气动原理结构及气缸的原理及维修资料
气动气缸工作原理
气动气缸工作原理
气动气缸是一种将压缩空气能量转化为机械能的装置。
其工作原理主要涉及压缩空气的进入和排出以及活塞的运动。
以下是气动气缸的工作原理:
1. 压缩空气的进入:气动气缸通常与压缩空气供应系统相连,通过阀门将压缩空气引入气缸内部。
当阀门打开时,压缩空气经过进气口进入气缸内。
2. 活塞运动:气缸内部有一个与气缸壁紧密配合的活塞。
当压缩空气进入气缸时,气体会推动活塞向前运动。
活塞通过与连杆的连接,将机械能传递给其他零部件或执行器。
3. 压缩空气的排出:当压缩空气推动活塞运动完成后,阀门关闭,阻止新的空气进入。
此时,通过排气口将气缸内的压缩空气排出。
排气过程中,活塞会向后运动,将气缸内部的空气排出。
4. 循环运行:气动气缸可以反复循环工作,通过控制压缩空气的进入和排出,控制活塞的运动。
通常通过气源系统中的电磁阀或手动控制阀来实现对气缸的操作。
总结起来,气动气缸工作原理是通过压缩空气的进入和排出,推动活塞的运动,将压缩空气能量转化为机械能。
这种装置在自动化控制系统和工业生产中得到广泛应用。
气缸气动执行器逻辑
气缸气动执行器逻辑1. 气缸气动执行器的工作原理气缸气动执行器的工作原理可以简单概括为:当气体控制信号通过气动阀控制气源的通断,气体进入气缸内部的工作腔室时,气缸的活塞会受到气体的压力作用而产生推动力,从而使得气缸的输出轴进行线性运动或者旋转运动,从而驱动相应的工作装置完成工作任务。
2. 气缸气动执行器的结构组成气缸气动执行器一般由气缸本体、活塞、导向件、密封件、活塞杆、输出轴等组成。
其中,气缸本体作为气动执行器的主体部件,在实际应用中起着至关重要的作用。
活塞和活塞杆之间通过密封件相互连接,保证气体压力的传递和运动的顺畅。
导向件则负责引导活塞的运动轨迹,保证气缸的稳定性和精确性。
输出轴则通过活塞的运动实现机械装置的驱动。
3. 气缸气动执行器的分类气缸气动执行器根据其结构和工作方式的不同可以分为多种类型,常见的包括气缸气动执行器、旋转气缸气动执行器、双向气缸气动执行器等。
其中,气缸气动执行器主要用于线性运动,旋转气缸气动执行器则主要用于旋转运动,而双向气缸气动执行器则可以同时实现线性和旋转两种运动方式。
根据气源的不同,气缸气动执行器又可分为气压式、气液增压式和液压增压式等多种类型。
4. 气缸气动执行器的应用领域气缸气动执行器在工业自动化控制系统中得到了广泛的应用,主要包括机械制造、汽车制造、航空航天、化工、食品加工等领域。
在自动化生产线上,气缸气动执行器通常与传感器、PLC控制器等设备配合使用,实现工艺过程的自动化控制和监控。
此外,气缸气动执行器还可以应用于阀门控制、夹紧装置、输送系统等机械装置中,实现工件的定位、夹持和移动等功能。
5. 气缸气动执行器的优缺点气缸气动执行器具有许多优点,如结构简单、可靠性高、运行速度快、输出力大等。
此外,气缸气动执行器的成本较低,易于维护和维修,适用于各种环境和工况下的工业应用。
然而,气缸气动执行器也存在一些缺点,如噪音较大、能效较低、易受环境影响等。
总的来说,气缸气动执行器作为一种重要的工业自动化控制元件,在现代工业生产中发挥着重要的作用。
气缸的结构及基本原理(汇编)
气缸的结构及基本原理一、气缸-气缸种类气压传动中将压缩气体的压力能转换为机械能的气动执行元件。
气缸有作往复直线运动的和作往复摆动的两类(见图)。
作往复直线运动的气缸又可分为单作用、双作用、膜片式和冲击气缸 4种。
①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。
②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。
③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。
它的密封性能好,但行程短。
④冲击气缸:这是一种新型元件。
它把压缩气体的压力能转换为活塞高速(10~20米/秒)运动的动能,借以作功。
冲击气缸增加了带有喷口和泄流口的中盖。
中盖和活塞把气缸分成储气腔、头腔和尾腔三室。
它广泛用于下料、冲孔、破碎和成型等多种作业。
作往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴作摆动运动,摆动角小于 280°。
此外,还有回转气缸、气液阻尼缸和步进气缸等。
二、气缸的作用:将压缩空气的压力能转换为机械能,驱动机构作直线往复运动、摆动和旋转运动。
三、气缸的分类:直线运动往复运动的气缸、摆动运动的摆动气缸、气爪等。
四、气缸的结构:气缸是由缸筒、端盖、活塞、活塞杆和密封件组成。
五、SMC气缸原理图1)缸筒缸筒的内径大小代表了气缸输出力的大小。
活塞要在缸筒内做平稳的往复滑动,缸筒内表面的表面粗糙度应达到Ra0.8um。
对钢管缸筒,内表面还应镀硬铬,以减小摩擦阻力和磨损,并能防止锈蚀。
缸筒材质除使用高碳钢管外,还是用高强度铝合金和黄铜。
小型气缸有使用不锈钢管的。
带磁性开关的气缸或在耐腐蚀环境中使用的气缸,缸筒应使用不锈钢、铝合金或黄铜等材质。
SMC CM2气缸活塞上采用组合密封圈实现双向密封,活塞与活塞杆用压铆链接,不用螺母。
2)端盖端盖上设有进排气通口,有的还在端盖内设有缓冲机构。
杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。
气动原理 缓冲及气缸介绍
2. 气源质量对气动装置的影响 - 压缩空气
从空压机输出的压缩空气中,含有大量的水份/油份和粉尘等污染物…
P8
2. 气源质量对气动装置的影响 - 压缩空气
对气动装置的影响
不良压缩空气质量
对生产制造工艺的影响
P9
2. 气源质量对气动装置的影响 - 压缩空气
固态颗粒 湿气水份 油份
早期磨损 沉积物
气缸内径 (mm)
32
40
50
63
80 100 125
安装附件时
拧紧的扭矩 6
6
8
8
6
6
8
(Nm)
P26
P27
优点
结构及安装维护简单,压力低 排气处理简单,不污染环境,成本低
调节非常容易 可靠性高,使用寿命长 具有防火,防爆,耐潮的能力
缺点
配管,配线复杂 低速稳定性不如液压缸 输出力比液压缸小
P5
1. 气动技术概况及系统组成 - 案例
P6
内容: 1. 气动技术概况及系统组成 2. 气源质量对气动装置的影响 3. 缓冲功能介绍 4. 气缸的介绍及案例分析
气动原理、缓冲及气缸介绍
P1
内容: 1. 气动技术概况及系统组成 2. 气源质量对气动装置的影响 3. 缓冲功能介绍 4. 气缸的介绍及案例分析
P2
1. 气动技术概况及系统组成 - 概况
什么是气动技术?
气动(PNEUMATIC)是“气动技术”或“气压传动与控制”的简称。
气动技术是以空气压缩机为动力源,以压缩空气为工作介质,进行能量传递或信号传递的 工程技术,是实现各种生产控制、自动控制的重要手段。
P3
1. 气动技术概况及系统组成 - 系统组成
气缸的结构原理和作用
气缸的结构及基本原理一、气缸-气缸种类气压传动中将压缩气体的压力能转换为机械能的气动执行元件。
气缸有作往复直线运动的和作往复摆动的两类。
作往复直线运动的气缸又可分为单作用、双作用、膜片式和冲击气缸 4种。
①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。
②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。
③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。
它的密封性能好,但行程短。
④冲击气缸:这是一种新型元件。
它把压缩气体的压力能转换为活塞高速(10~20米/秒)运动的动能,借以作功。
冲击气缸增加了带有喷口和泄流口的中盖。
中盖和活塞把气缸分成储气腔、头腔和尾腔三室。
它广泛用于下料、冲孔、破碎和成型等多种作业。
作往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴作摆动运动,摆动角小于280°。
此外,还有回转气缸、气液阻尼缸和步进气缸等。
二、气缸的作用:将压缩空气的压力能转换为机械能,驱动机构作直线往复运动、摆动和旋转运动。
三、气缸的分类:直线运动往复运动的气缸、摆动运动的摆动气缸、气爪等。
四、气缸的结构:气缸是由缸筒、端盖、活塞、活塞杆和密封件组成,其内部结构如图所示:五、SMC气缸原理图(1)缸筒缸筒的内径大小代表了气缸输出力的大小。
活塞要在缸筒内做平稳的往复滑动,缸筒内表面的表面粗糙度应达到。
对钢管缸筒,内表面还应镀硬铬,以减小摩擦阻力和磨损,并能防止锈蚀。
缸筒材质除使用高碳钢管外,还是用高强度铝合金和黄铜。
小型气缸有使用不锈钢管的。
带磁性开关的气缸或在耐腐蚀环境中使用的气缸,缸筒应使用不锈钢、铝合金或黄铜等材质。
SMC CM2气缸活塞上采用组合密封圈实现双向密封,活塞与活塞杆用压铆链接,不用螺母。
(2)端盖端盖上设有进排气通口,有的还在端盖内设有缓冲机构。
杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。
气动阀门气缸的结构及原理
气动阀门气缸的结构及原理嘿,朋友们!今天咱来聊聊气动阀门气缸,这玩意儿可神奇啦!
你看啊,气动阀门气缸就像是一个大力士,只不过它使的不是蛮劲,而是巧劲。
它主要由缸筒、活塞、活塞杆、前端盖、后端盖及密封件等组成,就像人有头、身体、胳膊一样。
缸筒就像是大力士的身体,给其他部分提供了一个安稳的家。
活塞呢,就像是大力士的拳头,在里面有力地运动着。
而活塞杆呢,那就是大力士的胳膊啦,把力量传递出去。
那它是怎么工作的呢?其实很简单啦!压缩空气进入气缸,就像给大力士注入了能量,推动活塞运动,然后通过活塞杆带动阀门开启或关闭。
这就好比你吹一口气,就能让一个小风车转起来一样神奇!
气动阀门气缸的优点可不少呢!它动作迅速,就像一阵风一样,说动就动。
而且它的力量可不小,能轻松应对各种工作要求。
这就好比一个灵活又强壮的运动员,什么项目都能玩得转。
它还很可靠呢,不容易出故障。
不像有些娇气的东西,时不时就闹点小脾气。
气动阀门气缸就像一个老黄牛,勤勤恳恳地工作,不叫苦不叫累。
再想想,要是没有气动阀门气缸,那我们的很多机器设备不就像没了胳膊腿一样,动弹不了啦?它在工业生产中可发挥了大作用呢,就像一个默默无闻的英雄。
你说,这么重要又好用的东西,我们能不重视它吗?我们得好好了解它,让它更好地为我们服务呀!
它就像是我们生活中的好帮手,虽然不显眼,但却不可或缺。
我们得爱护它,让它能一直保持良好的状态,为我们的生活和工作贡献力量。
所以啊,朋友们,可别小瞧了这气动阀门气缸。
它虽然看起来普普通通,但却有着大大的能量和作用呢!让我们一起为这个神奇的“大力士”点赞吧!。
气缸的工作原理(二)2024
气缸的工作原理(二)引言概述:气缸是内燃机、压缩机和一些液压系统中重要的工作元件,在这些系统中起到转动机械和传递动力的作用。
本文将进一步探讨气缸的工作原理,包括工作过程、关键部件和一些常见问题。
正文内容:第一大点:气缸的工作过程1. 压缩过程:气缸在上行程时,气缸内的气体受到活塞的压缩,使其体积减小,从而增加气体的压力。
2. 爆发过程:当活塞达到上止点时,点火系统将点燃压缩气体,使气体发生爆炸反应,释放出大量的能量。
3. 排气过程:在下行程时,活塞将废气从气缸中排出,为下一次压缩提供空间和清除废气。
第二大点:气缸的关键部件1. 活塞:作为气缸内部上下移动的关键部件,与气缸壁形成密封空间,承受气体压力和传递动力。
2. 活塞环:安装在活塞上的环形零件,起到密封气缸与活塞之间的空间,减少燃气泄漏,同时也减少摩擦损失。
3. 气缸套:作为活塞运动的外壁,提供了活塞的导向作用,同时也能够承受气体压力和温度。
4. 活塞销:将活塞与连杆连接,传递活塞的上下运动,承受气体压力和惯性力。
5. 气缸盖:覆盖在气缸顶端,与气缸组成密封空间,支撑点火系统和排气系统。
第三大点:气缸的常见问题1. 气缸漏气:气缸活塞环磨损、气缸套磨损或密封圈老化等问题可能导致气缸漏气,降低内部气压。
2. 活塞卡死:气缸壁与活塞配合间隙过紧、润滑不良或活塞材料问题等原因可能导致活塞卡死,阻碍气缸正常工作。
3. 气缸冷却不良:气缸过热或冷却系统故障可能导致气缸冷却不良,影响气体压缩性能和气缸寿命。
4. 油污积聚:由于燃烧产生的气体和润滑油的混合物可能会沉积在气缸壁和活塞环上,阻碍活塞的正常运动和密封。
第四大点:气缸的维护方法1. 定期检查活塞环和气缸套的磨损情况,及时更换磨损严重的零件。
2. 检查活塞与气缸壁的配合间隙,确保活塞的顺畅运动。
3. 注意润滑油的使用和更换,保持活塞与气缸的良好润滑。
4. 定期清洁气缸内的沉积物,防止积聚油污影响气缸的正常工作。
气动系统的工作原理
气动系统的工作原理气动系统是一种利用气体传动能量的系统。
它由压缩空气作为动力源,通过气缸、气控阀、气动执行元件等组成,实现各种机械运动。
下面将详细介绍气动系统的工作原理。
一、气动系统的组成及基本原理气动系统主要由压缩机、储气罐、气缸、气控阀和气动执行元件等组成。
其工作原理是:压缩机将空气吸入,通过压缩使其压力增加,然后将高压气体送入储气罐中。
当需要使用气动系统时,气缸内的气控阀开启,高压气体经过气控阀进入气缸,推动气缸进行线性运动,或者通过连杆机构实现旋转运动。
二、气动系统的工作流程1. 压缩阶段:当压缩机开始工作时,它会将外界的空气吸入,通过内部的运动装置将空气压缩,使其压力增加。
同时,压缩机会产生热量,需要通过冷却系统散热。
2. 储气阶段:经过压缩后的气体进入储气罐,储气罐能够平衡气体的压力,保证系统运行时有稳定的气源供给。
3. 控制阶段:当系统需要进行工作时,气缸内的气控阀开启,高压气体经过气控阀进入气缸,推动气缸进行运动。
气控阀能够根据系统的要求对气体的流量和方向进行调节。
4. 执行阶段:气动执行元件根据气缸的运动来实现具体的工作任务。
例如,气缸可以推动机械臂进行物料搬运,也可以推动活塞进行压缩或排气等。
三、气动系统的优势1. 高效可靠:气动系统工作简单可靠,能够在复杂环境下稳定运行,不易受到外界干扰。
2. 灵活多样:气动系统的控制灵活,可以根据需要调整气体的流量和方向,实现多种机械运动。
3. 节能环保:气动系统减少了机械摩擦的发生,相比传统机械系统更节能环保。
4. 成本低廉:与液压系统相比,气动系统的成本更低,维护和操作也更简便。
四、气动系统的应用领域气动系统广泛应用于各个领域,包括工业自动化、机械制造、交通运输等。
例如,在生产线上可以利用气动系统实现物料的传送、分拣和加工等;在汽车制造中,气动系统被应用于制动系统和悬挂系统等。
总结起来,气动系统是一种基于压缩空气传动能量的系统,通过气缸、气控阀和气动执行元件等实现各种机械运动。
气缸的结构原理和作用
气缸得结构及基本原理一、气缸气缸种类气压传动中将压缩气体得压力能转换为机械能得气动执行元件。
气缸有作往复直线运动得与作往复摆动得两类。
作往复直线运动得气缸又可分为单作用、双作用、膜片式与冲击气缸4种。
①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。
②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。
③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。
它得密封性能好,但行程短。
④冲击气缸:这就是一种新型元件。
它把压缩气体得压力能转换为活塞高速(10~20米/秒)运动得动能,借以作功。
冲击气缸增加了带有喷口与泄流口得中盖。
中盖与活塞把气缸分成储气腔、头腔与尾腔三室。
它广泛用于下料、冲孔、破碎与成型等多种作业。
作往复摆动得气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴作摆动运动,摆动角小于280°。
此外,还有回转气缸、气液阻尼缸与步进气缸等。
二、气缸得作用:将压缩空气得压力能转换为机械能,驱动机构作直线往复运动、摆动与旋转运动。
三、气缸得分类:直线运动往复运动得气缸、摆动运动得摆动气缸、气爪等。
四、气缸得结构:气缸就是由缸筒、端盖、活塞、活塞杆与密封件组成,其内部结构如图所示:五、SMC气缸原理图(1)缸筒缸筒得内径大小代表了气缸输出力得大小。
活塞要在缸筒内做平稳得往复滑动,缸筒内表面得表面粗糙度应达到Ra0、8um。
对钢管缸筒,内表面还应镀硬铬,以减小摩擦阻力与磨损,并能防止锈蚀。
缸筒材质除使用高碳钢管外,还就是用高强度铝合金与黄铜。
小型气缸有使用不锈钢管得。
带磁性开关得气缸或在耐腐蚀环境中使用得气缸,缸筒应使用不锈钢、铝合金或黄铜等材质。
SMC CM2气缸活塞上采用组合密封圈实现双向密封,活塞与活塞杆用压铆链接,不用螺母。
(2)端盖端盖上设有进排气通口,有得还在端盖内设有缓冲机构。
杆侧端盖上设有密封圈与防尘圈,以防止从活塞杆处向外漏气与防止外部灰尘混入缸内。
基础知识及气缸资料
执行元件-省空间气缸
薄形气缸(CQ2\CQS) 省空间气缸 自由安装型气缸(CU) 椭圆型活塞气缸(MU)
执行元件-省空间气缸
(一)薄形气缸(CQ2系列)
特点: (1)行程短,缸体为方形 (2)缸筒与无杆侧端盖压铸为 一体,杆侧用弹性挡圈固定 (3)多种安装形式
执行元件-省空间气缸
(二)自由安装型气缸 特点: (1)行程短,缸体为长方形 (2)缸筒与杆侧端盖压铸为 一体,杆侧用弹性挡圈固定
执行元件-单作用气缸
6、按驱动方式分类
弹簧压入型
弹簧压出型
执行元件-双作用气缸
单杆双作用
双杆双作用
执行元件-气缸
安装注意事项 (1) 活塞杆轴线应与负载移动方向一致,否则必须使 用浮动接头
执行元件-气缸
(2)缸筒和活塞杆不允许撞伤或擦伤;缸筒 变形会使气缸动作不良活塞杆擦伤会损坏密 封而漏气 (3)使用密封带时,螺纹端部应空出2个螺距; 从螺纹端部看,密封带为顺时针缠绕,以防 止密封带的碎片落入配管内部
1、结构原理
倍力气缸(MGZ)
高强度、省空间 抗力矩能力强,安装空间减少40%
倍力气缸(MGZ)
应用
双行程气缸
双行程气缸
1、结构原理
双行程气缸 2、应用
摆动气缸
分类: 叶片式 齿轮齿条式
气爪
搬运工件时夹工件用的气动元件。
气爪
工作原理
执行元件-气缸
5、按位置检测方式分类 限位开关 磁性开关
(1)设计、安装和调试复杂 (1)设计、安装时间短,和调试简单 (2)安装空间大
(2)安装空间小
(3)成本大大降低
(3)成本高
(4)若使用不当,寿命短 (5)不受磁场影响
气缸体原理
气缸体原理气缸体是内燃机中的一个重要部件,它承载着气缸、活塞、连杆等零部件,是发动机能够正常工作的关键。
下面将从气缸体原理的角度,详细介绍气缸体的结构和工作原理。
一、气缸体的结构气缸体是发动机的主体部件之一,它通常由铸铁或铝合金制成。
气缸体的内部空间被划分为若干个气缸,每个气缸内安装有一个活塞和一个气门机构。
气缸体的外部则有进气口、排气口、冷却水口等附件。
二、气缸体的工作原理1. 进气过程:当活塞下行时,气缸内的容积增大,形成负压。
此时,进气门打开,混合气经过进气道进入气缸。
进气门关闭后,活塞向上运动,压缩混合气。
2. 压缩过程:活塞上升时,气缸内的容积减小,混合气被压缩。
同时,活塞上升推动曲轴旋转,将活塞的上下直线运动转化为曲轴的旋转运动。
3. 燃烧过程:当活塞上升到顶死点时,点火系统触发火花塞产生火花,点燃混合气。
混合气的燃烧产生高温高压气体,推动活塞向下运动。
4. 排气过程:燃烧后的废气通过排气门排出。
当活塞下降到底死点时,排气门打开,废气被排出气缸。
气缸体原理广泛应用于内燃机领域,包括汽车、摩托车、发电机等。
气缸体的优化设计可以提高发动机的功率、燃油经济性和环境友好性。
1. 提高功率:通过改变气缸体的结构、增加气缸数等方式,可以增加发动机的排量,提高功率输出。
2. 提高燃油经济性:优化气缸体的进气道和排气道设计,使燃烧更加充分,减少能量损失,提高燃油经济性。
3. 环境友好性:通过改变气缸体的材料和工艺,减轻气缸体的重量,降低发动机的排放和噪音。
四、总结气缸体是内燃机中不可或缺的重要部件,其结构和工作原理直接影响发动机的性能和使用寿命。
合理优化气缸体的设计可以提高发动机的功率、燃油经济性和环境友好性。
通过不断研究和创新,气缸体原理的应用将推动内燃机技术的进一步发展。
气动原理结构及气缸的原理及维修资料
气动原理结构及气缸的原理及维修资料气动原理是一门研究气体的运动与相互作用的学科,主要应用于气体传动系统和气动装置。
气动原理结构的核心是气缸,气缸是一种将气体能量转化为机械能的装置,常用于驱动机械设备、工具和各种运动部件。
气缸的工作原理基于气体的膨胀和收缩。
当气缸内的气体被压缩时,气缸的活塞会向前移动,当气体被释放时,活塞会向后移动。
通过控制气体的进出,可以实现对活塞的前后运动,从而实现机械设备的驱动。
气缸通常由气缸筒、活塞、活塞杆、密封件和连接件等组成。
气缸筒是气缸的主体部分,其中装有活塞。
活塞与气缸筒之间通过密封件保持紧密接触,以防止气体泄漏。
活塞杆连接在活塞上,通过连接件与机械设备或运动部件相连接。
气缸的维修主要包括清洁、更换密封件、修复密封面以及润滑等。
首先,要定期清洁气缸及其部件,以防止灰尘、杂物等的堆积,影响气缸的正常工作。
其次,当密封件磨损导致气缸泄漏时,需要及时更换密封件,以保证气缸的密封性。
修复密封面是指在密封面磨损严重时,通过打磨或镶嵌修复材料等方法修复密封面。
此外,还需要定期给气缸加注合适的润滑剂,以减少摩擦,延长气缸的使用寿命。
综上所述,气动原理结构中的气缸是实现气体能量转化为机械能的重要装置。
气缸的工作原理基于气体的膨胀和收缩,通过控制气体的进出来实现对活塞的前后运动。
气缸的维修包括清洁、更换密封件、修复密封面以及润滑等,以保证气缸的正常工作和延长使用寿命。
气动原理结构及气缸的原理及维修
气动原理结构及气缸的原理及维修1.气动原理结构气动原理是基于气体流动和压力传递的物理原理,通过压缩空气来驱动机械设备的一种方式。
气动系统由压缩空气产生装置、执行元件、控制元件和辅助元件组成。
压缩空气产生装置一般由压缩机、气体净化装置和储气罐组成,它们负责将空气压缩并提供给其他部件使用。
执行元件是气动系统的重要组成部分,主要由气缸和气动马达组成。
气缸是一种能将气体能量转化为机械能的装置,而气动马达则是将压缩空气能量转化为旋转运动的装置。
控制元件主要包括三位、四位控制阀、方向控制阀、电磁阀等,用于控制气动系统的动作和方向。
辅助元件包括压力表、滤油器、溢流阀、空气处理装置等,用于检测、调节和处理压缩空气质量。
2.气缸的原理气缸是气动系统中最常用的执行元件之一,它将压缩空气能量转化为直线运动,用来推动或拉动物体。
气缸一般由气缸筒、活塞、活塞杆、密封件和导向件组成。
气缸筒是一个空心筒体,用来容纳气体。
活塞位于气缸筒内,通过压缩空气作用在活塞上产生推力。
活塞杆连接活塞与外部物体,通过活塞杆的伸缩运动来实现物体的运动。
气缸的工作原理是当压缩空气从控制阀流入气缸筒后,活塞随之向前或向后运动。
当气压作用在活塞上时,活塞会受到推力,从而使活塞杆伸出或缩回。
3.气缸的维修气缸的维修主要包括清洁、更换密封件和更换磨损零件等。
首先,需要将气缸从系统中拆卸下来,然后将其拆开清洁。
清洁时需要注意慎重,避免损伤密封件或其他零件。
检查密封件是否有磨损或老化现象,如有需要进行更换。
更换密封件时,应选择与原件相同型号和规格的新密封件。
检查活塞杆和活塞是否有磨损或变形现象,如有需要进行更换。
更换时,应选择与原件相同型号和规格的新活塞杆和活塞。
在重新组装气缸时,需要注意各零部件的安装位置和配合情况,确保各部件装配正确且密封良好。
维修完毕后,还需进行气缸的试运行,以确保气缸的正常工作。
综上所述,气动原理结构及气缸的原理及维修是一项涉及气体流动、压力传递和机械运动的复杂工作。
气缸结构原理
气缸结构原理气缸是一种常见的机械部件,广泛应用于各种机械设备中。
气缸的结构原理对于了解其工作原理和性能具有重要意义。
本文将介绍气缸的结构原理,帮助读者更好地理解和应用这一机械部件。
一、气缸的基本结构气缸通常由气缸筒、活塞、活塞杆、密封件等部件组成。
气缸筒是气缸的主体部件,通常由铝合金、不锈钢等材料制成,具有一定的强度和刚性。
活塞是气缸中的运动部件,通常与气缸筒密封配合,能够在气缸筒内做直线往复运动。
活塞杆连接活塞和外部机构,传递活塞的运动力。
密封件用于保证气缸的密封性能,防止气缸内的气体泄漏。
二、气缸的工作原理气缸通过外部的气压力驱动活塞在气缸筒内做往复运动,从而实现对物体的推拉或压力作用。
气缸的工作原理可以简单概括为:气体通过气源进入气缸,气缸内的活塞随之受到气压力的作用而运动,完成相应的工作任务。
气缸的工作过程包括进气、工作、排气等阶段,通过控制气源的开关和气压力大小可以实现对气缸的控制和调节。
三、气缸的种类和应用根据气缸的结构和工作原理,可以将气缸分为气压缸、液压缸、气液压缸等不同类型。
气压缸通过气体的压力驱动活塞运动,适用于对速度要求较高的场合;液压缸通过液体的压力驱动活塞运动,适用于对力要求较大的场合;气液压缸结合了气压缸和液压缸的优点,具有速度快、力大的特点,广泛应用于工业自动化设备中。
气缸在各种机械设备中都有着重要的应用,如汽车发动机、工业机械、农业机械等。
在汽车发动机中,气缸是发动机的重要部件,通过气缸的工作可以实现燃油的燃烧和活塞的往复运动,从而驱动汽车前进。
在工业机械中,气缸可以实现对物体的推拉、升降、夹持等功能,广泛应用于各种生产线和装配设备中。
在农业机械中,气缸可以实现对农机部件的控制和调节,提高农机设备的工作效率和生产能力。
气缸作为一种常见的机械部件,具有重要的应用价值和工作原理。
了解气缸的结构原理可以帮助我们更好地应用和维护这一机械部件,提高设备的工作效率和性能。
希望本文的介绍能够帮助读者更好地理解和掌握气缸的相关知识,为工程实践和应用提供参考和借鉴。
气缸的原理各种气缸的原理
气缸的原理各种气缸的原理气缸是一种用于转化压力能为机械能的装置,常见于内燃机、液压系统和气动系统。
以下是几种常见气缸的原理解析。
1.内燃机气缸原理:内燃机气缸主要用于转化燃烧气体的压力能为机械能。
当混合气体进入汽缸时,气缸的活塞位置通常在上死点。
混合气体被喷入气缸后,活塞下行,并关闭进气门。
然后,活塞回到上行位置,压缩混合气体,推动活塞结束压缩行程。
接下来,火花塞产生火花点燃燃烧气体,使得活塞受燃烧气体的推力下行。
最后,活塞回到上行位置,并将排气门打开,排出燃烧后的废气。
2.液压气缸原理:液压气缸使用液体(通常为油)作为工作介质,通过油压力将其转化为机械能。
当压力油进入气缸时,推动活塞移动。
活塞上的密封件避免了液压能的泄漏。
液压油由液压泵供应,在液压气缸中形成压力。
活塞上的逆止阀控制了流向,使其在一个方向上移动。
通过控制液压油的流量和压力,可以精确地控制液压气缸的移动速度和力。
3.气动气缸原理:气动气缸使用压缩空气作为工作介质,将其转化为机械能。
当压缩空气进入气缸时,活塞受到推力而移动。
气缸上的密封件避免了气压的泄漏。
气动气缸的运动速度和力量可以通过调节进气压力和调节阀来控制。
4.蒸汽机气缸原理:蒸汽机气缸将蒸汽的热能转化为机械能。
在单缸蒸汽机中,蒸汽通过进气阀进入气缸,推动活塞向下运动。
然后,进气阀关闭并打开排气阀,蒸汽从气缸排出。
蒸汽机气缸是通过切断蒸汽的进入和排出来实现活塞的来回运动。
综上所述,气缸是一种将压力能转换为机械能的装置。
不同类型的气缸如内燃机气缸、液压气缸、气动气缸和蒸汽机气缸都利用不同的工作介质(如燃烧气体、液体或气体)来实现这一目标。
理解这些气缸的工作原理对于理解各种机械设备的运作过程非常重要。
气动气缸工作原理
气动气缸工作原理
气动气缸是一种常见的气动执行元件,其工作原理主要是利用气压能将气体能量转化为机械能,从而实现对工作物体的运动控制。
气动气缸的工作原理可以分为气压驱动、气缸内部结构和气缸动作三个方面来进行阐述。
首先,气动气缸的工作原理是基于气压驱动的。
当压缩空气进入气缸内部时,气压会使气缸内部的活塞产生推力,从而驱动活塞做直线运动。
这种气压驱动的工作原理是气动气缸能够实现运动控制的基础。
其次,气缸内部结构对气动气缸的工作原理也有着重要影响。
气缸内部通常包括气缸筒、活塞、密封件等部件。
气压进入气缸后,活塞会受到气压的作用而做运动,同时密封件能够有效地防止气体泄漏,从而保证气缸的正常工作。
最后,气动气缸的工作原理还与气缸的动作特点密切相关。
气动气缸的动作通常包括单向作用和双向作用两种。
单向作用气缸只能在一个方向上产生推力,而双向作用气缸则可以在两个方向上产生推力,从而实现更加复杂的运动控制。
综上所述,气动气缸的工作原理是基于气压驱动、气缸内部结构和气缸动作特点的。
通过对气动气缸工作原理的深入了解,可以更好地应用气动气缸进行机械设备的运动控制,从而提高设备的自动化程度和生产效率。
气缸内部结构图
我们首先讲解下普通气缸的基本组成和原理:气缸的组成:缸体,活塞,密封圈,磁环(有传感器的气缸);原理:压力空气使活塞移动,通过改变进气方向,改变活塞杆的移动方向;失效形式:活塞卡死,不动作;气缸无力,密封圈磨损,漏气。
典型气缸的结构和工作原理以气动系统中最常使用的单活塞杆双作用气缸为例来说明,气缸典型结构如下图所示。
它由缸筒、活塞、活塞杆、前端盖、后端盖及密封件等组成。
双作用气缸内部被活塞分成两个腔。
有活塞杆腔称为有杆腔,无活塞杆腔称为无杆腔。
当从无杆腔输入压缩空气时,有杆腔排气,气缸两腔的压力差作用在活塞上所形成的力克服阻力负载推动活塞运动,使活塞杆伸出;当有杆腔进气,无杆腔排气时,使活塞杆缩回。
若有杆腔和无杆腔交替进气和排气,活塞实现往复直线运动。
普通双作用气缸1、3-缓冲柱塞,2-活塞,4-缸筒,5-导向套,6-防尘圈,7-前端盖,8-气口,9-传感器,10-活塞杆,11-耐磨环,12-密封圈,13-后端盖,14-缓冲节流阀机械接触式无杆气缸的结构和工作原理机械接触式无杆气缸,其结构如下图3所示。
在气缸缸管轴向开有一条槽,活塞与滑块在槽上部移动。
为了防止泄漏及防尘需要,在开口部采用聚氨脂密封带和防尘不锈钢带固定在两端缸盖上,活塞架穿过槽,把活塞与滑块连成一体。
活塞与滑块连接在一起,带动固定在滑块上的执行机构实现往复运动。
这种气缸的特点是:1) 与普通气缸相比,在同样行程下可缩小1/2安装位置;2) 不需设置防转机构;3) 适用于缸径10~80mm,最大行程在缸径≥40mm时可达7m;4) 速度高,标准型可达0.1~0.5m/s;高速型可达到0.3~3.0m/s。
其缺点是:1) 密封性能差,容易产生外泄漏。
在使用三位阀时必须选用中压式;2) 受负载力小,为了增加负载能力,必须增加导向机构。
机械接触式无杆气缸l-节流阀,2-缓冲柱塞,3-密封带,4-防尘不锈钢带,5-活塞,6-滑块,7-活塞架磁性无杆气缸的结构和工作原理活塞通过磁力带动缸体外部的移动体做同步移动,其结构如图4所示。
气动执行器结构及原理
气缸结构与原理学习气动执行机构气动执行机构俗称气动头又称气动执行器(英文:Pn eumatic actuator )执行器按其能源形式分为气动,电动和液动三大类,它们各有特点,适用于不同的场合。
气动执行器是执行器中的一种类别。
气动执行器还可以分为单作用和双作用两种类型:执行器的开关动作都通过气源来驱动执行,叫做DOUBLE ACTING (双作用)。
SPRING RETURN (单作用)的开关动作只有开动作是气源驱动,而关动作是弹簧复位。
气动执行机构简介气动执行器的执行机构和调节机构是统一的整体,其执行机构有薄膜式、活塞式、拨叉式和齿轮齿条式。
活塞式行程长,适用于要求有较大推力的场合;而薄膜式行程较小,只能直接带动阀杆。
拨叉式气动执行器具有扭矩大、空间小、扭矩曲线更符合阀门的扭矩曲线等特点,但是不很美观;常用在大扭矩的阀门上。
齿轮齿条式气动执行机构有结构简单,动作平稳可靠,并且安全防爆等优点,在发电厂、化工,炼油等对安全要求较高的生产过程中有广泛的应用。
齿轮齿条式:齿轮齿条:活塞式:编辑本段气动执行机构的缺点控制精度较低,双作用的气动执行器,断气源后不能回到预设位置。
单作用的气动执行器,断气源后可以依靠弹簧回到预设位置编辑本段工作原理说明班当压缩空气从A管咀进入气动执行器时,气体推动双活塞向两端(缸盖端)直线运动,活塞上的齿条带动旋转轴上的齿轮逆时针方向转动90度,阀门即被打开。
此时气动执行阀两端的气体随B管咀排出。
反之,当压缩空气从B官咀进入气动执行器的两端时,气体推动双塞向中间直线运动,活塞上的齿条带动旋转轴上的齿轮顺时针方向转动90度,阀门即被关闭。
此时气动执行器中间的气体随A管咀排出。
以上为标准型的传动原理。
根据用户需求,气动执行器可装置成与标准型相反的传动原理,即选准轴顺时针方向转动为开启阀门,逆时针方向转动为关闭阀门。
单作用(弹簧复位型)气动执行器A管咀为进气口,B管咀为排气孔(B管咀应安装消声器)。
气缸的工作原理及常见故障维修
引言:气缸是内燃机中的一个关键部件,它承担着将燃烧室与冷却系统隔离、产生必要的压力以及顺序完成气缸工作循环等重要任务。
然而,由于工作环境的恶劣和长时间的使用,气缸常常会遭受到一些故障和损坏。
本文将详细介绍气缸的工作原理以及常见的故障和维修方法。
概述:气缸可以看作是内燃机的心脏,它通过活塞和连杆的运动将燃烧室内的燃油混合气压缩并转化为机械能。
同时,它还能完成凸轮轴和气门等部件的工作。
然而,气缸在长时间使用过程中可能出现漏气、磨损、裂纹等问题,需要进行维修。
正文:一、气缸的工作原理1.1 气缸的结构1. 气缸体:承受气缸内部高压力的主体部分,通常由坚固的铁材料制成。
2. 活塞:与气缸内壁之间形成密封空间,并通过连杆传递功率。
3. 凸轮轴和气门:控制气缸内混合气的进出。
1.2 气缸的工作循环气缸的工作循环可以分为四个阶段:进气、压缩、燃烧和排气。
具体步骤如下:1. 进气:活塞往下运动,使气缸内形成低压,进气门开启,混合气进入。
2. 压缩:活塞往上运动,使混合气被压缩,进气门关闭。
3. 燃烧:汽油点火,混合气燃烧产生高温和高压。
4. 排气:活塞往上运动,废气经过排气门排出。
二、常见故障及原因2.1 漏气1. 活塞环磨损:活塞环老化或使用时间过长,导致活塞与气缸壁之间的密封性能下降。
2. 气缸体磨损:气缸表面变形或磨损,使密封性能减弱。
2.2 磨损1. 活塞磨损:长时间高温和高压下,活塞与气缸内壁摩擦,导致磨损和间隙变大。
2. 缸套磨损:活塞与气缸壁之间的间隙变大,引起缸套磨损。
2.3 裂纹1. 高温变形:长时间高温工作会使气缸体产生变形和应力集中,造成裂纹。
2. 制造缺陷:制造过程中存在缺陷,如气缸体内部有夹杂物或裂纹。
三、常见故障的维修方法3.1 漏气的维修1. 更换活塞环:将老化或磨损的活塞环更换为新的,保持活塞与气缸壁之间的密封性能。
2. 研磨气缸体:使用研磨机对气缸体进行修复,恢复其表面平整度和密封性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、平衡态时,分子沿各个方向运动的概率均等
2 2 v 2 vx vy vz2
2 2 1 2 vx v2 v v y z 3
气压传系统的工作原理
二、气动系统的组成 气源装置 为系统提供合乎质量要求的压缩空气。 执行元件 将气体压力能转换成机械能并完成做功动 作的元件,如气缸、气马达。 控制元件 控制气体压力、流量及运动方向的元件, 如各种阀类;能完成一定逻辑功能的元件,即气动逻 辑元件;感测、转换、处理气动信号的元器件,如气 动传感器及信号处理装置。 气动辅件 气动系统中的辅助元件,如消声器、管道、 接头等。
卡簧钳
密封圈
卡簧钳,1500#砂纸,SMC气缸润滑油,清 洁布, 新的气缸密封圈.
润滑油
注意:因为气缸有专用的润滑油,用其他的 润滑油的话, 可能会缩短密封 圈的寿命,且不能正 常工作.
气缸常见故障的判断及基本维修技巧
常见故障的判断
气孔
好的气缸:
用手紧紧堵住气孔,然后用手拉活塞轴,拉的时候有很大的反向力,放的时候活塞 会自动弹回原位;拉出推杆再堵住气孔,用手压推杆时也有很大的反向力,放的时 候活塞会自动弹回原位。
控制元件
二、溢流阀—只作安全 阀用。 三、顺序阀—由于气缸 (马达)的软特性, 很难用顺序阀实现两 个执行元件的顺序动 作
流量控制阀
用于控制执行元件 运动速度。
节流阀 单向节流阀 排气节流阀
方向控制阀
单向型控制阀 单向阀 或门型梭阀 与门型梭阀 快速排气阀
方向控制阀 换向型
气动元件 执行元件 气动控制阀 气源装置 气动辅件
执行元件
气动执行元件是将压缩空气的 压力能转换为机械能的装置。包 括气缸和气马达。实现直线运动 和做功的是气缸;实现旋转运动 和做功的是气马达。 一、气缸的分类及工作原理 活塞式和膜片式 活塞式又分单活塞式和双活塞 式 单活塞式又分有活塞杆和无 活塞杆
起槽
气缸常见故障的判断及基本维修技巧
气动执行元件维修的注意事项 气缸在动作过程中,不能将身体任何部分置于其行程 范围内,以免受伤. 在维修设备上的气缸时,必须先切除气源,保证缸体 内气体放空,直至设备处于静止状态方可作业. 在维修气缸结束后,应先检查身体任何部分未置于其 行程范围内,方可接通气源试运行.接通气源时,应先 缓慢冲入部分气体,使气缸冲气至原始位置,再插入接 头.
气缸常见故障的判断及基本维修技巧
SMC密封圈的识别要领
由于我们公司使用的气缸种类较多,品牌也不一样,有些型号 仓库没有密封圈备件,但同品牌的有些是可以通用的,可参考 以下参数: 缸体直径
活塞直径
推杆直径
气缸常见的技术参数及选型要求
气缸的常见技术参数1
1)气缸的输出力 气缸理论输出力的设计计算与液压缸类似,可参见液压缸的设计计算。如双作用 单活塞杆 气缸推力计算如下: 理论推力(活塞杆伸出) Ft1=A1p 理论拉力(活塞杆缩回) Ft2=A2p 式中 Ft1、Ft2——气缸理论输出力(N); A1、A2——无杆腔、有杆腔活塞面积(m2); p — 气缸工作压力(Pa)。 实际中,由于活塞等运动部件的惯性力以及密封等部分的摩擦力,活塞杆的实际输出力小于理论推 力,称这个推力为气缸的实际输出力。气缸的效率 是气缸的实际推力和理论推力的比值,即
v s 400 267 mm/s t 1.5
=0.5
F1 F
则气缸理论输出力
执行元件
二、 气动马达的工作原理
控制元件
压力控制 一、减压阀 气压传动系统与液压传动系统不同的一个特点是,液压传 动系统的液压油是由安装在每台设备上的液压源直接提供; 而气压传动则是将比使用压力高的压缩空气储于储气罐中, 然后减压到适用于系统的压力。因此每台气动装置的供气压 力都需要用减压阀(在气动系统中有称调压阀)来减压,并保 持供气压力值稳定。
例题 气缸推动工件在水平导轨上运动。已知工件等运动件质量为 m=250 kg,工件与导轨间的摩擦系数 = 0.25,气缸行程 s为 400 mm,经1.5 s时间工件运动到位,系统工作压力p = 0.4 MPa,试选定气缸直径。 解:气缸实际轴向负载 F = mg =0.25 250 9.81=613.13 N 气缸平均速度 选定负载率
电磁阀2
二位二通电磁阀由阀体和电磁线圈两部分组成,是自带桥式整流电路,并带过电压、过电流 安全保护的直动式结构. 电磁阀线圈不通电。此时,电磁阀铁芯在回复弹簧的作用下靠在双管端,关闭双管端出 口,单管端出口处于开启状态,制冷剂从电磁阀单管端出口管流向冷藏室蒸发器、冷冻室蒸 发器流回压缩机,实现制冷循环。 电磁阀线圈通电。此时,电磁阀铁芯在电磁力的作用下克服回复弹簧作用力移到单管端, 关闭单管端出口,双管端出口处于开启状态,制冷剂从电磁阀双管端出口管流向冷冻室蒸发 器流回压缩机,实现制冷循环。
气压传动概述
气压传系统的工作原理及组成 气压传动的特点 气动元件组成
气压传系统的工作原理及组成
一、气压传系统的工作原理
气压传动是以压缩空气作为工作介质进行能 量的传递和控制的一种传动形式。
1、平衡态时,气体分子在空间均匀分布 (数密度n相等)
, 微观足够大 D分子间间隙 V分子运行速度 dV : 宏观足够小 dN N n 处处一样 dV V
l-压缩机2-后冷却器3-分离器4、7-储气罐 5-干燥器6-过滤器8-加热器9-四通阀
气源装置
气源装置由以下四部分组成 气压发生装置——空气压缩机; 净化、贮存压缩空气的装置和设备; 管道系统; 气动三大件。
电磁阀1
电磁阀是用来控制流体的自动化基础元件,属于执行器;并不限于液压,气动。电磁阀用于 控制液压流动方向,工厂的机械装置一般都由液压钢控制,所以就会用到电磁阀。 电磁阀的工作原理,电磁阀里有密闭的腔,在的不同位置开有通孔,每个孔都通向不同的油 管,腔中间是阀,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过控 制阀体的移动来档住或漏出不同的排油的孔,而进油孔是常开的,液压油就会进入不同的排 油管,然后通过油的压力来推动油刚的活塞,活塞又带动活塞杆,活塞竿带动机械装置动。 这样通过控制电磁铁的电流就控制了机械运动。 上面说得是电磁阀的普通原理 实际上,根据流过介质的温度,压力等情况,比如管道有压力和自流状态无压力。电磁阀的 工作原理是不同的。 比如在自流状态下需要零压启动的,就是通电后,线圈整个把闸体吸起来。 而有压力状态的电磁阀,则是线圈通电后吸出插在闸体上的一个销子,用流体自身的压力把 闸体顶起来。 这两种方式的不同之处是,自流状态的电磁阀,因为线圈要吸起整个闸体,所以体积较大 而带压状态的电磁阀,只需要吸起销子,所以体积可以做的比较小。
坏的气缸:
拉的时候无阻力或力很小,放的时候活塞无动作或动作无力缓慢,拉出的时候有反 向力但连续拉的时候慢慢减小;压的时候没有压力或压力很小,有压力但越压力越 小。
气缸常见故障的判断及基本维修技巧
常见故障维修步骤1
1.找到与气缸配套的密 封圈
2.拆下外盖
3.拆下卡簧
4.取出推杆
5.拆下密封圈
6.清洁所有的部件,检查磨损 程度
普通气缸的基本组成和原理:
组成 : 缸体,活塞,密封圈,磁环(有sensor的气缸) 原理 : 压力空气使活塞移动,通过改变进气方向, 改变活塞杆的移动方向。 失效形式 : 活塞卡死,不动作;气缸无力,密 封圈磨损,漏气。
缸体 密封圈 活塞杆
磁环
活塞
密封圈
典型气缸的结构和工作原理
以气动系统中最常使用的单活塞杆双作用气缸为例来说明,气缸典型结构如下图1 所示。它由缸筒、活塞、活塞杆、前端盖、后端盖及密封件等组成。双作用气缸 内部被活塞分成两个腔。有活塞杆腔称为有杆腔,无活塞杆腔称为无杆腔。 当从无杆腔输入压缩空气时,有杆腔排气,气缸两腔的压力差作用在活塞上所形 成的力克服阻力负载推动活塞运动,使活塞杆伸出;当有杆腔进气,无杆腔排气 时,使活塞杆缩回。若有杆腔和无杆腔交替进气和排气,活塞实现往复直线运动。
气动逻辑元件
它是通过元件内部的可动部件的动作改变气流方向 来实现一定逻辑功能的气动控制元件。
按结构形式可分高压截止式逻辑元件、膜片式
逻辑元件、滑阀式逻辑元件和射流元件。
气动逻辑元件 一、气动逻辑元件的特点 元件流道孔道较大,抗污染能力较强(射流元件除 外); 元件无功耗气量低; 带负载能力强; 连接、匹配方便简单,调试容易,抗恶劣工作环境 能力强; 运算速度较慢,在强烈冲击和振动条件下,可能出 现误动作。
二位三通电磁阀由阀体和电磁线圈两部分组成,是自带桥式整流电路,并带过电压、过电流 安全保护的直动式结构,系统中工作状态一:电磁阀线圈不通电。此时,电磁阀铁芯在回复 弹簧的作用下靠在双管端,关闭双管端出口,单管端出口处于开启状态,制冷剂从电磁阀单 管端出口管流向冷藏室蒸发器、冷冻室蒸发器流回压缩机,实现制冷循环。(如图一) 系统中工作状态二:电磁阀线圈通电。此时,电磁阀铁芯在电磁力的作用下克服回复弹簧作 用力移到单管端,关闭单管端出口,双管端出口处于开启状态,制冷剂从电磁阀双管端出口 管流向冷冻室蒸发器流回压缩机,实现制冷循环。
1 2
普通双作用气缸
3 4 5 6
14
13 12 11 10 9Байду номын сангаас8 7
1、3-缓冲柱塞 2-活塞 4-缸筒 5-导向套 6-防尘圈 7-前端盖 8-气口 9-传感器 10-活塞杆 11-耐磨环 12-密封圈 13-后端盖 14-缓冲节流阀
气缸常见故障的判断及基本维修技巧
常用维修工具
1500号砂纸
气缸常见故障的判断及基本维修技巧
常见故障维修步骤2