Robust Online Trajectory Clustering

合集下载

单细胞转录组测序数据分析方法

单细胞转录组测序数据分析方法

单细胞转录组测序数据分析方法单细胞转录组测序(single-cell RNA sequencing,scRNA-seq)是一种能够测量每个细胞内大量基因表达的技术。

与传统的全组细胞转录组测序相比,scRNA-seq可以更细致地研究不同表型细胞的异质性,从而深入了解细胞发育、组织构建以及疾病的发病机制。

然而,由于单细胞转录组数据规模庞大,独特的数据结构和差异化的表达模式,分析这些数据也面临着挑战。

下面将介绍几种常见的单细胞转录组测序数据分析方法。

1. 数据预处理在进行单细胞转录组测序数据分析之前,首先需要对原始数据进行预处理。

常见的预处理步骤包括去除低质量的细胞、去除批次效应、进行基因表达量的归一化以及异常值的处理。

去除低质量的细胞通常可以根据细胞的表达量进行筛选。

在大多数情况下,保留表达量高于一定阈值的细胞可以有效去除噪音和低质量的数据。

批次效应是由不同实验批次或处理过程引入的技术差异。

为了消除批次效应对分析结果的影响,可以应用一些统计方法,例如ComBat算法,对数据进行批次校正。

基因表达量的归一化是将不同细胞之间、不同基因之间的表达量进行统一的过程。

常见的归一化方法有TPM (Transcripts Per Million)、FPKM (Fragments Per Kilobase of transcript per Million mapped reads)以及CPM (Counts per Million)等。

异常值的处理是要将表达量异常的基因或细胞进行处理,以保证数据的准确性。

一种常见的方法是将异常值置为缺失值或使用统计方法进行调整。

2. 细胞聚类细胞聚类是将单细胞数据根据其表达模式的相似性进行分组的方法。

通过聚类分析,我们可以将同一类型细胞的数据聚集在一起,便于后续的细胞识别和功能注释。

常见的细胞聚类算法包括K-means、层次聚类(hierarchical clustering)、DBSCAN(Density-Based Spatial Clustering of Applications with Noise)等。

【浙江省自然科学基金】_运动检测_期刊发文热词逐年推荐_20140812

【浙江省自然科学基金】_运动检测_期刊发文热词逐年推荐_20140812

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2013年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
科研热词 运动检测 背景建模 混合高斯模型 autotaxin 高能喷丸 骨骼肌 集合划分 阴影检测 间充质干细胞 逆运动学 运动目标检测 运动信息 迁移 边缘检测 边缘方向 转移 轨迹聚类 超声检测 调节,眼 角点检测 视频编码 表面纳米化 行人检测 蛋白质降解 自动识别 自分泌移动因子 脊髓损伤 胃癌细胞 胃癌 细胞凋亡 粒子轨迹 种类鉴定 短发夹rna 眼球运动检测 目标检测跟踪 火焰检测 浮动气球模型 泛素蛋白酶体途径 欧拉弹力模型 梅尔倒谱系数 机器人 最长公共子序列 显微硬度 昆虫 斜视 形状先验 大强度运动 多变量高斯模型 声音处理 增殖 基因表达 基因芯片
2012年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
科研热词 聚集态结构 聚乙烯管材料 波动温度 材料检测与分析技术 数学形态学 投影 幼体 己烯含量 坐标变换 图像处理 卵 位置反解 仿真 交通监控 乌龟 三角形平台 1h固体核磁共振
推荐指数 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

人类运动轨迹距离计算方法

人类运动轨迹距离计算方法

人类运动轨迹距离计算方法赵建军;陈滨【摘要】In this paper, the human motion in scene is characterized in the terms of trajectories, and five calculation methods are introduced to measure the distances between trajectories. The time consumption of five calculation methods during the calculation of the distances between trajectories is compared. MDS is adopted to map the matrix of distances got by five calculation methods into 2-D space to calculate the mean value and variance of inter-clusters and intra-clusters distances of each path trajectories, and to judge the accuracy of distance calculation methods by aritificial identification of pedestrian path data in MIT parkinglot. The capacities of these methods to solve the actual problems are compared by three kinds of representative problems existing in path data. The experiments indicate that LCS performs best in time consumption and accuracy. It can also solve the three representative problems very well.%将场景中的人类行为以轨迹形式表征,引入五种计算方法衡量运动轨迹间距离,比较五种计算方法在计算轨迹间距离所耗的时间.利用多维标度技术(MDS)将五种方法得到的距离矩阵映射到二维空间中,通过人工标识MIT停车场行人路径数据,计算各类路径轨迹的类间、类内距离的均值和方差,衡量距离计算方法精度.并通过路径数据中的三类典型问题,比较计算方法在解决实际问题中的能力.实验表明,改进LCS应用于轨迹间距离计算,在时间消耗上最优,并且具有较高的精度,能很好的解决三类典型问题.【期刊名称】《现代电子技术》【年(卷),期】2012(035)024【总页数】4页(P73-75,78)【关键词】人类运动路径;轨迹距离;多维标度技术;LCS【作者】赵建军;陈滨【作者单位】海军航空工程学院兵器科学与技术系,山东烟台 264001;海军航空工程学院兵器科学与技术系,山东烟台 264001【正文语种】中文【中图分类】TN911-34;TP391.41随着恐怖活动在世界范围内日益猖獗,危害社会稳定安全的违法犯罪活动令人防不胜防,开发并完善智能视觉监控系统以确保一些重要地区的安全也迫在眉睫。

聚类系数指标对复杂网络鲁棒性的影响分析

聚类系数指标对复杂网络鲁棒性的影响分析

第45卷第3期2019年6月兰州理工大学学报Journal of Lanzhou University of TechnologyVol.45No.3Jun.2019文章编号:1673-5196(2019)03-0101-07聚类系数指标对复杂网络鲁棒性的影响分析卢鹏丽1,董瑚1,曹乐2(1.兰州理工大学计算机与通信学院,甘肃兰州730050; 2.天水师范学院电子信息与电气工程学院,甘肃兰州741000)摘要:分析了采用度分布相同且聚类系数不同的三种类型网络(中性网络、同配网络和异配网络)在遇到随机故障或者蓄意攻击时,网络的初始聚类系数变化对网络鲁棒性的影响.实验分析表明,网络的初始聚类系数越大,网络在受到随机故障或蓄意攻击时网络中最大连通子图的直径和网络中最大连通子图的平均路径长度的起伏也就越大.初始聚类系数的变化在异配网中对网络鲁棒性的作用最明显,中性网次之,对同配网的鲁棒性不明显.关键词:复杂网络;鲁棒性;聚类系数中图分类号:TP202文献标志码:AAnalysis of influence of clustering coefficient as itsindex on robustness of complex networkLU Peng-li1,DONG Men1,CAO Le2(1.College of Computer and Communication,Lanzhou Univ,of Tech.,Lanzhou730050,China; 2.School of Electronic Information and Electrical Engineering,Tianshui Normal University,Tianshui741000,China)Abstract:The complex networks can be divided into three types according to chaining rules of their nodes,namely neutral network,assortative network,and hetero-assortative network.In this paper,three types of network with identical degree distribution and different clustering coefficient are used to analyze the influence of their initial clustering coefficient on their robustness when they are subjected to random failure and deliberate attack.Experimental analysis shows that the larger the initial clustering coefficient of the network is,the larger the fluctuation of the diameter and average path length of the maximum connect­ed subgraph in network will be when the network is subj ected to random failures or deliberate attacks. And the effect of initial clustering coefficient in hetero-assortative network on the network robustness will be most obvious9the effect will be less for neutral network9and there will be no obvious effect for assorta­tive network.Key words:complex network;robustness;clustering coefficient大数据在人们生活中扮演的角色越来越重要,复杂网络和复杂系统也得到人们进一步的重视•生活中的各种复杂系统都可以抽象作为复杂网络,复杂网络中节点数目众多,节点与节点之间的关系也千差万别•复杂网络的一项研究领域是网络部分结构失效对网络整体结构和功能的影响⑴,称为鲁棒性分析.Albert等⑵分析了小世界网(WS模型)和无标度网(EA模型)在遭到蓄意攻击或随机故障时的网收稿日期:2017-09-27基金项目:国家自然科学基金(11361033)作者简介:卢鹏丽(1973-),女,甘肃酒泉人,博士,教授.络鲁棒性,并对万维网的鲁棒性进行了分析•结果显示小世界网在蓄意攻击和随机故障两种情况下的鲁棒性差异不是很大,无标度网和万维网对于随机故障的鲁棒性明显优于对蓄意攻击的鲁棒性,主要原因是两种网络的结构分布差异较大.Paolo等⑶建立了一种基于动态方法的模型,在动态模型下对WS小世界网和EA无标度网进行鲁棒性分析,提出了无标度网的不均匀性・Liu等⑷对中国九江炼油系统进行了鲁棒性分析,得出真实系统中具有均匀分布的网络鲁棒性更高.Bansanl等⑸提出了同配网络、异配网络和中性网络的概念,并分析了三种网络的鲁棒性.Schultz等⑹提出变量梯度法对复杂・102・兰州理工大学学报第45卷网络进行稳定性的判断・Iyer等⑺除了采用介数中心性,还加入了紧密度和特征向量等全局指标,分析合成网络和真实网络遭到随机故障和蓄意攻击时的鲁棒性.已有的文献多是对于复杂网络最大连通度的分析,本文主要采取最大连通子图的直径和最大连通子图的平均路径长度作为衡量标准⑻,全面分析了具有相同度分布且聚类系数不同的中性网络、异配网络和同配网络的鲁棒性•复杂网络的随机故障和蓄意攻击在文献[9-11]中已经有详细的描述,本文重点分析聚类系数在不同网络攻击中的表现.1基本概念G(V,E)表示一个无向无权的简单网络,其中V ={“,巳2,•・•,"}表示G中节点的集合;E{(v i9Vj)I3伯GV}是G中边的集合,且|V|=〃|E|=m;A是其对应的邻接矩阵,如果节点s和口之间有边存在,则其元素Aij=\,否则Aij=0.定义1(网络的直径D)—般定义两节点G汀)间的最短距离心[⑵为连接两者的最短路径的边的数目;网络的直径为所有两点间的最大距离,记为D:13],即:D=max(1)(心)定义2(平均路径长度L)网络的平均路径长度L是所有节点对之间距离的平均值,即:L=——--------工右(2)y N(N—1)3其中:N为网络节点的总数目;平均路径长度L:13]描述网络中节点间的离散程度.定义3(聚类系数C)聚类系数C用来描述网络中节点的聚集情况,即网络有多紧密•一般地,假设网络中的一个节点i通过局条边与其他节点相连接虫是节点z的邻居节点数目•如果局个节点之间互相连接,它们之间存在局(化一1)/2条边,而这局个节点之间实际存在的边数£与总的可能存在边数之比就是节点,的聚类系数G,即:G=怂(铝1)(3)一个网络的聚类系数a⑶就是网络中所有节点的聚类系数的平均值,即:C气%⑷显然有O<C<1,只有在全连通网络中,聚类系数才能等于1,通常情况下一般均小于1.在完全随机网络中,C〜NT,其中N为网络节点的总数目.定义4(最大连通度&喚)最大连通度Gnax M 是指当网络受到攻击或者干扰时,在所剩仍具有连接能力网络中,其中所含节点数目最多的子网络中的节点数占所剩下节点数目的比例,即:其中:是最大连通子图的节点个数;N'是所有连通子图的节点数总和.2复杂网络的鲁棒性分析2.1复杂网络的结构对于一个复杂网络,如果网络中连接度大的节点总是倾向于与连接度大的节点连接,那么这种网络称为同配网络;如果网络中连接度大的节点总是倾向于与连接度小的节点连接,那么这种网络称为异配网络;如果网络中两个节点之间是否有边相连与这两个节点的连接度无关,那么这种网络称为中性网络•图1〜3形象地描述了中性网络、同配网络和异配网络在受到蓄意攻击和随机故障后网络的连通状况的仿真结果•其中蓄意攻击是指网络中的特定节点(即关键节点)发生故障以后网络的连通情况,而随机故障是指网络中任意节点发生故障以后网络的连通情况.(C)中性网随机故障图1中性网在受到蓄意攻击或随机故障前后的连通状态Fig.1Connective state of neutral network before andafter intentional attack or random fault通过仿真结果的对照可知,蓄意攻击对网络连通度的影响明显大于随机故障对网络连通度的影响.中性网络节点之间的连接并无明确的规律,故对抗蓄意攻击和随机故障时表现出很大的不明确性.第3期卢鹏丽等:聚类系数指标对复杂网络鲁棒性的影响分析・103・同配网中关键节点总是相互连接在一起,故同配网络在蓄意攻击时显得异常脆弱•而异配网在蓄意攻击时显示出很强的健壮性.(b)同配网蓄意攻击(c)同配网随机故障图2同配网在受到蓄意攻击或随机故障前后的连通状态Fig.2Connective state of assortative network before and after intentional attack or random fault(b)异配网蓄意攻击图3异配网在受到蓄意攻击或随机故障前后的连通状态Fig.3Connective state of hetero-assortative network be­fore and after intentional attack or random fault对多数实际网络进行研究显示,互联网以及蛋白质交换网络等生物网络是异配网络,而人际关系网以及电影演员合作网络等许多现实网络是同配网络,包括复杂网络中著名的无标度网络也属于同配网络•而不同的在线社会网络可能是同配、异配或者中性网络•例如包含7亿多节点的Facebook网络呈现出同配性特征,大型在线社交网络Cyworld却是异配网络⑸.2.2复杂网络的鲁棒性对于现实中的复杂系统,总是希望复杂系统拥有一定的鲁棒性,也就是复杂系统对外界的各种干扰具备一定的抗干扰能力•在实际生活中,系统面临各种各样的主观或者客观的干扰是不可避免的,鲁棒性和脆弱性分别是从稳定指标与失效指标的角度来表征网络的特性,两者相辅相成•鲁棒性越大,其脆弱性就越小,即抗毁能力越强;鲁棒性越小,其脆弱性越大,即抗毁能力越弱.先前的各种鲁棒性分析中都围绕着网络的最大连通度进行•网络的鲁棒性通常与网络的最大连通子图有关,所以网络中最大连通子图的直径和平均路径长度是网络鲁棒性分析的指标.2.3算法介绍复杂网络由于节点众多且结构复杂,网络在构造时很难出现构造的两个网络结构一样的情况,往往构造出来的网络结构之间有较大的差异•为了更准确地分析聚类系数指标对复杂网络鲁棒性的影响,本文选取待分析网络时让待分析网络具有相同的节点度分布,使得构造出的网络之间结构差异较小•网络都由I000个节点度已知情况下的节点,根据同配网、异配网和中性网的连接规律,将节点连接成所对应的同配网、异配网和中性网•为确保生成网络聚类系数的一般性,根据以上网络生成规则,生成100组同配网、异配网和中性网,并对它们的初始聚类系数进行了统计•统计发现节点数为I000的中性网络,初始聚类系数主要分布在0.001到0.003之间,同配网的初始聚类系数主要分布在0.008到0.012之间,异配网的初始聚类系数主要分布在0.0015到0.0025之间,故实验中采用了具有特殊初始聚类系数的网络作为待分析网络.本文主要采取网络的最大连通子图的直径和最大连通子图的平均路径长度作为衡量标准,全面地分析了具有相同度分布且聚类系数不同的中性网络、异配网络和同配网络的鲁棒性,攻击方式分为随机故障和蓄意攻击•算法如下:1)随机生成具有I000个节点的网络,计算网络的度分布.2)根据随机网络的度分布,对网络进行重连,生成多组相应的同配网络、中性网络和异配网络.3)计算多组同配网络、异配网络和中性网络的聚类系数,并在同一种网络中取出三组聚类系数不同的网络,作为待分析网络.・104・兰州理工大学学报第45卷4)分别按照随机故障和蓄意攻击两种方式确定需要在待分析网络中删除的节点,随机故障时随机选取节点进行删除,蓄意攻击时选取节点度较大的节点优先进行删除.同时将待删除节点以及待删除节点所连接的边删除.5)判断当前网络的最大连通子图,计算f、D 和L.其中J为受到攻击时节点数与原网络节点数的比值Q为网络受到攻击后最大子图的直径丄为网络受到攻击后最大子图的平均最短路径.6)计算待分析网络中的节点数•若节点数为0,则进行下一步,否则返回步骤4.7)算法结束.3实验与分析实验结果分别如图4〜6所示,其中L为当前最大连通子图的平均路径长度,D为当前最大连通子图的直径.图4分别为初始聚类系数为0.001、0.002和0.003的中性网络在随机故障和蓄意攻击时网络中L和D的变化情况•图5分别为初始聚类系数为0.008,0.010和0.012的同配网络在受到随机故障和蓄意攻击时网络中L和D的变化情况•图6分别为初始聚类系数为0・0015、0・0020和0.0025的异配网络在受到随机故障和蓄意攻击时网络中L 和D的变化情况.3.1中性网络图4a比较了三种中性网络在受到随机故障时网络中D的变化情况•在丢失少量节点时,网络中D变化不明显.初始聚类系数越大的中性网络,D的起伏越大•图4b比较了三种中性网络在受到随机故障时网络中L的变化情况•图4c比较了三种中性网络在受到蓄意攻击时网络中D的变化情况,且初始聚类系数越大的网络,D越先出现起伏现象.图4d比较了三种中性网络在受到蓄意攻击时网络中L的变化情况,相比于网络随机故障,初始聚类系数越小的网络在被攻击时所产生的L的最大值要高于初始聚类系数大的网络.根据以上分析得出,当移除节点数目较少时,无论是随机故障还是蓄意攻击,网络的D和L都呈现出一个缓慢增值的趋势,但在移除节点数目到达一定数量时,D和L的变化明显,蓄意攻击在移除节点40%左右出现浮动,随机故障在移除节点60%左右出现浮动,蓄意攻击对网络的破坏明显大于随机故障•中性网络在少量节点丢失时,网络最大子图的直径与平均最短路径都缓慢地增长•但在大量节点丢失时,网络的D和L都发生剧烈的变化•这是由于中性网络的不确定性造成的,中性网络中节点之间的连边没有什么明确的关系,在受到大量节点丢失时,节点之间的离散程度明显变化很大,且聚类系数越大的中性网络,在丢失节点后网络中的D和L 越大,节点间的离散程度越高,网络的鲁棒性越差.目M画中V*鴉屋移除节点百分比(a)随机故障时的D(b)随机故障时的厶目M画中V*鴉屋移除节点百分比(c)蓄意攻击时的D(d)蓄意攻击时的厶图4三种初始聚类系数不同的中性网络在受到攻击时网络中最大连通子图中的最大直径和平均最短路径变化情况Fig.4The maximum diameter and average shortest path change in the most Dalian subgraph of the neutralnetwork with three initial clustering coefficients inthe network underattack第3期卢鹏丽等:聚类系数指标对复杂网络鲁棒性的影响分析• 105 •1412108 6 4 2目M 画中V *鴉屋移除节点百分比(a)随机故障时的DO0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0移除节点百分比(a)随机故障时的D移除节点百分比(b)随机故障时的厶■■■■■■■ O6 5 4 3 2 1移除节点百分比(b)随机故障时的厶粗M 画中V *鴉屋粗M 画中V *鴉屋— 0.001 5——0.002 0一 0.002 5移除节点百分比(c)蓄意攻击时的D0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0移除节点百分比(c)蓄意攻击时的D移除节点百分比移除节点百分比(d)蓄意攻击时的厶(d)蓄意攻击时的厶图5三种初始聚类系数不同的同配网络在受到攻击时网络中最大连通子图中的最大直径和平均最短路径变化情况Fig. 5 the maximum diameter and average shortest pathchange of the most Dalian pass subgraph in the as ­sortative network under three different initial clus ­tering coefficients when attacked3.2同配网络同配网络的D 和L 在随机故障中体现出很高的稳定性•在丢失大量节点之前,D —直保持着一个图6三种初始聚类系数不同的异配网络在受到攻击时网络中最大连通子图中的最大直径和平均最短路径变化情况Fig. 6 The maximum diameter and average shortest pathchange of the most Dalian pass subgraph in thedisassortative network under three different initialclustering coefficients when attacked稳定的状态•随着丢失节点数目的增加(在丢失节点数50%时)网络中最大连通子图的直径才有微弱的 变化,且初始聚类系数越大的同配网络,直径的起伏・106・兰州理工大学学报第45卷越大•在丢失节点数75%左右时,网络被分割为大量小碎片,直径剧烈下降•这是由于同配网络中连接度大的节点优先与连接度大的节点连接,这种网络结构类似于无标度网,所以同配性网络在随机故障时,网络的D和L都呈现出一种稳定的态势.且初始聚类系数越大,网络在随机故障时出现的直径最大值越高,网络的离散程度越高•同配网络在遭到蓄意攻击时,网络的D和L变化剧烈,且在丢失节点占比35%左右时就出现明显的变化,所产生的D和L的最大值都远高于同配网络在受到随机故障时所产生的D和L.在同配网中初始聚类系数越大,网络中D和L的浮动越大,节点间的离散程度越高,网络的鲁棒性越差.3.3异配网络图6a比较了三种异配网络在受到随机故障时网络中D的变化情况.图6b比较了三种异配网络在受到随机故障时网络中L的变化情况•图6c比较了三种异配网络在受到蓄意攻击时D的变化情况.图6d比较了三种异配网络在受到蓄意攻击时,网络中L的变化情况•初始聚类系数越大,异配网络在遭到蓄意攻击时网络的直径起伏越大.异配网络的D和L在随机故障中体现的相对较稳定•在丢失大量节点前,网络的D和L—直保持着一个相对稳定的状态,但有小的起伏•随着丢失节点数目的增加(在丢失节点的数60%左右时)网络中的最大连通子图的直径开始剧烈下降,且下降的程度与初始的聚类系数无关•异配网络在少量的节点遭到蓄意攻击时,网络的最大连通子图的直径缓慢增长,在移除节点占比50%左右时,直径明显地增长,且初始聚类系数越大的网络直径的变化越大•网络的最大连通子图的平均最短路径呈现出一种缓慢增加的趋势,在移除节点占比60%左右时出现极值,平均路径长度开始缓慢下降•在异配网络的蓄意攻击中可以明显地看出聚类系数对网络中D 和L的影响较大,聚类系数越大的异配网D和L的变化越明显,节点间的离散程度越高,网络的鲁棒性越差.3.4综合分析中性网络和异配网络的初始网络直径都在9左右,初始平均路径长度都在5左右,且不会随着初始聚类系数的变化而发生变换.同配网的初始网络直径和初始平均路径长度相对较大,初始直径在22左右,初始平均路径长度在8.10左右,也不会随着初始聚类系数的变化而改变.由表1分析可知,在度分布相同的情况下,同配网的初始聚类系数明显大于中性网和异配网,中性网和异配网的初始聚类系数相似•为了进一步分析聚类系数指标对不同系统的鲁棒性的影响,取初始聚类系数相同的中性网和异配网进行比较.图7为移除节点百分比(b)随机故障时的厶目M画中V*鴉屋161412108642—•中性网络-一异配网络00.10.20.30.40.50.60.70.80.9 1.0移除节点百分比(d)蓄意攻击时的厶图7相同聚类系数的中性网和异配网在受到攻击时网络中最大连通子图中的最大直径和平均最短路径变化情况Fig.7The maximum diameter and the average shortest path change in the most Dalian pass graph in the networkwhen the neutral network and the disassortative net­work with the same clustering coefficients are attacked第3期卢鹏丽等:聚类系数指标对复杂网络鲁棒性的影响分析・107・表1三种不同网络在不同聚类系数下网络的初始直径和初始聚类系数Tab.1Initial diameter and initial clustering coefficient of three different networks under different clusteringcoefficients网络类型初始聚类系数初始直径初始路径长度0.00110 5.20中性网0.0029 5.450.00310 5.460.00820&10同配网0.01022&160.01224&140.00159 4.93异配网0.002010 4.890.00259 4.87初始聚类系数都为0.002的中性网和异配网在受到随机故障和蓄意攻击时网络中L和D的变化情况.图7a比较了中性网络和异配网络在受到随机故障时网络中D的变化情况.图7b比较了中性网络和异配网络在受到随机故障时网络中L的变化情况•图7c比较了中性网络和异配网络在受到蓄意攻击时D的变化情况.图7d比较了中性网络和异配网络在受到蓄意攻击时,网络中L的变化情况.图7中网络的节点数目、节点度分布和初始聚类系数都相同,只因为节点之间连线的方式存在差异就使得网络的鲁棒性有着巨大的差异.由以上分析可知,聚类系数越大,网络中D和L的起伏越大,网络的鲁棒性越差•对于异配网,初始聚类系数对网络受到随机故障和蓄意攻击时的影响最大,中性网络次之,同配网络虽然有很大初始聚类系数,却在随机故障和蓄意攻击时对其最大连通子图的直径和平均路径长度都没有很大的影响.4结语通过分析聚类系数对复杂网络中最大连通子图的直径和平均路径长度的影响可知•在度分布相同的情况下,聚类系数越大,网络的鲁棒性越差•且聚类系数在不同的网络中所体现出作用的大小也不同,在异配网中聚类系数对网络的鲁棒性的作用明显,中性网次之,同配网中受到聚类系数的影响最小•除聚类系数对网络中最大连通子图的直径和最大连通子图的平均路径长度的影响外,聚类系数对网络中其他相关方面的影响将来需要做进一步的研究和验证.参考文献:[1]PATEL S J,PATTEWAR T M.Software birthmark basedtheft detection of JavaScript programs using agglomerative clustering and frequent subgraph minming[C]//Embedded System(ICES),2014International Conference on.[S.1.]:IEEE,2014.[2]ALBERT R,JEONG H,SI A L.Error and attack tolerance ofcomplex networks[J].Nature,2000,406(4):378-382.[3]CRUCITTI P,LATORA V,MARCHIORI Error andattack tolerance of complex networks[J].Physica A,2004,340:388-397.[4]LIU Suyu,RONG Gang.Analysis on refinery system as a com­plex task-resource network[J].Chinese Journal of Chemical Engineering,2013,21(3):253-262.:5]毛凯.复杂网络结构的稳定性与鲁棒性研究m.计算机科学,2015,42:85-88.[6]MAO J,GAO J,LIU Y.Power allocation over finding cognitiveMIMO channels:an ergodic capacity perspective[J].Trans Veh Technol,2016,61:1162-1173.[7]陆靖桥,傅秀芬,蒙在桥.复杂网络的鲁棒性与中心性指标的研究[J1计算机应用与软件,2016,33:302-310.[8]MYLES G,COLLBERG C.Softwate watermarking via opaquepredicates:Implementation analysis and attacks[J].Electron­ic Commerce Research,2006,6(2):155-171.[9]MYLES G,COLLBERG C,HEIDEPEIEM Z,et al.The evalu­ation of two software watermaking algorithms[J].Software:Practice and Experience,2015,35(10):923-938.[10]MELIAN C J,BASCOMPTE plex netwokrs:two waysto be robust[J].Ecology Letters,2010,5(6):705-70& [11]刘飞飞,蔺靖娜,刘潇潇.基于贝叶斯复杂网络的复杂网络攻击方法研究[J].计算机工程与应用,2017(53):18-25. [12]CHRISTIAN S.Shortest-path queries in static networks[J].ACM Computing Surveys,2014,46(4):1-31.[13]刘宏鲍,周涛.中国城市航空网络的实证研究与分析[J].物理学报,2007,56(5):106-112.[14]刘一奎,刘天琪,李茜,等.一种高聚类系数的无标度网络演化模型[J].网络安全技术与应用,2015(1):55-56.。

基于ais数据的船舶航行轨迹预测

基于ais数据的船舶航行轨迹预测

摘要在经济快速发展的情况下,航运业迎来了巨大的变化,船舶数量不断地增长,由此产生了很多航运密切的区域。

船舶数量的激增虽然带来了海上贸易的繁荣,但容易产生水上交通安全问题:航线负担过重,航道更加拥挤,由于船舶自身问题和人为因素产生的事故时有发生,对船员和乘客的生命财产安全造成巨大的威胁。

因此,对船舶必须进行有效的监控,及时发现船舶的异常行为,降低水上交通事故的风险。

另一方面,海运是国际贸易最主要的形式,在经济发展中占有重要的地位。

贸易的类型与航线息息相关,通过对航线轨迹变化的分析能够了解航运物流的变化,有利于对国际贸易的未来格局和发展变化进行更深入的理解。

预知船舶航行的动态是船舶异常行为分析和轨迹变化分析的基础性工作,对船舶轨迹进行精准的预测不仅能够及时发现异常轨迹,有利于海上交通监管,还能从船舶航行的角度了解国际贸易的发展变化,是航运交通智能服务的关键技术之一。

研究船舶航行轨迹预测最好能够获取船舶的历史轨迹数据,通过对历史数据的挖掘提取船舶重要的航行特征,发现船舶航行的规律,能够有效提高预测的准确性。

随着AIS系统的应用和推广,船舶轨迹数据的可获得性提高,与船舶轨迹数据挖掘的研究层出不穷,为船舶轨迹预测的研究提供了基础性的条件。

本文的主要工作如下:以大量船舶的历史AIS数据为基础,首先进行数据恢复和数据异常处理工作,最大程度上还原原始轨迹数据;在此基础上,使用轨迹分段和区域划分的两种轨迹聚类算法,从离散的原始AIS数据中得到船舶航线轨迹数据集;接着以航线轨迹数据为基础,使用多种算法对轨迹预测进行建模,并以珠江三角洲的航线数据为基础对预测算法进行验证,结果表明基于朴素贝叶斯的预测算法在船舶轨迹预测问题上具有高达90%以上的预测准确率。

关键词:船舶轨迹数据;数据预处理;轨迹聚类;航行轨迹预测;AbstractWith the rapid development of economy, the shipping industry has been developing rapidly, and the number of ships has been increasing. The surge in the number of vessels at sea has brought prosperity of trade, but it is easy to cause the problem of water traffic safety: route burden, channel congestion caused by the ship's own problems and human factors in the accident, the crew and passengers of the life and property safety threat. Therefore, it is necessary to carry out effective monitoring on the ship, find out the abnormal behavior of the ship in time, and reduce the risk of water traffic accidents. On the other hand, shipping is the most important form of international trade, which plays an important role in economic development. The type of trade is closely related to the route. Through the analysis of the change of the route, we can understand the change of shipping logistics, which is beneficial to the further understanding of the future pattern and development of international trade.To predict the dynamic navigation is the basis of the analysis of ship monitoring and track changes in the work, the accurate prediction of the ship trajectory can not only detect the abnormal trajectory for marine traffic, but also from the ship's point of view to understand the development and change of international trade, shipping and transportation is one of the key technologies of intelligent service.With the application and popularization of the AIS system, the availability of ship trajectory data is improved, which provides the basic conditions for ship trajectory data mining. The main work of this thesis is as follows: in the history of a large number of ships based on the AIS data, the first data recovery and data processing work, to restore the original data on the maximum extent, clean the available data; on this basis, two kinds of trajectory clustering algorithm using trajectory segmentation and region division, get the ship route trajectory data set from the original AIS data in a discrete;Then take the route trajectory data is based on the combination of various methods of trajectory prediction modeling, and to route data in the Pearl River Delta for verification based on the prediction algorithm, the results show that the prediction algorithm based on Naive Bayesian with up to 90% accuracy in the prediction of ship trajectory.Keywords: Ship trajectory data; data pretreatment; trajectory clustering; navigation trajectory prediction;目录第一章绪论 (1)1.1 研究背景 (1)1.2 研究现状 (1)1.2.1 数据恢复 (2)1.2.2轨迹聚类 (2)1.2.3船舶航行轨迹预测 (4)1.3 研究内容 (6)1.4 技术路线 (7)1.5 论文结构安排 (8)第二章相关理论基础 (10)2.1船舶航行轨迹预测 (10)2.2轨迹相似性度量 (10)2.3 总结 (12)第三章 AIS数据采集及预处理 (13)3.1 数据采集 (13)3.2 船舶航线轨迹数据提取 (14)3.2.1 基于船舶航行状态的航线轨迹数据提取 (14)3.2.2 基于船舶航速和采集时间间隔的轨迹数据提取 (15)3.2.3 航线轨迹数据样例 (16)3.3 缺失值处理 (17)3.3.1 问题描述 (17)3.3.2缺失值识别 (17)3.3.3 缺失值插补方法 (18)3.3.4 缺失数据插补 (20)3.3.5 数据实验 (21)3.4 异常数据处理 (24)3.5 总结 (25)第四章基于AIS数据的船舶航线聚类 (27)4.1 航线聚类定义与描述 (27)4.2 航线聚类算法 (27)4.2.1 基于轨迹分段的航线聚类算法 (28)4.2.2 基于航行区域相似度的航线聚类算法 (40)4.3 轨迹聚类结果评价指标 (45)4.4 数据实验 (46)4.4.1 实验数据 (46)4.4.2 模型参数设置 (46)4.4.3实验结果 (48)4.5总结 (50)第五章基于AIS数据的船舶航行轨迹预测 (51)5.1 船舶轨迹预测的定义与描述 (51)5.2 轨迹统计分析 (51)5.3 基于AIS数据的船舶航行轨迹预测算法 (53)5.3.1 基于概率统计的船舶航行轨迹预测算法 (53)5.3.2 基于船舶轨迹相似度的船舶航行轨迹预测算法 (57)5.3.3 基于加权KNN的船舶航行轨迹预测算法 (58)5.3.4 基于朴素贝叶斯的船舶航行轨迹预测算法 (60)5.4 实验分析 (63)5.4.1 基础数据 (63)5.4.2 实验设置 (64)5.4.3 实验结果 (66)5.5总结 (69)第六章总结和展望 (70)6.1 工作总结 (70)6.2未来展望 (70)参考文献 (71)攻读硕士学位期间取得的成果 (78)致谢 (79)第一章绪论第一章绪论1.1 研究背景航运是国际贸易最主要的形式,在经济全球化的环境下,航运业得到飞速的发展,船舶越造越大,种类愈来愈多,由此在国内和国际上产生很多航运密切的热点区域,如珠江三角洲。

Matlab的第三方工具箱大全

Matlab的第三方工具箱大全

Matlab的第三方工具箱大全(按住CTRL点击连接就可以到达每个工具箱的主页面来下载了)Matlab Toolboxes∙ADCPtools - acoustic doppler current profiler data processing∙AFDesign - designing analog and digital filters∙AIRES - automatic integration of reusable embedded software∙Air-Sea - air-sea flux estimates in oceanography∙Animation - developing scientific animations∙ARfit - estimation of parameters and eigenmodes of multivariate autoregressive methods∙ARMASA - power spectrum estimation∙AR-Toolkit - computer vision tracking∙Auditory - auditory models∙b4m - interval arithmetic∙Bayes Net - inference and learning for directed graphical models∙Binaural Modeling - calculating binaural cross-correlograms of sound∙Bode Step - design of control systems with maximized feedback∙Bootstrap - for resampling, hypothesis testing and confidence interval estimation ∙BrainStorm - MEG and EEG data visualization and processing∙BSTEX - equation viewer∙CALFEM - interactive program for teaching the finite element method∙Calibr - for calibrating CCD cameras∙Camera Calibration∙Captain - non-stationary time series analysis and forecasting∙CHMMBOX - for coupled hidden Markov modeling using max imum likelihood EM ∙Classification - supervised and unsupervised classification algorithms∙CLOSID∙Cluster - for analysis of Gaussian mixture models for data set clustering∙Clustering - cluster analysis∙ClusterPack - cluster analysis∙COLEA - speech analysis∙CompEcon - solving problems in economics and finance∙Complex - for estimating temporal and spatial signal complexities∙Computational Statistics∙Coral - seismic waveform analysis∙DACE - kriging approximations to computer models∙DAIHM - data assimilation in hydrological and hydrodynamic models∙Data Visualization∙DBT - radar array processing∙DDE-BIFTOOL - bifurcation analysis of delay differential equations∙Denoise - for removing noise from signals∙DiffMan - solv ing differential equations on manifolds∙Dimensional Analysis -∙DIPimage - scientific image processing∙Direct - Laplace transform inversion via the direct integration method∙DirectSD - analysis and design of computer controlled systems with process-oriented models∙DMsuite - differentiation matrix suite∙DMTTEQ - design and test time domain equalizer design methods∙DrawFilt - drawing digital and analog filters∙DSFWAV - spline interpolation with Dean wave solutions∙DWT - discrete wavelet transforms∙EasyKrig∙Econometrics∙EEGLAB∙EigTool - graphical tool for nonsymmetric eigenproblems∙EMSC - separating light scattering and absorbance by extended multiplicative signal correction∙Engineering Vibration∙FastICA - fixed-point algorithm for ICA and projection pursuit∙FDC - flight dynamics and control∙FDtools - fractional delay filter design∙FlexICA - for independent components analysis∙FMBPC - fuzzy model-based predictive control∙ForWaRD - Fourier-wavelet regularized deconvolution∙FracLab - fractal analysis for signal processing∙FSBOX - stepwise forward and backward selection of features using linear regression∙GABLE - geometric algebra tutorial∙GAOT - genetic algorithm optimization∙Garch - estimating and diagnosing heteroskedasticity in time series models∙GCE Data - managing, analyzing and displaying data and metadata stored using the GCE data structure specification∙GCSV - growing cell structure visualization∙GEMANOVA - fitting multilinear ANOVA models∙Genetic Algorithm∙Geodetic - geodetic calculations∙GHSOM - growing hierarchical self-organizing map∙glmlab - general linear models∙GPIB - wrapper for GPIB library from National Instrument∙GTM - generative topographic mapping, a model for density modeling and data visualization∙GVF - gradient vector flow for finding 3-D object boundaries∙HFRadarmap - converts HF radar data from radial current vectors to total vectors ∙HFRC - importing, processing and manipulating HF radar data∙Hilbert - Hilbert transform by the rational eigenfunction expansion method∙HMM - hidden Markov models∙HMMBOX - for hidden Markov modeling using maximum likelihood EM∙HUTear - auditory modeling∙ICALAB - signal and image processing using ICA and higher order statistics∙Imputation - analysis of incomplete datasets∙IPEM - perception based musical analysisJMatLink - Matlab Java classesKalman - Bayesian Kalman filterKalman Filter - filtering, smoothing and parameter estimation (using EM) for linear dynamical systemsKALMTOOL - state estimation of nonlinear systemsKautz - Kautz filter designKrigingLDestimate - estimation of scaling exponentsLDPC - low density parity check codesLISQ - wavelet lifting scheme on quincunx gridsLKER - Laguerre kernel estimation toolLMAM-OLMAM - Levenberg Marquardt with Adaptive Momentum algorithm for training feedforward neural networksLow-Field NMR - for exponential fitting, phase correction of quadrature data and slicing LPSVM - Newton method for LP support vector machine for machine learning problems LSDPTOOL - robust control system design using the loop shaping design procedure LS-SVMlabLSVM - Lagrangian support vector machine for machine learning problemsLyngby - functional neuroimagingMARBOX - for multivariate autogressive modeling and cross-spectral estimation MatArray - analysis of microarray dataMatrix Computation- constructing test matrices, computing matrix factorizations, visualizing matrices, and direct search optimizationMCAT - Monte Carlo analysisMDP - Markov decision processesMESHPART - graph and mesh partioning methodsMILES - maximum likelihood fitting using ordinary least squares algorithmsMIMO - multidimensional code synthesisMissing - functions for handling missing data valuesM_Map - geographic mapping toolsMODCONS - multi-objective control system designMOEA - multi-objective evolutionary algorithmsMS - estimation of multiscaling exponentsMultiblock - analysis and regression on several data blocks simultaneously Multiscale Shape AnalysisMusic Analysis - feature extraction from raw audio signals for content-based music retrievalMWM - multifractal wavelet modelNetCDFNetlab - neural network algorithmsNiDAQ - data acquisition using the NiDAQ libraryNEDM - nonlinear economic dynamic modelsNMM - numerical methods in Matlab textNNCTRL - design and simulation of control systems based on neural networks NNSYSID - neural net based identification of nonlinear dynamic systemsNSVM - newton support vector machine for solv ing machine learning problems NURBS - non-uniform rational B-splinesN-way - analysis of multiway data with multilinear modelsOpenFEM - finite element developmentPCNN - pulse coupled neural networksPeruna - signal processing and analysisPhiVis- probabilistic hierarchical interactive visualization, i.e. functions for visual analysis of multivariate continuous dataPlanar Manipulator - simulation of n-DOF planar manipulatorsPRT ools - pattern recognitionpsignifit - testing hyptheses about psychometric functionsPSVM - proximal support vector machine for solving machine learning problems Psychophysics - vision researchPyrTools - multi-scale image processingRBF - radial basis function neural networksRBN - simulation of synchronous and asynchronous random boolean networks ReBEL - sigma-point Kalman filtersRegression - basic multivariate data analysis and regressionRegularization ToolsRegularization Tools XPRestore ToolsRobot - robotics functions, e.g. kinematics, dynamics and trajectory generation Robust Calibration - robust calibration in statsRRMT - rainfall-runoff modellingSAM - structure and motionSchwarz-Christoffel - computation of conformal maps to polygonally bounded regions SDH - smoothed data histogramSeaGrid - orthogonal grid makerSEA-MAT - oceanographic analysisSLS - sparse least squaresSolvOpt - solver for local optimization problemsSOM - self-organizing mapSOSTOOLS - solving sums of squares (SOS) optimization problemsSpatial and Geometric AnalysisSpatial RegressionSpatial StatisticsSpectral MethodsSPM - statistical parametric mappingSSVM - smooth support vector machine for solving machine learning problems STATBAG - for linear regression, feature selection, generation of data, and significance testingStatBox - statistical routinesStatistical Pattern Recognition - pattern recognition methodsStixbox - statisticsSVM - implements support vector machinesSVM ClassifierSymbolic Robot DynamicsTEMPLAR - wavelet-based template learning and pattern classificationTextClust - model-based document clusteringTextureSynth - analyzing and synthesizing visual texturesTfMin - continous 3-D minimum time orbit transfer around EarthTime-Frequency - analyzing non-stationary signals using time-frequency distributions Tree-Ring - tasks in tree-ring analysisTSA - uni- and multivariate, stationary and non-stationary time series analysisTSTOOL - nonlinear time series analysisT_Tide - harmonic analysis of tidesUTVtools - computing and modifying rank-revealing URV and UTV decompositions Uvi_Wave - wavelet analysisvarimax - orthogonal rotation of EOFsVBHMM - variation Bayesian hidden Markov modelsVBMFA - variational Bayesian mixtures of factor analyzersVMT- VRML Molecule Toolbox, for animating results from molecular dynamics experimentsVOICEBOXVRMLplot - generates interactive VRML 2.0 graphs and animationsVSVtools - computing and modifying symmetric rank-revealing decompositions WAFO - wave analysis for fatique and oceanographyWarpTB - frequency-warped signal processingWAVEKIT - wavelet analysisWaveLab - wavelet analysisWeeks - Laplace transform inversion via the Weeks methodWetCDF - NetCDF interfaceWHMT - wavelet-domain hidden Markov tree modelsWInHD - Wavelet-based inverse halftoning via deconvolutionWSCT - weighted sequences clustering toolkitXMLTree - XML parserYAADA - analyze single particle mass spectrum dataZMAP - quantitative seismicity analysis。

基于二维激光扫描仪的人数统计系统设计

基于二维激光扫描仪的人数统计系统设计

基于二维激光扫描仪的人数统计系统设计作者:白青文来源:《计算机光盘软件与应用》2013年第21期摘要:人数统计系统在各个行业有着广泛的应用需求和安全意义,目前主流的技术手段是依靠视频识别、红外感应、RFID技术等,这些技术都存着在应用场景限制、识别效率不高等缺点。

本文提出了一种利用二维激光扫描仪监测通过人数的技术,通过测量行人头顶至肩膀的高度差判断是否有行人通过并计数;通过判断行人通过两个二维激光扫描仪的顺序统计行人行走方向。

关键词:二维激光扫描仪;轮廓监测;人数统计中图分类号:TD171.1781.引言人数统计系统所要实现的目标,是在一定时间内对经过某个地点的人口的数量进行现场记录,为事后的分析和预测提供直接的数据支持。

人数统计系统的应用范围十分广泛,机场、车站、港口、商场、景区、住宅小区等许多行业和单位都有着类似的需求。

从数据的应用效果来说,对特定场所(区域)内的人口总数和流动方向进行统计有着重要的意义:1.1 经济意义在通过人流量统计,可以清晰反映每个进出口、每个楼层上下口、每个区域主要通道的客流量,而这些数据能够提供一个量化分析结果,为招商、运营部门提供谈判、决策的依据。

避免传统的依靠猜测、估计的做法,使管理更加科学。

具体的应用形式举例:招商部门在招商谈判过程中有实际的数据作为谈判的依据,向租户提供客流的数据;分析人流状态、黄金时段,根据客流状况灵活合理安排各部门人员的工作;判断商业组合搭配是否合理、找出店铺规划盲点等。

1.2 安全意义在景区、车站等人流容易聚集的场所,某一区域如果滞留的人数过多,会造成较大的安全隐患,利用人数统计系统,可以通过人流动态的变化,了解人流动线、通道设计,控制楼层、区域拥挤或者堵塞的情形。

可对目标场地内的客流量控制做出一个精确的保安方案,严防由于客流量过多造成意外发生。

2 技术背景目前主流的智能人数统计技术是通过图像分析手段从视频中分析出人数,是一个非常复杂的计算机视觉与人工智能问题。

基于群组与密度的轨迹聚类算法

基于群组与密度的轨迹聚类算法

第47卷第4期Vol.47No.4计算机工程Computer Engineering2021年4月April2021基于群组与密度的轨迹聚类算法俞庆英1,2,赵亚军1,2,叶梓彤1,2,胡凡1,2,夏芸1,2(1.安徽师范大学计算机与信息学院,安徽芜湖241002;2.安徽师范大学网络与信息安全安徽省重点实验室,安徽芜湖241002)摘要:现有基于密度的聚类方法主要用于点数据的聚类,不适用于大规模轨迹数据。

针对该问题,提出一种利用群组和密度的轨迹聚类算法。

根据最小描述长度原则对轨迹进行分段预处理找出具有相似特征的子轨迹段,通过两次遍历轨迹数据集获取基于子轨迹段的群组集合,并采用群组搜索代替距离计算减少聚类过程中邻域对象集合搜索的计算量,最终结合群组和密度完成对轨迹数据集的聚类。

在大西洋飓风轨迹数据集上的实验结果表明,与基于密度的TRACLUS轨迹聚类算法相比,该算法运行时间更短,聚类结果更准确,在小数据集和大数据集上的运行时间分别减少73.79%和84.19%,且运行时间的减幅随轨迹数据集规模的扩大而增加。

关键词:群组;密度;群组可达;邻域搜索;轨迹聚类开放科学(资源服务)标志码(OSID):中文引用格式:俞庆英,赵亚军,叶梓彤,等.基于群组与密度的轨迹聚类算法[J].计算机工程,2021,47(4):100-107.英文引用格式:YU Qingying,ZHAO Yajun,YE Zitong,et al.Trajectory clustering algorithm based on group and density[J]. Computer Engineering,2021,47(4):100-107.Trajectory Clustering Algorithm Based on Group and DensityYU Qingying1,2,ZHAO Yajun1,2,YE Zitong1,2,HU Fan1,2,XIA Yun1,2(1.School of Computer and Information,Anhui Normal University,Wuhu,Anhui241002,China;2.Anhui Provincial Key Laboratory of Network and Information Security,Anhui Normal University,Wuhu,Anhui241002,China)【Abstract】The existing density-based clustering methods are mainly used for point data clustering,and not suitable for large-scale trajectory data.To address the problem,this paper proposes a trajectory clustering algorithm based on group and density. According to the principle of Minimum Description Length(MDL),the trajectories are preprocessed by segments to find out the sub trajectories with similar characteristics.The group set based on the sub trajectories is obtained by traversing the trajectories dataset twice,and the group search is used to replace the distance calculation to reduce the calculation amount required for the neighborhood object set search in the clustering process.Finally,the trajectory data set is clustered by combining the group and density.Experimental results on Atlantic hurricane track dataset show that,compared with the density-based TRACLUS track clustering algorithm,the running time of the proposed algorithm is less and the clustering results are more accurate.The running time on the small dataset and large dataset is reduced by73.79%and84.19%respectively,and the reduction of running time increases with the expansion of track dataset.【Key words】group;density;group reachability;neighborhood search;trajectory clusteringDOI:10.19678/j.issn.1000-3428.00574250概述随着定位、通信和存储技术的快速发展,车辆行驶轨迹数据、用户活动轨迹数据以及飓风轨迹数据等大量移动对象的轨迹数据可被搜集和存储。

车辆轨迹数据的若干处理方法研究

车辆轨迹数据的若干处理方法研究

车辆轨迹数据的若干处理方法研究丁军;张佐;陈洪昕;马晓【摘要】从智能车路协同系统的概念出发,介绍了车路协同系统下的数据采集标准及轨迹数据特点,研究了轨迹数据处理的若干方法,包括车辆轨迹重构、交通参数提取、轨迹聚类等.%As a new stage of Intelligent Transportation System (ITS), Intelligent Vehicle Infrastructure Cooperation System (IVICS) is put forward recently. Starting from the concept of IVICS, this paper first introduces the standards of data collection and their characteristics under vehicle infrastructure cooperation. Then, this paper discusses some methods to process trajectory data including vehicle trajectory reconstruction, traffic parameters extraction, trajectory clustering and so on. The methods mentioned in this paper can provide approaches and ideas for traffic control, guidance, incident detection, etc..【期刊名称】《交通信息与安全》【年(卷),期】2011(029)005【总页数】6页(P10-14,35)【关键词】智能车路协同系统;轨迹数据处理;轨迹重构;轨迹聚类【作者】丁军;张佐;陈洪昕;马晓【作者单位】清华大学自动化系系统工程研究所北京100084;清华大学自动化系系统工程研究所北京100084;清华大学自动化系系统工程研究所北京100084;清华大学自动化系系统工程研究所北京100084【正文语种】中文【中图分类】U491.20 引言近些年来,随着通信技术、无线传感技术、计算机技术和信息处理技术的快速发展,智能车路协同系统(intelligent vehicle infrastructure cooperation system,IVICS)被提出。

基于层次聚类算法的平均航迹构造

基于层次聚类算法的平均航迹构造

基于层次聚类算法的平均航迹构造摘要:以当前航迹数据应用现状及未来对平均航迹的需求作为研究背景,通过对雷达数据的航迹特征分析,采用FastDTW算法以及平均距离度量方法对航迹距离进行计算,建立航迹相似性度量模型,并运用改进的经典层次聚类算法对航迹进行聚类,最后提出平均航迹构造算法,完成平均航迹的构造。

关键词:航迹数据;FastDTW算法;层次聚类;平均航迹虽然当前受“新冠”疫情影响,民航发展遇到阻碍,流量减少,但疫情之前终端区流量与日俱增,且未来疫情结束后,终端区流量也会“井喷式”增加。

流量的增长以及新的导航技术的出现,会使得标准进离场飞行程序与空管人员指挥的实际的进离场航空器飞行轨迹之间出现差异,这种差异程度客观上反映了飞行程序及其组成的航线网络适应变化的交通流量水平的能力。

通过对航空器航迹的聚类分析,不仅可以识别离群航迹或者异常航迹,得到盛行交通流,还能建立代表大量航迹的平均航迹,有利于后续对飞行程序的评估与优化。

一、雷达数据处理目前,二次雷达监视系统在空中交通领域中的应用比较广泛,其能记录并提取大量信息,所以通过二次雷达也可以获得大量的航迹信息。

将终端区提供的原始雷达数据解码后运用linux系统下的Xshell软件对该数据进行整理得到规范的航迹数据。

二、运行航迹特征分析1.航迹数据特征分析由于二次雷达监视设备并不是连续记录信息的,具有一定的扫描周期。

所以航空器的飞行轨迹是离散的航迹点,并且由于飞机的机型不同,性能不同,发动机推力不同导致不同航迹的航迹点不能完全重合。

即每一个进场或离场的航空器都将形成一条由多个离散轨迹点组成的航迹。

2.航迹相似性度量方法目前,在对航迹数据的运行特征进行研究时,多采用欧氏距离作为相似性度量方法,但基于欧氏距离的度量方法对于不等航迹点的航迹数据来讲衡量效果较差。

而动态时间规整(DTW)虽然初期只针对语音进行相似性识别,但经过不断的发展,DTW的应用也扩展到其他领域。

【豆丁-精品】-基于Hausdorff距离的视觉监控轨迹分类算法

【豆丁-精品】-基于Hausdorff距离的视觉监控轨迹分类算法

第39卷 第6期吉林大学学报(工学版) Vol.39 No.6 2009年11月Journal of Jilin University(Engineering and Technology Edition) Nov.2009基于Hausdorff距离的视觉监控轨迹分类算法曲 琳,周 凡,陈耀武(浙江大学数字技术及仪器研究所,杭州310027)摘 要:针对智能视觉监控系统中的运动目标轨迹分类问题,提出了一种基于多维Hausdorff 距离的轨迹聚类算法。

该算法使用流矢量序列描述目标运动轨迹,由多维Hausdorff距离进行轨迹相似性测量,通过谱聚类实现轨迹分类。

该算法在轨迹描述中同时包含位置和方向信息,解决了Hausdorff距离不能区分轨迹运动方向的问题。

为降低计算复杂度,本文还提出一种保距变换对轨迹相似性测量进行优化。

与相关算法的对比实验表明,提出的轨迹分类算法可达到更高的聚类准确率;提出的保距变换可以显著降低算法的计算复杂度。

关键词:人工智能;轨迹分类;Hausdorff距离;谱聚类;保距变换中图分类号:TP391.4 文献标识码:A 文章编号:167125497(2009)0621618207T rajectory lcassif ication based on H ausdorff distancefor visual surveillance systemQU Lin,ZHOU Fan,C H EN Yao2wu(I nstitute of A dvanced Di gital Technology and I nst rument,Zhej iang Universit y,H angz hou310027,China)Abstract:A t rajectory clustering algorit hm based on multi2dimensional Hausdorff distance is proposed for classification of t rajectories of moving object s in intelligent visual surveillance system.First,t he t rajectory of a moving object is described using a sequence of flow vectors.Then t he similarity between t rajectories is measured by t heir respective multi2dimensional Hausdorff distances.Finally, t he t rajectories are clustered by t he spect ral clustering algorit hm.The p roposed algorit hm is different f rom ot her schemes using Hausdorff distance t hat it includes bot h t he positio n and direction information in t he flow vectors;hence it can distinguish t he t rajectories in different directions.A distance p reserving t ransformation is also p roposed to reduce t he comp utational complexity of t he similarity measure.Experimental result s show t hat,comparing wit h ot her algorit hm,t he clustering accuracy of t he proposed algorit hm is better,and t he p ropo sed distance p reserving t ransformation can greatly reduce t he comp utational co st.K ey w ords:artificial intelligence;t rajectory classification;Hausdorff distance;spect ral clustering; distance preserving t ransformation收稿日期:2008203212.基金项目:“863”国家高技术研究发展计划项目(2003AA1Z2130);浙江省重大科技攻关项目(2005C11001202).作者简介:曲琳(1979-),男,博士研究生.研究方向:嵌入式系统,计算机视觉,模式识别.E2mail:tsulin@;tsu_lin@通信作者:陈耀武(1963-),男,教授,博士生导师.研究方向:嵌入式系统,智能信息处理,网络多媒体技术.E2mail:cyw@第6期曲 琳,等:基于Hausdorff距离的视觉监控轨迹分类算法 基于视觉的智能监控系统是计算机视觉的一个新兴研究方向,其主要研究内容包括运动检测、目标跟踪、目标分类和目标行为理解[122]。

实操:hysplit后向轨迹模型

实操:hysplit后向轨迹模型

实操:利用Hysplit绘制后向轨迹图本文主要从如何下载气象数据、如何聚类分析、如何更换自动出图的后向轨迹底图、如何叠加各方向来源的污染物浓度图几个方面进行介绍。

类似下图。

一、提前下载安装离线版hysplit软件直接在美国国家海洋和大气管理局选择适合自己电脑的版本,网址https:///documents/Tutorial/html/index.html二、气象数据的准备(当时气象数据的下载走了很多弯路,因为不知道怎么下载,下载多少数据够用。

一旦你数据准备没做好,后面跑模型很容易出问题)①、ftp数据下载网址:ftp:///pub/archives/gdas1.v1/(需要注意有的时候这个网址没法直接进去,则需要挂vpn)③、一般根据你的采样时间及你想做的后向轨迹后推时间确定下载的文件个数比如,你的采样时间是2018年7月1日-7月30,然后做的72小时后向轨迹模型分析,2018年7月1日后推三天的时间是6月28,所以你下载数据的时候,起始文件应该是2018年6月28所在周的文件,即gdas1.jun18.w5,同理可以得到结束文件是gdas1.jul18.w4(为了使得运行更顺利,一般可以在起始文件和结束文件前、后再多下载一个周的数据文件),所以我们需要下载的数据文件有:gdas1.jun18.w4,gdas1.jun18.w5,gdas1.jul18.w1,gdas1.jul18.w2,gdas1.jul18.w3,gdas1.jul18.w4,gdas1.jul18.w5三、按所需时间段批量计算后退气流轨迹①、初始参数设置:打开Hysplit主界面->“Trajectory"->“Setup Run”②、参数设置:(1)starting time(采样开始时间):按年月日小时的顺序输入起始时间,注意空格。

(2)起始位置的数量:一般填1,同时点击右侧的Setup starting location,填写坐标经纬度以及起始高度,(经纬度用小数表示,高度用100、500、1000)。

经济学人原文阅读

经济学人原文阅读

经济学⼈原⽂阅读经济学⼈原⽂阅读2020/2/17The Chinese coronavirusTime and againA new virus is spreading.Fortunately, the world is better prepared than ever to stop itAs The Economist went to press, over 600 cases had been confirmed in six countries, of which 17 were fatal. The new virus is a close relative of sars (severe acute respiratory syndrome), which emerged in China in 2002 and terrorised the world for over half a year before burning out. sars afflicted more than 8,000 people and killed about 800, leaving in its wake $30bn-100bn of damage from disrupted trade and travel.That toll would have been lower if the Chinese authorities had not hushed up the outbreak for months. But things are very different this time. The Chinese have been forthcoming and swift to act. Doctors in Wuhan, the metropolis where it began, have come in for criticism, but the signs are that they promptly sounded an alarm about an unusual cluster of cases of pneumonia—thereby following a standard protocol协议 for spotting new viruses.The WHO has long worried about the possible emergence of a “disease x” that could become a serious international pandemic and which has no known counter-measures. Some experts say the virus found in China could be a threat of this kind. And there will be many others. Further illnesses will follow the same well-trodden path, by mutating from bugs that live in animals into ones that can infect people. Better vigilance in places where humans and animals mingle, as they do in markets across Asia, would help catch viral newcomers early. A tougher task is dissuading people from eating wild animals and convincing them to handle livestock with care, using masks and gloves when butchering meat and fish, for example. Such measures might have prevented the new coronavirus from ever making headlines.2020/2/18The apotheosis of Chinese cuisine in AmericaIts upward trajectory reflects the Chinese-American community’sChinese restaurants began to open in America in the mid-19th century, clustering on the west coast where the first immigrants landed.They mostly served an Americanised version of Cantonese cuisine—chop suey, egg fu yung and the like. In that century and much of the 20th, the immigrants largely came from China’s south-east, mainly Guangdong province.After the immigration reforms of 1965 removed ethnic quotas that limited non-European inflows, Chinese migrants from other regions started to arrive.Restaurants began calling their food “Hunan” and “Sichuan”, and though it rarely bore much resemblance to what was actually eaten in those regions, it was more diverse and boldly spiced than the sweet, fried stuff that defined the earliest Chinese menus.By the 1990s adventurous diners in cities with sizeable Chinese populations could choose from an array of regional cuisines. A particular favourite was Sichuan food, with its addictively numbing fire (the Sichuan peppercorn has a slightly anaesthetising, tongue-buzzing effect).Yet over the decades, as Chinese food became ubiquitous, it also—beyond the niche world of connoisseurs—came to be standardised. There are almost three times as many Chinese restaurants in America (41,000) as McDonald’s.Virtually every small town has one and, generally, the menus are consistent: pork dumplings (steamed or fried); the same two soups (hot and sour, wonton); stir-fries listed by main ingredient, with a pepper icon or star indicating a meagre trace of chilli-flakes. Dishes over $10 are grouped under “chef’s specials”.There are modest variations: in Boston, takeaways often come with bread and feature a dark, molasses-sweetened sauce; a Chinese-Latino creole cuisine developed in upper Manhattan. But mostly you can, as at McDonald’s, order the same thing in Minneapolis as in Fort Lauderdale.2020/2/19Obituary Li Wenliang The man who knewDr Li Wenliang, one of the first to raise the alarm about a new coronavirus, died of it on February 7th, aged 33Busy though he was as an ophthalmologist at Wuhan Central hospital, rushed off his feet, Li Wenliang never missed a chance to chat about his favourite things on Weibo. Food, in particular.Since he shared every passing observation online, it was not surprising that on December 30th he put up a post about an odd cluster of pneumonia cases at the hospital. They were unexplained, but the patients were in quarantine, and they had all worked in the same place, the pungent litter-strewn warren of stalls that made up the local seafood market. Immediately this looked like person-to-person transmission to him, even if it might have come initially from bats, or some other delicacy. Immediately, too, it raised the spectre of the sars virus of 2002-03 which had killed more than 700 people. He therefore decided to warn his private WeChat group, all fellow alumni from Wuhan University, to take precautions. He headed the post: “Seven cases of sars in the Huanan Wholesale Seafood Market”. That was his mistake.The trouble was that he did not know whether it was actually sars. He had posted it too fast. In an hour he corrected it, explaining that although it was a coronavirus, like sars, it had not been identified yet. But to his horror he was too late: his first post had already gone viral, with his name and occupation undeleted, so that in the middle of the night he was called in for a dressing down at the hospital, and January 3rd he was summoned to the police station.On January 8th an 82-year-old patient presented with acute angle-closure glaucoma and, because she had no fever, he treated her without a mask. She too turned out to run a stall in the market, and she had other odd symptoms, including loss of appetite and pulmonary lesions suggesting viral pneumonia. It was the new virus, and by January 10th he had begun to cough. The next day he put an n95 mask on. Not wanting to infect the family, he sent them to his in-laws 200 miles away, and checked into a hotel. He was soon back in the hospital, this time in an isolation ward. On February 1st a nucleic-acid test showed positive for the new coronavirus. Well, that’s it then, confirmed, he wrote on Weibo from his bed.2020/2/20Japan’s state-owned version of TinderLocal authorities are setting up matchmaking websites to pair their residents with lonely-hearts in the citiesEven after years of attending match-making parties, a professional in Tokyo explains, she has not found any suitable marriage prospects. “I’m tired of going to these events and not meeting anyone,” she gripes.So she has decided to expand her pool of prospective partners by looking for love outside the capital. To that end she has filled out an online profile detailing her name, job, hobbies and even weight on a match-making site that pairs up single urbanites with people from rural areas.Match-making services that promote iju konkatsu, meaning “migration spouse-hunting”, are increasingly common in Japan. They are typically operated by an unlikely marriage-broker: local governments.In Akita, a prefecture near the northern tip of Japan’s main island, the local government has long managed an online match-making service to link up local lonely-hearts. It claims to have successfully coupled up more than 1,350 Akita residents since it launched nine years ago.It recently began offering a similar service to introduce residents to people living outside the prefecture and is optimistic about its prospects. “By using the konkatsu site, we hope that more people from outside will marry someone from Akita to come and live here,” says Rumiko Saito of the Akita Marriage Support Centre.Along with online matching services, municipalities across Japan host parties to help singles mingle. They also organise subsidised group tours in rural prefectures, in which half the participants are locals and the other half from cities, to encourage urbanites to marry and move to the countryside. Hundreds of singletons participate in these tours every year.The difficulty of finding true love in the countryside is compounded by a gender mismatch. In 80% of prefectures with declining populations, young women are more likely than men to relocate to cities.This means that whereas there are more single women than men in big cities like Tokyo, bachelors outnumber spinsters in rural areas. Many men in the countryside are “left behind”, laments a government official in Akita.2020/2/22Many Chinese students are frightened of studying abroadSome pay ex-commandos to teach them how to avoid mass shootings in America, sayTheir fear is not of ideological contamination, but of the petty crime and shootings that China’s state media highlight as a scourge of Western societies. For Wang Xuejun, this is an opportunity. A veteran of Chinese peacekeeping and international relief work, he is the founder of Safety Anytime, a company that runs security-training programmes for anxious Chinese who are preparing to sojourn abroad. His customers are taught how to respond to gun-toting assailants, kidnapping attempts and terrorist attacks, among other perils. But the bulk of the training focuses on safety consciousness: how to be aware of more mundane dangers such as muggings or pick-pocketing and how to avoid or cope with them. There are also lessons in first aid, information security and drugs laws, plus advice on how to handle fraud and sexual harassment.The clients include not just Chinese students, more than 660,000 of whom went abroad last year, but also workers from the many Chinese energy, telecoms, finance and engineering companies that send employees abroad as part of China’s Belt and Road Initiative. That project, a sprawling scheme to build infrastructure and spread influence across much of the poor world, has put ever more Chinese into some of the world’s riskier places.Many of the students are heading off to leafy college campuses in America rather than strife-torn African countries, but they are still extremely anxious. With relentless regularity, they see reports of senseless and deadly mass shootings in American cities. Mr Wang stresses that his training is about much more than avoiding crazed gunmen, but that is the main draw for many of his trainees. “I hope to go to university in America, but we always hear so much about gun violence there that I really have to take it into consideration,”says 15-year-old Cao Zhen, as his mother stands alongside nodding in agreement.。

【浙江省自然科学基金】_聚类算法_期刊发文热词逐年推荐_20140813

【浙江省自然科学基金】_聚类算法_期刊发文热词逐年推荐_20140813

53 54 55 56 57 58 59 60 61
云检测 主成分分析 主元分析 个性化推荐 k-中心聚类算法 dbscan算法 bp神经网络 2级温度预测模型 0-1规划
1 1 1 1 1 1 1 1 1
2011年 科研热词 聚类 主题 高维查询 邻接矩阵 运动模式挖掘 超节点 质心片 评级结果评价 设计参数 聚类分析 网络舆情 粗糙集 移动通信系统 移动机器人导航 社区发现 知识约简 热点发现 模糊聚类 概率范围查询 无线传感器网络 差分进化 局部特征 完全子图 多模优化 复杂网络 增量式学习 基金评级 基站位置 场景识别 图像分类 因子分析 向量空间模型 协同过滤 分片 分布模型 兴趣域 共词矩阵 共词分析 位置感知 产品族 两层在线学习 不确定超球 tf-idf svm q学习 n阶近邻 k-means聚类 k-means k--means聚类 bisecting art2 推荐指数 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2008年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
科研热词 推荐指数 图像分割 3 遗传算法 2 谱聚类 2 预测模型 1 顾客需求 1 配置设计 1 遗传函数算法 1 辐射度 1 规划 1 蚁群算法 1 芒果 1 聚类数 1 聚类 1 网格模型 1 网格分片 1 纹理分割 1 磁共振图像 1 灰度特征 1 泊松形状信号 1 模糊c均值聚类 1 构效关系 1 杀菌活性 1 服装销售 1 无线传感器网络 1 方向分形维 1 定量构效关系 1 可见/近红外光谱 1 可拓聚类 1 可拓变换 1 双向纹理函数 1 压缩 1 动态聚类 1 分簇算法 1 分子设计 1 分子力场分析 1 冲突消解 1 偏最二乘法 1 体素 1 人工神经网络 1 产品族 1 亚胺类杀菌剂 1 gpu 1 cure算法 1 c4.5决策树 1 2-烷氧基-4(3h)-喹唑啉酮 1

一种基于时序的层次轨迹聚类算法

一种基于时序的层次轨迹聚类算法

一种基于时序的层次轨迹聚类算法
冷泳林;鲁富宇
【期刊名称】《重庆理工大学学报》
【年(卷),期】2017(031)003
【摘要】聚类相似的运动轨迹,获取对象主要运动特征是轨迹路径聚类的目标之一。

本文针对轨迹路径数据量大、传统整体轨迹聚类算法效率低等问题,提出了一种基
于时序的层次轨迹聚类算法(hierarchical trajectory clustering algorithm based on time series,HTCTS)。

算法首先将完整的轨迹数据按一定的时间间隔进行分割,然后对分割的子路径分别聚类,最后在对聚类子集进行二次聚类,生成最终的聚类结果。

实验结果表明:HTCTS算法在聚类效率和聚类质量上高于整体轨迹聚类算法。

【总页数】6页(P123-127,157)
【作者】冷泳林;鲁富宇
【作者单位】渤海大学信息科学与技术学院;渤海大学教务处
【正文语种】中文
【中图分类】TP311
【相关文献】
1.一种基于时序的层次轨迹聚类算法
2.一种基于时序的层次轨迹聚类算法
3.一种基于高斯混合模型的海上浮标轨迹聚类算法
4.iBTC:一种基于独立森林的移动对象轨
迹聚类算法5.一种基于时序性告警的新型聚类算法
因版权原因,仅展示原文概要,查看原文内容请购买。

移动对象轨迹时空相似性度量方法

移动对象轨迹时空相似性度量方法

万方数据102010,46(29)ComputerEngineeringandApplications算机工程与应用道路的空间连通度。

由于对轨迹相似性度量主要依赖于轨迹间距离的定义,所以将欧氏空间中对相似度的测量用在路网空间中是不合适的。

第二,轨迹的时空语义不同。

当处于同一路段的移动对象轨迹因时间区间不同而不应该具有时空相似性,同时相同时间区间的移动对象以不同方向的轨迹进行运动也不应该具有时空相似性。

第三,移动对象在不同的道路上运行轨迹也可能具有不同的相似性,如相同路段的移动对象在空中立交桥与桥下移动时应该作为不同的轨迹进行处理。

由于道路网络空间的特殊性质,在路网空间中查询相似轨迹的方法应不同于文献[5.6]中所采用的基于欧氏空间的方法。

为了解决这一问题,通过语义信息建立道路网络空间的轨迹,并提出将其从路网空间映射到欧氏空问中的转换方法。

研究思路基于以下两点考虑:第一,为保证路网空间中轨迹处理的正确性,同时利用欧氏空间轨迹处理简单易于实现的优点,提出的方法应该是以从路网空间到欧氏空间转换模型为基础进行的。

第二,应同时考虑移动对象轨迹的时空相似度和空间相似度。

基于此,提出一个路网空间中轨迹相似性测量方法,并同时兼顾轨迹的时间属性及空间特性。

2相关工作除介绍路网空间上关于移动对象的相关研究工作之外,进一步对路网空间和欧氏空间中移动对象相似性的特征进行讨论,并对这些问题进行分析。

在移动对象轨迹相似性查询的研究中必须要解决两个问题:(1)移动对象轨迹的表示。

(2)轨迹相似度的度量定义。

对于第—个问题,Li等“7提出了以8个方向来表示移动对象轨迹的方法,如,北(NT),西北(NW),东北(NE),西(wT),西南(SW),东(ET),东南(sE),以及南(w)。

此外在文献【8】中提出了另一种轨迹模型,这种模型考虑了多粒度的地理空间生命线。

这些都是在欧氏空间中处理移动对象的方法。

然而,在实际中的大多数移动对象,如,车辆、火车都是在路网空间中,而不是在欧氏空间中。

基于稀疏轨迹聚类的旅游目的地位置预测方法

基于稀疏轨迹聚类的旅游目的地位置预测方法

On the Location Prediction of Tourist Destinations Based on Sparse Trajectory Clustering 作者: 刘涵[1]
作者机构: [1]亳州职业技术学院管理学系,安徽亳州236800
出版物刊名: 河北北方学院学报:社会科学版
页码: 46-50页
年卷期: 2021年 第3期
主题词: 稀疏轨迹聚类算法;旅游目的地;马尔可夫链;熵估计算法
摘要:生成对抗网络预测方法与行人轨迹预测模型在进行旅游目的地位置预测时都会受到旅游者偏好的影响,导致旅游线路具有一定的重复性,旅游目的地位置预测效果不理想.为此,提出基于稀疏轨迹聚类的旅游目的地位置预测方法.实验结果显示,该方法的平均预测偏离阈值降至222.12 m,表明该方法能够提升旅游目的地位置预测的准确性.。

Matlab的第三方工具箱全套整合(强烈推荐)

Matlab的第三方工具箱全套整合(强烈推荐)
CompEcon- solving problems in economics and finance
Complex- for estimating temporal and spatial signal complexities
Computational Statistics
Coral- seismic waveform analysis
2007-8-2915:04
#1
littleboy
助理工程师
精华0
积分49
帖子76
水位164
技术分0
JMatLink- Matlab Java classes
Kalman- Bayesian Kalman filter
Kalman Filter- filtering, smoothing and parameter estimation (using EM) for linear dynamical systems
DMsuite- differentiation matrix suite
DMTTEQ- design and test time domain equalizer design methods
DrawFilt- drawing digitaland analog filters
DSFWAV- spline interpolation with Dean wave solutions
FSBOX- stepwise forward and backward selection of features using linear regression
GABLE- geometric algebra tutorial
GAOT- genetic algorithm optimization

S T A P L E 目 标 跟 踪 算 法

S T A P L E 目 标 跟 踪 算 法

目标跟踪相关资源(含模型,CVPR2017论文,代码,牛人等)Visual TrackersECO: Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, Michael Felsberg. "ECO: Efficient Convolution Operators for Tracking." CVPR (2017). [paper] [project] [github]CFNet: Jack Valmadre, Luca Bertinetto, Jo?o F. Henriques, Andrea Vedaldi, Philip H. S. Torr. "End-to-end representation learning for Correlation Filter based tracking." CVPR (2017). [paper] [project] [github]CACF: Matthias Mueller, Neil Smith, Bernard Ghanem. "Context-Aware Correlation Filter Tracking." CVPR (2017 oral). [paper] [project] [code]RaF: Le Zhang, Jagannadan Varadarajan, Ponnuthurai Nagaratnam Suganthan, Narendra Ahuja and Pierre Moulin "Robust Visual Tracking Using Oblique Random Forests." CVPR (2017). [paper] [project] [code]MCPF: Tianzhu Zhang, Changsheng Xu, Ming-Hsuan Yang. "Multi-task Correlation Particle Filter for Robust Visual Tracking ." CVPR (2017). [paper] [project] [code]ACFN: Jongwon Choi, Hyung Jin Chang, Sangdoo Yun, Tobias Fischer, Yiannis Demiris, and Jin Young Choi. "Attentional Correlation Filter Network for Adaptive Visual Tracking." CVPR (2017) [paper] [project] [test code)][training code]LMCF: Mengmeng Wang, Yong Liu, Zeyi Huang. "Large Margin Object Tracking with Circulant Feature Maps." CVPR (2017). [paper] [zhihu]ADNet: Sangdoo Yun, Jongwon Choi, Youngjoon Yoo, Kimin Yun, Jin Young Choi. "Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning ." CVPR (2017). [paper] [project]CSR-DCF: Alan Luke?i?, Tomá? Vojí?, Luka ?ehovin, Ji?í Matas, Matej Kristan. "Discriminative Correlation Filter with Channel and Spatial Reliability." CVPR (2017). [paper][code]BACF: Hamed Kiani Galoogahi, Ashton Fagg, Simon Lucey. "Learning Background-Aware Correlation Filters for Visual Tracking." CVPR (2017). [paper]Bohyung Han, Jack Sim, Hartwig Adam "BranchOut: Regularization for Online Ensemble Tracking with Convolutional Neural Networks." CVPR (2017).SANet: Heng Fan, Haibin Ling. "SANet: Structure-Aware Network for Visual Tracking." CVPRW (2017). [paper] [project] [code]DNT: Zhizhen Chi, Hongyang Li, Huchuan Lu, Ming-Hsuan Yang. "Dual Deep Network for Visual Tracking." TIP (2017). [paper]DRT: Junyu Gao, Tianzhu Zhang, Xiaoshan Yang, Changsheng Xu. "Deep Relative Tracking." TIP (2017). [paper]BIT: Bolun Cai, Xiangmin Xu, Xiaofen Xing, Kui Jia, Jie Miao, Dacheng Tao. "BIT: Biologically Inspired Tracker." TIP (2016). [paper] [project][github]SiameseFC: Luca Bertinetto, Jack Valmadre, Jo?o F. Henriques, Andrea Vedaldi, Philip H.S. Torr. "Fully-Convolutional Siamese Networks for Object Tracking." ECCV workshop (2016). [paper] [project] [github]GOTURN: David Held, Sebastian Thrun, Silvio Savarese. "Learning to Track at 100 FPS with Deep Regression Networks." ECCV (2016). [paper] [project] [github]C-COT: Martin Danelljan, Andreas Robinson, Fahad Khan, Michael Felsberg. "Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking." ECCV (2016). [paper] [project] [github]CF+AT: Adel Bibi, Matthias Mueller, and Bernard Ghanem. "Target Response Adaptation for Correlation Filter Tracking." ECCV (2016). [paper] [project]MDNet: Nam, Hyeonseob, and Bohyung Han. "Learning Multi-Domain Convolutional Neural Networks for Visual Tracking." CVPR (2016). [paper] [VOT_presentation] [project] [github]SINT: Ran Tao, Efstratios Gavves, Arnold W.M. Smeulders. "Siamese Instance Search for Tracking." CVPR (2016). [paper] [project]SCT: Jongwon Choi, Hyung Jin Chang, Jiyeoup Jeong, Yiannis Demiris, and Jin Young Choi. "Visual Tracking Using Attention-Modulated Disintegration and Integration." CVPR (2016). [paper] [project]STCT: Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu. "STCT: Sequentially TrainingConvolutional Networks for Visual Tracking." CVPR (2016). [paper] [github]SRDCFdecon: Martin Danelljan, Gustav H?ger, Fahad Khan, Michael Felsberg. "Adaptive Decontamination of the Training Set: A Unified Formulation for Discriminative Visual Tracking." CVPR (2016). [paper] [project]HDT: Yuankai Qi, Shengping Zhang, Lei Qin, Hongxun Yao, Qingming Huang, Jongwoo Lim, Ming-Hsuan Yang. "Hedged Deep Tracking." CVPR (2016). [paper] [project]Staple: Luca Bertinetto, Jack Valmadre, Stuart Golodetz, Ondrej Miksik, Philip H.S. Torr. "Staple: Complementary Learners for Real-Time Tracking." CVPR (2016). [paper] [project] [github]DLSSVM: Jifeng Ning, Jimei Yang, Shaojie Jiang, Lei Zhang and Ming-Hsuan Yang. "Object Tracking via Dual Linear Structured SVM and Explicit Feature Map." CVPR (2016). [paper] [code] [project]CNT: Kaihua Zhang, Qingshan Liu, Yi Wu, Minghsuan Yang. "Robust Visual Tracking via Convolutional Networks Without Training." TIP (2016). [paper] [code]DeepSRDCF: Martin Danelljan, Gustav H?ger, Fahad Khan, Michael Felsberg. "Convolutional Features for Correlation Filter Based Visual Tracking." ICCV workshop (2015). [paper] [project]SRDCF: Martin Danelljan, Gustav H?ger, Fahad Khan, Michael Felsberg. "Learning Spatially Regularized Correlation Filters for Visual Tracking." ICCV (2015). [paper][project]CNN-SVM: Seunghoon Hong, Tackgeun You, Suha Kwak and Bohyung Han. "Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network ." ICML (2015) [paper] [project]CF2: Chao Ma, Jia-Bin Huang, Xiaokang Yang and Ming-Hsuan Yang. "Hierarchical Convolutional Features for Visual Tracking." ICCV (2015) [paper] [project] [github]FCNT: Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu. "Visual Tracking with Fully Convolutional Networks." ICCV (2015). [paper] [project] [github]LCT: Chao Ma, Xiaokang Yang, Chongyang Zhang, Ming-Hsuan Yang. "Long-term Correlation Tracking." CVPR (2015). [paper] [project] [github]RPT: Yang Li, Jianke Zhu and Steven C.H. Hoi. "Reliable Patch Trackers: Robust Visual Tracking by Exploiting Reliable Patches." CVPR (2015). [paper] [github]CLRST: Tianzhu Zhang, Si Liu, Narendra Ahuja, Ming-Hsuan Yang, Bernard Ghanem."Robust Visual Tracking Via Consistent Low-Rank Sparse Learning." IJCV (2015). [paper] [project] [code]DSST: Martin Danelljan, Gustav H?ger, Fahad Shahbaz Khan and Michael Felsberg. "Accurate Scale Estimation for Robust Visual Tracking." BMVC (2014). [paper] [PAMI] [project]MEEM: Jianming Zhang, Shugao Ma, and Stan Sclaroff. "MEEM: Robust Tracking via Multiple Experts using Entropy Minimization." ECCV (2014). [paper] [project]TGPR: Jin Gao,Haibin Ling, Weiming Hu, Junliang Xing. "Transfer Learning Based Visual Tracking with Gaussian Process Regression." ECCV (2014). [paper] [project]STC: Kaihua Zhang, Lei Zhang, Ming-Hsuan Yang, David Zhang. "Fast Tracking via Spatio-Temporal Context Learning." ECCV (2014). [paper] [project]SAMF: Yang Li, Jianke Zhu. "A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration." ECCV workshop (2014). [paper] [github]KCF: Jo?o F. Henriques, Rui Caseiro, Pedro Martins, Jorge Batista. "High-Speed Tracking with Kernelized Correlation Filters." TPAMI (2015). [paper] [project]OthersRe3: Daniel Gordon, Ali Farhadi, Dieter Fox. "Re3 : Real-Time Recurrent Regression Networks for Object Tracking." arXiv (2017). [paper] [code]DCFNet: Qiang Wang, Jin Gao, Junliang Xing, Mengdan Zhang, Weiming Hu. "Modeling and Propagating CNNs in a Tree Structure for Visual Tracking." arXiv (2017). [paper] [code]TCNN: Hyeonseob Nam, Mooyeol Baek, Bohyung Han. "Modeling and Propagating CNNs in a Tree Structure for Visual Tracking." arXiv (2016). [paper] [code]RDT: Janghoon Choi, Junseok Kwon, Kyoung Mu Lee. "Visual Tracking by Reinforced Decision Making." arXiv (2017). [paper]MSDAT: Xinyu Wang, Hanxi Li, Yi Li, Fumin Shen, Fatih Porikli . "Robust and Real-time Deep Tracking Via Multi-Scale DomainAdaptation." arXiv (2017). [paper]RLT: Da Zhang, Hamid Maei, Xin Wang, Yuan-Fang Wang. "Deep Reinforcement Learning for Visual Object Tracking in Videos." arXiv (2017). [paper]SCF: Wangmeng Zuo, Xiaohe Wu, Liang Lin, Lei Zhang, Ming-Hsuan Yang. "Learning Support Correlation Filters for Visual Tracking." arXiv (2016). [paper] [project]DMSRDCF: Susanna Gladh, Martin Danelljan, Fahad Shahbaz Khan, Michael Felsberg. "Deep Motion Features for Visual Tracking." ICPR Best Paper (2016). [paper]CRT: Kai Chen, Wenbing Tao. "Convolutional Regression for Visual Tracking." arXiv (2016). [paper]BMR: Kaihua Zhang, Qingshan Liu, and Ming-Hsuan Yang. "Visual Tracking via Boolean Map Representations." arXiv (2016). [paper]YCNN: Kai Chen, Wenbing Tao. "Once for All: a Two-flow Convolutional Neural Network for Visual Tracking." arXiv (2016). [paper]Learnet: Luca Bertinetto, Jo?o F. Henriques, Jack Valmadre, Philip H. S. Torr, Andrea Vedaldi. "Learning feed-forward one-shot learners." NIPS (2016). [paper]ROLO: Guanghan Ning, Zhi Zhang, Chen Huang, Zhihai He, Xiaobo Ren, Haohong Wang. "Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking." arXiv (2016). [paper] [project] [github]Yao Sui, Ziming Zhang, Guanghui Wang, Yafei Tang, Li Zhang. "Real-Time Visual Tracking: Promoting the Robustness ofCorrelation Filter Learning." ECCV (2016). [paper] [project]Yao Sui, Guanghui Wang, Yafei Tang, Li Zhang. "Tracking Completion." ECCV (2016). [paper] [project]EBT: Gao Zhu, Fatih Porikli, and Hongdong Li. "Beyond Local Search: Tracking Objects Everywhere with Instance-Specific Proposals." CVPR (2016). [paper] [exe]RATM: Samira Ebrahimi Kahou, Vincent Michalski, Roland Memisevic. "RATM: Recurrent Attentive Tracking Model." arXiv (2015). [paper] [github]DAT: Horst Possegger, Thomas Mauthner, and Horst Bischof. "In Defense of Color-based Model-free Tracking." CVPR (2015). [paper] [project] [code]RAJSSC: Mengdan Zhang, Junliang Xing, Jin Gao, Xinchu Shi, Qiang Wang, Weiming Hu. "Joint Scale-Spatial Correlation Tracking with Adaptive Rotation Estimation." ICCV workshop (2015). [paper] [poster]SO-DLT: Naiyan Wang, Siyi Li, Abhinav Gupta, Dit-Yan Yeung. "Transferring Rich Feature Hierarchies for Robust Visual Tracking." arXiv (2015). [paper] [code]DLT: Naiyan Wang and Dit-Yan Yeung. "Learning A Deep Compact Image Representation for Visual Tracking." NIPS (2013). [paper] [project] [code]Naiyan Wang, Jianping Shi, Dit-Yan Yeung and Jiaya Jia. "Understanding and Diagnosing Visual Tracking Systems." ICCV (2015). [paper] [project] [code]Dataset-MoBe2016:Luka ?ehovin, Alan Luke?i?, Ale? Leonardis, Matej Kristan. "Beyond standard benchmarks: Parameterizing performance evaluation in visual object tracking." arXiv (2016). [paper]Dataset-UAV123: Matthias Mueller, Neil Smith and Bernard Ghanem. "A Benchmark and Simulator for UAV Tracking." ECCV (2016) [paper] [project] [dataset]Dataset-TColor-128: Pengpeng Liang, Erik Blasch, Haibin Ling. "Encoding color information for visual tracking: Algorithms and benchmark." TIP (2015) [paper] [project] [dataset]Dataset-NUS-PRO: Annan Li, Min Lin, Yi Wu, Ming-Hsuan Yang, and Shuicheng Yan. "NUS-PRO: A New Visual Tracking Challenge." PAMI (2015) [paper] [project] [Data_360(code:bf28)]?[Data_baidu]][View_360(code:515a)]?[View_baidu]]Dataset-PTB: Shuran Song and Jianxiong Xiao. "Tracking Revisited using RGBD Camera: Unified Benchmark and Baselines." ICCV (2013) [paper] [project] [5 validation] [95 evaluation]Dataset-ALOV300+: Arnold W. M. Smeulders, Dung M. Chu, Rita Cucchiara, Simone Calderara, Afshin Dehghan, Mubarak Shah. "Visual Tracking: An Experimental Survey." PAMI (2014) [paper] [project]?Mirror Link:ALOV300++ Dataset?Mirror Link:ALOV300++ GroundtruthDataset-DTB70: Siyi Li, Dit-Yan Yeung. "Visual Object Tracking for Unmanned Aerial Vehicles: A Benchmark andNew Motion Models." AAAI (2017) [paper] [project] [dataset]Dataset-VOT: [project][VOT13_paper_ICCV]The Visual Object Tracking VOT2013 challenge results[VOT14_paper_ECCV]The Visual Object Tracking VOT2014 challenge results[VOT15_paper_ICCV]The Visual Object Tracking VOT2015 challenge results[VOT16_paper_ECCV]The Visual Object Tracking VOT2016 challenge results深度学习方法(Deep Learning Method)由于其独有的优越性成为当前研究的热点,各种框架和算法层出不穷,这在前文的目标检测部分都有较为详细的介绍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Robust Online Trajectory Clustering without Computing Trajectory Distances Michael Ulm,Norbert Br¨a ndleAustrian Institute of Technology,Mobility Department {Michael.Ulm|Norbert.Braendle}@ait.ac.atAbstractWe propose a novel trajectory clustering algorithm which is suitable for online processing of pedestrian or vehicle trajectories computed with a vision-based tracker.Our approach does not require defining dis-tances between trajectories,and can thus process bro-ken trajectories which are inevitable in most cases when object trackers are applied to real world video footage.Clusters are defined as smooth vectorfields on a bounded connected set,and cluster distance is based on pairwise distances between vector sets.The results are illustrated on a trajectory set from the Edinburgh In-formatics Forum Pedestrian Dataset,on a trajectory set from a public transport junction,and trajectories from an experimental setup in a corridor.1.IntroductionRecent years saw a dramatic increase in use of video technology for movement analysis in applications such as security and traffic analysis.Monitoring and analyz-ing such video data has become an exceedingly chal-lenging task.End users often desire automatic methods to distinguish between normal and abnormal behavior of individuals.Since people movement in an examined location may shift over time,such abnormal behavior detectors should cope with dynamic scenes.Input data often comes from video devices as a continuous stream, requiring online methods that are incremental in nature.Many approaches are based on clustering trajectory data extracted with a detector/tracker combination and concentrate on distance measures between trajectories [1,2,6,7].Such trajectory clustering approaches work well in simple scenes,but have problems in many real-world scenes,for which currently available object track-ers produce noisy and broken trajectories.Figure1 shows a snapshot of the results of a commercially avail-able HOG-inspired people tracker[9].More globalap-Figure1.Noisy and broken people trajec-tories computed on corridor surveillancefootageproaches targeting at motion segmentation can usually deal with more noisy data[10,11,12],but are difficult to generalize to dynamic scenes.A classic approach to online clustering is described in[8].Their idea of a rep-resentative trajectory for each cluster,however,is not applicable to most real-world data from object trackers. An online algorithm capable of dealing with noisy and broken trajectories is provided in[4].Their two-step approach,however,throws away global information on the trajectories and so can easily lead to false positives.In the following we present a novel approach that is able to deal with broken and noisy trajectories.Sec-tion2describes the concept of the algorithm,and Sec-tion3provides experimental results on three datasets.2.Proposed AlgorithmIn order to overcome the problem of computing dis-tances between trajectories,we introduce a new inter-pretation of a trajectory cluster.We define a trajectory cluster as a bounded,connected setΩtogether with a21st International Conference on Pattern Recognition (ICPR 2012) November 11-15, 2012. Tsukuba, Japansmooth vectorfieldφ:Ω→R.We represent a cluster as a set of unit length vectors,each given by a starting point and a direction.In addition,each vector records the number of trajectories that were used in its compu-tation as a weight factor.The clusters are constructed in such a way that the starting points are distributed evenly throughout the support of the cluster.A trajectory can then be trans-formed into a cluster via spatial subsampling.Given two vector sets V1and V2,we define the di-rected distance¯δ(V1,V2)between them as¯δ(V1,V2)=11v1∈V1minv2∈V2d(v1,v2),(1)where d is a weighted Euclidean distance between the vectors.The distanceδ(V1,V2)between two vector sets V1and V2is then defined asδ(V1,V2)=¯δ(V1,V2)+¯δ(V2,V1).(2) Note that the functionδdoes not define a metric on the set of non-empty vector sets,as it does not satisfy the triangle inequality.Algorithm1describes the update for online trajec-tory clustering.The algorithm takes as input a list L of clusters and a trajectory T.The parameters are the difference threshold c d,the merge threshold c m and the merge frequency f m.The output of the algorithm is the updated list of clusters L.Merging of clusters is a rare but necessary step,and is only performed after a given number of trajectories have been processed.Clusters merging is described in Algorithm2.It has as input two clusters C1and C2and as output the merged cluster C M.Every processed trajectory is assigned to a cluster–it is therefore essential to distinguish between clusters that show stable trends(in the following denoted as ma-ture clusters),and clusters that were created from rare occurrences.We use a simple threshold on the number of trajectories in the cluster to distinguish between the two cases.3.Experimental ResultsThe algorithm has been implemented in C++,and performance was measured on an Intel Core2Duo CPU with2.8GHz.There are no standard clustering data sets available for comparison,making it hard to com-pare the algorithm performance in an objective manner. We demonstrate the results of our proposed clustering on three different datasets with varying properties.The first dataset is a subset from the Edinburgh Informat-ics Forum Pedestrian Database[5],and is denoted as Algorithm1Update cluster list LCreate cluster C T out of Tfor all C i∈L dod i:=δ(C T,C i)Increase age of C iend forFind k and d k such that d k=min i d iif d k<c d thenC k←Merge(C k,C T)Decrease age of C kelseAdd C T to Lend ifRemove clusters that are too oldif size(L)=0mod(f m)thenrepeatfor all C i∈L,C j∈L with i=j dod i,j:=δ(C i,C j).Find k,l such that d k,l=min i,j d i,j.if d k,l<c m thenC k←Merge(C k,C l)Delete C l from Lend ifend foruntil No clusters were mergedend ifEIFPD.The image sequences of EIFPD were captured from an overhead camera with640×480pixels.The trajectories computed from the images sequences are noisy but continuous,with little or no false trajectories (see Fig.2a).This dataset comprises the smoothed tra-jectories from2009-09-18to2009-09-29.The second dataset is composed of people trajecto-ries processed from image sequences at a public trans-port hub in Graz,Austria and is denoted as Puntigam. The1024×768pixel image sequences have been cap-tured from an elevated view,and the trajectories have been computed with a commercially available real-time Algorithm2Merge clustersMC1and C2Set the age of C M as the minimum of the ages of C1 and C2for all P on the support of C M doSet the direction of P to be the weighted mean of the directions of C1and C2at P.Set the weight at P as the sum of the weights of P at C1and C2.end for(a)EIFPD(b)PuntigamFigure 2.Typical trajectories from the EIFPD and Puntigam datasetsimplementation of a HOG inspired people tracker [9].This dataset is composed of smooth and usually contin-uous trajectories,with only occasional breaks and skips,but several false trajectories (see Fig.2b).The third dataset (LASE )comprises people trajec-tories in the corridor shown in Fig.1.The 640×480image sequences have been captured from the low ceil-ing,and the trajectories have been computed with same people tracker [9]as in the Puntigam dataset.The tra-jectories in this dataset are very noisy and highly frag-mented,but without false trajectories.We have used similar parameter values for all three scenes –the only adaptation was to accomodate the dif-ferent temporal and spatial scales of the scenes.The results of the test runs are summarized in Table 1.Figures 3a and 3b show the development of the num-ber of clusters and number of mature clusters,respec-tively,in relation to the number of processed trajecto-ries.It can be seen,that after some initial rise,the num-ber of clusters levels off and remains approximately at a constant level.The sudden drops in the EIFPDdataset(a)AllClusters(b)Mature ClustersFigure 3.Development of Clustersare caused by the lack of trajectories during the nights.The mature clusters of each dataset are visualized in Figure 4.The algorithm is clearly able to recognize the main motion trends.A shortcoming of the method can be seen in the EIFPD and LASE data sets,where gen-eral movements are visible,but the algorithm does not discern between different exits that are close to each other.The method of [3]could be employed to over-come this problem.Table 1.Summary of Clustering Results Dataset EIFPD Puntigam LASE Nr.trajectories 106151149512Nr.points 8890634497413476Nr.clusters 1427081Nr.mature clusters 2658Running time (s)2172.613.7 5.7(a)EIFPD(b)Puntigam(c)LASEFigure 4.Visualization of mature clusters of the three datasets4.ConclusionWe have presented a new method of online trajec-tory clustering.The key idea was to represent clusters as smooth vector fields on a bounded connected set.The resulting clustering implementation is fast,robust and easily configurable.This makes it suitable for real world applications that need real time performance.References[1]Z.Fu,W.Hu,and T.Tan.Similarity based vehicle tra-jectory clustering and anomaly detection.In Proceede-ing IEEE International Conference on Image Process-ing,2005.ICIP 2005,volume 2,2005.[2]S.Gaffney and P.Smyth.Trajectory Clustering with Mixtures of Regression Models.In Proc.5th ACM SIGKDD International Conference on Knowledge Dis-covery and Data Mining .ACM,1999.[3]J.Lee,J.Han,and K.Wang.Trajectory Clustering:A Partition-and-Group Framework.In Proc 2007ACM SIGMOD International Conference on Management of Data ,pages 593–604,2007.[4]Z.Li,J.Lee,X.Li,and J.Han.Incremental Cluster-ing for Trajectories.In Proc.2010Database Systems for Advanced Applications (DASFAA’10),volume 5982,pages 32–46,Tsukuba,Japan,2010.[5]B.Majecka.Statistical models of pedestrian behaviour in the Forum.Master’s thesis,School of Informatics,University of Edinburgh,2009.[6]B.Morris and M.Trivedi.Learning Trajectory Patterns by Clustering:Experimental Studies and Comparative Evaluation.In Proc.IEEE International Conference on Computer Vision and Pattern Recognition (CVPR2009),2009.[7]N.Pelekis,I.Kopanakis,E.E.Kotsifakos,E.Frent-zos,and Y .Theodoridis.Clustering Uncertain Trajec-tories.Knowledge and Information Systems (KAIS),28(1):117–147,2011.[8]C.Piciarelli and G.L.Foresti.On-line trajectory clus-tering for anomalous events detection.Pattern Recog-nition Letters ,27(15):1835–1842,2006.[9]O.Sidla.Object tracking by combining detection,mo-tion estimation,and verification.In Proc.of the SPIE.Intelligent Robots and Computer Vision XXVII:Algo-rithms and Techniques.,volume 7539,2010.[10]P.Widhalm and N.Br¨a ndle.Learning Major Pedestrian Flows in Crowded Scenes.In Proc.20th International Conference on Pattern Recognition (ICPR2010),pages 4064–4067,Aug.2010.[11]S.Wu,B.E.Moore,and M.Shah.Chaotic Invariants of Lagrangian Particle Trajectories for Anomaly Detec-tion in Crowded Scenes.In Proc.International Con-ference on Computer Vision and Pattern Recognition (CVPR2010),2010.[12]M.Zeppelzauer,M.Zaharieva,D.Mitrovic,and C.Bre-iteneder.A Novel Trajectory Clustering Approach for Motion Segmentation.In Proc.16th International Con-ference on Advances in Multimedia Modeling ,pages 433–443.Springer,2010.。

相关文档
最新文档