@LED特性测量实验

合集下载

led特性测量实验报告

led特性测量实验报告

led特性测量实验报告LED特性测量实验报告引言:LED(Light Emitting Diode)是一种半导体器件,能够将电能转化为光能,具有高效、节能、寿命长等优点,因此在照明、显示、通信等领域得到广泛应用。

为了深入了解LED的特性,我们进行了一系列的实验测量,本报告将对实验过程和结果进行详细阐述。

一、实验目的本次实验的目的是测量LED的电流-电压特性曲线,了解其工作电压、电流和光强之间的关系。

二、实验装置和方法1. 实验装置:- LED样品:选取了红、绿、蓝三种颜色的LED样品。

- 电源:提供稳定的电压和电流。

- 电压表和电流表:用于测量LED的电压和电流。

- 变阻器:用于调节电流。

2. 实验方法:- 将LED样品连接到电源,并通过变阻器调节电流。

- 逐步增加电流,同时记录LED的电压和电流值。

- 测量不同电流下LED的光强。

三、实验结果与分析1. 电流-电压特性曲线:我们分别测量了红、绿、蓝三种颜色的LED样品的电流-电压特性曲线,结果如下图所示:[插入电流-电压特性曲线图]从图中可以看出,LED的电流-电压特性曲线呈非线性关系。

当电流较小时,电压增加较缓慢;当电流达到一定值后,电压急剧增加。

这是因为LED是一种二极管,具有正向电压下的导通特性,而在反向电压下则具有较高的阻抗。

2. 工作电压和电流:通过测量,我们得到了红、绿、蓝三种颜色的LED样品的工作电压和电流值,结果如下表所示:[插入工作电压和电流表]从表中可以看出,不同颜色的LED样品具有不同的工作电压和电流。

红色LED的工作电压较低,绿色LED次之,蓝色LED的工作电压最高。

这是因为不同颜色的LED使用了不同的半导体材料,其能带结构和能带宽度不同,导致其工作电压和电流也有所差异。

3. 光强与电流的关系:我们还测量了不同电流下LED的光强,结果如下图所示:[插入光强与电流关系图]从图中可以看出,随着电流的增加,LED的光强也随之增加。

LED综合特性测试实验

LED综合特性测试实验

LED综合特性测试实验13应用物理(1)班杨礴 2013326601111一、实验目的1.测量LED正向伏安特性,掌握拐点电压、正向开启电压及工作电流的概念,并对比分析不同发光颜色的LED拐点电压和工作电压的异同2.测量LED的反向伏安特性,了解发光二极管的反向截止特性3.掌握LED发光强度的概念及其测量方式4.了解LED发光强度随电流变化的规律,并对比分析不同发光颜色LED发光强度随电流变化的响应异同5.了解LED光通量与发光效率的概念及其测量方法6.了解LED光通量/发光效率随电流变化的规律,并对比分析不同发光颜色LED光通量随电流变化的响应异同以及发光效率随电流的变化规律7.掌握LED的光空间分布曲线的概念及其测量方法8.掌握LED半强度角和偏差角的概念及其测量方法9.了解强度定标的意义及其定标方法10.掌握常见色度参数的概念及其计算方法11.测量LED器件的电压-温度关系特性,计算K系数,并理解K系数的意义及其作用12.理解LED结温、热阻的概念,掌握一种测大功率贴片型LED结温,热阻的测量方法二、实验原理1.电学特性测试在LED两端加正向电压,当电压较小,不足以克服势垒电场时,通过LED的电流很小。

当正向电压超过死区电压后,电流岁电压迅速增长。

正向工作电流指LED正常发光时的正向电流值,根据不同管子的结构和输出功率的大小,在几十毫安到1安之间。

在LED两端加反向电压,只有微安级的反向电流。

反向电压超过击穿电压后,管子被击穿损坏。

为安全起见,激励电源提供的最大反向电压应低于击穿电压。

2.光电特性测试光强是描述LED光度学特性最为重要的参数,它表征了光源在指定方向上单位立体角内发射的光通量,在不同的空间角下,LED将表现出不同的光强大小。

LED光源发射的辐射通量中能引起人眼视觉的那部分,称为光通量,单位是流明,与辐射通量的概念类似,它是LED光源向整个空间在单位时间内发射的能引起人眼视觉的辐射通量。

光信息专业实验报告:LED特性及光度测量实验 (2)

光信息专业实验报告:LED特性及光度测量实验 (2)

光信息专业实验报告:LED特性及光度测量实验1、LED的V-I特性检验、光通量的测量打开稳流稳压电源及光度计,并将电压值调零。

积分球放入蓝色LED灯管,调节电源电压值,使光度计有读数,记录数据。

保证LED灯管的电流值小于30mA,记录电压值、电流值及光通量值。

更换红灯时保证LED灯管的电流值小于20mA,用相同步骤记录数据。

(1)蓝光LED灯管表一蓝色LED灯的光通量及V—I特性数据η=注:功率P=UI 发光效率P由表一数据,利用origin软件作出蓝光LED的η—P特性曲线,如图5所示。

图 5 蓝光LED的η—P特性曲线(1)红光LED灯管表二红色LED灯的光通量及V—I特性数据电流I/mA 0 1 2 3 4 5 6 7电压U/V 1.79 1.84 1.87 1.89 1.91 1.92 1.92 1.94 光通量Φ/lm 0.03 0.09 0.18 0.21 0.26 0.33 0.34 0.39 消耗功率P/mW 0.000 1.84 3.74 5.67 7.64 9.6 11.52 13.58 发光效率η0.0489 0.04813 0.0370 0.0340 0.03438 0.02951 0.02872 电流I/mA 8 9 10 11 12 13 15 16电压U/V 1.95 1.96 1.97 1.98 1.99 1.99 2 2.02 光通量Φ/lm 0.5 0.5 0.56 0.61 0.66 0.69 0.81 0.88 消耗功率P/mW 15.6 17.64 19.7 21.78 23.88 25.87 30 32.32 发光效率η0.0320 0.0283 0.02843 0.0280 0.0276 0.02667 0.027 0.02723 电流I/mA 17 18 19 21电压U/V 2.02 2.04 2.09 2.05光通量Φ/lm 0.92 0.99 1 1.13消耗功率P/mW 34.34 36.72 39.71 43.05发光效率η0.0267 0.0269 0.02518 0.0262红光LED的η—P特性曲线如图6所示。

LED特性及光度测量实验

LED特性及光度测量实验

LED特性及光度测量实验摘要:简述了LED的发光原理与特性,并对绿光、蓝光、白光LED的V-I特性,P-I特性,发光效率 ,以及光强的角度分布等光度学特性进行测量,探究LED的发光特性。

关键词:LED,光度测量一、实验原理概述1.LED结构与发光原理LED是英文light emitting diode(发光二极管)的缩写,它属于固态光源,其基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用(如图1)。

发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p型半导体和n型半导体之间有一个过渡层,称为p-n结。

跨过此p-n结,电子从n型材料扩散到p区,而空穴则从p 型材料扩散到n 区,如右面的图2(a)所示。

作为这一相互扩散的结果,在p-n结处形成了一个高度的eΔV的势垒,阻止电子和空穴的进一步扩散,达到平衡状态(见图2(b))。

当外加足够高的直流电压V,且p 型材料接正极,n型材料接负极时,电子和空穴将克服在p-n结处的势垒,分别流向p区和n区。

在p-n结处,电子与空穴相遇,复合,电子由高能级跃迁到低能级,电子将多余的能量将以发射光子的形式释放出来,产生电致发光现象。

这就是发光二极管的发光原理。

选择可以改变半导体的能带隙,从而就可以发出从紫外到红外不同波长的光线,且发光的强弱与注入电流有关。

图 22.发光二极管的主要特性a)光谱分布、峰值波长和光谱辐射带宽:发光二极管所发之光并非单一波长,其波长具有正态分布的特点,在最大光谱能量(功率)处的波长成为峰值波长。

即使有两个LED 的峰值波长是一样的,但它们在人眼中引起的色感觉也是可能不同的。

光谱辐射带宽是指光谱辐射功率大于等于最大值一半的波长间隔,它表示发光管的光谱纯度。

b)光通量:LED光源发射的辐射通量中能引起人眼视觉的那部分,称为光通量ΦV(单位是流明(lm)),是指LED向整个空间在单位时间内发射的能引起人眼视觉的辐射通量。

《LED原理及特性测试》实验指导

《LED原理及特性测试》实验指导

光电子学实验之LED原理及特性测试实验前——预习要求通过教材或者LED说明书了解典型LED的参数(只有熟悉器件的特性才能正确使用器件) 明确本次实验的内容——测量LED的哪几个特性?对于每个特性具体的测量原理是什么?如何进行测量?(尤其是发光强度和光谱特性实验) 自学单色仪(光栅光谱仪)的工作原理——以便理解LED光谱特性测量实验起始——熟悉实验仪器及系统软件总体认识:各个部分的名称、认识提供的几种光电探测器件实物加深印象结构认识:仔细观察各个部分的结构设计,为日后自己设计提供素材,同时提高实验效果⏹关注实验平台右下角的小结构设计⏹提供单色仪的内部结构图片软件界面认识入缝溴钨灯单色仪电压调节钮游标型旋转平台硅光电池型光功率计实验注意事项实验前将电压调节逆时针旋到极限位置;实验数据要求(分别对白光和红光LED进行实验)首先确定电流刚开始产生到最大可达到电流Imax时对应的两个电压值V1-V2在V1-V2之间等间隔取10组数据分别记录正向电压和正向电流数据或者在0~Imax中间等间距记录10组数据;实验报告要求整理实验数据表格,并利用Matlab绘制出白光/红光LED的V-I特性曲线课后思考题调研不同颜色LED的正向电压和正向电流及反向的参数特性。

LED的驱动电路如何设计?电路如何设计保证对待测LED的正向电压安全考虑?实验二LED 辐射强度空间分布及半值角的测量预习知识点辐射通量和电通量的知识回顾——应用光学光度学部分名词的定义CIE标准中的平均发光强度的意义半值角的概念操作思考题如何保证LED的出光面始终对准转台转轴?光功率计调节中要注意哪些方面?在实验步骤2中如何快速找到最大光功率所对应的转台角度?实验提示光功率的得到是通过CSY10E系统软件获得,打开软件选择合适的标签。

然后,打开实验平台上的单色仪开关(左下角),并点击软件中的启动单色仪,待单色仪初始化完毕后就可以正常使用光功率的获取功能实验注意事项实验前将电压调节逆时针旋到极限位置;外界光线对实验测量有影响,甚至当外界光一定强时会造成软件异常(现象:弹出异常对话框);实验数据要求(要求至少对红光LED进行实验,有兴趣进行普通白光LED和磨平的白光LED)顺/逆时针从0度到90度每隔10度输入一组数据(共2×9+1=19组)保存实验数据文件实验报告要求课后思考题步骤1和步骤3中选用的反馈电阻阻值发生改变,原因是什么?反馈电阻的作用是什么?实验提示本实验内容可以和实验一内容进行整合,在本实验中能够完成实验一的部分较小电压时对应的数据,一旦软件异常之后,继续手工记录数据即可完成实验一剩下的实验数据任务。

LED综合特性测试实验

LED综合特性测试实验

LED综合特性测试实验13应用物理(1)班杨礴2一、实验目的1.测量LED正向伏安特性,掌握拐点电压、正向开启电压及工作电流的概念,并对比分析不同发光颜色的LED拐点电压和工作电压的异同2.测量LED的反向伏安特性,了解发光二极管的反向截止特性3.掌握LED发光强度的概念及其测量方式4.了解LED发光强度随电流变化的规律,并对比分析不同发光颜色LED发光强度随电流变化的响应异同5.了解LED光通量与发光效率的概念及其测量方法6.了解LED光通量/发光效率随电流变化的规律,并对比分析不同发光颜色LED光通量随电流变化的响应异同以及发光效率随电流的变化规律7.掌握LED的光空间分布曲线的概念及其测量方法8.掌握LED半强度角和偏差角的概念及其测量方法9.了解强度定标的意义及其定标方法10.掌握常见色度参数的概念及其计算方法11.测量LED器件的电压-温度关系特性,计算K系数,并理解K系数的意义及其作用12.理解LED结温、热阻的概念,掌握一种测大功率贴片型LED结温,热阻的测量方法二、实验原理1.电学特性测试在LED两端加正向电压,当电压较小,不足以克服势垒电场时,通过LED的电流很小。

当正向电压超过死区电压后,电流岁电压迅速增长。

正向工作电流指LED正常发光时的正向电流值,根据不同管子的结构和输出功率的大小,在几十毫安到1安之间。

在LED两端加反向电压,只有微安级的反向电流。

反向电压超过击穿电压后,管子被击穿损坏。

为安全起见,激励电源提供的最大反向电压应低于击穿电压。

2.光电特性测试光强是描述LED光度学特性最为重要的参数,它表征了光源在指定方向上单位立体角内发射的光通量,在不同的空间角下,LED将表现出不同的光强大小。

LED光源发射的辐射通量中能引起人眼视觉的那部分,称为光通量,单位是流明,与辐射通量的概念类似,它是LED光源向整个空间在单位时间内发射的能引起人眼视觉的辐射通量。

积分球测量光通量,积分球是一个球形空腔,由内壁涂有均匀白色漫反射层的球壳组装而成,被测LED置于空腔内。

LED特性及光度测量实验(中大)

LED特性及光度测量实验(中大)

LED特性及光度测量实验中山大学 光信实验数据记录与分析1. LED的U-I特性测量(1) 红光LED的U-I特性实验测得数据如下:表1 红光LED电流与电压测量数据U(V)0 1.81 1.86 1.92 1.84 1.82 1.87 1.88 I(A)00.0050.010.0180.0080.0070.0120.013 P(nw) 2.935.462113.849.740.776.284.6 U(V) 1.89 1.91 1.94 1.95 1.8 1.79 1.78 1.76 I(A)0.0140.0160.0210.0250.0040.0030.0020.001 P(nw)88.997.5126.4153.432.727.520.316.2根据Shockley理论,对于一个散射面积为A的二极管,其电流电压关系为: ,即I与V之间存在指数关系。

所以以下用Origin7.5对红光LED电流与电压的关系进行指数拟合,如下图:图1 红光LED的V-I特性测量由此可得, 指数拟合曲线的表达式为:实验数据分析:对于红光LED,由图1和其拟合系数可知,拟合度R^2=0.99046,拟合度非常接近1,所以可以认为其U-I特性是指数关系,符合Shockley理论。

当电压大于某一值(即阈值)时,LED才有明显的电流反映,才开始发光,而且随着电压的增大,电流呈指数增长,发光愈强。

(2) 蓝光LED的U-I特性实验测得数据如下:表2 蓝光LED电流与电压测量数据U(V) 3.2 3.25 3.33 3.38 3.41 3.44 3.46 3.5I(A)0.0010.0020.0030.0040.0050.0060.0070.008 P(nw) 5.47.310.812.613.91515.817.2U(V) 3.55 3.57 3.61 3.63 3.67 3.69 3.72 3.75I(A)0.0090.010.0110.0120.0130.0140.0150.016 P(nw)18.819.620.320.821.52222.623.1U(V) 3.78 3.8 3.85 3.87 3.93 3.95 3.974I(A)0.0170.0180.020.0210.0230.0240.0250.026 P(nw)2323.824.124.224.324.724.724.9同(1),由Origin7.5做出蓝光LED电流与电压的指数拟合曲线如下图:图2 蓝光LED的V-I特性测量由此可得, 指数拟合曲线的表达式为:实验数据分析:对于蓝光LED,其拟合度为R^2=0.9792,拟合度非常接近1,所以可以认为其U-I特性是指数关系,符合Shockley理论。

led特性测量实验报告

led特性测量实验报告

led特性测量实验报告实验报告:LED特性测量引言:LED(发光二极管)是一种光电半导体器件,具有功率小、寿命长、耐冲击、响应时间短等特点,因而在实际应用中得到了广泛的应用。

为了进一步了解LED的性能,我们进行了一次LED特性测量实验。

本实验报告旨在介绍实验的过程和结果,并希望能够对读者有所帮助。

实验目的:1. 测量不同电流下LED的电压值和亮度;2. 掌握LED的基本性质。

实验工具:最大电流200mA,最大电压30V的电源、万用表、示波器、LED、电路板等。

实验步骤:1. 将LED插入电路板的插孔中;2. 将电路板和电源、万用表、示波器逐步连接。

万用表的接触点分别接入电源、LED和电阻上,并根据要求设置不同的测量范围。

同时,示波器的通道1连接电源正极,通道2连接LED的两极,用于观察LED的亮度和波形;3. 调节电源输出电流,记录电压、电流、亮度三项数据。

为确保测量结果的准确,对每个电流值都进行重复测量3次,并求出平均值。

实验数据:电流(mA)电压(V)亮度(mcd)10 2.34 520 2.58 830 2.82 1340 3.08 2150 3.32 3160 3.58 4770 3.80 6380 4.08 8590 4.28 104100 4.58 128110 4.85 149120 5.14 168130 5.44 187140 5.71 200150 6.02 210实验结果:通过实验对LED的特性进行了测量,得到如上表格的数据。

我们可以看出,随着电流的增加,LED的电压、亮度也相应增加。

其中,当电流为80mA时,LED的亮度已经达到了一个较高的值,并且在之后的增长速度开始缓慢。

在使用时,我们应该避免把LED的电流调节到过高的值,这样不仅会使LED无法正常工作,而且还会对LED的寿命产生不良的影响。

结论:通过本次实验,我们进一步了解了LED的特性和基本性质。

LED的电压和亮度均随着电流的增加而增加,当达到一定值时,其增长速度会趋缓。

发光二极管特性测试实验报告

发光二极管特性测试实验报告

发光二极管特性测试实验报告
首先,我们使用了LED测试仪器来测量LED的亮度和光谱分布。

我们将LED连接到测试仪器上,通过调整电流和电压等参数,我们可以得到LED的亮度和光谱分布曲线。

通过这个实验,我们了解到了不同参数对LED亮度和光谱分布的影响。

接下来,我们测试了LED的IV特性曲线。

这个实验可以用来评估LED的电流-电压关系。

我们将LED连接到电压源和电流源上,并测量不同电压下的电流值。

通过绘制IV特性曲线,我们可以得到LED的正向电压和电流之间的关系,以及LED的正向电阻。

此外,我们还进行了LED的光衰测试。

LED的光衰是指LED在使用过程中光输出的减少。

我们以一定的时间间隔测量LED的亮度值,然后绘制光衰曲线。

通过分析光衰曲线,我们可以评估LED的稳定性和寿命。

最后,我们还测试了LED的发光颜色和色温。

我们使用色度计来测量LED发出的光的颜色坐标和色温。

通过比较测量值和标准色坐标和色温,我们可以评估LED的色差和色温的准确性。

实验中我们注意到,LED的特性受到温度的影响较大。

因此,在测试过程中,我们要严格控制环境温度,并记录温度对LED特性的影响。

综上所述,通过测试LED的亮度、光谱分布、IV特性、光衰、发光颜色和色温等特性,我们可以全面评估LED的性能。

这些测试结果对于选择和应用LED具有重要的参考价值,可以帮助我们更好地使用和开发LED 技术。

LED特性测量实验报告

LED特性测量实验报告

LED特性测量实验报告实验名称:LED特性测量一、实验目的:1.学习了解LED的基本原理和特性;2.掌握常用的LED特性测量方法;3.了解LED的亮度和电流之间的关系。

二、实验器材:1.LED灯珠一个;2.激光二极管电流源一个;3.多用表一个;4.万用表一个。

三、实验原理:1.LED是一种特殊的二极管,具有电流通过时发光的特性。

在正向电压作用下,电子从N区向P区注入,与空穴复合,释放能量以光的形式发出;2.LED的特性主要包括电流与电压之间的关系、亮度与电流之间的关系以及波长与能量之间的关系。

四、实验步骤:1.连接电路:将LED灯珠连接到激光二极管电流源的输出端,接通电源;2.测量电压:用多用表测量激光二极管电流源的输出端电压,并记录下来;3.测量电流:用万用表测量LED灯珠两端的电流,并记录下来;4.改变电流:逐步增加激光二极管电流源的输出电流,每次增加一定的值,并记录下每次增加后的电压和电流;5.绘制图表:根据记录的数据,绘制出LED的电压-电流特性曲线和亮度-电流特性曲线。

五、实验结果及分析:根据实验数据,我们得到了以下结果:实验数据表:输出电流(mA)LED电压(V)1 1.82 2.23 2.54 2.85 3.06 3.2根据实验数据,我们绘制了以下图表:LED电压-电流特性曲线:[图表]从图表中可以看出,LED的电流与电压之间呈线性关系,即电流增大时,电压也相应地增大,但是增长速率逐渐变慢。

LED亮度-电流特性曲线:[图表]从图表中可以看出,LED亮度随着电流的增大而增大,但是增长速率逐渐变慢,即在一定范围内,随着电流的增大,亮度的增长较为明显;而当电流超过一定值后,亮度的增长变得较为缓慢。

以上结果分析说明LED的亮度与电流之间呈非线性关系,即LED的亮度随着电流的增大而增大,但是增长速率逐渐减小,存在一个饱和区。

六、实验结论:通过本次实验,我们学习了LED的基本原理和特性,并掌握了常用的LED特性测量方法。

LED特性测量实验复习进程

LED特性测量实验复习进程

L ED特性测量实验LED特性测量实验【实验目的】1、了解LED的发光机理、光学特性与电学特性,并掌握其测试方法。

2、设计简单的测试装置,并对发光二极管进行V-I特性曲线、P—I特性曲线的测量。

【实验装置】:LED(白光和黄绿光),精密数显直流稳流稳压电源,积分球(Φ=30cm),多功能光度计,光功率计,直尺,万用表,导线、支架等。

【实验原理】1、发光二极管的发光原理发光二极管的核心部分是由p型半导体和n型半导体组成的芯片。

p型半导体和n型半导体在相互接触的时候,由于两者的功函数或者说是费米能级的不同,p 区中的空穴就会流向n区,而n区中的电子也会扩散到p区中去,同时产生内建电势差,产生耗尽层,当载流子的扩散运动和漂移运动平衡时候pn结就达到平衡状态,如图3所示。

pn结正向偏置的时候,内建电势差变小,势垒的高度变小,以载流子的扩散运动为主,电子和空穴就会更容易克服势垒分别流向p 区和n区。

在p-n结耗尽层处,电子和空穴相遇,复合,电子由高能级跃迁到低能级,电子将多余的能量以发射光子的形式释放出来,产生电致发光现象。

这就是发光二极管的发光理论。

图3图42、发光二极管的主要特性(1)光通量LED 光源发射的辐射波长为λ的单色光,在人眼观察方向上的辐射强度和人眼瞳孔对它所张的立体角的乘积,称为光通量ΦV (单位是流明lm ),具体是指LED 向整个空间在单位时间内发射的能引起人眼视觉的辐射通量。

光通量的测量以明视觉条件作为测量条件,测量光通量必须要把LED 发射的光辐射能量收集起来,可以用积分球来收集光能。

测量的探测器应具有CIE标准光度观测者光谱效率函数的光谱响应。

LED 器件发射的光辐射经积分球壁的多次反射,使整个球壁上的照度均匀分布,可用一置于球壁上的探测器来测量这个光通量成比例的光的照度。

基于实验室提供的资料,由积分原理,积分球内任一没有光直接照明的点的光照度为:241ER 。

其中为光源的光照度,R 为积分球的半径,为积分球内壁的反射率。

大物实验-LED光谱特性的测量

大物实验-LED光谱特性的测量

一、实验设计方案
设计任务:测量LED光谱特性
设计要求:
1、了解LED的工作原理、基本特性、主要型号及参数
2、测量LED的光谱特性,测出峰值波长和半宽度
设计原理:
LED主要由PN结芯片、电极和光学系统组成。

当在电极上加上正向偏置电压之后,电子和空穴分别注入P区和N区。

当非平衡少数载流子与多数载流子复合时,就会以辐射的形式将多余的能量转化为光能。

LED的特点是:工作电压低(2~3.6V)、工作电流很小(0.02~0.03A)、抗冲击和抗震性能好、可靠性高、寿命长(无故障工作时间大约在40000小时以上),通过调制工作的强弱可以方便地调制发光的强弱。

三、实验内容及具体步骤:
3.1测量绿光LED光谱图
3.1.1运行DataStudio软件,创建一个新实验。

设置光传感器及转动传感器采样率,均取2000.
3.1.2关灯,把转盘推至左端,鼠标点击工作栏上的“启动”
始位置对称的地方。

3.1.3点击“计算”项,新建y=x/60,定义
四、数据记录与处理绿光LED光谱图
红光LED光谱图
紫光LED光谱图
蓝光LED光谱图白光LED光谱图。

LED特性测量 实验报告

LED特性测量 实验报告

LED特性及光度测量实验苏剑邦A8 学号:08323016中山大学物理科学与工程技术学院光信息科学与技术邮政编码:510275 中国图书馆分类号:O43摘要:通过设计简单的测试装置,并对发光二极管进行V-I特性曲线、P-I特性曲线的测量,了解发光二极管的发光机理、光学特性与电学特性,并掌握其测试方法。

本文记录了红光LED和绿光LED的电流、电压、功率和光通量测量数据,以此研究探讨LED发光器件的发光特性。

关键词:LED V-I特性P-I特性光度Measurement of the characteristics and luminosity of LEDSujianbang A8 ID: 08323016School of Science and Engineering of SUN YAT-SEN UniversityPostal code: 510275Abstract: This essay study the optical and electric characteristics of LED by measuring it’s V-I curve and P-I curve. In this essay, data of electric current, voltage, power and luminous flux of LED are recorded in order to study its characteristics.Keyword: LED, V-I characteristic, P-I characteristic, luminosity【实验原理】LED是英文light emitting diode(发光二极管)的缩写,它属于固态光源,其基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用(如图一)。

常规的发光二极管芯片的结构如图二所示,主要分为衬底,外延层(图2中的N型氮化镓,铝镓铟磷有源区和P型氮化镓),透明接触层,P型与N型电极、钝化层几部分。

LED特性测量实验报告

LED特性测量实验报告

LED特性测量实验报告实验目的:1.理解LED的基本特性,包括工作电压、工作电流、发光强度等;2.学习使用测试仪器进行LED的相关特性测量;3.分析测量结果,掌握LED性能的评估方法。

实验仪器和材料:1.LED测试台;2.数字万用表;3.电源供应器;4.数据记录表。

实验原理:LED(Light Emitting Diode)即发光二极管,是一种将电能转化为光能的固态器件。

为了了解和评估LED的性能,我们需要进行一系列特性测量。

1.工作电压测量:工作电压指LED正向导通的电压。

将LED连接到电源供应器的正负极中,逐渐增加电压直至LED正向导通,记录此时的电压值。

2.工作电流测量:工作电流指LED正向导通时通过LED的电流。

将LED连接到电源供应器的正负极中,通过调节电源供应器的电流限制旋钮,获取LED正常工作时的电流值。

3.发光强度测量:发光强度指LED发光的亮度。

将LED连接到LED测试台,设置相应的工作电流,使用数字万用表测量LED所发出的光线强度。

实验步骤:1.将LED正极连接到电源供应器的正极,负极连接到电源供应器的负极。

注意正确的极性连接。

2.开始测量前,先将电源供应器调节到适当的电压和电流范围。

3.逐渐调节电源供应器的电压直至LED正向导通,记录此时的电压值,即为工作电压。

4.使用万用表测量正向工作电压时的电流值,即为工作电流。

5.将LED连接到LED测试台,设置相应的电流。

6.使用数字万用表测量LED所发出的光线强度,并记录。

实验结果分析:通过实验测量得到的数据,我们可以进行一系列结果分析和评估。

1.工作电压:根据实验测得的工作电压值,可以判断LED正向导通时所需的电压范围。

比较不同批次和不同类型的LED,可以评估其电压特性。

2.工作电流:根据实验测得的工作电流值,可以判断LED正常工作时的电流范围。

与不同类型和批次的LED进行比较,可以评估其亮度和节能性能。

3.发光强度:实验测量得到的发光强度值可以用来评估LED的亮度。

LED特性测量

LED特性测量

LED 特性测量实验者:林巧玲(11343046) 合作者:洪艺江(12342020) 光信息科学与技术专业 实验地点:物理楼 组别:A14 物理科学与工程技术学院实验时间:2015.05.27 上午 8:20一、实验目的1.了解发光二极管的发光机理、光学特性与电学特性,并掌握其测试方法。

2.设计简单的测试装置,并对发光二极管进行 V-I 特性曲线、P-I 特性曲线的测量。

二、实验原理 LED(light emitting diode)即发光二极管,它属于固态光源。

1.发光二极管的基本原理 发光二极管的核心部分是由 p 型半导体和 n 型半导体组成的晶片。

当外加一足够高的正 向偏压 V 时,电子和空穴将克服在 p-n 结处的势垒相遇、复合,电子由高能级跃迁到低能 级,电子将多余的能量将以发射光子的形式释放出来,产生电致发光现象。

选择可以改变半 导体的能带隙, 从而就可以发出从紫外到红外不同波长的光线, 且发光的强弱与注入电流有 关。

2.发光二极管的主要特性 (1)光谱分布、峰值波长和光谱辐射带宽:发光二极管所发之光并非单一波长,其波长具 有正态分布的特点,在最大光谱能量(功率)处的波长成为峰值波长。

即使有两个 LED 的峰 值波长是一样的, 但它们在人眼中引起的色感觉也是可能不同的。

光谱辐射带宽是指光谱辐 射功率大于等于最大值一半的波长间隔,它表示发光管的光谱纯度。

(2)光通量:LED 向整个空间在单位时间内发射的能引起人眼视觉的辐射通量 ΦV(单位 是流明 lm)。

国际照明委员会(CIE)为人眼对不同波长单色光的灵敏度作了总结,在明视觉 条件(亮度为 3cd/m2 以上), 归结出人眼标准光 度观测者光谱光效率函数 V (  ),它在 555nm 上有最大值,此时 1W 辐射通量等于 683lm。

通常,光通量的测量以明视觉条件作为测 量条件,可以用积分球来把 LED 发射的光辐 射能量收集起来,并用合适的探测器将它线性 图 1.积分球结构示意图 地转换成光电流,再通过定标确定被测量的大 小。

LED特性测量 实验报告

LED特性测量 实验报告

LED特性及光度测量实验苏剑邦A8 学号:08323016中山大学物理科学与工程技术学院光信息科学与技术邮政编码:510275 中国图书馆分类号:O43摘要:通过设计简单的测试装置,并对发光二极管进行V-I特性曲线、P-I特性曲线的测量,了解发光二极管的发光机理、光学特性与电学特性,并掌握其测试方法。

本文记录了红光LED和绿光LED的电流、电压、功率和光通量测量数据,以此研究探讨LED发光器件的发光特性。

关键词:LED V-I特性P-I特性光度Measurement of the characteristics and luminosity of LEDSujianbang A8 ID: 08323016School of Science and Engineering of SUN YAT-SEN UniversityPostal code: 510275Abstract: This essay study the optical and electric characteristics of LED by measuring it’s V-I curve and P-I curve. In this essay, data of electric current, voltage, power and luminous flux of LED are recorded in order to study its characteristics.Keyword: LED, V-I characteristic, P-I characteristic, luminosity【实验原理】LED是英文light emitting diode(发光二极管)的缩写,它属于固态光源,其基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用(如图一)。

常规的发光二极管芯片的结构如图二所示,主要分为衬底,外延层(图2中的N型氮化镓,铝镓铟磷有源区和P型氮化镓),透明接触层,P型与N型电极、钝化层几部分。

led特性测量实验报告

led特性测量实验报告

led特性测量实验报告LED特性测量实验报告引言:LED(Light Emitting Diode)是一种半导体器件,具有发光效果,被广泛应用于照明、显示和通信等领域。

为了深入了解LED的特性,本实验通过测量不同条件下的电流、电压和光强,探究LED在不同工作条件下的性能表现。

实验装置和方法:实验所用的装置包括电源、电压表、电流表、光强计和LED样品。

首先,将电源与电压表、电流表连接,以测量电流和电压。

然后,将LED样品与电源连接,通过改变电压和电流的大小,测量LED的光强。

实验结果和讨论:1. LED的电流-电压特性:通过改变电流和电压的大小,我们测量了LED在不同条件下的电流-电压特性曲线。

实验结果显示,当电流逐渐增大时,LED的电压也会逐渐增大。

这是因为LED是一种正向偏置的二极管,只有当电流通过时,才能产生发光效果。

另外,我们还发现,在一定范围内,LED的电压和电流呈线性关系,这是因为LED的电阻在这个范围内近似为恒定值。

2. LED的光强-电流特性:为了研究LED的发光特性,我们测量了不同电流下的LED光强。

实验结果显示,随着电流的增大,LED的光强也逐渐增大。

这是因为电流的增大会导致LED内部的电子与空穴复合的速度加快,从而产生更多的光子。

然而,当电流继续增大时,光强的增长趋势会逐渐减缓,这是因为在一定范围内,电流增大对光强的提升效果会逐渐减弱。

3. LED的温度特性:LED的性能还受到温度的影响。

为了研究LED的温度特性,我们将LED样品置于不同温度下,并测量了LED的电流和光强。

实验结果显示,随着温度的升高,LED的电流和光强都会逐渐减小。

这是因为温度的升高会增加LED内部的载流子复合速度,导致电流减小,进而影响光强的产生。

结论:通过本实验的LED特性测量,我们了解到LED的电流-电压特性、光强-电流特性和温度特性。

这些结果对于设计和应用LED具有重要意义。

在实际应用中,我们需要根据LED的特性来选择合适的电流和电压,以达到最佳的光强效果。

LED特性测量实验

LED特性测量实验

LED特性测量实验【实验目的】1、了解LED的发光机理、光学特性与电学特性,并掌握其测试方法。

2、设计简单的测试装置,并对发光二极管进行V 特性曲线、P-I特性曲线的测量。

【实验装置】:LED (白光和黄绿光),精密数显直流稳流稳压电源,积分球(⑦二30cm ),多功能光度计, 光功率计,直尺,万用表,导线、支架等。

【实验原理】1、发光二极管的发光原理发光二极管的核心部分是由p型半导体和n型半导体组成的芯片。

p型半导体和n型半导体在相互接触的时候,由于两者的功函数或者说是费米能级的不同,P区中的空穴就会流向n区,而n 区中的电子也会扩散到p区中去,同时产生建电势差,产生耗尽层,当载流子的扩散运动和漂移运动平衡时候pn结就达到平衡状态,如图3所示。

pn结正向偏置的时候,建电势差变小, 势垒的高度变小,以载流子的扩散运动为主,电子和空穴就会更容易克服势垒分别流向P区和n 区。

在P - n结耗尽层处,电子和空穴相遇,复合,电子由高能级跃迁至U低能级,电子将多余的能星以发射光子的形式释放出来,产生电致发光现象。

这就是发光二极管的发豳论。

2、发光二极管的主要特性(1)光通量LED光源发射的辐射波长为入的单色光,在人眼观察方向上的辐射强度和人眼瞳孔对它所的立体角的乘积,称为光通星VZV (单位是流明加),具体是指LED向整个空间在单位时间发射的能引起人眼视觉的辐射通呈。

光通呈的测呈以明视觉条件作为测呈条件■测呈光通呈必须要把LED发射的光辐射能呈收集起来,可以用积分球来收集光能。

测呈的探测器应具有CIE标准光度观测者光谱效率函数的光谱响应。

LED器件发射的光辐射经积分球壁的多次反射,使整个球壁上的照度均匀分布,可用一置于球壁上的探测器来测臺这个光通呈成比例的光的照度。

基于实验室提供的资料,由积分原埋'枳分球仕一没扫光直接照明的点的光照度为:B二・二7——0具4兀亡'一 p中①为光源的光照度,为积分球的半径,Q为积分球壁的反射率。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LED特性测量实验
【实验目的】
1、了解LED的发光机理、光学特性与电学特性,并掌握其测试方法。

2、设计简单的测试装置,并对发光二极管进行V-I特性曲线、P—I特性曲线的测量。

【实验装置】:
LED(白光和黄绿光),精密数显直流稳流稳压电源,积分球(Φ=30cm),多功能光度计,光功率计,直尺,万用表,导线、支架等。

【实验原理】
1、发光二极管的发光原理
发光二极管的核心部分是由p型半导体和n型半导体组成的芯片。

p型半导体和n型半导体在相互接触的时候,由于两者的功函数或者说是费米能级的不同,p区中的空穴就会流向n 区,而n区中的电子也会扩散到p区中去,同时产生内建电势差,产生耗尽层,当载流子的扩散运动和漂移运动平衡时候pn结就达到平衡状态,如图3所示。

pn结正向偏置的时候,内建电势差变小,势垒的高度变小,以载流子的扩散运动为主,电子和空穴就会更容易克服势垒分别流向p区和n区。

在p-n结耗尽层处,电子和空穴相遇,复合,电子由高能级跃迁到低能级,电子将多余的能量以发射光子的形式释放出来,产生电致发光现象。

这就是发光二极管的发光理论。

图3 图4
2、发光二极管的主要特性
(1)光通量
LED光源发射的辐射波长为λ的单色光,在人眼观察方向上的辐射强度和人眼瞳孔对它所张的立体角的乘积,称为光通量ΦV(单位是流明lm),具体是指LED向整个空间在单位时间内发射的能引起人眼视觉的辐射通量。

光通量的测量以明视觉条件作为测量条件,测量光通量必须要把LED发射的光辐射能量收集起来,可以用积分球来收集光能。

测量的探测器应具有CIE标准光度观测者光谱效率函数的光谱响应。

LED器件发射的光辐射经积分球壁的多次反射,使整个球壁上的照度均匀分布,可用一置于球壁上的探测器来测量这个光通量成比例的光的照度。

基于实验室提供的资
料,由积分原理,积分球内任一没有光直接照明的点的光照度为:2
41E R ρ
πρ
Φ=
-。

其中Φ为光源的光照度,R 为积分球的半径,ρ为积分球内壁的反射率。

所以测量得到球壁上任一点的光照度就可以求得光源的光通量了。

(2) 发光强度
发光强度表示在指定方向上光源发光的强弱。

若某个光源在法线方向上,辐射强度为(1/683)W/sr (即一单位立体角度内光通量为1流明时),则称其发光强度为1坎德拉(candela ),符号为cd 。

要求光源是一个点光源,或者要求光源的尺寸和探测器的面积与离光探测器的距离相比足够小(这种要求被称为远场条件)。

一般使用CIE 推荐的“平均发光强度”的概念:照射在离LED 一定距离处的光探测器上的通量,与探测器构成的立体角的比值。

CIE 对近场条件下的LED 测量,有两个推荐的标准条件:CIE 标准条件A 和B 。

两个条
件都要求所用的探测器有一个面积为1cm 2
的圆入射孔径,LED 面向探测器放置,并且保证LED 的机械轴通过探测器的孔径中心。

本实验中使用的是亮度比较低的LED ,所以使用条件B ,使LED 顶端到探测器的距离为100mm 。

(3) 发光效率
(4) V -I 特性
由于在耗尽层中的载流子复合有一定的几率,在正向电压小于阈值电压时,耗尽层中的载流子很少,复合几率也比较低,正向电流极小,不发光。

当电压超过阈值后,正向电流随电压迅速增加。

由V -I 曲线可以得出LED 的正向电压,反向电流以及反向电压等参数。

(5) P -I 特性
P -I 特性就是LED 的轴向光强与正向注入电流关系特征。

我们用光功率计来测量它的P -I 特性测试图如图2所示。

五、实验步骤
1、开始实验前先认真阅读精密数显直流稳流稳压电源、积分球(Φ=30cm )、多功能光度计等的使用说明和注意事项,熟悉仪器。

2、设置精密数显直流稳流稳压电源的电压输出为0V ,连接好积分球和稳压源的导线,将待测的LED 放入积分球内,关好积分球。

3、设置电压不断改变电压的数值,对于黄绿光LED 直到2.4V 为止,对于白光LED 到3.5V 为止,记录每个电压值对应的电流值以及光通量值。

得到V -I 特性曲线和光通量的变化曲线,计算得到各个LED 的发光效率。

4、如图2所示将LED 从积分球中取出,安装在支架上,使LED 顶端到光功率计的距离为100mm 。

在黑暗条件下,在给LED 偏置电压之前,调节光功率计的零点。

然后逐渐增加电压,观察并记录电流和光功率的关系。

得到LED 的P -I 特性曲线。

【实验电路图】
mA
V
可调稳流电压源
图1 LED V -I 特性测试电路图
mA
V 可调稳流电压

光阑
光功率计
图2 LED P -I 特性测试装置图
【实验步骤】
1、开始实验前先认真阅读精密数显直流稳流稳压电源、积分球(Φ=30cm )、多功能光度计等的使用说明和注意事项,熟悉仪器。

2、设置精密数显直流稳流稳压电源的电压输出为0V ,连接好积分球和稳压源的导线,将待测的LED 放入积分球内,关好积分球。

3、设置电压不断改变电压的数值,记录每个电压值对应的电流值以及光通量值。

得到V -I 特性曲线和光通量的变化曲线,计算得到各个LED 的发光效率。

4、将LED 从积分球中取出,安装在支架上,使LED 顶端到光功率计的距离为100mm 。

在黑暗条件下,在给LED 偏置电压之前,调节光功率计的零点。

然后逐渐增加电压,观察并记录电流和光功率的关系。

得到LED 的P -I 特性曲线。

【实验数据处理】
1. 测量LED 灯光通量,计算发光效率
① 蓝色LED :
由上表可作得电压与发光效率的关系曲线:
可见,在一定范围内,发光效率大致随电压的增大而增大。

②绿色LED:
测得的电压、电流、光通量及计算得的发光效率如下表所示:
由上表可作得电压与发光效率的关系曲线:
可见,在一定范围内,发光效率大致随电压的增大而减少。

2.测量LED V-I特性曲线以及P-I特性曲线
①绿色LED:
由上表可作得LED V-I特性曲线以及P-I特性曲线,如下图所示:
可见,当电压大于 2.9v时,电流与功率大致随电压的增大而增大。

可以推知,该LED的导通电压约为2.9v。

②红色LED:
测得电压、电流和功率如下表所示:
由上表可作得LED V-I特性曲线以及P-I特性曲线,如下图所示:
可见,当电压大于 1.6v时,电流与功率大致随电压的增大而增大。

可以推知,该LED的导通电压约为1.6v。

【思考题】
1、为什么LED的发光强度的测量值(cd)不能转换成光通量(lm)?
答:因为发光强度和光通量的关系为
d
I
d
Φ
=
Ω
,发光强度是指定方向上光源发
光的强弱。

现在的情况是测出来的也不完全是LED的发光强度的测量值,对于它的球面角也无法准确测量,所以不能直接转换成光通量。

2、有哪些方法可以提高LED的发光强度?

d
I
d
Φ
=
Ω
可以知道,提高LED的输出功率,减小LED的输出角度等,可以提高LED的发光
强度。

相关文档
最新文档