)2、有一批零件由甲、乙两人合作完成,原计划甲比乙多做50个,结果乙实际做的比计划少70个,比甲实际做的总数的53多10个,这批零件共有多少个? 70×2+50=190(个)(190+10)÷(1-53)=500(个) 500-190+500=810(个)3、一项工程,甲单独做40天完成,乙单独做60天完成。

现在两人合作,中间甲因病休息了若干天,所以经过27天才完成。

甲休息了多少天?27-22=5(天)4、单独完成某路段维修工程,甲队需10天,乙队需15天,丙队需20天。

开始三个队一起开工,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。

问:甲队实际工作了几天?5、加工一批零件,甲、乙两人合作需要12天完成,现在由甲先做3天,然后由乙做2天,还6、加工一批服装,原计划甲、乙两车间在25天合作完成,甲、乙合作10天后,甲单独做8天,接着乙又单独做14天,这样共完成全部任务的81%,已知甲比乙每天多做10套,求计划加工多少套服装?7、甲、乙、丙合作一项工程,4天干了整个工程的31,这4天内,除丙外,甲休息了2天,乙休息了3天,之后三人合作完成,甲的效率是丙的3倍,乙的效率是丙的2倍,问工程前后一共用了多少天?解:设丙的工效是x ,4+4=8(天)8、甲、乙、丙三人去完成植树任务,已知甲植1棵树的时间,乙可以植2棵树,丙可以植3棵树,他们先一起工作了5天,完成全部任务的31,然后丙休息了8天,乙休息了3天,甲没休息,最后一起完成任务。

学而思小学六年级奥数教师讲义版工程问题

学而思小学六年级奥数教师讲义版工程问题

六年级奥数第三讲工程问题顾名思义,工程问题指的是与工程建造有关的数学问题。

其实, 这类题目的内容已不仅仅是工程方面的问题,也括行路、水管注水等许多内容。

在分析解答工程问题时,一般常用的数量关系式是:工作量=工作效率X工作时间,工作时间=工作量十工作效率,工作效率=工作量十工作时间。

工作量指的是工作的多少,它可以是全部工作量,一般用数1表示,也可以是部分工程量,常用分数表示°例如,工程的一半表示成土,工程的三分之一表示为孑工作效率指的是干工作的快慢,其意义是单位时间里所干的工作量。

单位时间的选取,根据题目需要,可以是天,也可以是时、分、秒等。

工作效率的单位是一个复合单位,表示成“工作量/天”,或“工作量/时”等。

但在不引起误会的情况下,一般不写工作效率的单位例1单独干某项工程,甲队需100天完成,乙队需150天完成。

甲、乙两队合干50天后,剩下的工程乙队干还需多少天?分析与解:以全部工程量为单位1。

甲队单独干需100天,甲的工作效率是同理,乙队的工作效率是当。

两队合干的工作效率是(点+占L100 150 100 150由白工作量=工作效率x工作时间”,刃天的工作量是(十-—)50 ~ 一+ —二一(1 —) + -—r—25 ()o100 150; 2 3 6 6J 150 、'剰下的工作量是由「「工作时间=工作量十工作效率;蒯下的工作量由乙队干还需例2某项工程,甲单独做需36天完成,乙单独做需45天完成。

如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。

问:甲队干了多少天?分析:将题目的条件倒过来想,变为“乙队先干18天,后面的工作甲、乙两队合干需多少天?” 这样一来,问题就简单多了。

解’(一存1盼(寺+令2 13=(1 = - x20 = 12 (天)»例3单独完成某工程,甲队需10天,乙队需15天,丙队需20天。

开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。

六年级奥数第5、6次课:工程问题(教师版)

六年级奥数第5、6次课:工程问题(教师版)

【我生命中最最最重要的朋友们,请你们认真听老师讲并且跟着老师的思维走。

学业的成功重在于考点的不断过滤,相信我赠予你们的是你们学业成功的过滤器。

谢谢使用!!!】工程问题一、考点、热点回顾1、顾名思义,工程问题指的是与工程建造有关的数学问题。

其实,这类题目的内容已不仅仅是工程方面的问题,也括行路、水管注水等许多内容。

在分析解答工程问题时,一般常用的数量关系式是:工作量=工作效率×工作时间,工作时间=工作量÷工作效率,工作效率=工作量÷工作时间。

工作量指的是工作的多少,它可以是全部工作量,一般用数1表示,也可2、工作效率指的是干工作的快慢,其意义是单位时间里所干的工作量。

单位时间的选取,根据题目需要,可以是天,也可以是时、分、秒等。

3、工作效率的单位是一个复合单位,表示成“工作量/天”,或“工作量/时”等。

但在不引起误会的情况下,一般不写工作效率的单位。

二、典型例题例1、单独干某项工程,甲队需100天完成,乙队需150天完成。

甲、乙两队合干50天后,剩下的工程乙队干还需多少天?分析与解:以全部工程量为单位1。

甲队单独干需100天,甲的工作效例2、某项工程,甲单独做需36天完成,乙单独做需45天完成。

如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。

问:甲队干了多少天?分析:将题目的条件倒过来想,变为“乙队先干18天,后面的工作甲、乙两队合干需多少天?”这样一来,问题就简单多了。

答:甲队干了12天。

例3、单独完成某工程,甲队需10天,乙队需15天,丙队需20天。

开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。

问:甲队实际工作了几天?分析与解:乙、丙两队自始至终工作了6天,去掉乙、丙两队6天的工作量,剩下的是甲队干的,所以甲队实际工作了例4 、一批零件,张师傅独做20时完成,王师傅独做30时完成。

如果两人同时做,那么完成任务时张师傅比王师傅多做60个零件。

六年级奥数第4讲:工程问题-教案

六年级奥数第4讲:工程问题-教案

( 六年级 ) 备课教员:×××第四讲 工程问题一、教学目标: 知识目标 1. 认识工程问题的结构特点。

2. 掌握它的数量关系、解题思路和解题方法。

3. 并能正确解答工程问题的基本题。

能力目标 1. 初步培养学生的分析概括能力和迁移类推能力。

2. 运用所学知识解决实际问题的能力。

情感目标 1. 通过课堂教学中引用国家发展建设中的图片, 渗透学生爱国思想,培养学生民族自豪感。

二、教学重点: 1. 工程问题的结构特点、解题思路和解题方法。

三、教学难点: 1. 理解用“单位1”表示工作总量,用单位时间完成工作总量的几分之一表示工作效率。

四、教学准备: PPT五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:通过一组中国古代大型工程的图片和相关了解,渗透学生的爱国思想,培养学生民族自豪感。

再通过几个简单的问题,对工程问题的基本结构和解题思想做一个复习】师:这节课一开始,老师就想要考考大家。

同学们知道中国古代三大工程是什 么吗?生:长城、故宫……师:有的同学们猜到了,但是都没有完全猜对。

那老师给大家降低一些难度, 先给大家看图片,再由大家来猜,举手抢答哦!(出示PPT ,说出正确的名词后,再请一名同学或老师来读下面的介绍文字) 师:我们的古人是不是很厉害,很伟大?生:是。

师:但是在他们的伟大背后却付出了几代人甚至更多代人的努力,甚至付出生命的代价。

我们要学习这种艰苦奋斗的精神,好好学习,将来祖国的建设 需要你们。

那么回到我们的课堂,我们今天要来学习“工程问题”。

【板书课题:工程问题】师:我们再来看几个简单的问题?(出示PPT )师:修完一段路需要5天,每天修这段路的多少?生:51。

师:每天修一段路的51,修完这段路需要多少天?生:5天。

师:都是怎么计算的?生:第一个问题是:1÷5=51,第二个问题是:1÷51=5(天)。

师:我们在做工程问题的时候经常把工作总量看作单位“1”,那么这里工作总量是?生:一段路。

小学六年级奥数题工程问题

小学六年级奥数题工程问题

小学六年级奥数题工程问题1、甲打了多少天?甲、乙合打若干天后,甲停工休息,乙继续打了5天完成。

设甲合乙打了x天,则乙单独打了x+5天。

根据题意得到方程:1/30x+1/20(x+5)=1.解得x=12,所以甲打了12天。

2、乙队休息了几天?设乙队休息了___,则甲队实际工作了20-3=17天,乙队实际工作了25-y天。

根据题意得到方程:20/17+25/(25-y)=1.解得y=5,所以乙队休息了5天。

3、丙帮助甲搬运了几小时?设甲搬运M汽车的货物需要x小时,则乙搬运N汽车的货物需要x-5小时。

设丙帮助甲搬运了y小时,则丙帮助乙搬运了20/3-y小时。

根据题意得到方程:x/12+(x-5)/15+(20/3-y)/20=1.解得y=2,所以丙帮助甲搬运了2小时。

4、这样一共用了几天时间?设三人合作需要x天完成,则___实际工作了9天,___实际工作了8天,___实际工作了x-1天。

根据题意得到方程:1/10*9+1/12*(x-4)+1/15*(x-1)=1.解得x=6,所以三人合作用了6天时间。

5、甲队单独做需要21天,乙队单独做需要15天。

设甲队单独做需要x天,则乙队单独做需要20-x天。

根据题意得到方程:7/x+5/(20-x)=1/3.解得x=21,所以甲队单独做需要21天,乙队单独做需要15天。

6、乙单独做需要10天完成。

设全工程需要x天完成,则甲单独做需要3x/8天,乙单独做需要4x/8=1/2天。

根据题意得到方程:3x/8+5/8*(3x/8+4x/8)=1/2.解得x=40/3,所以乙单独做需要10天完成。

7、完成全部工程需要60小时。

设三人交替工作需要x小时完成,则甲工作x/2小时,乙工作(x-1)/2小时,丙工作(x-2)/2小时。

根据题意得到方程:x/15+(x-1)/18+(x-2)/20=1.解得x=60,所以完成全部工程需要60小时。

8、打开乙、丙两管,需要3小时可以将满池水排空。

小学奥数:6-3-3 工程问题(一).教师版

小学奥数:6-3-3 工程问题(一).教师版

1. 熟练掌握工程问题的基本数量关系与一般解法;2. 工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理;3. 根据题目中的实际情况能够正确进行单位“1”的统一和转换;4. 工程问题中的常见解题方法以及工程问题算术方法在其他类型题目中的应用.工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。

工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。

在教学中,让学生建立正确概念是解决工程应用题的关键。

一. 工程问题的基本概念定义 : 工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。

工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量 三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间, 工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,必须做到以下几方面:① 具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;② 在理解、掌握分数的意义和性质的前提下灵活运用;③ 学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;④ 学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.三、利用常见的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.例题精讲知识精讲教学目标工程问题(一)模块一、工程问题基本题型【例1】一项工程,甲单独做需要28天时间,乙单独做需要21天时间,如果甲、乙合作需要多少时间?【考点】工程问题【难度】1星【题型】解答【解析】将整个工程的工作量看作“1”个单位,那么甲每天完成总量的128,乙每天完成总量的121,两人合作每天能完成总量的111282112+=,所以两人合作的话,需要111212÷=天能够完成.【答案】12【例2】一项工程,甲单独做需要30天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【考点】工程问题【难度】1星【题型】解答【解析】将整个工程的工作量看作“1”个单位,那么甲每天完成总量的130,甲、乙合作每天完成总量的112,乙单独做每天能完成总量的111123020-=,所以乙单独做112020÷=天能完成.【答案】20【巩固】一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【考点】工程问题【难度】1星【题型】解答【解析】将整个工程的工作量看作“1”个单位,那么甲每天完成总量的121,甲、乙合作每天完成总量的112,乙单独做每天能完成总量的111122128-=,所以乙单独做28天能完成.【答案】1 28【例3】甲乙两名打字员,打字速度一样快,甲30分钟打了A材料的14,乙40分钟打了B材料的27。

奥赛小学教育数学竞赛:工程问题二.教师版解题技巧培优易错难

奥赛小学教育数学竞赛:工程问题二.教师版解题技巧培优易错难

工程问题(二)教课目的娴熟掌握工程问题的基本数目关系与一般解法;工程问题中常出现独自做,几人合作或轮番做,剖析时必定要学会分段办理;依据题目中的实质状况能够正确进行单位“1的”一致和变换;工程问题中的常看法题方法以及工程问题算术方法在其余种类题目中的应用.知识精讲工程问题是小学数学应用题教课中的要点,是分数应用题的引申与增补,是培育学生抽象逻辑思维能力的重要工具。

工程问题是把工作总量当作单位“1”的应用题,它拥有抽象性,学生认知起来比较困难。

在教课中,让学生成立正确观点是解决工程应用题的要点。

一.工程问题的基本观点定义:工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间互相关系的问题。

工作总量:一般抽象成单位“1”工作效率:单位时间内达成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,一定做到以下几方面:①具备整数应用题的解题能力,解决整数应用题的基本知识,如观点、性质、法例、公式等宽泛应用于分数、百分数应用题;②在理解、掌握分数的意义和性质的前提下灵巧运用;③学会画线段表示图.线段表示图能直观地揭露“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,能够帮助我们在复杂的条件与问题中理清思路,正确地进行剖析、综合、判断和推理;④学会多角度、多侧面思虑问题的方法.分数、百分数应用题的条件与问题之间的关系变化无常,单靠一致的思路模式有时很难找到正确解题方法.所以,在解题过程中,要擅长掌握对应、假定、转变等多种解题方法,不停地开辟解题思路.三、利用常有的数学思想方法:如代换法、比率法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数目关系,转变出与所求有关的工作效率,最后再利用先前的假定“把整个工程当作一个单位”,求得问题答案.一般状况下,工程问题求的是时间.例题精讲模块一、工程问题——变速问题【例1】甲打一篇文稿,打完一半后吃晚餐,晚餐后每分钟比晚餐前多打32个字.前后共打50分钟,前25分钟比后25分钟少打640个字.文稿一共()字.【考点】工程问题【难度】3星【题型】解答、【要点词】走美杯,三年级,初赛,四年级【分析】由“前25分钟比后25分钟少打640个字”,可知:多打这640个字需要的时间是:640÷32=20(分钟),那么就知饭前用了30分钟,饭后用了20分钟,假如这640个字所有吃饭前的速度打,则需要10分钟,故可知饭前的速度是64个字每分钟,饭后的速度是96个字每分钟,则文稿一共有:64×30+96×20=3840个字。

小学奥数 工程问题(一).教师版

小学奥数 工程问题(一).教师版

工程问题(一)教学目标1.熟练掌握工程问题的基本数量关系与一般解法;2.工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理;3.根据题目中的实际情况能够正确进行单位“1”的统一和转换;4.工程问题中的常见解题方法以及工程问题算术方法在其他类型题目中的应用.知识精讲工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。

工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。

在教学中,让学生建立正确概念是解决工程应用题的关键。

一.工程问题的基本概念定义:工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。

工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,必须做到以下几方面:① 具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;② 在理解、掌握分数的意义和性质的前提下灵活运用;③ 学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;④ 学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.三、利用常见的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.例题精讲模块一、工程问题基本题型【例 1】一项工程,甲单独做需要28天时间,乙单独做需要21天时间,如果甲、乙合作需要多少时间?【考点】工程问题【难度】1星【题型】解答【解析】将整个工程的工作量看作“1”个单位,那么甲每天完成总量的128,乙每天完成总量的121,两人合作每天能完成总量的111282112+=,所以两人合作的话,需要111212÷=天能够完成.【答案】12【例 2】一项工程,甲单独做需要30天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【考点】工程问题【难度】1星【题型】解答【解析】将整个工程的工作量看作“1”个单位,那么甲每天完成总量的130,甲、乙合作每天完成总量的112,乙单独做每天能完成总量的111123020-=,所以乙单独做112020÷=天能完成.【答案】20【巩固】一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【考点】工程问题【难度】1星【题型】解答【解析】将整个工程的工作量看作“1”个单位,那么甲每天完成总量的121,甲、乙合作每天完成总量的112,乙单独做每天能完成总量的111122128-=,所以乙单独做28天能完成.【答案】128【例 3】甲乙两名打字员,打字速度一样快,甲30分钟打了A材料的14,乙40分钟打了B 材料的27。

六年级奥数工程问题(教师版)

六年级奥数工程问题(教师版)

六年级奥数工程问题(教师版)————————————————————————————————作者:————————————————————————————————日期:工程问题一:基本类型工程问题中的某项工程一般不给出具体的数量,首先,在解题时关键要把“一项工程”看作单位“1”,工作效率就用完成单位“1”所需的工作时间的倒数来表示;其次,在解答时要抓住三个基本数量:工作效率、工作时间和工作总量,并结合有关工程问题的三个基本数量关系式来列式解答。

模型一:工作效率(和)×工作时间=工作总量模型二:工作总量÷工作效率(和)=工作时间模型三:工作总量÷工作时间=工作效率(和)(一)先合作,后独作例1、一条公路,甲队独修需24天完成,乙队独修需30天完成。

甲、乙两队合修若干天后,乙队停工休息,甲队继续修了6天完成,乙队修了多少天?(A)设乙x天(1/24+1/30)x+1/24*6=1 x=10例2、修一条公路,甲队单独修20天可以修完,乙队单独修30天可以修完。

现两队合修,中途甲队休息2.5天,乙队休息若干天,这样一共14天才修完。

乙队休息了几天?(B级)(二)丙先帮甲,再帮乙例3、搬运一个仓库的货物,甲需10小时,乙需12小时,丙需15小时。

有同样的仓库A和B,甲在A仓库,乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又去帮助乙搬运,最后同时搬完两个仓库的货物。

丙帮助甲搬运了几小时?(B级)(三)甲乙合作,中途有人休息例4、一项工程,如果单独做,甲需10天完成,乙需15天完成,丙需20天完成。

现在三人合作,中途甲先休息1天,乙再休息3天,而丙一直工作到完工为止。

这样一共用了几天时间?(B级)(四)独做化合做例5、甲乙合做一项工程,24天完成。

如果甲队做6天,乙队做4天,只能完成工程的1/5,两队单独做完成任务各需多少天?(B级)(五)合做变独做例6、一项工程,甲先独做2天,然后与乙合做7天,这样才完成全工程的一半。

学而思小学六年级奥数教师讲义版工程问题精编版

学而思小学六年级奥数教师讲义版工程问题精编版

六年级奥数第三讲工程问题顾名思义,工程问题指的是与工程建造有关的数学问题。

其实,这类题目的内容已不仅仅是工程方面的问题,也括行路、水管注水等许多内容。

在分析解答工程问题时,一般常用的数量关系式是:工作量二工作效率X工作时间,工作时间=工作量十工作效率,工作效率二工作量十工作时间。

工作量指的是工作的多少,它可以是全部工作量,一般用数1表示,也可以是部分工程量,常用分数表示。

例如,工程的一半表示成.工程的三分之一表示为|03工作效率指的是干工作的快慢,其意义是单位时间里所干的工作量。

单位时间的选取,根据题目需要,可以是天,也可以是时、分、秒等。

工作效率的单位是一个复合单位,表示成“工作量/天”,或“工作量/时”等。

但在不引起误会的情况下,一般不写工作效率的单位。

例1单独干某项工程,甲队需100天完成,乙队需150天完成。

甲、乙两队合干50天后,剩下的工程乙队干还需多少天?分析与解:以全部工程量为单位1。

甲队单独干需100天,甲的工作效率是希,同理〃乙队的工作效率是占。

两队合干的工作效率是(而+占” 由强工作量=工作效率X工作时间撷,W天的工作量是希十挣5 土乜工討9啬也(天)剰下的工作量是(l-|)c由"工作时间=工作量〒工作效率:剩下的工作量由乙队干还需例2某项工程,甲单独做需36天完成,乙单独做需45天完成。

如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。

问:甲队干了多少天?18天,后面的工作甲、乙两队合干需多少天?分析:将题目的条件倒过来想,变为“乙队先干这样一来,问题就简单多了。

例3单独完成某工程,甲队需10天,乙队需15天,丙队需20天。

开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。

问:甲队实际工作了几天?分析与解:乙、丙两队自始至终工作了6天,去掉乙、丙两队6天的工作量,剩下的是甲队干的, 所以甲队实际工作了[一冷班天)例4 一批零件,张师傅独做20时完成,王师傅独做30时完成。

六年级《工程问题》奥数教案

六年级《工程问题》奥数教案

( 六年级 ) 备课教员:第四讲 工程问题一、教学目标: 知识目标 1. 认识工程问题的结构特点。

2. 掌握它的数量关系、解题思路和解题方法。

3. 并能正确解答工程问题的基本题。

能力目标 1. 初步培养学生的分析概括能力和迁移类推能力。

2. 运用所学知识解决实际问题的能力。

情感目标 1. 通过课堂教学中引用国家发展建设中的图片, 渗透学生爱国思想,培养学生民族自豪感。

二、教学重点: 1. 工程问题的结构特点、解题思路和解题方法。

三、教学难点: 1. 理解用“单位1”表示工作总量,用单位时间完成工作总量 的几分之一表示工作效率。

四、教学准备: PPT五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:通过一组中国古代大型工程的图片和相关了解,渗透学生的爱国思想,培养学生民族自豪感。

再通过几个简单的问题,对工程问题的基本结构和解题思想做一个复习】师:这节课一开始,老师就想要考考大家。

同学们知道中国古代三大工程是什 么吗?生:长城、故宫……师:有的同学们猜到了,但是都没有完全猜对。

那老师给大家降低一些难度, 先给大家看图片,再由大家来猜,举手抢答哦!(出示PPT ,说出正确的名词后,再请一名同学或老师来读下面的介绍文字) 师:我们的古人是不是很厉害,很伟大?生:是。

师:但是在他们的伟大背后却付出了几代人甚至更多代人的努力,甚至付出生命的代价。

我们要学习这种艰苦奋斗的精神,好好学习,将来祖国的建设 需要你们。

那么回到我们的课堂,我们今天要来学习“工程问题”。

【板书课题:工程问题】师:我们再来看几个简单的问题?(出示PPT )师:修完一段路需要5天,每天修这段路的多少?生:51。

师:每天修一段路的51,修完这段路需要多少天? 生:5天。

师:都是怎么计算的?生:第一个问题是:1÷5=51,第二个问题是:1÷51=5(天)。

师:我们在做工程问题的时候经常把工作总量看作单位“1”,那么这里工作总量是?生:一段路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程问题
一:基本类型
工程问题中的某项工程一般不给出具体的数量,首先,在解题时关键要把“一项工程”看作单位“1”,工作效率就用完成单位“1”所需的工作时间的倒数来表示;其次,在解答时要抓住三个基本数量:工作效率、工作时间和工作总量,并结合有关工程问题的三个基本数量关系式来列式解答。

模型一:工作效率(和)×工作时间=工作总量
模型二:工作总量÷工作效率(和)=工作时间
模型三:工作总量÷工作时间=工作效率(和)
(一)先合作,后独作
例1、一条公路,甲队独修需24天完成,乙队独修需30天完成。

甲、乙两队合修若干天后,乙队停工休息,甲队继续修了6天完成,乙队修了多少天?(A)
例2、修一条公路,甲队单独修20天可以修完,乙队单独修30天可以修完。

现两队合修,中途甲队休息2.5天,乙队休息若干天,这样一共14天才修完。

乙队休息了几天?(B级)
(二)丙先帮甲,再帮乙
例3、搬运一个仓库的货物,甲需10小时,乙需12小时,丙需15小时。

有同样的仓库A和B,甲在A仓库,乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又去帮助乙搬运,最后同时搬完两个仓库的货物。

丙帮助甲搬运了几小时?(B级)
(三)甲乙合作,中途有人休息
例4、一项工程,如果单独做,甲需10天完成,乙需15天完成,丙需20天完成。

现在三人合作,中途甲先休息1天,乙再休息3天,而丙一直工作到完工为止。

这样一共用了几天时间?(B级)
(四)独做化合做
例5、甲乙合做一项工程,24天完成。

如果甲队做6天,乙队做4天,只能完成工程的1/5,两队单独做完成任务各需多少天?(B级)
(五)合做变独做
例6、一项工程,甲先独做2天,然后与乙合做7天,这样才完成全工程的一半。

已知甲、乙工作效率的比是2:3。

如果由乙单独做,需要多少天才能完成?(B)
三:综合类型
1、加工一批零件,甲独做需3天完成,乙独做需4天完成,两人同时加工,完成任务时,甲比乙多做24个,这批零件共有多少个?
2、一项工程,甲乙两队合作需12天完成,乙丙两队合作需15天完成,甲丙两队合作需20天完成,如果由甲乙丙三队合作需几天完成?
3、师徒二人合作生产一批零件,6天可以完成任务。

师傅先做5天后,因事外出,由徒弟来接着做3天,共完成任务的7/10。

如果每人单独做这批零件各需几天?
4、一项工程,甲单独做12天可以完成.如果甲单独做3天,余下工作由乙去做,乙再用6天可以做完.问若甲单独做6天,余下工作乙要做几天?
5、一条水渠,甲乙两队合挖30天完工.现在合挖12天后,剩下的由乙队挖,又用24天挖完.这条水渠由乙单独挖,需要多少天?
6、一项工程,甲乙两队合作6天完成5/6。

已知单独做,甲完成1/3与乙完成1/2的时间相等。

问单独做,甲乙各需要多少天?
7、一件工作甲先做6小时,乙接着做12小时可以完成.甲先做8小时,乙接着做6小时也可以完成.如果甲做3小时后由乙接着做,还需要多少小时完成?
8、筑路队预计30天修一条公路.先由18人修12天只完成全部工程的1/3,如果想提前6天完工,还需增加多少人?
9、一件工作,甲5小时先完成了1/4,乙6小时又完成了剩下任务的一半,最后余下的部分由甲、乙合作,还需要多少时间才能完成?
10、有一项工程,甲、乙两队合作6天能完成5/6,已知单独做,甲完成1/3与乙完成1/2所需要的时间相等。

问单独做甲、乙各需多少天?
11、一件工作,甲单独做20小时完成,乙单独做12小时完成,丙单独做15小时完成,若先由甲、丙合做5小时,然后由甲、乙合做,问还需几天完成?
12、小李和小张同时开始制作同一种零件,每人每分钟能做一个零件,但小李每制作3个零件要休息1分钟,小张每制作4个零件要休息1.5分钟。

现在他们要共同完成制作300个零件的任务,需要
多少分钟?
13、师徒两人共加工零件168个,师傅加工一个零件用5分钟,徒弟加工一个零件用9分钟,完成任务时,两人各加工零件多少个?。

相关文档
最新文档