高中数学总复习 立几检测题
高中数学高考总复习立体几何各种平行与垂直的判断习题及详解
高中数学高考总复习立体几何各种平行与垂直的判断习题及详解一、选择题1.设b 、c 表示两条不重合的直线,α、β表示两个不同的平面,则下列命题是真命题的是( )A.⎭⎪⎬⎪⎫b ⊂αc ∥α⇒b ∥c B.⎭⎪⎬⎪⎫b ⊂αb ∥c ⇒c ∥α C.⎭⎪⎬⎪⎫c ∥αc ⊥β⇒α⊥βD.⎭⎪⎬⎪⎫c ∥αα⊥β⇒c ⊥β[答案] C[解析] 选项A 中的条件不能确定b ∥c ;选项B 中条件的描述也包含着直线c 在平面α内,故不正确;选项D 中的条件也包含着c ⊂β,c 与β斜交或c ∥β,故不正确.[点评] 线线、线面、面面平行或垂直的性质定理和判定定理是解决空间图形位置关系推理的重要依据,在推理中容易把平面几何中的一些结论引用到立体几何中造成错误.对空间中位置关系的考虑不周,也是造成判断错误的因素,所以做这类题目应当考虑全面.2.定点A 和B 都在平面α内,定点P ∉α,PB ⊥α,C 是α内异于A 和B 的动点,且PC ⊥AC .那么,动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点 [答案] B[解析] 连接BC ,∵PB ⊥α,∴AC ⊥PB . 又∵PC ⊥AC ,∴AC ⊥BC .∴C 在以AB 为直径的圆上.故选B. 3.设α、β、γ为平面,给出下列条件: ①a 、b 为异面直线,a ⊂α,b ⊂β,a ∥β,b ∥α; ②α内不共线的三点到β的距离相等; ③α⊥γ,β⊥γ.其中能使α∥β成立的条件的个数是( ) A .0 B .1 C .2D .3[答案] B[解析]对于②,三个点不一定在同侧;对于③,面面的垂直关系不具有传递性.对于①,过b作平面γ∩α=b′,则b∥b′,∵a与b异面,∴a与b′相交,容易证明b′∥β,又∵a∥β,∴α∥β,故只有①正确.4.a、b、c是三条直线,α、β是两个平面,b⊂α,c⊄α,则下列命题不成立的是() A.若α∥β,c⊥α,则c⊥βB.“若b⊥β,则α⊥β”的逆命题C.若a是c在α内的射影,b⊥a,则b⊥cD.“若b∥c,则c∥α”的逆否命题[答案] B[解析]一条直线垂直于两个平行平面中的一个,则垂直于另一个,故A正确;若c∥α,∵a是c在α内的射影,∴c∥a,∵b⊥a,∴b⊥c;若c与α相交,则c与a相交,由线面垂直的性质与判定定理知,若b⊥a,则b⊥c,故C正确;∵b⊂α,c⊄α,b∥c,∴c∥α,因此原命题“若b∥c,则c∥α”为真,从而其逆否命题也为真,故D正确.如图,α⊥β,α∩β=l,b⊂α,b与l不垂直,则b与β不垂直,∴B不成立.5.(文)(2010·天津河东区)已知直线a⊂平面α,直线AO⊥α,垂足为O,P A∩α=P,若条件p:直线OP不垂直于直线a,条件q:直线AP不垂直于直线a,则条件p是条件q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] C故OP⊥a⇔AP⊥a,从而p⇔q.(理)(2010·河南新乡调研)设α、β、γ为平面,l、m、n为直线,则m⊥β的一个充分条件为()A.α⊥β,α∩β=l,m⊥lB.n⊥α,n⊥β,m⊥αC.α∩γ=m,α⊥γ,β⊥γD.α⊥γ,β⊥γ,m⊥α[答案] B[解析]如图①知A错;如图②知C错;如图③在正方体中,两侧面α与β相交于l,都与底面γ垂直,γ内的直线m⊥α,但m与β不垂直,故D错.6.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB 沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC[答案] D[解析]∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD ⊥CD.又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,故CD⊥平面ABD,则CD⊥AB.又AD⊥AB,故AB⊥平面ADC.∴平面ABC⊥平面ADC.7.(文)(2010·重庆文)到两互相垂直的异面直线的距离相等的点()A.只有1个B.恰有3个C.恰有4个D.有无穷多个[答案] D[解析]过两条互相垂直的异面直线的公垂线段中点且与两条直线都成45°角的直线上所有点到两条直线的距离都相等,故选D.(理)(2010·全国Ⅱ理)与正方体ABCD-A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个[答案] D[解析]如图连结B1D,可知B1D上的点到AB、CC1、A1D1的距离均相等,故选D.8.(文)平行四边形ABCD的对角线交点为O,点P在平面ABCD之外,且PA=PC,PD=PB,则PO与平面ABCD的关系是()A.斜交B.平行C.垂直D.无法确定[答案] C[解析]∵PA=PC,∴PO⊥AC,∵PB=PD,∴PO⊥BD,∵AC∩BD=O,∴PO⊥平面ABCD.(理)棱长都为2的直平行六面体(底面为平行四边形的棱柱)ABCD-A1B1C1D1中,∠BAD =60°,则对角线A1C与侧面DCC1D1所成角的正弦值为()A.12B.22C.34D.38[答案] C[解析] 如图所示,过点A 1作直线A 1M ⊥D 1C 1,交D 1C 1延长线于点M ,连结MC ,A 1C ,则可得A 1M ⊥面DD 1C 1C ,∠A 1CM 就是直线A 1C 与面DD 1C 1C 所成的角.∵所有棱长均为2,∠A 1D 1C 1=120°,∴A 1M =A 1D 1sin60°=3,又A 1C =AC 12+CC 12=(23)2+22=4, ∴sin ∠A 1CM =A 1M A 1C =34C. [点评] 求直线与平面所成角时,一般要先观察分析是否可以找(或作)出直线上一点到平面的垂线,若能找出则可以将线面角归结到一个直角三角形中求解.若不容易找出线面角,则可以考虑能否进行转化或借助于空间向量求解,请再练习下题:(2010·全国Ⅰ文)正方体ABCD -A 1B 1C 1D 1中BB 1与平面ACD 1所成角的余弦值为( ) A.23B.33C.23D.63[答案] D[解析] 解法1:设BD 与AC 交于点O ,连结D 1O ,∵BB 1∥DD 1,∴DD 1与平面ACD 1所成的角就是BB 1与平面ACD 1成的角.∵AC ⊥BD ,AC ⊥DD 1,DD 1∩BD =D ,∴AC ⊥平面DD 1B ,平面DD 1B ∩平面ACD 1=OD 1,∴OD 1是DD 1在平面ACD 1内的射影,故∠DD 1O 为直线DD 1与平面ACD 1所成的角,设正方体的棱长为1,则DD 1=1,DO =22,D 1O =62,∴cos ∠DD 1O =DD 1D 1O =63,∴BB 1与平面ACD 1所成角的余弦值为63. 解法2:因为BB 1∥DD 1,所以BB 1与平面ACD 1所成角和DD 1与平面ACD 1所成角相等,设DO ⊥平面ACD 1,由等体积法得VD -ACD 1=VD 1-ACD ,即13S △ACD 1·DO =13S △ACD ·DD 1.设DD 1=a ,则S △ACD 1=12AC ·AD 1sin60°=12×(2a )2×32=32a 2,S △ACD =12·CD =122.所以DO =S △ACD ·DD 1S △ACD 1=a 33a2=33a ,设DD 1与平面ACD 1所成角为θ,则sin θ=DO DD 1=33, 所以cos θ=63.解法3:建立如图所示空间直角坐标系D -xyz ,设边长为1,BB 1→=(0,0,1),平面ACD 1的一个法向量n =(1,1,1),∴cos 〈BB 1→,n 〉=13·1=33,∴BB 1与面ACD 1所成角的余弦值为63. 9.(文)(2010·鞍山一中模拟)已知直线l ⊥平面α,直线m ⊂平面β,给出下列命题: ①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β;④l ⊥m ⇒α⊥β,其中正确的是( ) A .①②③ B .②③④ C .②④ D .①③ [答案] D∵m ⊂β,∴此时推不出l ∥m ,故②错,排除A ,故选D. (理)若平面α与平面β相交,直线m ⊥α,则( ) A .β内必存在直线与m 平行,且存在直线与m 垂直 B .β内不一定存在直线与m 平行,不一定存在直线与m 垂直 C .β内不一定存在直线与m 平行,但必存在直线与m 垂直 D .β内必存在直线与m 平行,不一定存在直线与m 垂直 [答案] C[解析] 若β内存在直线与m 平行,则必有β⊥α,但α与β不一定垂直,故否定A 、D ;在β内必存在与m 在β内射影垂直的直线,从而此线必与m 垂直,否定B ,故选C.10.(文)(2010·芜湖十二中)已知两条不同的直线m 、n ,两个不同的平面α、β,则下列命题中的真命题是( )A .若m ⊥α,n ⊥β,α⊥β,则m ⊥nB .若m ∥α,n ∥β,α∥β,则m ∥nC .若m ⊥α,n ∥β,α⊥β,则m ⊥nD .若m ∥α,n ⊥β,α⊥β,则m ∥n[答案] A[解析]如图(1),m⊥α,n⊥α满足n∥β,但m∥n,故C错;如图(2)知B错;如图(3)正方体中,m∥α,n⊥β,α⊥β,知D错.(理)(2010·浙江金华十校模考)设a,b为两条直线,α,β为两个平面,下列四个命题中真命题是()A.若a,b与α所成角相等,则a∥bB.若a∥α,b∥β,α⊥β,则a⊥bC.若a⊂α,b⊂β,a⊥b,则α⊥βD.若a⊥α,b⊥β,α⊥β,则a⊥b[答案] D[解析]正四棱锥P-ABCD中,PA、PC与底面ABCD所成角相等,但P A与PC相交,∴A错;如图(1)正方体中,a∥b∥c,满足a∥α,b∥β,α⊥β,故B错;图(2)正方体中,上、下底面为β、α,a、b为棱,满足a⊂α,b⊂β,a⊥b,但α∥β,故C错;二、填空题11.对于四面体ABCD,给出下列四个命题:①若AB=AC,BD=CD,则BC⊥AD;②若AB=CD,AC=BD,则BC⊥AD;③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD ; ④若AB ⊥CD ,AC ⊥BD ,则BC ⊥AD .其中真命题的序号是________.(把你认为正确命题的序号都填上) [答案] ①④[解析] 本题考查四面体的性质,取BC 的中点E ,则BC ⊥AE ,BC ⊥DE ,∴BC ⊥面ADE ,∴BC ⊥AD ,故①正确.设O 为A 在面BCD 上的射影,依题意OB ⊥CD ,OC ⊥BD ,∴O 为垂心,∴OD ⊥BC ,∴BC ⊥AD ,故④正确,②③易排除,故答案为①④.12.(文)P 为△ABC 所在平面外一点,PA 、PB 、PC 与平面ABC 所成角均相等,又PA 与BC 垂直,那么△ABC 形状可以是________.①正三角形 ②等腰三角形 ③非等腰三角形 ④等腰直角三角形(将你认为正确的序号全填上) [答案] ①②④[解析] 设点P 在底面ABC 上的射影为O ,由P A 、PB 、PC 与平面ABC 所成角均相等,得OA =OB =OC ,即点O 为△ABC 的外心,又由P A ⊥BC ,得OA ⊥BC ,即AO 为△ABC 中BC 边上的高线,∴AB =AC ,即△ABC 必为等腰三角形,故应填①②④.(理)如图将边长为1的正方形纸板ABCD 沿对角线AC 折起,使平面ACB ⊥平面ACD ,然后放在桌面上,使点B 、C 、D 落在桌面,这时点A 到桌面的距离为________.[答案]63[解析] 取AC 中点O ,∵OB ⊥AC ,OD ⊥AC ,OB ∩OD =O ,∴AC ⊥平面BOD ,∴∠BOD =90°.又∵BO =OD =22,∴BD =1,S △BOD =14, ∴V A -BCD =13S △BOD ·AC =212,设A 到桌面距离为h ,V A -BCD =13S △BCD ·h =13×34×h =212,∴h =63,即A 到桌面距离为63. 13.(2010·安徽淮北一中)已知四棱锥P -ABCD 的底面ABCD 是矩形,PA ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则①棱AB 与PD 所在的直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于△PAB 的面积;④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的编号) [答案] ①③[解析] 由条件可得AB ⊥平面PAD ,所以AB ⊥PD ,故①正确;∵P A ⊥平面ABCD ,∴平面PAB 、平面P AD 都与平面ABCD 垂直,故平面PBC 不可能与平面ABCD 垂直,②错;S △PCD =12CD ·PD ,S △P AB =12·PA ,由AB =CD ,PD >P A 知③正确;由E 、F 分别是棱PC 、PD 的中点可得EF ∥CD ,又AB ∥CD ,所以EF ∥AB ,故AE 与BF 共面,故④错.14.(文)(2010·河北唐山)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,∠ADC =90°,且AA 1=AD =DC =2,M ∈平面ABCD ,当D 1M ⊥平面A 1C 1D 时,DM =________.[答案] 2 2[解析] ∵DA =DC =DD 1且DA 、DC 、DD 1两两垂直,故当点M 使四边形ADCM 为正方形时,D 1M ⊥平面A 1C 1D ,∴DM =2 2.(理)(2010·安徽巢湖市质检)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F ,G 分别是AB ,BC ,B 1C 1的中点.下列命题正确的是________(写出所有正确命题的编号).①以正方体的顶点为顶点的三棱锥的四个面最多只有三个面是直角三角形; ②P 在直线FG 上运动时,AP ⊥DE ;③Q 在直线BC 1上运动时,三棱锥A -D 1QC 的体积不变;④M 是正方体的面A 1B 1C 1D 1内到点D 和C 1距离相等的点,则M 点的轨迹是一条线段. [答案] ②③④[解析] 三棱锥A 1-ABC 的四个面都是Rt △,故①错;F 在FG 上运动时,PF ⊥平面ABCD ,∴PF ⊥DE ,又在正方体ABCD 中,E 、F 为AB 、BC 中点,∴AF ⊥DE ,∴DE ⊥平面PAF ,∴DE ⊥P A ,故②真;VA -D 1QC =VQ -AD 1C ,∵BC 1∥AD 1,∴BC 1∥平面AD 1C ,∴无论点Q 在BC 1上怎样运动,Q 到平面AD 1C 距离都相等,故③真;到点D 和C 1距离相等的点在经过线段C 1D 的中点与DC 1垂直的平面α上,故点M 为平面α与正方体的面A 1B 1C 1D 1相交线段上的点,这条线段即A 1D 1.三、解答题15.(文)(2010·江苏,16)如图,四棱锥P -ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC ,∠BCD =90°(1)求证:PC ⊥BC(2)求点A 到平面PBC 的距离.[解析] (1)∵PD ⊥平面ABCD ,BC ⊂平面ABCD ,∴PD ⊥BC . 由∠BCD =90°知,BC ⊥DC , ∵PD ∩DC =D ,∴BC ⊥平面PDC , ∴BC ⊥PC .(2)设点A 到平面PBC 的距离为h , ∵AB ∥DC ,∠BCD =90°,∴∠ABC =90°, ∵AB =2,BC =1,∴S △ABC =12AB ·BC =1,∵PD ⊥平面ABCD ,PD =1, ∴V P -ABC =13S △ABC ·PD =13∵PD ⊥平面ABCD ,∴PD ⊥DC , ∵PD =DC =1,∴PC =2, ∵PC ⊥BC ,BC =1, ∴S △PBC =12PC ·BC =22,∵V A -PBC =V P -ABC , ∴13S △PBC ·h =13,∴h =2, ∴点A 到平面PBC 的距离为 2.(理)如图,已知三棱锥A -BPC 中,AP ⊥PC ,AC ⊥BC ,M 为AB 的中点,D 为PB 中点,且△PMB 为正三角形.(1)求证:DM ∥平面APC ; (2)求证:平面ABC ⊥平面APC ;(3)若BC =4,AB =20,求三棱锥D -BCM 的体积.[解析] (1)∵M 为AB 中点,D 为PB 中点,∴DM ∥AP ,又DM ⊄平面APC ,AP ⊂平面APC .∴DM ∥平面APC .(2)∵△PMB 为正三角形,且D 为PB 中点,∴MD ⊥PB ,又由(1)知MD ∥AP ,∴AP ⊥PB又已知AP ⊥PC ,∴AP ⊥平面PBC ,∴AP ⊥BC ,又∵AC ⊥BC∴BC ⊥平面APC∴平面ABC ⊥平面APC .(3)∵AB =20,∴MP =10,∴PB =10又BC =4,PC =100-16=221∴S △BDC =12S △PBC =14PC ·BC =14×4×221 =221又MD =12AP =12202-102=5 3 ∴V D -BCM =V M -BCD =13S △BDC ·DM =13×221×5 3 =107.16.(文)如图,已知在直四棱柱ABCD -A1B 1C 1D 1中,AD ⊥DC ,AB ∥DC ,DC =DD 1=2AD =2AB =2.(1)求证:DB ⊥平面B 1BCC 1;(2)设E 是DC 上一点,试确定E 的位置,使得D 1E ∥平面A 1BD ,并说明理由.[解析] (1)证明:∵AB ∥DC ,AD ⊥DC ,∴AB ⊥AD ,在Rt △ABD 中,AB =AD =1,∴BD =2,易求BC =2,又∵CD =2,∴BD ⊥BC .又BD ⊥BB 1,B 1B ∩BC =B ,∴BD ⊥平面B 1BCC 1.(2)DC 的中点即为E 点.∵DE ∥AB ,DE =AB ,∴四边形ABED 是平行四边形.∴AD 綊BE .又AD 綊A 1D 1,∴BE 綊A 1D 1,∴四边形A 1D 1EB 是平行四边形.∴D 1E ∥A 1B .∵D 1E ⊄平面A 1BD ,A 1B ⊂平面A 1BD .∴D 1E ∥平面A 1BD .(理)在三棱锥P -ABC 中,△P AC 和△PBC 是边长为2的等边三角形,AB =2,O 是AB 中点.(1)在棱P A 上求一点M ,使得OM ∥平面PBC ;(2)求证:平面P AB ⊥平面ABC ;(3)求二面角P -BC -A 的余弦值.[解析] (1)当M 为棱P A 的中点时,OM ∥平面PBC .证明如下:∵M 、O 分别为P A 、AB 中点,∴OM ∥PB又PB ⊂平面PBC ,OM ⊄平面PBC∴OM ∥平面PBC .(2)连结OC 、OP∵AC =CB =2,O 是AB 中点,AB =2,∴OC ⊥AB ,OC =1.同理,PO ⊥AB ,PO =1.又PC =2,∴PC 2=OC 2+PO 2=2,∴∠POC =90°,∴PO ⊥OC .∵PO ⊥OC ,PO ⊥AB ,AB ∩OC =O ,∴PO ⊥平面ABC .∵PO ⊂平面PAB ,∴平面PAB ⊥平面ABC .(3)如图,建立空间直角坐标系O -xyz .则B (1,0,0),C (0,1,0),P (0,0,1),∴BC →=(-1,1,0),PB →=(1,0,-1).由(2)知OP →=(0,0,1)是平面ABC 的一个法向量.设平面PBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·BC →=0n ·PB →=0⇒⎩⎪⎨⎪⎧-x +y =0x -z =0, 令z =1,则x =1,y =1,∴n =(1,1,1).∴cos 〈OP →,n 〉=OP →·n |OP →|·|n |=11×3=33. ∵二面角P -BC -A 的平面角为锐角,∴所求二面角P -BC -A 的余弦值为33. 17.(文)如图,在△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且AE AC =AF AD=λ(0<λ<1).(1)判断EF 与平面ABC 的位置关系并给予证明;(2)是否存在λ,使得平面BEF ⊥平面ACD ,如果存在,求出λ的值,如果不存在,说明理由.[分析] (1)EF 与平面ABC 相交于点E ,故其关系只能是垂直或斜交,由条件AE AC =AF AD=λ易知,EF ∥CD ,由∠BCD =90°及AB ⊥平面BCD ,易证CD ⊥平面ABC .(2)∵EF ∥CD ,故问题相当于过点B 作一个平面与ACD 垂直,这样的平面一定存在,故只须计算出λ即可,由条件不难得到BE ⊥CD ,故只须BE ⊥AC .[解析] (1)EF ⊥平面ABC .证明:因为AB ⊥平面BCD ,所以AB ⊥CD ,又在△BCD 中,∠BCD =90°,所以BC ⊥CD ,又AB ∩BC =B ,所以CD ⊥平面ABC ,又在△ACD 中,E 、F 分别是AC 、AD 上的动点,且AEAC =AF AD=λ(0<λ<1),∴EF ∥CD ,∴EF ⊥平面ABC .(2)∵CD ⊥平面ABC ,BE ⊂平面ABC ,∴BE ⊥CD ,在Rt △ABD 中,∠ADB =60°,∴AB =BD tan60°=6,则AC =AB 2+BC 2=7,当BE ⊥AC 时,BE =AB ×BC AC =67,AE =AB 2-BE 2=367, 则AE AC =3677=67,即λ=AE AC =67时,BE ⊥AC , 又BE ⊥CD ,AC ∩CD =C ,∴BE ⊥平面ACD ,∵BE ⊂平面BEF ,∴平面BEF ⊥平面ACD .所以存在λ,且当λ=67时,平面BEF ⊥平面ACD . [点评] 高考整体降低了对立体几何的考查要求,故线线、线面、面面的位置关系成了主要的考查点,其中平行、垂直的证明题与探索题是重点,同时也要注意由三视图与几何体的结合进行表面积与体积的计算等问题.(理)已知四棱锥P -ABCD 的三视图如下图所示,E 是侧棱PC 上的动点.(1)求四棱锥P -ABCD 的体积;(2)是否不论点E 在何位置,都有BD ⊥AE ?证明你的结论;(3)若点E 为PC 的中点,求二面角D -AE -B 的大小.[解析] (1)由三视图可知,四棱锥P -ABCD 的底面是边长为1的正方形,侧棱PC ⊥底面ABCD ,且PC =2.∴V P -ABCD =13S 正方形ABCD ·PC =13×12×2=23,即四棱锥P -ABCD 的体积为23.(2)不论点E 在何位置,都有BD ⊥AE .证明如下:连结AC ,∵ABCD 是正方形,∴BD ⊥AC .∵PC ⊥底面ABCD ,且BD ⊂平面ABCD ,∴BD ⊥PC .又∵AC ∩PC =C ,∴BD ⊥平面PAC .∵不论点E 在何位置,都有AE ⊂平面P AC .∴不论点E 在何位置,都有BD ⊥AE .(3)解法1:在平面DAE 内过点D 作DF ⊥AE 于F ,连结BF .∵AD =AB =1,DE =BE =12+12=2,AE =AE =3,∴Rt △ADE ≌Rt △ABE ,从而△ADF ≌△ABF ,∴BF ⊥AE .∴∠DFB 为二面角D -AE -B 的平面角.在Rt △ADE 中,DF =AD ·DE AE =1×23=63, ∴BF =63. 又BD =2,在△DFB 中,由余弦定理得cos ∠DFB =DF 2+BF 2-BD 22DF ·BF =-12, ∴∠DFB =2π3, 即二面角D -AE -B 的大小为2π3. 解法2:如图,以点C 为原点,CD ,CB ,CP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系.则D (1,0,0),A (1,1,0),B (0,1,0),E (0,0,1),从而DA →=(0,1,0),DE →=(-1,0,1),BA→=(1,0,0),BE →=(0,-1,1).设平面ADE 和平面ABE 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2),由⎩⎪⎨⎪⎧n 1·DA →=0n 1·DE →=0⇒⎩⎪⎨⎪⎧ y 1=0-x 1+z 1=0,取n 1=(1,0,1).由⎩⎪⎨⎪⎧n 2·BA →=0n 2·BE →=0⇒⎩⎪⎨⎪⎧ x 2=0-y 2+z 2=0,取n 2=(0,-1,-1). 设二面角D -AE -B 的平面角为θ,则 cos θ=n 1·n 2|n 1|·|n 2|=-12·2=-12,∴θ=2π3,即二面角D -AE -B 的大小为2π3。
精选最新版2019高中数学单元测试《立体几何初步》专题考核题(含标准答案)
2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行2.若3sin (0)52x x π=--<<,则tan x =_____________.二、填空题3.如图,有一圆柱形的开口容器(下表面密封),其轴截面是边长为2的正方形,P 是BC 中点,现有一只蚂蚁位于外壁A 处,内壁P 处有一米粒,则这只蚂蚁取得米粒所需经过的最短路程为 .4.把半径为3cm ,中心角为π32的扇形卷成一个圆锥形容器,这个容器的容积为:__________.5.在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y = 和1y =-围成的封闭图形记为D,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为48π,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________(2013年高考上海卷(理))6.空间中可以确定一个平面的条件是 _.(填序号) ①两条直线; ②一点和一直线; ③一个三角形; ④三个点.7.设,,a b g 为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题: ①若,,//,//,m n m n ⊂⊂a a b b 则//a b ; ②//,,l ⊂a b a 若则//l b ; ③,,,//,l m n l m ===若ab bg ga 则 //m n ; ④若⊥⊥a gb g ,,则//a b ; 则其中所有正确命题的序号是 ▲ .8.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥D D BB A 11-的体积为 cm 3.9.设正四棱锥的侧棱长为1,则其体积的最大值为 ▲ .10.如图,在边长为a 的正方体ABCD-A 1B 1C 1D 1中,E 是棱AB 上一点,M 是棱D 1C 1上一点,则三棱锥M-DEC 的体积是 ▲11.给出下列命题:DABC1C1D 1A1BD C1A 1B 1C 1D .EBAM.(第6题图)(1)若直线a 在平面α外,则直线a 与平面α没有公共点;(2)两个平面平行的充分条件是其中一个平面内有无数条直线平行于另一个平面; (3)设a 、b 、c 是同一平面内三条不同的直线,若a ⊥b ,a ⊥c ,则b ∥c ; (4)垂直于同一平面的两个平面平行;(5)若,a b 为异面直线,则过不在,a b 上的任一点,可作一个平面与,a b 都平行. 上面命题中,真命题...的序号是 .12.己知点E 、F 分别在正方体ABCD -A 1B 2C 3D 4的棱BB 1 、CC 1上,且B 1E =2EB, CF=2FC 1,则面AEF 与面ABC 所成的二面角的正切值等于 . (2011年高考全国卷理科16)13.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,,AB BC PA AB BC ⊥==,则PB 与平面ABC 所成的角为_______,PC 与平面PAB 所成的角的正切值等于____________ CBAP14.在长方体1111ABCD A B C D -中,若13,4AB BC AA ===,求1A B 和1B C 所成角的余弦值。
高中数学立体几何测试题(10套)
∴ BD ∥平面 PMN ,
位置关系为
平行
。
∴ O 到平面 PMN 的距离即为 BD 到平面 PMN 的距离。
11 、a,b 为异面直线,且 a,b 所成角为 40 °,直线 c 与 a,b 均异面,且所成角均为
∵ BD ⊥ AC , MN ∥ BD
∵ PA⊥面 ABCD
θ,若这样的 c 共有四条,则 θ的范围为 (70 °, 90° ) 。
D
C
A
B
D1 A1
C1 B1
17 、 已知异面直线 a, b 的公垂线段 AB 的中点为 O,平面 满足 a∥ , b∥ , 且 O , M 、 N 是 a, b 上的任意两点, MN ∩ = P,求证: P 是 MN 的中
点
A aM
O
P
BN b
.
立几面测试 001
参考答 案
一、 1- 8 ACDDBDBA
2、已知 m, n 为异面直线, m∥平面 , n∥平面 , ∩ =l ,则 l( ) ( A)与 m, n 都相交 ( B)与 m,n 中至少一条相交 ( C)与 m, n 都不相交 ( D )与 m, n 中一条相交
3、已知 a, b 是两条相交直线, a∥ ,则 b 与 的位置关系是 ( )
A 、 b∥
PAM
∵ AB=2 , BM=1 , CM=1
∴ AM= 5 ,
P
A H
O
.
B
F M
B
D N C
立几面测试 003
一、选择题
1.异面直线是指
(A) 在空间内不能相交的两条直线
(B) 分别位于两个不同平面的两条直线
(C) 某一个平面内的一条直线和这个平面外的一条直线
高中数学高考总复习立体几何平行与垂直的判断习题及详解
高中数学高考总复习立体几何平行与垂直的判断习题及详解一、选择题1.(文)(09·福建)设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是()A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2[答案] B[解析]如图(1),α∩β=l,m∥l,l1∥l,满足m∥β且l1∥α,故排除A;如图(2),α∩β=l,m∥n∥l,满足m∥β,n∥β,故排除C.在图(2)中,m∥n∥l∥l2满足m∥β,n∥l2,故排除D,故选B.[点评]∵l1与l2相交,m∥l1,n∥l2,∴m与n相交,由面面平行的判定定理可知α∥β;但当m、n⊂α,l1,l2⊂β,l1与l2相交,α∥β时,如图(3),得不出m∥l1且n∥l2.(理)设a,b是两条直线,α,β是两个平面,则a⊥b的一个充分条件是()A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β[答案] C[解析]对于A,如图正方体α、β分别为平面ABCD与平面ADD1A1,a、b分别为直线B1B和C1C.a与b也可能平行,对于B,∵a⊥α,α∥β,∴a⊥β,又b⊥β,∴a∥b,对于D,a与b也可能平行,故选C.2.(2010·郑州检测)已知α,β,γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ”是真命题.如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有()A.0个B.1个C.2个D.3个[答案] C[解析]依题意得,命题“a∥b,且a⊥γ⇒b⊥γ”是真命题(由“若两条平行线中的一条与一个平面垂直,则另一条也与这个平面垂直”可知);命题“a∥β,且a⊥c⇒β⊥c”是假命题(直线c可能位于平面β内,此时结论不成立);命题“α∥b,且α⊥c⇒b⊥c”是真命题(因为α∥b,因此在平面α内必存在直线b1∥b;又α⊥c,因此c∥b1,c⊥b).综上所述,其中真命题共有2个,选C.3.(2010·东北三校模拟)正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别为A 1B 1,CD ,B 1C 1的中点,则下列命题正确的是( )A .AM 与PC 是异面直线B .AM ⊥PC C .AM ∥平面BC 1ND .四边形AMC 1N 为正方形 [答案] C[解析] 连接MP ,AC ,A 1C 1,AM ,C 1N ,由题易知MP ∥A 1C 1∥AC ,且MP =12AC ,所以AM 与PC 是相交直线,假设AM ⊥PC ,∵BC ⊥平面ABB 1A 1,∴BC ⊥AM ,∴AM ⊥平面BCC 1B 1,又AB ⊥平面BCC 1B 1矛盾,∴AM 与PC 不垂直.因为AM ∥C 1N ,C 1N ⊂平面BC 1N ,所以AM ∥平面BC 1N .又易得四边形AMC 1N 为菱形而不是正方形,故选C.4.(文)对两条不相交的空间直线a 与b ,必存在平面α,使得( ) A .a ⊂α,b ⊂α B .a ⊂α,b ∥α C .a ⊥α,b ⊥αD .a ⊂α,b ⊥α[答案] B[解析] a 、b 异面时,A 错,C 错;若D 正确,则必有a ⊥b ,故排除A 、C 、D ,选B.(理)设a 、b 为两条直线,α、β为两个平面.下列四个命题中,正确的命题是( ) A .若a 、b 与α所成的角相等,则a ∥b B .若a ∥α,b ∥β,α∥β,则a ∥b C .若a ⊂α,b ⊂β,a ∥b ,则α∥β D .若a ⊥α,b ⊥β,α⊥β,则a ⊥b [答案] D[解析] 若直线a 、b 与α成等角,则a 、b 平行、相交或异面;对选项B ,如a ∥α,b ∥β,α∥β,则a 、b 平行、相交或异面;对选项C ,若a ⊂α,b ⊂β,a ∥b ,则α、β平行或相交;对选项D ,由⎭⎪⎬⎪⎫a ⊥αβ⊥α⇒a ∥β或a ⊂β,无论哪种情形,由b ⊥β都有b ⊥a .,故选D. 5.一个正方体纸盒展开后如图,在原正方体纸盒中有下列结论:①AB ⊥EF ②AB 与CM 成60°③EF 与MN 是异面直线④MN ∥CD 其中正确的是( )A.①②B.③④C.②③D.①③[答案] D[解析]本题考查学生的空间想象能力,将其还原成正方体如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD.只有①③正确,故选D.6.(文)(2010·山东潍坊)已知m、n是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是()A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m∥α,则n∥αD.若m∥n,m⊥α,n⊥β,则α∥β[答案] D[解析]对于选项A,两平面β、γ同垂直于平面α,平面β与平面γ可能平行,也可能相交;对于选项B,平面α、β可能平行,也可能相交;对于选项C,直线n可能与平面α平行,也可能在平面α内;对于选项D,∵m∥n,m⊥α,∴n⊥α,又n⊥β,∴α∥β,故选D.(理)(2010·曲师大附中)已知两个不同的平面α,β和两条不重合的直线a,b,则下列四个命题中为真命题的是()A.若a∥b,b⊂α,则a∥αB.若α⊥β,α∩β=b,a⊥b,则a⊥βC.若a⊂α,b⊂α,a∥β,b∥β,则α∥βD.若α∥β,a⊄α,a⊄β,a∥α,则a∥β[答案] D[解析]选项A中,直线a可能在平面α内;选项B中,直线a可能在平面β内;选项C 中,直线a ,b 为相交直线时命题才成立.7.(2010·江苏南通)在正方体ABCD -A 1B 1C 1D 1中,P 、Q 分别是棱AA 1、CC 1的中点,则过点B 、P 、Q 的截面是( )A .邻边不等的平行四边形B .菱形但不是正方形C .邻边不等的矩形D .正方形 [答案] B[解析] 设正方体棱长为1,连结D 1P ,D 1Q ,则易得PB =PQ =D 1P =D 1Q =52,取D 1D 的中点M ,则D 1P 綊AM 綊BQ ,故截面为四边形PBQD 1,它是一个菱形,又PQ =AC =2,∴∠PBQ 不是直角,故选B.8.(文)(2010·山东日照、聊城模考)已知直线l 、m ,平面α、β,且l ⊥α,m ⊂β,给出下列四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ∥m ;④若l ∥m ,则α⊥β; 其中真命题是( ) A .①② B .①③ C .①④D .②④[答案] C [解析][点评] 如图,α∩β=m ,则l ⊥m ,故(2)假;在上述图形中,当α⊥β时,知③假.(理)(2010·福建福州市)对于平面α和共面的直线m ,n ,下列命题是真命题的是( ) A .若m ,n 与α所成的角相等,则m ∥n B .若m ∥α,n ∥α,则m ∥nC.若m⊥α,m⊥n,则n∥αD.若m⊂α,n∥α,则m∥n[答案] D[解析]正三棱锥P-ABC的侧棱P A、PB与底面成角相等,但P A与PB相交应排除A;若m∥α,n∥α,则m与n平行、相交或异面,应排除B;若m⊥α,m⊥n,则n∥α或n⊂α,应排除C.∵m、n共面,设经过m、n的平面为β,∵m⊂α,∴α∩β=m,∵n∥α,∴n∥m,故D正确.9.(文)(2010·北京顺义一中月考)已知l是直线,α、β是两个不同平面,下列命题中的真命题是()A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若l⊥α,l∥β,则α⊥βD.若l∥α,α∥β,则l∥β[答案] C[解析]如图在正方体ABCD-A1B1C1D1中,取平面ABD1A1为α,平面ABCD为β,B1C1为l,则排除A、B;又取平面ADD1A1为α,平面BCC1B1为β,B1C1为l,排除D.(理)(2010·广东罗湖区调研)已知相异直线a,b和不重合平面α,β,则a∥b的一个充分条件是()A.a∥α,b∥αB.a∥α,b∥β,α∥βC.a⊥α,b⊥β,α∥βD.α⊥β,a⊥α,b∥β[答案] C[解析]a∥α,b∥α时,a与b可相交可异面也可平行,故A错;a∥α,b∥β,α∥β时,a与b可异面,故B错;由α⊥β,a⊥α得,a∥β或a⊂β,又b∥β,此时a与b可平行也可异面,排除D.10.(2010·日照实验高中)如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,AB =1,M ,N 分别在AD 1,BC 上移动,且始终保持MN ∥平面DCC 1D 1,设BN =x ,MN =y ,则函数y =f (x )的图象大致是( )[答案] C[解析] 过M 作ME ⊥AD 于E ,连接EN ,则平面MEN ∥平面DCC 1D 1,所以BN =AE =x (0≤x <1),ME =2x ,MN 2=ME 2+EN 2,则y 2=4x 2+1,y 2-4x 2=1(0≤x <1,y >0),图象应是焦点在y 轴上的双曲线的一部分.故选C.二、填空题11.(文)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足条件________时,有MN ∥平面B 1BDD 1.[答案] M ∈线段FH[解析] 因为HN ∥BD ,HF ∥DD 1,所以平面NHF ∥平面B 1BDD 1,又平面NHF ∩平面EFGH =FH .故线段FH 上任意点M 与N 相连,有MN ∥平面B 1BDD 1,故填M ∈线段FH .(理)(2010·南充市模拟)已知两异面直线a ,b 所成的角为π3,直线l 分别与a ,b 所成的角都是θ,则θ的取值范围是________.[答案] [π6,π2]12.在四面体ABCD 中,M 、N 分别是△ACD 、△BCD 的重心,则四面体的四个面中与MN 平行的是________.[答案] 面ABC 和面ABD[解析] 连结AM 并延长交CD 于点E ,∵M 为△ACD 的重心,∴E 为CD 的中点, 又N 为△BCD 的重心,∴B 、N 、E 三点共线, 由EM MA =EN NB =12得MN ∥AB , 因此MN ∥平面ABC ,MN ∥平面ABD .13.如图是一正方体的表面展开图,B 、N 、Q 都是所在棱的中点,则在原正方体中, ①AB 与CD 相交;②MN ∥PQ ;③AB ∥PE ;④MN 与CD 异面;⑤MN ∥平面PQC . 其中真命题的序号是________.[答案] ①②④⑤[解析] 将正方体还原后如图,则N 与B 重合,A 与C 重合,E 与D 重合,∴①、②、④、⑤为真命题.14.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为a ,点P 是棱AD 上一点,且AP =a3,过B 1,D 1,P 的平面交底面ABCD 于PQ ,Q 在直线CD 上,则PQ =________.[答案]223a [解析] ∵B 1D 1∥平面ABCD ,平面B 1D 1P ∩平面ABCD =PQ ,∴B 1D 1∥PQ , 又B 1D 1∥BD ,∴BD ∥PQ ,设PQ ∩AB =M ,∵AB ∥CD ,∴△APM ∽△DPQ ,∴PQ PM =PDAP=2,即PQ =2PM , 又△APM ∽△ADP ,∴PM BD =AP AD =13,∴PM =13BD ,又BD =2a ,∴PQ =223a .三、解答题15.(文)(2010·南京调研)如图,在四棱锥E -ABCD 中,四边形ABCD 为平行四边形,BE =EC ,AE ⊥BE ,M 为CE 上一点,且BM ⊥平面ACE .(1)求证:AE ⊥BC ;(2)如果点N 为线段AB 的中点,求证:MN ∥平面ADE .[解析] (1)因为BM ⊥平面ACE ,AE ⊂平面ACE ,所以BM ⊥AE .因为AE ⊥BE ,且BE ∩BM =B ,BE 、BM ⊂平面EBC ,所以AE ⊥平面EBC . 因为BC ⊂平面EBC ,所以AE ⊥BC . (2)解法1:取DE 中点H ,连接MH 、AH .因为BM ⊥平面ACE ,EC ⊂平面ACE ,所以BM ⊥EC . 因为BE =BC ,所以M 为CE 的中点. 所以MH 为△EDC 的中位线,所以MH 綊12DC .因为四边形ABCD 为平行四边形,所以DC 綊AB . 故MH 綊12AB .因为N 为AB 的中点,所以MH 綊AN .所以四边形ANMH 为平行四边形,所以MN ∥AH . 因为MN ⊄平面ADE ,AH ⊂平面ADE , 所以MN ∥平面ADE .解法2:取EB 的中点F ,连接MF 、NF .因为BM ⊥平面ACE ,EC ⊂平面ACE ,所以BM ⊥EC . 因为BE =BC ,所以M 为CE 的中点,所以MF ∥BC .因为N 为AB 的中点,所以NF ∥AE , 因为四边形ABCD 为平行四边形, 所以AD ∥BC .所以MF ∥AD .因为NF 、MF ⊄平面ADE ,AD 、AE ⊂平面ADE , 所以NF ∥平面ADE ,MF ∥平面ADE . 因为MF ∩NF =F ,MF 、NF ⊂平面MNF , 所以平面MNF ∥平面ADE .因为MN ⊂平面MNF ,所以MN ∥平面ADE .(理)(2010·厦门市质检)如图所示的几何体中,△ABC 为正三角形,AE 和CD 都垂直于平面ABC ,且AE =AB =2,CD =1,F 为BE 的中点.(1)若点G 在AB 上,试确定G 点位置,使FG ∥平面ADE ,并加以证明;(2)在(1)的条件下,求三棱锥D -ABF 的体积. [解析] (1)当G 是AB 的中点时,GF ∥平面ADE . ∵G 是AB 的中点,F 是BE 的中点, ∴GF ∥AE ,又GF ⊄平面ADE ,AE ⊂平面ADE , ∴GF ∥平面ADE . (2)连接CG ,由(1)可知: GF ∥AE ,且GF =12AE .又AE ⊥平面ABC ,CD ⊥平面ABC ,∴CD ∥AE , 又CD =12AE ,∴GF ∥CD ,GF =CD ,∴四边形CDFG 为平行四边形, ∴DF ∥CG ,且DF =CG .又∵AE ⊥平面ABC ,CG ⊂平面ABC ,∴AE ⊥CG . ∵△ABC 为正三角形,G 为AB 的中点, ∴CG ⊥AB ,又AB ∩AE =A ,∴CG ⊥平面ABE . 又CG ∥DF ,且CG =DF ,∴DF 为三棱锥D -ABF 的高,且DF = 3. 又AE ⊥平面ABC ,AB ⊂平面ABC ,∴AE ⊥AB . ∵在Rt △ABE 中,AB =AE =2,F 为BE 的中点,∴S △ABF =12S △ABE =12×12×2×2=1.∴V D -ABF =13S △ABF ·DF =13×1×3=33,∴三棱锥D -ABF 的体积为33. 16.(文)(2010·安徽合肥质检)如图,PO ⊥平面ABCD ,点O 在AB 上,EA ∥PO ,四边形ABCD 为直角梯形,BC ⊥AB ,BC =CD =BO =PO ,EA =AO =12CD .(1)求证:BC ⊥平面ABPE ;(2)直线PE 上是否存在点M ,使DM ∥平面PBC ,若存在,求出点M ;若不存在,说明理由.[解析] (1)∵PO ⊥平面ABCD , BC ⊂平面ABCD ,∴BC ⊥PO ,又BC ⊥AB ,AB ∩PO =O ,AB ⊂平面ABP ,PO ⊂平面ABP ,∴BC ⊥平面ABP , 又EA ∥PO ,AO ⊂平面ABP , ∴EA ⊂平面ABP ,∴BC ⊥平面ABPE . (2)点E 即为所求的点,即点M 与点E 重合. 取PO 的中点N ,连结EN 并延长交PB 于F , ∵EA =1,PO =2,∴NO =1,又EA 与PO 都与平面ABCD 垂直,∴EF ∥AB , ∴F 为PB 的中点,∴NF =12OB =1,∴EF =2,又CD =2,EF ∥AB ∥CD ,∴四边形DCFE 为平行四边形,∴DE ∥CF , ∵CF ⊂平面PBC ,DE ⊄平面PBC , ∴DE ∥平面PBC .∴当M 与E 重合时即可.(理)在长方体ABCD -A 1B 1C 1D 1中,O 为底面正方形的中心,过A 1、C 1、B 三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD -A 1C 1D 1及其三视图.(1)求证:D1O∥平面A1BC1;(2)是否存在过点A1与直线DC1垂直的平面A1PQ,与线段BC1交于点P,与线段CC1交于点Q?若存在,求出线段PQ的长;若不存在,请说明理由.[分析]要证D1O∥平面A1BC1,∵O为DB的中点,∴取A1C1中点E,只须证D1E綊OB,或利用长方体为正四棱柱的特性,证明平面ACD1∥平面A1C1B,假设存在平面A1PQ ⊥DC1,利用正四棱柱中,BC⊥平面DCC1D1,故有BC⊥DC1,从而平面A1PQ与平面BCC1的交线PQ⊥DC1,故只须在面DCC1D1的边CC1上寻找点Q,使D1Q⊥DC1即可.[解析](1)连接AC,AD1,D1C,易知点O在AC上.D1、四边形A1D1CB均为平行四边根据长方体的性质得四边形ABC Array 1形,∴AD1∥BC1,A1B∥D1C,又∵AD1⊄平面A1C1B,BC1⊂平面A1C1B,∴AD1∥平面A1C1B,同理D1C∥平面A1BC1,又∵D1C∩AD1=D1,∴根据面面平行的判定定理知平面ACD1∥平面A1BC1.∵D1O⊂平面ACD1,∴D1O∥平面A1BC1.(2)假设存在过点A1与直线DC1垂直的平面A1PQ,与线段BC1交于点P,与线段CC1交于点Q.D,过点D1作C1D的垂线交C1C于点Q,过点Q作PQ连接C Array 1∥BC交BC1于点P,连接A1P,A1Q.∵C1D⊥D1Q,C1D⊥A1D1,D1Q∩A1D1=D1,∴C1D⊥平面A1D1Q.∵A1Q⊂平面A1D1Q,∴C1D⊥A1Q.∵PQ∥BC∥A1D1,∴C1D⊥PQ,∵A1Q∩PQ=Q,∴C1D⊥平面A1PQ.∴存在过点A1与直线DC1垂直的平面A1PQ,与线段BC1交于点P,与线段CC1交于点Q.在矩形CDD 1C 1中,∵Rt △D 1C 1Q ∽Rt △C 1CD ,∴C 1Q CD =D 1C 1C 1C ,结合三视图得C 1Q 2=24,∴C 1Q =1. ∵PQ ∥BC ,∴PQ BC =C 1Q CC 1=14,∴PQ =14BC =12. 17.(文)(2010·东北师大附中)如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为DD 1、DB 的中点.(1)求证:EF ∥平面ABC 1D 1;(2)求证:EF ⊥B 1C ;(3)求三棱锥B 1-EFC 的体积.[解析] (1)证明:连结BD 1,在△DD 1B 中,E 、F 分别为D 1D ,DB 的中点,则EF ∥D 1B ,又EF ⊄平面ABC 1D 1,D 1B ⊂平面ABC 1D 1,∴EF ∥平面ABC 1D 1.(2)证明:∵B 1C ⊥AB ,B 1C ⊥BC 1,AB ∩BC 1=B ,∴B 1C ⊥平面ABC 1D 1,又BD 1⊂平面ABC 1D 1,∴B 1C ⊥BD 1,又EF ∥BD 1,∴EF ⊥B 1C .(3)解:∵CF ⊥BD ,CF ⊥BB 1,∴CF ⊥平面BDD 1B 1,即CF ⊥平面EFB 1,且CF =BF = 2∵EF =12BD 1=3,B 1F =BF 2+BB 12=(2)2+22=6,B 1E =B 1D 12+D 1E 2=12+(22)2=3,∴EF 2+B 1F 2=B 1E 2,即∠EFB 1=90°,∴VB 1-EFC =VC -B 1EF =13·S △B 1EF ·CF =13×12·EF ·B 1F ·CF =13×12×3×6×2=1. (理)(2010·河北唐山)如图,在四棱锥V -ABCD 中,底面ABCD 是矩形,侧棱VA ⊥底面ABCD ,E 、F 、G 分别为VA 、VB 、BC 的中点.(1)求证:平面EFG ∥平面VCD ;(2)当二面角V -BC -A 、V -DC -A 依次为45°、30°时,求直线VB 与平面EFG 所成的角.[解析] (1)∵E 、F 、G 分别为VA 、VB 、BC 的中点,∴EF ∥AB ,FG ∥VC ,又ABCD 是矩形,∴AB ∥CD ,∴EF ∥CD ,又∵EF ⊄平面VCD ,FG ⊄平面VCD ,∴EF ∥平面VCD ,FG ∥平面VCD ,又EF ∩FG =F ,∴平面EFG ∥平面VCD .(2)∵VA ⊥平面ABCD ,CD ⊥AD ,∴CD ⊥VD .则∠VDA 为二面角V -DC -A 的平面角,∴∠VDA =30°.同理∠VBA =45°.作AH ⊥VD ,垂足为H ,由上可知CD ⊥平面VAD ,则AH ⊥平面VCD .∵AB ∥平面VCD ,∴AH 即为B 到平面VCD 的距离.由(1)知,平面EFG ∥平面VCD ,则直线VB 与平面EFG 所成的角等于直线VB 与平面VCD 所成的角,记这个角为θ.∵AH =VA sin60°=32VA ,VB =2VA ,∴sin θ=AH VB =64, 故直线VB 与平面EFG 所成的角是arcsin64.。
高中数学高考总复习立体几何空间向量空间直角坐标系习题及详解
高考总复习含详解答案高中数学高考总复习立体几何空间向量空间直角坐标系习题及详解一、选择题1.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,则该四边形为()A .平行四边形B .梯形C .平面四边形D .空间四边形[答案]D [解析]∵AB →·BC →>0,∴∠ABC>π2,同理∠BCD>π2,∠CDA>π2,∠DAB >π2,由内角和定理知,四边形ABCD 一定不是平面四边形,故选 D. 2.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB →的值为()A .0B .1C .0或1D .任意实数[答案]C [解析]AP →可为下列7个向量:AB →,AC →,AD →,AA 1→,AB 1→,AC 1→,AD 1→,其中一个与AB →重合,AP →·AB →=|AB →|2=1;AD →,AD 1→,AA 1→与AB →垂直,这时AP →·AB →=0;AC →,AB 1→与AB →的夹角为45°,这时AP →·AB →=2×1×cos π4=1,最后AC 1→·AB →=3×1×cos ∠BAC 1=3×13=1,故选 C. 3.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,N 为BB 1的靠近B 的三等分点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则MN →等于()A .-12a +12b +13c B.12a +12b -13c C.12a -12b -13c D .-12a -12b +23c [答案] C。
河南省漯河高中2024学年高中毕业班教学质量检测试题(二)数学试题
河南省漯河高中2024学年高中毕业班教学质量检测试题(二)数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.i是虚数单位,21izi=-则||z=()A.1 B.2 C.2D.222.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中左视图中三角形为等腰直角三角形,则该几何体外接球的体积是()A.16πB.32 3πC.23πD.2053π3.已知等差数列{a n},则“a2>a1”是“数列{a n}为单调递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.已知函数1,0()ln,0xxf xxxx⎧<⎪⎪=⎨⎪>⎪⎩,若函数()()F x f x kx=-在R 上有3个零点,则实数k的取值范围为()A.1(0,)eB .1(0,)2eC .1(,)2e-∞D.11(,)2e e5.已知向量a,b,b=(13,且a在b方向上的投影为12,则a b⋅等于()A .2B .1C .12D .06.已知集合{}|,A x x a a R =≤∈,{}|216xB x =<,若A B ,则实数a 的取值范围是( )A .∅B .RC .(],4-∞D .(),4-∞7.已知a >b >0,c >1,则下列各式成立的是( ) A .sin a >sin bB .c a >c bC .a c <b cD .11c c b a--< 8.设ln3a =,则lg3b =,则( )A .a b a b ab +>->B .a b ab a b +>>-C .a b a b ab ->+>D .a b ab a b ->>+ 9.函数()sin 2sin 3f x x m x x =++在[,]63ππ上单调递减的充要条件是( )A .3m ≤-B .4m ≤-C.3m ≤-D .4m ≤10.已知公差不为0的等差数列{}n a 的前n 项的和为n S ,12a =,且139,,a a a 成等比数列,则8S =( ) A .56B .72C .88D .4011.已知x ,y 满足不等式组2202100x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,则点(),P x y 所在区域的面积是( )A .1B .2C .54D .4512.若集合{}A=|2x x x R ≤∈,,{}2B=|y y x x R =-∈,,则A B ⋂=( ) A .{}|02x x ≤≤B .{}2|x x ≤C .{}2|0x x -≤≤D .∅二、填空题:本题共4小题,每小题5分,共20分。
高考数学一轮总复习专题检测2.1函数及其性质
函数及其性质一、选择题1.(2022届北京一六一中学10月月考,3)下列函数中,值域为R 的是( ) A.y=1x B.y=1+1x C.y=x+1x D.y=x-1x答案 D 对于函数y=1x ,因为x≠0,所以y≠0,故它的值域不是R,所以A 不满足题意; 对于函数y=1+1x ,因为x≠0,所以y≠1,故它的值域不是R,所以B 不满足题意;对于函数y=x+1x,由对勾函数的性质可知值域为(-∞,-2]∪[2,+∞),所以C 不满足题意;对于函数y=x-1x =x 2-1x,可得关于x 的方程x 2-yx-1=0有解,∵Δ=y 2+4>0,∴y 可以取任意实数,即y∈R,故D 满足条件. 故选D.2.(2022届北京一七一中学10月月考,7)存在函数f(x)满足:对任意x∈R 都有( ) A.f(sin2x)=sinx B.f(sin2x)=x 2+x C.f(x 2+1)=|x+1| D.f(x 2+2x)=|x+1|答案 D A 选项,取x=0,可知f(sin0)=sin0,即f(0)=0,再取x=π2,可知f(sinπ)=sin π2,即f(0)=1,矛盾,∴A 错误;同理可知B 错误;C 选项,取x=1,可知f(2)=2,再取x=-1,可知f(2)=0,矛盾,∴C 错误.故选D.3.(2022届黑龙江适应性测试,2)托马斯说:“函数是近代数学思想之花.”根据函数的概念判断,下列对应关系是从集合M={-1,2,4}到集合N={1,2,4,16}的函数的是( ) A.y=2x B.y=x+2 C.y=x 2D.y=2x答案 C A.当x=-1时,y=2x=-2,集合N 中没有对应值,不满足条件. B.当x=4时,y=x+2=6,集合N 中没有对应值,不满足条件.C 中函数满足条件. D.当x=-1时,y=12,集合N 中没有对应值,不满足条件.故选C. 4.(2022届西安期中,4)下列各图中,一定不是函数图象的是( )答案 A 对于A 选项,由图可知,存在一个x 同时有两个y 值与之对应,A 选项中的图不是函数图象;对于B 选项,由图可知,对于每个x,有唯一的y 值与之对应,B 选项中的图是函数图象,同理可知CD 选项中的图是函数图象,故选A. 5.(2022届山东鱼台一中月考一,2)已知函数f(x)={(12)x,x ≤0,x -2,x >0,设f(1)=a,则f(a)=( )B.12 12 32答案 A 因为f(x)={(12)x,x ≤0,x -2,x >0,所以f(1)=1-2=-1,所以a=-1,所以f(-1)=(12)-1=2.6.(2022届广东深圳七中月考,7)定义在R 上的函数f(x)满足f(x)={log 9(1-x),x ≤0,x (x -10),x >0,则f(2018)=( ) A.1212答案 A∵f(x)={log 9(1-x),x ≤0,x (x -10),x >0,∴f(2018)=f(2008)=f(1998)=…=f(8)=f(-2),∴f(2018)=log 93=12.故选A.7.(2022届广东普通高中10月质检,3)函数f(x)=1x +4x 在[1,2)上的值域是( ) A.[5,172) B.[4,172) C.(0,172) D.[5,+∞)答案 A 因为f'(x)=-1x 2+4=(2x +1)(2x -1)x 2,所以当x∈[1,2)时,f'(x)>0,f(x)是增函数,所以f(1)≤f(x)<f(2),即5≤f(x)<172.故选A.8.(2022届河北保定重点高中月考,7)设定义在R 上的函数f(x)=x·|x|,则f(x)( )A.既是奇函数,又是增函数B.既是偶函数,又是增函数C.既是奇函数,又是减函数D.既是偶函数,又是减函数答案 A ∵f(-x)=-x·|-x|=-x·|x|=-f(x),且f(x)的定义域关于原点对称,∴函数f(x)为奇函数,∵f(x)=x·|x|={x 2,x ≥0,-x 2,x <0,∴函数f(x)为增函数,故选A.9.(2022届北京市育英中学10月月考,2)下列函数中,在区间(0,+∞)上不是单调函数的是( )A.y=1x B.y=(x+1)2C.y=12x+√x +1 D.y=|x-1|答案 D A 选项,y=1x 在(0,+∞)上单调递减. B 选项,y=(x+1)2在(0,+∞)上单调递增.C 选项,y=12x+√x +1=12(√x )2+√x +1,在(0,+∞)上单调递增.D 选项,y=|x-1|={x -1,x ≥1,1-x ,x <1,在(0,1)上单调递减,在(1,+∞)上单调递增.故选D.10.(2022届山西忻州月考,9)设f(x)是定义域为R 的偶函数,若∀x 1,x 2∈(0,+∞)(x 1≠x 2),都有x (x 1)-f(x 2)x 1-x 2>0,则( )A.f(lo g 123.1)<f(log 23)=f (32)B.f(log 23)<f(lo g 123.1)<f (32)(32)<f(lo g 123.1)<f(log 23)(32)<f(log 23)<f(lo g 123.1)答案 D 因为∀x 1,x 2∈(0,+∞)(x 1≠x 2),都有x (x 1)-f(x 2)x 1-x 2>0,所以f(x)在(0,+∞)上单调递增,因为f(x)是定义域为R 的偶函数,所以f(lo g 123.1)=f(-log 23.1)=f(log 23.1),又因为232=2√2,所以232<3<3.1,而y=log 2x 在(0,+∞)上单调递增,所以32<log 23<log 23.1,故f (32)<f(log 23)<f(log 23.1),即f (32)<f(log 23)<f(lo g 123.1),故选D.11.(2022届四川广元质检(二),9)已知函数f(x)是定义在R上的偶函数,且对任意实数x,都有f(x)+f(4-x)=0,当x∈[-2,0]时,f(x)=-x2+4,则f(11)=( )答案 D ∵f(-x)=f(x),且f(x)+f(4-x)=0,∴f(4+x)=-f(-x)=-f(x),即f(8+x)=f(x),∴f(x)是以8为周期的偶函数,又当x∈[-2,0]时,f(x)=-x2+4,∴f(11)=f(3)=-f(1)=-f(-1)=-[-(-1)2+4]=-3.故选D.12.(2022届合肥联考,12)已知f(x)是定义在R上的奇函数,∀x∈R,恒有f(x+4)=-f(x),且当x∈[-2,0)时,f(x)=-x-1,则f(0)+f(1)+f(2)+…+f(2020)+f(2021)=()答案 B 因为f(x+4)=-f(x),所以f(x+8)=-f(x+4)=f(x),所以f(x)的周期是8.因为f(0)=0,f(2)=-f(-2)=-1,f(3)=-f(-1)=0,f(4)=-f(0)=0,f(1)=-f(-3)=f(3)=0,f(5)=-f(1)= 0,f(6)=-f(2)=1,f(7)=-f(3)=0,f(8)=-f(4)=0,又f(x)是周期为8的周期函数,所以f(0)+f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+f(7)=…=f(2008)+f(2009)+f(2010)+f(2011)+f(20 12)+f(2013)+f(2014)+f(2015)=0.f(2016)+f(2017)+f(2018)+f(2019)+f(2020)+f(2021)=f (0)+f(1)+f(2)+f(3)+f(4)+f(5)=0+0+(-1)+0+0+0=-1.所以f(0)+f(1)+f(2)+…+f(2020)+f(2021)=-1.故选B.13.(2022届清华大学中学生标准学术能力测试(11月),7)已知定义域为R的奇函数f(x)满足:f(x)=f(2-x),且当x∈[0,1]时,f(x)=ax+b,若f(-1)=2,则f(-1.5)=( )答案 C 由题意,f(0)=b=0,且f(1)=a+b=-f(-1)=-2,所以a=-2,所以当x∈[0,1]时,f(x)=-2x,因为f(x)=f(2-x),所以f(x+2)=f(-x)=-f(x),所以f(x+4)=-f(x+2)=f(x),所以函数f(x)是周期为4的函数,所以f(-1.5)=f(2.5)=-f(0.5)=-(-2×0.5)=1.14.(2022届河北保定重点高中月考,12)已知定义在R上的函数f(x),g(x),其中函数f(x)满足f(-x)=f(x)且在[0,+∞)上单调递减,函数g(x)满足g(1-x)=g(1+x)且在(1,+∞)上单调递减,设函数F(x)=1[f(x)+g(x)+|f(x)-g(x)|],则对任意x∈R,均有( )2A.F(1-x)≥F(1+x)B.F(1-x)≤F(1+x)C.F(1-x2)≥F(1+x2)D.F(1-x2)≤F(1+x2)答案 C根据题意,函数f(x)满足f(-x)=f(x),则f(x)为偶函数,又由f(x)在[0,+∞)上单调递减,且|1-x 2|≤|1+x 2|,得f(1-x 2)≥f(1+x 2).函数g(x)满足g(1-x)=g(1+x),即g(x)的图象关于直线x=1对称,则g(1-x 2)=g(1+x 2),又由F(x)=12[f(x)+g(x)+|f(x)-g(x)|]={x (x ), x (x )≥x (x ),x (x ), x (x )<x (x ),则F(x)的示意图可表示为图中实线部分,所以有F(1-x 2)≥F(1+x 2).故选C. 二、填空题15.(2022届福建永安三中10月月考,13)设函数f(x)={1+log 2(2-x),x <1,2x ,x ≥1,则f(-2)+f(log 26)= . 答案 9解析 f(-2)=1+log 24=3,f(log 26)=2log 26=6,∴f(-2)+f(log 26)=3+6=9.16.(2022届广东深圳三中月考,15)已知函数f(x)={13x 3-ax +1,0≤x <1,x ln x ,x ≥1,若f(x)≥f(1)恒成立,则正实数a 的取值范围是 . 答案 (0,43]解析 ∵a>0,∴当x≥1时,f(x)=alnx≥f(1),当0≤x<1时,f(x)=13x 3-ax+1,f'(x)=x 2-a.(1)若a≥1,则f'(x)<0,f(x)单调递减,f(x)≥f(1)成立,则13-a+1≥0,解得a≤43,∴1≤a≤43,(2)若0<a<1,则当0<x<√x 时,f'(x)<0,f(x)单调递减,当√x <x<1时,f'(x)>0,f(x)单调递增,因此x=√x 时,f(x)min =f(√x )=13(√x )3-(√x )3+1=-23x 32+1,所以-23x 32+1≥0,显然成立,∴0<a<1.综上,a 的取值范围是(0,43].17.(2022届山东学情10月联考,14)设f(x)是定义域为R 的奇函数,且f(1-x)=f(2+x),若f (43)=12,则f (-53)= . 答案 -12解析 因为f(1-x)=f(2+x),所以f(x)的图象关于直线x=32对称,又f(x)是奇函数,所以f (-53)=-f (53)=-f (43)=-12.18.(2022届山西忻州顶级名校联考,16)在下列命题中,正确命题的序号为 .(写出所有正确命题的序号)①函数f(x)=x+x x(x>0)的最小值为2√x ;②已知定义在R 上周期为4的函数f(x)满足f(2-x)=f(2+x),则f(x)一定为偶函数; ③定义在R 上的函数f(x)既是奇函数又是以2为周期的周期函数,则f(1)+f(4)+f(7)=0; ④已知函数f(x)=x 3,若a+b>0,则f(a)+f(b)>0. 答案 ②③④解析 ①当a=0时,f(x)=x(x>0)无最小值,故①错误;②因为f(2-x)=f(2+x),所以f(x)的图象关于直线x=2对称,又f(x)的周期为4,所以f(-x)=f(-x+4)=f(4-(-x+4))=f(x),故函数f(x)一定为偶函数,故②正确;③因为f(x)是定义在R 上的奇函数,又是以2为周期的周期函数,所以f(0)=0,f(-1)=-f(1),f(-1)=f(-1+2)=f(1),故f(1)=0,又f(4)=f(0+2×2)=f(0)=0,f(7)=f(1+2×3)=f(1)=0,所以f(1)+f(4)+f(7)=0,故③正确;④f(x)=x 3为奇函数,且在R 上单调递增,若a+b>0,则a>-b,有f(a)>f(-b)=-f(b),所以f(a)+f(b)>0,故④正确.19.(2022届山东鱼台一中月考,16)定义在R 上的函数f(x)=x+a+sinx,若f (x+π)是奇函数,则a= ;满足f(x)-π>0的x 的取值范围是 . 答案 -π;(2π,+∞)解析 f(x+π)=x+π+a -sinx,因为f(x+π)是奇函数,则π+a=0,即a=-π,f(x)=x -π+sinx,因为f'(x)=1+cosx≥0,则f(x)递增,又f(2π)=π,则f(x)-π>0⇔f(x)>π⇔f(x)>f(2π)⇔x>2π. 三、解答题20.(2022届福建长汀一中月考二,20)已知a,b∈R 且a>0,函数f(x)=4x +b4x -a 是奇函数. (1)求a,b 的值;(2)对任意x∈(0,+∞),不等式mf(x)-f (x2)>0恒成立,求实数m 的取值范围. 解析 (1)因为f(x)是奇函数,所以f(-x)=-f(x),即2-2ab+(b-a)(4x +4-x)=0恒成立,∴{x -x =0,2-2xx =0,又a>0,所以解得a=b=1.(2)不等式mf(x)-f (x 2)>0⇔m (1+24x -1)-(14x2-1>0对任意x∈(0,+∞)恒成立,令2x=t(t>1),则m>x +1x -1x 2+1x 2-1=(x +1)2x 2+1=x 2+1+2t x 2+1=1+2x x 2+1=1+2x +1x对t>1恒成立,∵y=2x +1x在(1,+∞)上单调递减,∴y=1+2x +1x<2,∴m≥2,∴m 的取值范围为[2,+∞).21.(2022届山西忻州顶级名校联考,19)已知函数f(x)是定义在R 上的奇函数,且当x>0时,f(x)=-x 2+2x.(1)求函数f(x)在R 上的解析式; (2)解关于x 的不等式f(x)<3.解析 (1)当x<0时,-x>0,则f(-x)=-(-x)2+2(-x)=-x 2-2x, 由f(x)是定义在R 上的奇函数,得f(x)=-f(-x)=x 2+2x,且f(0)=0,综上,f(x)={-x 2+2x,x >0,0,x =0,x 2+2x,x <0.(2)①当x>0时,-x 2+2x<3⇒x 2-2x+3>0,解得x∈R,所以x>0; ②当x=0时,0<3显然成立,所以x=0; ③当x<0时,x 2+2x<3,得-3<x<0. 综上,不等式的解集为(-3,+∞).。
辽宁省鞍山市普通高中2024-2025学年高三上学期第一次质量检测数学试题(含答案)
鞍山市普通高中2024—2025学年度高三第一次质量监测数学考试时间:120分钟 满分:150分一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,集合,则( )A.B.C.D.2.已知复数满足,则()A.B.C.D.3.已知向量满足,则( )B.C.2D.4.在二项式的展开式中,常数项为( )A.180B.270C.360D.5405.已知函数为奇函数,则实数的值为( )A.-2B.2C.-1D.16.若为随机事件,且,则( )A.若为互斥事件,则B.若为互斥事件,C.若为相互独立事件,D.若,则7.已知双曲线在双曲线上,且,若恒成立,则实数的取值范围为( )A.B.C.D.{}1A xx =≥∣11B x x ⎧⎫=<⎨⎬⎩⎭A B ⋂=()1,∞+[)1,∞+][(),11,∞∞--⋃+(](),11,∞∞--⋃+z ()11i z z -=+z=i i -1i 21i 2-,a b 1,22b a a b a b ==-=+ 2a b -= 1022x ⎫⎪⎭()131xaf x =+-a ,M N ()()0.4,0.3PM P N ==,M N ()0.58P M N ⋃=,M N ()0.12PM N ⋂=,M N ()0.7PM N ⋃=()0.4P NM =∣()0.15P NM =∣()()2211222:1(0),,,,4y x C m A x y B x y m -=>120y y >12120x x y y -<m [)2,∞+(]0,2[)1,∞+(]0,18.已知定义在上的函数,若,则取得最小值时的值为( )A.4B. C. D.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数,定义域均为,则下列说法正确的是()A.函数与有相同的最小正周期B.函数与的图象有相同的对称轴C.的图象可以由函数的图象向右平移个单位得到D.函数的图象与的图象关于直线对称10.已知直线,圆为圆上任意一点,则下列说法正确的是( )A.的最大值为5B.C.直线与圆相切时,D.圆心到直线的距离最大为411.已知函数满足对任意,都有,且为奇函数,,下列说法正确的是( )A.函数的一个周期是8B.函数为偶函数C.D.()1,∞+()2e x f x x =-()()e b f a f =()f baa 2e 2e ee ()()22π2cos 2sin ,2cos 23f x x xg x x ⎛⎫=-=- ⎪⎝⎭R ()y f x =()y g x =()y f x =()y g x =()yg x =()y f x =π6()y f x =()y g x =π12x =:0l kx y k -+=()2200:650,,C x y x P x y +-+=C 22x y +00y x l C k=±C l ()f x x ∈R ()()42f x f x -=-()43f x +()12f =()f x ()27f x +20251()2i f i ==↓∑11(1)(43)2ni i f i n-=--=∑三、填空题:本题共3小题,每小题5分,共15分.12.已知数列的前项和为,且有,则__________.13.已知,则__________.14.已知四棱锥中,底面为正方形,,则__________,该四棱锥的高为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.本小题满分13分如图,四棱锥中,底面是边长为2的正方形,为等边三角形,且平面平面.(1)求四棱锥的体积;(2)求二面角的余弦值.16.本小题满分15分2024年6月25日14时07分,嫦娥六号返回器准确着陆于内蒙古自治区四子王旗预定区域,工作正常,标志着探月工程嫦娥六号任务取得圆满成功,实现了世界首次月球背面采样返回.某学校为了了解学生对探月工程的关注情况,随机从该校学生中抽取了一个容量为90的样本进行调查,调查结果如下表:关注不关注合计男生5560女生合计75(1)完成上述列联表,依据该统计数据,能否有的把握认为该校学生对探月工程的关注与性别有关?(2)为了激发同学们对探月工程的关注,该校举办了一次探月知识闯关比赛,比赛有两个答题方案可供选择:方案一:回答4个问题,至少答对3个问题才能晋级;方案二:在4个问题中随机选择2个问题作答,都答对才能晋级.{}n a n n S 23n n a S -=3a =()80,π,sin 5ααα∈+=πcos 3α⎛⎫+= ⎪⎝⎭P ABCD -ABCD 34,cos 4PA PB AB PCA ∠====PC =P ABCD -ABCD PAD V PAD ⊥ABCD P ABCD -P AC B --99%已知振华同学答对这4个问题的概率分别为,振华同学回答这4个问题正确与否相互独立,则振华选择哪种方案晋级的可能性更大?附:0.10.050.0250.010.0012.7063.8415.0246.63510.82817.本小题满分15分已知椭圆,右焦点为且离心率为,直线,椭圆的左右顶点分别为为上任意一点,且不在轴上,与椭圆的另一个交点为与椭圆C 的另一个交点为.(1)直线和直线的斜率分别记为,求证:为定值;(2)求证:直线过定点.18.本小题满分17分已知函数,且定义域为.(1)求函数的单调区间;(2)若有2个零点,求实数的取值范围;(3)若恒成立,求实数的取值范围.19.本小题满分17分若数列满足如下两个条件:①和恰有一个成立;②.就称数列为“中项随机变动数列”.已知数列为“中项随机变动数列”,(1)若,求的可能取值;2221,,,3332()()()()22()n ad bc a b c d a c b d χ-=++++()P k χ≥k2222:1(0)x y C a b a b +=>>()2,0F 23:6l x =C 12,A A P 、l x 1PA C 2,M P A N 1M A 2M A 12M AM A k k 、12MA MA k k ⋅MN ()2e 2xa f x x =-[)0,,a ∞+∈R ()f x ()f x 12,x x a ()()31e 1cos 2xa f x a x ⎛⎫≥-+- ⎪⎝⎭a {}n a *21,2n n n n a a a ++∀∈=+N 122n n n a a a ++=+*,0n n a ∀∈≥N {}n a {}n a 1246,4,3a a a ===3a(2)已知的解集为,求证:成等比数列;(3)若数列前3项均为正项,且的解集为,设的最大值为,求的最大值.0n a ={}2,5,8369,,a a a {}n a 211,0n a a a -=={},,m s t ,,m s t p 1p a +鞍山市普通高中2024—2025学年高三第一次质量检测数学科参考答案一、选择题:1-5DBDAB6-8DAC9.ACD 10.BC11.ACD二、填空题:12.1213. 14.或三、解答题:15.解:(1)取中点,连接,因为平面平面,平面平面,平面,在等边中,,所以平面,的体积为.(2)取中点,连接,则,以为坐标原点,分别以的方向为轴的正方向,,为平面的法向量,则有,令,得,取为平面的法向量,由图可知,二面角的大小为钝角,二面角的余弦值为16(1)关注不关注合计男生5556035-AD E PE PAD ⊥ABCD PAD ⋂ABCD AD =PE ⊂PAD PAD V PE AD ⊥PE ⊥ABCD 143P ABCD PE V -==⨯=P ABCD -BC F EF EF AD ⊥E ,,EA EF EPx,y,z ()(()()1,0,0,0,,1,2,0,1,2,0A P CB-(()1,,2,2,0AP AC =-=-APC 1111110220n AP x n AC xy ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩1z =)1n = ()20,0,1n =ABC 121212cos ,n n n n n n ⋅===P AC B --P AC B --女生201030合计751590能有的把握认为该校学生对探月工程的关注与性别有关(2)记这4个问题为,记振华答对的事件分别记为,分别记按方案一、二晋级的概率为,则因为,振华选择方案一晋级的可能性更大17解:(1)由题意,可得椭圆设,又,所以,为定值(2)设直线,代入,得,2290(5510205)9 6.63560307515χ⨯-⨯==>⨯⨯⨯99%,,,a b c d ,,,a b c d ,,,A B C D 12,P P 1()()()()()P P ABCD P ABCD P ABCD P ABCD P ABCD =++++322121114233232327⎛⎫⎛⎫=⨯⨯+⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭()()()()()()2111111666666P P AB P AC P AD P BC P BD P CD =+++++21221733633218⎡⎤⎛⎫=⨯+⨯⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦1472718>222223c c a a b c=⎧⎪⎪=⎨⎪=+⎪⎩3a b =⎧⎪⎨=⎪⎩∴22:195x y C +=()221111,,195x y M x y +=()()123,0,3,0A A -12221111A A 221111555933999M Mx y y y k k x x x x -⋅=⋅===-+---12MA MA k k ⋅59-112221,,393P P A P MA A P A N A N MA y yk k k k k k =====2221533A M A N A MA M k k k k ⋅=⋅=-:M Nx my t =+22195x y +=()22259105450m y mty t +++-=,则且有,所以,可得或3(舍)直线过定点法二:设,直线由.得,所以,同理直线的斜率存在时,,令,当的斜率不存在时,直线过定点()()1122,,,M x y N x y 22Δ0,59m t >+>1222122105954559mt y y m t y y m -⎧+=⎪⎪+⎨-⎪=⎪+⎩()()221212A A 221212125333(3)3M N y y y y k k x x m y y m t y y t ⋅=⋅==---+-++-225455954813t t t -=--+32t =MN 3,02⎛⎫⎪⎝⎭()6,P Py ()1:39Py A P y x =+22(3)9195P y y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩()2222451694050pp p y xy x y +++-=Δ729000=>2222294053135303,,454545P P PM M MP P P y y y x x y y y y --+-===+++22231510,55P PN NP P y y x y y y --==++MN ()()2422015203675315p p p M N MNM N p p y y y y y k x x y y +-===--+--()22221020315:55315p pp p p p y y y MN y x y y y ⎛⎫-+=- ⎪ ⎪++--⎝⎭0y =()()()2222223153153153522525p p ppppy y y x y y y --+=-==+++MN 2222231353153,,15,4552P P M N P M NP P y y x x y x x y y -+-======++MN 3,02⎛⎫⎪⎝⎭18.(1),(注:导函数的定义域按写不扣分,下同)①时,恒成立,所以在上递减(注:写上递增不扣分,下同)②时,恒成立,所以在上递增③时,令得单调递减,单调递增综上:在上单调递减,时在上递增,时,在上单调递减,在上单调递增(2)因为不是单调函数,由(1)知,,且在上单调递减,在上单调递增,要使得有2个零点,则必有,所以,,又当时,先证:,令,令,令在上单调递增,在上单调递减,所以,所以成立,所以,,即:成立,取则有,且,所以时,有2个零点综上:()[)2e ,0,2xa f x x x ∞=-∈+()()2e 1,0,x f x a x ∞=-∈+'[)0,∞+0a ≤()0f x '<()f x [)0,∞+()0,∞+1a ≥()2e 10(0)x f x x '≥->>()f x [)0,∞+01a <<()0f x '=11ln2x a=()()110,ln ,0,2x f x f x a ⎛⎫∈< ⎝'⎪⎭()()11ln ,,0,2x f x f x a ∞⎛⎫'∈+> ⎪⎝⎭()0a fx ≤[)0,∞+1a ≥()f x [)0,∞+()0,1a ∈()f x 110,ln 2a ⎛⎫ ⎪⎝⎭()f x 11ln ,2a ∞⎛⎫+ ⎪⎝⎭()f x ()0,1a ∈()f x 110,ln 2a ⎛⎫⎪⎝⎭()f x 11ln ,2a ∞⎛⎫+ ⎪⎝⎭()f x 12x x 、1111ln 1ln 022f a a ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭10,e a ⎛⎫∈ ⎪⎝⎭10,e a ⎛⎫∈ ⎪⎝⎭()002af =>2e (0)xx x >>()()222,(0),,(0)e ex xx x x x x x x ϕϕ-='=>>()0,02x x ϕ><<'()()0,2,x x x ϕϕ<>'()0,2()2,∞+()()2421e x ϕϕ≤=<2e (0)xxx >>2ln (0)x x x >>ln (0)2xx x x <<>012x a =111ln (0)22x a a >>()1021e 02aa f x a ⎛⎫=-> ⎪⎝⎭10,e a ⎛⎫∈ ⎪⎝⎭()f x 10,e a ⎛⎫∈ ⎪⎝⎭(3)令则恒成立,且①时,,当时,,当时,时,恒成立,所以,在上递增,所以,,符合题意②时,,与题意不符,舍去③时,时,得,所以,存在,使,且可使,单调递减,时,,舍去综上:(注:本题方法不唯一,可以参照上述答案给分情况酌情给分)19解:(1)因为,所以或,所以或5,当时,符合题意,当时,且,不符合题意所以(2)因为,其余项均为正项,所以或()()()()[)2331e 1cos e 1e 1cos ,0,222x x x a a a F x f x a x x a x x ∞⎛⎫⎛⎫=----=-----∈+ ⎪ ⎪⎝⎭⎝⎭()0Fx ≥()00F =()()[)()23e 11e 1sin ,0,,0222x x a F x a a x x F a ∞⎛⎫=-+-+-∈+=- '⎪⎝⎭'1a ≥()23e 11sin 2xa F x a x '⎛⎫≥-+- ⎪⎝⎭[]0,πx ∈()0F x '≥()π,x ∞∈+()222333e 11e e 0222x x x a a F x a a a ⎛⎫⎛⎫≥--'-=-=-> ⎪ ⎪⎝⎭⎝⎭[)0,x ∞∈+()0F x '≥()F x [)0,∞+()()00Fx F ≥=0a ≤()ππ2ππe 1e 0222a F a ⎛⎫=-+-< ⎪⎝⎭01a <<()0220,0F a x =-<>'()()()()222333e 11e 1e 1e 11e 1e 2e 222x x x x x x x a a a F x a a a a a a ⎛⎫>-+--->+--'-->+--+ ⎪⎝⎭()3e e 12ee 3,e 30222x x xx xa a a a a a a ⎤⎡⎤⎛⎫⎡⎫>+--+=----=⎥ ⎪⎪⎢⎥⎢⎝⎭⎣⎭⎣⎦⎦由6ln 02a x a +=>6ln 02a F a '+⎛⎫> ⎪⎝⎭060,ln 2a x a +⎛⎫∈ ⎪⎝⎭()00F x '=()()00,,0x x F x ∈'<()F x ()00,x x ∈()()00F x F <=[)1,a ∞∈+126,4a a ==2132a a a =+3122a a a =+32a =32a =4232a a a =+35a =3242a a a ≠+4232a a a ≠+32a =2580a a a ===342a a =432a a =若时,对于,因为且,故舍去所以即,所以,,因为,所以,所以,,又,所以,所以成等比数列(3)由题意,其余项为正项,不妨设,则又或所以或,又,可得,所以,时,设这个因式中恰有个因式的值为,有个因式的值为1,所以,所以,,因为,且不可能,故,同理,类似的,,当设等式右侧有恰有个因式的值为,有个因式的值为1,则,当时等式也成立,所以,,其中,同理,当且仅当时取等.综上:的最大值为432a a =345,,a a a 55340,2a a a a =≠+4532a a a ≠+432a a =4312a a =646312,4a a a a ==80a =7631128a a a ==97311216a a a ==30a >693614a a a a ==369,,a a a 0m st a a a ===3m s t <<<p t =212n n n a a a ++=+122,n n n a a a ++=+21112n n n n a a a a +++-=--2111n n n n a a a a +++-=-0m a =121122m m m m a a a a --+-=⎧⎨=⎩()121111211,22m m m m m m m a a a a a a a ---+----=-==--4m ≥123243121221213223m m m m m m m m a a a a a a a a a a a a a a a a a a -------------==⋅---- 3m -i 12-3m i --()131211211111,,,32222i ii m i m m m m m a a i a a a i m +----+--⎛⎫⎛⎫⎛⎫-=-⋅=-∈=--=-≤- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭N ()1max 14m a +=0m s t a a a ===1s m =+2s m ≥+2t s ≥+()11212s s s a a a +--=--12211211232,s s m m s s m m m m s s a a a a a a s m a a a a a a --++--++----->+=--- j 12-2s j --()()221121*********j s j m m s s s s m m m m m m s s a a a a a a a a a a a a a a --++----+++----⎛⎫-=⋅-=-⋅⋅- ⎪--⎝⎭2s m =+()111211112222j j s s s a a a ++--⎛⎫⎛⎫=--=--=- ⎪ ⎪⎝⎭⎝⎭02,j s m j ≤≤--∈N 111111124416j s m a a +++⎛⎫=-⋅≤⨯= ⎪⎝⎭1111111,02,241664k t s a a k t s k +++⎛⎫=-⋅≤⨯=≤≤--∈ ⎪⎝⎭N 1i j k ===1p a +164。
云南省2024届高中毕业生第二次复习统一检测数学试题
云南省2024届高中毕业生第二次复习统一检测数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.函数π()sin 23f x x ⎛⎫=+ ⎪⎝⎭的最小正周期为( )A .πB .π2C .π3D .π62.若12132,6,2a b c π--===,则( ) A .b a c >>B .c a b >>C .a b c >>D .a c b >>3.使{0}{0,1}M ⋃=成立的集合M 一共有( ) A .1个B .2个C .3个D .4个4.如图,在正方体1111ABCD A B C D -中,E 、F 、M 、N 分别是1111DD D C BC BB 、、、的中点,则异面直线EF 与MN 所成角的大小为( )A .π6B .π4C .π3D .π25.某学校组织学生到敬老院慰问演出,原先准备的节目单上共有5个节目(3个歌唱节目和2个舞蹈节目).根据实际需要,决定将原先准备的节目单上的5个节目的相对顺序保持不变,再在节目单上插入2个朗诵节目,并且朗诵节目在节目单上既不排第一,也不排最后,则不同的插入方法一共有( ) A .18种B .20种C .30种D .34种6.已知i 为虚数单位,复数z 满足1i 0z z --+=,则|i |z -的最小值为( )A B .12C .13D .07.在(21)n x +的二项展开式中,若各项系数的和为2187,则3x 的系数为( ) A .160B .180C .228D .2808.已知函数()f x 的定义域为()3,3-,且()32lg ,303332lg ,0333xx x x f x x x x x -⎧+-<<⎪⎪+-=⎨+⎪-≤<⎪-+⎩若3[(2)]20f x x -+>,则x 的取值范围为( )A .(3,2)-B .(3,0)(0,1)(1,2)-⋃⋃C .(1,3)-D .(1,0)(0,2)(2,3)-⋃⋃二、多选题9.若数据12345678910,,,,,,,,,a a a a a a a a a a 的平均数为20,则数据123456,,,,,a a a a a a ,78910,,,a a a a 与数据12345678910,,,,,,,,,,20a a a a a a a a a a 有相同的( ) A .平均数B .中位数C .方差D .极差10.已知点P 为双曲线22:143x y E -=上任意一点,过点P 分别作E 的两条渐近线的垂线,垂足分别为M 、N ,记PMN V 的面积为S ,则( )A .2π3MPN ∠=B .12||||7PM PN ⋅= C .1249PM PN ⋅=u u u u r u u u rD.S =11.记数列{}n a 的前n 项和为,,n n S S An B A B =+、为常数.下列选项正确的是( )A .若1AB +=,则11a =B .若2A =,则22a =C .存在常数A 、B ,使数列{}n a 是等比数列D .对任意常数A 、B ,数列{}n a 都是等差数列三、填空题12.从1,2,3,4,5,6,7,8中随机选一个数,若每个数被选到的概率相等,则选到的数是偶数或是3的倍数的概率为 .13.记数列{}n a 的前n 项和为n S ,若112,232n n n a a a +=-=,则882a S =+ . 14.已知O 为坐标原点,F 是抛物线2:C y x =的焦点.A 、B 两点分别位于x 轴的两侧,且都在抛物线C 上.记ABO V 的面积为1,S AFO V 的面积为2S .若2OA OB ⋅=u u u r u u u r,则12S S +的最小值为 .四、解答题15.某公司为提升A 款产品的核心竞争力,准备加大A 款产品的研发投资,为确定投入A 款产品的年研发费用,需了解年研发费用x (单位:万元)对年利润y (单位:万元)的影响.该公司统计了最近8年每年投入A 款产品的年研发费用与年利润的数据,得到下图所示的散点图:经数据分析知,y 与x 正线性相关,且相关程度较高.经计算得,()()()11112888880,200,250,500i i i i i i i i i x y x x x x y y ====∑=∑=∑-=∑--=.(1)建立y 关于x 的经验回归方程ˆˆˆybx a =+; (2)若该公司对A 款产品欲投入的年研发费用为30万元,根据(1)得到的经验回归方程,预测年利润为多少万元?附:()()()112ˆˆˆ,i i i ni i nx x y y bay bx x x ==∑--==-∑-. 16.ABC V 中,内角A 、B 、C 的对边分别为a 、b 、c ,B 是A 与C 的等差中项. (1)若a a bb a c+=-,判断ABC V 的形状; (2)若ABC V 是锐角三角形,求tan tan tan BA C+的取值范围.17.如图1,在四边形ABCD 中,E 为DC 的中点,,,AC BD O AC BD CO DO ⋂=⊥=.将ABD △沿BD 折起,使点A 到点P ,形成如图2所示的三棱锥P BCD -.在三棱锥P BCD -中,PO CO ⊥,记平面PEO 、平面PDC 、平面PBC 分别为,,αβγ.(1)证明:αβ⊥;(2)若AB DC AO BO ===,求α与γ的夹角的大小. 18.已知常数0a >,函数221()2ln 2f x x ax a x =--. (1)若20,()4x f x a ∀>>-,求a 的取值范围;(2)若1x 、2x 是()f x 的零点,且12x x ≠,证明:124x x a +>.19.已知椭圆EO ,焦点在x 轴上,右焦点为F ,A 、B 分别是E 的上、下顶点.E 的短半轴长是圆O 的半径,点M 是圆O 上的动点,且点M 不在y 轴上,延长BM 与E 交于点,N AM AN ⋅u u u u r u u u r的取值范围为(0,4).(1)求椭圆E 、圆O 的方程;(2)当直线BM 经过点F 时,求AFN V 的面积; (3)记直线AM 、AN 的斜率分别为12 k k 、,证明:21k k 为定值.。
2024届重庆市普通高中高三第三次教学质量检测试题考试数学试题
2024届重庆市普通高中高三第三次教学质量检测试题考试数学试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.定义在R 上函数()f x 满足()()f x f x -=,且对任意的不相等的实数[)12,0,x x ∈+∞有()()12120f x f x x x -<-成立,若关于x 的不等式()()()2ln 3232ln 3f mx x f f mx x --≥--++在[]1,3x ∈上恒成立,则实数m 的取值范围是( ) A .1ln6,126e ⎡⎤+⎢⎥⎣⎦B .1ln3,126e ⎡⎤+⎢⎥⎣⎦C .1ln3,23e ⎡⎤+⎢⎥⎣⎦D .1ln6,23e ⎡⎤+⎢⎥⎣⎦2.执行如下的程序框图,则输出的S 是( )A .36B .45C .36-D .45- 3.用数学归纳法证明,则当时,左端应在的基础上加上( )A .B .C .D .4.在关于x 的不等式2210ax x ++>中,“1a >”是“2210ax x ++>恒成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.已知复数z 满足()11z i i +=-(i 为虚数单位),则z 的虚部为( )A .i -B .iC .1D .1-6.己知函数()()1,0,ln ,0,kx x f x x x ->⎧=⎨--<⎩若函数()f x 的图象上关于原点对称的点有2对,则实数k 的取值范围是( )A .(),0-∞B .()0,1C .()0,∞+D .10,2⎛⎫ ⎪⎝⎭7.用一个平面去截正方体,则截面不可能是( ) A .正三角形B .正方形C .正五边形D .正六边形8.已知集合2{|1}A x x =<,{|ln 1}B x x =<,则 A .{|0e}A B x x =<< B .{|e}A B x x =< C .{|0e}A B x x =<<D .{|1e}AB x x =-<<9.已知集合{}1,0,1,2A =-,{}|lg(1)B x y x ==-,则A B =( )A .{2}B .{1,0}-C .{}1-D .{1,0,1}-10.已知i 为虚数单位,实数,x y 满足(2)x i i y i +=-,则||x yi -= ( ) A .1B .2C .3D .511.如图,点E 是正方体ABCD -A 1B 1C 1D 1的棱DD 1的中点,点F ,M 分别在线段AC ,BD 1(不包含端点)上运动,则( )A .在点F 的运动过程中,存在EF //BC 1B .在点M 的运动过程中,不存在B 1M ⊥AEC .四面体EMAC 的体积为定值D .四面体FA 1C 1B 的体积不为定值 12.51(1)x x-+展开项中的常数项为 A .1B .11C .-19D .51二、填空题:本题共4小题,每小题5分,共20分。
高中数学数学归纳法检测试题(有答案)
高中数学数学归纳法检测试题(有答案)高中数学数学归纳法检测试题(有答案)数学归纳法及其应用举例一、选择题(共49题,题分合计245分)1.用数学归纳法证明:1+ + +…+ 1)时,由n=k(k1)不等式成立,推证n=k+1时,左边应增加的项数是A.2k-1B.2k-1C.2kD.2k+12.球面上有n个大圆,其中任何三个都不相交于同一点,设球面被这n个大圆所分成的部分为f(n),则下列猜想:①f(n)=n,②f(n)=f(n-1)+2n,③f(n)=n2-n+2中,正确的是A.①与②B.①与③C.②与③D.只有③3.某个命题与自然数m有关,若m=k(kN)时该命题成立,那么可以推得m=k+1时该命题成立,现已知当m=5时,该命题不成立,那么可推得A.当m=6时该命题不成立B.当m=6时该命题成立C.当m=4时该命题不成立D.当m=4时该命题成立4.设f(n)= (nN),那么f(n+1)-f(n)等于A. B. C. + D. -5.用数学归纳法证明1+a+a2+…+ = (nN,a1)中,在验证n=1时,左式应为A.1B.1+aC.1+a+a2D.1+a+a2+a312.用数字归纳法证明1+2+…+(2n+1)=(n+1)(2n+1)时,在验证n=1成立时,左边所得的代数式是A.1B.1+3C.1+2+3D.1+2+3+413.用数学归纳法证明当n是非负数时,34n+2+52n+1能被14整除的第二步中,为了使用归纳假设应将34k+6+52k+3变形为A.34k+281+52k+125B.34k+1243+52k125C.25(34k+2+52k+1)+5634k+2D.34k+49+52k+2514.用数学归纳法证明+ + +……+ = (nN)时,从n=k到n=k+1,等式左边需增添的项是A. B. C. D.15.利用数学归纳法证明不等式 ,(n2,nN)的过程中,由n=k 变到n=k+1时,左边增加了A.1项B.k项C.2k-1项D.2k项16.用数学归纳法证明5n-2n能被3整除的第二步中,n=k+1时,为了使用假设,应将5k+1-2k+1变形为A.(5k-2k)+45k-2kB.5(5k-2k)+32kC.(5-2)(5k-2k)D.2(5k-2k)-35k17.平面内原有k条直线,它们的交点个数记为f(k),则增加一条直线后,它们的交点个数最多为A.f(k)+1B.f(k)+kC.f(k)+k+1D.kf(k)18.已知一个命题P(k),k=2n(nN),若n=1,2,…,1000时,P(k)成立,且当n=1000+1时它也成立,下列判断中,正确的是A.P(k)对k=2019成立 B.P(k)对每一个自然数k成立C.P(k)对每一个正偶数k成立D.P(k)对某些偶数可能不成立19.用数学归纳法证明: ,从k到k+1需在不等式两边加上A. B. C. D.20.设 ,则f(2k)变形到f(2k+1)需增添项数为A.2k+1项B.2k项C.2项D.1项21.欲用数学归纳法证明:对于足够大的自然数n,总有2n >n3,n0为验证的第一个值,则A.n0=1B.n0为大于1小于10的某个整数C.n0D.n0=222.某同学回答用数字归纳法证明 n+1(nN)的过程如下:证明:(1)当n=1时,显然命题是正确的;(2)假设n=k时有 k+1那么当n=k+1时, =(k+1)+1,所以当n=k+1时命题是正确的,由(1)、(2)可知对于(nN),命题都是正确的.以上证法是错误的,错误在于A.当n=1时,验证过程不具体B.归纳假设的写法不正确C.从k到k+1的推理不严密D.从k到k+1的推理过程没有使用归纳假设23.平面上有k(k3)条直线,其中有k-1条直线互相平行,剩下一条与它们不平行,则这k条直线将平面分成区域的个数为A.k个B.k+2个C.2k个D.2k+2个24.已知凸k边形的对角线条数为f(k)(k3),则凸k+1边形的对角线条数为A.f(k)+kB.f(k)+k+1C.f(k)+k-1D.f(k)+k-225.平面内原有k条直线,它们将平面分成f(k)个区域,则增加第k+1条直线后,这k+1条直线将平面分成的区域最多会增加A.k个B.k+1个C.f(k)个D.f(k)+1个26.同一平面内有n个圆,其中每两个圆都有两个不同交点,并且三个圆不过同一点,则这n个圆把平面分成A.2n部分B.n2部分C.2n-2部分D.n2-n+2部分27.平面内有n个圆,其中每两个圆都相交于两点,并且每三个圆都不相交于同一点,这n个圆把平面分成f(n)个部分,则满足上述条件的n+1个圆把平面分成的部分f(n+1)与f(n)的关系是A.f(n+1)=f(n)+nB.f(n+1)=f(n)+2nC.f(n+1)=f(n)+n+1D.f(n+1)=f(n)+n+228.用数学归纳法证明不等式成立时,应取的第一个值为A.1B.3C.4D.529.若,则等于A. B.C. D.30.设凸n边形的内角和为f (n),则f (n+1) - f (n) 等于A. B. C. D.31.用数学归纳法证明不等式成立,则n的第一个值应取A.7B.8C.9D.1032. 等于A. B. C. D.33.已知ab是不相等的正数,若 ,则b的取值范围是A.02B.02C.bD.b234.利用数学归纳法证明对任意偶数n,an-bn能被a+b整除时,其第二步论证,应该是A.假设n=k时命题成立,再证n=k+1时命题也成立B.假设n=2k时命题成立,再证n=2k+1时命题也成立C.假设n=k时命题成立,再证n=k+2时命题也成立D.假设n=2k时命题成立,再证n=2(k+1)时命题也成立35.用数学归纳法证明42n-1+3n+1(nN)能被13整除的第二步中,当n=k+1时为了使用假设,对42k+1+3k+2变形正确的是A.16(42k-1+3k+1)-133k+1B.442k+93kC.(42k-1+3k+1)+1542k-1+23k+1D.3(42k-1+3k+1)-1342k-136.用数学归纳法证明(n+1)(n+2)…(n+n)=2n13…(2n-1)(nN)时,从两边同乘以一个代数式,它是A.2k+2B.(2k+1)(2k+2)C.D.37.用数学归纳法证明某命题时,左式为+cos+cos3+…+cos(2n-1)(kZ,nN),在验证n=1时,左边所得的代数式为A. B. +cos C. +cos+cos 3 D. +cos+cos 3+cos 538.用数学归纳法证明(n+1)(n+2)…(n+n)=2n13…(2n-1)时,第二步n=k+1时的左边应是n=k时的左边乘以A.(k+1+k+1)B.(k+1+k)(k+1+k+1)C.D.39.设Sk= + + +……+ ,则Sk+1为A. B.C. D.40.用数字归纳法证明某命题时,左式为1- +…+ ,从n=k到n=k+1,应将左边加上A. B. C. D.41.用数学归纳法证明当n为正奇数时,xn+yn能被x+y整除时,第二步应是A.假设n=k(kN)时命题成立,推得n=k+1时命题成立B.假设n=2k+1(kN)时命题成立,推得n=2k+3时命题成立C.假设k=2k-1(kN)时命题成立,推得n=2k+1时命题成立D.假设nk(k1,kN)时命题成立,推得n=k+2时命题成立42.设p(k):1+ (k N),则p(k+1)为A.B.C.D.上述均不正确43.k棱柱有f(k)个对角面,则k+1棱柱有对角面的个数为A.2f(k)B.k-1+f(k)C.f(k)+kD.f(k)+244.已知,则等于A. B.C. D.45.用数学归纳法证明,在验证n=1等式成立时,左边计算所得的项是A. B. C. D.46.用数学归纳法证明某不等式,其中证时不等式成立的关键一步是:,括号中应填的式子是A. B. C. D.47.对于不等式,某人的证明过程如下:当时,不等式成立。
人教版高中数学选择性必修第一册全册基础复习必刷检测卷(全解全析)
高二数学人教版选择性必修第一册全册考试复习必刷检测卷(基础版)全解全析1.D解:对于选项A :若{a ,b ,}c 可以作为空间的一个基底,d 与c 共线,0d ≠,则{a ,b ,}d 也可以作为空间的一个基底,故A 是真命题.对于选项B :已知向量//a b ,则a ,b 与任何向量都不能构成空间的一个基底,故B 是真命题.对于选项C :已知A ,B ,M ,N 是空间中的四点,若BA ,BM ,BN 不能构成空间的一个基底,则A ,B ,M ,N 四点共面,故C 是真命题.对于选项D :已知{a ,b ,}c 是空间的一个基底,若m a c =+,则{a ,b ,}m 也是空间的一个基底,故D 是真命题.故选:D .2.A 【详解】由题设,(1,1,0)(1,0,2)(1,,2)ka b k k k +=+-=-,22(1,1,0)(1,0,2)(3,2,2)a b -=--=-,∵ka b +与2a b -互相平行,∴ka b +(2)a b λ=-且R λ∈,则13222k k λλλ-=⎧⎪=⎨⎪=-⎩,可得21k λ=-⎧⎨=-⎩.故选:A 3.B 【详解】因为两直线3x +4y -10=0与ax +8y +11=0平行,所以8113410a =≠-,解得:a =6,所以ax +8y +11=0为6x +8y +11=0,即113402x y ++=,由两平行线间的距离公式可得:两条平行直线3x +4y -10=0与6x +8y +11=0之间的距离为:3110d =.故选:B.4.B 【详解】圆的方程为222440x y x y +---=,化为标准方程:()()22129x y -+-=,圆心为()1,2N ,半径为3r =,当过点()1,3M 的直线与NM垂直时,弦长最短,且AC ==当过点()1,3M 的直线且过圆心时,弦长最长,且26BD r ==,此时,AC BD ⊥,所以四边形ABCD 面积为11622S AC BD =⋅=⨯=故选:B 5.D 【详解】由题意知11||18AB AF BF ++=.又||4AB =,所以1114AF BF +=.根据双曲线的定义可知1212|2a AF AF BF BF =-=-∣,所以()1122414410a AF BF AF BF =+-+=-=,解得52a =,所以2254m a ==.故选:D 6.B 【详解】设1122,MF r MF r ==,则1222,r r a +==由余弦定理得2221212122||||||2||||cos3F F MF MF MF MF π=+-所以21244,r r c =-22221212124()c r r r r r r =++=+因为1212F MF F MAF MASSS=+,所以12121211sin ||sin ||sin232323r r r MA r MA πππ=⋅⋅+⋅⋅整理得()1212·,r r r r MA =+即23442,2c -=⨯整理得21,4c =所以11,1,,22c c a e a ====故选:B.7.C 【详解】因为,AC AB BD AB ⊥⊥,所以0,0CA AB BD AB ⋅=⋅=,因为二面角为60︒,所以1cos 6068242AC BD AC BD ⋅=⋅⋅︒=⨯⨯=,即24CA BD ⋅=-,所以()222CD CD CA AB BD==++222222CA AB BD CA AB CA BD AB BD=+++⋅+⋅+⋅222361664048068CA AB BD CA AB CA BD AB BD =+++⋅+⋅+⋅=+++-+=,所以CD =CD 的长为故选:C.8.B 【详解】由题可知:22:(1)(2)2C x y -+-=,圆心()1,2C ,半径r =又CE CF ⊥,P 是EF 的中点,所以112CP EF ==,所以点P 的轨迹方程22(1)(2)1x y -+-=,圆心为点()1,2C ,半径为1R =,若直线:30l x y --=上存在两点,A B ,使得2APB π∠≥恒成立,则以AB 为直径的圆要包括圆22(1)(2)1x y -+-=,点()1,2C 到直线l 的距离为d =所以AB 长度的最小值为()212d +=,故选:B .9.BD 【详解】解:因为AB AC =,由题意可得三角形ABD 的欧拉线为BC 的中垂线,由(2,4)B -,点(5,3)C -可得BC 的中点为31,22⎛⎫⎪⎝⎭,且43125BC k +==---,所以线段BC 的中垂线方程为:1322y x -=-,即10x y --=,因为三角形ABC 的“欧拉线”与圆222:(5)M x y r -+=相切,所以圆心(5,0)到直线10x y --=的距离d r ===所以圆M 的方程为:22(5)8x y -+=,因为圆心(5,0)到直线30x y -+=的距离d =,A 中,圆M 上点到直线30x y -+=的距离的最大值为d r +==故A 不正确:B 中,圆M 上点到直线30x y -+=的距离的最小值为d r -==B 正确;C 中:令t x y =+,所以y t x =-,代入圆M 的方程22(5)8x y -+=,可得22(5)()8x t x -+-=,整理可得222(102)170x t x t -+++=,由于(,)x y 在圆上,所以222(102)170x t x t -+++=有根,则()()2210242170t t ∆=+-⨯⨯+≥,整理可得:29100t t -+≤,解得:19t ≤≤,所以t 的最小值为1,即x y +的最小值为1,所以C 错误;D 中:22(1)()2x a y a --+-=圆心坐标(1,)a a +;圆M 的22(5)8x y -+=的圆心坐标为(5,0),半径为要使圆22(1)()2x a y a --+-=与圆M 有公共点,则圆心距∈,≤22470410a a a a ⎧-+≥⎨--≤⎩,解得22a ≤≤D 正确;故选:BD .10.BD解:对于111:A AC AB BC CC AB AD AA =++=++,∴22221111222AC AB AD AA AB AD AD AA AD AA =+++⋅+⋅+⋅363636266cos 60266cos 60266cos 60216=+++⨯⨯⨯︒+⨯⨯⨯︒+⨯⨯⨯︒=,所以1||AC =A 错误;对于:B 11()()AC BD AB AD AA AD AB ⋅=++⋅-22110AB AD AB AD AB AD AA AD AA AB =⋅-+⋅+⋅--⋅=,所以10AC DB ⋅=,即1AC DB ⊥,2222()()0AC BD AB AD AD AB AD AB AD AB ⋅=+⋅-==--=,所以0AC BD ⋅=,即AC BD ⊥,因为1AC AC A ⋂=,1,AC AC ⊂平面1ACC ,所以BD ⊥平面1ACC ,选项B 正确;对于C :向量1B C 与1BB 的夹角是18060120︒-︒=︒,所以向量1B C 与1AA 的夹角也是120︒,选项C 错误;对于11:D BD AD AA AB =+-,AC AB AD=+所以()2222211111222BD AD AA AB AD AA AB AD AA AD AB AA AB =+-=+++⋅-⋅-⋅,1||BD ∴=同理,可得||AC =11()()18183636181836AC BD AD AA AB AB AD ⋅=+-⋅+=+-++-=,所以111cos||||AC BDBD ACAC BD⋅<⋅>==⋅D正确.故选:BD.11.AD【详解】如图所示,设椭圆的左焦点为F',连接AF',根据椭圆的对称性知||AF BF'=,所以||||||26AF BF AF AF a'+=+==,故A正确;由椭圆22193x y+=,可得3a=,则26a=,因为0m<<||AB的取值范围是(0,6),所以ABF的周长为||||||||6AB AF BF AB++=+,其取值范围是(6,12),故B错误;联立方程组22193yx y⎧=⎪⎨+=⎪⎩,解得(A,B,又由F,所以(60BA BF⋅=-⋅=-<,所以ABF∠为钝角,则ABF为钝角三角形,故C错误;联立方程组221193yx y=⎧⎪⎨+=⎪⎩,解得(A,B,可得((0,1)0BA BF⋅=-⋅-=,所以90ABF∠=︒,又由||1BF=,||AB=112ABFS=⨯=D正确.故选:AD.12.BCD【详解】∵圆()22:116C x y+-=的圆心为()0,1C,半径4r=,∴与y轴正半轴的交点为()0,5,∵抛物线2:4E x y =的焦点为()0,1F ,准线方程为1y =-,由()2224116x y x y ⎧=⎪⎨+-=⎪⎩,得3x y ⎧=±⎪⎨=⎪⎩P 的纵坐标()3,5P y ∈,故A 错误;由抛物线的定义可得PN NF +等于点P 到抛物线E 的准线的距离,故B 正确;易知圆C 的圆心到抛物线E 的准线的距离为2,故C 正确;PFN 的周长为()158,10P P PF PN NF r y y ++=++=+∈,故D 正确.故选:BCD.13.4-解:因为向量()2,1,3a =-,()4,2,b x =-,()1,,2c x =-,所以向量()2,1,3a b x +=-+,因为()a b c +⊥,所以()0a b c +⋅=,即()()211230x x -⨯+⨯-++=,解得4x =-故答案为:4-14【分析】建立空间直角坐标系,利用空间向量法求出异面直线所成角的余弦值;【详解】解:如图建立空间直角坐标系,则()10,0,0A ,()4,0,4B ,()0,0,4A ,()0,4,1E ,所以()14,0,4A B =,()0,4,3AE =-,设异面直线1A B 与AE 所成角为θ,则11cos 10A B AE A B AEθ⋅==⋅故答案为:321015255【详解】由于1Rt PMC 与2Rt PNC 中,PM PN =,121MC NC ==,∴1Rt PMC 与2Rt PNC 全等,∴有12PC PC =,则P 在线段12C C 的垂直平分线上,根据10(0)C ,、2(24)C ,,直线12C C 的斜率为422k ==,∴线段12C C 的垂直平分线的斜率为12-,12C C 的的中点坐标为()1,2,∴其垂直平分线为()1212y x -=--,即250x y +-=,22(5)(1)a b -++()P a b ,、(51)Q -,两点间的距离,∴最小值就是Q 到250x y +-=的距离,2252525512--+.255.165【详解】解:依题意可得12PF PF ⊥,1QF OQ ⊥,所以2//PF OQ ,因为O 为12F F 的中点,所以Q 为1PF 的中点,()1,0F c -到直线:b l y x a =-的距离122bc d QF b a b===+,所以1122PF QF b ==,222211OQ OF QF c b a =-=-=,所以222PF OQ a==又122PF PF a -=,即222b a a -=,所以2b a =,所以2215c be a a==+=故答案为:517.(1)由直线:10l mx y m -+-=,可得()11y m x -=-,故直线l 过定点()1,1M ,因为()221115+-<,故M 在圆C 内,所以直线l 与圆C 总有两个不同的交点.(2)由(1)可得P 在圆内,因为2AP PB =,可得2AP PB =,如图所示,设PA a =,则2PB a =,故3AB a =,设AB 的中点为D ,则2aPD =且CD AB ⊥,设CD d =,因为()()2201111CP =-+-=,可得222222CA DA CD CP DP CD ⎧-=⎪⎨-=⎪⎩,即2222954114a d a d ⎧-=⎪⎪⎨⎪-=⎪⎩,解得22d =,221m m =+1m =±,故直线方程为0x y -=或20x y +-=.18.解(1)证明:因为ABCD 为菱形,所以O 为AC 的中点,因为PA PC =,所以PO AC ⊥,又因为PO CD ⊥,AC CD C =,,AC CD ⊂面ABCD 所以PO ⊥平面ABCD (2)PO ⊥平面ABCD ,以O 为原点,OB ,OC ,OP 的方向分别为x 轴,y 轴,z 轴,建立空间直角坐标系,//AB CD ,PBA ∴∠为异面直线PB 与CD 所成角,60PBA ∴∠=︒,在菱形ABCD 中,设2AB =,60ABC ∠=︒,1OA ∴=,3OB =设PO a =,则21PA a =+,23PB a +,在PBA △中,由余弦定理得:2222cos PA BA BP BA BP PBA =+-⋅⋅∠,∴22211432232a a a +=++-⨯+,解得6a =()0,1,0A ∴-,)3,0,0B,()0,1,0C ,(6P ,()3,0,0D -设平面PCD 的法向量(),,n x y z =r,()3,1,0CD =--,(0,6CP =-,则3060n CD x y n CP y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,取1z =,得()2,6,1n =-,设CM CP λ=,[]0,1λ∈则()(()0,1,00,1,60,1,6OM OC CM OC CP λλλλ=+=+=+-=-设直线OM 与平面PCD 所成角为θ,()()22sin 331667n OM n OMθλλ⋅∴==⋅⨯-+,解得17λ=,所以()2211716777CM CP ==⨯+=,即77CM =19.解:(1)因为直线l 过点()0,M b -和(,0)N a ,所以直线l 的方程为0bx ay ab --=,所以坐标原点O 到直线l 的距离2245ab d a b =+,又离心率3c e a ==222c a b =-,解得22164a b ⎧=⎨=⎩,即42a b =⎧⎨=⎩,所以椭圆方程为221164x y +=,22224225MN a b =+=+=(2)设直线:3m x ty =+,()11,A x y ,()22,B x y ,联立2231164x ty x y =+⎧⎪⎨+=⎪⎩消去x 得()224670t y ty ++-=,所以12264ty y t +=-+,12274y y t =-+,所以()1222211222133442674242AOBSt OE y y y y y y t t ⎛⎫⎛⎫=-=+-=-⨯ ⎪ ⎪⎝⎭⎝--++⎭()()2222222222776411246312122479781444241t t t t t t t ++=+⎛⎫⎛⎫++++++⎪ ⎪⎝⎭=⎝=⎭22221212411818179971616274272444t t t t ⎛=⎫⎛⎫+++++⋅ ⎪ ⎪⎝⎭≤⎝⎭+=+当且仅当2281716744t t ⎛⎫+= ⎪⎝⎭+即212t =时取等号,即()max4AOB S=,所以()()222222221122112222|||3|3OA O y B x y x y ty y t y =++++++=+++()()()22212121618t y y t y y =+++++()2222267612618444t t t t t t t ⎡⎤⎛⎫⎛⎫⎛⎫=+--⨯-+-+⎢⎥ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()()2222222211363636143611422118118201144214444222t t t t t t ⎡⎤⎢⎥⎡⎤⨯⨯⎛⎫⎢⎥⎢⎥=++-+=++-+= ⎪⎢⎥⎢⎥++⎝⎭⎛⎫+++⎣⎦+⎢⎥ ⎪⎝⎭⎣⎦20.(1)由已知设圆心(),3t t ,则由圆与x 轴正半轴相切,可得半径3r t =,∵圆心到直线:0l x y -=的距离d ==,由垂径定理得2272r t +=,解得1t =±,故圆心为()1,3或()1,3--,半径等于3,∵圆与x 轴正半轴相切,∴圆心只能为()1,3,故圆C 的方程为()()22139x y -+-=.(2)设(),M x y ,则(),A A AM x x y y =--,()7,6MB x y =--,∴142122A A x x xy y y -=-⎧⎨-=-⎩,∴143123A Ax x y y =-+⎧⎨=-+⎩,∵点A 在圆C 上运动,∴()()22314131239x y --+--=,即()()223153159x y -+-=,即()()22551x y -+-=,所以点M 的轨迹方程为()()22551x y -+-=,它是一个以()5,5为圆心,以1为半径的圆.21.(1)选①.如图,延长DA 到O ,使得AO =2AD ,沿EF 将四边形AEFD 翻折至四边形A EFD '',则ODF 也一同折起,折起后O 、A '、D '共线,连接OE ,连接OC ,OC 与BE 的交点即为平面A 'D 'C 与线段EB 的交点,即为点H ,又因为23OE OA OF OD ==,所以23EH CF =,因为CF =1,所以EH =23.选②.三棱锥C A EF '-看成以A '为顶点,即为A CEF '-,棱锥A EFH '-的体积是三棱锥C A EF '-体积的23,即△HEF 的面积是△CEF 的面积的23,即△FEH 的面积是△ECF 的面积的23,所以EH 是CF 的23,∵CF =1,∴EH =23.(2)(2)如图所示,以E 为原点,FE 方向为x 轴,与FE 垂直的方向为y 轴,由于平面A EFD ''与平面BCFE 垂直,故z 轴在平面A EFD ''.取BE 的中点M ,连接MF ,则,2,1,MF BE MF EM EF ⊥===设MEF α∠=,则cosαα==.∵EH =23,∴22cos sin ,033H αα⎛⎫- ⎪⎝⎭,,即H ⎛⎫ ⎪⎝⎭由EF =()F ,∴,1515FH ⎛⎫= ⎪ ⎪⎝⎭.xEA A EF AEF MEF ππθ∠=-∠=-∠=∠'=',又∵2,3,EA FD ''==∴()()2cos ,0,2sin ,3cos ,0,3sin A D αααα'',∴)cos 0sin ,0,55D A αα⎛''=-=- ⎝⎭,,,,0,55D ⎛'- ⎝⎭∵P 在线段A 'D '上,故可设0D P t D A ⎫'''==-⎪⎪⎝⎭,,,[]0,1t ∈.设P (x ,y ,z ),则,D P x y z ⎛'=- ⎝⎭,∴,0,5555P t ⎛⎫-+- ⎪ ⎪⎝⎭,∴FP ⎫=⎪⎪⎝⎭,设平面PHF 的法向量为(),,a m n p =,则0,0,a FH a FP ⋅=⋅=即134000m n m p +=⎧⎪⎫⎛⎫⎨++=⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎩,令m =4,则n =-13,p =()2343t t+--,()2344,13,3t a t ⎛⎫+=-- -⎝⎭,平面EFH 的法向量之一为()0,0,1b =,记()2343t s t+=-(0s >).所以二面角P HF E --的平面角为θ,cos a b a bθ⋅==为使cos θ最大,于是s 要最大.()23430833t s tt+==-+--,当t =1时s 最大为7,此时P 与A'重合,cos θ的最大值为=22.(1)∵A 、B 是椭圆22221(0)x y a b a b+=>>的两个顶点,且AB =,直线AB 的斜率为12-,由(),0A a ,()0,B b,得AB ==又0102b b k a a -==-=--,解得2a =,1b =,∴椭圆的方程为2214x y +=;(2)证明:直线l 的方程为2x y m =-+,即122m y x =-+,将其代入2214x y +=,消去y ,整理得222240x mx m -+-=.设()11,C x y ,()22,D x y .∴12x x m +=,212122x x m =-.记OCM 的面积是1S ,ODN △的面积是2S .由题意(),0M m ,0,2m N ⎛⎫⎪⎝⎭,∵12x x m +=,∴111212222m y x x m x ⎛⎫=-+=-+= ⎪⎝⎭,∵112OCM S m y =△,2122ODN m S x =△.∴OCM 的面积等于ODN △的面积;(3)证明:由(2)知,(),0M m ,12x x m +=,212122x x m =-,∴()()2222222112x m CM M y D y x m =-++-++,22222211122211222222m m x mx m x x mx m x ⎛⎫⎛⎫=-++-++-++-+ ⎪ ⎪⎝⎭⎝⎭,()()2212121255554222x x x x m x x m =+--++,2222551552542222m m m m ⎛⎫=---+= ⎪⎝⎭.。
高中数学必修一1.2 集合间的基本关系复习检测(人教A版,含解析)(8)
1.2 集合间的基本关系一、单选题1.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( )A .11,03⎧⎫-⎨⎬⎩⎭, B .{}1,0- C .11,3⎧⎫-⎨⎬⎩⎭ D .103⎧⎫⎨⎬⎩⎭, 2.已知集合A =x|-2≤x≤7},B =x|m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是( )A .(-∞,2]B .(2,4]C .[2,4]D .(-∞,4]3.若集合{}1,3,A x =,{}2,1B x =,且B A ,则满足条件的实数x 的个数为( )A .1B .2C .3D .4 4.已知集合{}1,16,4A x =,{}21,B x =,若B A ⊆,则x =A .0B .4-C .0或4-D .0或4± 5.设P =y | y =-x 2+1,x ∈R},Q =y | y =2x ,x ∈R},则 A .P ⊆QB .Q ⊆PC .R C P ⊆QD .Q ⊆R C P 6.已知集合{|32,}M x x k k Z ==-∈,集合{|31,}P y y n n Z ==+∈,集合{|61,}S z z m m Z ==+∈,则它们之间的关系是( )A .S P M ⊂⊂B .S P M =⊂C .S P M ⊂=D .无法确定 7.已知集合M ={1,2},则集合M 的子集个数为A .1B .2C .3D .4 8.已知集合{}2*2240,M x x x x N =+-=∈,{}6,0,4N =-,则集合M 与N 的关系是( )A .M NB .N M ⊂≠C .N M ⊂≠D .N M ⊆9.|,42k M k Z ππαα⎧⎫==+∈⎨⎬⎩⎭,|,24k N k Z ππββ⎧⎫==+∈⎨⎬⎩⎭,则有 A .M N B .M N ⊆ C .N M ⊆ D .M N ∈10.已知集合{}2430,A x x x x R =-+<∈,(){}12202750,x B x a x a x x R -=+≤-++≤∈且,若A B ⊆,则实数a 的取值范围_______.A .[]4,0-B .[]4,1--C .[]1,0-D .14,13⎡⎤--⎢⎥⎣⎦二、填空题1.已知集合A 中有n 个元素,则集合A 的子集个数有_____个,真子集有_____个,非空真子集_______个.2.已知集合(){}21,1A m m =+-,若1A ∈,则集合A 的子集有______个.3.已知点H 是正三角形ABC 内部一点,HAB ∆,HBC ∆,HCA ∆的面积值构成一个集合M ,若M 的子集有且只有4个,则点H 需满足的条件为________.4.已知集合{}{}2|560,|12M x x x N x ax =-+===,若N M ⊆,则实数a 构成的集合A =__________.5.满足{}{},M a a b ⊆的集合M 的个数是______个.三、解答题1.设集合A =x|2x 2+3px +2=0},B =x|2x 2+x +q =0},其中p 、q 为常数,x ∈R ,当A∩B =}时,求p 、q 的值和A ∪B.2.已知{},,A a b c =,则求:(1)集合A 的子集的个数,并判断∅与集合A 的关系(2)请写出集合A 的所有非空真子集3.已知集合{}2120A x x x =--<,{}|211B x m x m =-≤≤+. (1)当3m =-时,求集合A B ;(2)当B A ⊆时,求实数m 的取值范围.4.写出集合{,,}a b c 的所有子集.5.已知函数()2214f x x x =+-A ,函数()()ln f x x a =+的定义域为B .(1)若A B φ⋂=,求实数a 的取值范围;(2)A B A,求实数a的取值范围.参考答案一、单选题1.A解析:解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果.详解:由2230x x --=得:1x =-或3x =,即{}1,3A =-;①当0a =时,B =∅,满足B A ⊆,符合题意;②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a=,解得:1a =-或13a =; 综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭. 故选:A .点睛:本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误.2.D解析:根据B ⊆A 可分为B=∅和B ≠∅两种情况,进而求解即可.详解:解:当B=∅时,由m +1≥2m-1,∴m≤2当B ≠∅时,若B ⊆A则12217121m m m m +≥-⎧⎪-≤⎨⎪+<-⎩∴2<m≤4 综上,m 的取值范围为m|m≤4}.故选D.点睛:本题考查了集合之间的基本关系.3.C解析:利用集合间的关系及元素与集合间的关系由B A ,可得2x A ∈,又21x ≠,得到23x =或2x x =,解出即可.详解:因为B A ,所以23x =或2x x =.当23x =时,x ={A =或{1,3,,{}3,1B =,符合题意.当2x x =时,0x =或1x =(舍去),此时,{}0,1,3A =,{}0,1B =,符合题意.故0x =或x =点睛:熟练掌握集合间的关系及元素与集合间的关系是解题的关键.4.C详解:试题分析:∵{}1,16,4A x =,{}21,B x =,若B A ⊆,则216x =或24x x =,则4,0,4x =-,又当4x =时,A 集合出现重复元素,因此0x =或4-.故选C.考点:集合中子集的概念与集合中元素的互异性.5.C详解:解:因为P =y|y=-x 2+1,x∈R}=y|y ≤1},Q =y| y=2x ,x∈R }=y|y>0},因此选C6.C解析:整数分成奇数和偶数,分2n k =和21n k =-讨论便可得到结论.详解:解:集合{|32,}M x x k k Z ==-∈与集合{|31,}P y y n n Z ==+∈都表示被3整除余1的数构成的集合,故P M ;当2n k =,k Z ∈时,3161,y n k k Z =+=+∈,当21n k =-,k Z ∈时,3162,y n k k Z =+=-∈,∴{|61,P y y k ==+或62,}y k k Z =-∈,∴S P M ⊂=,故选:C .点睛:本题主要考查集合间的包含关系,属于基础题.7.D解析:写出集合M 的子集即可得解.详解:集合M ={1,2},子集有:ϕ,{1},{2},{1,2},共4个.故选D.点睛:本题主要考查了子集个数的问题,一般的集合M 有n 个元素时,共有2n 个子集.8.C解析:首先解方程22240x x +-=,求出M ,根据元素即可判断M 与N 的关系.详解:首先解方程22240x x +-=,由*x ∈N 可得4x =或6x =-(舍)所以{}4M =,可得N M ⊂≠.故选:C.点睛:本题考查了集合间关系,考查了真子集的概念,属于基础题.9.C解析:对两个集合进行整理化简,统一形式,即可得到两集合之间的关系.详解:对集合M :()24k πα=+⨯, 对集合N :()214k πβ=+⨯ 因为2k Z +∈,21k +是奇数,故可得N M ⊆.故选:C.点睛:本题考查角度集合之间的关系,属基础题;本题也可以用列举法进行判断.10.B解析:首先解出集合A ,若满足A B ⊆,则当()1,3x ∈时,120x a -+≤和()22750x a x -++≤恒成立,求a 的取值范围.详解:{}13A x x =<<,A B ⊆,即当()1,3x ∈时,120x a -+≤恒成立,即12x a -≤- ,当()1,3x ∈时恒成立,即()1min 2x a -≤- ,()1,3x ∈而12x y -=-是增函数,当1x =时,函数取得最小值1-,1a ∴≤-且当()1,3x ∈时,()22750x a x -++≤恒成立,()()1030f f ⎧≤⎪⎨≤⎪⎩,解得:4a ≥- 综上:41a -≤≤-.故选B点睛:本题考查根据给定区间不等式恒成立求参数取值范围的问题,意在考查转化与化归和计算求解能力,恒成立问题可以参变分离转化为求函数的最值问题,如果函数是二次函数可以转化为根的分布问题,列不等式组求解.二、填空题1.2n 21n -22n -解析:根据子集,真子集以及非空真子集的定义即可求解.详解:集合A 中有n 个元素,则集合A 的子集个数有2n 个,真子集有21n -个,非空真子集有22n -个 故答案为:2n ;21n -;22n -2.4解析:由1A ∈,解得0m =或2m =,检验元素的互异性得2m =,{}3,1A =,从而可得子集的个数.详解:由1A ∈,可得11m +=或()211m -=,解得0m =或2m =.当0m =时,()2111m m +=-=,不满足集合元素的互异性,舍去;当2m =时,{}3,1A =,此时集合A 的子集有224=个.故答案为:4.点睛:本题主要考查了元素和集合的关系及集合元素的互异性,考查了集合的子集个数,属于基础题.3.H 在ABC ∆的三条高上且H 不为ABC ∆重心解析:由题意知,若集合M 的子集只有4个,则集合M 有2个元素,可得出HAB ∆,HBC ∆,HCA ∆三个三角形的面积有两个相等,分析点H 的位置,即可得出结论.详解:若集合M 的子集只有4个,则集合M 有2个元素,M 是等边ABC ∆内部一点,HAB ∆,HBC ∆,HCA ∆三个三角形的面积值构成集合M ,故HAB ∆,HBC ∆,HCA ∆三个三角形的面积有且只有两个相等.若HAB ∆,HBC ∆的面积相等,则点H 在边AC 的高上且不为ABC ∆的重心;若HBC ∆,HCA ∆的面积相等,则点H 在边AB 的高上且不为ABC ∆的重心;若HAB ∆,HCA ∆的面积相等,则点H 在边BC 的高上且不为ABC ∆的重心.综上所述,点H 在等边ABC ∆的三条高上且不为ABC ∆的重心.故答案为:H 在ABC ∆的三条高上且H 不为ABC ∆重心点睛:本题考查子集的个数与元素个数之间的关系,根据已知条件得出集合元素的个数是解题的关键,考查推理能力,属于中等题.4.{}0,4,6解析:解方程化简可得2,3M,根据方程特征从而可分为求N =∅,{}2N =,{}3N =三种情形分别求出a 的值,即可得集合A .详解:{}25602{3|}M x x x =-+==,, 由于含有参数的一元一次方程最多有一个解,故可分为以下三种情形:若{}12|N x ax ===∅,则N M ⊆,此时0a =;若{}{}122|N x ax ===,则N M ⊆,此时6a =;若{}{}123|N x ax ===,则N M ⊆,此时4a =;即{}0,4,6A =;故答案为:{}0,4,6.点睛:本题主要考查了集合的化简与应用,同时考查了分类讨论的思想应用,属于中档题.5.4解析:把符合条件的集合M 列举出来,即可得出符合条件的集合M 的个数.详解:由题意可知,满足{}{},M a a b ⊆的集合M 有:∅、{}a 、{}b 、{},a b ,共4个.故答案为4.点睛:本题考查符合条件的集合个数的求解,一般将符合条件集合列举出来即可,考查分析问题和解决问题的能力,属于基础题.三、解答题1.p =-,q =-1,A ∪B =-1,,2} 解析:由A∩B=}可得到∈A ,∈B ,代入方程即可求出p ,q 的值,从而得集合A ,B ,进而求出A ∪B.详解: ∵A∩B=}, ∴∈A ,∈B ∴2×()2+3p×()+2=0, 2×()2++q =0.∴p =-,q =-1,∴A =,2} B =,-1},∴A ∪B =-1,,2}.点睛: 本题主要考查了集合的交集的定义和一元二次方程的解法,体现了方程的思想和转化的思想,同时考查了运算能力,属于中档题.2.(1)8,∅ A (2){}a ,{}b ,{}c ,{,}a b ,{,}a c ,{,}b c解析:(1)根据子集的概念,利用列举法可得集合A 的所有子集,从而可得子集个数以及 ∅与集合A 的关系;(2)根据非空真子集的概念,利用列举法可得答案.详解:(1){},,A a b c =的子集有∅,{}a ,{}b ,{}c ,{,}a b ,{,}a c ,{,}b c ,{,,}a b c 共8个, 其中∅ A .(2)集合A 的所有非空真子集有{}a ,{}b ,{}c ,{,}a b ,{,}a c ,{,}b c .点睛:本题考查了子集和真子集的概念,属于基础题.3.(1){}|32A B x x =-<≤-;(2)()1,-+∞解析:(1)根据集合的基本运算求解即可.(2)分B =∅和B ≠∅两种情况讨论求解即可.详解:{}|34A x x =-<<(1)当3m =-时{}|72B x x =-≤≤-,{}|32A B x x =-<≤-(2)∵B A ⊆∴应分B =∅和B ≠∅两种情况讨论当B =∅时,有211m m ->+,即2m >;当B ≠∅时,有211,213,14,m m m m -≤+⎧⎪->-⎨⎪+<⎩,即12m -<≤. 综上所述,所求实数m 的取值范围是()1,-+∞.点睛:本题主要考查了集合间的基本运算,同时也考查了根据集合的关系求参数的问题,属于中等题型.4.∅,{}a ,{}b ,{}c ,{,}a b ,{,}a c ,{,}b c ,{,,}a b c .解析:根据子集的定义枚举列出即可.详解:集合{,,}a b c 的所有子集有:∅,{}a ,{}b ,{}c ,{,}a b ,{,}a c ,{,}b c ,{,,}a b c .点睛:本题主要考查了子集的定义与辨析,属于基础题型.5.(1)5a ≤- (2)0a >解析:试题分析:根据条件求得[0,5]A =,(,)B a =-+∞。
“考题”如此多娇“立几”这边独好——高考中立体几何的考查综述
实践 能 力和创 新 意识 . 与课 改要 求“ 大能 力” 有 这 五 是
差 异的 ,怎样看 待? 我们 知道 ,思 维能 力是 数学 能力 的核心 ,高 中 数 学课标 课 程就 明确 提 出“ 注重 提 高学 生 的数学 思 维 能 力” .有人 说 ,培养 和发 展 学 生的数 学思 维能 力 是
()以三视图为载体考查空间想象能力 2
21 年第 l 01 0期
福 建 中学数 学
5
三视 图是 描 述 空 间几何 体 的工 具 ,是 连 接 平面 几何 和 立 体几 何 的桥 梁 .通 过三 视 图 ,可 以丰 富学 生 的空 间想象 能力 。因此 ,以三视 图为载体 的试 题 , 在 平 面 图形与 空 间图形 的相 互转 化 过程 中 ,能 有效
自主探 究 的能 力 . 2 .分 类评 析
演绎推理 的重要素材 ,这就必然地使立体几何 成为 高考不 可 或缺 的考 查 内容之 ~ .
纵 观 2 1 与 2 1 年 高考 的立 体 几何 试题 , 0 0年 01 可 以发 现 ,试题 在 考 查 考 生 空 间想 象 能 力 的 同时 ,更 注重 多角 度 挖掘 其 丰 富 的 内涵 ,在 图 形 的变 化 、 空
1 .考 查 概述 研读 2 1 与 2 1 年高 考 的立体 几何 试题 , 00年 01 可 以 发现 ,每 份 试卷 都 严 格依 据 考 查 权 重 ( 体 几 何 立
知识 学 习所需 的课 时数与 高 中数 学总课 时数 的 比 值) 、依据 考试 大 纲 命 制 试题 ,设 置 了一道 选 择 题 或填 空题 和一 道 解 答 题 .并 且 ,选择 题 或 填 空 题 多 以考 查 立 体 几何 概 念 、 三视 图 ,空 间点 、线 、 面 的位 置 关 系 为主 ,考 查 学 生作 图、 识 图及 用 图的 能 力 ;解 答题 则 以柱 、锥 、 台为载 体 ,考 查 空间线 线 、 线 面 、 面面 的位置 关系 ,考 查运 用空 间 向量解 决 空 间元 素 的位置 关 系和 数量 关 系 问题等 . 进 一 步 研 读 这 些 试题 ,不 难 发现 ,试 题 在 突 出
高中数学立体几何建系设点专题
2009-2010学年高三立几建系设点专题引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算。
一、建立空间直角坐标系的三条途径途径一、利用图形中的对称关系建立坐标系:图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等),利用自身对称性可建立空间直角坐标系.例1(湖南卷理科第18题)已知两个正四棱锥P -ABCD 与Q -ABCD 的高都为2,AB =4.(1)证明:PQ ⊥平面ABCD ;(2)求异面直线AQ 与PB 所成的角;(3)求点P 到平面QAD 的距离.简解:(1)略;(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线为x ,y ,z 轴建立空间直角坐标系(如图1),易得CA DB QP 、、,.所求异面直线(02)(02)AQ PB =--=-u u u r u u u r 1cos 3AQ PB AQ PB AQ PB <>==u u u r u u u r u u u r u u u r g u u u r u u u r 、所成的角是.1arccos3(3)由(2)知,点.(00)(0)(004)D AD PQ -=--=-u u u r u u u r设n =(x ,y ,z )是平面QAD 的一个法向量,则得取x =1,得00AQ AD ⎧=⎪⎨=⎪⎩u u u r g u u u rg 、、nn 00z x y +=+=⎪⎩、、.点P 到平面QAD 的距离(11--、、n =PQ d ==u u u r g nn途径二、利用面面垂直的性质建立坐标系:图形中有两个互相垂直的平面,可以利用面面垂直的性质定理,作出互相垂直且交于一点的三条直线,建立坐标系.例2 (全国卷Ⅱ理科第19题)在直三棱柱中,AB =BC ,D 、E 分别为111ABC A B C -的中点.11BB AC 、(1)证明:ED 为异面直线与的公垂线;1BB 1AC (2)设,求二面角的大小.1AA AC ==11A AD C --解:(1)如图2,建立直角坐标系,其中原点O 为O xyz -AC 的中点,设则,,(00)A a 、、1(00)(02)B b B b c 、、、、、则,即.11(00)(002)0ED b BB c ED BB ===u u u r u u u r u u u r u u u r g 、、、、、、1ED BB ⊥同理. 因此ED 为异面直线与的公垂线.1ED AC ⊥1BB 1AC (2)不妨令,则,1a b c ===1(110)(110)(002)BC AB AA =--=-=u u u r u u u r u u u r 、、、、、、、、.即BC ⊥AB ,BC ⊥,又∵,∴BC ⊥面100BC AB BC AA ==u u u r u u u r u u u r u u u rg g 、1AA 1AB AA A =I .1A AD 又,,(101)(101)(010)0EC AE ED EC AE =--=-==u u u r u u u r u u u r u u u r u u u rg 、、、、、、、、、0EC ED =u u u r u u u r g 即EC ⊥AE ,EC ⊥ED ,又∵AE ∩ED =E ,∴EC ⊥面.∴1C AD ,即得和的夹角为.所以,二面角1cos 2EC BC EC BC EC BC <>==u u u r u u u ru u u r u u u r g u u u r u u u r 、EC u u u r BC u u u r 60o 为.11A AD C --60o 练2:如图,平面PAC ⊥平面ABC ,ABC∆是以AC 为斜边的等腰直角三角形,,,E F O 分别为PA ,PB ,AC 的中点,16AC =,10PA PC ==.(I )设G 是OC 的中点,证明://FG 平面BOE ;(II )证明:在ABO ∆内存在一点M ,使FM ⊥平面BOE ,并求点M 到OA ,OB 的距离.途径三、利用图形中现成的垂直关系建立坐标系:当图形中有明显互相垂直且交于一点的三条直线,可以利用这三条直线直接建系.例3.如图,在四棱锥中,底面四边长为1的菱形,,O ABCD -ABCD 4ABC π∠=, ,为的中点。
高中数学必修一1.2 集合间的基本关系复习检测(人教A版,含解析)(4)
1.2 集合间的基本关系一、单选题1.已知集合{},,N a b c =,则集合N 的非空真子集个数为( ) A .5B .6C .7D .82.设集合2141,,,44k k M x x k Z N x x k Z ππ⎧⎫⎧⎫-±==∈==∈⎨⎬⎨⎬⎩⎭⎩⎭,则集合,M N 的关系为( ) A .MNB .M NC .NMD .M N M ⋃=3.下列关系式中,正确的是 A .2∈Q B .(){}{},(,)a b b a = C .{}1,2D .∅{}0=4.下列说法正确的是 A .B .C .D .5.设集合{}|12A x x =<<,{}|B x x a =<,若A B ⊆,则a 的取值范围 A .2a ≤ B .1a ≤ C .1a < D .2a ≥ 6.已知A B ⊆,A C ⊆,{2,0,1,8}B =,{1,9,3,8}C =,则集合A 可以为A .{1,8}B .{2,3}C .{0}D .{9}7.已知集合{}2*2240,M x x x x N =+-=∈,{}6,0,4N =-,则集合M 与N 的关系是( )A .M NB .N M ⊂≠C .NM ⊂≠ D .N M ⊆8.若集合{}N 8A x x =∈<,2a = ) A .{}a A ⊆B .a A ⊆C .a A ∈D .a A ∉9.已知集合{1,2}M =-,{|10}N x ax =+=,若N M ⊆,则实数a 的所有可能取值的集合为 A .11,2⎧⎫-⎨⎬⎩⎭B .11,2⎧⎫-⎨⎬⎩⎭C .11,0,2⎧⎫-⎨⎬⎩⎭D .1,0,12⎧⎫-⎨⎬⎩⎭10.已知P 2{|1,x x n n ==+∈}N ,Q 2{|41,y y m m m ==-+∈}N ,则P 与Q 关系是( ) A .P Q = B .P Q C .P QD .以上都不对二、填空题1.设集合{}2|60A x x x =+-=,{}1,1B a b ab =++-,若A B =,则a b -=______.2.集合1,0}的子集的个数为_________.3.设集合A 为空间中两条异面直线所成角的取值范围,集合B 为空间中直线与平面所成角的取值范围,集合C 为直角坐标平面上直线的倾斜角的取值范围,则集合A 、B 、C 的真包含关系是______.4.已知集合21{|}P x x ==,集合1{|}Q x ax ==,若Q P ⊆,那么a 的取值是________. 5.设集合{}0,2A =,若B A ⊆,则满足该条件的B 共有__________. 三、解答题1.称子集{1,2,3,4,5,6,7,8,9,1011,}A M ⊆=是“好的”,如果它有下述性质:“若2k A ∈,则21k A -∈且2(1)k A k N +∈∈”(空集和M 都是“好的”),则M 中有多少个包含有2个偶数的“好的”子集? 2.设集合,,.(1)若,求a 的取值范围;(2)若,求a 的取值范围.3.若集合{}2(32)210A xk x kx =-++=∣有且仅有2个子集,求实数k 的值.4.已知集合,,且,求实数的范围5.已知集合7{|1},{|1215}5S x Q x a x a x =<-=+<<+-. (1)求集合S ;(2)若S Q ⊆,求实数a 的取值范围.参考答案一、单选题 1.B解析:根据有n 个元素的集合的非空真子集的个数为22n -计算即可得答案. 详解:解:根据有n 个元素的集合的非空真子集的个数为22n -,由于集合{},,N a b c =有三个元素,故集合N 的非空真子集个数为:3226-=. 故选:B. 点睛:本题考查集合的非空真子集个数,解题的关键是熟练识记公式,是基础题. 2.B解析:运用列举法进行判断即可. 详解: 因为21975335,,,,,,,,,444444444k M x x k Z πππππππππ⎧⎫-⎧⎫==∈=-----⎨⎬⎨⎬⎩⎭⎩⎭, 41975335,,,,,,,,444444444k N x x k Z πππππππππ⎧⎫±⎧⎫==∈=-----⎨⎬⎨⎬⎩⎭⎩⎭, 所以M N ,故选:B3.C 详解:试题分析:AB 中两集合为点集,元素不同,所以集合不相等;C 中元素集合的关系式正确;D 中空集不含有任何元素,因此两集合不等 考点:集合元素的关系4.B 详解:试题分析:∅是不含有任何元素的集合,空集是任何集合的子集,所以A 项改为*N ∅⊆就正确了,同时可知C 项不正确,Q 表示有理数集,而2是无理数,所以D 项不正确考点:空集及各种常见数集点评:∅是不含有任何元素的集合,空集是任何集合的子集,是任何非空集合的真子集,常见数集有:自然数集N ,正整数集*N ,整数集Z ,有理数集Q ,实数集R5.D解析:结合数轴分析即可. 详解:画出数轴可得,若A B ⊆则2a ≥.故选:D 点睛:本题主要考查了根据集合的关系求参数的问题,属于基础题型. 6.A解析:由A B ⊆,A C ⊆,则A B C ⊆,又{}1,8B C ⋂=,从而可得答案. 详解:由A B ⊆,A C ⊆,则A B C ⊆. 又{}1,8B C ⋂=,所以{}1,8A ⊆所以选项B 、C 、D 不满足,选项A 满足. 故选:A 点睛:本题考查集合的子集的运用和交集的运算,属于基础题. 7.C解析:首先解方程22240x x +-=,求出M ,根据元素即可判断M 与N 的关系. 详解:首先解方程22240x x +-=,由*x ∈N 可得4x =或6x =-(舍) 所以{}4M =,可得NM ⊂≠.故选:C. 点睛:本题考查了集合间关系,考查了真子集的概念,属于基础题. 8.D解析:用列举法写出集合A ,判断元素a ,集合{}a 与集合A 的关系即可 详解:由题意,{N ={01,2}A x x =∈<,故{},a A a A =⊄ 故选:D 点睛:本题考查了元素与集合,集合与集合的关系,考查了学生概念理解,数学运算能力,属于基础题 9.D解析:根据集合包含关系,可分为N =∅和N ≠∅两种情况来讨论;当N =∅时,满足题意;当N ≠∅时,求得集合1N a ⎧⎫=-⎨⎬⎩⎭,进而根据1M a-∈可构造方程求得结果. 详解:①当N =∅,即0a =时,满足N M ⊆②当N ≠∅时,由10ax +=得:1x a=-,即1N a ⎧⎫=-⎨⎬⎩⎭ 1M a∴-∈11a ∴-=-或12a -=,解得:1a =或12a =-a ∴的所有可能取值的集合为1,0,12⎧⎫-⎨⎬⎩⎭故选D 点睛:本题考查根据集合的包含关系求解参数值的问题,易错点是忽略空集是任意集合的子集的情况,造成参数值缺失. 10.D解析:根据2P ∈,但2Q ∉,以及2Q -∈但2P -∉可得. 详解:当1n =时,2x =,所以2P ∈,令2412m m -+=,即2410m m --=,解得2m =N ∉, 所以2Q ∉,当1m =时,1412y =-+=-Q ∈,所以2Q -∈,而2P -∉,故选D . 点睛:本题考查了集合之间的基本关系,属于基础题.二、填空题 1.3解析:求出集合{}{}2|602,3A x x x =+-==-,利用A B =且11a b ++>,得到()21a b += ,2ab =- ,由此能求出a b -的值.详解:解:{}{}2|602,3A x x x =+-==-,因为A B =且11a b ++>,所以1213a b ab ⎧++=⎨-=-⎩ 得()212a b ab ⎧+=⎪⎨=-⎪⎩,所以3a b -=== , 故答案为3. 点睛:本题考查集合相等求参数,是基础题. 2.4解析:根据元素的个数可直接求出. 详解:集合1,0}中有2个元素,∴集合1,0}的子集的个数为224=.故答案为:4. 点睛:本题考查子集个数的求解,属于基础题.3.A B C ⊂⊂解析:推导出{|0}2A παα=<≤,{|0}2B παα=≤≤,{|0}C ααπ=≤<,由此能求出集合A 、B 、C 的真包含关系. 详解:解:集合A 为空间中两条异面直线所成角的取值范围, ∴{|0}2A παα=<≤,集合B 为空间中直线与平面所成角的取值范围,∴{|0}2B παα=≤≤,集合C 为直角坐标平面上直线的倾斜角的取值范围, ∴{|0}C ααπ=≤<,∴A B C ⊂⊂,故答案为:A B C ⊂⊂. 点睛:本题主要考查集合的真包含关系的判断,考查异面直线所成角、线面角、直线的倾斜角等基础知识,属于基础题.4.0或1±解析:要求集合Q 中的x ,需讨论0a =,和0a ≠.所以分情况求出满足Q P ⊆的条件便得到a 的取值. 详解:解:0a =时,Q =∅,满足Q P ⊆ ;0a ≠时,1|,{1,1}Qx xP a, 要使Q P ⊆则:11a =或11a=-,1a ∴=-或1a =故答案为0或1±. 点睛:考查空集和其它集合的关系,利用包含关系求解集合的参数问题,以及描述法表示集合. 5.4个解析:由B A ⊆得,B 是A 的子集,一一列举出来即可. 详解:解:B A ⊆,又{}0,2A =,{}{}{},0,2,0,2B ∴=∅,共4个,故答案为4 个. 点睛:本题考查集合子集的个数,是基础题.三、解答题1.56个.解析:根据题中集合的新定义,分类讨论:两偶数是相邻的或两偶数不相邻,然后再利用分步乘法计数原理以及分类加法计数原理即可求解. 详解:含有2个偶数的“好的”子集A ,有两种不同的情形: ①两偶数是相邻的,有4种可能:2,4;4,6;6,8;8,10. 每种情况必有3个奇数相随(如2,4A ∈,则1,3,5A ∈). 余下的3个奇数可能在A 中,也可能不在A 中, ∴这样的“好的”子集共有34232⨯=个.②两偶数不相邻,有6种可能:2,6;2,8;2,10;4,8;4,10;6,10. 每种情况必有4个奇数相随(如2,6A ∈,则1,3,5,7A ∈). 余下的2个奇数可能在A 中,也可能不在A 中, ∴这样的“好的”子集共有26224⨯=个.综上所述,M 中有322456+=个包含2个偶数的“好的”子集. 点睛:本题考查了集合的新定义,考查了分步乘法计数原理与分类加法计数原理,考查了分类讨论的思想,考查了考生分析、理解能力,属于中档题. 2.(1)或(2)解析:(1)先确定集合或,计算方程的判别式,然后分类讨论,当时,确定集合,此时不成立,舍去;当时,确定集合,利用补集的思想,求时取值范围,再求补集,即可. (2)根据,得到,再根据原命题与其逆否命题等价,则,即,解不等式组,即可.详解: (1)或,即或当,即时,,此时不成立,舍去 当,即时,方程的两根为,若使得成立,则需或,即或,解得.则成立时,或 综上所述:或.(2)即由(1)可知或,则, 当,即时,成立 当,即时,,若使得成立, 则需满足,即,解得(舍去)综上所述.点睛:本题考查利用集合之间的关系求参数的取值范围,注意分类讨论以及补集思想的运用,属于难度较大的一道题.3.23k =或1k =或2k =解析:根据集合A 的子集只有2个,说明集合A 中只有一个元素,进而讨论k 的取值求解即可. 详解:由题意,集合{}2(32)210A xk x kx =-++=∣有且仅有2个子集, ∴集合A 中只有一个元素,若320k -=时,即23k =,方程2(32)210k x kx -++=等价于4103x +=, 解得34x =-,方程只有一解,满足题意; 若320k -≠,即23k ≠,则方程2(32)210k x kx -++=对应的判别式()()224320k k ∆=--=,解得1k =或2k =,此时满足条件.所以23k =或1k =或2k =. 点睛:本题考查了由集合的子集个数确定集合中的元素个数,考查了分类讨论的思想,属于基础题.4.解析:集合B 的真子集有,,,按照,,分三种情况分类讨论. 详解: 因为且的真子集有,,, 所以,,, 当时,无实根,所以,解得; 当时, 有两个相等的实根1, 所以且,解得; 当时, 有两个相等的实根4, 所以,此方程组无解.综上所述: 实数的范围是.点睛:本题考查了集合之间的关系,分类讨论思想,着重考查了分类讨论思想,分类讨论时,要做到不重不漏,本题容易遗漏空集情况,属于中档题.5.(1){}|25x x -<<;(2)()5,3--.解析:(1)利用分式不等式的解法,由集合7{|1}5S x x =<-- ,能够求出集合S ;(2)利用集合{|25}S x x =-<<,{|1215}Q x a x a =+<<+,且S Q ⊆,建立不等式组521521a a +⎧⎨-+⎩,能够求出实数a 的取值范围.详解:(1)72|1|055x S x x x x +⎧⎫⎧⎫=<-=<⎨⎬⎨⎬--⎩⎭⎩⎭{|25}x x =-<<,;(2){|25},{|1215}S x x Q x a x a =-<<=+<<+,且S Q ⊆,521521a a ≤+⎧∴⎨-≥+⎩, 所以所以,即实数a 的取值范围()5,3--.点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提;(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决;(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.。
河南省洛阳市栾川县实验高中2024年高三下学期期末复习检测试题(一模)数学试题
河南省洛阳市栾川县实验高中2024年高三下学期期末复习检测试题(一模)数学试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数2211()log 13||f x x x ⎛⎫=+++⎪⎝⎭,则不等式(lg )3f x >的解集为( )A .1,1010⎛⎫⎪⎝⎭B .1,(10,)10⎛⎫-∞⋃+∞ ⎪⎝⎭C .(1,10)D .1,1(1,10)10⎛⎫⋃⎪⎝⎭2.一物体作变速直线运动,其v t -曲线如图所示,则该物体在1s~6s 2间的运动路程为( )m .A .1B .43C .494D .23.已知函数()cos sin 2f x x x =,下列结论不正确的是( ) A .()y f x =的图像关于点(),0π中心对称 B .()y f x =既是奇函数,又是周期函数C .()y f x =的图像关于直线2x π=对称D .()y f x =的最大值是324.在平面直角坐标系xOy 中,已知角θ的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边落在直线2y x =上,则3sin 22πθ⎛⎫+= ⎪⎝⎭( ) A .45B .45-C .35D .355.已知函数()ln(1)f x x ax =+-,若曲线()y f x =在点(0,(0))f 处的切线方程为2y x =,则实数a 的取值为( ) A .-2B .-1C .1D .26.1777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地后与直线相交的概率约为( ) A .12πB .3πC .2πD .1π7.在棱长为2的正方体ABCD −A 1B 1C 1D 1中,P 为A 1D 1的中点,若三棱锥P −ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( ) A .12πB .21π2C .41π4D .10π8.已知函数2()e (2)e xx f x t t x =+--(0t ≥),若函数()f x 在x ∈R 上有唯一零点,则t 的值为( )A .1B .12或0 C .1或0 D .2或09.已知函数()2tan()(0)f x x ωω=>的图象与直线2y =的相邻交点间的距离为π,若定义{},max ,,a a ba b b a b ⎧=⎨<⎩,则函数()max{()h x f x =,()cos }f x x 在区间3,22ππ⎛⎫⎪⎝⎭内的图象是( ) A . B .C .D .10.ABC ∆ 的内角,,A B C 的对边分别为,,a b c ,已知22cos a c b A +=,则角B 的大小为( ) A .23π B .3π C .6π D .56π 11.若两个非零向量a 、b 满足()()0a b a b +⋅-=,且2a b a b +=-,则a 与b 夹角的余弦值为( ) A .35B .35±C .12D .12±12.已知等比数列{}n a 的前n 项和为n S ,若11a =,且公比为2,则n S 与n a 的关系正确的是( ) A .41n n S a =-B .21n n S a =+C .21n n S a =-D .43n n S a =-二、填空题:本题共4小题,每小题5分,共20分。
(易错题)高中数学必修第二册第三单元《立体几何初步》检测题(有答案解析)
一、选择题1.设m ,n 是不同的直线,α,β,γ是三个不同的平面,有以下四个命题: ①若m α⊥,n β⊥,//αβ,则//m n ;②若m αγ=,n βγ=,//m n ,则//αβ;③若γα⊥,γβ⊥,则//αβ.④若//αβ,//βγ,m α⊥,则m γ⊥;其中正确命题的序号是( )A .①③B .②③C .③④D .①④ 2.设m ,n 是两条不同直线,α,β是两个不同的平面,下列命题正确的是( ) A .//m α,//n β且//αβ,则//m nB .m α⊂,n α⊂,//m β,//n β,则//αβ C .m α⊥,n β⊂,m n ⊥,则αβ⊥D .m α⊥,n β⊥且αβ⊥,则m n ⊥3.在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,15AA =,则V 的最大值是( )A .4πB .92πC .1256πD .323π 4.已知四棱锥S ABCD -的底面为矩形,SA ⊥底面ABCD ,点E 在线段BC 上,以AD 为直径的圆过点E .若33SA AB ==,则SED ∆的面积的最小值为( )A .9B .7C .92D .725.如图,P 是正方体1111ABCD A B C D -中1BC 上的动点,下列命题:①1AP B C ⊥;②BP 与1CD 所成的角是60°;③1P AD C V -为定值;④1//B P 平面1D AC ;⑤二面角P AB C 的平面角为45°.其中正确命题的个数有( )A .2个B .3个C .4个D .5个6.在正四面体ABCD 中,异面直线AB 与CD 所成的角为α,直线AB 与平面BCD 所成的角为β,二面角C AB D --的平面角为γ,则α,β,γ的大小关系为( ) A .βαγ<< B .αβγ<< C .γβα<< D .βγα<< 7.已知平面α与平面β相交,直线m ⊥α,则( )A .β内必存在直线与m 平行,且存在直线与m 垂直B .β内不一定存在直线与m 平行,不一定存在直线与m 垂直C .β内必存在直线与m 平行,不一定存在直线与m 垂直D .β内不一定存在直线与m 平行,但必存在直线与m 垂直8.下列说法正确的是( )A .直线l 平行于平面α内的无数条直线,则l ∥αB .若直线a 在平面α外,则a ∥αC .若直线a b φ⋂=,直线b α⊂,则a ∥αD .若直线a ∥b ,b α⊂,那么直线a 就平行于平面α内的无数条直线9.三棱锥A -BCD 的所有棱长都相等,M ,N 分别是棱AD ,BC 的中点,则异面直线BM 与AN 所成角的余弦值为( )A .13B .2C .3D .2310.已知三棱锥A BCD -的所有棱长都为2,且球O 为三棱锥A BCD -的外接球,点M 是线段BD 上靠近D 的四等分点,过点M 作平面α截球O 得到的截面面积为Ω,则Ω的取值范围为( )A .π3π,42⎡⎤⎢⎥⎣⎦B .3π3π,42⎡⎤⎢⎥⎣⎦C .π3π,22⎡⎤⎢⎥⎣⎦D .,42ππ⎡⎤⎢⎥⎣⎦ 11.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为23π的扇形,则该圆锥的轴截面的面积为( )A .183B .182C .123D .24312.如图,三棱柱111ABC A B C -中,侧棱1AA ⊥底面111A B C ,底面三角形111A B C 是正三角形,E 是BC 中点,则下列叙述正确的是( )A .1CC 与1B E 是异面直线B .AC ⊥平面11ABB A C .AE ,11B C 为异面直线,且11AE B C ⊥D .11//A C 平面1AB E13.边长为2的正方形ABCD 沿对角线AC 折叠使得ACD 垂直于底面ABC ,则点C 到平面ABD 的距离为( )A .263B .233C .223D .6314.已知半径为5的球的两个平行截面的周长分别为6π和8π,则两平行截面间的距离是( )A .1B .2C .1或7D .2或6二、解答题15.如图,BC 为圆O 的直径,D 为圆周上异于B 、C 的一点,AB 垂直于圆O 所在的平面,BE AC ⊥于点E ,BF AD ⊥于点F .(1)求证:BF AC ⊥;(2)若2AB BC ==,60CBD ∠=︒,求三棱锥B DEF -的体积.16.如图,在四棱锥S ABCD -中,底面梯形ABCD 中,//BC AD ,平面SAB ⊥平面ABCD ,SAB 是等边三角形,已知24AC AB ==,2225BC AD CD ===(1)求证:平面SAB ⊥平面SAC ;(2)求直线AD 与平面SAC 所成角的余弦值.17.如图所示的四棱锥E -ABCD 中,底面ABCD 为矩形,AE =EB =BC =2,AD ⊥平面ABE ,且CE 上的点F 满足BF ⊥平面ACE .(1)求证:AE ∥平面BFD ;(2)求三棱锥C -AEB 的体积.18.如图所示,在四面体ABCD 中,点P ,Q ,R 分别为棱BC ,BD ,AD 的中点,AB BD ⊥,2AB =,3PR =,22CD =.(1)证明://CD 平面PQR ;(2)证明:平面ABD ⊥平面BCD .19.如图,已知三棱台111ABC A B C -中,平面11BCC B ⊥平面ABC ,ABC 是正三角形,侧面11BCC B 是等腰梯形,111224AB BB B C ===,E 为AC 的中点.(1)求证:1AA BC ⊥;(2)求直线1B E 与平面11ACC A 所成角的正弦值.20.如图,在四棱锥P ABCD -中,底面ABCD 为正方形, PA ⊥底面ABCD ,2AB AP ==,E 为棱PD 的中点.(Ⅰ)求证CD AE ⊥;(Ⅱ)求直线AE 与平面PBD 所成角的正弦值;(Ⅲ)求点A 到平面PBD 的距离.21.ABC 是正三角形,线段EA 和DC 都垂直于平面ABC .设2,EA AB a DC a ===,且F 为BE 的中点,如图.(1)求证://DF 平面ABC ;(2)求证:AF BD ⊥;(3)求平面BDF 与平面ABC 所成锐二面角的大小.22.如图在Rt ABC △中,点M ,N 分别在线段AB ,AC 上,且//MN BC ,AB BC =,2AM MB =.若将AMN 沿MN 折起到PMN 的位置,使得60PMB ∠=︒.(1)求证:平面PBN ⊥平面BCNM ;(2)在棱PC 上是否存在点G ,使得//GN 平面PBM ?说明理由.23.如图,四面体ABCD 中,O ,E 分别是BD 、BC 的中点,2CA CB CD BD ====,2AB AD ==.(1)求证:AO ⊥平面BCD ;(2)若G 为AO 上的一点,且2AG GO =,求证://AC 平面GDE .24.在斜三棱柱111ABC A B C -中,AB AC ⊥,1B C ⊥平面ABC ,且2AB AC ==,123AA =.(Ⅰ)求证:平面1AB C ⊥平面11ABB A ;(Ⅱ)求直线1BC 与平面11ABB A 所成角的正弦值.25.如图,ABCD 是边长为2的正方形,ED ⊥平面ABCD ,1ED =,//EF BD .(1)设EF BD λ=,是否存在实数λ,使//BF 平面ACE ;(2)证明:平面EAC ⊥平面BDEF ;(3)当12EF BD =时,求几何体ABCDEF 的体积. 26.在如图所示的圆锥中,OP 是圆锥的高,AB 是底面圆的直径,点C 是弧AB 的中点,E 是线段AC 的中点,D 是线段PB 的中点,且2PO =,1OB =.(1)试在PB 上确定一点F ,使得EF ∥面COD ,并说明理由;(2)求点A 到面COD 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据空间线面位置关系的性质和判定定理判断或举出反例说明.【详解】对①,根据垂直于两个平行平面中一个平面的直线与另一个平面也垂直,以及垂直于同一个平面的两条直线平行,故①正确;对②,设三棱柱的三个侧面分别为,,αβγ,其中两条侧棱为,m n ,显然//m n ,但α与β不平行,故②错误.对③,当三个平面,,αβγ两两垂直时,显然结论不成立,故③错误.对④,∵////αβγ,当m α⊥时,m γ⊥,故④正确.故选:D.【点睛】该题考查空间线面位置关系的判断,属于中档题目. 2.D解析:D【分析】对每一个命题逐一判断得解.【详解】对于A ,若m ∥α,n ∥β且α∥β,说明m 、n 是分别在平行平面内的直线,它们的位置关 系应该是平行或异面或相交,故A 不正确;对于B ,若“m ⊂α,n ⊂α,m ∥β,n ∥β”,则“α∥β”也可能α∩β=l ,所以B 不成立. 对于C ,根据面面垂直的性质,可知m ⊥α,n ⊂β,m ⊥n ,∴n ∥α,∴α∥β也可能α∩β=l ,也可能α⊥β,故C 不正确;对于D ,由m ⊥α,n ⊥β且α⊥β,则m 与n 一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m 与n 相交,且设m 与n 确定的平面为γ,则γ与α和β的交线所成的角即 为α与β所成的角,因为α⊥β,所以m 与n 所成的角为90°,故命题D 正确. 故答案为D【点睛】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力和空间想象能力.3.D解析:D【分析】先保证截面圆与ABC 内切,记圆O 的半径为r ,由等面积法得()68AC AB BC r ++=⨯,解得2r.由于三棱柱高为5,此时可以保证球在三棱柱内部,球的最大半径为2,由此能求出结果.【详解】 解:如图,由题意可知,球的体积要尽可能大时,球需与三棱柱内切.先保证截面圆与ABC 内切,记圆O 的半径为r ,则由等面积法得1111 (682222)ABC S AC r AB r BC r =++=⨯⨯△, 所以()68AC AB BC r ++=⨯,又因为6AB =,8BC =,所以10AC =,所以2r.由于三棱柱高为5,此时可以保证球在三棱柱内部,若r 增大,则无法保证球在三棱柱内,故球的最大半径为2,所以3344322333V r πππ==⋅=. 故选:D .【点评】本题考查球的最大体积的求法,考查空间想象能力,属于中档题.4.C解析:C【分析】根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到,BE EC 之间的等量关系,再用,BE EC 表示出SED 的面积,利用均值不等式即可容易求得.【详解】设BE x =,EC y =,则BC AD x y ==+.因为SA ⊥平面ABCD ,ED ⊂平面ABCD ,所以SA ED ⊥.又AE ED ⊥,SA AE A ⋂=,所以ED ⊥平面SAE ,则ED SE ⊥.易知23AE x =+23ED y =+ 在Rt AED ∆中,222AE ED AD +=,即22233()x y x y +++=+,化简得3xy =. 在Rt SED ∆中,212SE x =+22933ED y x =+=+. 所以221110834522SED S SE ED x x ∆=⋅=++. 因为22221081083336x x x x+≥⋅=, 当且仅当6x =6y =19364522SED S ∆≥+=.故选:C.【点睛】本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题.5.C解析:C【详解】①在正方体中,1111,,AB B C BC B C AB BC B ⊥⊥=,所以1B C ⊥平面11,ABC D AP ⊂平面11ABC D ,从而1AP B C ⊥正确;②由于11//CD A B ,并且11,BC A B 的夹角是60°,故1BP CD 与所成的角是60°正确;③虽然点P 变化,但P 到1AD 的距离始终不变,故1P AD C V -为定值正确;④若1//B P 平面1D AC ,而1//BC 平面1D AC ,1111,,B P BC P B P BC =⊂平面11BB C C ,所以平面1//D AC 平面11BB C C ,这与平面1D AC 与平面11BB C C 相交矛盾,所以不正确;⑤P 点变化,但二面角PAB C 都是面11ABC D 与面ABCD 所成的角, 故二面角PAB C 的平面角为45°正确;故选:C. 6.D解析:D【分析】在正四面体ABCD 中易证AB CD ⊥,即90α=,然后作出直线AB 与平面BCD 所成的角,二面角C AB D --的平面角,在将之放到三角形中求解比较其大小.【详解】在正四面体ABCD 中,设棱长为2,设O 为底面三角形BCD 是中心,则AO ⊥平面BCD .取CD 边的中点E ,连结,AE BE , 如图.则易证,AE CD BE CD ⊥⊥,又AEBE E =. 所以CD ⊥平面ABE ,又AB ⊆平面ABE ,所以AB CD ⊥. 所以异面直线AB 与CD 所成的角为90α=.又AO ⊥平面BCD .所以直线AB 与平面BCD 所成的角为β=ABO ∠在ABO 中,2233BO BE ==,2AB = 所以3cos 3BO ABO AB ∠==. 取边AB 的中点F ,连结,CF FD ,则有,CF AB FD AB ⊥⊥,所以二面角C AB D --的平面角为CFD γ=∠, 在CFD △中,3,2CF FD CD === 由余弦定理有:2221cos 23CF FD CD CFD CF FD +-∠==⨯⨯, 即31=90cos cos =33αβγ=>,, 所以βγα<<,故选:D.【点睛】本题考查异面直线成角,线面角,二面角的求法,关键是在立体图中作出相应的角,也可以用向量法,属于中档题. 7.D解析:D【分析】可在正方体中选择两个相交平面,再选择由顶点构成且与其中一个面垂直的直线,通过变化直线的位置可得正确的选项.【详解】如图,平面ABCD 平面11D C BA AB =,1BB ⊥平面ABCD ,但平面11D C BA 内无直线与1BB 平行,故A 错.又设平面α平面l β=,则l α⊂,因m α⊥,故m l ⊥,故B 、C 错, 综上,选D .【点睛】本题考察线、面的位置关系,此种类型问题是易错题,可选择合适的几何体去构造符合条件的点、线、面的位置关系或不符合条件的反例. 8.D解析:D【分析】根据直线与平面平行的判定及相关性质,一一验证各选项即可得出答案.【详解】解:A 项,若直线l 平行于平面α内的无数条直线,则l 可能平行于平面α,也可能位于平面α内,故A 项错误;B 项,直线a 在平面α外,则直线a 与平面α可能平行,也可能相交,故B 错误;C 项,直线,a b b φα⋂=⊂,所以a 可能与平面α相交或与平面α平行,故C 项错误;D 项,直线a ∥b ,b α⊂,当a ∥α时,直线a 与平面α内所有与直线b 平行的直线平行;当a α⊂时,除了直线a 本身,直线a 与平面α内所有与直线b 平行的直线平行,因此直线a 平行于平面α内的无数条直线,故D 项正确.故选:D.【点睛】本题主要考查直线与平面平行的判定及相关性质,属于基础题型.9.D解析:D【分析】连接DN ,取DN 的中点O ,连接MO ,BO ,得出BMO ∠(或其补角)是异面直线BM 与AN 所成的角,根据长度关系求出BMO ∠(或其补角)的余弦值即可.【详解】连接DN ,取DN 的中点O ,连接MO ,BO ,∵M 是AD 的中点,∴MO ∥AN ,∴BMO ∠(或其补角)是异面直线BM 与AN 所成的角.设三棱锥A -BCD 的所有棱长为2, 则2213AN BM DN ===- 则13122MO AN NO DN ====, 则223714BO BN NO =+=+= 在BMO ∠中,由余弦定理得222373244cos 233232BM MO BO BMO BM MO +-+-∠===⋅⨯⨯, ∴异面直线BM 与AN 所成角的余弦值为23. 【点睛】 本题主要考查异面直线的夹角,解题的关键是正确找出异面直线所对应的夹角,属于中档题.10.B解析:B【分析】求出三棱锥A BCD -的外接球半径R ,可知截面面积的最大值为2πR ,当球心O 到截面的距离最大时,截面面积最小,此时球心O 到截面的距离为OM ,截面圆的半径的最小值22R OM -,进而可求出截面面积的最小值.【详解】三棱锥A BCD -是正四面体,棱长为2,将三棱锥A BCD -放置于正方体中, 可得正方体的外接球就是三棱锥A BCD -的外接球.因为三棱锥A BCD -的棱长为22,可得外接球直径22226R =++=,故62R =, 故截面面积的最大值为2263πππ2R ⎛⎫= ⎪ =⎪⎝⎭. 因为M 是BD 上的点,当球心O 到截面的距离最大时,截面面积最小,此时球心O 到截面的距离为OM ,△OBD 为等腰三角形,过点O 作BD 的垂线,垂足为H ,222662,12OD OH OD HD ⎛⎫==-=-= ⎪ ⎪⎝⎭, 得222113244OM OH HM =+=+=, 则所得截面半径的最小值为22633444R OM -=-=, 所以截面面积的最小值为233ππ()44=. 故Ω的取值范围为3π3π,42⎡⎤⎢⎥⎣⎦.故选:B.【点睛】外接球问题与截面问题是近年来的热点问题,平常学习中要多积累,本题考查学生的空间想象能力、推理能力及计算求解能力,属于中档题.11.B解析:B【分析】如图所示,设此圆锥的底面半径为r ,高为h ,母线长为l .可得πr 2+πrl =36π,2πr =l •23π,联立解得:r ,l ,h 22l r =-即可得出该圆锥的轴截面的面积S 12=•2r •h =rh . 【详解】如图所示,设此圆锥的底面半径为r ,高为h ,母线长为l .则πr 2+πrl =36π,化为:r 2+rl =36,2πr =l •23π,可得l =3r . 解得:r =3,l =9,h 22l r =-=2.该圆锥的轴截面的面积S 12=•2r •h =rh =2=2. 故选:B.【点睛】本题考查了圆锥的表面积、弧长的计算公式,考查了推理能力与计算能力,属于中档题. 12.C解析:C【分析】根据异面直线定义可判断A ;由线面垂直的性质即可判断B ;由异面直线的位置关系并得11AE B C ⊥可判断C ;根据线面平行的判定定理可判断D.【详解】对于A 项,1CC 与1B E 在同一个侧面中,故不是异面直线,所以A 错;对于B 项,由题意知,上底面是一个正三角形,故AC ⊥平面11ABB A 不可能,所以B 错;对于C 项,因为AE ,11B C 为在两个平行平面中且不平行的两条直线,故它们是异面直线,由底面111A B C 是正三角形,E 是BC 中点,根据等腰三角形三线合一可知AE BC ⊥,结合棱柱性质可知11//B C BC ,则11AE B C ⊥,所以C 正确;对于D 项,因为11A C 所在的平面与平面1AB E 相交,且11A C 与交线有公共点,故11//A C 平面1AB E 不正确,所以D 项不正确.故选C.【点睛】该题考查的是有关立体几何中空间关系的问题,在解题的过程中,需要对其相关的判定定理和性质定理的条件和结论熟练掌握,注意理清其关系,属于中档题13.A解析:A【分析】取AC 的中点O ,连接DO 和BO ,由等腰三角形的性质得出DO AC ⊥,可求出DO 和BO 的长,再由平面ACD ⊥平面ABC ,根据面面垂直的性质可得DO ⊥平面ABC ,进而得到DO OB ⊥,利用勾股定理即可求出BD ,最后利用等体积法得出C ABD D ABC V V --=,进而求出点C 到平面ABD 的距离.【详解】解:取AC 的中点O ,连接DO 和BO ,则DO AC ⊥,BO AC ⊥,由于四边形ABCD 是边长为2的正方形,2AD CD AB BC ∴====,则AC ==DO BO ===由题知,平面ACD ⊥平面ABC ,且交线为AC ,而DO ⊂平面ACD ,则DO ⊥平面ABC ,又BO ⊂平面ABC ,所以DO BO ⊥,∴在Rt BOD 中,2BD ==,∴ABD △是等边三角形,则122sin 6032ABD S =⨯⨯⨯=△, 则在Rt ABC 中,12222ABC S =⨯⨯=, 设点C 到平面ABD 的距离为d ,则C ABD D ABC V V --=,即1133ABD ABC S d S DO ⋅=⋅△△,即:11233=⨯d =,即点C 到平面ABD 的距离为3. 故选:A.【点睛】本题考查利用等体积法求点到面的距离,还涉及面面垂直的性质和棱锥的体积公式,考查推理证明和运算能力.14.C解析:C【分析】求出两个平行截面圆的半径,由勾股定理求出球心到两个截面的距离.分两个平行截面在球心的同侧和两侧讨论,即得两平行截面间的距离.【详解】设两平行截面圆的半径分别为12,r r ,则121226,28,3,4r r r r ππππ==∴==. ∴球心到两个截面的距离分别为222212534,543d d =-==-=.当两个平行截面在球心的同侧时,两平行截面间的距离为12431d d -=-=; 当两个平行截面在球心的两侧时,两平行截面间的距离为12437d d +=+=. 故选:C .【点睛】本题考查球的截面间的距离,属于基础题.二、解答题15.(1)证明见解析;(23 【分析】(1)易证得CD ⊥平面ABD ,由线面垂直性质可得CD BF ⊥,利用线面垂直判定定理可证得BF ⊥平面ACD ,由线面垂直性质证得结论;(2)利用勾股定理可求得,AD BD 长,在ABD △中,利用面积桥可求得BF ,进而得到BDF S ;由等腰三角形三线合一可知E 为AC 中点,由此确定E 到平面ABD 的距离;利用体积桥和三棱锥体积公式可求得结果.【详解】(1)AB 垂直于圆O 所在平面BCD ,CD ⊂平面BCD ,AB CD ∴⊥, BC 为圆O 的直径,CD BD ∴⊥, 又,BD AB ⊂平面ABD ,AB BD B =,CD平面ABD , BF ⊂平面ABD ,CD BF ∴⊥,又BF AD ⊥,AD CD D =,,AD CD ⊂平面ACD ,BF ∴⊥平面ACD , AC ⊂平面ACD ,BF AC ∴⊥.(2)2BC =,60CBD ∠=︒,CD BD ⊥,1BD ∴=,由AB ⊥平面BCD ,CD ⊂平面BCD 知:AB BD ⊥,AD ∴==,111222ABD S AB BD AD BF BF ∴=⋅=⋅==,解得:5BF =,5DF ∴===,11122555BDF S DF BF ∴=⋅=⨯=, AB BC =,BE AC ⊥,E ∴为AC 中点,由(1)知:CD ⊥平面ABD ,E ∴到平面ABD 的距离为122CD =,13230B DEF E BDF BDF V V S --∴==⨯=. 【点睛】 方法点睛:立体几何求解三棱锥体积的问题常采用体积桥的方式,将所求三棱锥转化为底面面积和高易求的三棱锥体积的求解问题.16.(1)证明见解析;(2. 【分析】(1)在ABC 中,利用勾股定理易证AB AC ⊥,再由平面SAB ⊥平面ABCD ,利用面面垂直的性质定理和线面垂直的判定定理证明.(2)由(1)以A 为原点,以AB ,AC 为x ,y 轴建立空间直角坐标系,分别求得AD 的坐标和平面SCA 的一个法向量()111,,m x y z =,再由||cos ,||||AD m AD m AD m ⋅〈〉=⋅求解. 【详解】(1)在ABC 中,由于2AB =,4CA =,BC =∴222AB AC BC +=, AB AC ∴⊥,平面SAB ⊥平面ABCD ,AC ∴⊥平面SAB ,又因为AC ⊂平面SAC ,所以平面SAB ⊥平面SAC ;(2)如图建立A xyz -空间直角坐标系,则(0,0,0)A ,(2,0,0)B ,3)S ,(0,4,0)C , 则(1,3)CS =-,(2,4,0)BC =-,(0,4,0)AC =,1(1,2,0)2AD BC ==-. 设平面SCA 的一个法向量()111,,m x y z =,则00m AC m CS ⎧⋅=⎨⋅=⎩,即111140430y x y z =⎧⎪⎨-+=⎪⎩ ∴(3,0,1)m =-. ||15cos ,10||||AD m AD m AD m ⋅〈〉==⋅, 设直线AD 与平面SAC 所成夹角为θ, 则15sin |cos ,|10AD m θ=<>=, ∴直线AD 与平面SAC 85. 【点睛】方法点睛:利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角. 17.(1)证明见解析;(2)43. 【分析】(1)由ABCD 为矩形,易得G 是AC 的中点,又BF ⊥平面ACE ,BC =BE ,则F 是EC 的中点,从而FG ∥AE ,再利用线面平行的判定定理证明.(2)根据AD ⊥平面ABE ,易得AE ⊥BC ,再由BF ⊥平面ACE ,得到AE ⊥BF ,进而得到AE ⊥平面BCE ,然后由C AEB A BCE V V --=求解.【详解】(1)如图所示:因为底面ABCD 为矩形,所以AC ,BD 的交点G 是AC 的中点,连接FG ,∵BF ⊥平面ACE ,则CE ⊥BF ,而BC =BE ,∴F 是EC 的中点,∴FG ∥AE .又AE ⊄平面BFD ,FG ⊂平面BFD ,∴AE ∥平面BFD .(2)∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE ,则AE ⊥BC .又BF ⊥平面ACE ,则AE ⊥BF ,∴AE ⊥平面BCE .∴三棱锥C -AEB 的体积11142223323C AEB A BCE BCE V V S AE --⎛⎫==⋅=⨯⨯⨯⨯= ⎪⎝⎭△. 【点睛】方法点睛:1、判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).18.(1)证明见解析;(2)证明见解析.【分析】(1)推导出//PQ DC ,由此能证明//CD 平面PQR .(2)推导//RQ AB ,//PQ CD ,且12RQ AB =,12PQ CD =,从而RQ BD ⊥,PQ RQ ⊥,进而RQ ⊥平面BCD ,由此能证明平面ABD ⊥平面BCD .【详解】证明:(1)点P ,Q 分别为棱BC ,BD 的中点,//PQ DC ∴,PQ ⊂平面PQR ,CD ⊂/平面PQR ,//CD ∴平面PQR .(2)点P ,Q ,R 分别为棱BC ,BD ,AD 的中点,//RQ AB ∴,//PQ CD ,且12RQ AB =,12PQ CD =, AB BD ⊥,RQ BD ∴⊥,2AB =,3PR =,22CD =. 112RQ AB ∴==,122PQ CD ==, 222PQ QR PR ∴+=,PQ RQ ∴⊥, BD PQ Q ⋂=,RQ ∴⊥平面BCD , RQ ⊂平面ABD ,∴平面ABD ⊥平面BCD .【点睛】思路点睛:证明线面平行、面面垂直的常见思路:(1)证明线面平行的思路:通过三角形中位线或者证明平行四边形说明线线平行或者证明面面平行;(2)证明面面垂直的思路:证明线面垂直结合面面垂直的判定定理完成证明. 19.(1)答案见解析;(26. 【分析】(1)分别取BC 、11B C 的中点O 、1O ,连接11A O 、1OO 、AO ,则AO BC ⊥,由平面11BCC B ⊥平面ABC ,推出AO ⊥平面11BCC B ,同理可得,11A O ⊥平面11BCC B ,故11//AO AO ,即1A 、1O 、O 、A 四点共面;易知1OO BC ⊥,而AO BC ⊥,于是有BC ⊥平面11AO OA ,故而得证;(2)由(1)知,AO ⊥平面11BCC B ,得1AO OO ⊥,于是1OO ,OA ,OB 两两垂直,故以O 为原点,OA 、OB 、1OO 所在的直线分别为x 、y 、z 轴建立空间直角坐标系,根据法向量的性质求得平面11ABB A 的法向量n ,设直线1EB 与平面11ABB A 所成角为θ,由1sin |cos EB θ=<,|n >,即可得解.【详解】(1)证明:分别取BC 、11B C 的中点O 、1O ,连接11A O 、1OO 、AO ,ABC ∆为正三角形, AO BC ∴⊥,平面11BCC B ⊥平面ABC ,平面11BCC B 平面ABC BC =,AO ⊂平面ABC ,AO ∴⊥平面11BCC B ,同理可得,11A O ⊥平面11BCC B ,11//AO AO ∴,1A ∴、1O 、O 、A 四点共面.等腰梯形11BCC B 中,O 、1O 分别为BC 、11B C 的中点,1OO BC ∴⊥,又AO BC ⊥,1AO OO O ⋂=,AO 、1OO ⊂平面11AO OA ,BC ∴⊥平面11AO OA ,1AA ⊂平面11AO OA , 1AA BC ∴⊥.(2)解:由(1)知,AO ⊥平面11BCC B ,1OO ⊂平面11BCC B , 1AO OO ∴⊥,1OO ∴,OA ,OB 两两垂直,故以O 为原点,OA 、OB 、1OO 所在的直线分别为x 、y 、z 轴建立如图所示的空间直角坐标系,则(23A ,0,0),(0B,2,0),1(0B ,1,(0C ,2-,0),E 1-,0),∴1(EB =-2,(AB =-,2,0),1(0BB =,1-,设平面11ABB A 的法向量为(n x =,y,)z ,则1·0·0n AB n BB ⎧=⎪⎨=⎪⎩,即200y y ⎧-+=⎪⎨-+=⎪⎩,令y =1x =,1z =,∴(1n =1),设直线1EB 与平面11ABB A 所成角为θ, 则1sin |cos EB θ=<,11·|534·EB n n EB n>===+, 故直线1EB 与平面11ABB A 所成角的正弦值为 【点睛】关键点点睛:本题考查空间中线与面的位置关系、线面角的求法,熟练掌握线面、面面垂直的判定定理与性质定理,以及利用空间向量处理线面角的方法是解题的关键,考查学生的空间立体感、逻辑推理能力和运算能力,属于中档题. 20.(Ⅰ)证明见解析;(Ⅱ;(Ⅲ. 【分析】(Ⅰ)根据PA ⊥底面ABCD ,PA ⊥CD ,再由底面ABCD 为正方形,利用线面垂直的判定定理证得CD PAD ⊥面即可.(Ⅱ)以点A 为原点建立空间直角坐标系,不妨设2AB AP ==,求得向量AE 的坐标,和平面PBD 的一个法向量(,,)n x y z =, 由cos ,AE n AE n AE n⋅=⋅求解.(Ⅲ)利用空间向量法,由AE n d n⋅=求解.【详解】(Ⅰ)证明:因为PA ⊥底面ABCD , 所以PA ⊥CD ,因为AD CD ⊥,PA AD A ⋂= 所以CD PAD ⊥面. 因为AE PAD ⊂面, 所以CD AE ⊥.(Ⅱ)依题意,以点A 为原点建立空间直角坐标系(如图),不妨设2AB AP ==,可得()()()()2,0,0,2,2,0,0,2,0,0,0,2B C D P , 由E 为棱PD 的中点,得(0,1,1)E . (0,1,1)AE =, 向量(2,2,0)BD =-,(2,0,2)PB =-. 设平面PBD 的一个法向量(,,)n x y z =,则00n BD n PB ⎧⋅=⎨⋅=⎩,即220220x y x z -+=⎧⎨-=⎩,令y=1,可得n =(1,1,1), 所以 6cos ,AE n AE n AE n⋅==⋅ 所以直线AE 与平面PBD 6. (Ⅲ)由(Ⅱ)知:(0,1,1)AE =,平面PBD 的一个法向量n =(1,1,1), 所以点A 到平面PBD 的距离 2333AE n d n⋅===. 【点睛】方法点睛:利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.21.(1)证明见解析;(2)证明见解析;(3)45︒.【分析】(1)利用三角形的中位线定理、平行四边形的判定和性质定理、线面平行的判定定理即可证明;(2)利用线面、面面垂直的判定和性质定理即可证明;(3)延长ED 交AC 延长线于G ′,连BG ′,只要证明BG ′⊥平面ABE 即可得到∠ABE 为所求的平面BDE 与平面ABC 所成二面角,在等腰直角三角形ABE 中即可得到. 【详解】(1)证明:如图所示,取AB 的中点G ,连接,CG FG .∵,EF FB AG GB ==,//FG EA ∴,1=2FG EA又//DC EA ,1=2DC EA ,//FG DC ∴,=FG DC ,∴四边形CDFG 为平行四边形,故//DF CG .∵DF ⊄平面,ABC CG ⊂平面ABC , ∴//DF 平面ABC .(2)证明:∵EA ⊥平面ABC ,∴EA CG ⊥. 又ABC 是正三角形, ∴CG AB ⊥. ∴CG ⊥平面AEB . ∴CG AF ⊥. 又∵//DF CG , ∴DF AF ⊥.又AE AB =,F 为BE 中点, ∴AF BE ⊥.又BE DF F ⋂=, ∴AF ⊥平面BDE . ∴AF BD ⊥.(3)延长ED 交AC 延长线于G ',连接BG '.由12CD AE =,//CD AE 知D 为EG '中点, ∴//FD BG '.由CG ⊥平面,//ABE FD CG , ∴BG '⊥平面ABE .∴EBA ∠为所求二面角的平面角.在等腰直角三角形AEB 中,易求45ABE ∠=︒. 【点睛】熟练掌握三角形的中位线定理、平行四边形的判定和性质定理、线面平行的判定定理与线面、面面垂直的判定和性质定理及二面角的求法是解题的关键. 22.(1)证明见解析;(2)存在,理由见解析. 【分析】(1)证明PB BM ⊥,由线面垂直证明MN PB ⊥,然后由线面垂直的判定定理可得线面垂直,然后有面面垂直;(2)过点N 作//NH BM ,交BC 于点H ,再过点H 作GH //PB ,交PC 于点G ,可得两个线面平行,从而得面面平行,于是可得//GN 平面PMB ,同时得出13CG CP =. 【详解】解:(1)在Rt ABC △中,由AB BC =可知,BC AB ⊥. 因为//MN BC ,所以MN AB ⊥.翻折后垂直关系没变,仍有MN PM ⊥,MN BM ⊥. 又PM BMM ⋂=,所以MN ⊥平面PBM ,PB ⊂平面PBM ,则MN PB ⊥,又60PMB ∠=︒,可令2PM =,则1BM =,由余弦定理得PB =所以222PB BM PM +=,即PB BM ⊥.又因为BMMN M =,所以PB ⊥平面BCNM .又因为PB ⊂平面PBM ,所以平面PBM ⊥平面BCNM .(2)在PC 上是存在一点G ,当13CG CP =时,使得//GN 平面PMB . 证明如下:过点N 作//NH BM ,交BC 于点H ,则四边形BMNH 是平行四边形, 且2MN BH ==,1CH =.又由NH ⊄平面PBM ,BM ⊂平面PBM 知,//NH 平面PBM .再过点H 作GH //PB ,交PC 于点G ,则13CH CG CB CP ==. 又由GH ⊄平面GHN ,PB ⊂平面PBM 知,//GH 平面PBM .又NH ⊂面GHN ,GH ⊂面GHN ,GH HN H ⋂=, 所以平面//GHN 平面PBM .又GN ⊂平面PBM ,所以//GN 平面PBM .【点睛】关键点点睛:本题考查证明面面垂直,线面平行,解题方法根据面面垂直的判定定理证明垂直,根据面面平行的性质定理证明线面平行.要注意立体几何中证明平行与垂直的方法很多,解题时注意线线、线面、面面平行(垂直)间的相互转化. 23.(1)证明见解析;(2)证明见解析. 【分析】(1)连结OC ,根据等腰三角形的性质得出AO BD ⊥和CO BD ⊥,利用勾股定理的逆定理得出90AOC ︒∠=,则AO OC ⊥,最后根据线面垂直的判定定理,即可证明AO ⊥平面BCD ;(2)连接DE 交OC 于点H ,由BCD △为正三角形,得出H 为BCD △重心,最后通过线面平行的判定,即可证明//AC 平面GDE . 【详解】证明:(1)证明:O ,E 分别是BD 、BC 的中点,连结OC , ∵,BO DO AB AD ==,∴AO BD ⊥, ∵,BO DO BC CD ==,∴CO BD ⊥, 在AOC △中,由已知可得1,3AO CO ==2AC =,∴222AO CO AC +=,∴90AOC ︒∠=,即AO OC ⊥, ∵BD OC O ⋂=,,BD OC ⊂平面BCD , ∴AO ⊥平面BCD ;(2)证明:连接DE 交OC 于点H ,∵BCD △正三角形,,O E 分别为,BD BC 的中点, ∴H 为BCD △重心,∴2CH HO =且2AG GO =, ∴AG CHGO HO=,∴//AC GH ,∴GH ⊂平面GDE ,AC ⊄平面GDE , ∴//AC 平面GDE .【点睛】关键点点睛:本题考查等腰三角形的性质、线面垂直和线面平行的判定定理,熟练掌握三角形的重心的性质是解题的关键. 24.(Ⅰ)证明见解析;(Ⅱ)2. 【分析】(Ⅰ)通过1B C AB ⊥和AB AC ⊥可得AB ⊥平面1AB C ,即得证; (Ⅱ)设11BC B C O =,作1OE AB ⊥于E ,连结BE ,可得EBO ∠为1BC 与平面11ABB A 所成角,求出相关长度即可求解.【详解】(Ⅰ)证明:∵1B C ⊥平面ABC ,∴1B C AB ⊥, 又AB AC ⊥,1AC B C C ⋂=, 所以AB ⊥平面1AB C ,AB ⊂平面11ABB A ,所以平面1AB C ⊥平面11ABB A ; (Ⅱ)设11BC B C O =,作1OE AB ⊥于E ,连结BE ,∵平面1AB C ⊥平面11ABB A 于1AB ,∴OE ⊥平面11ABB A ,∴EBO ∠为1BC 与平面11ABB A 所成角,由已知2AB AC ==,123BB =,得12B C =,122B A =, ∴223BO BC OC =+=,在等腰直角1AB C 中,2OE =, 所以2sin 6OE EBO OB ∠==,即1BC 与平面11ABB A 所成角的正弦值为26. 【点睛】方法点睛:求线面角或面面角的常用方法,根据图形结构常用建立坐标系利用向量法求解或直接用几何法求解,向量法的往往更简单有效. 25.(1)存在;(2)证明见解析;(3)2. 【分析】 (1)存在12λ=满足题意,设AC 与BD 的交点为O ,连接EO ,由平面几何的知识可得//BF EO ,再由线面平行的判定即可得证;(2)由线面垂直的性质与判定可得AC ⊥平面BDEF ,再由面面垂直的判定即可得证;(3)结合(2)可得AC ⊥平面BDEF 、2ABCDEF A BDEF V V -=,再由棱锥的体积公式即可得解. 【详解】 (1)存在12λ=满足题意,理由如下: 设AC 与BD 的交点为O ,则12DO BO BD ==,连接EO ,如图,∵//EF BD ,当12λ=时,12EF BD BO ==, ∴四边形EFBO 是平行四边形,∴//BF EO ,又EO ⊂平面ACE ,BF ⊄平面ACE ,∴//BF 平面ACE ; (2)证明:ED ⊥平面ABCD ,AC ⊂平面ABCD ,∴ED AC ⊥, ∵ABCD 为正方形,∴BD AC ⊥, 又EDBD D =,∴AC ⊥平面BDEF ,又AC ⊂平面EAC ,∴平面EAC ⊥平面BDEF ; (3)∵ED ⊥平面ABCD ,∴ED BD ⊥, 又∵//EF BD 且12EF BD =,∴BDEF 是直角梯形,又∵ABCD 是边长为2的正方形,BD =,EF =∴122BDEF S⨯==,由(2)知AC ⊥平面BDEF ,∴12222332ABCDEF A BDEF BDEF V V S AO -==⨯⋅=⨯=. 【点睛】本题考查了线面平行、面面垂直的判定及几何体体积的求解,考查了空间思维能力与运算求解能力,属于中档题.26.(1)点F 是PB 上靠近点P 的四等分点;(2)d = 【解析】 试题分析:(1)连接BE ,设BEOC G =,由题意G 为ABC ∆的重心,∴2BGGE=,连接DG , 利用EF ∥面COD ,可得∴EF DG ∥,进而求得点F 的位置;(2)由PO ABC ⊥面,得到OC PO ⊥,利用线面、面面垂直的判定与性质定理,可得OC ⊥面POB ,再利用体积A COD D AOC V V --=,即可求解距离.试题解:(1)连接BE ,设BE OC G ⋂=,由题意G 为ABC ∆的重心,∴2BGGE=,连接DG , ∵EF 面COD ,EF ⊂平面BEF ,面BEF ⋂面COD DG =,∴EF DG ,∴21BD BG DF GE == 又BD DP =,∴14DF PF PB ==∴点F 是PB 上靠近点P 的四等分点.。
高中数学必修一1.2 集合间的基本关系复习检测(人教A版,含解析)(97)
1.2 集合间的基本关系一、单选题1.下列式子表示正确的是( ) A .∅{}0⊆ B .{}{}22,3∈ C .∅{}1,2∈ D .{}00,2,3⊆2.设集合{|17}A x x =-≤≤,{|231}B x m x m =+<<+,若B A ⊆,则m 的取值范围是( )A .(),2-∞B .(],2-∞C .()3,2-D .3,23.集合{}0,2,3的真子集共有( ) A .5个B .6个C .7个D .8个4.若集合{}2018P x N x =∈≤,22a =,则( ) A .a PB .{}a P ∈C .{}a P ⊆D .a P ∉5.集合1|02x A x x +⎧⎫=∈⎨⎬-⎩⎭Z ,则集合A 的子集的个数为( ) A .7 B .8 C .15 D .16 6.下列关于∅的说法正确的是( )A .0∈∅B .{0}∅∈C .{0}⊆∅D .{0}∅⊆7.若{}{}2,0,1,,0a a b -=,则20112011a b +的值为.A .0B .1C .1-D .28.下列选项中,能正确表示集合A=﹣2,0,2}和B=x|x 2+2x=0}关系的是( )A .A=BB .A B ⊆C .A B ≠⊃ D .A B ≠⊂ 9.已知集合{}2|0=-<A x x x ,{}|B x x a =<,若A B A =,则实数的取值范围是A .(]1-∞,B .()1-∞,C .[)1+∞,D .()1+∞,10.已知集合{}A x x a =<,{}02B x x =<<.若B A ⊆,则实数a 的取值范围为( ) A .[)2,+∞ B .()2,+∞ C .(),2-∞ D .(],2-∞二、填空题1.含有三个实数的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭,又可表示成{}2,,0a a b +,则20182019a b +=__________. 2.已知集合{}2(1)320A xa x x =-+-=∣,若A 的子集个数为2个,则实数a =______. 3.已知集合{}2,3A =-,{}3B x ax ==,若B A ⊆,则实数a 的所有可能的取值的集合为__________.4.已知集合A =x|4≤2x≤16},B =[a ,b],若A ⊆B ,则实数a -b 的取值范围是________.5.集合{1,2}的子集共有_______个 三、解答题 1.已知集合,,且,求实数的取值集合.2.已知集合,,若,求的取值范围.3.已知集合{|13}A x N x =∈-<<. (1)用列举法表示集合A ; (2)写出集合A 的所有子集.4.如图,()111,P x y ,()222,P x y ,…,(),n n n P x y 是曲线C :()2102y x y =≥上的点,()11,0A a ,()22,0A a ,…,(),0n n A a 是x 轴正半轴上的点,且011A A P ∆,122A A P ∆,…,1n n n A A P -∆均为斜边在x轴上的等腰直角三角形(0A 为坐标原点).(1)写出1n a -、n a 和n x 之间的等量关系,以及1n a -、n a 和n y 之间的等量关系; (2)猜测并证明数列{}n a 的通项公式; (3)设12321111n n n n nb a a a a +++=++++,集合{}123,,,,n B b b b b =⋅⋅⋅,{}22|210,A x x ax a x R =-+-<∈,若A B =∅,求实常数a 的取值范围.5.集合若A=x|x2-5x+6=0},B=x|ax-6=0},且A∪B=A,求由实数a组成的集合C参考答案一、单选题 1.A解析:根据空集的性质,集合与集合的关系,元素与集合的关系逐一判断可得答案. 详解:解:根据空集的性质,空集是任何集合的子集,{}0∅⊆,故A 正确; 根据集合与集合关系的表示法,{}2{}2,3,故B 错误;∅是任意非空集合的真子集,有∅{}1,2,但{}1,2∅∈表示方法不对,故C 错误;根据元素与集合关系的表示法,{}00,2,3∈,不是{}00,2,3⊆,故D 错误; 故选:A. 点睛:本题考查的知识点是集合的包含关系判断及其应用,元素与集合关系的判断,集合的表示法. 2.B解析:根据B A ⊆,分为B =∅和B ≠∅,进行讨论,从而得到关于m 的不等式组,解得m 的取值范围. 详解:因为集合{|17}A x x =-≤≤,{|231}B x m x m =+<<+, 由B A ⊆可得①B =∅,得到231m m +≥+,解得12m ≤②B ≠∅,得到23121317m m m m +<+⎧⎪+≥-⎨⎪+≤⎩,解得1232m m m ⎧>⎪⎪≥-⎨⎪≤⎪⎩,故122m <≤,综上所述,满足要求的m 的取值范围为:(],2-∞ 故选:B. 点睛:本题考查根据集合的包含关系求参数的范围,属于简单题. 3.C解析:列举出集合的真子集即可. 详解:解:集合{}0,2,3的真子集有{}0,{}2,{}3,{}0,2,{}0,3,{}2,3,∅, 共7个. 故选:C. 点睛:本题考查真子集的概念,是基础题. 4.D解析:由a N =,结合元素与集合、集合与集合的关系即可得解. 详解:因为a N =,集合{P x N x =∈≤, 所以a P ∉,{}a P ⊆/. 故选:D. 点睛:本题考查了元素与集合、集合与集合关系的判断,属于基础题. 5.B解析:解分式不等式化简集合A ,根据集合A 元素个数确定其子集个数. 详解:由102x x +-,可得(1)(2)0x x +-,且2x ≠解得12x -<又x ∈Z ,可得1,0,1x =- {1,0,1}A ∴=-∴集合A 的子集的个数为328=点睛:本题考查分式不等式、集合子集等概念,计算集合A 元素个数时,要注意x ∈Z 这一条件的应用. 6.D解析:根据集合与元素、集合与集合的关系进行每个选项的判断即可. 详解:根据集合与元素、集合与集合的关系可知A 、B 、C 错误空集是任何集合的子集,故D 正确 故选:D 点睛:本题考查的是集合与元素、集合与集合的关系,较简单. 7.A解析:根据集合中的元素的互异性和集合相等的条件得出关于a,b 的方程组,求解后再代入求值得解. 详解:根据集合中的元素互不相同知0a ≠,因为{}{}2,0,1,,0a a b -=,则21a a b ⎧=⎨=-⎩或21a b a ⎧=⎨=-⎩,解得11a b =⎧⎨=-⎩或11a b =-⎧⎨=⎩, 所以()201120112011201111110a b +=+-=-=,或()201120112011201111110a b +=-+=-+=,所以201120110a b +=, 故选A. 点睛:本题考查集合的元素的互异性和集合相等的条件,属于基础题. 8.C解析:先求出集合B ,然后利用两个集合之间的关系进行判断即可. 详解:解:解方程x 2+2x=0,得x=0或x=﹣2,所以B=﹣2,0}, 又A=1﹣2,0,2},所以A B ≠⊃. 故选:C. 9.C解析:因为{}2|0A x x x =-<(0,1)= ,又A B A ⋂=,所以A B ⊆,因此1a ≥ ,选C. 10.A解析:根据集合的包含关系可确定临界值的取值,进而得到结果. 详解:B A ⊆ 2a ∴≥,即a 的取值范围为[)2,+∞故选:A 点睛:本题考查根据集合的包含关系求解参数范围的问题,易错点是对于临界值能否取得判断错误.二、填空题 1.1解析:根据集合中的元素的互异性和集合相等的条件得出关于a,b 的方程组,求解后再代入,可求值得解. 详解:根据集合中的元素互不相同知0a ≠且1a ≠,所以2a a ≠,因为{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则210a a a b ba⎧⎪=⎪=+⎨⎪⎪=⎩,解得10a b =-⎧⎨=⎩ , 所以()201820182018201810101a b +=-+=+=,所以201820181a b +=, 故填:1. 点睛:本题考查集合的元素的互异性和集合相等的条件,属于基础题.2.18-或1 解析:由已知可得:集合A 只有一个元素,即关于x 的方程2(1)320a x x -+-=只有一个根.分类讨论求出a 的值. 详解:A 的子集个数为2个,所以集合A 只有一个元素, 即关于x 的方程2(1)320a x x -+-=只有一个根. 当1a =时,方程320x -=只有一个根2=3x 符合题意;当1a ≠时,关于x 的方程2(1)320a x x -+-=只有一个根,只需()()=94120a ∆---=,解得:1=8a -. 故1=8a -或1.故答案为:18-或1. 点睛:集合A 有n 个元素,则A 的子集的个数为2n .3.30,,12⎧⎫-⎨⎬⎩⎭解析:根据子集关系,分类讨论即可得到结果. 详解:解:由于B ⊆A , ∴B=∅或B =2}或-3},∴a=0或a =32或a =﹣1,∴实数a 的所有可能取值的集合为30,,12⎧⎫-⎨⎬⎩⎭故答案为30,,12⎧⎫-⎨⎬⎩⎭.点睛:本题主要考查了集合的包含关系判断及应用,方程的根的概念等基本知识,考查了分类讨论的思想方法,属于基础题.4.(-∞,-6]解析:根据集合的包含关系求得参数,a b 范围;结合不等式的性质,即可求得目标式的范围. 详解:集合A =x|4≤2x≤16}=x|2≤x≤8}=[2,8], 因为A ⊆B ,所以a≤2,b≥8, 故8b -≤-,所以a -b≤2-4=-6,即实数a -b 的取值范围是(-∞,-6]. 故答案为:(],6-∞-. 点睛:本题考查由集合的包含关系求参数范围,涉及利用不等式的性质求范围,属综合基础题. 5.4解析:根据集合的子集的概念,准确书写出集合的子集,即可求解.由题意,根据子集的概念,可得集合{1,2}为{}{}{},1,2,1,2φ,共有4个. 故答案为:4. 点睛:本题主要考查了集合的子集的概念,其中解答中熟记集合的子集的概念,准确书写是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题 1.解析:求出集合,由可得出,然后分和两种情况讨论,结合,可得出关于实数的方程,即可求出实数的取值.详解:,由,可得.当时,,此时成立;当时,,此时,,解得.因此,实数的取值集合为.点睛:本题考查利用集合的包含关系求参数,解题的关键就是对含参集合分空集和非空集合两种情况讨论,考查分类讨论思想的应用,属于基础题. 2. 解析:由,得到,从而分为和两种情况进行讨论,分别得到关于的不等式,求出的范围,得到答案.详解: 因为,所以得到, 当时,,解得 当时,,解得, 综上所述,的取值范围为.本题考查根据集合的包含关系求参数的范围,属于简单题.3.(1){0,1,2}A =;(2),{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}∅; 解析:(1)由集合A 的描述列举出所有元素,按列举法写出集合A. (2)根据子集的定义,由(1)所得的集合中的元素,写出所有子集 详解:(1)由已知集合A 可知:{0,1,2}A =;(2)由(1)知:集合A 的所有子集有,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}∅;4.(1)12n n n a a x -+=,12n n n a a y --=;(2)()12n n n a +=,证明见解析;(3)(]4,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭. 解析:(1)依题意利用等腰直角三角形的性质可得,12n n n a a x -+=,12n n n a ay --=. (2)由212nn y x =得2111222n n n n a a a a---+⎛⎫=⨯ ⎪⎝⎭,即()211n n n n a a a a ---=+,猜测()12n n n a +=,再用数学归纳法进行证明.(3)用裂项法求得12321111n n n n n b a a a a +++=++++的值为2123n n ⎛⎫++ ⎪⎝⎭,由函数()12f x x x =+在区间[)1,+∞上单调递增,且lim 0n n b →∞=,求得10,3n b ⎛⎤∈ ⎥⎝⎦,再由{}(){}22|210,|1,1A x x ax a a R x x a a =-+-<∈=∈-+,由A B ϕ⋂=,有10a +≤,或113a -≥,由此求得实常数a 的取值范围. 详解:(1)依题意利用等腰直角三角形的性质可得,12n n n a a x -+=,12n n n a ay --=. (2)由212nn y x =得2111222n n n n a a a a---+⎛⎫=⨯ ⎪⎝⎭,即()211n n n n a a a a ---=+,猜测()12n n n a +=. 证明:①当1n =时,可求得11212a ⨯==,命题成立. ②假设当n k =时,命题成立,即有()12k k k a +=, 则当1n k =+时,由归纳假设及()211k k k k a a a a ---=+,得()()2111122k n k k k k a a ++++⎡⎤-=+⎢⎥⎣⎦, 即()()()()()22111121022k k k k k k a k k a ++-++⎡⎤⎡⎤-+++⋅=⎢⎥⎢⎥⎣⎦⎣⎦, 解得()()1122k k k a +++=,(()112k k k k a a +-=<不合题意,舍去), 即当1n k =+时,命题成立. 综上所述,对所有*n N ∈,()12n n n a +=. (3)12321111n n n n n b aa a a +++=++++ ()()()()()2221223221n n n n n n =++⋅⋅⋅++++++ 22222112123123n n n n n n n =-==++++⎛⎫++ ⎪⎝⎭. 因为函数()12f x x x=+在区间[)1,+∞上单调递增,且lim 0n n b →∞=, 所以10,3n b ⎛⎤∈ ⎥⎝⎦. {}(){}22|210,|1,1A x x ax a a R x x a a =-+-<∈=∈-+, 由A B ϕ⋂=,有10a +≤,或113a -≥,故(]4,1,3a ⎡⎫∈-∞-⋃+∞⎪⎢⎣⎭. 点睛:本题考查了数学归纳法在数列中的应用、利用函数的单调性求数列极限、利用集合的包含关系求参数的取值范围,综合性比较强,考查了学生审题、解题的能力,属于难题.5.0,2,3}详解:试题分析:解方程得到集合A =2,3},通过A∪B=A 得到集合B 的情况2},3}或B =∅,分情况讨论分别求得实数a 的值,从而确定集合C试题解析:∵x 2-5x +6=0,∴x=2,x =3,即A =2,3}.∵A∪B=A ,故B 是单元素集合2},3}或B =∅,当B =2},由2a -6=0得a =3;当B =3},由3a -6=0得a =2;当B=∅,由ax-6=0得a=0.所以由实数a形成的集合C=0,2,3}.考点:集合的子集关系与分情况讨论。
高中数学必修一1.2 集合间的基本关系复习检测(人教A版,含解析)(70)
1.2 集合间的基本关系一、单选题1.下列各组集合中,M 与N 表示同一集合的是( ) A .M =∅,{0}N = B .{2,3}M =,{(2,3)}N =C .{1}M xy x ==+∣,{1,}N y y x x R ==+∈∣ D .{}2(,)5M x y y x ==-+∣,{}25N y x ==-+ 2.下列关系中,正确的是( ) A .{}0N ⊆B .{}0Q ∈C .{}0N +⊆D .{}0 ∅3.设A 为非空的数集,{}3,6,7A ⊆,且A 中至少含有一个奇数元素,则这样的集合A 共有 A .6个 B .5个C .4个D .3个4.设集合P =x|x >1},Q =x|x 2-x >0},则下列结论正确的是( )A .P ⊆QB .Q ⊆PC .P =QD .P∪Q=R 5.已知集合{|ln 0},{|1}A x x B x x =>=,则A .B A ⊆ B .A B ⊆C .A B φ⋂≠D .A B =R6.设集合,则满足的集合B 的个数为A .1B .3C .4D .87.已知集合A=0,1,2},B=1,m}.若B ⊆A ,则实数m 的值是A .0B .2C .0或2D .0或1或28.设集合{}12M x x =<≤,{}N x x a =<,若M N M ⋂=,则a 的取值范围是( ) A .(),1-∞ B .(],1-∞ C .()2,+∞ D .[)2,+∞ 9.集合{1,2,3}A =的真子集的个数是( ).A .4B .6C .7D .810.已知,a b R R ,若集合{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192020a b +=( )A .2-B .1-C .1D .2二、填空题1.设21{|10}P x x ax =++>,22{|20}P x x ax =++>,有下列命题:①对任意实数a ,1P 是2P 的子集;②对任意实数a ,1P 不是2P 的子集;③存在实数a ,使1P 不是2P 的子集;④存在实数a ,使1P 是2P 的子集;其中正确的有________2.已知A {}32,x x x R =-≤≤∈,B {}x x a =>满足A B ⊆,则实数a 的取值范围是___________ 3.集合{1,2}的子集共有_______个4.符合条件{}a {,,}P a b c ⊆的集合P 的个数为________.5.已知互异复数120z z ≠,集合{}{}221212,,z z z z =,则12z z +=__________.三、解答题1.若关于x 的方程2210x x m +-+=的解集为空集,试判断关于x 的方程2121x mx m ++=的解集情况.2.若集合A ={}{}2,,1,a ab B b =,且A =B ,求a ,b 的值3.如图,()111,P x y ,()222,P x y ,…,(),n n n P x y 是曲线C :()2102y x y =≥上的点,()11,0A a ,()22,0A a ,…,(),0n n A a 是x 轴正半轴上的点,且011A A P ∆,122A A P ∆,…,1n n n A A P -∆均为斜边在x 轴上的等腰直角三角形(0A 为坐标原点).(1)写出1n a -、n a 和n x 之间的等量关系,以及1n a -、n a 和n y 之间的等量关系; (2)猜测并证明数列{}n a 的通项公式; (3)设12321111n n n n nb a a a a +++=++++,集合{}123,,,,n B b b b b =⋅⋅⋅,{}22|210,A x x ax a x R =-+-<∈,若A B =∅,求实常数a 的取值范围.4.已知全集{}{}21,2,3,4,5,|540,U A x U x qx q R ==∈-+=∈(1)若U C A U =,求实数q 的取值范围; (2)若U C A 中有四个元素,求U C A 和q 的值.5.已知{}|12A x x =-<≤,{}|2B x a x a =≤< (1)当1a =时,求A B (2)若B A ⊆,求a 的取值范围参考答案一、单选题 1.C解析:根据两个集合相等即集合中的所有元素相同可判断. 详解:对于A ,{}0∅≠,M N ∴≠,故A 错误;对于B ,{2,3}M =是数集,{(2,3)}N =是点集,M N ∴≠,故B 错误;对于C ,{1}M xy x R ==+=∣,{1,}N y y x x R R ==+∈=∣,M N ∴=,故C 正确; 对于D ,{}2(,)5M x y y x ==-+∣是点集,{}25N y x ==-+不是点集,M N ∴≠,故D 错误.故选:C. 点睛:本题考查了相等集合的判断,属于基础题. 2.A解析:根据集合与集合之间关系,可直接得出结果. 详解:集合{}0是含有单个元素0的集合,因此{}0N ⊆. 故选:A 点睛:本题主要考查集合与集合之间关系的判定,熟记子集的概念即可,属于基础题型. 3.A解析:可采用列举法(分类的标准为A 中只含3不含7,A 中只含7不含3,A 中即含3又含7)逐一列出符合题意的集合A. 详解:解:∵A 为非空集合,{}3,6,7A ⊆,且A 中至少含有一个奇数 ∴当A 中只含3不含7时A =3,6},3} 当A 中只含7不含3时A =7,6},7} 当A 中即含3又含7时A =3,6,7},3,7}故符合题意的集合A 共有6个 故选A 点睛:本题主要考查了子集的概念,属中档题,较易.解题的关键是理解子集的概念和A 中至少含有一个奇数分三种情况:只含3不含7,A 中只含7不含3,A 中即含3又含7. 4.A解析:(,0)(1)Q =-∞⋃+∞,,所以P ⊆Q, 选 A. 5.D解析:计算出A 集合,则可以比较简单的判断四个选项的正误. 详解:{|ln 0}={|1},{|1}A x x x x B x x =>>=可以排除、、A B C 且故A B =R 选择D.点睛:考查集合的包含关系,属于简单题. 6.C 详解:此题考查集合的并集的定义,可知集合B 中一定含有2013这个元素,所以集合B 有以下四种可能{}{}{}{}2013,2013,2011,2013,2012,2013,2011,2012,B B B B ====所以选C7.C解析:根据集合包含关系,确定实数m 的值. 详解:∵集合A=0,1,2},B=1,m},B ⊆A ,∴m=0或m=2 ∴实数m 的值是0或2.故选C . 点睛:本题考查集合包含关系,考查基本分析求解能力. 8.C解析:由M N M ⋂=得出M N ⊆,利用集合的包含关系可得出实数a 的取值范围. 详解:{}12M x x =<≤,{}N x x a =<且M N M ⋂=,M N ∴⊆,2a ∴>.因此,实数a 的取值范围是()2,+∞. 故选:C. 点睛:本题考查利用集合的包含关系求参数,考查计算能力,属于基础题. 9.C解析:根据真子集的定义,写出集合A 所有的真子集即可求解. 详解:因为集合{1,2,3}A =,由真子集的定义知,集合A 的真子集为{}{}{}{}{}{},1,2,3,1,2,1,3,2,3φ,所以集合A 真子集的个数为7. 故选:C 点睛:本题考查集合真子集个数的求解;理解真子集的定义是求解本题的关键;属于基础题、常考题型. 10.B解析:根据集合相等的条件建立关系式即可求出a,b 的值,进而可求得20192020a b +的值. 详解:∵{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,又0a ≠,00b b a∴=⇒=, 2{,0,1}{,,0}a a a ∴=,211a a =⇒=±当1,0a b ==时,,,1{1,0,1}b a a ⎧⎫=⎨⎬⎩⎭,不符合集合元素的互异性,故舍去;当1,0a b =-=时,{1,0,1}{1,1,0}-=-,符合题意. ∴201920201a b +=-. 故选:B 点睛:本题考查集合相等的条件,集合的构成元素,属于基础题.二、填空题 1.①④解析:运用集合的子集的概念,令m∈P 1,推得m∈P 2,可得对任意a ,P 1是P 2的子集,从而作出判断. 详解:对于集合P 1=x|x 2+ax+1>0},P 2=x|x 2+ax+2>0}, 可得当m∈P 1,即m 2+am+1>0,可得m 2+am+2>0, 即有m∈P 2,可得对任意a ,P 1是P 2的子集; 显然①④正确 故答案为:①④ 点睛:本题考查集合的关系的判断,注意运用二次不等式的解法,以及任意和存在性问题的解法,考查判断和推理能力,属于基础题.2.3a <-解析:因为A {}32,x x x R =-≤≤∈,B {}x x a =>满足A B ⊆,所以3a <-,故填3a <-. 3.4解析:根据集合的子集的概念,准确书写出集合的子集,即可求解. 详解:由题意,根据子集的概念,可得集合{1,2}为{}{}{},1,2,1,2φ,共有4个. 故答案为:4. 点睛:本题主要考查了集合的子集的概念,其中解答中熟记集合的子集的概念,准确书写是解答的关键,着重考查了推理与运算能力,属于基础题. 4.3解析:根据{}a {,,}P a b c ⊆,确定集合P 即可. 详解:解:由题意可知集合P 除了必有元素a 之外,一定还有其他元素,其他元素可以是b 或c ,也可以是b 和c .故符合题意的集合P 的个数为3. 故答案为:3. 点睛:本题考查子集,真子集的概念,是基础题.5.1-解析:根据集合相等可得211222z z z z ⎧=⎨=⎩或212221z z z z ⎧=⎨=⎩,可解出12z z +. 详解:{}{}221212,,z z z z =,211222z z z z ⎧=∴⎨=⎩①或212221z z z z ⎧=⎨=⎩②. 120z z ≠,∴由①得121z z ==(舍),由②两边相减得,221212z z z z -=-121z z ⇒+=-,故答案为121z z +=-. 点睛:本题主要考查了集合相等,集合中元素的互异性,复数的运算,属于中档题.三、解答题1.两个不等的实数根解析:根据方程2210x x m +-+=的解集为空集,求出参数m 的取值范围,再根据参数范围求解出方程2121x mx m ++=的的正负,即可判断解集情况. 详解:∵方程2210x x m +-+=的解集为空集, ∴此方程的判别式2241(1)0m ∆=-⨯⨯-+<, 解得0m <.而方程2121x mx m ++=的根的判别式2241(121)484m m m m '∆=-⨯⨯-=-+.∵0m <,∴20,480m m >->. ∴24840m m -+>,即0'∆>,∴方程2121x mx m ++=有两个不等的实数根, 即方程的解集中含有两个元素. 点睛:本题考查方程根的情况与之间的关系,属基础题.2.当1a =时,b R ∈且1b ≠;当1a =-时,0b =.解析:由两个集合相等的条件找出a 和b 的关系,列出方程求出a 和b ,再代入集合中进行检验即可得答案. 详解:由A B =知,两集合的元素相同.当1a =时,{}1,A b =,{}1,B b =,此时A B =需满足b R ∈且1b ≠; 当1a =-时,{}1,A b =-,{}1,B b =,此时A B =需满足b b =-,即0b =;当2a b =时,{},A b ab =,{}1,B b =,此时A B =需满足1ab =,解得1,1a b ==,这时不满足集合的互异性,故舍去.综上所述可知:当1a =时,b R ∈且1b ≠;当1a =-时,0b =. 点睛:本题重点考查了集合相等的条件、集合的构成元素等知识,属于中档题.注意分类讨论思想在解题中的应用.3.(1)12n n n a a x -+=,12n n n a a y --=;(2)()12n n n a +=,证明见解析;(3)(]4,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭. 解析:(1)依题意利用等腰直角三角形的性质可得,12n n n a a x -+=,12n n n a ay --=. (2)由212nn y x =得2111222n n n n a a a a---+⎛⎫=⨯ ⎪⎝⎭,即()211n n n n a a a a ---=+,猜测()12n n n a +=,再用数学归纳法进行证明.(3)用裂项法求得12321111n n n n n b aa a a +++=++++的值为2123n n ⎛⎫++ ⎪⎝⎭,由函数()12f x x x =+在区间[)1,+∞上单调递增,且lim 0n n b →∞=,求得10,3n b ⎛⎤∈ ⎥⎝⎦,再由{}(){}22|210,|1,1A x x ax a a R x x a a =-+-<∈=∈-+,由A B ϕ⋂=,有10a +≤,或113a -≥,由此求得实常数a 的取值范围. 详解:(1)依题意利用等腰直角三角形的性质可得,12n n n a a x -+=,12n n n a ay --=. (2)由212nn y x =得2111222n n n n a a a a---+⎛⎫=⨯ ⎪⎝⎭,即()211n n n n a a a a ---=+,猜测()12n n n a +=. 证明:①当1n =时,可求得11212a ⨯==,命题成立. ②假设当n k =时,命题成立,即有()12k k k a +=,则当1n k =+时,由归纳假设及()211k k k k a a a a ---=+,得()()2111122k n k k k k a a ++++⎡⎤-=+⎢⎥⎣⎦, 即()()()()()22111121022k k k k k k a k k a ++-++⎡⎤⎡⎤-+++⋅=⎢⎥⎢⎥⎣⎦⎣⎦, 解得()()1122k k k a +++=,(()112k k k k a a +-=<不合题意,舍去), 即当1n k =+时,命题成立. 综上所述,对所有*n N ∈,()12n n n a +=. (3)12321111n n n n nb aa a a +++=++++()()()()()2221223221n n n n n n =++⋅⋅⋅++++++22222112123123n n n n n n n =-==++++⎛⎫++ ⎪⎝⎭. 因为函数()12f x x x=+在区间[)1,+∞上单调递增,且lim 0n n b →∞=, 所以10,3n b ⎛⎤∈ ⎥⎝⎦.{}(){}22|210,|1,1A x x ax a a R x x a a =-+-<∈=∈-+,由A B ϕ⋂=,有10a +≤,或113a -≥,故(]4,1,3a ⎡⎫∈-∞-⋃+∞⎪⎢⎣⎭. 点睛:本题考查了数学归纳法在数列中的应用、利用函数的单调性求数列极限、利用集合的包含关系求参数的取值范围,综合性比较强,考查了学生审题、解题的能力,属于难题.4.(1)41329|,,1,,51525q q R q q q q 且⎧⎫∈≠≠≠≠⎨⎬⎩⎭; (2)45q =,U C A =1,3,4,5}解析:试题分析:(1)若U C A =U ,则A=∅,根据一元二次方程根的关系即可求q 的取值范围;(2)若U C A 中有四个元素,则等价为A 为单元素集合,然后进行求解即可. 试题解析:(1)∵U C A=U ,∴A=∅,即方程x 2﹣5qx+4=0无解,或方程x 2﹣5qx+4=0的解不在U 中. ∴△=25q 2﹣16<0,∴<q <,若方程x 2﹣5qx+4=0的解不在U 中,此时满足判别式△=25q 2﹣16≥0,即p≥或p≤﹣,由12﹣5q•1+4≠0得q≠1;由22﹣5q•2+4≠0得q≠;同理,由3、4、5不是方程的根,依次可得q≠,q≠1,q≠; 综上可得所求范围是q|q∈R,且q≠,q≠1,q≠}. (2)∵U C A 中有四个元素,∴A 为单元素集合,则△=25q 2﹣16=0, 即q=±,当A=1}时,q=1,不满足条件.;当A=2}时,q=,满足条件.;当A=3}时,q=,不满足条件.;当A=4}时,q=1,不满足条件.;当A=5}时,q=,不满足条件., ∴q=,此时A=2},对应的∁U A=1,3,4,5}.5.(1)[1,2);(2)1a ≤.解析:试题分析:(1)由已知,将1a =代入运算即可;(2)由条件B A ⊆,可对B =∅或B ≠∅进行分类讨论,从而问题可得解.试题解析:(1)当1a =时,{}|12B x x =≤<,所以[)1,2A B ⋂=.(2)由题意,当B =∅,则0a ≤;当B ≠∅时,则0{10122a a a a >>-⇒<≤≤,综上得,所求a 的取值范围为1a ≤.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线、平面、简单几何体综合训练(一)一、选择题1、设有不同的直线a 、b 和不同的α、β、γ,给出下列三个命题:①若a ∥α,b ∥α,则a ∥b ;②若a ∥α,a ∥β,则α∥β③若α⊥γ,β⊥γ,则α∥β;其中正确的个数是:A 0B 1C 2D 3 答案:A2 、长方体的一个顶点上三条棱的长分别是3、4、5,且它的八个顶点都在同一个球面上,这个球的表面积是:A 、π220B 、π225C 、π50D 、π200答案: C3、 正方体1111D C B A ABCD -中,1E 、1F 分别是11B A 、11D C 上的点,且11111141B A F D E B ==,则1BE 与1DF 所成的角的余弦值是A 、1715 B 、21 C 、178D 、23答案:A4 、将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD=a ,则三棱锥D-ABC 的体积为A 、63aB 、123aC 、1233a D 、1223a 答案:D 5、 若球的体积是π362500,它的两个平行截面的面积是49π和400π,则两截面间的距离是A 11B 9C 3D 9或39 答案: D6、 下列命题中正确的是 A 直平行之面体是长方体 B 对角线是全等的矩形的四棱柱是长方体 C 侧面都是矩形的直四棱柱是长方体 D 底面是矩形的四棱柱是长方体 答案: D 二、填空题7、 α、β是两个不同的平面,m 、n 是平面α、β之外的两条不同的直线,给出四个论断:①m ⊥n ②α⊥β③n ⊥β④m ⊥α以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题答案:若m ⊥α,n ⊥β,α⊥β,则m ⊥n ;或若m ⊥n ,m⊥α,n ⊥β,则α⊥β)8、棱长为2的正四面体的体积为 答案:322 9 、命题A :底面为正三角形,且顶点在底面的射影为底面中心的三棱锥是正三棱锥。
命题A 的等价命题B 可以是:底面为正三角形,且 的三棱锥是正三棱锥。
答案:侧棱相等,或侧棱与底所成角相等10、 正三棱锥的侧面积是底面积的2倍,则侧面与底面所成的角是答案: 60°11、 过点P 的三条射线PA 、PB 、PC ,每两条所成的角都是60°,则PA 与平面PBC 所成角的余弦值是答案:3312 、在直角坐标系中,已知A (3,2),B (-3,-2),沿y 轴把直角坐标系折成平面为α的二面角A-oy-B 后,∠AOB ′=90°,则αcos 的值是答案:94三、解答题13 在三棱柱111C B A ABC -中,四边形11ABB A 是菱形,四边11B BCC 是矩形,11B C ⊥AB ,(1)求证:平面BCA 1⊥平面AB A 1ABCC 1B 1A 1图9-21(2)若11B C =3,AB=4,1ABB ∠=60°,求1AC 与平面1BCC 所成角的大小(用反三角函数表示) 解析:①CB ⊥1BB ,CB ⊥AB ;②面1BCC ⊥面11ABB A ,过A 作AE ⊥1BB 于E ,则E AC 1∠为所求为532arcsin14 如图9-22,图9-22正方形ABCD 、ABEF 的边长都是1,而且平面ABCD ,ABEF 互相垂直,点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a ,(0<a<2)(1)求MN 的长(2)当a 为何值时,MN 的长最小。
(3)当MN 的长最小值时,求面MNA 与面MNB 所成的二面角α的大小。
解析:①作MP ∥AB ,NQ ∥AB ,则MNQP 为平行四边形,MN=PQ=21)22(222+-=+a QB PB ;②当a=22时,22min =MN ;③当a=22时,取MN 的中点为G ,因AN=AM ,BN=BM ,有AG ⊥MN ,BG ⊥MN ,∠BGA 为所求,)31arccos(-=α15 如图9-23所示四面体ABCD 中,AB 、BC 、BD 两两互相垂直,且AB=BC=2,E 是AC 的中点,异面直线AD 与BE所成角大小为1010arccos ,求四面体ABCD 的体积。
ABBE图9-23解析:过A 作EB 的平行线F 交CB 延长线于F ,则∠DAF 为AD 与BE 所成角,1010cos =∠DAF ,推BD=4,38=-ABC D V 16 在四棱锥P-ABCD 中,图9-24底面ABCD 是一直角梯形,∠BAD=90°,AD ∥BC ,AB=BC=a ,AD=2a ,且PA ⊥底面ABCD ,PD 与底面成30°角。
(1)若AE ⊥PD ,E 为垂足,求证BE ⊥PD ;(2)求异面直线AE 与CD 所成角的大小。
解析:①AB ⊥面PDA ,有PA ⊥PD ,AE ⊥PD ,∴PD ⊥面ABE ,有PD ⊥BE ;②在PAD 所在平面内,过D 作DF ∥AE ,则∠CDF 为AE 与CD 所成角为42arccos直线、平面、简单几何体综合训练(二)一、选择题1 在正三棱柱111C B A ABC -中,若AB=12BB ,则1AB 与B C 1所成的角的大小为A 60°B 90°C 105°D 75° 答案: B 2 如图9-25,ABCDEF图9-25在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,EF ∥AB ,EF=23,EF 与面AC 的距离为2,则该多面体的体积是AB C DMNEFPECBAA29 B 5 C 6 D 215 答案: D3 在直三棱柱111C B A ABC -中,∠BCA=90°,点1D 、1F 分别是11B A ,11C A 的中点,若BC=CA= 1CC ,则1BD 与1AF 所成角的余弦值是A 1030B 21 C 1530 D 1015 答案:A4、正方体的全面积是2a ,它的顶点都在球面上,这个球的表面积是A32a π B22a π C 22a π D 23a π答案:B5、在正四面体的六条棱中互相垂直的棱至多有 A 6对 B 5对 C 4对 D 3对 答案: D6、如图9-26所示,S 3S 2S 1图9-26有1S 、2S 、3S 上下相邻的三块梯田,1S 与2S 高差1.75米,2S 与3S 高差1.25米,且1S =2亩,2S =4亩,3S =5亩,现按三块田原样面积挖高填平改成一块田,则1S 、2S 向下挖高度是A 2米、1米B 2.75米、1米C 2.5米、1.25米D 3米、0米 答案: B 二、填空题:7、已知,m 、n 是直线,α、β、γ是平面,给出下列命题:①若α⊥β,α∩β=m ,m ⊥n ,则n ⊥α或n ⊥β; ②若α∥β,α∩γ=m ,β∩γ=n ,则m ∥n ; ③若m 不垂直于α,则m 不可能垂直于α内的无数条直线;④若α∩β=m ,n ∥m ,且n ⊄ α,n ⊄ β,则n ∥α且n ∥β.其中你认为正确的命题序号是 答案:②④8、正方形ABCD 所在的平面与正方形ABEF 所在平面面60°的二面角,则异面直线AD 与BF 所成的余弦值是答案:429、已知平行六面体1111D C B A ABCD -中,以顶点A 为端点的三条棱长都等于1,且两两夹角都60°,则对角线AC 的长是答案:610、已知A (0,1,0)、B (-1,0,-1)、C (2,1,1)、P (x ,0,z )若⊥,⊥,则P 点的坐标为答案:(-1,0,2)11、三个平面两两垂直交于一点O ,空间一点P 到三个平面的距离分别为2、3和52,则PO=答案: 512、四条线段顺次首尾相连,它们最多可以确定平面的个数是答案: 4 三、解答题:13、在正方体1111D C B A ABCD -中,图9-27E 、F 分别是1BB 、CD 的中点, ①求AE 与F D 1所成的角; ②证明面AED ⊥面11FD A ;解析:①AD ⊥面11D CDC ;②设M 为1CC 中点,DM 与F D 1所成角为90°;③设AB 的中点为N ,则面11FD A 与11NFD A 共面,AE ⊥N A 1,AE ⊥F D 1,∴AE ⊥面11NFD A ,即面AED ⊥面11FD A14、如图9-28,BAD CC 1D 1 A 1B 1 E FAB CA 1B 1C 1图9-28在斜三棱柱111C B A ABC -中,侧面11ACC A 与底面ABC 垂直,∠ABC=90°,BC=2,AC=32,且1AA ⊥C A 1,1AA =11C A①求侧棱1AA 与底面ABC 所成角的大小; ②求侧面11ABB A 与底面ABC 所成二面角的大小; ③求顶点C 到侧面11ABB A 的距离。
解析:①∵面11ACC A ⊥面ABC ,过1A 作D A 1⊥AC 于D ,到∠AD A 1为1AA 与面ABC 所成角为45°;②∵D A 1⊥面ABC ,∴过D 作DE ⊥AB 于E ,连E A 1,则∠ED A 1为面11ABB A 与面ABC 所成的角为60°;③过C 作CH ⊥面11ABB A 于H ,则CH 为C 到面11ABB A 的距离,有CH ⊥AB ,CB ⊥AB ,∴AB ⊥BH ,又AE ⊥AB ,知BH ∥A E ,且BC ∥ED ,∴∠HBC=∠ED A 1 =60°,∴CH=BCsin60°=3为所求。
15、已知正四棱柱1111D C B A ABCD -,点E 在棱D D 1上,截面EAC ∥B D 1,且面EAC 与底面ABCD 所成角为45°,AB=a图9-29①求截面EAC 的面积;②求异面直线11B A 与AC 之间的距离; ③求三棱锥1B -EAC 的体积。
解析:①设AC 的中点为O ,则EAC S ∆ =21AC ×EO=222a ;②∵1AA ⊥AC ,1AA ⊥11B A ,∴1AA 是11B A 与AC 间的公垂线,∵EO=22a ,∴1AA =2a 为所求距离;③在边长为2a的正方形11DBB D 中,连结D B 1交EO 于Q ,则Q 是EO 的中点,且Q B 1⊥EO ,又AC ⊥D B 1,∴Q B 1为锥体1B -EAC的高, EAC B V -1 =423a16、如图9-30,ABCA 1B 1C 1图9-30三棱柱111C B A ABC -,在某空间直角坐标系中,AB =(2m ,23m,0),=(m ,0,0),1AA =(0,0,n ),(其中,m 、n>0)①证明:三棱柱111C B A ABC -是正三棱柱; ②若m=2n ,求直线1CA 与平面11ABB A 所成角的大小。