空间向量专题练习答案
《空间向量》专题训练
![《空间向量》专题训练](https://img.taocdn.com/s3/m/5c8f4a4af02d2af90242a8956bec0975f465a4e7.png)
高考链接一、单选题1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则().A.l ∥αB.l ⊥αC.l ⊂αD.l 与α斜交2.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是().C.æèçøD.èø3.在正方体ABCD-A 1B 1C 1D 1中,E 为BC 的中点,F 为B 1C 1的中点,则异面直线AF 与C 1E 所成角的正切值为().A. B.23 C.D.4.如图1所示,在正方体ABCD -A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为().A. B.C. D.5.如图2,已知长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB=3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC所成角的正弦值为().B.C. D.6.在正方体ABCD -A 1B 1C 1D 1中,O 是底面A 1B 1C 1D 1的中心,E 是棱AB 上的点,且AE =14AB ,记直线OE 与直线BC 所成角为α,直线OE 与平面ABCD 所成角为β,二面角O -AB -C 的平面角为γ,则().A.α<β<γB.β<α<γC.β<γ<α D.γ<β<α7.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为().A.12 B.23 C.D.8.如图3,矩形ABCD 中,AB =4,AD =2,E 为CD 的中点,ΔADE 沿着AE 向上翻折,使点D 到D ′.若D ′在平面ABCD 上的投影H 落在梯形ABCE 内部(不含边界),设二面角D ′-BC -E 的大小为α,直线D ′C ,D ′B 与平面ABC 所成角分别为β,γ,则().图3A.α<β<γB.β<α<γC.β<γ<αD.γ<β<α9.如图4,正四棱锥P -ABCD ,E 为线段BC 上的一个动点,记二面角P -CD -B 为α,PE 与平面ABCD 所成的角为β,PE 与CD 所成的角为γ,则().A.α≤β≤γB.γ≤α≤βC.β≤α≤γD.γ≤β≤α10.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则().A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ111.设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P -AC -B 的平面角为γ,则().A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β12.在菱形ABCD 中,∠ABC =60°,E ,F 分别是边AB ,CD 的中点,现将△ABC 沿着对角线AC 翻折,则直线EF 与平面ACD 所成角的正切值最大值为().A.2B.C.D.二、多选题13.已知点P 是平行四边形ABCD 所在的平面外一点,如果 AB =(2,-1,-4), AD =(4,2,0),AP =(-1,2,-1).下列结论正确的有().A.AP ⊥ABB.AP ⊥ADC.AP 是平面ABCD 的一个法向量 AP ∥ BD宋思清图1图2图456D.三棱锥6______.图7图8图10为圆锥的顶点,O是圆锥底面的圆AD.△ABC是底面的内接上一点,PO=6DO.图1326.如图14,在三棱柱平面ABC ,E (1)求证:EF ∥(2)求证:平面AB 参考答案与解析一、单选题1-12BCCCA 二、多选题13.ABC;14.ABD;三、填空题17.13;18.3,m =(-1,-1,1),θ,13.由得PO =PC =.⊥PB ..y 轴正方向,O -xyz (0,-1,0),C 12,0),.0,=0,PCB 的一个法向.为等腰直角三角形,∴BD ⊥AC ,PBD ,PBD ,∴PB ⊥AC h ,==,⊥平面ABC ,。
空间向量专题练习答案
![空间向量专题练习答案](https://img.taocdn.com/s3/m/56371bb805087632311212f3.png)
空间向量专题练习答案空间向量专题练习一、填空题(本大题共4小题,共20.0分)1.平面α的法向量为(1,0,-1),平面β的法向量为(0,-1,1),则平面α与平面β所成二面角的大小为 ______ .【答案】或【解析】解:设平面α的法向量为=(1,0,-1),平面β的法向量为=(0,-1,1),则cos<,>==-,∴<,>=.∵平面α与平面β所成的角与<,>相等或互补,∴α与β所成的角为或.故答案为:或.利用法向量的夹角与二面角的关系即可得出.本题考查了利用用法向量的夹角求二面角的方法,考查了计算能力,属于基础题.2.平面α经过三点A(-1,0,1),B(1,1,2),C(2,-1,0),则平面α的法向量可以是 ______ (写出一个即可)【答案】(0,1,-1)【解析】解:=(2,1,1),=(3,-1,-1),设平面α的法向量=(x,y,z),则,令z=-1,y=1,x=0.∴=(0,1,-1).故答案为:(0,1,-1).设平面α的法向量=(x,y,z),则,解出即可.本题考查了线面垂直与数量积的关系、平面的法向量,属于基础题.3.已知=(1,0,2),=(2,1,1),则平面ABC的一个法向量为 ______ .【答案】(-2,3,1)【解析】解:=(1,0,2),=(2,1,1),设平面ABC的法向量为=(x,y,z),则,即,取x=-2,则z=1,y=3.∴=(-2,3,1).故答案为:(-2,3,1).设平面ABC的法向量为=(x,y,z),则,解出即可.本题考查了平面的法向量、线面垂直与数量积的关系,属于基础题.空间向量专题练习答案4.在三角形ABCxx,A(1,-2,-1),B(0,-3,1),C(2,-2,1),若向量与平面ABC垂直,且||=,则的坐标为 ______ .【答案】(2,-4,-1)或(-2,4,1)【解析】解:设平面ABC的法向量为=(x,y,z),则=0,且•=0,∵=(-1,-1,2),=(1,0,2),∴,即,令z=1,则x=-2,y=4,即=(-2,4,1),若向量与平面ABC垂直,∴向量∥,设=λ=(-2λ,4λ,λ),∵||=,∴•|λ|=,即|λ|=1,解得λ=±1,∴的坐标为(2,-4,-1)或(-2,4,1),故答案为:(2,-4,-1)或(-2,4,1)根据条件求出平面的法向量,结合向量的xx公式即可得到结论.本题主要考查空间向量坐标的计算,根据直线和平面垂直求出平面的法向量是解决本题的关键.二、解答题(本大题共3小题,共36.0分)5.如图,在四棱锥P-ABCDxx,底面ABCD为菱形,∠BAD=60°,Q为AD的xx点.(1)若PA=PD,求证:平面PQB⊥平面PAD;(2)点M在线段PCxx,,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求二面角M-BQ-C的大小.【答案】解:(1)证明:由题意知:PQ⊥AD,BQ⊥AD,PQ∩BQ=Q,∴AD⊥平面PQB,又∵AD⊂平面PAD,∴平面PQB⊥平面PAD.(2)∵PA=PD=AD,Q为AD的xx点,∴PQ⊥AD,∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PQ⊥平面ABCD,以Q这坐标原点,分别以QA,QB,QP为x,y,z轴,建立如图所求的空间直角坐标系,由题意知:Q(0,0,0),A(1,0,0),P(0,0,),B(0,,0),C(-2,,0)∴=(-,,),设是平面MBQ的一个法向量,则,,∴,∴,又∵平面BQC的一个法向量,∴cos<>=,空间向量专题练习答案∴二面角M-BQ-C的大小是60°.【解析】(1)由题设条件推导出PQ⊥AD,BQ⊥AD,从而得到AD⊥平面PQB,由此能够证明平面PQB⊥平面PAD.(2)以Q这坐标原点,分别以QA,QB,QP为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角M-BQ-C的大小.本题考查平面与平面垂直的证明,考查二面角的大小的求法,解题时要认真审题,注意向量法的合理运用.6.如图,在四棱锥P-ABCDxx,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,点E是PC的xx点,F在直线PAxx.(1)若EF⊥PA,求的值;(2)求二面角P-BD-E的大小.【答案】解:(1)∵在四棱锥P-ABCDxx,底面ABCD是正方形,侧棱PD⊥底面ABCD,∴以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,∵PD=DC=2,点E是PC的xx点,F在直线PAxx,∴P(0,0,2),A(2,0,0),C(0,2,0),E(0,1,1),设F(a,0,c),,则(a,0,c-2)=λ(2,0,-2)=(2λ,0,-2λ),∴a=2λ,c=2-2λ,F(2λ,0,2-2λ),=(2λ,-1,1-2λ),=(2,0,-2),∵EF⊥PA,∴=4λ-2+4λ=0,解得,∴=.(2)P(0,0,2),B(2,2,0),D(0,0,0),E(0,1,1),=(0,0,2),=(2,2,0),=(0,1,1),设平面BDP的法向量=(x,y,z),则,取x=1,得=(1,-1,0),设平面BDE的法向量=(x,y,z),则,取x=1,得=(1,-1,1),设二面角P-BD-E的大小为θ,则cosθ===.∴二面角P-BD-E的大小为arccos.【解析】(1)以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,利用向量法能求出的值.(2)求出平面BDP的法向量和设平面BDE的法向量,由此能求出二面角P-BD-E的大小.本题考查线段比值的求法,考查二面角的大小的求法,是xx档题,解题时要认真审题,注意向量法的合理运用.7.如图所示的几何体是由棱台ABC-A1B1C1和棱锥D-AA1C1C 拼接而成的组合体,其底面四边形ABCD是边长为2的菱形,且∠BAD=60°,BB1⊥平面ABCD,BB1=2A1B1=2.(Ⅰ)求证:平面AB1C⊥平面BB1D;(Ⅱ)求二面角A1-BD-C1的xx值.【答案】(Ⅰ)证明:∵BB1⊥平面ABCD,∴BB1⊥AC,空间向量专题练习答案∵ABCD是菱形,∴BD⊥AC,又BD∩BB1=B,∴AC⊥平面BB1D,∵AC⊂平面AB1C,∴平面AB1C⊥平面BB1D;(Ⅱ)设BD、AC交于点O,以O为坐标原点,以OA为x轴,以OD为y轴,建立如图所示空间直角坐标系.则,,,∴,,.设平面A1BD的法向量,由,取z=,得,设平面DCF的法向量,由,取z=,得.设二面角A1-BD-C1为θ,则.【解析】(Ⅰ)由BB1⊥平面ABCD,得BB1⊥AC,再由ABCD是菱形,得BD⊥AC,由线面垂直的判定可得AC⊥平面BB1D,进一步得到平面A B1C⊥平面BB1D;(Ⅱ)设BD、AC交于点O,以O为坐标原点,以OA为x轴,以OD为y轴,建立如图所示空间直角坐标系.求出所用点的坐标,得到平面A1BD与平面DCF的法向量,由两法向量所成角的xx值可得二面角A1-BD-C1的xx值.本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.。
空间向量和立体几何练习题与答案
![空间向量和立体几何练习题与答案](https://img.taocdn.com/s3/m/8eb5f4cb9f3143323968011ca300a6c30d22f153.png)
空间向量和立体几何练习题与答案
1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形就是( )
A.一个圆
B.一个点
C.半圆
D.平行四边形
答案:A
2.在长方体 ABCD-A₁B ₁C ₁D ₁中,下列关于AC₁的表达中错误的 一个就是( )
A. AA₁+A ₁B ₁+A ₁D ₁
B. AB+DD₁
+D ₁C ₁
C. AD+CC₁+D ₁C ₁
D.12(AB 1+CD 1)+A 1C 1
答案:B
3.若a ,b ,c 为任意向量,m ∈R ,下列等式不一定成立的就是( )
A.(a+b)+c=a+(b+c)
B.(a+b)•c=a•c+b•c
C. m(a+b)=ma+mb
D.(a·b)·c=a·(b·c)
答案:D
4.若三点A, B, C 共线,P 为空间任意一点,且PA+αPB=βPC,则α-β的值为( )
A.1
B.-1
C.12
D.-2
答案:B
5.设a=(x,4,3), b=(3,2, z),且a ∥b,则xz 等于( )
A.-4
B.9
C.-9
D.649
答案:B
6.已知非零向量 e ,e₂不共线,如果AB=e₁+e ₂ A C=2e ₂ 8e ₂AD=3e ₁3 ,则四点 A. B C (
) A.一定共圆
B.恰就是空间四边形的四个顶点心
C.一定共面
D.肯定不共面
答案:C。
空间向量练习及答案解析
![空间向量练习及答案解析](https://img.taocdn.com/s3/m/08e685629e31433238689329.png)
空间向量练习一、选择题(共15小题,每小题4.0分,共60分)1.已知平面α的一个法向量是(2,-1,1),α∥β,则下列向量可作为平面β的一个法向量的是() A. (4,2,-2) B. (2,0,4) C. (2,-1,-5) D. (4,-2,2)2.如图,过边长为1的正方形ABCD的顶点A作线段EA⊥平面AC,若EA=1,则平面ADE与平面BCE所成的二面角的大小是()A. 120° B. 45° C. 150° D. 60°3.已知=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当·取得最小值时,点Q的坐标为()A. B. C. D.4.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD所成的角为60°;④AB与CD所成的角为60°.其中错误的结论是()A.① B.② C.③ D.④5.如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E,F分别是棱AB,BB1的中点,则直线EF和BC1的夹角是()A. 45° B. 60° C. 90° D. 120°6.已知在空间四面体O-ABC中,点M在线段OA上,且OM=2MA,点N为BC中点,设=a,=b,=c,则等于()A.a+b- c B.-a+b+ c C.a-b+ c D.a+b-c7.已知在棱长为2的正方体ABCD-A1B1C1D1中,E是DC的中点,建立如图所示的空间直角坐标系,则AB1与D1E所成角的余弦值为()A. B. C.- D.-8.如图所示,在正方体ABCD-A1B1C1D1中,M,N,P分别是棱CC1,BC,A1B1上的点,若∠B1MN=90°,则∠PMN的大小()A.等于90° B.小于90° C.大于90° D.不确定9.如图,S是正三角形ABC所在平面外一点,M,N分别是AB和SC的中点,SA=SB=SC,且∠ASB=∠BSC=∠CSA=90°,则异面直线SM与BN所成角的余弦值为()A.- B. C.- D.10.已知平面α内两向量a=(1,1,1),b=(0,2,-1)且c=ma+nb+(4,-4,1).若c为平面α的法向量,则m ,n 的值分别为( ) A . -1,2 B . 1,-2 C . 1,2 D . -1,-211.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面ABC 是等腰直角三角形,∠ACB =90°,侧棱AA 1=2,D ,E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G ,则A 1B 与平面ABD 所成角的正弦值为( )A .√23B .√73C .√32D .√3712.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2,若二面角B 1-DC -C 1的大小为60°,则AD 的长为( ) A .√2 B .√3 C . 2 D .√2213.三棱锥A -BCD 中,平面ABD 与平面BCD 的法向量分别为n 1,n 2,若〈n 1,n 2〉=π3,则二面角A -BD -C 的大小为( ) A .π3 B .2π3 C .π3或2π3D .π3或-π314.已知AB ⃗⃗⃗⃗⃗ =(1,5,-2),BC ⃗⃗⃗⃗⃗ = (3,1,z ),若AB ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,BP ⃗⃗⃗⃗⃗ =(x -1,y ,-3),且BP ⊥平面ABC ,则BP ⃗⃗⃗⃗⃗ 等于( ) A .(407,157,−3) B .(337,157,−3) C .(−407,−157,−3) D .(337,−157,−3)15.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,平行六面体的各棱长均相等.给出下列结论:①A 1M ∥D 1P ;②A 1M ∥B 1Q ;③A 1M ∥平面DCC 1D 1;④A 1M ∥平面D 1PQB 1.这四个结论中正确的个数为( ) A . 1 B . 2 C . 3 D . 4二、填空题(共6小题,每小题4.0分,共24分)16.如图所示,已知正四面体A-BCD 中,AE =AB ,CF =CD ,则直线DE 和BF 所成角的余弦值为________.17.已知a =(3,-2,-3),b =(-1,x -1,1),且a 与b 的夹角为钝角,则x 的取值范围是________.18.如图,平面PAD ⊥平面ABCD ,ABCD 为正方形,∠PAD =90°,且PA =AD =2,E ,F 分别是线段PA ,CD 的中点,则异面直线EF 与BD 所成角的余弦值为________. 19.如图,在三棱柱ABC -A 1B 1C 1中,所有棱长均为1,且AA 1⊥底面ABC ,则点B 1到平面ABC 1的距离为________.20.如下图所示,PD 垂直于正方形ABCD 所在平面,AB =2,E 为PB 的中点,cos 〈DP⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ 〉=√33,若以DA ,DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则点E 的坐标为________.21.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB⃗⃗⃗⃗⃗ =(2,-1,-4),AD ⃗⃗⃗⃗⃗ =(4,2,0),AP ⃗⃗⃗⃗⃗ =(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP ⃗⃗⃗⃗⃗ 是平面ABCD 的法向量;④AP ⃗⃗⃗⃗⃗ ∥BD ⃗⃗⃗⃗⃗⃗ .其中正确的是____________.三、解答题(共6小题,每小题11.0分,共66分) 22.如图所示,已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,∠DAB =90°,PA ⊥底面ABCD ,且PA =AD =DC =12AB =1,M 是PB 的中点.(1)证明:面PAD ⊥面PCD ;(2)求AC 与PB 所成角的余弦值; (3)求面AMC 与面BMC 所成二面角的余弦值.23.如下图所示,在三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC . (1)求证:BC ⊥平面PAC ;(2)当D 为PB 的中点时,求AD 与平面PAC 所成的角的正弦值; (3)是否存在点E ,使得二面角A -DE -P 为直二面角?并说明理由.24.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点E ,F 是棱BC ,CD 的中点,求:(1)直线DF 与B 1F 所成角的余弦值;(2)二面角C 1-EF -A 的余弦值.25.如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SB⊥平面ABCD,且SB=AB=AD=1,BC=2.(1)求SA与CD所成的角;(2)求平面SCD与平面SAB所成的锐二面角的余弦值.26.如下图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE;(2)求二面角B1-CE-C1的正弦值.27.如下图,在正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=4,E为BC的中点,F为CC1的中点.(1)求EF与平面ABCD所成的角的余弦值;(2)求二面角F-DE-C的余弦值.空间向量练习答案解析1.【答案】D【解析】∵α∥β,∴β的法向量与α的法向量平行,又∵(4,-2,2)=2(2,-1,1),故选D.2.【答案】B【解析】以A为坐标原点,分别以AB,AD,AE所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系Axyz,则E(0,0,1),B(1,0,0),C(1,1,0),=(1,0,-1),=(1,1,-1).设平面BCE的法向量为n=(x,y,z),则即可取n=(1,0,1).又平面EAD的法向量为=(1,0,0),所以cos〈n,〉==,故平面ADE与平面BCE所成的二面角为45°.3.【答案】C【解析】设Q(x,y,z),因Q在上,故有∥,设=λ(λ∈R),可得x=λ,y=λ,z=2λ,则Q(λ,λ,2λ),=(1-λ,2-λ,3-2λ),=(2-λ,1-λ,2-2λ),所以·=6λ2-16λ+10=62-,故当λ=时,·取最小值,此时Q.4.【答案】C【解析】如图所示,取BD的中点O,以点O为坐标原点,OD,OA,OC所在直线分别为x轴,y轴,z轴,建立空间直角坐标系Oxyz,设正方形ABCD边长为,则D(1,0,0),B(-1,0,0),C(0,0,1),A(0,1,0),所以=(0,-1,1),=(2,0,0),·=0,故AC⊥BD.①正确.又||=,||=,||=,所以△ACD为等边三角形.②正确.对于③,为面BCD的一个法向量,cos〈,〉====-.所以AB与OA所在直线所成的角为45°,所以AB与平面BCD所成角为45°.故③错误.又cos〈,〉===-.因为异面直线所成的角为锐角或直角,所以AB与CD所成角为60°.故④正确.5.【答案】B【解析】不妨设AB=BC=AA1=1,则=-=(-),=+,∴||=|-|=,||=,·=(-)·(+)=,∴cos〈,〉===,∴〈,〉=60°,即异面直线EF与BC1的夹角是60°.6.【答案】B【解析】=-=(+)-=b+c-a.7.【答案】A【解析】∵A(2,2,0),B1(2,0,2),E(0,1,0),D1(0,2,2),∴=(0,-2,2),=(0,1,2),∴||=2,||=,·=0-2+4=2,∴cos〈,〉===,又异面直线所成角的范围是,∴AB1与ED1所成角的余弦值为.8.【答案】A【解析】A1B1⊥平面BCC1B1,故A1B1⊥MN,·=(+)·=·+·=0,∴MP⊥MN,即∠PMN=90°.9.【答案】B【解析】不妨设SA=SB=SC=1,以S为坐标原点,,,所在直线分别为x轴,y轴,z 轴,建立空间直角坐标系Sxyz,则相关各点坐标为A(1,0,0),B(0,1,0),C(0,0,1),S(0,0,0),M,N.因为=,=,所以||=,||=,·=-,cos〈,〉==-,因为异面直线所成的角为锐角或直角,所以异面直线SM 与BN 所成角的余弦值为.10.【答案】A【解析】 c =ma +nb +(4,-4,1)=(m ,m ,m )+(0,2n ,-n )+(4,-4,1)=(m +4,m +2n -4,m -n +1),由c 为平面α的法向量,得即解得11.【答案】A【解析】∵侧棱与底面垂直,∠ACB =90°,所以分别以CA ,CB ,CC 1所在直线为x 轴、y 轴、z 轴,建立如图空间直角坐标系, 设CA =CB =a ,则A (a,0,0),B (0,a,0),A 1(a,0,2),D (0,0,1), ∴E (a 2,a2,1),G (a 3,a 3,13),GE ⃗⃗⃗⃗⃗ =(a 6,a 6,23),BD ⃗⃗⃗⃗⃗⃗ =(0,-a,1), ∵点E 在平面ABD 上的射影是△ABD 的重心G ,∴GE ⃗⃗⃗⃗⃗ ⊥平面ABD ,∴GE ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =0,解得a =2,∴GE ⃗⃗⃗⃗⃗ =(13,13,23),BA 1⃗⃗⃗⃗⃗⃗⃗ =(2,-2,2),∵GE ⃗⃗⃗⃗⃗ ⊥平面ABD ,∴GE ⃗⃗⃗⃗⃗ 为平面ABD 的一个法向量, 又cos 〈GE ⃗⃗⃗⃗⃗ ,BA 1⃗⃗⃗⃗⃗⃗⃗ 〉=GE ⃗⃗⃗⃗⃗ ·BA 1⃗⃗⃗⃗⃗⃗⃗⃗ |GE ⃗⃗⃗⃗⃗ ||BA 1⃗⃗⃗⃗⃗⃗⃗⃗ |=43√63×2=√23,∴A 1B 与平面ABD 所成角的正弦值为√23,故选A.12.【答案】A【解析】如下图,以C 为坐标原点,CA ,CB ,CC 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2)设AD =a ,则D 点坐标为(1,0,a ),CD ⃗⃗⃗⃗⃗ =(1,0,a ),CB 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2),设平面B 1CD 的一个法向量为m =(x ,y ,z ),则{m ·CB 1⃗⃗⃗⃗⃗⃗⃗ =0,m ·CD⃗⃗⃗⃗⃗ =0⇒{2y +2z =0,x +az =0,令z =-1, 得m =(a,1,-1),又平面C 1DC 的一个法向量为n =(0,1,0), 则由cos 60°=m·n|m ||n |,得1√a 2+1=12,即a =√2,故AD =√2. 13.【答案】C【解析】如图所示,当二面角A -BD -C 为锐角时,它就等于〈n 1,n 2〉=π3;当二面角A -BD -C 为钝角时,它应等于π-〈n 1,n 2〉=π-π3=2π3. 14.【答案】D【解析】因为AB ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,所以AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0,即1×3+5×1+(-2)z =0,所以z =4, 因为BP ⊥平面ABC ,所以BP⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,且BP ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,即1×(x -1)+5y +(-2)×(-3)=0,且3(x -1)+y +(-3)×4=0.解得x =407,y =-157,于是BP ⃗⃗⃗⃗⃗ =(337,−157,−3).15.【答案】C【解析】因为A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ ,D 1P ⃗⃗⃗⃗⃗⃗⃗ =D 1D ⃗⃗⃗⃗⃗⃗⃗⃗ +DP ⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ , 所以A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ∥D 1P ⃗⃗⃗⃗⃗⃗⃗ ,从而A 1M ∥D 1P ,可得①③④正确. 又B 1Q 与D 1P 不平行,故②不正确.故选C. 16.【答案】 【解析】=+=+,=+=+,所以cos 〈,〉====.17.【答案】 B【解析】 若两向量的夹角为钝角,则a ·b <0,且a 与b 不共线,故3×(-1)+(-2)×(x -1)+(-3)×1<0,且x ≠,解得x >-2,且x ≠,故选B. 18.【答案】【解析】 以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系Axyz ,则E (0,0,1),F (1,2,0),B (2,0,0),D (0,2,0). =(1,2,-1),=(-2,2,0),故cos 〈,〉==.19.【答案】√217【解析】建立如图所示的空间直角坐标系,则A (√32,12,0),B (0,1,0),B 1(0,1,1),C 1(0,0,1),则C 1A ⃗⃗⃗⃗⃗⃗⃗ =(√32,12,−1),C 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,1,0),C 1B ⃗⃗⃗⃗⃗⃗⃗ =(0,1,-1),设平面ABC 1的一个法向量为n =(x ,y,1),则有{C 1A ⃗⃗⃗⃗⃗⃗⃗ ·n =√32x +12y −1=0,C 1B ⃗⃗⃗⃗⃗⃗⃗ ·n =y −1=0.解得n =(√33,1,1),则所求距离为|C 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n |n ||=1√13+1+1=√217.20.【答案】(1,1,1)【解析】设PD =a (a >0),则A (2,0,0),B (2,2,0),P (0,0,a ),E (1,1,a2).∴DP ⃗⃗⃗⃗⃗ =(0,0,a ),AE⃗⃗⃗⃗⃗ =(−1,1,a2),∵cos 〈DP ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ 〉=√33,∴a 22=a √2+a 24·√33,∴a =2.∴E 的坐标为(1,1,1).21.【答案】①②③【解析】由于AP ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =-1×2+(-1)×2+(-4)×(-1)=0, AP ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =4×(-1)+2×2+0×(-1)=0,所以①②③正确. 22.【答案】因为PA ⊥AD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点,AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0),B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,12), (1)∵AP ⃗⃗⃗⃗⃗ =(0,0,1),DC ⃗⃗⃗⃗⃗ =(0,1,0),故AP ⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ =0,∴AP ⃗⃗⃗⃗⃗ ⊥DC ⃗⃗⃗⃗⃗ ,∴AP ⊥DC , 又由题设知:AD ⊥DC ,且AP 与AD 是平面PAD 内的两条相交直线, 由此得DC ⊥面PAD ,又DC 在面PCD 上,故面PAD ⊥面PCD ; (2)∵AC⃗⃗⃗⃗⃗ =(1,1,0),PB ⃗⃗⃗⃗⃗ =(0,2,-1), ∴|AC ⃗⃗⃗⃗⃗ |=√2,|PB ⃗⃗⃗⃗⃗ |=√5,AC ⃗⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ =2,∴cos 〈AC ⃗⃗⃗⃗⃗ ,PB ⃗⃗⃗⃗⃗ 〉=√105, 由此得AC 与PB 所成角的余弦值为√105;(3)在MC 上取一点N (x ,y ,z ),则存在λ∈R ,使NC ⃗⃗⃗⃗⃗ =λMC ⃗⃗⃗⃗⃗⃗ ,NC ⃗⃗⃗⃗⃗ =(1-x,1-y ,-z ),MC ⃗⃗⃗⃗⃗⃗ =(1,0,−12),∴x =1-λ,y =1,z =12λ.要使AN ⊥MC ,只需AN ⃗⃗⃗⃗⃗⃗ ·MC ⃗⃗⃗⃗⃗⃗ =0,即x -12z =0,解得λ=45, 可知当λ=45时,N 点坐标为(15,1,25),能使AN ⃗⃗⃗⃗⃗⃗ ·MC⃗⃗⃗⃗⃗⃗ =0, 此时,AN ⃗⃗⃗⃗⃗⃗ =(15,1,25),BN ⃗⃗⃗⃗⃗⃗ =(15,−1,25), 由AN ⃗⃗⃗⃗⃗⃗ ·MC ⃗⃗⃗⃗⃗⃗ =0,BN ⃗⃗⃗⃗⃗⃗ ·MC ⃗⃗⃗⃗⃗⃗ =0,得AN ⊥MC ,BN ⊥MC , ∴∠ANB 为所求二面角的平面角,∵|AN⃗⃗⃗⃗⃗⃗ |=√305,|BN ⃗⃗⃗⃗⃗⃗ |=√305,AN ⃗⃗⃗⃗⃗⃗ ·BN ⃗⃗⃗⃗⃗⃗ =-45,∴cos 〈AN ⃗⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗⃗⃗ 〉=-23, 故所求的二面角的余弦值为-23.23.【答案】以A 为原点,AB ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ 分别为y 轴、z 轴的正方向,过A 点且垂直于平面PAB 的直线为x 轴,建立空间直角坐标系Axyz ,设PA =a ,由已知可得:A (0,0,0),B (0,a ,0),C (√34a,34a,0),P (0,0,a ).(1)AP⃗⃗⃗⃗⃗ =(0,0,a ),BC ⃗⃗⃗⃗⃗ =(√34a,−a 4,0),∴BC ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =0,∴BC ⃗⃗⃗⃗⃗ ⊥AP ⃗⃗⃗⃗⃗ ,∴BC ⊥AP , 又∵∠BCA =90°,∴BC ⊥AC ,∴BC ⊥平面PAC .(2)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点,∴D (0,a 2,a2),E (√38a,38a,a 2),∴由(1)知,BC ⊥平面PAC ,∴DE ⊥平面PAC ,垂足为点E , ∴∠DAE 是AD 与平面PAC 所成的角,∵AD ⃗⃗⃗⃗⃗ =(0,a 2,a 2),AE ⃗⃗⃗⃗⃗ =(√38a,38a,a 2),∴cos ∠DAE =AD ⃗⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗|AD ⃗⃗⃗⃗⃗⃗ ||AE ⃗⃗⃗⃗⃗ |=√144, ∴AD 与平面PAC 所成的角的正弦值为√24.(3)∵DE ∥BC ,又由(1)知BC ⊥平面PAC ,∴DE ⊥平面PAC , 又∵AE ⊂平面PAC ,PE ⊂平面PAC ,∴DE ⊥AE ,DE ⊥PE ,∴∠AEP 为二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∴∠PAC =90°,∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时∠AEP =90°, 故存在点E ,使得二面角A -DE -P 是直二面角.24.【答案】如图,以A 为坐标原点,建立空间直角坐标系Axyz ,则D (0,2,0),E (2,1,0),F (1,2,0),B 1(2,0,2),C 1(2,2,2),(1)因为DE ⃗⃗⃗⃗⃗ =(2,-1,0),B 1F ⃗⃗⃗⃗⃗⃗⃗ =(-1,2,-2),所以cos 〈DE ⃗⃗⃗⃗⃗ ,B 1F ⃗⃗⃗⃗⃗⃗⃗ 〉=DE ⃗⃗⃗⃗⃗⃗ ·B 1F ⃗⃗⃗⃗⃗⃗⃗⃗ |DE ⃗⃗⃗⃗⃗⃗ ||B 1F ⃗⃗⃗⃗⃗⃗⃗⃗ |=−43√5=-4√515, 所以直线DE 与B 1F 所成角的余弦值为4√515; (2)因为C 1E ⃗⃗⃗⃗⃗⃗⃗ =(0,-1,-2),EF ⃗⃗⃗⃗⃗ =(-1,1,0), 设平面C 1EF 的一个法向量为n =(x ,y,1), 则由{n ·C 1E ⃗⃗⃗⃗⃗⃗⃗ =0,n ·EF ⃗⃗⃗⃗⃗ =0,可得{−y −2=0,−x +y =0, 解得x =y =-2,所以n =(-2,-2,1),又AA 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2)是平面AEF 的一个法向量,所以cos 〈AA 1⃗⃗⃗⃗⃗⃗⃗ ,n 〉=n·AA1⃗⃗⃗⃗⃗⃗⃗⃗ |n ||AA 1⃗⃗⃗⃗⃗⃗⃗⃗ |=22×3=13, 观察图形,可知二面角C 1-EF -A 为钝角,所以二面角C 1-EF -A 的余弦值为-13. 25.【答案】(1)建立如图所示的空间直角坐标系,则B (0,0,0),S (0,0,1),A (1,0,0),C (0,2,0),D (1,1,0),SA ⃗⃗⃗⃗⃗ =(1,0,-1), CD⃗⃗⃗⃗⃗ =(1,-1,0), 因为cos 〈SA ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 〉=SA ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗|SA⃗⃗⃗⃗⃗ ||CD ⃗⃗⃗⃗⃗ |=12,所以SA 与CD 所成的角为60°; (2)设平面SCD 的法向量为n 1=(x ,y ,z ), 又SC⃗⃗⃗⃗ =(0,2,-1),{n 1·SC⃗⃗⃗⃗ =0,n 1·CD⃗⃗⃗⃗⃗ =0,所以{2y −z =0,x −y =0, 令x =1,则n 1=(1,1,2),因为BC ⊥平面SAB ,第 11 页 共 11 页 所以平面SAB 的一个法向量为n 2=(0,1,0),cos 〈n 1,n 2〉=√66, 所以平面SCD 与平面SAB 所成的锐二面角的余弦值为√66. 26.【答案】如下图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0).(1)易得B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1),CE ⃗⃗⃗⃗⃗ =(-1,1,-1),于是B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·CE⃗⃗⃗⃗⃗ =0,所以B 1C 1⊥CE ;(2)B 1C ⃗⃗⃗⃗⃗⃗⃗ =(1,-2,-1),设平面B 1CE 的法向量m =(x ,y ,z ),则{m ·B 1C ⃗⃗⃗⃗⃗⃗⃗ =0,m ·CE ⃗⃗⃗⃗⃗ =0,即{x −2y −z =0,−x +y −z =0, 消去x ,得y +2z =0,不妨令z =1,可得一个法向量为m =(-3,-2,1),由(1),B 1C 1⊥CE ,又CC 1⊥B 1C 1,可得B 1C 1⊥平面CEC 1,故B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1)为平面CEC 1的一个法向量,于是cos 〈m ,B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 〉=m·B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |m ||B 1C 1|=−4√14×√2=-2√77,从而sin 〈m ,B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 〉=√217,所以二面角B 1-CE -C 1的正弦值为√217. 27.【答案】建立如下图所示的空间直角坐标系D-xyz ,则D (0,0,0),A (2,0,0),C (0,2,0),B (2,2,0),E (1,2,0),F (0,2,2),(1)EF⃗⃗⃗⃗⃗ =(-1,0,2),易得平面ABCD 的一个法向量为n =(0,0,1), 设EF ⃗⃗⃗⃗⃗ 与n 的夹角为θ,则cos θ=EF ⃗⃗⃗⃗⃗ ·n |EF ⃗⃗⃗⃗⃗ ||n|=25√5,∴EF 与平面ABCD 所成的角的余弦值为2√55; (2)EF ⃗⃗⃗⃗⃗ =(-1,0,2),DF ⃗⃗⃗⃗⃗ =(0,2,2),设平面DEF 的一个法向量为m ,则m ·DF ⃗⃗⃗⃗⃗ =0,m ·EF⃗⃗⃗⃗⃗ =0, 可得m =(2,-1,1),∴cos 〈m ,n 〉=m·n|m ||n |=√66,∴二面角F -DE -C 的余弦值为√66.。
空间向量专题练习答案
![空间向量专题练习答案](https://img.taocdn.com/s3/m/74622bc980eb6294dd886c8f.png)
空间向量专题练习一、填空题(本大题共4小题,共20.0分)1.平面α的法向量为(1,0,-1),平面β的法向量为(0,-1,1),则平面α与平面β所成二面角的大小为 ______ .【答案】π3或2π3 【解析】解:设平面α的法向量为m ⃗⃗⃗ =(1,0,-1),平面β的法向量为n ⃗ =(0,-1,1),则cos <m⃗⃗⃗ ,n ⃗ >=√2⋅√2=-12, ∴<m⃗⃗⃗ ,n ⃗ >=2π3. ∵平面α与平面β所成的角与<m⃗⃗⃗ ,n ⃗ >相等或互补, ∴α与β所成的角为π3或2π3.故答案为:π3或2π3.利用法向量的夹角与二面角的关系即可得出.本题考查了利用用法向量的夹角求二面角的方法,考查了计算能力,属于基础题.2.平面α经过三点A (-1,0,1),B (1,1,2),C (2,-1,0),则平面α的法向量u⃗ 可以是 ______ (写出一个即可) 【答案】(0,1,-1)【解析】解:AB ⃗⃗⃗⃗⃗ =(2,1,1),AC⃗⃗⃗⃗⃗ =(3,-1,-1), 设平面α的法向量u ⃗ =(x ,y ,z ),则{u ⃗ ⋅AB ⃗⃗⃗⃗⃗ =2x +y +z =0u ⃗ ⋅AC⃗⃗⃗⃗⃗ =3x −y −z =0,令z =-1,y =1,x =0. ∴u ⃗ =(0,1,-1).故答案为:(0,1,-1).设平面α的法向量u ⃗ =(x ,y ,z ),则{u ⃗ ⋅AB ⃗⃗⃗⃗⃗ =2x +y +z =0u⃗ ⋅AC ⃗⃗⃗⃗⃗ =3x −y −z =0,解出即可. 本题考查了线面垂直与数量积的关系、平面的法向量,属于基础题.3.已知AB ⃗⃗⃗⃗⃗ =(1,0,2),AC⃗⃗⃗⃗⃗ =(2,1,1),则平面ABC 的一个法向量为 ______ . 【答案】(-2,3,1)【解析】解:AB ⃗⃗⃗⃗⃗ =(1,0,2),AC ⃗⃗⃗⃗⃗ =(2,1,1),设平面ABC 的法向量为n ⃗ =(x ,y ,z ),则{n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =0n ⃗ ⋅AC⃗⃗⃗⃗⃗ =0,即{x +2z =02x +y +z =0,取x =-2,则z =1,y =3.∴n ⃗ =(-2,3,1).故答案为:(-2,3,1).设平面ABC 的法向量为n ⃗ =(x ,y ,z ),则{n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =0n ⃗ ⋅AC⃗⃗⃗⃗⃗ =0,解出即可. 本题考查了平面的法向量、线面垂直与数量积的关系,属于基础题.4.在三角形ABC 中,A (1,-2,-1),B (0,-3,1),C (2,-2,1),若向量n⃗ 与平面ABC 垂直,且|n⃗ |=√21,则n ⃗ 的坐标为 ______ . 【答案】(2,-4,-1)或(-2,4,1)【解析】解:设平面ABC 的法向量为m ⃗⃗⃗ =(x ,y ,z ),则m ⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,且m ⃗⃗⃗ •AC⃗⃗⃗⃗⃗ =0, ∵AB ⃗⃗⃗⃗⃗ =(-1,-1,2),AC⃗⃗⃗⃗⃗ =(1,0,2), ∴{−x −y +2z =0x +2z =0, 即{x =−2z y =4z, 令z =1,则x =-2,y =4,即m ⃗⃗⃗ =(-2,4,1),若向量n⃗ 与平面ABC 垂直, ∴向量n⃗ ∥m ⃗⃗⃗ , 设n ⃗ =λm ⃗⃗⃗ =(-2λ,4λ,λ),∵|n⃗ |=√21, ∴√21•|λ|=√21,即|λ|=1,解得λ=±1,∴n ⃗ 的坐标为(2,-4,-1)或(-2,4,1),故答案为:(2,-4,-1)或(-2,4,1)根据条件求出平面的法向量,结合向量的长度公式即可得到结论.本题主要考查空间向量坐标的计算,根据直线和平面垂直求出平面的法向量是解决本题的关键.二、解答题(本大题共3小题,共36.0分)5.如图,在四棱锥P-ABCD 中,底面ABCD 为菱形,∠BAD=60°,Q 为AD 的中点.(1)若PA=PD ,求证:平面PQB ⊥平面PAD ;(2)点M 在线段PC 上,PM =13PC ,若平面PAD ⊥平面ABCD ,且PA=PD=AD=2,求二面角M-BQ-C 的大小.【答案】解:(1)证明:由题意知:PQ ⊥AD ,BQ ⊥AD ,PQ ∩BQ=Q ,∴AD ⊥平面PQB ,又∵AD⊂平面PAD ,∴平面PQB ⊥平面PAD .(2)∵PA=PD=AD ,Q 为AD 的中点,∴PQ ⊥AD ,∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD=AD ,∴PQ ⊥平面ABCD ,以Q 这坐标原点,分别以QA ,QB ,QP 为x ,y ,z 轴,建立如图所求的空间直角坐标系,由题意知:Q (0,0,0),A (1,0,0),P (0,0,√3),B (0,√3,0),C (-2,√3,0)∴QM ⃗⃗⃗⃗⃗⃗⃗ =23QP ⃗⃗⃗⃗⃗ +13QC ⃗⃗⃗⃗⃗ =(-23,√33,2√33), 设n 1⃗⃗⃗⃗ 是平面MBQ 的一个法向量,则n 1⃗⃗⃗⃗ ⋅QM ⃗⃗⃗⃗⃗⃗⃗ =0,n 1⃗⃗⃗⃗ ⋅QB ⃗⃗⃗⃗⃗⃗ =0,∴{√3y =0−23x+√33y+2√33z=0,∴n 1⃗⃗⃗⃗ =(√3,0,1),又∵n 2⃗⃗⃗⃗ =(0,0,1)平面BQC 的一个法向量,∴cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ >=12,∴二面角M-BQ-C 的大小是60°.【解析】(1)由题设条件推导出PQ ⊥AD ,BQ ⊥AD ,从而得到AD ⊥平面PQB ,由此能够证明平面PQB ⊥平面PAD .(2)以Q 这坐标原点,分别以QA ,QB ,QP 为x ,y ,z 轴,建立空间直角坐标系,利用向量法能求出二面角M-BQ-C 的大小.本题考查平面与平面垂直的证明,考查二面角的大小的求法,解题时要认真审题,注意向量法的合理运用.6.如图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC=2,点E 是PC 的中点,F在直线PA 上.(1)若EF ⊥PA ,求PF PA 的值;(2)求二面角P-BD-E 的大小.【答案】解:(1)∵在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,∴以D 为原点,DA 为x 轴,DC 为y轴,DP 为z 轴,建立空间直角坐标系,∵PD=DC=2,点E 是PC 的中点,F在直线PA 上,∴P (0,0,2),A (2,0,0),C(0,2,0),E (0,1,1),设F (a ,0,c ),PF ⃗⃗⃗⃗⃗ =λPA⃗⃗⃗⃗⃗ ,则(a ,0,c -2)=λ(2,0,-2)=(2λ,0,-2λ),∴a =2λ,c =2-2λ,F (2λ,0,2-2λ),EF ⃗⃗⃗⃗⃗ =(2λ,-1,1-2λ),PA⃗⃗⃗⃗⃗ =(2,0,-2), ∵EF ⊥PA ,∴EF ⃗⃗⃗⃗⃗ ⋅PA ⃗⃗⃗⃗⃗ =4λ-2+4λ=0,解得λ=14, ∴PF PA =14.(2)P (0,0,2),B (2,2,0),D (0,0,0),E (0,1,1),DP ⃗⃗⃗⃗⃗ =(0,0,2),DB ⃗⃗⃗⃗⃗⃗ =(2,2,0),DE⃗⃗⃗⃗⃗⃗ =(0,1,1), 设平面BDP 的法向量n ⃗ =(x ,y ,z ),则{n ⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =2x +2y =0n⃗ ⋅DP ⃗⃗⃗⃗⃗ =2z =0,取x =1,得n ⃗ =(1,-1,0), 设平面BDE 的法向量m ⃗⃗⃗ =(x ,y ,z ),则{m ⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =2x +2y =0m ⃗⃗⃗ ⋅DE⃗⃗⃗⃗⃗⃗ =y +z =0,取x =1,得m ⃗⃗⃗ =(1,-1,1), 设二面角P-BD-E 的大小为θ,则cos θ=|m ⃗⃗⃗ ⋅n ⃗⃗ ||m ⃗⃗⃗ |⋅|n ⃗⃗ |=2√2⋅√3=√63. ∴二面角P-BD-E 的大小为arccos √63. 【解析】(1)以D 为原点,DA 为x 轴,DC 为y 轴,DP 为z 轴,建立空间直角坐标系,利用向量法能求出PFPA 的值.(2)求出平面BDP 的法向量和设平面BDE 的法向量,由此能求出二面角P-BD-E 的大小.本题考查线段比值的求法,考查二面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.7.如图所示的几何体是由棱台ABC-A 1B 1C 1和棱锥D-AA 1C 1C 拼接而成的组合体,其底面四边形ABCD 是边长为2的菱形,且∠BAD=60°,BB 1⊥平面ABCD ,BB 1=2A 1B 1=2.(Ⅰ)求证:平面AB 1C ⊥平面BB 1D ;(Ⅱ)求二面角A 1-BD-C 1的余弦值.【答案】(Ⅰ)证明:∵BB 1⊥平面ABCD ,∴BB 1⊥AC ,∵ABCD 是菱形,∴BD ⊥AC ,又BD ∩BB 1=B ,∴AC ⊥平面BB 1D ,∵AC⊂平面AB 1C ,∴平面AB 1C ⊥平面BB 1D ;(Ⅱ)设BD 、AC 交于点O ,以O 为坐标原点,以OA 为x 轴,以OD 为y 轴,建立如图所示空间直角坐标系.则B(0,−1,0),D(0,1,0),B 1(0,−1,2),A(√3,0,0),A 1(√32,−12,2),C 1(−√32,−12,2), ∴BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(√32,12,2),BD ⃗⃗⃗⃗⃗⃗ =(0,2,0),BC 1⃗⃗⃗⃗⃗⃗⃗ =(−√32,12,2).设平面A 1BD 的法向量n ⃗ =(x ,y ,z),由{n ⃗ ⋅BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =√32x +12y +2z =0n ⃗ ⋅BD⃗⃗⃗⃗⃗⃗ =2y =0,取z =√3,得n ⃗ =(−4,0,√3), 设平面DCF 的法向量m ⃗⃗⃗ =(x ,y ,z),由{m ⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =2y =0m ⃗⃗⃗ ⋅BC 1⃗⃗⃗⃗⃗⃗⃗ =−√32x +12y +2=0,取z =√3,得m ⃗⃗⃗ =(4,0,√3). 设二面角A 1-BD-C 1为θ,则cosθ=|m ⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||m||n|=1319. 【解析】(Ⅰ)由BB 1⊥平面ABCD ,得BB 1⊥AC ,再由ABCD 是菱形,得BD ⊥AC ,由线面垂直的判定可得AC ⊥平面BB 1D ,进一步得到平面AB 1C ⊥平面BB 1D ;(Ⅱ)设BD 、AC 交于点O ,以O 为坐标原点,以OA 为x 轴,以OD 为y 轴,建立如图所示空间直角坐标系.求出所用点的坐标,得到平面A 1BD 与平面DCF 的法向量,由两法向量所成角的余弦值可得二面角A 1-BD-C 1的余弦值.本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.。
(完整word版)高三数学空间向量专题复习附答案
![(完整word版)高三数学空间向量专题复习附答案](https://img.taocdn.com/s3/m/077966311a37f111f1855b98.png)
一、利用向量处理平行与垂直问题例1、 在直三棱柱111C B A ABC -中,090=∠ACB , 030=∠BAC ,M A A BC ,6,11==是1CC 得中点。
求证:AM B A ⊥1练习:棱长为a 的正方体ABCD —A 1B 1C 1D 1中,在棱DD 1上是否存在点P 使B 1D ⊥面P AC ?例2 如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点N M ,分别在对角线AE BD ,上,且AE AN BD BM 31,31==,求证://MN 平面CDE练习1、在正方体1111D C B A ABCD -中,E,F 分别是BB 1,,CD 中点,求证:D 1F ⊥平面ADE2、如图,在底面是菱形的四棱锥P —ABCD 中, ︒=∠60ABC ,,2,a PD PB a AC PA ====点E 在PD 上,且PE :ED = 2: 1.在棱PC 上是否存在一点F, 使BF ∥平面AEC?证明你的结论.二、利用空间向量求空间的角的问题例1 在正方体1111D C B A ABCD -中,E 1,F 1分别在A 1B 1,,C 1D 1上,且E 1B 1=41A 1B 1,D 1F 1=41D 1C 1,求BE 1与DF 1所成的角的大小。
例2 在正方体1111D C B A ABCD -中, F 分别是BC 的中点,点E 在D 1C 1上,且=11E D 41D 1C 1,试求直线E 1F 与平面D 1AC例3 在正方体1111D C B A ABCD -中,求二面角1C BD A --的大小。
zx1CFD CBA例4 已知E,F分别是正方体1111DCBAABCD-的棱BC和CD的中点,求:(1)A1D与EF所成角的大小;(2)A1F与平面B1EB所成角的大小;(3)二面角BBDC--11的大小。
三、利用空间向量求空间的距离的问题例1 直三棱柱AB C-A1B1C1的侧棱AA1,底面ΔAB C求点B1到平面A1B C的距离。
空间向量的应用专题训练卷(含解析)
![空间向量的应用专题训练卷(含解析)](https://img.taocdn.com/s3/m/97ab338f10661ed9ac51f33a.png)
空间向量的应用专题训练卷一、单选题1.(2020·江苏如东�高一期末)在长方体1111ABCD A B C D -中,2AB BC ==,11AA =,则直线1BC 与平面11BB DD 所成角的正弦值为( )A .63B .102C .155D .1052.(2020·河北新华�石家庄二中高一期末)在正方体1111ABCD A B C D -中,M N ,分别为AD ,11C D 的中点,O 为侧面11BCC B 的中心,则异面直线MN 与1OD 所成角的余弦值为( ) A .16B .14C .16-D .14-3.(2020·辽宁高三其他(文))如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )A 6B 26C 15D 10 4.(2020·黑龙江道里�哈尔滨三中高三二模(理))已知四面体ABCD 中,AB ,BC ,BD 两两垂直,2BC BD ==AB 与平面ACD 所成角的正切值为12,则点B 到平面ACD 的距离为( ) A 3B 23C 5D 255.(2020·山东省济南市莱芜第一中学高二月考)在棱长为1的正方体1111ABCD A B C D -中,点M 为棱1CC 的中点,则直线1B M 与平面11A D M 所成角的正弦值是( )A .215B .25C .35D .456.(2018·浙江高三其他)如图,在长方体11112222A B C D A B C D -中,12111122A A A B B C ==,A ,B ,C 分别是12A A ,12B B ,12C C 的中点,记直线2D C 与1AD 所成的角为α,平面22A BCD 与平面11ABC D 所成二面角为β,则( )A .cos cos αβ=B .sin sin αβ=C .cos cos t αβ>D .sin sin αβ<7.(2020·浙江镇海中学高三三模)在三棱柱111ABC A B C -中,D 是棱BC 上的点(不包括端点),记直线1B D 与直线AC 所成的角为1θ,直线1B D 与平面111A B C 所成的角为2θ,二面角111C A B D --的平面角为3θ,则( ) A .123θθθ<<B .213θθθ<<C .321θθθ<<D .231θθθ<<8.(2020·浙江衢州�高二期末)在底面为锐角三角形的直三棱柱111ABC A B C -中,D 是棱BC 的中点,记直线1B D与直线AC 所成角为1θ,直线1B D 与平面111A B C 所成角为2θ,二面角111C A B D --的平面角为3θ,则( )A .2123,θθθθ<<B .2123,θθθθ><C .2123,θθθθ<>D .2123,θθθθ>>9.(2020·浙江省杭州第二中学高三其他)空间线段AC AB ⊥,BD AB ⊥,且::1:3:1AC AB BD =,设CD 与AB 所成的角为α,CD 与面ABC 所成的角为β,二面角C AB D --的平面角为γ,则( ) A .2γβα≤≤B .2γβα≤≤ C .2γαβ≤≤D .2γαβ≤≤10.(2020·四川高三三模(理))如图该几何体由半圆柱体与直三棱柱构成,半圆柱体底面直径BC =4,AB =AC ,∠BAC =90°,D 为半圆弧的中点,若异面直线BD 和AB 1所成角的余弦值为23,则该几何体的体积为( )A .16+8πB .32+16πC .32+8πD .16+16π二、多选题11.(2019·江苏徐州�高二期末)下列命题中正确的是( )A .,,,AB M N 是空间中的四点,若,,BA BM BN 不能构成空间基底,则,,,A B M N 共面 B .已知{},,a b c 为空间的一个基底,若m a c =+,则{},,a b m 也是空间的基底 C .若直线l 的方向向量为(1,0,3)e =,平面α的法向量为2(2,0,)3n =-,则直线//l αD .若直线l 的方向向量为(1,0,3)e =,平面α的法向量为(2,0,2)n =-,则直线l 与平面α所成角的正弦512.(2020·山东平邑�高二期末)如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60°,下列说法中正确的是( )A .()()2212AA AB ADAC ++=B .()10AC AB AD ⋅-= C .向量1B C 与1AA 的夹角是60°D .1BD 与AC 所成角的余弦值为6313.(2020·福建厦门�高二期末)正方体1111ABCD A B C D -中,E 、F 、G 、H 分别为1CC 、BC 、CD 、BB 、1BB 的中点,则下列结论正确的是( )A .1B G BC ⊥ B .平面AEF 平面111AAD D AD =C .1//A H 面AEFD .二面角E AF C --的大小为4π14.正三棱柱111ABC A B C -中,13AA =,则( ) A .1AC 与底面ABC 的成角的正弦值为12 B .1AC 与底面ABC 的成角的正弦值为32 C .1AC 与侧面11AA B B 3D .1AC 与侧面11AA B B 的成角的正弦值为134三、单空题15.(2020·四川省南充市白塔中学高二月考(理))已知平面α的一个法向量10,,22n ⎛⎫=-- ⎪⎝⎭,A α∈,P α∉,且31,,222PA ⎛⎫=-⎪ ⎪⎝⎭,则直线PA 与平面α所成的角为______. 16.(2019·河南高二竞赛)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为33,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 17.(2019·安徽埇桥�北大附宿州实验学校高二期末(理))若平面α,β的法向量分别为(4,0,3)u =,(1,1,0)v =-,则这两个平面所成的锐角的二面角的余弦值为________.四、双空题18.(2020·浙江宁波�高二期末)在正四面体ABCD 中,M ,N 分别为棱BC 、AB 的中点,设AB a =,AC b =,AD c =,用a ,b ,c 表示向量DM =______,异面直线DM 与CN 所成角的余弦值为______.19.(2018·北京海淀�高二期末(理))已知棱长为1的正四面体ABCD ,O 为A 在底面BCD 上的正射影,如图建立空间直角坐标系,M 为线段AB 的中点,则M 点坐标是__________,直线DM 与平面BCD 所成角的正弦值是__________.20.(2020·山东德州�高二期末)如图,在直三棱柱111ABC A B C -中,90ACB ∠=︒,11AA AC BC ===,则异面直线1BC 与11A B 所成角为______;二面角1A BC C --的余弦值是______.21. 如图,在三棱锥S ABC -中,SA SB SC ==,且2ASB BSC CSA π∠=∠=∠=,M 、N 分别是AB 和SC 的中点,则异面直线SM 与BN 所成的角的余弦值为________,二面角A SC M --大小为________.五、解答题22.(2020·上海高三专题练习)如图,在棱长为1的立方体1111ABCD A B C D -中,E 是棱11A D 的中点,H 为平面11AA D D 内的点.(1)若1C H ⊥平面BDE ,确定点H 的位置; (2)求点1C 到平面BDE 的距离.23.(2020·全国高二课时练习)在直三棱柱中,13AA AB BC ===,2AC =,D 是AC 的中点.(1)求证:1//B C 平面1A BD ; (2)求直线1B C 到平面1A BD 的距离.24.(2019·天津南开�崇化中学高二期中)如图,四棱锥P ABCD -的底面是边长为2的正方形,侧面PCD ⊥底面ABCD ,且2PC PD ==,M ,N 分别为棱PC ,AD 的中点.(1)求证:BC PD ⊥;(2)求异面直线BM 与PN 所成角的余弦值; (3)求点N 到平面MBD 的距离.25.(2020·河南高三其他(理))《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵(qian du );阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖膈(bie nao )指四个面均为直角三角形的四面体.如图在堑堵111ABC A B C -中,AB AC ⊥.(1)求证:四棱锥11B A ACC -为阳马;(2)若12C C BC ==,当鳖膈1C ABC -体积最大时,求锐二面角11C A B C --的余弦值.26.(2019·浙江衢州�高二期中)四棱锥P ABCD -中,AP AC =,底面ABCD 为等腰梯形,//CD AB ,222AB CD BC ===,E 为线段PC 的中点,PC CB ⊥.(1)证明:AE ⊥平面PCB ;(2)若2PB =,求直线DP 与平面APC 所成角正弦值.27. (2020·武威第六中学高三其他(理))如图,四棱锥P ABCD -的底面为直角梯形,//BC AD ,90BAD ∠=︒,222AD PD AB BC ====,M 为PA 的中点.(Ⅰ)求证://BM 平面PCD(Ⅱ)若平面ABCD ⊥平面PAD ,异面直线BC 与PD 所成角为60°,且PAD △是钝角三角形,求二面角B PC D --的正弦值1.(2020·江苏如东 高一期末)在长方体1111ABCD A B C D -中,2AB BC ==,11AA =,则直线1BC 与平面11BB DD 所成角的正弦值为( )A .63B .102C .155D .105【答案】D 【解析】以D 点为坐标原点,以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系,则1(2,0,0),(2,2,0),(0,2,0),A B C C (0,2,1),1(2,0,1),(2,2,0),BC AC AC ∴=-=-为平面11BB D D 的一个法向量. 110cos ,58BC AC ∴<>==⋅. ∴直线1BC 与平面11BB DD 所成角的正弦值为105. 故选:D .2.(2020·河北新华 石家庄二中高一期末)在正方体1111ABCD A B C D -中,M N ,分别为AD ,11C D 的中点,O 为侧面11BCC B 的中心,则异面直线MN 与1OD 所成角的余弦值为( ) A .16B .14C .16-D .14-【答案】A如图,以D 为坐标原点,分别以1,,DA DC DD 所在直线为,,x y z 轴建立空间直角坐标系. 设正方体的棱长为2,则()()()()1100,012,121,002M N O D ,,,,,,,,, ∴()()11,1,2,1,2,1MN OD =-=--. 则11111cos ,666MN OD MN OD MN OD ⋅===⋅. ∴异面直线MN 与1OD 所成角的余弦值为16,故选A .3.(2020·辽宁高三其他(文))如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )A .63B .65C .155D .105【答案】D 【解析】以D 点为坐标原点,以DA 、DC 、1DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系则A (2,0,0),B (2,2,0),C (0,2,0),1C (0,2,1)∴1BC =(-2,0,1),AC =(-2,2,0),AC 且为平面BB 1D 1D 的一个法向量.∴1410cos ,558BC AC 〈〉==⋅.∴BC 1与平面BB 1D 1D 所成角的正弦值为105 4.(2020·黑龙江道里 哈尔滨三中高三二模(理))已知四面体ABCD 中,AB ,BC ,BD 两两垂直,2BC BD ==,AB 与平面ACD 所成角的正切值为12,则点B 到平面ACD 的距离为( ) A .32B .233C .55D .255【答案】D 【解析】以B 为原点,BC ,BD ,BA 分别为x ,y ,z 轴建立空间直角坐标系,如图所示:设BAt ,0t >,()0,0,0B ,)2,0,0C ,()2,0D ,0,0,A t .0,0,AB t ,2,0,CAt ,2,2,0CD.设平面ACD 的法向量(),,n x y z =,则20220n CA x tz n CD x y ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,令1x =,得1y =,2z t =,故21,1,n t ⎛= ⎝⎭.因为直线AB 与平面ACD 所成角的正切值为12, 所以直线AB 与平面ACD 5. 即2255211AB nAB nt t ⋅==⋅⋅++,解得2t =.所以平面ACD 的法向量21,1,2n ⎛⎫= ⎪ ⎪⎝⎭, 故B 到平面ACD的距离为22551112AB n d n⋅===++.故选:D5.(2020·山东省济南市莱芜第一中学高二月考)在棱长为1的正方体1111ABCD A B C D -中,点M 为棱1CC 的中点,则直线1B M 与平面11A D M 所成角的正弦值是( )A .215B .25C .35D .45【答案】B 【解析】建立如图所示的空间直角坐标系, 则1111(1,0,1),(0,0,1),(0,1,),(1,1,1)2A D M B11(1,0,0)=-A D ,11(0,1,)2=-D M ,11(1,0,)2=MB设平面11A D M 的法向量为(,,)m x y z =则1110=01002x A D m y z D M m -=⎧⎧⋅⎪⎪⇒⎨⎨-=⋅=⎪⎩⎪⎩令1y =可得2z =,所以(0,1,2)=m 设直线1B M 与平面11A D M 所成角为θ,1112sin 5552θ⋅===⋅⨯m MB m MB故选:B6.(2018·浙江高三其他)如图,在长方体11112222A B C D A B C D -中,12111122A A A B B C ==,A ,B ,C 分别是12A A ,12B B ,12C C 的中点,记直线2D C 与1AD 所成的角为α,平面22A BCD 与平面11ABC D 所成二面角为β,则( )A .cos cos αβ=B .sin sin αβ=C .cos cos t αβ>D .sin sin αβ<【答案】B 【解析】连接111,AB B D ,如图,在长方体内知12//AB D C ,所以11B AD ∠为异面直线2D C 与1AD 所成的角为α, 易知11AB D 为等边三角形, 所以60α︒=,因为22A D ⊥平面22ABB A ,2AB ⊂平面22ABB A , 所以22A D ⊥2AB 又22AB A B ⊥,2222A D A B A =所以2AB ⊥平面22A BCD , 同理可得1B C ⊥平面11ABC D ,则2AB →,1B C →可分别视为平面22A BCD ,平面11ABC D 的一个法向量,又因为在长方体内易知21//AD B C ,而2260D AB ∠=︒ 故2AB →与1B C →的夹角为60︒, 所以60β︒=或120β︒=,即sin sin αβ=, 故选:B7.(2020·浙江镇海中学高三三模)在三棱柱111ABC A B C -中,D 是棱BC 上的点(不包括端点),记直线1B D 与直线AC 所成的角为1θ,直线1B D 与平面111A B C 所成的角为2θ,二面角111C A B D --的平面角为3θ,则( )A .123θθθ<<B .213θθθ<<C .321θθθ<<D .231θθθ<<【答案】D 【解析】设三棱柱111ABC A B C -是棱长为2的正三棱柱,D 是棱BC 的中点, 以A 为原点,在平面ABC 中,过A 作AC 的垂线为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,则()10,0,2A ,()13,1,2B ,()0,2,0C ,33,022D ⎛⎫⎪ ⎪⎝⎭,()0,0,0A ,()0,2,0AC =,131,22B D ⎛⎫=- ⎪ ⎪⎝⎭,()113,1,0=A B ,直线1B D 与直线AC 所成的角为1θ,1111cos 25B D AC BD ACθ⋅∴==⋅直线1B D 与平面111A B C 所成的角为2θ, 平面111A B C 的法向量()0,0,1n =,1212sin 5BD n BD nθ⋅∴==⋅2cos θ∴== 设平面11A B D 的法向量(),,m a b c =,则11130312022m AB a b m B D a b c ⎧⋅=+=⎪⎨⋅=-+-=⎪⎩,取a =33,3,2m ⎛⎫=-- ⎪⎭,二面角111C A B D --的平面角为3θ,332cos 57m n m nθ⋅∴===⋅231cos cos cos θθθ>>, ∴231θθθ<<故选:D8.(2020·浙江衢州 高二期末)在底面为锐角三角形的直三棱柱111ABC A B C -中,D 是棱BC 的中点,记直线1B D 与直线AC 所成角为1θ,直线1B D 与平面111A B C 所成角为2θ,二面角111C A B D --的平面角为3θ,则( )A .2123,θθθθ<<B .2123,θθθθ><C .2123,θθθθ<>D .2123,θθθθ>>【答案】A 【解析】由题可知,直三棱柱111ABC A B C -的底面为锐角三角形,D 是棱BC 的中点, 设三棱柱111ABC A B C -是棱长为2的正三棱柱,以A 为原点,在平面ABC 中,过A 作AC 的垂线为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,则()10,0,2A ,()13,1,2B ,()0,2,0C ,33,02D ⎫⎪⎪⎝⎭,()0,0,0A ,()0,2,0AC →=,131,222B D →⎛⎫=-- ⎪ ⎪⎝⎭,)113,1,0A B →=,直线1B D 与直线AC 所成的角为1θ,10,2πθ⎛⎤∈ ⎥⎝⎦,111cos 25B D ACB D ACθ→→→→⋅∴==⋅直线1B D 与平面111A B C 所成的角为2θ,20,2πθ⎡⎤∈⎢⎥⎣⎦, 平面111A B C 的法向量()0,0,1n →=,121sin 5B D nB D nθ→→→→⋅∴==⋅, 222cos 155θ⎛⎫∴=-= ⎪⎝⎭设平面11A B D 的法向量(),,m a b c →=,则11130312022m A B ab m B D a bc ⎧⋅=+=⎪⎨⋅=-+-=⎪⎩, 取a =33,2m →⎫=--⎪⎭, 二面角111C A B D --的平面角为3θ, 由图可知,3θ为锐角,即30,2πθ⎛⎫∈ ⎪⎝⎭, 33cos m nm nθ→→→→⋅∴===⋅ 231cos cos cos θθθ>>,由于cos y θ=在区间()0,π上单调递减,∴231θθθ<<,则2123,θθθθ<<.故选:A.9.(2020·浙江省杭州第二中学高三其他)空间线段AC AB ⊥,BD AB ⊥,且::1:3:1AC AB BD =,设CD 与AB 所成的角为α,CD 与面ABC 所成的角为β,二面角C AB D --的平面角为γ,则( ) A .2γβα≤≤B .2γβα≤≤ C .2γαβ≤≤D .2γαβ≤≤【答案】A 【解析】因为空间线段AC AB ⊥,BD AB ⊥, 所以可将其放在矩形中进行研究,如图,绘出一个矩形,并以A 点为原点构建空间直角坐标系:因为::1:3:1AC AB BD =,所以可设AC x =,3AB x =,BD x =,则()0,0,0A ,0,3,0B x ,0,0,C x ,,3,0D x x ,,3,CD x x x ,0,3,0AB x ,0,3,CB x x ,故CD 与AB 所成的角α的余弦值229311cos α11113CD AB x CD ABx x, 因为根据矩形的性质易知平面ABD ⊥平面ABC ,BD ⊥平面ABC , 所以二面角C AB D --的平面角为γ90,γ452,γ2cos22, 所以BCD ∠即CD 与面ABC 所成的角β, 故110cos β11CD CB CD CB , 1103112112, 所以2γβα≤≤,故选:A.10.(2020·四川高三三模(理))如图该几何体由半圆柱体与直三棱柱构成,半圆柱体底面直径BC =4,AB =AC ,∠BAC =90°,D 为半圆弧的中点,若异面直线BD 和AB 1所成角的余弦值为23,则该几何体的体积为( )A .16+8πB .32+16πC .32+8πD .16+16π【答案】A 【解析】设D 在底面半圆上的射影为1D ,连接1AD 交BC 于O ,设1111A D B C O ⋂=. 依题意半圆柱体底面直径4,,90BC AB AC BAC ==∠=︒,D 为半圆弧的中点, 所以1111,AD BC A D B C ⊥⊥且1,O O 分别是下底面、上底面半圆的圆心.连接1OO , 则1OO 与上下底面垂直,所以11,,OO OB OO OA OA OB ⊥⊥⊥,以1,,OB OA OO 为,,x y z 轴建立空间直角坐标系,设几何体的高为()0h h >,则()()()()12,0,0,0,2,,0,2,0,2,0,B D h A B h -,所以()()12,2,,2,2,BD h AB h =--=-, 由于异面直线BD 和1AB 所成的角的余弦值为23, 所以212212388BD AB h BD AB h h ⋅==⋅+⋅+, 即2222,16,483h h h h ===+. 所以几何体的体积为2112442416822ππ⨯⨯⨯+⨯⨯⨯=+. 故选:A二、多选题11.(2019·江苏徐州 高二期末)下列命题中正确的是( )A .,,,AB M N 是空间中的四点,若,,BA BM BN 不能构成空间基底,则,,,A B M N 共面 B .已知{},,a b c 为空间的一个基底,若m a c =+,则{},,a b m 也是空间的基底 C .若直线l 的方向向量为(1,0,3)e =,平面α的法向量为2(2,0,)3n =-,则直线//l αD .若直线l 的方向向量为(1,0,3)e =,平面α的法向量为(2,0,2)n =-,则直线l 与平面α所成角的正弦5【答案】ABD 【解析】对于A ,,,,A B M N 是空间中的四点,若,,BA BM BN 不能构成空间基底,则,,BA BM BN 共面,则,,,A B M N 共面,故A 对;对于B ,已知{},,a b c 为空间的一个基底,则,,a b c 不共面,若m a c =+,则,,a b m 也不共面,则{},,a b m 也是空间的基底,故B 对;对于C ,因为21(2)+00+3=03e n ⋅=⨯-⨯⨯,则e n ⊥,若l α⊄,则//l α,但选项中没有条件l α⊄,有可能会出现l α⊂,故C 错; 对于D ,∵cos ,e n e n e n =51022==⨯l 与平面α5,故D 对; 故选:ABD .12.(2020·山东平邑 高二期末)如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60°,下列说法中正确的是( )A .()()2212AA AB ADAC ++=B .()10AC AB AD ⋅-= C .向量1B C 与1AA 的夹角是60° D .1BD 与AC 6【答案】AB 【解析】以顶点A 为端点的三条棱长都相等, 它们彼此的夹角都是60°, 可设棱长为1,则11111cos602AA AB AA AD AD AB ⋅=⋅=⋅=⨯⨯︒=()22221111=+2+2+2AA AB AD AA AB AD AA AB AB AD AA AD ++++⋅⋅⋅11113262=+++⨯⨯=而()()()22222222ACAB AD AB AD AB AD =+=++⋅121122362⎛⎫=++⨯=⨯= ⎪⎝⎭, 所以A 正确.()()()11AC AB AD AA AB AD AB AD ⋅-⋅=++-2211AA AB AA AD AB AB AD AD AB AD =⋅-⋅+-⋅+⋅- =0,所以B 正确.向量11B C A D=, 显然1AA D △ 为等边三角形,则160AA D ∠=︒.所以向量1A D 与1AA 的夹角是120︒ ,向量1B C 与1AA 的夹角是120︒,则C 不正确 又11=AD AA BD AB +-,AC AB AD =+ 则()211||=2AD AA A B B D =+-,()2||=3AC AB AD =+()()111AD AA AB BD AC AB AD ⋅=+-=+⋅所以11116cos ===6||||23BD AC BD AC BD AC ⋅⋅⨯,,所以D 不正确.故选:AB13.(2020·福建厦门 高二期末)正方体1111ABCD A B C D -中,E 、F 、G 、H 分别为1CC 、BC 、CD 、BB 、1BB 的中点,则下列结论正确的是( )A .1B G BC ⊥ B .平面AEF 平面111AAD D AD =C .1//A H 面AEFD .二面角E AF C --的大小为4π【答案】BC 【解析】由题可知,1B G 在底面上的射影为BG ,而BC 不垂直BG , 则1B G 不垂直于BC ,则选项A 不正确;连接1AD 和1BC ,E 、F 、G 、H 分别为1CC 、BC 、CD 、BB 、1BB 的中点, 可知11////EF BC AD ,所以AEF ∆⊂平面1AD EF , 则平面AEF平面111AA D D AD =,所以选项B 正确;由题知,可设正方体的棱长为2,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴, 则各点坐标如下:()()()()()()12,0,0,0,2,0,0,2,1,2,0,2,2,2,1,1,2,0A C E A H F ()()()()110,2,1,1,2,0,1,0,1,0,0,2A H AF EF AA =-=-=-=,设平面AEF 的法向量为(),,n x y z =,则00n AF n EF ⎧⋅=⎨⋅=⎩,即20x y x z -+=⎧⎨-=⎩,令1y =,得2,2x z ==,得平面AEF 的法向量为()2,1,2n =,所以10A H n ⋅=,所以1//A H 平面AEF ,则C 选项正确; 由图可知,1AA ⊥平面AFC ,所以1AA 是平面AFC 的法向量, 则1112cos ,3AA n AA n AA n⋅<>===⋅. 得知二面角E AF C --的大小不是4π,所以D 不正确. 故选:BC.14.正三棱柱111ABC A B C -中,13AA =,则( ) A .1AC 与底面ABC 的成角的正弦值为12 B .1AC 与底面ABC 的成角的正弦值为32 C .1AC 与侧面11AA B B 3D .1AC 与侧面11AA B B 的成角的正弦值为134【答案】BC 【解析】如图,取11A C 中点E ,AC 中点F ,并连接EF , 则1EB ,1EC ,EF 三条直线两两垂直,则分别以这三条直线为x 轴,y 轴,z 轴建立如图所示空间直角坐标系; 设2AB =; 则123AA =; 1(0A ∴,1-,0),1(0C ,1,0),(0A ,1-,23),(0C ,1,23);1(3B ,0,0), ∴()10,2,23AC =-.底面ABC 的其中一个法向量为:()0,0,23m =,1AC ∴与底面ABC 的成角的正弦值为111123cos ,2423m AC m AC m AC -<>===⨯⨯,; A ∴错B 对.11A B 的中点K 的坐标为3(2,12-,0);∴侧面11AA B B 的其中一个法向量为:133,,022KC ⎛⎫=- ⎪ ⎪⎝⎭;1AC ∴与侧面11AA B B 的成角的正弦值为:11111133cos 4,43AC KC AC KC AC KC <>===⨯⨯,; 故C 对D 错; 故选:BC .三、单空题15.(2020·四川省南充市白塔中学高二月考(理))已知平面α的一个法向量10,,22n ⎛⎫=-- ⎪⎝⎭,A α∈,P α∉,且31,,222PA ⎛⎫=- ⎪ ⎪⎝⎭,则直线PA 与平面α所成的角为______.【答案】π3【解析】设直线PA 与平面α所成的角为θ,则s 102342131022444in cos n PA n PAθθ===--⋅=⋅++++, ∴直线PA 与平面α所成的角为π3. 故答案为:π3. 16.(2019·河南高二竞赛)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为33,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 【答案】16【解析】设AB =2,作CO ⊥面ABDEOH ⊥AB ,则CH ⊥AB ,∠CHO 为二面角C −AB −D 的平面角,CH =OH =CH cos ∠CHO =1,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,3,11(),2212AN EM CH AN AC AB EM AC AE AN EM====+=-∴⋅=故EM ,AN 116=。
空间向量练习及答案解析
![空间向量练习及答案解析](https://img.taocdn.com/s3/m/5bdc7a384b7302768e9951e79b89680203d86b31.png)
空间向量练习及答案解析1.已知平面α的一个法向量为(2,-1,1),且α∥β,则平面β的一个可能的法向量是哪个?A。
(4,2,-2) B。
(2,0,4) C。
(2,-1,-5) D。
(4,-2,2)2.在如图所示的正方形ABCD中,过点A作线段EA垂直于平面AC,若EA=1,则平面ADE和平面BCE所成的二面角大小是多少?A。
120° B。
45° C。
150° D。
60°3.已知向量a=(1,2,3),向量b=(2,1,2),向量c=(1,1,2),点Q在直线OP上移动,当a·Q+b·Q取得最小值时,点Q的坐标是多少?A。
B。
C。
D.4.将正方形ABCD沿对角线BD折成直角二面角A-BD-C,以下哪个结论是错误的?A。
AC⊥BDB。
△ACD是等边三角形C。
∠ABC与平面BCD所成的角为60°D。
∠ABD与CD所成的角为60°5.在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E和F分别是棱AB和BB1的中点,直线EF和BC1的夹角是多少?A。
45° B。
60° C。
90° D。
120°6.在空间四面体O-ABC中,点M在线段OA上,且OM=2MA,点N为BC中点,设∠AOM=a,∠BOM=b,∠CON=c,则a+b-c等于多少?A。
a+b-c B。
-a+b+c C。
a-b+c D。
a+b-c7.在棱长为2的正方体ABCD-A1B1C1D1中,E是DC的中点,建立如图所示的空间直角坐标系,AB1和D1E所成角的余弦值是多少?A。
B。
C。
- D。
-8.在正方体ABCD-A1B1C1D1中,M、N、P分别是棱CC1、BC和A1B1上的点,若∠B1MN=90°,则∠PMN的大小是多少?A。
等于90° B。
小于90° C。
初中数学解空间向量练习题及答案
![初中数学解空间向量练习题及答案](https://img.taocdn.com/s3/m/915c3d6bac02de80d4d8d15abe23482fb4da0203.png)
初中数学解空间向量练习题及答案1. 已知点A(1, 3, -2),点B(4, -1, 5),求向量AB的起点坐标和终点坐标。
解答:向量AB的起点坐标为A(1, 3, -2),终点坐标为B(4, -1, 5)。
2. 已知点A(2, -1, 3),点B(-3, 4, 1),求向量BA的起点坐标和终点坐标。
解答:向量BA的起点坐标为B(-3, 4, 1),终点坐标为A(2, -1, 3)。
3. 已知向量a(2, -1, 3),向量b(4, 3, -2),求向量a+b的坐标。
解答:向量a+b的坐标为(6, 2, 1)。
4. 已知向量a(2, -1, 3),向量b(-4, 2, -6),求向量a-b的坐标。
解答:向量a-b的坐标为(6, -3, 9)。
5. 已知向量a(1, 2, -3),向量b(3, -2, 1),求向量a•b的结果。
解答:向量a•b的结果为 1*3 + 2*(-2) + (-3)*1 = 3 - 4 - 3 = -4。
6. 已知向量a(2, -1, 3),向量b(-4, 2, -6),求向量a×b的坐标。
解答:向量a×b的坐标为(0, -24, 8)。
7. 已知向量a(2, 3, -1),向量b(1, -2, 4),求向量a与向量b的夹角的余弦值。
解答:向量a与向量b的夹角的余弦值为 (2*1 + 3*(-2) + (-1)*4) / (sqrt(2^2 + 3^2 + (-1)^2) * sqrt(1^2 + (-2)^2 + 4^2)) = (2 - 6 - 4) / (sqrt(14)* sqrt(21)) ≈ -0.380。
8. 已知向量a(2, 1, -3),向量b(-2, -3, 1),求向量a与向量b的夹角的弧度值。
解答:向量a与向量b的夹角的余弦值为 -0.380,由反余弦函数可求得夹角的弧度值为约2.239弧度。
9. 已知向量a(2, 3, -1),向量b(1, -2, 4),求向量a与向量b的夹角的度数值。
空间向量专题练习答案
![空间向量专题练习答案](https://img.taocdn.com/s3/m/e5bdbb9533687e21ae45a9c1.png)
空间向量专题练习一.填空题(本大题共4小题,共20.0分)1.平而<1的法向星:为(1, 0, -1),平而B的法向虽:为(0, -1, 1),则平而u与平面B所成二而角的大小为 __________________ .【答案】【解析】解:设平面0的法向量为齐=(1, 0> -1),平而B的法向量为五=(0.・1,1), [ T. lx0+0x(-l)+(-l)xl 1则cos<m9----------- 运頁----- =--»A <m9 n>=—・3•••平而a与平而P所成的角与<横,五〉相等或互补,••• 0与B所成的角为吕或乎.S 3故答案为:专或?・S 3利用法向量的夹角与二而角的关系即可得出.本题考査了利用用法向呈:的夹角求二而角的方法,考查了计算能力,属于基础题.2.平而a经过三点A (-1, 0, 1), B (1, 1, 2), C (2, -1, 0),则平而«的法向量处可以是 (写出一个即可)【答案】(0, 1, -1)【解巴_解:AB= (2, 1, 1), ~AC= (3, -1, -1),设平而a的法向颤=(x, y, z),n,.fu ・AB = 2x + y + z = 0人则L —* ,令z=-l> y=l > x=0・u ・ AC = 3x_y_z = 0.\u=(0, 1> -1).故答案为:(0, 1, -1).设平而a的法向皈=(x, ” z),贝|j :•竺= 2x + y+z=0,解出即可.u ・ AC = 3x — y — z = 0本题考査了线而垂直与数量积的关系、平而的法向量,属于基础题.3•已知乔=(1, 0, 2), AC=(2, 1, 1),则平而ABC的一个法向量为___________________【答案】(-2, 3, 1)【解巴_解:AB= (1» 0, 2)»7c=(2, 1, 1),设平而ABC的法向量为五=(x, y, z)9即{丁;;:二0‘ 取02,则□,3=3.•*.n= (2 3, 1). 故答案为:(-2, 3, 1).设平而ABC 的法向軒辰g” 2),则骨罗裁解出即可.本题考査了平而的法向虽:、线面垂直与数量积的关系.属于基础题.4•在三角形ABC 中,A (1, -2, -1), B (0,・3, 1), C (2,-2, 1),若向屋沉与平而 ABC 垂直,且|n|=VH ,贝陀的坐标为 ___________________ .【答案】(2,・4, -1)或(・2, 4, 1)【解析】解:设平面ABC 的法向量为齐=(X, y, z),则m-AB=0^且齐•亍?=0,9:AB= (-1, -1> 2), AC=(1> 0, 2),• f -x-y+ 2z = 0 ••& + 2z = 0令 2=1,则 X=・2, >-4,BPm= (-2, 4, 1 )>若向虽云与平而ABC 垂直,向Mn/7m,设并=^m= (-2 X t 4 X t X ),V|n|=V21»AV21e | ^|=V21,即| X |=1,解得X=±l,••用的坐标为(2, -4, -1)或(-2, 4, 1),故答案为:(2, -4, -1)或(-2, 4, 1)根据条件求岀平而的法向量,结合向量的长度公式即可得到结论.本题主要考查空间向量坐标的汁算,根据直线和平面垂直求岀平而的法向量是解决本 题的关键.二 解答题(本大题共3小题,共36.0分)5•如图,在四棱锥P-ABCD 中,底而ABCD 为菱形,ZBAD=60° , Q 为 AD 的中点.(1)若PA=PD,求证:平而PQB 丄平而PAD ;PAD 丄平而 ABCD,且 PA=PD=AD=2,求二面角 M- BQ-C的大小.(2)点M 在线段PC 上,PM = fPG 若平而【答案】解:(1)证明:由题意知:PQ丄AD, BQ丄AD, PQCBQ=Q, •••AD丄平而PQB,又VADcz平而PAD.•••平而PQB丄平而PAD.(2)•••PA=PD=AD, Q 为AD 的中点,APQ 丄AD,•••平而PAD丄平而ABCD,平而PADH平面ABCD=AD, .\PQ丄平而ABCD,以Q这坐标原点,分別以QA, QB, QP为x,尹,z轴,建立如图所求的空间直角坐标系,由题意知:Q (0, 0. 0), A (1, 0, 0),P (0, 0. V3)t B (0,岳0), C (・2,屆 0)••丽=前+近=q爭攀),设石是平Ifil MBQ的一个法向量,则灵•莎=0,況•亦=0,3 8> •,-n1 = (V3, 0, 1)»V3y = 0 又••冗=(o, 0・1)平而BQC的一个法向駄「•cosV頁,兄 >=尹•••二而角M-BQ-C的大小是60°・【解析】(1)由题设条件推导岀PQ丄AD, BQ丄AD,从而得到AD丄平而PQB,由此能够证明平而PQB丄平而PAD.(2)以Q这坐标原点,分别以QA, QB, QP为x, y, z轴,建立空间直角坐标系,利用向量法能求出二面角M-BQ-C的大小.本题考査平而与平面垂直的证明,考査二面角的大小的求法,解题时要认貞•审题,注意向量法的合理运用.D6•如图,在四棱锥P-ABCD中,底而ABCD是正方形,侧棱PD丄底而ABCD, PD=DC=2,点E是PC的中点,F 在直线PA上・(1)若EF丄PA,求等的值;PA(2)求二而角P-BD-E的大小・【答案】解:(1) •••在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD丄底而ABCD,•••以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,•••PD=DC=2,点E 是PC 的中点,F 在直线PA上,•••P (0, 0, 2), A (2, 0, 0), Cy (0, 2, 0), E (0, 1, 1),设 F (a, 0, c), ~PF = XPA'则(a, 0, c-2) = X (2, 0, -2)=(2X, 0, -2X ),:g=2 X , c=2-2 X , F (2 X t 0,2-2 X ),EF= (2 X , -1, 1-2 X ), PA= (2, 0, -2),VEF丄PA, :J EF•芮=4「2+4 入=0,解得久=;4PA 4(2) P (0, 0, 2), B (2, 2, 0), D (0, 0, 0), E (0, 1, 1), DP= (0, 0, 2), ~DB= (2, 2, 0), DE= (0. 1, 1), 设平而BDP的法向輛=(x, y9 z)»则(n-DB = 2x + 2y=0t取口,得云=(「① °),・ DP = 2z = 0设平而BDE的法向虽预=(x, v, z),nil frn • DB = 2x + 2y = 0吋扫_♦/、则—•,取x=l,得m= (I,l)tDE = y + z = 0设二而角P-BD-E的大小为(),•••二而角P-BD-E的大小为"ccosj3【解析】(1)以D为原点,DA为X轴,DC为y轴,DP为z轴,建立空间直角坐标系,利用向量法能求出等的值.PA(2)求出平而BDP的法向量利设平而BDE的法向量,由此能求出二而角P-BD-E的大小.本题考査线段比值的求法,考查二而角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.7•如图所示的几何体是由棱台ABC-AiBiCi 和 棱锥D-AAiCiC 拼接而成的组合体,其底而四 边形ABCD 是边长为2的菱形,且ZBAD=60° , BBi 丄平而 ABCD, BBi=2AiBi=2.(I )求证:平而AB <丄平而BBiD ;(II )求二面角Ai-BD-Ci 的余弦值.【答案】(I )证明:VBBi±平面 ABCD,ABBi 丄 AC,VABCD 是菱形,•••BD 丄AC,又 BDCBB —B,「.AC 丄平而 BBiD,VACu 平而ABiC, •••平而ABiC 丄平面 BBiD :(II )设BD 、AC 交于点0,以0为坐标原 点,以0A 为x 轴,以0D 为y 轴,建立如图 所示空间直角坐标系.则3(0, - 1, 0), D(0, 1, 0), 3丄(0, -「2)/ >1(73, 0, 0),-扌’2),一扌.2), BAi = (― 9 — 9 2)9 BD = (0 f 29 0), B(\ = (—— , — / 2)・设平而AiBD 的法向Mn = (x, y, z)・..... ]由n.^ = T x + -y + 2z = 0f 取斗齿,得宀㈠,°,冏,齐・ BD = 2y= 0设平而DCF 的法向= y, z),设二而角Ai-BD-Ci 为(),【解析】 (I )由BBi 丄平而ABCD,得BBi 丄AC,再由ABCD 是菱形,得BD 丄AC,由线而垂 直的判泄可得AC 丄平而BBiD,进一步得到平WABiC 丄平而BBiD ;(II)设BD 、AC 交于点0,以0为坐标原点,以0A 为x 轴,以0D 为y 轴,建立如 图所示空间直角坐标系.求出所用点的坐标,得到平而AiBD 与平而DCF 的法向量, 由两法向量所成角的余弦值可得二而角Ai-BD-Ci 的余弦值.本题考査平而与平面垂宜的判泄,考査空间想象能力和思维能力,训练了利用空间向 量求二而角的平而角,是中档题.取 Win = (4 0, V3).贝 Ijcos0 = |mn| 131• BD = 2y = 0 --- >/3 \ •SC 】=-—x + -y+ 2 = 0 2 2丿。
空间向量题目
![空间向量题目](https://img.taocdn.com/s3/m/1cbbfa927d1cfad6195f312b3169a4517723e5e6.png)
空间向量题目一、已知空间向量a与向量b不共线,且向量c满足c = a + 2b,则下列说法正确的是?A. 向量a与向量c一定共线B. 向量b与向量c一定共线C. 向量a、b、c一定共面D. 向量a、b、c一定不共面(答案:C)二、空间四边形ABCD中,M、N分别是AB、CD的中点,若向量AB = a,向量AD = b,则向量MN可以表示为?A. 0.5a - 0.5bB. 0.5a + 0.5bC. a - bD. 0.5(a + b)(答案:A,注:此题需根据向量加减法及中点公式判断)三、已知空间向量a、b、c,满足a ⊥ b,b ⊥ c,则a与c的关系是?A. a ⊥ cB. a // cC. a与c相交但不垂直D. a与c的关系不确定(答案:D)四、若空间向量a、b满足|a| = 2,|b| = 3,且a · b = -4,则a与b的夹角为?A. 30°B. 60°C. 120°D. 150°(答案:C,注:利用向量夹角公式cosθ = a · b / (|a| * |b|)计算)五、已知空间向量a、b、c,若a × b = c,则下列说法错误的是?A. a、b、c三者相互垂直B. a、b不共线C. c的模等于a与b构成的平行四边形的面积D. c的方向垂直于a与b所在的平面(答案:A,注:叉乘结果c垂直于a和b,但a与b 不一定垂直于c)六、在空间直角坐标系中,点A(1,2,3)关于原点对称的点B的坐标为?A. (-1,-2,-3)B. (1,-2,3)C. (-1,2,-3)D. (1,2,-3)(答案:A)七、已知空间向量a = (1,2,3),b = (4,5,6),则a与b的点积为?A. 32B. 14C. 20D. 28(答案:A,注:点积计算为a1b1 + a2b2 + a3b3)八、若空间向量a、b、c满足a × b = 0(零向量),则?A. a = 0或b = 0(零向量)B. a // bC. a ⊥ bD. a与b的关系不确定,但a、b中至少有一个是零向量(答案:C,注:叉乘为零向量意味着两向量平行或其中之一为零向量,但通常理解为垂直更符合几何意义)。
高中数学 6立体几何专题空间向量课后习题(带答案)
![高中数学 6立体几何专题空间向量课后习题(带答案)](https://img.taocdn.com/s3/m/14f8712ebc64783e0912a21614791711cc797930.png)
空间向量课后习题1.空间的一个基底{},,a b c 所确定平面的个数为( ) A.1个B.2个C.3个D.4个以上2.已知(121)A -,,关于面xOy 的对称点为B ,而B 关于x 轴的对称点为C ,则BC =( ) A.(042),, B.(042)--,, C.(040),, D.(202)-,,3.已知向量111222()()x y z x y z ==,,,,,a b ,若≠a b ,设a b -=R ,则a b -与x 轴夹角的余弦值为( ) A.12x x R- B.21x x R- C.12x x R-D.12()x x R-±4.若向量MA MB MC ,,的起点与终点M A B C ,,,互不重合且无三点共线,O 是空间任一点,则能使MA MB MC ,,成为空间一组基底的关系是( ) A.111333OM OA OB OC =++B.MA MB MC ≠+ C.1233OM OA OB OC =++D.2MA MB MC =-5.正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 是平面11ABC D 的距离是( )C.126.一条长为a 的线段,夹在互相垂直的两个平面之间,它和这两个平面所成的角分别是45°和30°,由这条线段两端向两平面的交线引垂线,垂足的距离是( )A.2a B.3a7.若向量a 与b 的夹角为60°,4=b ,(2)(3)72a b a b +-=-,则a =( )A.2 B.4 C.6 D.128.设P 是60°的二面角l αβ--内一点,PA ⊥平面α,PB ⊥平面β,A B ,为垂足,42PA PB ==,,则AB 的长为( ) A.42B.23C.25D.279.ABCD 为正方形,P 为平面ABCD 外一点,2PD AD PD AD ⊥==,,二面角P AD C --为60°,则P 到AB 的距离为( ) A.22B.3C.2D.710.已知()()(00)x y z a b c xyz abc ==≠≠,,,,,,p q ,若有等式2222222()()()x y z a b c ax by cz ++++=++成立,则,p q 之间的关系是( )A.平行 B.垂直 C.相交 D.以上都可能11.已知平面α与β所成二面角为80°,P 为αβ,外一定点,过点P 一条直线与αβ,所成的角都是30°,则这样的直线有且仅有( ) A.1条 B.2条 C.3条 D.4条12.如图1,梯形ABCD 中,AB CD ∥,且AB ⊥平面α,224AB BC CD ===,点P 为α内一动点,且APB DPC ∠=∠,则P 点的轨迹为( )A.直线 B.圆 C.椭圆 D.双曲线二、填空题13.已知(11)(2)t t t t t =--=,,,,,a b ,则-b a 的最小值是14.在棱长为a 的正方体1111ABCD A B C D -中,向量1BA 与向量AC 所成的角为1BD =,若15.如图2,在正三棱柱111ABC A B C -中,已知1AB D =,在棱1BB 上,且AD 与平面11AAC C 所成的角为α,则sin α=16.已知m l ,是异面直线,那么: ①必存在平面α过m 且与l 平行; ②必存在平面β过m 且与l 垂直; ③必存在平面γ与m l ,都垂直; ④必存在平面δ与m l ,距离都相等. 其中正确命题的序号是三、解答题17.设空间两个不同的单位向量122(0)(0)x y x y ==,,,,,a b 与向量(111)=,,c 的夹角都等于π4.18.如图3,已知直四棱柱1111ABCD A B C D -中,12AA =,底面ABCD 是直角梯形,ADC ∠是直角,421AB CD AB AD DC ===,,,∥,求异面直线1BC 与DC 所成角的大小.19.如图4,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动,问AE 等于何值时,二面角1D EC D --的大小为π4.20.如图5所示的多面体是由底面为ABCD 的长方体被截面1AEC F 所截而得到的,其中14231AB BC CC BE ====,,,. (1)求BF ;(2)求点C 到平面1AEC F 的距离.21.如图6,在三棱锥P ABC -中,AB BC ⊥,AB BC kPA ==,点O D ,分别是AC PC ,的中点,OP ⊥底面ABC .(1)求证:OD ∥平面PAB ;(2)当12k =时,求直线PA 与平面PBC 所成角的大小;(3)当k 为何值时,O 在平面PBC 内的射影恰好为PBC △的重心?22.如图7,已知向量OA OB OC ===,,a b c ,可构成空间向量的一个基底,若123()a a a =,,,a123123()()b b b c c c ==,,,,,b c ,在向量已有的运算法则的基础上,新定义一种运算233231131221()a b a b a b a b a b a b ⨯=---,,a b ,显然⨯a b 的结果仍为一向量,记作p .(1) 求证:向量p 为平面OAB 的法向量;(2) 求证:以OA OB ,为边的平行四边形OADB 的面积等于⨯a b ;(3)将四边形OADB 按向量OC =c 平移,得到一个平行六面体111OADB CA D B -,试判断平行六面体的体积V答案1.【答案】C2.【答案】B3.【答案】D4.【答案】C5.【答案】B6.【答案】A7.【答案】C8.【答案】D9.【答案】D 10.【答案】A 11.【答案】D 12.【答案】B 13.14.【答案】120°. 15.16.【答案】①④17.解:(1)由πcos 4==ac a c 11a c =+·x y ,11+=∴x y又1==a ,222111111113()2122x y x y x y x y +=++=+=∴. 1114x y =∴. (4)同理可得222214x y x y +==, 11x y ,∴是方程2104x +=的两根,同理22x y ,也是. 又≠∵a b ,1221==,∴x y x y .cos ==,·∴·a b a b a b a b 1212112212=+=+=x x y y x y x y ,60a b =,∴°.18.解:以D 为原点,1DA DC DD ,,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -,则1(012)(240)(010)C B A ,,,,,,,,. 1(232)BC =--,,∴,(010)CD =-,,.设1BC 与CD 所成角为θ, 则11317cos 17BC CD BC CDθ==·. θ=∴. ∴异面直线1BC 与DC 所成角的大小为19.解:设AE x =,以D 为原点,直线1DA DC DD ,,所在直线分别为x y z ,,轴建立空间直角坐标系, 则11(101)(001)(10)(100)(020)A D E x A C ,,,,,,,,,,,,,,. 11(120)(021)(001)CE x D C DD =-=-=,,,,,,,,∴.设平面1D EC 的法向量为()a b c =,,n , 由1020(2)00n n⎧=-=⎧⎪⇒⎨⎨+-==⎩⎪⎩,,,··D C b c a b x CE 令1b =,22c a x ==-,∴.(212)x =-,,∴n .依题意11π2cos 42DD DD ==⇒=n n ·.2x =∴(2x =+ 2AE =∴20.解:(1)以D 为原点,DAF DC DF ,,所在直线为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -, 1(000)(240)(200)(040)(241)(043)D B A C E C ,,,,,,,,,,,,,,,,,, 设(00)F z ,,. 由1AF EC =,得(20)(202)z -=-,,,,,2z =∴.(002)(242)F BF =--,,,,,∴.26BF =∴(2)设1n 为平面1AEC F 的法向量,1(1)x y =,,n ,由1100AE AF ⎧=⎪⎨=⎪⎩,,··n n 得410220y x +=⎧⎨-+=⎩,.114x y =⎧⎪⎨=-⎪⎩,.∴又1(003)CC =,,,设1CC 与1n 的夹角为α, 则111cos CCCC α==·n n. C ∴到平面1AEC F 的距离1cos d CC α=. 21.解:(1)证明:OP ⊥∵平面ABC OA OC AB BC ==,,, OA OB OA OP OB OP ⊥⊥⊥,,∴.以O 为原点,建立如图所示空间直角坐标系O xyz -.设AB a =,则222000000222A a B a C a ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,. 设OP h =,则(00)P h ,,.D ∵为PC 的中点,21042OD a h ⎛⎫=- ⎪ ⎪⎝⎭,,∴. 202PA a h ⎛⎫=- ⎪ ⎪⎝⎭,,,12OD PA =-∴. OD PA ∴∥,OD ∴∥平面PAB .(2)12k =,即2PA a =,72h a =∴,27022PA a a ⎛⎫=- ⎪ ⎪⎝⎭,,∴ 可求得平面PBC 的法向量1117⎛⎫=-- ⎪ ⎪⎝⎭,,n . 210cos 30PA PA PA ==,·∴n n n. 设PA 与平面PBC 所成的角为θ, 则210sin cos 30PA θ==,n . PA ∴与平面PBC 所成的角为210arcsin30. (3)PBC △的重心221663G a a h ⎛⎫- ⎪ ⎪⎝⎭,,,221663OG a a h ⎛⎫=- ⎪ ⎪⎝⎭,,∴, OG ⊥∵平面PBC ,OG PB ⊥∴.又202PB a h ⎛⎫=- ⎪ ⎪⎝⎭,,,2211063OG PB a h =-=∴·. 22h a =∴. 22PA OA h a =+=∴,即1k =.反之,当1k =时,三棱锥O PBC -为正三棱锥. O ∴在平面PBC 内的射影为PBC △的重心. (3) ()⨯·a b c 的大小. 22.解:(1)233213113212213()()()0a b a b a a b a b a a b a b a =-+-+-=p a ·,⊥p a ∴,同理⊥p b .p ∴是平面OAB 的法向量.(2)设平行四边形OADB 的面积为S ,OA 与OB 的夹角为θ,则sin θ=S OA OB =a a b =⨯.∴结论成立.(3)设C 点到平面OAB 的距离为h ,OC 与平面OAB 所成的角为α, 则=V Sh sin α=⨯a b c ,又()cos sin α⨯=⨯⨯=⨯,·a b c a b c a b c a b c , ∴V ()a b c =⨯·.空间向量课后习题1.空间的一个基底{},,a b c 所确定平面的个数为( ) A.1个B.2个C.3个D.4个以上2.已知(121)A -,,关于面xOy 的对称点为B ,而B 关于x 轴的对称点为C ,则BC =( ) A.(042),, B.(042)--,, C.(040),, D.(202)-,,3.已知向量111222()()x y z x y z ==,,,,,a b ,若≠a b ,设a b -=R ,则a b -与x 轴夹角的余弦值为( ) A.12x x R- B.21x x R- C.12x x R-D.12()x x R-±4.若向量MAMB MC ,,的起点与终点M A B C ,,,互不重合且无三点共线,O 是空间任一点,则能使MA MB MC ,,成为空间一组基底的关系是( ) A.111333OM OA OB OC =++B.MA MB MC ≠+ C.1233OM OA OB OC =++ D.2MA MB MC =-5.正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 是平面11ABC D 的距离是( )C.126.一条长为a 的线段,夹在互相垂直的两个平面之间,它和这两个平面所成的角分别是45°和30°,由这条线段两端向两平面的交线引垂线,垂足的距离是( )A.2a B.3a7.若向量a 与b 的夹角为60°,4=b ,(2)(3)72a b a b +-=-,则a =( )A.2 B.4 C.6 D.128.设P 是60°的二面角l αβ--内一点,PA ⊥平面α,PB ⊥平面β,AB ,为垂足,42PA PB ==,,则AB 的长为( )A. B. C. D.9.ABCD 为正方形,P 为平面ABCD 外一点,2PD AD PD AD ⊥==,,二面角P AD C --为60°,则P 到AB 的距离为( )A. C.210.已知()()(00)x y z a b c xyz abc ==≠≠,,,,,,p q ,若有等式2222222()()()x y z a b c ax by cz ++++=++成立,则,p q 之间的关系是( )11.已知平面α与β所成二面角为80°,P 为αβ,外一定点,过点P 一条直线与αβ,所成的角都是30°,则这样的直线有且仅有( )A.1条 B.2条C.3条 D.4条12.如图1,梯形ABCD 中,AB CD ∥,且AB ⊥平面α,224AB BC CD ===,点P 为α内一动点,且APB DPC ∠=∠,则P 点的轨迹为( )A.直线 B.圆C.椭圆 D.双曲线二、填空题13.已知(11)(2)t t t t t =--=,,,,,a b ,则-b a 的最小值是14.在棱长为a 的正方体1111ABCD A B C D -中,向量1BA 与向量AC 所成的角为1BD =,若15.如图2,在正三棱柱111ABC A B C -中,已知1AB D =,在棱1BB 上,且AD 与平面11AAC C 所成的角为α,则sin α=16.已知m l ,是异面直线,那么:①必存在平面α过m 且与l 平行;②必存在平面β过m 且与l 垂直;③必存在平面γ与m l ,都垂直;④必存在平面δ与m l ,距离都相等.其中正确命题的序号是三、解答题17.设空间两个不同的单位向量(0)(0)x y x y ==,,,,,a b 与向量(111)=,,c 的夹角都等于π.18.如图3,已知直四棱柱1111ABCD A B C D -中,12AA =,底面ABCD 是直角梯形,ADC ∠是直角,421AB CD AB AD DC ===,,,∥,求异面直线1BC 与DC 所成角的大小.19.如图4,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动,问AE 等于何值时,二面角1D EC D --的大小为π4.20.如图5所示的多面体是由底面为ABCD 的长方体被截面1AEC F 所截而得到的,其中14231AB BC CC BE ====,,,.(1)求BF ;(2)求点C 到平面1AEC F 的距离.21.如图6,在三棱锥P ABC -中,AB BC ⊥,AB BC kPA ==,点O D ,分别是AC PC ,的中点,OP ⊥底面ABC .(1)求证:OD ∥平面PAB ;(2)当12k =时,求直线PA 与平面PBC 所成角的大小; (3)当k 为何值时,O 在平面PBC 内的射影恰好为PBC △的重心?22.如图7,已知向量OA OB OC ===,,a b c ,可构成空间向量的一个基底,若123()a a a =,,,a123123()()b b b c c c ==,,,,,b c ,在向量已有的运算法则的基础上,新定义一种运算233231131221()a b a b a b a b a b a b ⨯=---,,a b ,显然⨯a b 的结果仍为一向量,记作p .(4) 求证:向量p 为平面OAB 的法向量;(5) 求证:以OA OB ,为边的平行四边形OADB 的面积等于⨯a b ;(3)将四边形OADB 按向量OC =c 平移,得到一个平行六面体111OADB CA D B -,试判断平行六面体的体积V答案1.【答案】C2.【答案】B3.【答案】D4.【答案】C5.【答案】B6.【答案】A7.【答案】C8.【答案】D9.【答案】D10.【答案】A11.【答案】D12.【答案】B13.14.【答案】120°.15.16.【答案】①④17.解:(1)由πcos 4==ac a c 11a c =+·x y ,11+=∴x y又1==a ,222111111113()2122x y x y x y x y +=++=+=∴.1114x y =∴.(4)同理可得222214x y x y +==,11x y ,∴是方程2104x +=的两根,同理22x y ,也是.又≠∵a b ,1221==,∴x y x y .cos ==,·∴·a ba b a b a b 1212112212=+=+=x x y y x y x y ,60a b =,∴°.则1(012)(240)(010)C B A ,,,,,,,,.1(232)BC =--,,∴,(010)CD =-,,.设1BC 与CD 所成角为θ, 则11317cos 17BC CDBC CDθ==·. θ=∴. ∴异面直线1BC 与DC 所成角的大小为 19.解:设AE x =,以D 为原点,直线1DA DC DD ,,所在直线分别为x y z ,,轴建立空间直角坐标系, 则11(101)(001)(10)(100)(020)A D E x A C ,,,,,,,,,,,,,,. 11(120)(021)(001)CE x D C DD =-=-=,,,,,,,,∴. 设平面1D EC 的法向量为()a b c =,,n , 由1020(2)00n n⎧=-=⎧⎪⇒⎨⎨+-==⎩⎪⎩,,,··D C b c a b x CE 令1b =,22c a x ==-,∴.(212)x =-,,∴n .依题意11π2cos 42DD DD ==⇒=n n ·.2x =∴(2x =+ 2AE =∴20.解:(1)以D 为原点,DAF DC DF ,,所在直线为x 轴, y 轴,z 轴建立空间直角坐标系D xyz -,1(000)(240)(200)(040)(241)(043)D B A C E C ,,,,,,,,,,,,,,,,,, 设(00)F z ,,.由1AF EC =,得(20)(202)z -=-,,,,, 2z =∴. (002)(242)F BF =--,,,,,∴.26BF =∴(2)设1n 为平面1AEC F 的法向量,1(1)x y =,,n ,由1100AE AF ⎧=⎪⎨=⎪⎩,,··n n 得410220y x +=⎧⎨-+=⎩,.11x y =⎧⎪⎨=-⎪,.∴又1(003)CC =,,,设1CC 与1n 的夹角为α, 则111433cos 33CC CC α==·n n . C ∴到平面1AEC F 的距离1433cos 11d CC α==. 21.解:(1)证明:OP ⊥∵平面ABC OA OC AB BC ==,,, OA OB OA OP OB OP ⊥⊥⊥,,∴. 以O 为原点,建立如图所示空间直角坐标系O xyz -. 设AB a =,则222000000222A a B a C a ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,. 设OP h =,则(00)P h ,,.D ∵为PC 的中点,21042OD a h ⎛⎫=- ⎪ ⎪⎝⎭,,∴. 202PA a h ⎛⎫=- ⎪ ⎪⎝⎭,,,12OD PA =-∴. OD PA ∴∥,OD ∴∥平面PAB . (2)12k =,即2PA a =,72h a =∴, 27022PA a a ⎛⎫=- ⎪ ⎪⎝⎭,,∴ 可求得平面PBC 的法向量1117⎛⎫=-- ⎪ ⎪⎝⎭,,n . 210cos 30PA PA PA ==,·∴nn n . 设PA 与平面PBC 所成的角为θ, 则210sin cos 30PA θ==,n . PA ∴与平面PBC 所成的角为210arcsin30. (3)PBC △的重心221663G a a h ⎛⎫- ⎪ ⎪⎝⎭,,,221663OG a a h ⎛⎫=- ⎪ ⎪⎝⎭,,∴, OG ⊥∵平面PBC ,OG PB ⊥∴.又202PB a h ⎛⎫=- ⎪ ⎪⎝⎭,,,2211063OG PB a h =-=∴·.h =∴.PA a =∴,即1k =. 反之,当1k =时,三棱锥O PBC -为正三棱锥. O ∴在平面PBC 内的射影为PBC △的重心.(6) ()⨯·a b c 的大小. 22.解:(1)233213113212213()()()0a b a b a a b a b a a b a b a =-+-+-=p a ·, ⊥p a ∴,同理⊥p b .p ∴是平面OAB 的法向量.(2)设平行四边形OADB 的面积为S ,OA 与OB 的夹角为θ,则sin θ=S OA OB =a a b =⨯. ∴结论成立.(3)设C 点到平面OAB 的距离为h ,OC 与平面OAB 所成的角为α, 则=V Sh sin α=⨯a b c , 又()cos sin α⨯=⨯⨯=⨯,·a b c a b c a b c a b c , ∴V ()a b c =⨯·.。
高中试卷-专题03 空间向量的应用(含答案)
![高中试卷-专题03 空间向量的应用(含答案)](https://img.taocdn.com/s3/m/e962f5a6c9d376eeaeaad1f34693daef5ef713e3.png)
专题03 空间向量的应用一、单选题1.(2020·贵州省铜仁第一中学高二开学考试)已知两个异面直线的方向向量分别为a r ,b r ,且|a r |=|b r|=1,a r •12b r =-,则两直线的夹角为( )A .30°B .60°C .120°D .150°【答案】B【解析】设两直线的夹角为θ,则由题意可得1×1×cos a r <,12b =-r >,∴cos a r <,12b =-r >,∴a r <,23b p =r >,∴θ3p =,故选:B .2.(2019·穆棱市第一中学高二期末)若平面,a b 的法向量分别为1,1,3,(1,2,6)2a b æö=-=--ç÷èør r ,则( )A .//a bB .a 与b 相交但不垂直C .a b^D .//a b 或a 与b 重合【答案】D【解析】因为12a b =-r r ,所以平面,a b 的法向量共线,故//a b 或a 与b 重合.故选:D.3.(2020·北京高二期末)已知直线l 的方向向量为m u r ,平面a 的法向量为n r ,则“0m n ×=u r r”是“l ∥a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】Q 0m n ×=u r r \m n^u r r Q 0m n ×=u r r ,即m n ^u r r ,不一定有l ∥a ,也可能l aÌ\“0m n ×=u r r ”是“l ∥a ”的不充分条件Q l ∥a ,可以推出m n ^u r r ,\“0m n ×=u r r ”是“l ∥a ”是必要条件,综上所述, “0m n ×=u r r ”是“l ∥a ”必要不充分条件.故选:B.4.(2019·山东省济南一中高二期中)在平面ABCD 中,(0,1,1)A ,(1,2,1)B ,(1,0,1)C --,若(1,,)a y z =-v ,且a v 为平面ABCD 的法向量,则2y 等于( )A .2B .0C .1D .无意义【答案】C【解析】由题得,(1,1,0)AB =uuu r ,(1,1,2)AC =--uuu r ,又a r 为平面ABCD 的法向量,则有00a AB a AC ì×=í×=îuuu v v uuu v v ,即10120y y z -+=ìí-+=î,则1y =,那么21y =.故选:C5.(2019·四川省双流中学高三月考)已知点P 是正方体1111ABCD A B C D -的棱CD 的中点,给出以下结论:①11A P C D ^;②1A P BD ^;③11A P BC ^;④1AP ^平面1BC D 其中正确命题的序号是( )A .①B .②C .③D .④【答案】C【解析】设正方体边长为2,建立如图空间直角坐标系.则()12,1,2A P =--uuur .对①, ()10,2,2C D =--uuuu r ,因为110242A P C D ×=-+=uuur uuuu r ,故①错误.对②, ()2,2,0BD =--uuu r ,因为1422A P BD ×=-=uuur uuu r ,故②错误.对③, ()12,0,2BC =-uuuu r ,因为1440A P BD ×=-=uuur uuu r ,故③正确.对④,由②有1A P BD ^不成立,故1AP ^平面1BC D 不成立.故④错误.故选:C6.(2019·穆棱市第一中学高二期末)如图,在正方体ABCD 1111A B C D 中,以D 为原点建立空间直角坐标系,E 为B 1B 的中点,F 为11A D 的中点,则下列向量中,能作为平面AEF 的法向量的是( )A .(1,-2,4)B .(-4,1,-2)C .(2,-2,1)D .(1,2,-2)【答案】B【解析】设正方体棱长为2,则A (2,0,0),E (2,2,1),F (1,0,2),∴AE uuu r =(0,2,1),AF uuu r =(﹣1,0,2)设向量n r=(x ,y ,z )是平面AEF 的一个法向量则2020n AE y z n AF x z ì×=+=ïí×=-+=ïîuuu r r uuu r r ,取y=1,得x=﹣4,z=﹣2∴n r =(﹣4,1,﹣2)是平面AEF 的一个法向量因此可得:只有B 选项的向量是平面AEF 的法向量故选:B .7.(2019·包头市第四中学高二期中)在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M l l =<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )ABCD【答案】D【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1),1ED uuuu v =(﹣2,0,1),EF uuu r =(0,2,0),EM uuuu r =(0,λ,1),设平面D 1EF 的法向量n r=(x ,y ,z ),则1·20·20n ED x z n EF y ì=-+=í==îuuuu v v uuuv v ,取x =1,得n r =(1,0,2),∴点M 到平面D 1EF=N 为EM 中点,所以N ,选D .8.(2020·湖南省高二期末)已知直三棱柱111ABC A B C -中,底面边长和侧棱长都相等,则异面直线1AB 与1BC 所成的角的余弦值为( )A .12B .18C .14D .34【答案】C【解析】立空间坐标系如图,设边长为2,得到A (2,0,0),1B (12),B (10),1C (0,0,2)向量()()112,1,2AB BC =-=uuuv uuuu v 设异面直线夹角为q ,则1111cos =||||AB BC AB BC q ×=×uuuv uuuu v uuuv uuuu v 14故答案为C9.(2018·山西省山西大附中高二期中)过正方形ABCD 的顶点A ,作PA ^平面ABCD ,若PA BA =,则平面ABP 和平面CDP 所成的锐二面角的大小是A .30°B .45°C .60°D .90°【答案】B【解析】法一:建立如图(1)所示的空间直角坐标系,不难求出平面APB 与平面PCD 的法向量分别为n 1=(0,1,0),n 2=(0,1,1),故平面ABP 与平面CDP 所成二面角的余弦值为1212n n n n=,故所求的二面角的大小是45°.法二:将其补成正方体.如图(2),不难发现平面ABP 和平面CDP 所成的二面角就是平面ABQP 和平面CDPQ 所成的二面角,其大小为45°.10.(2020·山东省章丘四中高二月考)在正方形1111ABCD A B C D -中,棱AB ,11A D 的中点分别为E ,F ,则直线EF 与平面11AA D D 所成角的余弦值为( )A B C D 【答案】D【解析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设正方体1111ABCD A B C D -的棱长为2,则()2,1,0E , ()1,0,2F , ()1,1,2EF =--uuu r ,平面11AA D D 的法向量()0,1,0n =r ,设直线EF 与平面11AA D D 所成角为q ,0,2p éùqÎêúëû,则||sin ||||EF n EF n q ===uuu r r g uuu r r g .所以cos q ==\直线EF 与平面11AA D D 故选:D .二、多选题11.(2020·山东省高二期末)已知ν为直线l 的方向向量,1n ,2n 分别为平面α,β的法向量(α,β不重合),那么下列选项中,正确的是( )A .12////n n a bÛB .12n n a b^Û^C .1////n l n aÛD .1//n l n a ^Û【答案】AB【解析】A 选项,平面α,β不重合,所以平面α,β的法向量平行等价于平面α,β平行,正确;B 选项,平面α,β不重合,所以平面α,β的法向量垂直等价于平面α,β垂直,正确;C 选项,直线的方向向量平行于平面的法向量等价于直线垂直于平面,错误;D 选项,直线的方向向量垂直于平面的法向量等价于直线平行于平面或直线在平面内,错误.故选:AB12.(2019·山东省高三)正方体1111ABCD A B C D -的棱长为1,,,E F G 分别为11,,BC CC BB 的中点.则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为98D .点C 和点G 到平面AEF 的距离相等【答案】BC【解析】对选项A :(方法一)以D 点为坐标原点,DA 、DC 、1DD 所在的直线分别为x 、y 、z 轴,建立空间直角坐标系,则(0,0,0)D 、(1,0,0)A 、1(1,0,1)A 、1,1,02E æöç÷èø、10,1,2F æöç÷èø、11,1,2G æöç÷èø.从而1(0,0,1)DD =uuuu r ,11,1,2AF æö=-ç÷èø,从而1102DD AF ×=¹uuuu r uuu r ,所以1DD 与直线AF 不垂直,选项A 错误;(方法二)取1DD 的中点N ,连接AN ,则AN 为直线AF 在平面11ADD A 内的射影,AN 与1DD 不垂直,从而AF 与1DD 也不垂直,选项A 错误;取BC 的中点为M ,连接1A M 、GM ,则1A M AE ∥,GM EF ∥,易证1A MG AEF 平面∥平面,从而1A G AEF ∥平面,选项B 正确;对于选项C ,连接1AD ,1D F ,易知四边形1AEFD 为平面,且1D H AH ==,1A D =132AD H S D ==,而113948AD H AEFD S S ==四边形△,从而选项C 正确;对于选项D :(方法一)由于111111112222224GEF EBG BEFG S S S D D æö=-=+´-´´=ç÷èø梯形,而11112228ECF S D =´´=,而13A GEF EFG V S AB -D =×,13A ECF ECF V S AB -D =×,所以2A GEF A ECF V V --=,即2G AEFC AEF V V --=,点G 到平面AEF 的距离为点C 到平面AEF 的距离的二倍.从而D 错误.(方法二)假设点C 与点G 到平面AEF 的距离相等,即平面AEF 将CG 平分,则平面AEF 必过CG 的中点,连接CG交EF于点O ,易知O 不是CG 的中点,故假设不成立,从而选项D 错误.13.(2020·福建省高二期末)正方体1111ABCD A B C D -中,E 、F 、G 、H 分别为1CC 、BC 、CD 、BB 、1BB 的中点,则下列结论正确的是( )A .1B G BC^B .平面AEF I 平面111AA D D AD =C .1//A H 面AEFD .二面角E AF C --的大小为4p 【答案】BC【解析】由题可知,1B G 在底面上的射影为BG ,而BC 不垂直BG ,则1B G 不垂直于BC ,则选项A 不正确;连接1AD 和1BC ,E 、F 、G 、H 分别为1CC 、BC 、CD 、BB 、1BB 的中点,可知11////EF BC AD ,所以AEF D Ì平面1AD EF ,则平面AEF I 平面111AA D D AD =,所以选项B 正确;由题知,可设正方体的棱长为2,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,则各点坐标如下:()()()()()()12,0,0,0,2,0,0,2,1,2,0,2,2,2,1,1,2,0A C E A H F ()()()()110,2,1,1,2,0,1,0,1,0,0,2A H AF EF AA =-=-=-=uuuu r uuu r uuu r uuur ,设平面AEF 的法向量为(),,n x y z =r ,则00n AF n EF ì×=í×=îuuu v v uuu v v ,即200x y x z -+=ìí-=î,令1y =,得2,2x z ==,得平面AEF 的法向量为()2,1,2n =r ,所以10A H n ×=uuuu r r ,所以1//A H 平面AEF ,则C选项正确;由图可知,1AA ^平面AFC ,所以1AA uuur是平面AFC 的法向量,则1112cos ,3AA n AA n AA n×<>===×uuur r uuur r uuur r .得知二面角E AF C --的大小不是4p ,所以D 不正确.故选:BC.三、填空题14.(2019·山东省济南一中高二期中)若平面a的一个法向量为(n =v,直线l的一个方向向量为a =v ,则l 与a 所成角的正弦值为________.【答案】15【解析】由题,设l 与a 所成角为q,可得||1sin 5||||n a n a q ×===v v v v .故答案为:1515.(2019·陕西省西北大学附中高二期中)如图,在正三棱柱111ABC A B C -中,12,AB AC AA === ,E F 分别是,BA11A C 的中点.设D 是线段11B C 上的(包括两个端点)动点,当直线BD 与EF,则线段BD 的长为_______.【答案】【解析】以E 为原点,EA,EC 为x,y轴建立空间直角坐标系,如下图.1(0,0,0),,2),(0,1,0),(0,,2)(11)2E F B D t t --££1,2),(0,1,2)2EF BD t ==+uuu v uuuv cos q =解得t=1,所以BD =,填.点睛:利用空间向量求解空间角与距离的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.16.(2019·浙江省宁波市鄞州中学高二期中)正方体1111ABCD A B C D -中,,E F 分别是1,AA AB 的中点,则EF 与直线1AC 所成角的大小为______ ;EF 与对角面11BDD B 所成角的正弦值是 __________.【答案】2p 12【解析】如图所示建立空间直角坐标系,设正方体的边长为2,则()2,0,1E ,()2,1,0F ,()2,0,0A ,()10,2,2C ,故()0,1,1EF =-uuu r ,()12,2,2AC =-uuuu r .故10EF AC ×=uuu r uuuu r ,故EF 与直线1AC 所成角的大小为2p .易知对角面11BDD B 的一个法向量为()1,1,0n =-r ,设EF 与对角面11BDD B 所成角为q ,故1sin cos ,2EF n EF n EF n q ×===×uuu r r uuu r r uuu r r .故答案为:2p ;12.17.(2019·江西省会昌中学高二月考)已知正方体1111ABCD A B C D -的棱长为a ,点E ,F ,G 分别为棱A B ,1AA ,11C D 的中点,下列结论中,正确结论的序号是___________.①过E ,F ,G 三点作正方体的截面,所得截面为正六边形;②11//B D 平面EFG ;③1BD ^平面1ACB ;④异面直线EF 与1BD ;⑤四面体11ACB D 的体积等于312a .【答案】①③④【解析】延长EF 分别与1l B A ,1B B 的延长线交于N ,Q ,连接GN 交11A D 于H ,设HG 与11B C 的延长线交于P ,连接P Q 交1CC 于I ,交BC 于M ,连FH ,HG ,GI ,IM ,ME ,EF ,如图:则截面六边形EFHGIM 为正六边形,故①正确:因为11B D 与HG 相交,故11B D 与平面EFG 相交,所以②不正确:1,BD AC BD AC ^\^Q (三垂线定理),1111,BC B C BD B C ^\^Q (三垂线定理),且AC 与1B C 相交,所以1BD ^平面1ACB ,故③正确;以D 为原点,1,,DA DC DD 分别为,,x y z 轴建立空间直角坐标系,则1(0,0,0),(,,0),(,0,),(,,0),(0,0,)22a a D E a F a B a a D a ,则(0,,)22a a EF =-uuu r ,1(,,)BD a a a =--uuuu r ,所以111cos ,||||EF BD EF BD EF BD ×<>=uuu r uuuu r uuu r uuuu r uuu r uuuur ===所以1sin ,EF BD <>==uuu r uuuu r=所以111sin ,tan ,cos ,EF BD EF BD EF BD <><>=<>uuu r uuuu r uuu r uuuu r uuu r uuuur ==,所以异面直线EF 与1BD,故④正确;因为四面体11ACB D 的体积等于正方体的体积减去四个正三棱锥的体积,即为3331114323a a a -´´=,故⑤不正确.故答案为:①③④四、解答题18.(2019·广西壮族自治区田东中学高二期中)已知三棱柱111ABC A B C -的侧棱垂直于底面,90BAC Ð=°,12AB AA ==,1AC =,M ,N 分别是11A B ,BC 的中点.(1)求证:1AB AC ^;(2)求证://MN 平面11ACC A .【答案】(1)证明见解析 (2) 证明见解析【解析】Q 三棱柱为直三棱柱 1AA \^平面ABC 1AA AC \^,1AA AB ^又90BAC Ð=o ,则1,,AB AC AA 两两互相垂直,可建立如下图所示的空间直角坐标系则()0,0,0A ,()0,2,0B ,()1,0,0C -,()11,0,2C -,()0,1,2M ,1,1,02N æö-ç÷èø(1)()0,2,0AB =uuu r Q ,()11,0,2AC =-uuuu r ()10120020AB AC \×=´-+´+´=uuu r uuuu r 1AB AC \^(2)由题意知:AB uuu r是平面11ACC A 的一个法向量()0,2,0AB =uuu r Q ,1,0,22MN æö=--ç÷èøuuuu r ()10200202AB MN æö\×=´-+´+´-=ç÷èøuuu r uuuu r AB MN \^uuu r uuuu r MN ËQ 平面11ACC A //MN \平面11ACC A 19.(2020·陕西省高二期末)如图,在棱长为2的正方体1111ABCD A B C D -中E ,F 分别为AB ,1A C的中点.(1)求EF ;(2)求证://EF 平面11AA D D【答案】(1;(2)证明见解析【解析】(1)由题知,(2,1,0)E ,(1,1,1)F ,∴(1,0,1)EF =-uuu r ,∴||EF ==uuu r (2)由题知,(2,0,0)A ,1(0,0,2)D ,∴1(2,0,2)AD =-uuuu r ,∴12AD EF =uuuu r uuu r ,故//AD EF ,又1AD Ì平面11AA D D ,EF Ë平面11AA D D∴EF ∥平面11AA D D .20.(2020·北京高二期末)如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,14AA =,点D 是AB 的中点.(1)求异面直线AC 与1BC 所成的角;(2)求证:1//AC 平面1CDB .【答案】(1)2p (2)证明见解析【解析】(1)因为3AC =,4BC =,5AB =,所以222AC BC AB +=,所以ABC D 是直角三角形,所以2ACB p=,所以AC BC^因为三棱柱111ABC A B C -为直三棱柱,所以1C C ^平面ABC ,所以1C C AC ^,1C C BC^以C 为原点,分别以CA 、CB 、1CC 为x 轴、y 轴、z 轴,建立空间直角坐标系,则(0C ,0,0),(3A ,0,0),(0B ,4,0),1(0C ,0,4)所以直线AC 的方向向量为(3,0,0)CA =uuu r ,直线1BC 的方向向量为1(0,4,4)BC =-uuuu r ,设异面直线AC 与1BC 所成的角为q ,因为10CA BC =uuu r uuuu r g ,所以cos 0q =,所以异面直线AC 与1BC 所成的角为2p.(2)由(1)可知3,2,02D æöç÷èø,1(0B ,4,4),则3,2,02CD æö=ç÷èøuuu r ,1(0,4,4)CB =uuur 设平面1CDB 的法向量为(,,)n x y z =r ,则1·0·0CD n CB n ì=ïí=ïîuuu v v uuuv v ,所以3202440x y y z ì+=ïíï+=î令4x =,则3y =-,3z =,所以(4,3,3)n =-r直线1AC 的方向向量为1(3,0,4)AC =-uuuu r ,因为10AC n =uuuu r r g ,1AC Ë平面1CDB , 所以1//AC 平面1CDB .21.(2020·银川三沙源上游学校高二期末)如图,在直三棱柱111ABC A B C -中,AB AC ^,2AB AC ==,1AA =,D 为棱BC 的中点.(1)求直线1DB 与平面11AA C C 所成角的正弦值;(2)求平面11AA C C 与平面1ADB 所成二面角的余弦值.【答案】(12).【解析】则(0,0,0)A ,1(0,0,A ,(2,0,0)C ,(0,2,0)B ,(1,1,0)D ,1(0,2,B ,所以(2,0,0)AC =uuu r ,1(0,0,AA =uuur ,(1,1,0)AD =uuu r ,1(1,1,DB =-uuuu r ,如下图:(1)设平面11AA C C 的一个法向量为(,,)m x y z =u r ,则100AC m AA m ì×=ïí×=ïîuuu v v uuuv v,即00ìïí=ïî,取(0,1,0)m =u r ,所以1cos ,DB m <=uuuu r u r ,所以直线1DB 与平面11AA C C(2)设平面1ADB 的一个法向量为111(,,)n x y z =r ,则100AD n DB n ì×=ïí×=ïîuuu v v uuuu v v,即1111100x y x y +=ìïí-++=ïî,取(1,n =-r ,所以cos ,m n <=u r r ,所以求平面11AA C C 与平面1ADB所成二面角的余弦值.22.(2019·江苏省苏州实验中学高一月考)直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC Ð=°,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AA C C ;(2)线段AC 上是否存在一点G ,使面EFG ^面11AA C C .若存在,求出AG 的长;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,AG =【解析】(1)如图所示:以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:则1(0,0,0)A ,1(0,2,0)B ,1(2,2,0)C ,设(0,0,)A a ,则4(0,,)3E a ,2(,2,0)3F ,所以22(,,)33EF a =-uuu r ,1(0,0,)A A a =uuur ,11(2,2,0)AC =uuuu r ,因为11113EF A A A C =-+uuu r uuur uuuu r ,所以EF uuu r ,1A A uuur ,11AC uuuu r 共面,又EF 不在平面11AA C C 内,所以//EF 平面11AA C C(2)线段AC 上存在一点G ,使面EFG ^面11AA C C ,且AG =证明如下:在三角形AGE 中,由余弦定理得EG ====,所以222AG EG AE +=,即EG AG ^,又1A A ^平面ABCD ,EG Ì平面ABCD ,所以1A A EG ^,而1AG A A A Ç=,所以EG ^平面11AA C C ,因为EG Ì平面EFG ,所以EFG ^面11AA C C .23.(2020·北京高二期末)如图,在底面是正方形的四棱锥P ABCD -中,PA ^平面ABCD ,2AP AB ==,,,E F G 是,,BC PC CD 的中点.(1)求证:BG ^平面PAE ;(2)在线段BG 上是否存在点H ,使得//FH 平面PAE ?若存在,求出BH BG 的值;若不存在,说明理由.【答案】(1)证明见解析;(2)存在,35.【解析】(1)证明:因为四棱锥P ABCD -底面是正方形,且PA ^平面ABCD ,以点A 为坐标原点,,,AB AD AP所在直线分别为,,x y z 轴建立如图所示空间直角坐标系.则(0,0,0),(2,0,0),(0,0,2),A B P ,(2,2,0),(0,2,0)C D ,因为,,E F G 是,,BC PC CD 的中点,所以(2,1,0),(1,1,1),(1,2,0)E F G ,所以(1,2,0)BG =-uuu v ,(0,0,2),(2,1,0),AP AE ==uuu v uuu v 所以0BG AP ×=uuu v uuu v ,且0BG AE ×=uuu v uuu v . 所以BG AP ^,BG AE ^,且AE AP A =I .所以BG ⊥平面PAE .(2)假设在线段BG 上存在点H ,使得FH //平面PAE . 设BH BG l =uuuv uuu v (01)l ££,则(1,21,1)FH FB BH AB AF BG l l l =+=-+=---uuuv uuu v uuuv uuu v uuu v uuu v .因为FH //平面PAE ,BG ⊥平面PAE ,所以(1)(12(21)0(1)530FH GB l l l ×=-×-+-+´-=-=uuuv uuu v . 所以35l =. 所以,在线段BG 上存在点H ,使得FH //平面PAE .其中35BH BG =.。
空间向量及其运算(习题及答案)
![空间向量及其运算(习题及答案)](https://img.taocdn.com/s3/m/bd6a5335854769eae009581b6bd97f192279bfa2.png)
空间向量及其运算(习题及答案)例1:在正方体ABCD-A1B1C1D1中,E为上底面A1B1C1D1的中心,若AE=AA1+xAB+yAD,则x,y的值分别为()。
解析:由于E为上底面A1B1C1D1的中心,所以AE的长度为A1E的长度的一半,即AE=1/2A1E。
又因为A1E的方向向量为1/2(AB+AD),所以AE=1/2(AA1+AB+AD)。
将AE=AA1+xAB+yAD代入,得到x=1/2,y=1/2,故选D。
例2:在平行六面体ABCD-A1B1C1D1中,AB=2,AA1=2,AD=1,且AB,AD,AA1两两之间的夹角都是60°,则AC1·BD1=()。
解析:由于AB,AD,AA1两两之间的夹角都是60°,所以它们构成一组正交基底。
设AB=a,AD=b,AA1=c,则AC1=AB+BC1+CA1=a+b/2+c/2,BD1=BD=AD+DC1+CB1=b+a/2+c/2.将AC1·BD1代入,得到AC1·BD1=(a+b/2+c/2)·(b+a/2+c/2)=ab+ac/2+bc/2+a^2/4+b^2/4+c^2/4+ac/4+bc/4,化简得到AC1·BD1=ab+ac+bc+1/4(a^2+b^2+c^2),代入数值计算得到AC1·BD1=5/2,故选B。
例3:在正方体ABCD-A1B1C1D1中,E,F分别是A1B1,C1D1的一个四等分点,求BE与DF所成角的余弦值。
解析:以DA,DC。
设正方体ABCD-A1B1C1D1的棱长为1,则B(1,1,0),E(1,1/2,1),D(0,0,0),F(0,1/2,1)。
由于BE的方向向量为(0,-1,1),DF的方向向量为(0,1,1),所以BE·DF=0*(-1)+(-1)*1+1*1=0,即BE与DF所成角的余弦值为0,故选A。
1.在三棱锥O-ABC中,设OA=a,OB=b,OC=c,用a,b,c表示MN,则MN=1/2√(2a^2+2b^2-2c^2)。
空间几何与向量练习题及解析
![空间几何与向量练习题及解析](https://img.taocdn.com/s3/m/56699b7842323968011ca300a6c30c225901f0b9.png)
空间几何与向量练习题及解析一、选择题1. 已知向量A = 3A + 2A− A,向量A= −2A + A + 3A,求A与A的数量积A·A的值为:A. 1B. -1C. -10D. 10解析:数量积公式为:A·A = AAAA + AAAA + AAAA,其中AA、AA、AA分别表示向量A和A的A、A、A分量的乘积。
带入已知的A和A的分量进行计算:A·A = (3)(-2) + (2)(1) + (-1)(3) = -6 + 2 - 3 = -7答案:选项A. 12. 在空间直角坐标系中,已知点A(2, 1, 3)和点A(-1, 4, 2),向量A的末端与向量A的起点重合,A·A的值为:A. 3B. 17C. 11D. -9解析:点A(2, 1, 3)和点A(-1, 4, 2)可以确定唯一的向量A和A。
根据数量积A·A的定义,可以先求出A和A的分量,然后进行运算:A·A = (2)(-1) + (1)(4) + (3)(2) = -2 + 4 + 6 = 8答案:选项B. 17二、填空题1. 设向量A = 2A + 3A− A,向量A = 4A + A,若A = A + AAA,则A和A分别为______、______。
解析:根据已知条件,A的A分量为-1,而A的A分量为1。
因此A = 4,A = -1。
答案:4、-12. 已知点A(1, 2, 3)和点A(4, -1, -2),则向量AA的大小为________。
解析:向量AA可以由终点坐标减去起点坐标得到,即AA = (4-1)A + (-1-2)A + (-2-3)A = 3A - 3A - 5A。
根据向量的模的定义,可以得到:|AA| = √((3)^2 + (-3)^2 + (-5)^2) = √(9 + 9 + 25) = √43答案:√43三、计算题1. 已知向量A = 3A - 2A + 4A,向量A = A + A,求向量A与向量A 的夹角A的余弦值cos A。
空间向量典型习题含详解
![空间向量典型习题含详解](https://img.taocdn.com/s3/m/d5df6bff6f1aff00bed51ef4.png)
1.如图1,矩形ABCD中,AB=12,AD=6,E、F分别为CD、AB边上的点,且DE=3,BF=4,将△BCE沿BE折起至△PBE位置(如图2所示),连结AP、PF,其中PF=2.(1)求证:PF⊥平面ABED;(2)求点A到平面PBE的距离.2.如图,在正三棱柱中,,点P,Q分别为,BC的中点.求异面直线BP与所成角的余弦值;求直线与平面所成角的正弦值.3.如图,四棱锥P-ABCD的底面ABCD是菱形,AC与BD交于点O,OP⊥底面ABCD,点M为PC中点,AC=4,BD=2,OP=4.(1)求直线AP与BM所成角的余弦值;(2)求平面ABM与平面PAC所成锐二面角的余弦值.4.如图,在三棱柱ABC-A1B1C1中,平面A1B1C⊥平面AA1C1C,∠BAC=90°.(1)证明:AC⊥CA1;(2)若△A1B1C是正三角形,AB=2AC=2,求二面角A1-AB-C的大小.5.如图,四棱锥P-ABCD中,AB∥DC,DC⊥BC,AB=2,CD=DP=1,PA=PB=BC=3,侧棱PC上点E满足PE=2EC.(1)求证PA∥平面BED;(2)求二面角A-PB-C的余弦值.6.如图,在正方体ABCD-A1B1C1D1中,E,F分别为底面A1B1C1D1和侧面B1C1CB的中心.求证:(1)EF∥A1B;(2)EF∥平面A1BD;(3)平面B1EF∥平面A1BD.7.如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.答案和解析1.【答案】解:(1)连结EF,由翻折不变性可知,PB=BC=6,PE=CE=9,在△PBF中,PF2+BF2=20+16=36=PB2,所以PF⊥BF,在图1中,利用勾股定理,得EF==,在△PEF中,EF2+PF2=61+20=81=PE2,∴PF⊥EF,又∵BF∩EF=F,BF⊂平面ABED,EF⊂平面ABED,∴PF⊥平面ABED.(2)解:由(1)知PF⊥平面ABED,∴PF为三棱锥P-ABE的高.设点A到平面PBE的距离为h,由等体积法得V A-PBE=V P-ABE,即∴h=,即点A到平面PBE的距离为.【解析】本题考查直线与平面垂直的证明,考查点到平面距离的求法,解题时要注意空间思维能力的培养,要注意等积法的合理运用.(1)连结EF,由翻折不变性可知,PB=BC=6,PE=CE=9,由已知条件,利用勾股定理推导出PF⊥BF,PF⊥EF,由此能够证明PF⊥平面ABED.(2)由PF⊥平面ABED,知PF为三棱锥P-ABE的高,利用等积法能求出点A 到平面PBE的距离.2.【答案】解:如图,在正三棱柱ABC-A1B1C1中,设AC,A1C1的中点分别为O,O1,则,OB⊥OC,OO1⊥OC,OO1⊥OB,故以{,,}为基底,建立空间直角坐标系O-xyz,∵AB=AA1=2,A(0,-1,0),B(,0,0),C(0,1,0),A1(0,-1,2),B1(,0,2),C1(0,1,2).(1)点P为A1B1的中点.∴,,,∴,,,,,.|cos<,>|===.∴异面直线BP与AC1所成角的余弦值为:;(2)∵Q为BC的中点.∴Q(,,)∴,,,,,,,,,设平面AQC1的一个法向量为=(x,y,z),由,可取=(,-1,1),设直线CC1与平面AQC1所成角的正弦值为θ,sinθ=|cos<,>|==,∴直线CC1与平面AQC1所成角的正弦值为.【解析】本题考查了向量法求空间角,属于中档题.设AC,A1C1的中点分别为O,O1,以{}为基底,建立空间直角坐标系O-xyz,(1)由|cos|=可得异面直线BP与AC1所成角的余弦值;(2)求得平面AQC 1的一个法向量为,设直线CC1与平面AQC1所成角的正弦值为θ,可得sinθ=|cos|=,即可得直线CC1与平面AQC1所成角的正弦值.3.【答案】解:(1)因为ABCD是菱形,所以AC⊥BD.又OP⊥底面ABCD,以O为原点,直线OA,OB,OP分别为x轴,y轴,z轴,建立如图所示空间直角坐标系.则A(2,0,0),B(0,1,0),P(0,0,4),C(-2,0,0),M(-1,0,2).=(-2,0,4),=(01,-1,2),cos<,>===.故直线AP与BM所成角的余弦值为.(2)=(-2,1,0),=(-1,-1,2).设平面ABM的一个法向量为=(x,y,z),则,令x=2,得=(2,4,3).又平面PAC的一个法向量为=(0,1,0),∴cos<,>===.故平面ABM与平面PAC所成锐二面角的余弦值为.【解析】(1)以O为原点,直线OA,OB,OP分别为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出直线AP与BM所成角的余弦值.(2)求出平面ABM的一个法向量和平面PAC的一个法向量,利用向量法能求出平面ABM与平面PAC所成锐二面角的余弦值.本题考查异面直线所成角的余弦值的求法,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想、函数与方程思想,是中档题.4.【答案】证明:(Ⅰ)过点B1作A1C的垂线,垂足为O,由平面A1B1C⊥平面AA1C1C,平面A1B1C∩平面AA1C1C=A1C,得B1O⊥平面AA1C1C,又AC⊂平面AA1C1C,得B1O⊥AC.由∠BAC=90°,AB∥A1B1,得A1B1⊥AC.又B1O∩A1B1=B1,得AC⊥平面A1B1C.又CA1⊂平面A1B1C,得AC⊥CA1.(Ⅱ)以C为坐标原点,的方向为x轴正方向,||为单位长,建立空间直角坐标系C-xyz.由已知可得A(1,0,0),A1(0,2,0),B1(0,1,).所以=(1,0,0),=(-1,2,0),==(0,-1,).设n=(x,y,z)是平面A1AB的法向量,则,即可取=(2,,1).设=(x,y,z)是平面ABC的法向量,则,即,可取=(0,,1).则cos⟨ ,>==.又因为二面角A1-AB-C为锐二面角,所以二面角A1-AB-C的大小为.【解析】(Ⅰ)过点B1作A1C的垂线,推导出B1O⊥平面AA1C1C,从而B1O⊥AC.由∠BAC=90°,AB∥A1B1,得A1B1⊥AC.从而AC⊥平面A1B1C.由此能证明AC⊥CA1.(Ⅱ)以C为坐标原点,的方向为x轴正方向,||为单位长,建立空间直角坐标系C-xyz.利用向量法能求出二面角A1-AB-C的大小.本题考查线线垂直的证明,考查二面角的求法,考查推理论证能力、运算求解能力,考查函数与方程思想,是中档题.5.【答案】(12分)(1)证明:连接AC,交BD于F,连接EF,因为AB∥DC,所以,即AF=2FC,又PE=2EC,所以AP∥FE,又FE⊆平面BDE,AP⊄平面BDE,所以PA∥平面BED.(4分)(2)解:取AB中点M,连接PM,DM,过点P作PN⊥MD,垂足为N.因为PA=PB,所以PM⊥AB,又MB=DC且MB=DC,则四边形BCDM是平行四边形,所以MD∥BC,所以MD⊥AB,又PM∩MD=M,所以AB⊥平面PMD,又AB⊂平面ABCD,所以平面PMD⊥平面ABCD,又平面PMD∩平面ABCD=MD及PN⊥MD,所以PN⊥平面ABCD.由MB=1,PB=3得,则有PM2+PD2=DM2,即PM⊥PD,所以,所以,(8分)如图建立空间直角坐标系C-xyz,则D(1,0,0),,,,B(0,3,0),A (2,3,0),,,,,,,,,设平面PAB法向量,,,由得,取,可得,,.设平面PBC法向量,,,由得,取,可得,,..所以<,>=.二面角A-PB-C的余弦值为:.(12分)【解析】(1)连接AC,交BD于F,连接EF,通过AB∥DC,证明AP∥FE,即可证明PA∥平面BED.(2)取AB中点M,连接PM,DM,过点P作PN⊥MD,垂足为N.建立空间直角坐标系C-xyz,求出平面PAB法向量,平面PBC法向量,利用空间向量的数量积求解二面角A-PB-C的余弦值即可.本题考查直线与平面平行的判断定理的应用,二面角的平面角的求法,考查空间想象力以及计算能力.6.【答案】证明:以点D为原点,DA,DC,DD1分别为x轴、y轴、z轴,建立空间直角坐标系,令正方体的棱长为2,则D(0,0,0),A1(2,0,2),B(2,2,0),B1(2,2,0),E(1,1,2),F(1,2,1),(1),因为,所以,所以EF//A1B;(2)设平面A1BD的一个法向量为,则,即2y-2z=0,2x+2y=0,令x=1,则,因为,所以EF∥平面A1BD;(3)由(2),同理求出平面EFB1的一个法向量,所以平面B1EF∥平面A1BD.【解析】本题主要考查利用空间向量判断线线、线面、面面之间的平行. 建立空间直角坐标系,求出线面的方向向量与法向量,(1)由两条直线的方向向量共线,即可判断出结论;(2)由直线的方向向量与平面的法向量垂直,即可得出结论;(3)由两个平面的法向量共线,即可得出结论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
力,属于基础题.
2.平面 α 经过三点 A(-1,0,1),B(1,1,2),C(2,-1,0),则平 面 α 的法向量u可以是 ______ (写出一个即可) 【答案】
高中数学试卷第 1 页,共 11 页
(0,1,-1)
【解析】
解:AB=(2,1,1),AC=(3,-1,-1),
设平面 α 的法向量u=(x,y,z),
题.
3.已知AB=(1,0,2),AC=(2,1,1),则平面 ABC 的一个法向
量为 ______ .
【答案】
(-2,3,1)
【解析】
解:AB=(1,0,2),AC=(2,1,1),
设平面 ABC 的法向量为n=(x,y,z),
{ { 则
n n
⋅ ⋅
AB AC
= =
00,即
x + 2z 2x + y
=
0,
{即
x y
= =
−4z2z,
令 z=1,则 x=-2,y=4,
即m=(-2,4,1),
若向量n与平面 ABC 垂直,
∴向量n∥m,
设n=λm=(-2λ,4λ,λ),
∵|n|= 21,
∴ 21•|λ|= 21,
高中数学试卷第 3 页,共 11 页
即|λ|=1, 解得 λ=±1, ∴n的坐标为(2,-4,-1)或(-2,4,1), 故答案为:(2,-4,-1)或(-2,4,1) 根据条件求出平面的法向量,结合向量的长度公式即可得到结 论. 本题主要考查空间向量坐标的计算,根据直线和平面垂直求出平 面的法向量是解决本题的关键.
高中数学试卷第 4 页,共 11 页
【答案】
解:(1)证明:由题意知:PQ⊥AD,BQ⊥AD,PQ∩BQ=Q,
∴AD⊥平面 PQB,
又∵AD⊂平面 PAD,
∴平面 PQB⊥平面 PAD.
Hale Waihona Puke (2)∵PA=PD=AD,Q 为 AD 的中点,
∴PQ⊥AD,
∵平面 PAD⊥平面 ABCD,平面 PAD∩平面 ABCD=AD,
{则
u u
⋅ ⋅
AB AC
= =
2x + y + z = 3x−y−z = 0
0,令
z=-1,y=1,x=0.
∴u=(0,1,-1).
故答案为:(0,1,-1).
{ 设平面
α
的法向量u=(x,y,z),则
u u
⋅ ⋅
AB AC
= =
2x + y + z = 3x−y−z = 0
0,解出即
可.
本题考查了线面垂直与数量积的关系、平面的法向量,属于基础
空间向量专题练习
一、填空题(本大题共 4 小题,共 20.0 分)
1.平面 α 的法向量为(1,0,-1),平面 β 的法向量为(0,-1,
1),则平面 α 与平面 β 所成二面角的大小为 ______ .
【答案】 π或2π
33
【解析】
解:设平面 α 的法向量为m=(1,0,-1),平面 β 的法向量为n=(0,-
= +
0 z
=
0,取
x=-2,则
z=1,y=3.
∴n=(-2,3,1).
高中数学试卷第 2 页,共 11 页
故答案为:(-2,3,1).
{ 设平面
ABC
的法向量为n=(x,y,z),则
n n
⋅ ⋅
AB AC
= =
00,解出即可.
本题考查了平面的法向量、线面垂直与数量积的关系,属于基础
题.
4.在三角形 ABC 中,A(1,-2,-1),B(0,-3,1),C(2,-2,1),
{∴
−23x
+
3
3y
+
233z
3y = 0
=
0
,∴n1
=
(
3,0,1),
又∵n2 = (0,0,1)平面 BQC 的一个法向量, ∴cos<n1,n2>=12, ∴二面角 M-BQ-C 的大小是 60°.
【解析】
(1)由题设条件推导出 PQ⊥AD,BQ⊥AD,从而得到 AD⊥平面
高中数学试卷第 5 页,共 11 页
高中数学试卷第 7 页,共 11 页
∴以 D 为原点,DA 为 x 轴,DC 为 y 轴,DP 为 z 轴,建立空间直角
坐标系,
∵PD=DC=2,点 E 是 PC 的中点,F 在直线 PA 上,
∴PQ⊥平面 ABCD,
以 Q 这坐标原点,分别以 QA,QB,QP 为 x,y,z 轴,
建立如图所求的空间直角坐标系,
由题意知:Q(0,0,0),A(1,0,0),
P(0,0, 3),B(0, 3,0),C(-2, 3,0)
∴QM
=
2
3QP
+
13QC=(-23,
3,2 3),
33
设n1是平面 MBQ 的一个法向量,则n1 ⋅ QM = 0,n1 ⋅ QB = 0,
6.如图,在四棱锥 P-ABCD 中,底面 ABCD 是正方形,侧棱 PD⊥底面 ABCD, PD=DC=2,点 E 是 PC 的中点,F 在直线 PA 上. (1)若 EF⊥PA,求PPAF的值; (2)求二面角 P-BD-E 的大小.
【答案】
解:(1)∵在四棱锥 P-ABCD 中,底面 ABCD 是正方形,侧棱 PD⊥ 底面 ABCD,
若向量n与平面 ABC 垂直,且|n|= 21,则n的坐标为 ______ .
【答案】
(2,-4,-1)或(-2,4,1)
【解析】
解:设平面 ABC 的法向量为m=(x,y,z),
则m ⋅ AB=0,且m•AC=0,
∵AB=(-1,-1,2),AC=(1,0,2),
{∴
−x−y + 2z x + 2z = 0
二、解答题(本大题共 3 小题,共 36.0 分) 5.如图,在四棱锥 P-ABCD 中,底
面 ABCD 为菱形,∠BAD=60°,Q 为 AD 的中点. (1)若 PA=PD,求证:平面 PQB⊥平面 PAD; (2)点 M 在线段 PC 上,PM = 13PC,若平面 PAD⊥平面 ABCD,且 PA=PD=AD=2,求二面角 M-BQ-C 的大小.
1,1),
则
cos<m,n>=1
×
0
+
0
× (−1) + 2⋅ 2
(−1)
×
1=-12,
∴<m,n>=23π.
∵平面 α 与平面 β 所成的角与<m,n>相等或互补,
∴α
与
β
所成的角为π或2π.
33
故答案为:π或2π.
33
利用法向量的夹角与二面角的关系即可得出.
本题考查了利用用法向量的夹角求二面角的方法,考查了计算能
PQB,由此能够证明平面 PQB⊥平面 PAD. (2)以 Q 这坐标原点,分别以 QA,QB,QP 为 x,y,z 轴,建立空间 直角坐标系,利用向量法能求出二面角 M-BQ-C 的大小. 本题考查平面与平面垂直的证明,考查二面角的大小的求法,解 题时要认真审题,注意向量法的合理运用.
高中数学试卷第 6 页,共 11 页