2015-2016年陕西省延安市黄陵中学高一上学期期末数学试卷与答案Word版
陕西省黄陵县高一数学上学期期末考试试题(高新部)
高新部高一期末考试数学试题一、单项选择(60分)1、已知集合A={t2+s2|t,s∈Z},且x∈A,y∈A,则下列结论正确的是()A.x+y∈AB.x-y∈AC.xy∈AD.2、设集合A={3,4,5},B={3,6},P={x|x⊆A},Q={x|x⊆B},则P⋂Q=()A.{3}B.{3,4,5,6}C.{{3}}D.{{3},∅}3、已知集合,a=3.则下列关系式成立的是()A.a∉AB.a⊆AC.{a}⊆AD.{a}∈A4、设集合A={-2,1},B={-1,2},定义集合A B={x|x=x 1x2,x1∈A,x2∈B},则A B中所有元素之积为()A.-8B.-16C.8D.165、下列各个关系式中,正确的是()A.∅={0}B.C.{3,5}≠{5,3}D.{1}⊆{x|x2=x}6、设集合M={a|∀x ∈R ,x 2+ax+1>0},集合N={a|∃x ∈R ,(a-3)x+1=0},若命题p :a ∈M ,命题q :a ∈N ,那么命题p 是命题q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件7( ) A .0 B .1 C .-1 D .±18、已知集合{b}={x ∈R|ax 2-4x+1=0,a ,b ∈R}则a+b=( ) A .0或19、以下元素的全体不能够构成集合的是( ) A. 中国古代四大发明 B. 周长为10cm 的三角形 C. 方程210x -=的实数解 D. 地球上的小河流 10、下列关系式中,正确的是( )A. {}0φ∈B. {}00⊆C. {}00∈D. {}0φ= 11、若{}{}2,0,1,,0a a b -=,则20172017a b +的值为( )A. 0B. 1C. -1D. 212、下列六个关系式:①{}{},,a b b a ⊆;②{}{},,a b b a =;③{}0=∅;④{}00∈; ⑤{}0∅∈;⑥{}0∅⊆,其中正确的个数为( ) A. 6个 B. 5个 C. 4个 D. 少于4个二、填空题(20分)13、已知集合},1,0{x A =,}1,,{2-=y x B ,若B A =,则=y . 14、已知集合A={a+2,2a 2+a},若3∈A ,则a 的值为 .15、定义A-B={x|x ∈A 且x ∉B},已知A={2,3},B={1,3,4},则A-B=______. 16、已知集合M={3,m+1},4∈M ,则实数m 的值为______. 三、解答题(70分)(17题10分,其余12分)17、已知由方程kx 2-8x +16=0的根组成的集合A 只有一个元素,试求实数k 的值. 18、设集合A 中含有三个元素3,x ,x 2-2x. (1)求实数x 应满足的条件; (2)若-2∈A ,求实数x.19、已知集合A={x|x=m 2-n 2,m ∈Z ,n ∈Z}.求证: (1)3∈A ;(2)偶数4k-2(k ∈Z )不属于A . 20、设S ={x|x =m +n,m 、n ∈Z}.(1)若a ∈Z ,则a 是否是集合S 中的元素?(2)对S 中的任意两个x 1、x 2,则x 1+x 2、x 1·x 2是否属于S ?21、已知q 和n 均为给定的大于1的自然数,设集合M ={0,1,2,…,q -1},集合A ={x|x =x 1+x 2q +…+x n qn -1,x i ∈M ,i =1,2,…,n}.(1)当q =2,n =3时,用列举法表示集合A. (2)设s ,t∈A,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n qn -1,其中a i ,b i ∈M ,i =1,2,…,n.证明:若a n <b n ,则s <t.22、对正整数n ,记I n ={1,2,3,n},P n ={|m ∈I n ,k ∈I n }.(1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是整数的平方,则称A 为“稀疏集”.求n 的最大值,使P n 能分成两个不相交的稀疏集的并.参考答案一、单项选择1、【答案】C2、【答案】D3、【答案】C4、【答案】C【解析】解:∵集合A={-2,1},B={-1,2},定义集合A B={x|x=x 1x2,x1∈A,x2∈B},∴A B={2,-4,-1},故A B中所有元素之积为:2×(-4)×(-1)=8.故选C.5、【答案】D6、【答案】A【解析】解:由题意,对于集合M,△=a2-4<0,解得-2<a<2;对于集合N,a≠3若-2<a<2,则a≠3;反之,不成立故选A.7、【答案】B则b=0,则{a,0,1}={a2,a,0},则有a2=1,即a=1或a=-1,集合{a,0,1}中,a≠1,则必有a=-1,则a2012+b2013=(-1)2012+02013=1,故选B.8、【答案】D【解析】∵集合{b}={x∈R|ax2-4x+1=0,a,b∈R},∴a=0,或△=16-4a=0.当△=16-4a=0时,a=4,9、【答案】D【解析】地球上的小河流不确定,因此不能够构成集合,选D. 10、【答案】C【解析】因为{}0φ⊆,{}00∈,所以选C. 11、【答案】A【解析】由题意得a 不等于零, 21a a b =-=,或21a b a =-=,,所以11a b =-=,或11b a =-=,,即20172017a b +的值为0,选A.12、【答案】C【解析】根据集合自身是自身的子集,可知①正确;根据集合无序性可知②正确;根据元素与集合只有属于与不属于关系可知③⑤不正确;根据元素与集合之间的关系可知④正确;根据空集是任何集合的子集可知⑥正确,即正确的关系式个数为4个,故选C. 二、填空题 13、【答案】0【解析】若两个集合相等,则两个集合中的元素完全相同.1B -∈Q ,1A ∴-∈.1x ∴=-,又0A ∈Q ,0B ∴∈,0y ∴=14、【答案】【解析】∵3∈A ,∴a+2=3或2a 2+a=3;当a+2=3时,a=1,2a 2+a=3,根据集合中元素的互异性,a=1不合题意; 当2a 2+a=3时,a=1或a=-,a=-时,A={,3},符合题意. 综上a=- 故答案是- 15、【答案】A-B={2}【解析】∵A={2,3},B={1,3,4}, 又∵A-B={x|x ∈A 且x ∉B},16、【答案】3【解析】∵集合M={3,m+1},4∈M,∴4=m+1,解得m=3.三、解答题17、【答案】当k=0时,原方程变为-8x+16=0,所以x=2,此时集合A中只有一个元素2.当k≠0时,要使一元二次方程kx2-8x+16=0有一个实根,需Δ=64-64k=0,即k=1.此时方程的解为x1=x2=4,集合A中只有一个元素4.综上可知k=0或1.【解析】18、【答案】(1)由集合元素的互异性可得x≠3,x2-2x≠x且x2-2x≠3,解得x≠-1,x≠0且x≠3.(2)若-2∈A,则x=-2或x2-2x=-2.由于x2-2x=(x-1)2-1≥-1,所以x=-2.【解析】19、【答案】(1)∵3=22-12,3∈A;(2)设4k-2∈A,则存在m,n∈Z,使4k-2=m2-n2=(m+n)(m-n)成立,1、当m,n同奇或同偶时,m-n,m+n均为偶数,∴(m-n)(m+n)为4的倍数,与4k-2不是4的倍数矛盾.2、当m,n一奇,一偶时,m-n,m+n均为奇数,∴(m-n)(m+n)为奇数,与4k-2是偶数矛盾.综上4k-2?A.【解析】(1)∵3=22-12,3∈A;(2)设4k-2∈A,则存在m,n∈Z,使4k-2=m2-n2=(m+n)(m-n)成立,1、当m,n同奇或同偶时,m-n,m+n均为偶数,∴(m-n)(m+n)为4的倍数,与4k-2不是4的倍数矛盾.2、当m,n一奇,一偶时,m-n,m+n均为奇数,∴(m-n)(m+n)为奇数,与4k-2是偶数矛盾.综上4k-2?A.20、【答案】(1)a是集合S的元素,因为a=a+0×∈S.(2)不妨设x1=m+n,x2=p+q,m、n、p、q∈Z.则x1+x2=(m+n)+(p+q)=(m+n)+(p+q),∵m、n、p、q∈Z.∴p+q∈Z,m+n∈Z.∴x1+x2∈S,x1·x2=(m+n)·(p+q)=(mp+2nq)+(mq+np),m、n、p、q∈Z.故mp+2nq∈Z,mq+np∈Z.∴x1·x2∈S.综上,x1+x2、x1·x2都属于S.【解析】21、【答案】(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,x i∈M,i=1,2,3},可得A={0,1,2,3,4,5,6,7}.(2)证明:由s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,a i,b i∈M,i=1,2,…,n及a n<b n,可得s-t=(a1-b1)+(a2-b2)q+…+(a n-1-b n-1)q n-2+(a n-b n)q n-1≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1=-q n-1=-1<0,所以s<t.【解析】22、【答案】(1)46 (2)n的最大值为14(1)对于集合P7 ,有n=7.当k=4时,P n={|m∈I n,k∈I n}中有3个数(1,2,3)与I n={1,2,3,n}中的数重复,由此求得集合P7中元素的个数为7×7﹣3=46.(2)先证当n≥15时,P n不能分成两个不相交的稀疏集的并集.否则,设A和B为两个不相交的稀疏集,使A∪B=P n?I n .不妨设1∈A,则由于1+3=22,∴3?A,即3∈B.同理可得,6∈A,10∈B.又推出15∈A,但1+15=42,这与A为稀疏集相矛盾.再证P14满足要求.当k=1时,P14={|m∈I14,k∈I14}=I14,可以分成2个稀疏集的并集.事实上,只要取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},则A1和B1都是稀疏集,且A1∪B1=I14当k=4时,集合{|m∈I14}中,除整数外,剩下的数组成集合{,,,,},可以分为下列3个稀疏集的并:A2={,,,}, B2={,,}.当k=9时,集合{|m∈I14}中,除整数外,剩下的数组成集合{,,,,,,},可以分为下列3个稀疏集的并:A3={,,,,},B3={,,,,}.最后,集合C═{|m∈I14,k∈I14,且k≠1,4,9 }中的数的分母都是无理数,它与P n中的任何其他数之和都不是整数,因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A和B是不相交的稀疏集,且A∪B=P14.综上可得,n的最大值为14.。
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。
1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。
$\{1\}$ B。
$\{3,5\}$ C。
$\{1,3,4,5\}$ D。
$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。
$22$ B。
$10$ C。
$8$ D。
$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。
$-\frac{3}{4}$ B。
$-\frac{4}{3}$ C。
$\frac{3}{4}$ D。
$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{3}$ C。
陕西高一高中数学期末考试带答案解析
陕西高一高中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.直线的倾斜角为()A.;B.;C.;D.2.正方体中,直线与所成的角为()A.30o B.45o C.60o D.90o3.在空间直角坐标系中,点A(1,-2,3)与点B(-1,-2,-3)关于( )对称A.x轴B.y轴C.z轴D.原点4.圆:与圆:的位置关系是()A.内切B.外切C.相交D.相离5.一个水平放置的平面图形,用斜二测画法画出了它的直观图,此直观图恰好是一个边长为2的正方形,如图所示,则原平面图形的面积为()A.4B.8C.8D.86.一个圆锥的底面圆半径为,高为,则该圆锥的侧面积为()A.B.C.D.7.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④8.过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为()A.B.2C.D.29.入射光线沿直线射向直线:,被直线反射后的光线所在直线的方程是()A.B.C.D.10.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.B.C.D.二、填空题1.如图,正三棱柱的主视图面积为2a2,则左视图的面积为________.2.已知三点A(3,1),B(-2,m),C(8,11)在同一条直线上,则实数m等于______.3.为圆上的动点,则点到直线的距离的最大值为________.4.如果球的内接正方体的表面积为,那么球的体积等于________.5.当直线y=k(x-2)+4和曲线y=有公共点时,实数k的取值范围是________.三、解答题1.已知直线和直线,分别求满足下列条件的的值.(1) 直线过点,并且直线和垂直;(2)直线和平行, 且直线在轴上的截距为 -3.2.如图,多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF∥AB,平面FBC⊥平面ABCD.△FBC中BC边上的高FH=2,EF=. 求该多面体的体积.3.已知四棱锥P-ABCD,底面ABCD是、边长为的菱形,又,且PD=CD,点M、N 分别是棱AD、PC的中点.求证:(1)DN// 平面PMB;(2)平面PMB平面PAD.4.已知以点A(m,)(m∈R且m>0)为圆心的圆与x轴相交于O,B两点,与y轴相交于O,C两点,其中O为坐标原点.(1)当m=2时,求圆A的标准方程;(2)当m变化时,△OBC的面积是否为定值?若是,请求出该定值;若不是,请说明理由;(3)设直线与圆A相交于P,Q两点,且 |OP|=|OQ|,求 |PQ| 的值.陕西高一高中数学期末考试答案及解析一、选择题1.直线的倾斜角为()A.;B.;C.;D.【答案】C【解析】由直线方程可知直线的斜率,选C.2.正方体中,直线与所成的角为()A.30o B.45o C.60o D.90o【答案】C【解析】连结,由正方体的性质可得,所以直线与所成的角为,在中由正方体的性质可知,,选C.点睛:由异面直线所成角的定义可知求异面直线所成角的步骤:第一步,通过空间平行的直线将异面直线平移为相交直线;第二步,确定相交直线所成的角;第三步,通过解相交直线所成角所在的三角形,可求得角的大小.最后要注意异面直线所成角的范围是.3.在空间直角坐标系中,点A(1,-2,3)与点B(-1,-2,-3)关于( )对称A.x轴B.y轴C.z轴D.原点【答案】B【解析】由两点坐标可知线段的中点坐标为,该点在轴上,所以两点关于轴对称,选B.4.圆:与圆:的位置关系是()A.内切B.外切C.相交D.相离【答案】A【解析】圆方程变形为,圆心,圆方程变形为,圆心,,所以两圆内切,选A.点睛:判断两圆的位置关系需要通过判断圆心距与半径的大小关系来确定,如:圆的半径为,圆的半径为,两圆心的距离为,若有,则两圆相离;若有,则两圆外切;若有,则两圆相交;若有,则两圆内切;若有,则两圆内含.5.一个水平放置的平面图形,用斜二测画法画出了它的直观图,此直观图恰好是一个边长为2的正方形,如图所示,则原平面图形的面积为()A.4B.8C.8D.8【答案】D【解析】由斜二测画法可知原图形为平行四边形,平行四边形在轴上的边长为2,平行四边形的高为直观图中对角线长的2倍,所以原平面图形的面积为,选D.6.一个圆锥的底面圆半径为,高为,则该圆锥的侧面积为()A.B.C.D.【答案】C【解析】圆锥的侧面展开图为扇形,扇形的半径为圆锥的母线,扇形的弧长为底面圆的周长,所以面积为,选C.7.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④【答案】D【解析】①对这两条直线缺少“相交”这一限制条件,故错误;③中缺少“平面内”这一前提条件,故错误.【考点】空间中线面的位置关系的判定.8.过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为()A.B.2C.D.2【答案】D【解析】解:根据题意:直线方程为:y=x,∵圆x2+y2-4y=0,∴圆心为:(0,2),半径为:2,圆心到直线的距离为:d=1,再由:d2+(l /2 )2=r2,得:l=2,故选D.9.入射光线沿直线射向直线:,被直线反射后的光线所在直线的方程是()A.B.C.D.【答案】B【解析】直线上取一点,该点关于直线的对称点为,直线与直线交点坐标为,所以反射光线过点,由两点可知斜率为,∴所求的直线方程为,即.选B.点睛:本题通过光线的反射考察直线关于直线的对称问题,对称问题的中心点是点的对称,因此可求入射光线上的点关于直线的对称点,其对称点必在反射光线上,进而通过反射光线过的点求得直线方程,此外还可利用入射光线,反射光线与直线的夹角相同,通过直线的夹角公式求解反射光线所在直线的斜率.10.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.B.C.D.【答案】A【解析】设球的半径为,所以球心到截面圆的距离为,所以截面圆的半径为,所以截面圆的面积为,球的表面积为,因此面积比为,选A.二、填空题1.如图,正三棱柱的主视图面积为2a2,则左视图的面积为________.【答案】【解析】已知正三棱柱的主视图的底边长为,正三棱柱的主视图面积为,所以该正三棱柱的高为.因为正三棱柱的底面为边长为的正三角形,所以左视图的底边长为,所以左视图的面积为.2.已知三点A(3,1),B(-2,m),C(8,11)在同一条直线上,则实数m等于______.【答案】【解析】由三点共线可知直线的斜率相等,结合斜率公式可得.点睛:关于三点共线问题有以下求解方法:方法一:三点共线,则由三点确定的直线中,任意两直线的斜率相等,由此可建立关于的等式关系;方法二:三点共线,则由三点确定的向量共线,因此得到向量坐标间的关系式,可求得的值;方法三:由点的坐标可求得直线的方程,将点的坐标代入直线方程可求得的值.3.为圆上的动点,则点到直线的距离的最大值为________.【答案】【解析】由圆的方程可知圆心,半径,所以圆心到直线的距离为,结合圆的对称性可求得圆上的动点到直线的最大距离为.点睛:本题中当直线与圆相离时求解圆上的动点到直线的距离是直线与圆的章节中常考的知识点,求解时可结合圆的对称性可先求圆心到直线的距离,进而得到所求距离的最大值为,距离的最小值为.4.如果球的内接正方体的表面积为,那么球的体积等于________.【答案】【解析】由正方体的表面积为24可知边长为2,所以正方体的体对角线为,即球的直径为,所以.点睛:球与正方体的结合考查,常见的结合形式有三种:形式一:球与正方体六个面都相切,即球为正方体的内切球,此时球的直径等于正方体的边长;形式二:球与正方体的12条棱都相切,此时球的直径为正方体的面对角线;形式三:球过正方体的8个顶点,即球为正方体的外接球,此时球的直径为正方体的体对角线.5.当直线y=k(x-2)+4和曲线y=有公共点时,实数k的取值范围是________.【答案】【解析】曲线变形为,直线为过定点的直线,结合图形可知直线与圆相切(切点在第二象限)时,斜率取得最小值,此时的满足到的距离为圆的半径,所以,所以实数的取值范围是.三、解答题1.已知直线和直线,分别求满足下列条件的的值.(1) 直线过点,并且直线和垂直;(2)直线和平行, 且直线在轴上的截距为 -3.【答案】(1);(2)【解析】(1)由直线过点,可将点的坐标代入直线方程得到的关系式,由垂直可得到两直线方程系数的关系,即的关系式,解方程组可求得的值; (2)由平行可得到系数满足,由的截距可得到,解方程组可求得的值.(1)由已知得,解得;(2)由已知得,解得.2.如图,多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF∥AB,平面FBC⊥平面ABCD.△FBC中BC边上的高FH=2,EF=. 求该多面体的体积.【答案】【解析】由已知多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF与面AC的距离为2,将几何体补成三棱柱,我们易求出三棱柱的体积,然后由三棱柱的体积减去三棱锥的体积即可.将几何体补成三棱柱,如图所示:多面体中,平面FBC⊥平面ABCD,且AB⊥BC,故AB⊥平面FBC.∵EF∥AB,∴EF⊥平面FBC,即GF⊥平面FBC.∵△FBC中BC边上的高FH=2,平面ABCD是边长为3的正方形,EF=,∴三棱锥E-ADG的体积为,∴原几何体的体积为.3.已知四棱锥P-ABCD,底面ABCD是、边长为的菱形,又,且PD=CD,点M、N 分别是棱AD、PC的中点.求证:(1)DN// 平面PMB;(2)平面PMB平面PAD.【答案】(1)证明过程见解析;(2)证明过程见解析【解析】(1)要证明DN//平面PMB,只要证明DN// MQ;(2)要证明平面PMB平面PAD,只要证明MB平面PAD.(1)证明:取中点,连结、,因为分别是棱中点,所以////,且,所以四边形是平行四边形,于是//..(2),又因为底面是,边长为的菱形,且为中点,所以.又,所以.4.已知以点A(m,)(m∈R且m>0)为圆心的圆与x轴相交于O,B两点,与y轴相交于O,C两点,其中O为坐标原点.(1)当m=2时,求圆A的标准方程;(2)当m变化时,△OBC的面积是否为定值?若是,请求出该定值;若不是,请说明理由;(3)设直线与圆A相交于P,Q两点,且 |OP|=|OQ|,求 |PQ| 的值.【答案】(1);(2)的面积为定值;(3)【解析】(1)由可求得圆心坐标,由的值可求得圆的半径,进而得到圆的方程;(2)由圆的方程可求得两点坐标,将面积转化为用两点坐标表示,可得其为定值;(3)由|OP|=|OQ|可得点O在线段PQ的垂直平分线上,结合圆心也在线段PQ的垂直平分线上,从而可得,由此可求得的值,即求得圆心坐标,结合直线与圆相交的弦长问题可求得的值.(1)当时,圆心的坐标为,∵圆过原点,∴,则圆的方程是;(2)∵圆过原点,∴=,则圆的方程是,令,得,∴;令,得,∴,∴, 即:的面积为定值;(3)∵,∴垂直平分线段,∵,∴,∴,解得 .∵已知,∴,∴圆的方程为.,此圆与直线相交于两点,.。
陕西省黄陵中学(普通班)高一上学期期末考试数学试题
陕西省黄陵中学(普通班)2019-2020学年高一上学期期末考试数学试题第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每个小题所给出的四个选项中,只 有一项是符合题目要求的,把正确选项的代号填在答题卡的指定位置.) 1.已知集合}2,1,0,1{-=A ,集合}2,0{=B ,则=⋂B AA .}2,1,0,1{-B .}2,1,0{C .}1,0,1{-D .}2,0{2.设集合}5,3,1{-=A ,若f :12-→x x 是集合A 到集合B 的映射,则集合B 可以是 A .}3,2,0{ B .}3,2,1{ C .}5,3{- D .}9,5,3{-3.已知角α的顶点与平面直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点(3,4)P -,则sin α等于A .35-B .45-C .35D .45[来源:]4.要得到函数)32sin(3π-=x y 的图象,只需将函数x y 2sin 3=图象A .向右平移6π的单位 B .向右平移3π的单位 C .向左平移6π的单位 D .向左平移3π的单位5.下列函数中,在区间(0,)+∞上为增函数的是A .ln(2)y x =+B .1y x =-+C .1()2xy = D .1y x x=+ 6.已知α是第三象限角,5tan 12α=,则sin α= A .15B .15-C .513D .513-7.函数()3f x x lnx =+的零点所在的区间为 A .()0,1B .()1,2C .()2,3D .()3,48.已知函数()()sin (,0,0,)2f x A x x R A πωϕωϕ=+∈>><的部分图象如图所示,则()f x 的解析式是A .()()2sin 6f x x x R ππ⎛⎫=+∈ ⎪⎝⎭B .()()2sin 26f x x x R ππ⎛⎫=+∈ ⎪⎝⎭C .()()2sin 3f x x x R ππ⎛⎫=+∈ ⎪⎝⎭D .()()2sin 23f x x x R ππ⎛⎫=+∈ ⎪⎝⎭9.设12,e e 是两个互相垂直的单位向量,且1214OA =+u u u r e e ,1212OB =+u u u r e e 则OA uuu r 在OB uuu r 上的投影为( )A.410 B.35322 10.函数1()ln()f x x x=-图象是( )11.已知函数())3f x x πω=+()0ω>在平面直角坐标系中的部分图象如图所示,若90ABC ∠=o ,则=ω( )A .4π B .8π C .6π D .12π 12.已知函数()[)2g (1),1,3()4,3,1lo x x f x x x ⎧+∈-⎪=⎨∈+∞⎪-⎩,则函数()()1g x f f x =-⎡⎤⎣⎦的零点个数为( )A .1B .3C .4D .6第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,满分20分)13.计算:33log 362log 2-= ▲;1038π+= ▲ .14.已知函数⎩⎨⎧≥+-<+=0),1(log 0,2)(22x x x x x x f ,则((3))f f = ▲ ;若()3f a =,则实数a = ▲ .15.已知函数(),1f x x x a x =--∈R 有三个零点1x 、2x 、3x ,则实数a 的取值范围是 ▲ ;123x x x ++的取值范围是 ▲ . 16.已知1cos()63πα-=-,则sin()3+=πα ▲ . 三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤.) 17.(10分)(1)41320.753440.0081(4)16---++-;(2)3log 22912log 51lg 31log 27log 102--+--).18.(12分)已知一扇形的中心角是α,所在圆的半径是R. (1)若α=60°,R =10cm ,求扇形的弧长及该弧所在的弓形面积;(2)若扇形的周长是一定值C(C>0),当α为多少弧度时,该扇形有最大面积?19.(12分)已知函数()2sin cos 222x x x f x π⎛⎫=- ⎪⎝⎭(1)求()f x 的单调递增区间(2)若0,02x π⎛⎫∈-⎪⎝⎭,已知()013f x =,求0cos x 的值 20.(12分)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元。
陕西省黄陵中学高一数学上学期期末考试试题(普通班)
黄陵中学2016-2017学年高一普通班数学期末测试题考试时间:120分钟满分150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填入答题卡中)1.如图,将无盖正方体纸盒展开,直线AB、CD在原正方体中的位置关系是( )A.平行 B.相交成60°角 C.异面直线 D.相交且垂直2.已知直线m∥平面α,直线n在α内,则m与n的关系为()A. 平行B. 相交C. 相交或异面D. 平行或异面3.如图所示,如果所在平面,那么MA与BD的位置关系是()A.平行B.垂直相交C.垂直但不相交D.相交但不垂直4.三条直线两两相交,可以确定平面的个数是()A. 1或3B. 1或2C. 3D. 15..下列条件中,能判断两个平面平行的是( )A.一个平面内的一条直线平行于另一个平面B. 一个平面内的两条直线平行于另一个平面C. 一个平面内有无数条直线平行于另一个平面D. 一个平面内的任何一条直线都平行于另一个平面6.已知不同的直线a,b,c,下列说法正确的是()A.a∥b,b∥c,则a∥cB.a 与b 异面,b 与c 异面,则a 与c 异面C.a 与b 相交,b 与c 相交,则a 与c 相交D.a 与b 所成的角与b 与c 所成的角相等,则a ∥c7.如图是一个几何体的三视图,则这个几何体的侧面积是( )A. 12πcm 2B. 8πcm 2C. 6πcm 2D. 3πcm 28.已知函数()则,x x x x x x f ⎩⎨⎧>++-≤-=1,321,12f(2) =( ) A.2 B,3 C. 0 D.19.方程x 2+y 2+x +y −m =0表示一个圆,则m 的取值范围是( )A. m >−21B. m <−21C. m ⩽≤−21D. m ⩾≥−2110.经过点M(1,1)且在两轴上截距相等的直线是( )A. x +y =2B. x +y =1C. x =1或y =1D. x +y =2或x −y =011.如图,已知△AOB 是等边三角形,则直线AB 的斜率等于( )12.圆 C1 ()()42122=-+-y x 与圆 C2()()12222=+++y x 的位置关系是( )A.外离B.外切C.相交D.内切二、填空题(本大题共5小题,每小题5分,共25分.)13. 函数()()1log 13+++=x xx x f 的定义域是___________ 14.长方体的长、宽、高的比为1:2:3,对角线长是142cm .则它的体积是_____15.在空间直角坐标系中,点A(1,-3,0)和点B(2,0,4)的距离为________16.两直线3x+y-3=0和6x+my-1=0平行,则它们之间的距离为________17.在平面直角坐标系xOy 中,直线3x +4y −5=0与圆4x 22=+y 相交于A. B 两点,则弦AB 的长等于______三、解答题(本大题共4小题,共65分.解答应写出文字说明,证明过程或演算步骤)17.(本题满分14分)已知直线l:x+y −1=0,(1)若直线l 1过点(3,2)且l 1∥l,求直线l 1的方程;(2)若直线l 2过l 与直线2x −y+7=0的交点,且l 2⊥l,求直线l 2的方程。
2015-2016高一第一学期中期考试数学试题
黄陵中学高一第一学期数学中期考试题班级_______学号_____ 姓名__________(时间:120分钟 总分:150分)一、选择题(本题共15小题,每小题5分,共75分)1.集合{0,1}的子集有( )A.1个B. 2个C. 3个D. 4个2.已知集合2{|10}M x x =-=,则下列式子正确的是( )A .{1}M -∈B . 1 M ⊂C . 1 M ∈-D . 1 M ∉-3.已知集合M={-1,0,1,3,5},N={-2,1,2,3,5},则=⋂N M ( )A.{-1,1,3}B.{1,2,5}C.{1,3,5}D.φ4.设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4}, 则(U C A )⋃(U C B )=( )A.{0}B.{0,1}C.{0,1,4}D.{0,1,2,3,4}5.若()f x (3)f =( )A.2B.4C.6.下列四个函数中,与y =x 表示同一函数的是( )A.y =(x )2B.y =33xC.y =2xD.y =xx 2 7. 若01a a >≠且,则函数log (1)a y x =+的图象一定过点( )A.(0,0) B .(1,0) C .(-1,0) D.(1,1)8.二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( )A.7-B.1C.17D.259.设5.205.2)21(,25,2===c b a ,则a,b,c 大小关系( ) A. a>c>b B. c>a>b C. a>b>c D.b>a>c10.使不等式02213>--x 成立的x 的取值范围是( ) A.),32(+∞ B.),23(+∞ C.),31(+∞ D.1(,)3-+∞11.函数f (x )=3x -4的零点所在区间为( )A.(0,1)B.(-1,0)C.(2,3)D.(1,2)12.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减函数,那么实数a 的取值范围是( ) A.3a -≤ B.3a -≥ C.a ≤5 D.a ≥513. 已知a>1,函数x a y =与)x (log y a -=的图像只可能是( )14.设()x a f x =(a>0,a ≠1),对于任意的正实数x ,y ,都有( )A.()()()f xy f x f y =B. ()()()f xy f x f y =+C.()()()f x y f x f y +=D. ()()()f x y f x f y +=+15.下列所给4个图象中,与所给3件事吻合最好的顺序为( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
陕西省延安市高一上学期期末数学试卷
陕西省延安市高一上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分) (2016高二上·温州期中) 直线x+y﹣3=0的倾斜角是()A .B .C .D .2. (2分) (2019高二上·南宁期中) 某几何体的三视图如图所示,这个几何体的体积为()A . 1B .C .D .3. (2分)已知直线l的倾斜角是l':x﹣y+3=0倾斜角的2倍,且原点到直线l的距离等于2,则直线l的方程为()A . x=2或x=﹣2B . x=2C . x=﹣2D . y=x+24. (2分)线段AB的两端在直二面角α-l-β的两个面内,并与这两个面都成30°角,则异面直线AB与l所成的角是()A . 30°B . 45°C . 60°D . 75°5. (2分) (2016高一下·仁化期中) 已知a、b为直线,α,β,γ为平面,有下列四个命题:①a∥α,b∥α,则a∥b②α⊥β,β⊥γ,则α∥β③a∥α,a∥β,则α∥β④a∥b,b⊂α,则a∥α其中正确命题的个数是()A . 0B . 1C . 2D . 36. (2分)下列直线中与直线x﹣2y+1=0平行的一条是()A . 2x﹣y+1=0B . 2x﹣4y+2=0C . 2x+4y+1=0D . 2x﹣4y+1=07. (2分) (2017高一下·彭州期中) 一梯形的直观图是一个如图所示的等腰梯形,且此梯形的面积为,则原梯形的面积为()A . 2B .C . 2D . 48. (2分) (2015高一上·柳州期末) 已知圆C:x2+y2﹣4x=0,直线l:kx﹣3k﹣y=0,则直线l与圆C的位置关系是()A . 相交B . 相切C . 相离D . 以上三种均有可能9. (2分)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为()A .B .C .D .10. (2分)已知圆M过定点(2,0)且圆心M在抛物线y2=4x上运动,若y轴截圆M所得的弦长为AB,则弦长|AB|等于()A . 4B . 3C . 2D . 与点M位置有关的值11. (2分) (2016高二下·渭滨期末) 已知复数z满足|z﹣i|+|z+i|=3(i是虚数单位),若在复平面内复数z对应的点为Z,则点Z的轨迹为()A . 直线B . 双曲线C . 抛物线D . 椭圆12. (2分) (2016高二下·玉溪期中) 已知在圆x2+y2﹣4x+2y=0内,过点E(1,0)的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为()A .B . 6C .D . 2二、填空题: (共4题;共4分)13. (1分) (2016高二上·襄阳期中) 点P(1,2,3)关于y轴的对称点为P1 , P关于坐标平面xOz的对称点为P2 ,则|P1P2|=________.14. (1分)已知扇形的圆心角为60°,所在圆的半径为10cm,则扇形的面积是1 cm2 .15. (1分)如图所示,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填序号).16. (1分) (2020高二上·遂宁期末) 已知点是直线上一动点,是圆的两条切线,为切点,则弦长的最小值为________三、解答题: (共6题;共40分)17. (10分)(2017·银川模拟) 如图,直二面角D﹣AB﹣E中,四边形ABCD是边长为2的正方形,AE=EB,F 为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥平面BCE;(2)求二面角B﹣AC﹣E的余弦值.18. (5分)△ABC的两顶点A(3,7),B(﹣2,5),若AC的中点在y轴上,BC的中点在x轴上(1)求点C的坐标;(2)求AC边上的中线BD的长及直线BD的斜率.19. (5分) (2015高二下·伊宁期中) 如图,在底面是矩形的四棱锥P﹣ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点.求证:平面PDC⊥平面PAD.20. (5分)已知:以点C(t R,t≠0)为圆心的圆与x轴交于点O,A,与y轴交于点O、B,其中O 为原点,(1)求证:△OAB的面积为定值;(2)设直线y=﹣2x+4与圆C交于点M,N,若OM=ON,求圆C的方程.21. (10分)(2018·辽宁模拟) 如图,四棱柱的底面为菱形,,,为中点.(1)求证:平面;(2)若底面,且直线与平面所成线面角的正弦值为,求的长.22. (5分)已知实数x,y满足方程x2+y2﹣4x+1=0,求的最大值和最小值.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题: (共6题;共40分) 17-1、17-2、18-1、19-1、20-1、21-1、21-2、22-1、。
陕西省延安市高一上学期数学期末考试试卷
陕西省延安市高一上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知集合A={x||x﹣2|>1},B={x|x2+px+q>0},若A=B,则p+q=()A . 1B . -1C . 7D . -72. (2分) (2016高一上·晋江期中) 下列四组函数中表示同一个函数的是()A . f(x)=|x|与B . f(x)=x0与g(x)=1C . 与D . 与3. (2分)已知直线l1:ax﹣y+2a=0,l2:(2a﹣1)x+ay+a=0互相垂直,则a的值是()A . 0B . 1C . 0或1D . 0或﹣14. (2分)已知直线与平面平行,P是直线上的一点,平面内的动点B满足:PB与直线成,那么B 点轨迹是().A . 双曲线B . 椭圆C . 抛物线D . 两直线5. (2分)下列函数在定义域上既是奇函数又是增函数的为()A .B .C .D .6. (2分) (2017高一下·静海期末) 已知a=log0.50.3,b=log30.5,c=0.5﹣0.3 ,则a,b,c的大小关系是()A . a>c>bB . c>a>bC . c>b>aD . b>c>a7. (2分)已知直线a,b与平面α,给出下列四个命题:①若a∥b,bα,则a∥α;②若a∥α,bα,则a∥b;③若a∥α,b∥α,则a∥b;④若a⊥α,b∥α,则a⊥b.其中正确命题的个数是()A . 1B . 2C . 3D . 48. (2分) (2017高一上·焦作期末) 已知直线l1:x+2y+t2=0和直线l2:2x+4y+2t﹣3=0,则当l1与l2间的距离最短时t的值为()A . 1B .C .D . 29. (2分)已知R上的不间断函数g(x) 满足:①当x>0时,g'(x)>0恒成立;②对任意的都有g(x)=g(-x)。
陕西省黄陵中学2015-2016学年高一上学期期末考试化学试卷 Word版含答案.pdf
2015-2016学年度高一上学期化学试题试卷说明: 1. 本试卷分为第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷为选择题,第Ⅱ卷为非选择题。
2. 本试卷满分100分,考试时间分钟。
3. 本试卷可能用到的相对原子质量:H: 1 C: 12 N: 14 O: 16 Na: 23 Mg: 24 选择题(每小题有个)2.溶液.胶体与浊液的本质区别是( )A.分散系是否有颜色B.是否有丁达尔效应C.能否透过滤纸D.分散质粒子的大小 .下列溶液中Cl-浓度最小的是( )A.200mL 2 mol·L-1 MgCl2溶液B.1000mL 2.5 mol·L-1 NaCl溶液C.300mL 5 mol·L-1 KCl溶液D.250mL 1 mol·L-1 AlCl3溶液将 .下列关于气体摩尔体积的几种说法正确的是( ) A. 22.4 L任何气体的物质的量均为1 mol B. 标准状况下,1 mol物质的体积为22.4 L C. H2O2、N2、CO2组成的混合气体1 mol在标准状况下的体积约为22.4 L D. 在同温同压下,相同体积的任何气体单质所含分子数和原子数都相同 .下列关于物质的检验说法不正确的是( ) A.加入氯化钡溶液有白色沉淀生成,再加稀硝酸,沉淀不消失,一定含有SO42- B.观察钾元素焰色反应的操作是:将铂丝放在稀盐酸中洗涤后灼烧至无色,然后再用铂丝蘸取固体氯化钾,置于煤气灯的火焰上进行灼烧,透过蓝色钴玻璃进行观察 C.待检液加入NaOH溶液并加热,有能使湿润的红色石蕊试纸变蓝的气体生成,则原溶液中一定含有NH4+ D.待检液加入氯化钡溶液有白色沉淀生成, 再加入盐酸沉淀消失且产生无色无味的气体,则待检液中一定含有CO32-C.用碳和高温水蒸气反应制取氢气D. 用氯气和溴化钠溶液反应制取溴 7.下列各组物质中,前者为强电解质,后者为弱电解质的是( ) 硫酸 硫酸镁 B.碳酸 碳酸钠 C.食盐 酒精 D.碳酸钠 醋酸 8.要使氯化铝溶液中的Al3+完全转化成Al(OH)3沉淀,应选用的最佳试剂是( )A.NaOH溶液B.稀盐酸C.氯水D.AgNO3溶液 9.下列各组关于强电解质.弱电解质.非电解质的归类正确的( ) ABCD强电解质FeNaClCaCO3HNO3弱电解质CH3COOHNH3H2CO3Fe(OH)3非电解质蔗糖BaSO4C2H5OHH2O.氮化铝(AlN)具有耐高温.抗冲击.导热性好等优良性质,被广泛应用于电子工业.陶瓷工业等领域。
陕西省黄陵中学高一数学上学期期末考试试题(重点班)
陕西省黄陵中学2016-2017学年高一数学上学期期末考试试题(重点班)一、选择题(每小题只有一个选项是正确的,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知集合A={﹣1,0,1},B={x|1≤2x <4},则A∩B 等于( )A .{1}B .{﹣1,1}C .{1,0}D .{﹣1,0,1}2.函数y =( ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .}10|{≤≤x x3. 下列四个图形中,不是..以x 为自变量的函数的图象是 ( )4A .函数的单调区间可以是函数的定义域B .函数的多个单调增区间的并集也是其单调增区间C .具有奇偶性的函数的定义域定关于原点对称D .关于原点对称的图象一定是奇函数的图象5、下列函数一定是指数函数的是 ( ) A、12+=x y B 、3x y = C 、 x y 23⋅= D 、x y -=36.若角α的终边过点P (1,-2),则tan α的值为( )A . -2 B. 12C . -12D .2 7.y=(sinx ﹣cosx )2﹣1是( )A .最小正周期为2π的偶函数B .最小正周期为π的奇函数C .最小正周期为π的偶函数D .最小正周期为2π的奇函数8.函数f (x )=Asin (ωx+φ)(其中A >0,)的图象如图所示,为了得到g (x )=2sin2x 的图象,则只需将f (x )的图象( )A B C DA .向右平移个长度单位 B .向右平移个长度单位C .向左平移个长度单位D .向左平移个长度单位9.下列各式中,值为12的是 ( ) A .sin15°cos15° B.cos 2π12-sin 2π12C.1+cos π62 D.tan22.5°1-tan 222.5°10.函数y =sin x 和y =tan x 的图象在[-2π,2π]上交点的个数为( )A .3B .5C .7D .911.下列关系中正确的是( )A .sin11°<co s10°<sin168°B .sin168°<sin11°<cos10°C .sin11°<sin168°<cos10°D .sin168°<cos10°<sin11°12.已知奇函数()f x 、偶函数()g x 的图像分别如图①②所示,若方程[()]0f g x =,[()]0g f x =的实根个数分别为,a b ,则a b +等于( )A.10B.14C.7D.3二、选择题(每小题只有一个选项是正确的,每小题5分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的。
陕西省黄陵中学高一(普通班)上学期期末考试数学试题
黄陵中学2017-2018学年第一学期末高一普通班数学试题一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共12小题,每小题5分,共60分) 1.设集合A ={(x ,y )|4x +y =6},B ={(x ,y )|3x +2y =7},则A ∩B =( )A . {x =1或y =2}B .{(1,2)}C .{1,2}D .(1,2)2.已知函数12)(-=x x f ,{}321,,∈x .则函数)(x f 的值域是( )A . {}531,, B . (]0,∞- C . [)∞+,1 D . R 3.已知函数⎩⎨⎧≤>=131log )(2x x x x f x ,,,则)2()1(f f +=( )A . 1B . 4C . 9D . 124.函数)13lg(13)(2++-=x xx x f 的定义域是( ) A . )31(∞+-, B . )31(--∞, C . )3131(,- D . )131(,-5.若10≠>a a 且,则函数)1(log +=x y a 的图象一定过点( )A . (0,0) B.(1,0) C . (-1,0) D . (1,1)6.已知函数)(x f 为奇函数,且当0>x 时,x x x f 1)(2+=,)1(-f =( )A . -2B . 0C . 1D . 27.设x a x f =)()10(≠>a a ,,对于任意的正实数x ,y ,都有( )A . )()()(y f x f xy f =B . )()()(y f x f xy f +=C . )()()(y f x f y x f +=+D . )()()(y f x f y x f =+8.已知直线a 的倾斜角为45度,则a 的斜率是( )A 1B 2C 3D 49. 直线x+y-2=0与直线x-y+3=0的位置关系是( )A 平行B 垂直C 相交但不垂直D 不能确定10. 直线x+y=5与直线x-y=1交点坐标是( )A (1,2)B (2,3)C (3,2)D (2,1)11.点(4,3)和点(7,-1)的距离是( )A 2B 3C 4D 512. 直线4x-3y=0与圆x 2+y 2=36的位置关系是( )A 相交B 相离C 相切D 不能确定 二 填空题:把答案填写在答题卡相应题号后的横线上(本大题共4小题,每小题5分,共20分)13. 已知直线y=2x+b 过点(1,2),则b =( )14. 点(-1,2)到直线2x+y=10的距离是( )15. 圆心在原点,半径为5的圆的方程是( )。
陕西省黄陵中学高一(普通班)上学期期末考试数学---精校解析Word版
高一普通班期末考试测试题数学一.选择题(本大题共12小题,每小题5分,共60分)1. 集合A={x|0≤x<3且x∈Z}的真子集的个数是()A. 5B. 6C. 7D. 8【答案】C【解析】试题分析:集合,含有3个元素,因此子集个数为,所以真子集个数为8-1=7.考点:集合子集2.下列几何体中是棱柱的有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据棱柱的定义进行判断即可.【详解】棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱,观察图形满足棱柱概念的几何体有:①③⑤,共三个.故选:C.【点睛】本题主要考查棱柱的概念,属于简单题.3.下列函数与y=x有相同图像的一个函数是( )A. B. C. y=(a>0且a≠1) D. y=log a a x【答案】D【解析】【分析】根据选项中函数的定义域、值域、解析式等方面来判断它们与原函数是否为同一个函数,从而得到结论.【详解】选项A中,y≥0,与原函数y=x的值域R不符;选项B中,x≠0,与原函数y=x的定义域R不符;选项C,x>0,与原函数y=x的定义域不符;选项D,y=log a a x=x,与原函数y=x一致;故选:D.【点睛】本题考查判断两个函数是否为同一个函数,判断标准是判断函数的定义域,对应法则和值域是否一致.4. 如图所示,正方体的棱长为1,点A是其一棱的中点,则点A在空间直角坐标系中的坐标是()A. B.C. D.【答案】B【解析】试题分析:由正方体的棱长为1,得A点上方的顶点坐标为,A点下方的顶点坐标为;由点A是其一棱的中点,得点A在空间直角坐标系中的坐标为.故选B.考点:空间中的点的坐标.5.长方体ABCD-A1B1C1D1中,∠BAB1=30°,则异面直线C1D与B1B所成的角是A. 60°B. 90°C. 30°D. 45°【答案】A【解析】解:长方体ABCD-A1B1C1D1中,∠BAB1=30°,B1B∥C1C,C1D与C1C所成的角,就是C1D与B1B所成的角,容易求得C1D与B1B所成的角为:60°故选A.6.下列直线中,与直线的相交的是( )A. B. C. D.【答案】D【解析】【分析】直线x+y﹣1=0的斜率是﹣1,要满足题意,只需在四个选项中选择斜率不是﹣1的直线即可.【详解】直线x+y﹣1=0的斜率是﹣1,观察四个选项中选择斜率不是﹣1的直线,斜率是﹣1的直线与已知直线是平行关系,在四个选项中,只有D中直线的斜率不是﹣1,故选:D.【点睛】本题考查两条直线的位置关系,考查两条直线相交和平行的判断,是基础题.7.在空间四边形的各边上的依次取点,若所在直线相交于点,则()A. 点必在直线上B. 点必在直线上C. 点必在平面外D. 点必在平面内【答案】B【解析】【分析】由题意连接EH、FG、BD,则P∈EH且P∈FG,再根据两直线分别在平面ABD和BCD内,根据公理3则点P一定在两个平面的交线BD上.【详解】如图:连接EH、FG、BD,∵EH、FG所在直线相交于点P,∴P∈EH且P∈FG,∵EH⊂平面ABD,FG⊂平面BCD,∴P∈平面ABD,且P∈平面BCD,由∵平面ABD∩平面BCD=BD,∴P∈BD,故选:B.【点睛】本题考查公理3的应用,即根据此公理证明线共点或点共线问题,必须证明此点是两个平面的公共点,可有点在线上,而线在面上进行证明.8.已知直线,给出以下三个命题:①若平面平面,则直线平面;②若直线平面,则平面平面;③若直线不平行于平面,则平面不平行于平面。
陕西省黄陵县高一数学上学期期末考试试题(重点班)
2017-2018学年高一重点班数学期末试题一选择题(共12小题,每题5分,总计60分)1.1.设集合M={x|x<2 017},N={x|0<x<1},则下列关系中正确的是( ) A.M∪N=R B.M∩N={x|0<x<1} C.N∈M D.M∩N=∅2.函数f(x)=+lg(3x+1)的定义域为( )A. (-,1) B. (-,) C. (-,+) D. (-)3.log5+log53等于( )A. 0 B. 1 C.-1 D. log54.用二分法求函数f(x)=x3+5的零点可以取的初始区间是( )A. [-2,1] B. [-1,0] C. [0,1] D. [1,2]5.时针走过了2小时40分,则分针转过的角度是( )A. 80° B.-80° C. 960° D.-960°6.-300°化为弧度是( )A.-π B.-π C.-π D.-π7.已知角α的终边经过点(3,-4),则sinα+cosα的值为( )A.± B.± C.- D.8.已知f(x)=sin(2x-),则f(x)的最小正周期和一个单调增区间分别为( ) A.π,[-,] B.π,[-,]C. 2π,[-,] D. 2π,[-,]9.函数f (x)=cos(3x+φ)的图象关于原点成中心对称,则φ不会等于( ) A.- B. 2kπ- (k∈Z) C.kπ(k∈Z)m D.kπ+ (k∈Z) 10.若=-,则sinα+cosα的值为( )A.- B.- C. D.11.已知cos(=,则cos=()A.3 B. -3 C. D.-12.在(0,2π)内,使tan x>1成立的x的取值范围为()A. B. C. D.∪二、填空题(共4小题,每小题5.0分,共20分)13.将函数y=sin(-2x)的图象向左平移个单位,所得函数图象的解析式为______________.14.已知cosα+cosβ=,sinα+sinβ=,则cos(α-β)=________.15.已知tan(α+β)=7,tanα=,且β∈(0,π),则β的值为________.16.2sin222.5°-1=________.三.解答与证明题(请写出必要的演算步骤、证明过程。
陕西高一高中数学期末考试带答案解析
陕西高一高中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.已知数列{a n }的通项公式为a n =4n -3,则a 5的值是( ) A .9 B .13 C .17D .212.已知全集U =R ,集合P ={x|x 2≤1},那么∁U P =( ) A .(-∞,-1) B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)3.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定4.已知两个正数a ,b 的等差中项为4,则a ,b 的等比中项的最大值为( ) A .2 B .4 C .8D .165.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8的值等于( ) A .45 B .75 C .300 D .1806.若A 、B 是锐角的两个内角,则点在 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限7.设等差数列{a n }的前n 项和为S n . 若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ) A .6 B .7 C .8 D .98.等比数列x ,3x+3,6x+6,…的第四项等于( ) A .-24 B .0C .12D .249.a ∈R ,且a 2+a <0,那么-a ,-a 3,a 2的大小关系是( )A .a 2>-a 3>-aB .-a >a 2>-a 3C .-a 3>a 2>-aD .a 2>-a >-a 310.不等式ax 2+bx +2>0的解集是,则a +b 的值是( )A .10B .-10C .-14D .14二、填空题1.函数y=sin2x+COS 2x 的最小正周期T= _______.2.在数列{a n }中,a n =4n -,a 1+a 2+…+a n =An 2+Bn ,n ∈N +,其中A ,B 为常数,则AB =__________.3.在△ABC 中,已知a =,cos C =,S △ABC =,则b =________.4.关于x 的不等式:的解集为 .5.某公司一年购买某种货物200吨,分成若干次均匀购买,每次购买的运费为2万元,一年存储费用恰好与每次的购买吨数的数值相等(单位:万元),要使一年的总运费与总存储费用之和最小,则应购买________次.三、解答题1.在△ABC 中,已知B =45°,D 是BC 边上的一点,AD =5,AC =7,DC =3,求AB 的长.2.解关于x 的不等式:3.(1)已知等差数列{a n }的公差d > 0,且是方程x 2-14x +45=0的两根,求数列通项公式(2)设,数列{b n }的前n 项和为S n ,证明.4.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,且cosA=. (1)求+cos2A 的值;(2)若a=,求bc 的最大值.5.已知=2,点()在函数的图像上,其中=.(1)证明:数列}是等比数列;(2)设,求及数列{}的通项公式;(3)记,求数列{}的前n 项和,并求的值.陕西高一高中数学期末考试答案及解析一、选择题1.已知数列{a n }的通项公式为a n =4n -3,则a 5的值是( ) A .9 B .13 C .17D .21【答案】C【解析】根据题意,由于数列{a n }的通项公式为a n =4n -3,那么当n=5,则可知a 5的值是20-3=17,故答案为C. 【考点】等差数列点评:主要是考查了数列的通项公式的运用,属于基础题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年陕西省延安市黄陵中学高一(上)期末数学试卷一、选择题(本大题共15小题,每小题5分,共75分,在下列四个选项中,只有一项是符合题目要求的)1.(5.00分)如图是由哪个平面图形旋转得到的()A.B.C.D.2.(5.00分)设全集U,图中阴影部分所表示的集合是()A.C U M B.(C U N)∩M C.N∪(C U M)D.N∩(C U M)3.(5.00分)已知直线a的倾斜角为45°,则a的斜率是()A.1 B.2 C.3 D.44.(5.00分)直线x+y=5与直线x﹣y=1交点坐标是()A.(1,2) B.(2,3) C.(3,2) D.(2,1)5.(5.00分)函数f(x)=的定义域为()A.[1,2)∪(2,+∞)B.(1,+∞)C.[1,2) D.[1,+∞)6.(5.00分)下列条件能唯一确定一个平面的是()A.空间任意三点B.不共线三点C.共线三点D.两条异面直线7.(5.00分)垂直于同一条直线的两条直线一定()A.平行B.相交C.异面D.以上都有可能8.(5.00分)直线x+y﹣2=0与直线x﹣y+3=0的位置关系是()A.平行B.垂直C.相交但不垂直D.不能确定9.(5.00分)直线4x﹣3y=0与圆x2+y2=36的位置关系是()A.相交B.相离C.相切D.不能确定10.(5.00分)空间中,如果两个角的两条边分别对应平行,那么这两个角()A.相等B.互补C.相等或互补D.不能确定11.(5.00分)已知点A(﹣3,1,4),则点A关于原点的对称点的坐标为()A.(1,﹣3,﹣4) B.(﹣4,1,﹣3) C.(3,﹣1,﹣4) D.(4,﹣1,3)12.(5.00分)如果两个球的体积之比为8:27,那么两个球的半径之比为()A.8:27 B.2:3 C.4:9 D.2:913.(5.00分)函数y=lg|x|()A.是偶函数,在区间(﹣∞,0)上是单调递增函数B.是奇函数,在区间(﹣∞,0)上是单调递减函数C.是奇函数,在区间(0,+∞)上是单调递增函数D.是偶函数,在区间(0,+∞)上是单调递增函数14.(5.00分)在同一直角坐标系中,函数y=a x与y=log a x的图象只能是()A.B.C.D.15.(5.00分)有一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的体积为()A.12πcm3B.15πcm3C.24πcm3D.36πcm3二、填空题:本大题共5个小题,每小题5分,共25分.16.(5.00分)已知直线y=2x+b过点(1,2),则b=.17.(5.00分)圆心在原点,半径为5的圆的方程是.18.(5.00分)已知⊙O1与⊙O1的半径分别为5cm和3cm,圆心距O1O1=7cm,则两圆的位置关系.19.(5.00分)若直线l⊥平面α,直线a⊂α,则l与a的位置关系是.20.(5.00分)已知点A(2,3,4)、点B(1,1,6),则A、B两点的距离|AB|=.三、解答题(本大题共4小题,满分50分,解答题写出必要的文字说明、推演步骤.)21.(10.00分)如图,空间四边形ABCD中,E、F、G、H分别是AB,BC,CD,DA的中点,求证:四边形EFGH是平行四边形.22.(15.00分)(1)求过点A(3,2)且垂直于直线4x+5y﹣8=0的直线方程.(2)求过三点A(0,0)、B(1,1)、C(4,2)圆的方程.23.(10.00分)已知直线5x+12y+a=0与圆x2﹣2x+y2=0相切,求a的值.24.(15.00分)已知正方体ABCD﹣A1B1C1D1,O是底ABCD对角线的交点.求证:(1)C1O∥面AB1D1;(2)A1C⊥面AB1D1.2015-2016学年陕西省延安市黄陵中学高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题5分,共75分,在下列四个选项中,只有一项是符合题目要求的)1.(5.00分)如图是由哪个平面图形旋转得到的()A.B.C.D.【解答】解:图中所给的几何体是由上部的圆锥和下部的圆台组合而成的,故轴截面的上部是直角三角形,下部为直角梯形构成,故选:D.2.(5.00分)设全集U,图中阴影部分所表示的集合是()A.C U M B.(C U N)∩M C.N∪(C U M)D.N∩(C U M)【解答】解:∵阴影部分对应的集合,它的元素在集合N内,∴所求集合的元素必定为集合N的元素,又∵阴影部分对应的集合,它的元素不在集合M内,∴所求集合的元素必定不是集合M的元素,应该在M的补集当中.因此所求集合的元素满足两条性质:①是集合N的元素;②是集合M补集的元素.由以上的讨论可得:图中阴影部分所表示的集合是N∩(C U M)故选:D.3.(5.00分)已知直线a的倾斜角为45°,则a的斜率是()A.1 B.2 C.3 D.4【解答】解:直线a的倾斜角为45°,则a的斜率为:tan45°=1.故选:A.4.(5.00分)直线x+y=5与直线x﹣y=1交点坐标是()A.(1,2) B.(2,3) C.(3,2) D.(2,1)【解答】解:由题意可得,解得,两条直线的交点坐标为:(3,2).故选:C.5.(5.00分)函数f(x)=的定义域为()A.[1,2)∪(2,+∞)B.(1,+∞)C.[1,2) D.[1,+∞)【解答】解:由题意解得x∈[1,2)∪(2,+∝)故选:A.6.(5.00分)下列条件能唯一确定一个平面的是()A.空间任意三点B.不共线三点C.共线三点D.两条异面直线【解答】解:在A中,空间任意三点如果共线,能确定无数个平面,故A错误;在B中,由公理三得不共线三点能确定一个平面,故B正确;在C中,共线三点能确定无数个平面,故C错误;在D中,两条异面直线不能确定一个平面,故D错误.故选:B.7.(5.00分)垂直于同一条直线的两条直线一定()A.平行B.相交C.异面D.以上都有可能【解答】解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面.故选:D.8.(5.00分)直线x+y﹣2=0与直线x﹣y+3=0的位置关系是()A.平行B.垂直C.相交但不垂直D.不能确定【解答】解:直线x+y﹣2=0的斜率是:k=﹣1,直线x﹣y+3=0的斜率是:k=1,故两直线的位置关系是:垂直,故选:B.9.(5.00分)直线4x﹣3y=0与圆x2+y2=36的位置关系是()A.相交B.相离C.相切D.不能确定【解答】解:圆x2+y2=36的圆心为(0,0),半径为6,圆心在直线直线4x﹣3y=0上,故直线与圆相交,故选:A.10.(5.00分)空间中,如果两个角的两条边分别对应平行,那么这两个角()A.相等B.互补C.相等或互补D.不能确定【解答】解:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等;如果一个角的两边和另一个角的两边分别平行,并且一组边方向相同、一组边方向相反,那么这两个角互补;如果一个角的两边和另一个角的两边分别平行,并且方向相反,那么这两个角相等.∴如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或互补.故选:C.11.(5.00分)已知点A(﹣3,1,4),则点A关于原点的对称点的坐标为()A.(1,﹣3,﹣4) B.(﹣4,1,﹣3) C.(3,﹣1,﹣4) D.(4,﹣1,3)【解答】解:由题意可得:点A(﹣3,1,4),所以根据空间中点的位置关系可得:点A关于原点的对称点A′的坐标就是取原来横坐标、纵坐标、竖坐标数值的相反数,所以可得A′(3,﹣1,﹣4).故选:C.12.(5.00分)如果两个球的体积之比为8:27,那么两个球的半径之比为()A.8:27 B.2:3 C.4:9 D.2:9【解答】解:两个球的体积之比为8:27,根据体积比等于相似比的立方,可知两球的半径比为2:3,故选:B.13.(5.00分)函数y=lg|x|()A.是偶函数,在区间(﹣∞,0)上是单调递增函数B.是奇函数,在区间(﹣∞,0)上是单调递减函数C.是奇函数,在区间(0,+∞)上是单调递增函数D.是偶函数,在区间(0,+∞)上是单调递增函数【解答】解:设f(x)=lg|x|,则f(﹣x)=lg|﹣x|=lg|x|,故原函数为偶函数;当x>0时,f(x)=lgx在(0,+∞)上单调递增;当x<0时,f(x)=lg(﹣x)在(﹣∞,0)上单调递减;对照选项,D正确.故选:D.14.(5.00分)在同一直角坐标系中,函数y=a x与y=log a x的图象只能是()A.B.C.D.【解答】解:∵函数y=a x与y=log a x互为反函数,∴它们的图象关于直线y=x对称,观察图象知,只有D正确.故选:D.15.(5.00分)有一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的体积为()A.12πcm3B.15πcm3C.24πcm3D.36πcm3【解答】解:根据几何体的三视图,得;该几何体是圆锥,且底面圆的直径是6,母线长是5,所以该圆锥的高是=4,则其体积为V=×π×32×4=12π(cm3).故选:A.二、填空题:本大题共5个小题,每小题5分,共25分.16.(5.00分)已知直线y=2x+b过点(1,2),则b=0.【解答】解:将(1,2)代入y=2x+b,得:2=2+b,解得:b=0,故答案为:0.17.(5.00分)圆心在原点,半径为5的圆的方程是x2+y2=25.【解答】解:根据圆的标准方程得,圆心在原点,半径为5的圆的方程是x2+y2=25故答案为:x2+y2=25.18.(5.00分)已知⊙O1与⊙O1的半径分别为5cm和3cm,圆心距O1O1=7cm,则两圆的位置关系相交.【解答】解:∵⊙O1与⊙O1的半径分别为5cm和3cm,圆心距O1O1=7cm,∴5﹣3<7<5+3,∴两圆相交,故答案为:相交19.(5.00分)若直线l⊥平面α,直线a⊂α,则l与a的位置关系是垂直.【解答】解:∵直线l⊥平面α,直线a⊂α,∴由直线与平面垂直的性质得l⊥a.故答案为:垂直.20.(5.00分)已知点A(2,3,4)、点B(1,1,6),则A、B两点的距离|AB|= 3.【解答】解:点A(2,3,4)、点B(1,1,6),则A、B两点的距离|AB|==3.故答案为:3.三、解答题(本大题共4小题,满分50分,解答题写出必要的文字说明、推演步骤.)21.(10.00分)如图,空间四边形ABCD中,E、F、G、H分别是AB,BC,CD,DA的中点,求证:四边形EFGH是平行四边形.【解答】证明:如图,连接BD.因为FG是△CBD的中位线,所以FG∥BD,FG=BD又因为EH是△ABD的中位线,所以EH∥BD,EH=BD.根据公理4,FG∥EH,且FG=EH.所以四边形EFGH是平行四边形.22.(15.00分)(1)求过点A(3,2)且垂直于直线4x+5y﹣8=0的直线方程.(2)求过三点A(0,0)、B(1,1)、C(4,2)圆的方程.【解答】解:(1)设过点P与l垂直的直线方程是4y﹣5x+n=0,把点P(3,2)代入可解得n=7,故所求的直线方程是4y﹣5x+7=0,即5x﹣4y﹣7=0;(2)AB的中点坐标为(,),直线AB的斜率为1,所以垂直平分线的斜率为﹣1则线段AB的垂直平分线方程为y﹣=﹣(x﹣)化简得x+y﹣1=0①;同理得到AC的中点坐标为(2,1),直线AC的斜率为,所以垂直平分线的斜率为﹣2则线段AC的垂直平分线方程为y﹣1=﹣2(x﹣2)化简得2x+y﹣5=0②.联立①②解得x=4,y=﹣3,则圆心坐标为(4,﹣3),圆的半径r=5则圆的标准方程为:(x﹣4)2+(y+3)2=25.23.(10.00分)已知直线5x+12y+a=0与圆x2﹣2x+y2=0相切,求a的值.【解答】解:整理圆的方程为(x﹣1)2++y2=1故圆的圆心为(1,0),半径为1∵直线与圆相切∴圆心到直线的距离为半径即=1,求得a=8或a=﹣18.24.(15.00分)已知正方体ABCD﹣A1B1C1D1,O是底ABCD对角线的交点.求证:(1)C1O∥面AB1D1;(2)A1C⊥面AB1D1.【解答】证明:(1)连接A1C1,设A1C1∩B1D1=O1,连接AO1,∵ABCD﹣A1B1C1D1是正方体,∴A1ACC1是平行四边形,∴A1C1∥AC且A1C1=AC,又O1,O分别是A1C1,AC的中点,∴O1C1∥AO且O1C1=AO,∴AOC1O1是平行四边形,∴C1O∥AO1,AO1⊂面AB1D1,C1O⊄面AB1D1,∴C1O∥面AB1D1;(2)∵CC1⊥面A1B1C1D1∴CC1⊥B1D!,又∵A1C1⊥B1D1,∴B1D1⊥面A1C1C,即A1C⊥B1D1,∵A1B⊥AB1,BC⊥AB1,又A1B∩BC=B,AB1⊥平面A1BC,又A1C⊂平面A1BC,∴A1C⊥AB1,又D1B1∩AB1=B1,∴A1C⊥面AB1D1赠送—高中数学知识点【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的定义图象判定方法性质函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()yf u=为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.yxo【1.3.2】奇偶性(4)函数的奇偶性函数的 性 质定义图象判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)..=.-.f(x ...).,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。