云南省昭通市昭阳区2018年中考数学模拟试卷及答案解析

合集下载

云南省昭通市昭阳区2018-2019学年八年级(下)期中数学试卷(含解析)

云南省昭通市昭阳区2018-2019学年八年级(下)期中数学试卷(含解析)

2018-2019学年八年级第二学期期中数学试卷一、填空题1.﹣的相反数是.2.分解因式:m3﹣m=.3.已知菱形的周长为20,一条对角线长为6,则边长是,它的面积是.4.若二次根式有意义,则x的取值范围是.5.一个多边形的内角和为1080°,则它的边数为.它的外角和为.6.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为.二、选择题(每题4分,共32分)7.下列计算正确的是()A.B.5=5C.D.8.下列长度的线段中,能构成直角三角形的一组是()A.,,B.6,7,8C.12,25,27D.2,2,4 9.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A.6种B.5种C.4种D.3种10.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 11.已知:在Rt△ABC中,∠C=90°,BC=1,AC=,点D是斜边AB的中点,点E 是边AC上一点,则DE+BE的最小值为()A.2B.+1C.D.212.顺次连接矩形四边中点所形成的四边形是()A.矩形B.菱形C.正方形D.梯形13.下列说法中错误的是()A.有一个角是直角的平行四边形是矩形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直的矩形是菱形D.对角线相等的四边形是矩形14.如图,将长方形纸片ABCD沿直线AE折叠,顶点D恰好落在BC边上点F处,已知CE=3cm,AB=8cm,图中阴影部分的面积是()A.80cm2B.50cm2C.30cm2D.20cm2三、解答题(共9题,共70分)15.计算:(1)﹣9+;(2)×﹣÷﹣|1﹣|.16.最简二次根式与是同类二次根式,求3a﹣b的值.17.解不等式组并写出它的所有整数解.18.如图,在平行四边形ABCD中,点E在AB的延长线上,且EC∥BD,求证:BE=AB.19.列方程或方程组解应用题:某校为美化校园,计划对一些区域进行绿化,安排了甲、乙两个工程队完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且两队在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,求甲、乙两工程队每天能完成绿化的面积分别是多少m2?20.如图,在矩形ABCD中,∠DAE=∠CBE=45°,AD=1,求△ABE的面积和周长.21.如图,矩形ABCD的对角线相交于点O,PB∥AC,PC∥BD,PB、PC相交于点P.(1)猜想四边形PCOB是什么四边形,并说明理由;(2)当矩形ABCD满足什么条件时,四边形PCOB是正方形.22.如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF =BE,连CF(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.23.观察下列格式,﹣,,,…(1)化简以上各式,并计算出结果;(2)以上格式的结果存在一定的规律,请按规律写出第5个式子及结果(3)用含n(n≥1的整数)的式子写出第n个式子及结果,并给出证明的过程.参考答案一、填空题(每题3分,共18分)1.﹣的相反数是.【分析】根据相反数的定义进行填空即可.解:∵﹣的相反数是,故答案为.【点评】本题考查了实数的性质以及算术平方根,掌握相反数的定义是解题的关键.2.分解因式:m3﹣m=m(m+1)(m﹣1).【分析】先提取公因式m,再对余下的多项式利用平方差公式继续分解.解:m3﹣m,=m(m2﹣1),=m(m+1)(m﹣1).【点评】本题考查提公因式法分解因式和利用平方差公式分解因式,关键在于需要进行二次分解因式.3.已知菱形的周长为20,一条对角线长为6,则边长是5,它的面积是24.【分析】菱形对角线互相垂直平分,所以OA2+OB2=AB2,已知AB=5,AO=3,即可求得BO,即可求得BD的长,根据AC、BD即可求菱形ABCD的面积,即可解题.解:AC=8,则AO=CO=3,∵菱形周长为20,∴AB=5,∵菱形对角线互相垂直平分,∴OA2+OB2=AB2,∴BO=4,∴DB=8,∴菱形的面积S=×6×8=24.故答案为5:24.【点评】本题考查了菱形对角线互相垂直平分的性质,菱形面积的计算,本题中根据勾股定理求BO的值是解题的关键.4.若二次根式有意义,则x的取值范围是x≥﹣.【分析】二次根式的被开方数是非负数,则4x+1≥0.解:由题意,得4x+1≥0,解得x≥﹣.故答案是:x≥﹣.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.一个多边形的内角和为1080°,则它的边数为8.它的外角和为360°.【分析】根据多边形内角和公式(n﹣2)×180°可计算出边数,再根据多边形外角和为360°可得答案.解:设它的边数为n,由题意得:(n﹣2)×180=1080,解得:n=8,它的外角和为360°;故答案为:8;360°.【点评】此题主要考查了多边形内角和公式和外角和定理,关键是熟练掌握内角和公式(n﹣2)×180°.6.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为18.【分析】根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO、OM、AM即可解决问题.解:∵四边形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴AC==10,∵AO=OC,∴BO=AC=5,∵AO=OC,AM=MD=4,∴OM=CD=3,∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=18.故答案为18.【点评】本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.二、选择题(每题4分,共32分)7.下列计算正确的是()A.B.5=5C.D.【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.解:不能合并,故选项A错误,,故选项B错误,,故选项C错误,,故选项D正确,故选:D.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.8.下列长度的线段中,能构成直角三角形的一组是()A.,,B.6,7,8C.12,25,27D.2,2,4【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.解:A、()2+()2≠()2,故不是直角三角形,此选项错误;B、62+72≠82,故不是直角三角形,此选项错误;C、122+252≠272,故不是直角三角形,此选项错误;D、(2)2+(2)2=(4)2,故是直角三角形,此选项正确.故选:D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.9.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A.6种B.5种C.4种D.3种【分析】根据平行四边形的判定方法即可找到所有组合方式:(1)两组对边平行①③;(2)两组对边相等②④;(3)一组对边平行且相等①②或③④,所以有四种组合.解:依题意得有四种组合方式:(1)①③,利用两组对边平行的四边形是平行四边形判定;(2)②④,利用两组对边相等的四边形是平行四边形判定;(3)①②或③④,利用一组对边平行且相等的四边形是平行四边形判定.故选:C.【点评】此题主要考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键.10.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 【分析】由矩形和菱形的判定方法即可得出答案.解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.【点评】本题考查了矩形的判定、平行四边形的性质、菱形的判定;熟练掌握矩形的判定是解决问题的关键.11.已知:在Rt△ABC中,∠C=90°,BC=1,AC=,点D是斜边AB的中点,点E 是边AC上一点,则DE+BE的最小值为()A.2B.+1C.D.2【分析】作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=,所以最小值为.解:作B关于AC的对称点B',连接B′D,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵AB=AB',∴△ABB'为等边三角形,∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,∴最小值为B'到AB的距离=AC=,故选:C.【点评】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.12.顺次连接矩形四边中点所形成的四边形是()A.矩形B.菱形C.正方形D.梯形【分析】因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB,∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:B.【点评】本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.13.下列说法中错误的是()A.有一个角是直角的平行四边形是矩形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直的矩形是菱形D.对角线相等的四边形是矩形【分析】根据矩形的定义知,有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形,根据菱形的定义及性质知四条边都相等的四边形是菱形即可解答.解:根据矩形的定义及性质知,有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形,故A,B正确;根据菱形的定义及性质知对角线互相垂直的矩形是正方形,也是菱形,故C正确;对角线相等的四边形有可能是等腰梯形,故D错误;故选:D.【点评】本题考查了菱形的判定及矩形的判定,属于基础题,关键是掌握矩形的定义及性质,菱形的定义及性质.14.如图,将长方形纸片ABCD沿直线AE折叠,顶点D恰好落在BC边上点F处,已知CE=3cm,AB=8cm,图中阴影部分的面积是()A.80cm2B.50cm2C.30cm2D.20cm2【分析】根据已知条件得到△ABF∽△FCE,根据相似三角形的性质得到=,求出AF=10,得到AD=AF=10,然后运用S阴影=S矩形ABCD﹣2S△ADE,代入数值计算即可解决问题.解:如图,∵CD=AB=8,CE=3,∴EF=DE=8﹣3=5;由勾股定理得:CF=4;由折叠的性质得:AF=AD,∠AFE=∠D=90°;∵∠B=∠C=90°;∴∠BAF+∠AFB=∠AFB+∠EFC,∴∠BAF=∠EFC,而∠B=∠C,∴△ABF∽△FCE,∴=,即=,解得:AF=10.∴AD=AF=10.∵S△AEF=S△ADE,∴S阴影=S矩形ABCD﹣2S△ADE=10×8﹣2××10×5=80﹣50=30.故选:C.【点评】该题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,相似三角形的判定与性质,勾股定理.根据△ABF∽△FCE,求出AF=10,得到AD=AF=10是解题的关键.三、解答题(共9题,共70分)15.计算:(1)﹣9+;(2)×﹣÷﹣|1﹣|.【分析】(1)先化简各二次根式化简,再合并同类二次根式即可得;(2)根据二次根式的混合运算顺序和运算法则计算可得.解:(1)原式=4﹣3+2=3;(2)原式=﹣﹣(﹣1)=﹣﹣+1=.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.16.最简二次根式与是同类二次根式,求3a﹣b的值.【分析】根据题意,它们的被开方数相同,列出方程求解.解:由最简二次根式与是同类二次根式,得,解得,则3a﹣b=2.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.17.解不等式组并写出它的所有整数解.【分析】分别求出每一个不等式的解集,根据口诀:“大小小大中间找”确定不等式组的解集,继而可得答案.解:解不等式4(x﹣1)≤3(x+2)得:x≤10,解不等式<x﹣4得:x>7,∴不等式组的解集为:7<x≤10,则该不等式组的整数解有:8、9、10.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.如图,在平行四边形ABCD中,点E在AB的延长线上,且EC∥BD,求证:BE=AB.【分析】可根据两组对边分别平行的四边形是平行四边形证四边形BECD是平行四边形.【解答】证明:∵ABCD是平行四边形,∴AB∥CD,即BE∥CD,又∵EC∥BD,∴四边形BECD是平行四边形.∴BE=CD.∴BE=AB.【点评】此题主要考查平行四边形的判定:两组对边分别平行的四边形是平行四边形.19.列方程或方程组解应用题:某校为美化校园,计划对一些区域进行绿化,安排了甲、乙两个工程队完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且两队在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,求甲、乙两工程队每天能完成绿化的面积分别是多少m2?【分析】设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出分式方程,解方程即可.解:设乙工程队每天能完成绿化的面积是xm2,根据题意得﹣=4,解得:x=50.经检验:x=50是原方程的解.所以甲工程队每天能完成绿化的面积是50×2=100(m2).答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2.【点评】本题主要考查了分式方程的应用,解题的关键是分析题意,找到合适的数量关系列出分式方程,解分式方程时要注意检验未知数的值是否符合原方程,是否符合实际意义.20.如图,在矩形ABCD中,∠DAE=∠CBE=45°,AD=1,求△ABE的面积和周长.【分析】由矩形的性质可得BC=AD=1,∠C=∠D=90°,可证△AED与△BCE为等腰直角三角形,可求DE=AD=1,CE=BC=1,AE=BE=,AB=2,即可求解.解:∵在矩形ABCD中,BC=AD=1,∠C=∠D=90°,且∠DAE=∠CBE=45°,∴△AED与△BCE为等腰直角三角形,∴DE=AD=1,CE=BC=1,AE==,BE==,∴AB=DE+CE=1+1=2,∴△ABE的周长=AB+AE+BE=2++=2+2,∴△ABE的面积=AB•AD=×2×1=1.【点评】本题考查了矩形的性质,勾股定理,等腰直角三角形的性质,灵活运用这些性质进行推理是本题的关键.21.如图,矩形ABCD的对角线相交于点O,PB∥AC,PC∥BD,PB、PC相交于点P.(1)猜想四边形PCOB是什么四边形,并说明理由;(2)当矩形ABCD满足什么条件时,四边形PCOB是正方形.【分析】(1)由BE∥AC,EC∥BD,得出四边形OBEC是平行四边形,再由矩形的性质得出OB=OC,即可得出结论;(2)由正方形的判定方法即可得出结论.解:(1)四边形PCOB是菱形;理由如下:∵PB∥AC,PC∥BD,∴四边形PCOB为平行四边形,∵四边形ABCD为矩形,∴OBOD,OA=OC,AC=BD,∴OB=OC,∴四边形PCOB为菱形(有一组邻边相等的平行四边形为菱形);(2)当AC⊥BD时,四边形PCOB是正方形;理由如下:∵四边形PCOB为菱形,AC⊥BD,∴四边形PCOB为正方形(有一个角为90°的菱形为正方形).【点评】本题考查了正方形的判定、菱形的判定、矩形的性质;熟练掌握矩形的性质和正方形的判定方法,证明四边形是菱形是解决问题的关键.22.如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF =BE,连CF(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.【分析】(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;(2)由∠BEF是120°,可得∠EBC为60°,即可得△BEC是等边三角形,求得BE=BC=CE=6,再过点E作EG⊥BC于点G,求的高EG的长,即可求得答案.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=EF,∴四边形BCFE是菱形;(2)解:∵∠BEF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴BE=BC=CE=6,过点E作EG⊥BC于点G,∴EG=BE•sin60°=6×=3,∴S菱形BCFE=BC•EG=6×3=18.【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.注意证得△BEC是等边三角形是关键.23.观察下列格式,﹣,,,…(1)化简以上各式,并计算出结果;(2)以上格式的结果存在一定的规律,请按规律写出第5个式子及结果(3)用含n(n≥1的整数)的式子写出第n个式子及结果,并给出证明的过程.【分析】(1)分别把每个式子的第二项进行分母有理化,观察结果;(2)根据(1)的结果写出第5个式子及结果;(3)根据(1)的规律可得﹣,然后分母有理化,求出结果即可.解:(1)﹣=﹣=﹣=﹣1,=﹣=﹣2,==﹣3,=﹣=﹣4,(2)﹣=﹣5,(3)﹣=﹣=﹣n.【点评】本题主要考查分母有理化的知识点,解答本题的关键是找出上述各式的变化规律,此题难度一般.。

2018昭通中考数学试卷及答案解析

2018昭通中考数学试卷及答案解析

2018昭通中考数学试卷及答案解析
2018年昭通中考数学试卷及答案
2018年昭通市中考数学试题及答案解析
中考数学试题及答案点击查看
注:云南省2018年中考实行统一试卷,更多关于云南省地区中考试题信息请点击《2018云南省各市中考试卷及答案解析汇总》!
中考志愿如何合理填报
1、填报中考志愿一定要科学判断:为了避免中考考生因志愿填报不合理而落榜,造成无书可读、无学可上的后果,原则上要求中考考生每批次都进行志愿填报,第一批次中学指令计划的志愿没有被录取,不影响第二、三批次中考志愿的正常录取。

2、填报中考志愿一定要形成梯度:第二批次3个中考志愿填报要填满,要遵循“冲、稳、保”的原则,安排好中考志愿填报梯次,根据自己的分数和排名情况,将自己想去但分数可能不够的学校填在第一位,自己可以被录取的学校填在第二位,绝对可以录取的学校填在志愿填报第三位。

3、在第二批次中,不要重复填报同一所学校,2017年就出现有的中考考生三个志愿填报都填报同一所学校,根据录取规则,只有第一个中考志愿是有效的,其他2个中考志愿填报都是无效的。

4、慎重志愿填报,一旦填报,不得更改。

国际部、民办学校均按办学成本收费,收费标准相对较高。

在中考志愿填报前,请考生及监护人要全面了解学校公布的收费标准,充分考虑中考考生是否有相应的经济承受能力,慎重志愿填报,一旦填报,不得更改。

云南省昭通市昭阳区2018-2019学年八年级(下)期中数学试卷(含解析)

云南省昭通市昭阳区2018-2019学年八年级(下)期中数学试卷(含解析)

2018-2019学年八年级第二学期期中数学试卷一、填空题1.﹣的相反数是.2.分解因式:m3﹣m=.3.已知菱形的周长为20,一条对角线长为6,则边长是,它的面积是.4.若二次根式有意义,则x的取值范围是.5.一个多边形的内角和为1080°,则它的边数为.它的外角和为.6.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为.二、选择题(每题4分,共32分)7.下列计算正确的是()A.B.5=5C.D.8.下列长度的线段中,能构成直角三角形的一组是()A.,,B.6,7,8C.12,25,27D.2,2,4 9.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A.6种B.5种C.4种D.3种10.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 11.已知:在Rt△ABC中,∠C=90°,BC=1,AC=,点D是斜边AB的中点,点E 是边AC上一点,则DE+BE的最小值为()A.2B.+1C.D.212.顺次连接矩形四边中点所形成的四边形是()A.矩形B.菱形C.正方形D.梯形13.下列说法中错误的是()A.有一个角是直角的平行四边形是矩形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直的矩形是菱形D.对角线相等的四边形是矩形14.如图,将长方形纸片ABCD沿直线AE折叠,顶点D恰好落在BC边上点F处,已知CE=3cm,AB=8cm,图中阴影部分的面积是()A.80cm2B.50cm2C.30cm2D.20cm2三、解答题(共9题,共70分)15.计算:(1)﹣9+;(2)×﹣÷﹣|1﹣|.16.最简二次根式与是同类二次根式,求3a﹣b的值.17.解不等式组并写出它的所有整数解.18.如图,在平行四边形ABCD中,点E在AB的延长线上,且EC∥BD,求证:BE=AB.19.列方程或方程组解应用题:某校为美化校园,计划对一些区域进行绿化,安排了甲、乙两个工程队完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且两队在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,求甲、乙两工程队每天能完成绿化的面积分别是多少m2?20.如图,在矩形ABCD中,∠DAE=∠CBE=45°,AD=1,求△ABE的面积和周长.21.如图,矩形ABCD的对角线相交于点O,PB∥AC,PC∥BD,PB、PC相交于点P.(1)猜想四边形PCOB是什么四边形,并说明理由;(2)当矩形ABCD满足什么条件时,四边形PCOB是正方形.22.如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF =BE,连CF(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.23.观察下列格式,﹣,,,…(1)化简以上各式,并计算出结果;(2)以上格式的结果存在一定的规律,请按规律写出第5个式子及结果(3)用含n(n≥1的整数)的式子写出第n个式子及结果,并给出证明的过程.参考答案一、填空题(每题3分,共18分)1.﹣的相反数是.【分析】根据相反数的定义进行填空即可.解:∵﹣的相反数是,故答案为.【点评】本题考查了实数的性质以及算术平方根,掌握相反数的定义是解题的关键.2.分解因式:m3﹣m=m(m+1)(m﹣1).【分析】先提取公因式m,再对余下的多项式利用平方差公式继续分解.解:m3﹣m,=m(m2﹣1),=m(m+1)(m﹣1).【点评】本题考查提公因式法分解因式和利用平方差公式分解因式,关键在于需要进行二次分解因式.3.已知菱形的周长为20,一条对角线长为6,则边长是5,它的面积是24.【分析】菱形对角线互相垂直平分,所以OA2+OB2=AB2,已知AB=5,AO=3,即可求得BO,即可求得BD的长,根据AC、BD即可求菱形ABCD的面积,即可解题.解:AC=8,则AO=CO=3,∵菱形周长为20,∴AB=5,∵菱形对角线互相垂直平分,∴OA2+OB2=AB2,∴BO=4,∴DB=8,∴菱形的面积S=×6×8=24.故答案为5:24.【点评】本题考查了菱形对角线互相垂直平分的性质,菱形面积的计算,本题中根据勾股定理求BO的值是解题的关键.4.若二次根式有意义,则x的取值范围是x≥﹣.【分析】二次根式的被开方数是非负数,则4x+1≥0.解:由题意,得4x+1≥0,解得x≥﹣.故答案是:x≥﹣.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.一个多边形的内角和为1080°,则它的边数为8.它的外角和为360°.【分析】根据多边形内角和公式(n﹣2)×180°可计算出边数,再根据多边形外角和为360°可得答案.解:设它的边数为n,由题意得:(n﹣2)×180=1080,解得:n=8,它的外角和为360°;故答案为:8;360°.【点评】此题主要考查了多边形内角和公式和外角和定理,关键是熟练掌握内角和公式(n﹣2)×180°.6.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为18.【分析】根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO、OM、AM即可解决问题.解:∵四边形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴AC==10,∵AO=OC,∴BO=AC=5,∵AO=OC,AM=MD=4,∴OM=CD=3,∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=18.故答案为18.【点评】本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.二、选择题(每题4分,共32分)7.下列计算正确的是()A.B.5=5C.D.【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.解:不能合并,故选项A错误,,故选项B错误,,故选项C错误,,故选项D正确,故选:D.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.8.下列长度的线段中,能构成直角三角形的一组是()A.,,B.6,7,8C.12,25,27D.2,2,4【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.解:A、()2+()2≠()2,故不是直角三角形,此选项错误;B、62+72≠82,故不是直角三角形,此选项错误;C、122+252≠272,故不是直角三角形,此选项错误;D、(2)2+(2)2=(4)2,故是直角三角形,此选项正确.故选:D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.9.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A.6种B.5种C.4种D.3种【分析】根据平行四边形的判定方法即可找到所有组合方式:(1)两组对边平行①③;(2)两组对边相等②④;(3)一组对边平行且相等①②或③④,所以有四种组合.解:依题意得有四种组合方式:(1)①③,利用两组对边平行的四边形是平行四边形判定;(2)②④,利用两组对边相等的四边形是平行四边形判定;(3)①②或③④,利用一组对边平行且相等的四边形是平行四边形判定.故选:C.【点评】此题主要考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键.10.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 【分析】由矩形和菱形的判定方法即可得出答案.解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.【点评】本题考查了矩形的判定、平行四边形的性质、菱形的判定;熟练掌握矩形的判定是解决问题的关键.11.已知:在Rt△ABC中,∠C=90°,BC=1,AC=,点D是斜边AB的中点,点E 是边AC上一点,则DE+BE的最小值为()A.2B.+1C.D.2【分析】作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=,所以最小值为.解:作B关于AC的对称点B',连接B′D,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵AB=AB',∴△ABB'为等边三角形,∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,∴最小值为B'到AB的距离=AC=,故选:C.【点评】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.12.顺次连接矩形四边中点所形成的四边形是()A.矩形B.菱形C.正方形D.梯形【分析】因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB,∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:B.【点评】本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.13.下列说法中错误的是()A.有一个角是直角的平行四边形是矩形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直的矩形是菱形D.对角线相等的四边形是矩形【分析】根据矩形的定义知,有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形,根据菱形的定义及性质知四条边都相等的四边形是菱形即可解答.解:根据矩形的定义及性质知,有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形,故A,B正确;根据菱形的定义及性质知对角线互相垂直的矩形是正方形,也是菱形,故C正确;对角线相等的四边形有可能是等腰梯形,故D错误;故选:D.【点评】本题考查了菱形的判定及矩形的判定,属于基础题,关键是掌握矩形的定义及性质,菱形的定义及性质.14.如图,将长方形纸片ABCD沿直线AE折叠,顶点D恰好落在BC边上点F处,已知CE=3cm,AB=8cm,图中阴影部分的面积是()A.80cm2B.50cm2C.30cm2D.20cm2【分析】根据已知条件得到△ABF∽△FCE,根据相似三角形的性质得到=,求出AF=10,得到AD=AF=10,然后运用S阴影=S矩形ABCD﹣2S△ADE,代入数值计算即可解决问题.解:如图,∵CD=AB=8,CE=3,∴EF=DE=8﹣3=5;由勾股定理得:CF=4;由折叠的性质得:AF=AD,∠AFE=∠D=90°;∵∠B=∠C=90°;∴∠BAF+∠AFB=∠AFB+∠EFC,∴∠BAF=∠EFC,而∠B=∠C,∴△ABF∽△FCE,∴=,即=,解得:AF=10.∴AD=AF=10.∵S△AEF=S△ADE,∴S阴影=S矩形ABCD﹣2S△ADE=10×8﹣2××10×5=80﹣50=30.故选:C.【点评】该题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,相似三角形的判定与性质,勾股定理.根据△ABF∽△FCE,求出AF=10,得到AD=AF=10是解题的关键.三、解答题(共9题,共70分)15.计算:(1)﹣9+;(2)×﹣÷﹣|1﹣|.【分析】(1)先化简各二次根式化简,再合并同类二次根式即可得;(2)根据二次根式的混合运算顺序和运算法则计算可得.解:(1)原式=4﹣3+2=3;(2)原式=﹣﹣(﹣1)=﹣﹣+1=.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.16.最简二次根式与是同类二次根式,求3a﹣b的值.【分析】根据题意,它们的被开方数相同,列出方程求解.解:由最简二次根式与是同类二次根式,得,解得,则3a﹣b=2.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.17.解不等式组并写出它的所有整数解.【分析】分别求出每一个不等式的解集,根据口诀:“大小小大中间找”确定不等式组的解集,继而可得答案.解:解不等式4(x﹣1)≤3(x+2)得:x≤10,解不等式<x﹣4得:x>7,∴不等式组的解集为:7<x≤10,则该不等式组的整数解有:8、9、10.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.如图,在平行四边形ABCD中,点E在AB的延长线上,且EC∥BD,求证:BE=AB.【分析】可根据两组对边分别平行的四边形是平行四边形证四边形BECD是平行四边形.【解答】证明:∵ABCD是平行四边形,∴AB∥CD,即BE∥CD,又∵EC∥BD,∴四边形BECD是平行四边形.∴BE=CD.∴BE=AB.【点评】此题主要考查平行四边形的判定:两组对边分别平行的四边形是平行四边形.19.列方程或方程组解应用题:某校为美化校园,计划对一些区域进行绿化,安排了甲、乙两个工程队完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且两队在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,求甲、乙两工程队每天能完成绿化的面积分别是多少m2?【分析】设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出分式方程,解方程即可.解:设乙工程队每天能完成绿化的面积是xm2,根据题意得﹣=4,解得:x=50.经检验:x=50是原方程的解.所以甲工程队每天能完成绿化的面积是50×2=100(m2).答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2.【点评】本题主要考查了分式方程的应用,解题的关键是分析题意,找到合适的数量关系列出分式方程,解分式方程时要注意检验未知数的值是否符合原方程,是否符合实际意义.20.如图,在矩形ABCD中,∠DAE=∠CBE=45°,AD=1,求△ABE的面积和周长.【分析】由矩形的性质可得BC=AD=1,∠C=∠D=90°,可证△AED与△BCE为等腰直角三角形,可求DE=AD=1,CE=BC=1,AE=BE=,AB=2,即可求解.解:∵在矩形ABCD中,BC=AD=1,∠C=∠D=90°,且∠DAE=∠CBE=45°,∴△AED与△BCE为等腰直角三角形,∴DE=AD=1,CE=BC=1,AE==,BE==,∴AB=DE+CE=1+1=2,∴△ABE的周长=AB+AE+BE=2++=2+2,∴△ABE的面积=AB•AD=×2×1=1.【点评】本题考查了矩形的性质,勾股定理,等腰直角三角形的性质,灵活运用这些性质进行推理是本题的关键.21.如图,矩形ABCD的对角线相交于点O,PB∥AC,PC∥BD,PB、PC相交于点P.(1)猜想四边形PCOB是什么四边形,并说明理由;(2)当矩形ABCD满足什么条件时,四边形PCOB是正方形.【分析】(1)由BE∥AC,EC∥BD,得出四边形OBEC是平行四边形,再由矩形的性质得出OB=OC,即可得出结论;(2)由正方形的判定方法即可得出结论.解:(1)四边形PCOB是菱形;理由如下:∵PB∥AC,PC∥BD,∴四边形PCOB为平行四边形,∵四边形ABCD为矩形,∴OBOD,OA=OC,AC=BD,∴OB=OC,∴四边形PCOB为菱形(有一组邻边相等的平行四边形为菱形);(2)当AC⊥BD时,四边形PCOB是正方形;理由如下:∵四边形PCOB为菱形,AC⊥BD,∴四边形PCOB为正方形(有一个角为90°的菱形为正方形).【点评】本题考查了正方形的判定、菱形的判定、矩形的性质;熟练掌握矩形的性质和正方形的判定方法,证明四边形是菱形是解决问题的关键.22.如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF =BE,连CF(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.【分析】(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;(2)由∠BEF是120°,可得∠EBC为60°,即可得△BEC是等边三角形,求得BE=BC=CE=6,再过点E作EG⊥BC于点G,求的高EG的长,即可求得答案.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=EF,∴四边形BCFE是菱形;(2)解:∵∠BEF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴BE=BC=CE=6,过点E作EG⊥BC于点G,∴EG=BE•sin60°=6×=3,∴S菱形BCFE=BC•EG=6×3=18.【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.注意证得△BEC是等边三角形是关键.23.观察下列格式,﹣,,,…(1)化简以上各式,并计算出结果;(2)以上格式的结果存在一定的规律,请按规律写出第5个式子及结果(3)用含n(n≥1的整数)的式子写出第n个式子及结果,并给出证明的过程.【分析】(1)分别把每个式子的第二项进行分母有理化,观察结果;(2)根据(1)的结果写出第5个式子及结果;(3)根据(1)的规律可得﹣,然后分母有理化,求出结果即可.解:(1)﹣=﹣=﹣=﹣1,=﹣=﹣2,==﹣3,=﹣=﹣4,(2)﹣=﹣5,(3)﹣=﹣=﹣n.【点评】本题主要考查分母有理化的知识点,解答本题的关键是找出上述各式的变化规律,此题难度一般.。

2018年云南中考数学试卷(含解析)

2018年云南中考数学试卷(含解析)

2018年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(2018云南,1,3分)-1的绝对值是________.【答案】1.【解析】根据“负数的绝对值等于它的相反数”知,-1的绝对值是1.2.(2018云南,2,3分)已知点P (a ,b )在反比例函数y =2x的图象上,则ab =________. 【答案】2.【解析】因为点P (a ,b )在反比例函数y =2x 的图象上,所以b =2a,即ab =2. 3.(2018云南,3,3分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员有3 451人.将3 451用科学记数法表示为________.【答案】3.451×310.【解析】用科学记数法表示3 451,就是将3 451写成a ×10n (其中1≤a <10,n 为整数)的形式.因为1≤a <10,所以a =3.541;因为3 451一共有4位整数数位,所以n =3.所以3 451用科学记数法表示为3.541×310.4.(2018云南,4,3分)分解因式:24x -=________.【答案】(2)(2)x x +-.【解析】多项式24x -可运算平方公式分解,即24x -=(2)(2)x x +-,而因式2x +与2x -不能再分解,所以(2)(2)x x +-就是因式分解的结果.5.(2018云南,5,3分)如图,已知AB ∥CD ,若AB CD =14,则OA OC=________. 【答案】14. 【解析】因为AB ∥CD ,所以△OAB ∽△OCD ,所以OA OC =AB CD =14. 6.(2018云南,6,3分)在△ABC 中,AB =34,AC =5.若BC 边上的高等于3,则BC 边的长为________.【答案】1或9.【解析】设边BC 上的高为AD .当边BC 上的高AD 在△ABC 的内部时,如答图1所示,在Rt △ABD 中,由勾股定理得BD =22AB AD -=22(34)3-=5,在Rt △ACD 中,由勾股定理得CD =22AC AD -=2253-=4,所以BC =5+4=9.在边BC 上的高AD 在△ABC 的外部时,如答图2所示,同理BD =5,CD =4,所以BC =5-4=1.(第5题图) C DAB O(第6题答图1) CD A B (第6题答图2) CDA B二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共计32分)7.(2018云南,7,4分)函数y =1x -的自变量x 取值范围为 ········································ ( )A .x ≤0B .x ≤1C .x ≥0D .x ≥1【答案】B .【解析】函数y =1x -自变量x 满足1x -≥0,解得x ≤1..8.(2018云南,8,4分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图)。

云南省昭通市昭阳区2018-2019学年八年级下学期期中数学试题(含答案及解析)

云南省昭通市昭阳区2018-2019学年八年级下学期期中数学试题(含答案及解析)

2019年春季学期初中学业水平期中监测八年级数学试题卷一、填空题(每题3分,共18分)1._________.【解析】【分析】根据相反数的意义,可得答案.【详解】【点睛】本题考查相反数,掌握相反数的定义是关键.2.分解因式:3m m -=_____________;【答案】()()11m m m +-【解析】【分析】当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式利用平方差公式继续分解.【详解】解:m 3﹣m ,=m (m 2﹣1),=m (m ﹣1)(m +1).故答案为:m (m ﹣1)(m +1).【点睛】本题考查提公因式法分解因式,利用平方差公式分解因式,熟记公式是解题关键,要注意分解因式要彻底.3.菱形的周长是20,一条对角线的长为6,则它的面积为_____.【答案】24.【解析】【分析】先画出图形,根据菱形的性质可得5AD =,DO =3,根据勾股定理可求得AO 的长,从而得到AC 的长,再根据菱形的面积公式即可求得结果.【详解】由题意得2045AD =÷=,6BD =∵菱形ABCD∴3DO =,AC ⊥BD ∴224AO AD DO =-=∴28AC AO ==∴1242S AC BD =⋅=考点:本题考查的是菱形的性质【点睛】解答本题的关键是熟练掌握菱形的对角线互相垂直且平分,菱形的四条边相等;同时熟记菱形的面积等于对角线乘积的一半.4.41x +x 的取值范围是_______【答案】14x ≥-【解析】【分析】根据被开方数大于等于0列式计算即可得解.【详解】解:由题意得, 4x +1≥0,解得x ≥﹣14. 故答案为:x ≥﹣14. 【点睛】本题考查的知识点为:二次根式的被开方数是非负数.5.已知一个多边形的内角和是1080︒,这个多边形外角和是 ___________【答案】360°【解析】【分析】根据任何多边形的外角和是360°即可求出答案.【详解】解:因为任意多边形的外角和都是360°,故答案为:360°.【点睛】本题考查了多边形的外角和定理,比较简单.6.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=6,AD=8,则四边形ABOM 的周长为_____.【答案】18.【解析】【分析】根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO、OM、AM即可解决问题.【详解】解:∵四边形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴2210AC AB BC=+=,∵AO=OC,∴152BO AC==,∵AO=OC,AM=MD=4,∴132OM CD==,∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=18.故答案为:18.【点睛】本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.二、选择题:(每小题4分,共计32分)7.下列计算正确的是()822= B. 535256=1234=325=【答案】A【解析】根据二次根式的加减法对A 、D 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断.【详解】解:A ==A 选项正确;B 、52=B 选项错误;C 2==,所以C 选项错误;D D 选项错误.故选:A .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.8.下列长度的线段中,能构成直角三角形的一组是( )B. 6,7,8C. 12,25,27D. 【答案】D【解析】【分析】根据勾股定理的逆定理逐项进行判断即可得.【详解】:A 2+2≠2,故不是直角三角形,此选项错误;B 、62+72≠82,故不是直角三角形,此选项错误;C 、122+252≠272,故不是直角三角形,此选项错误;D 、(2+(2=(2,故是直角三角形,此选项正确,故选D .【点睛】本题考查了勾股定理的逆定理的应用,给出三角形的三边判断能否构成直角三角形时,只需要看较短两边的平方和是否等于长边的平方即可,等于就是直角三角形,否则就不是直角三角形..9.已知四边形ABCD ,有①//AB CD ;②AB CD =;③//BC AD ;④BC AD =.从这四个条件中任选两个,能使四边形ABCD 成为平行四边形的选法种数,共有( )A. 3种B. 4种C. 5种D. 6种 【答案】B【解析】根据平行四边形的判定方法即可找到所有组合方式:(1)两组对边平行①③;(2)两组对边相等②④;(3)一组对边平行且相等①②或③④,所以有四种组合.【详解】解:依题意得有四种组合方式:(1)①③,利用两组对边平行的四边形是平行四边形判定;(2)②④,利用两组对边相等的四边形是平行四边形判定;(3)①②或③④,利用一组对边平行且相等的四边形是平行四边形判定.故选:B.【点睛】此题主要考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键.10.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A. ∠BAC=∠DCAB. ∠BAC=∠DACC. ∠BAC=∠ABDD. ∠BAC=∠ADB【答案】C【解析】【详解】A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选C.11.已知:在Rt△ABC中,∠C=90°,BC=1,AC=3,点D是斜边AB的中点,点E是边AC上一点,则DE+BE的最小值为()A. 2313D. 23【解析】【分析】作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=3,所以最小值为3.【详解】解:作B关于AC的对称点B',连接B′D,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵AB=AB',∴△ABB'为等边三角形,∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,∴最小值为B'到AB的距离3故选C.【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.12.顺次连接矩形四边中点所形成的四边形是( )A. 矩形B. 菱形C. 正方形D. 梯形【答案】B【解析】【分析】因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.【详解】解:连接AC、BD,在△ABD 中,∵AH=HD ,AE=EB ,∴EH=12BD , 同理FG=12BD ,HG=12AC ,EF=12AC , 又∵在矩形ABCD 中,AC=BD ,∴EH=HG=GF=FE ,∴四边形EFGH 为菱形.故选B .点睛:本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.13.下列说法中错误的是( )A. 有一个角是直角的平行四边形是矩形B. 有一组邻边相等的平行四边形是菱形C. 对角线互相垂直的矩形是菱形D. 对角线相等的四边形是矩形【答案】D【解析】【分析】根据矩形,菱形的判定方法进行判定即可.【详解】A. 有一个角是直角的平行四边形是矩形,正确.B. 有一组邻边相等的平行四边形是菱形,正确.C. 对角线互相垂直的矩形是菱形,正确.D. 对角线相等的四边形是矩形,错误,例如:等腰梯形.故选D.【点睛】要根据矩形、菱形的判定方法,进行选择.熟记矩形和菱形的判定方法是解决本题的关键. 14.如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知3,8CE cm AB cm ==,则图中阴影部分面积为()A. 212cm B. 225cm C. 230cm D. 250cm【答案】C【解析】【分析】根据折叠的性质求出DE=EF=5,在Rt△CEF中,利用勾股定理求出CF=4,设AD=x,则AD=AF=BC =x,在Rt△ABF中,利用勾股定理构建方程即可解决问题.【详解】解:设AD=x,则AD=AF=BC=x,∵AB=8,∴CD=AB=8,∵CE=3,∴EF=DE=CD﹣CE=8﹣3=5,在直角△CEF中,CF22EF CE=4,∴BF=x﹣4,在直角△ABF中,AB2+BF2=AF2,即64+(x﹣4)2=x2,解得:x=10,∴S△ADE=S△AFE=12AD•DE=12×10×5=25,∵S矩形ABCD=10×8=80,∴S阴影=S矩形ABCD﹣S△ADE﹣S△AFE=80﹣25﹣25=30.故选:C.【点睛】本题考查了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②勾股定理,三角形的面积公式求解.三.解答题:(每题9分,共70分)15.计算:(12|1.【答案】(1)(2)12.【解析】【分析】(1)先化为最简二次根式,再将被开方数相同的二次根式进行合并;(2)先化为最简二次根式,再根据二次根式的乘除法法则进行计算,最后再合并同类二次根式和合并同类项.【详解】(1)原式(2)原式12-1)12=12.【点睛】二次根式的混合运算,关键是二次根式的化简.16.3a﹣b的值.【答案】2.【解析】试题分析:根据题意,它们的被开方数相同,列出方程求解.432612a b a bb+-+⎧⎨+⎩==,解得11ab==⎧⎨⎩,则3a-b=2.17.解不等式组4(1)3(2),14,2x xxx-≤+⎧⎪⎨-<-⎪⎩并写出它的所有整数解....【答案】它的整数解为7,8,9,10.【解析】【分析】分别解不等式,找出解集的公共部分,再写出整数解即可.【详解】解:解不等式4(1)3(2)x x -≤+,4436x x -≤+,10x ≤, 142x x -<-, 228x x -<-,6x ->-,6x >,∴不等式组的解集为610x <≤.∴它的整数解为7,8,9,10.18.如图,在平行四边形ABCD 中,点E 在AB 的延长线上,且EC//BD ,求证:BE=AB .【答案】证明见解析.【解析】【分析】可根据两组对边分别平行的四边形是平行四边形证四边形BECD 是平行四边形.【详解】解:∵ABCD 是平行四边形,∴AB ∥CD,即BE ∥CD ,又∵EC ∥BD ,∴四边形BECD 是平行四边形∴BE=CD∴BE=AB19.某校为美化校园,计划对某一区域进行绿化,安排甲.乙 两个工程队完成;已知甲队每天能完成绿化面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为4002m 区域的绿化时,甲队比乙队少用4天,求甲.乙两工程队每天能完成绿化的面积分别是多少2m .【答案】甲、乙两工程队每天能完成绿化的面积分别是1002m ,502m .【解析】【分析】设乙工程队每天能完成绿化的面积是x 2m ,则甲工程队每天能完成绿化的面积是2x 2m ,根据题意列出方程求解即可.【详解】设乙工程队每天能完成绿化的面积是x 2m ,则甲工程队每天能完成绿化的面积是2x 2m , 根据题意得:40040042x x-=, 解得:x=50,经检验,x=50是原方程的解,且符合题意,甲工程队每天能完成的绿化的面积是50×2=100(2m ),答:甲、乙两工程队每天能完成绿化的面积分别是1002m ,502m ,【点睛】本题考查了分式方程的实际应用—工程问题,掌握分式方程的实际应用是解题的关键. 20.如图,在长方形ABCD 中,45DAE CBE ∠=∠=︒,1AD =,求ABE ∆的面积和周长.【答案】周长为222,面积为1 【解析】【分析】(1)根据矩形性质和等腰直角三角形的性质可求BC ,DE ,CE ,AE ,BE ,进一步得到CD 和AB 的长,再根据三角形周长的定义即可求解;(2)先根据矩形的面积公式求出长方形ABCD 的面积,再根据等底等高的三角形面积是长方形面积的一半即可求解.【详解】 解:(1)∵四边形ABCD 是长方形,∴BC=AD=1,∠C=∠D=90∘,∵∠DAE=∠CBE=45∘,∴22∴AB=CD=1+1=2,∴△ABE 的周长=2+2+2=2+22.(2)△ABE 的面积=2×1÷2=1.【点睛】本题考查了长方形的面积和周长的计算,熟练掌握其计算公式是解题的关键.21.如图,矩形ABCD 的对角线相交于点O ,PB ∥AC ,PC ∥BD ,PB 、PC 相交于点P .(1)猜想四边形PCOB 是什么四边形,并说明理由;(2)当矩形ABCD 满足什么条件时,四边形PCOB 是正方形.【答案】(1)四边形PCOB 为菱形,理由见解析;(2)AC ⊥BD【解析】【分析】(1)由BE ∥AC ,EC ∥BD ,得出四边形OBEC 是平行四边形,再由矩形的性质得出OB=OC ,即可得出结论;(2)由正方形的判定方法即可得出结论.【详解】解:(1)四边形PCOB 是菱形;理由如下:∵PB ∥AC ,PC ∥BD ,∴四边形PCOB 为平行四边形,∵四边形ABCD 为矩形,∴OBOD ,OA=OC ,AC=BD ,∴OB=OC ,∴四边形PCOB 为菱形(有一组邻边相等的平行四边形为菱形);(2)当AC ⊥BD 时,四边形PCOB 是正方形;理由如下:∵四边形PCOB 为菱形,AC ⊥BD ,∴四边形PCOB 为正方形(有一个角为90°的菱形为正方形).【点睛】本题考查了正方形的判定、菱形的判定、矩形的性质;熟练掌握矩形的性质和正方形的判定方法,证明四边形是菱形是解决问题的关键.22.如图,在ABC ∆中,DE 分别是AB ,AC 的中点,2D BE E =,延长DE 到点F ,使得EF BE =,连结CF .(1)求证:四边形BCFE 是菱形;(2)若5CE =,120BEF ︒∠=,求菱形BCFE 的面积.【答案】(1)见解析;(2253 【解析】【分析】(1)从所给的条件可知,DE 是△ABC 的中位线,所以DE ∥BC 且2DE =BC ,所以BC 和EF 平行且相等,所以四边形BCFE 是平行四边形,又因为BE =EF ,所以是菱形;(2)由∠BEF 是120°,可得∠EBC 为60°,即可得△BEC 是等边三角形,求得BE =BC =CE =5,再过点E 作EG ⊥BC 于点G ,求出高EG 的长,即可求得答案.【详解】解:(1)∵D 、E 分别是AB 、AC 的中点,∴DE ∥BC 且2DE =BC ,又∵BE =2DE ,EF =BE ,∴EF =BC ,EF ∥BC ,∴四边形BCFE 是平行四边形,又∵BE =EF ,∴四边形BCFE 是菱形;(2)∵∠BEF =120°,∴∠EBC =60°,∴△EBC 是等边三角形,∴BE =BC =CE =5,过点E 作EG ⊥BC 于点G ,∴EG =BE•sin60°=5×353, ∴S 菱形BCFE =BC•EG =5×53253.【点睛】本题考查菱形的判定和性质、三角形中位线定理、三角函数的应用以及菱形的面积计算等知识点.证得△BEC 是等边三角形是关键.23.观察下列各式:5182133204 (22225182133201)---- ()1化简以上各式,并计算出结果;()2以上式子与其结果存在一定的规律.请按规律写出第5个式子及结果.()3猜想第n 个式子及结果(用含n (1n ≥的整数)的式子写出),并对猜想进行证明.【答案】()11,2,3,4----;(29525295-=--;()3第n 个式子为及结果为2244n n n n n+-=-+-,证明见解析 【解析】【分析】(1)分别把每个式子的第二项进行分母有理化,观察结果;(2)根据(1)结果写出第5个式子及结果;(3)根据(12244n n n n+-+-,然后分母有理化,求出结果即可. 【详解】解: (51151-- ()()25151515115151--+===--+ ()()2828282828282--=--+2 ==-=3==-····4==-()5252=-()3第n个式子为及结果为n=-证明:左边=2n=2nn===--=右边2nn=-成立【点睛】本题主要考查分母有理化的知识点,解答本题的关键是找出上述各式的变化规律,此题难度一般.。

【全国区级联考】云南省昭通市昭阳区2018年中考数学模拟试卷(解析版)

【全国区级联考】云南省昭通市昭阳区2018年中考数学模拟试卷(解析版)

云南省昭通市昭阳区2018届九年级中考数学模拟试卷一、选择题(本大题共8小题,每小题4分,共32分)1. 下列二次根式中,是最简二次根式的为()A. B. C. D.【答案】C【解析】试题解析:A、,被开方数含分母,不是最简二次根式;B、,被开方数含能开得尽方的因数,不是最简二次根式;C、是最简二次根式;D、,被开方数含能开得尽方的因数,不是最简二次根式.故选C.点睛:最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2. 若一直角三角形两边长分别为12和5,则第三边长为()A. 13B. 13或C. 13或15D. 15【答案】B【解析】若12和5都为直角边,则第三边长为若12为斜边,5为直角边,则第三边为,所以选B.3. 在▱ABCD中,∠B+∠D=260°,那么∠A的度数是()A. 130°B. 100°C. 50°D. 80°【答案】C【解析】【分析】画出图形,根据平行四边形的对角相等即可得解.【详解】如图所示:∵四边形ABCD是平行四边形,∴∠B=∠D,∠A+∠B=180°,∵∠B+∠D=260°,∴∠B=∠D=130°,∴∠A的度数是:50°.故选:C.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的对角相等是解本题的关键.4. 矩形、菱形、正方形都具有的性质是()A. 对角线相等B. 对角线互相平分C. 对角线互相垂直D. 对角线平分对角【答案】B【解析】试题分析:根据矩形、菱形、正方形的性质可得矩形、菱形、正方形都具有的性质是对角线互相平分.故答案选B.考点:矩形、菱形、正方形的性质.5. 要使函数y=(m﹣2)x n﹣1+n是一次函数,应满足()A. m≠2,n≠2B. m=2,n=2C. m≠2,n=2D. m=2,n=0【答案】C【解析】【分析】根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选C.【点睛】本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.6. 甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均环数及方差S2如下表所示:若要选出一个成绩较好状态稳定的运动员去参赛,那么应选运动员()A. 甲B. 乙C. 丙D. 丁【答案】B【解析】【分析】先比较平均数,乙丙的平均成绩好且相等,再比较方差即可解答.【详解】∵乙、丙射击成绩的平均环数较大,∴乙、丙的成绩较好,∵乙的方差<丙的方差,∴乙的状态比较稳定,∴成绩较好状态稳定的运动员是乙,故选B.【点睛】本题考查了方差,掌握平均数和方差的定义是解题的关键,方差它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7. 如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则▱ABCD的周长是()A. 16B. 14C. 26D. 24【答案】C【解析】试题分析:根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CE=4的长度,再求出ABCD的周长=2×(AB+AD)=20.故选C考点:平行线的性质,等腰三角形的性质,平行四边形的性质8. 函数y=kx+b的图象如图所示,则()...............A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<0【答案】C【解析】试题分析:由图可知,一次函数y=kx+b的图象经过二、三、四象限,根据一次函数图象在坐标平面内的位置与k、b的关系作答.解:由一次函数y=kx+b的图象经过二、三、四象限,又有k<0时,直线必经过二、四象限,故知k<0,再由图象过三、四象限,即直线与y轴负半轴相交,所以b<0.故选D.考点:一次函数图象与系数的关系.二、填空题(每小题3分,共18分)9. 一名学生军训时连续射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,7,8.则这名学生射击环数的众数是_____.【答案】8【解析】【分析】根据众数的定义,一组数据中出现次数最多的那个数就是这组数据的众数即可.【详解】数据4,7,8,6,8,5,9,10,7,8中,4、5、6、9、10这5个数据分别出现了1次,7这个数据出现了2次,8这个数据出现了3次,出现次数最多的数据是8,所以众数为8,故答案为:8.【点睛】本题考查了众数,熟练掌握众数的概念是解题的关键.10. 函数y=的自变量x的取值范围是_____.【答案】x≥【解析】【分析】根据二次根式的被开方数为非负数可得2x-5≥0,解这个不等式即可得.【详解】由题意得:2x-5≥0,解得:x≥,故答案为:x≥.【点睛】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.11. 一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是_____.【答案】m>﹣2【解析】【分析】根据图象的增减性来确定(m+2)的取值范围,从而求解.【详解】∵一次函数y=(m+2)x+1,若y随x的增大而增大,∴m+2>0,解得,m>﹣2,故答案为:m>﹣2.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的增减性质是解题的关键.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0.12. 如图,三个正方形围成一个直角三角形,字母C所表示的正方形面积是100,字母B所表示的正方形面积是36,则字母A所表示的正方形面积为_____.【答案】64【解析】【分析】利用勾股定理可求得a2的值,继而可得字母A所表示的正方形的面积.【详解】由题意得,c2=100,b2=36,从而可得a2=c2﹣b2=64,即字母A所表示的正方形的面积为:64,故答案为:64.【点睛】本题考查了正方形的面积公式与勾股定理,比较简单,准确识图是解题的关键.13. 如图,在△MBN中,已知:BM=6,BN=7,MN=10,点A,C,D分别是MB,NB,MN的中点,则四边形ABCD的周长是_____.【答案】13【解析】∵点A,C,D分别是MB,NB,MN的中点,∴CD∥AB,AD∥BC,∴四边形ABCD为平行四边形,∴AB=CD,AD=BC.∵BM=6,BN=7,MN=10,点A,C分别是MB,NB的中点,∴AB=3,BC=3.5,∴四边形ABCD的周长=(AB+BC)×2=(3+3.5)×2=13.14. 如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b<ax+3的解集为_____.【答案】x<1【解析】试题分析:由图知:当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;由于两直线的交点横坐标为:x=1,观察图象可知,当x>1时,x+b>ax+3;故答案为:x>1.考点:一次函数与一元一次不等式.三、解答题(70分)15. 计算:.【答案】4+【解析】试题分析:按照二次根式的运算步骤进行运算即可.试题解析:原式16. 先化简,再求值:(1﹣)÷,其中x=+2.【答案】,【解析】【分析】括号内先通分进行分式加减运算,然后再与括号外的分式进行乘除运算,最后把数值代入进行计算即可.【详解】(1﹣)÷,=,=,=,当x=+2时,原式===.【点睛】本题考查了分式的混合运算——化简求值,熟练掌握运算法则是解题的关键.17. 如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.【答案】证明见解析【解析】试题分析:由平行四边形的性质证明四边形AECF是平行四边形,即可得到结论.试题解析:∵四边形ABCD是平行四边形,∴AB∥DC,∴AE∥CF,又∵AE=CF,∴四边形AECF是平行四边形,∴AF=CE.考点:平行四边形的判定与性质.18. 某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创利润进行统计,并绘制如图1,图2统计图.(1)将图2补充完整;(2)本次共抽取员工人,每人所创年利润的众数是万元,平均数是万元,中位数是万元;(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?【答案】(1)补图见解析;(2)50;8;8.12;8;(3)384【解析】试题分析:(1)根据扇形统计图计算3万元的员工的百分比为8%,进而结合条形统计图得到抽取员工的总数为50人,得到5万元的员工人数和8万元的员工人数,据此补全统计图;(2)3万元的员工的百分比为8%,人数为4人,所以抽取员工总数为:4÷8%=50人,每人所创年利润的众数即出现次数最多的数8万元,利用求平均数的公式求平均数;(3)先计算每人创造年利润10万元及(含10万元)以上的比例,然后计算1200员工中有多少人达到优秀.试题解析:解:(1)3万元的员工的百分比为:1﹣36%﹣20%﹣12%﹣24%=8%,抽取员工总数为:4÷8%=50(人),5万元的员工人数为:50×24%=12(人),8万元的员工人数为:50×36%=18(人),(2)抽取员工总数为:4÷8%=50(人),每人所创年利润的众数是8万元,平均数是:×(3×4+5×12+8×18+10×10+15×6)=8.12万元.故答案为:50;8万元;8.12万元.(3)1200×=384(人),答:在公司1200员工中有384人可以评为优秀员工.考点:扇形统计图;条形统计图;用样本估计总体.19. 已知一次函数y=kx+b,当x=2时,y=﹣3,当x=1时,y=﹣1.(1)求一次函数的解析式;(2)若该一次函数的图形交x轴y轴分别于A、B两点,求△ABO的面积.【答案】(1)y=﹣2x+1;(2)【解析】试题分析:(1)根据一次函数解析式的特点,可得出方程组,求k,b的值,从而得出这个函数的解析式;(2)根据函数的解析式,先分别求出函数与x轴、y轴分别相交于A、B两点的坐标,再运用三角形的面积公式求解.试题解析:(1)把(2,﹣3)与(1,﹣1),代入y=kx+b,得:,解得:,所以这个函数的解析式为:y=﹣2x+1;(2)当x=0时,y=1;当y=0时,x=,即与x轴、y轴分别相交于A、B两点的坐标是A(,0),B(0,1),所以△ABO的面积是S△ABO=×1×=.考点:1.待定系数法求一次函数解析式2.一次函数图象上点的坐标特征.20. 如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.【答案】84【解析】试题分析:根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.试题解析:∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,CD=,∴S△ABC=BC•AD=(BD+CD)•AD=×21×8=84,因此△ABC的面积为84.答:△ABC的面积是84.考点:1.勾股定理的逆定理;2.勾股定理.21. 如图,E、F分别为△ABC的边BC、CA的中点,延长EF到D,使得DF=EF,连接DA、DB、AE.(1)求证:四边形ACED是平行四边形;(2)若AB=AC,试说明四边形AEBD是矩形.【答案】(1)证明见解析;(2)证明见解析【解析】试题分析:(1)由已知可得:EF是△ABC的中位线,则可得EF∥AB,EF=AB,又由DF=EF,易得AB=DE,根据有一组对边平行且相等的四边形是平行四边形,即可证得四边形ABED是平行四边形;(2)由(1)可得四边形AECD是平行四边形,又由AB=AC,AB=DE,易得AC=DE,根据对角线相等的平行四边形是矩形,可得四边形AECD是矩形.试题解析:(1)∵E、F分别为△ABC的边BC、CA的中点,∴EF∥AB,EF=AB,∵DF=EF,∴EF=DE,∴AB=DE,∴四边形ABED是平行四边形;(2)∵DF=EF,AF=CF,∴四边形AECD是平行四边形,∵AB=AC,AB=DE,∴AC=DE,∴四边形AECD是矩形.或∵DF=EF,AF=CF,∴四边形AECD是平行四边形,∵AB=AC,BE=EC,∴∠AEC=90°,∴四边形AECD是矩形.考点:1.矩形的判定2.平行四边形的判定.22. 某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图所示.(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?【答案】(1)1000;(2)y=300x﹣5000;(3)40【解析】试题分析:根据题意得出第20天的总用水量;y与x的函数关系式为分段函数,则需要分两段分别求出函数解析式;将y=7000代入函数解析式求出x的值.试题解析:(1)第20天的总用水量为1000米3当0<x<20时,设y=mx ∵函数图象经过点(20,1000),(30,4000)∴m=50y与x之间的函数关系式为:y=50x当x≥20时,设y=kx+b ∵函数图象经过点(20,1000),(30,4000)∴解得∴y与x之间的函数关系式为:y=300x﹣5000(3)当y=7000时,有7000=300x﹣5000,解得x=40考点:一次函数的性质23. 如图所示,O是矩形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE、CE相交于点E.求证:(1)四边形OCED是菱形.(2)连接OE,若AD=4,CD=3,求菱形OCED的周长和面积.【答案】(1)证明见解析;(2)10;6【解析】试题分析:(1)首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD 是矩形,根据矩形的性质,易得OC=OD,即可判定四边形CODE是菱形,(2)根据S△ODC=S矩形ABCD以及四边形OCED的面积=2S△ODC即可解决问题.试题解析:(1)证明:∵DE∥OC,CE∥OD,∵四边形OCED是平行四边形.∴OC=DE,OD=CE∵四边形ABCD是矩形,∴AO=OC=BO=OD.∴CE=OC=BO=DE.∴四边形OCED是菱形;(2)如图,连接OE.在Rt△ADC中,AD=4,CD=3由勾股定理得,AC=5∴OC=2.5∴C菱形OCED=4OC=4×2.5=10,在菱形OCED中,OE⊥CD,又∵OE⊥CD,∴OE∥AD.∵DE∥AC,OE∥AD,∴四边形AOED是平行四边形,∴OE=AD=4.∴S菱形OCED=。

2018年云南省昭通市昭阳区中考数学模拟试卷(解析版)

2018年云南省昭通市昭阳区中考数学模拟试卷(解析版)

2018年云南省昭通市昭阳区中考数学模拟试卷一、选择题(本大题共8小题,每小题4分,共32分)1.(4分)下列二次根式中,是最简二次根式的为()A.B.C.D.2.(4分)若一直角三角形两边长分别为12和5,则第三边长为()A.13B.13或C.13或15D.153.(4分)在▱ABCD中,∠B+∠D=260°,那么∠A的度数是()A.130°B.100°C.50°D.80°4.(4分)矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角5.(4分)要使函数y=(m﹣2)x n﹣1+n是一次函数,应满足()A.m≠2,n≠2B.m=2,n=2C.m≠2,n=2D.m=2,n=0 6.(4分)甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均环数及方差S2如下表所示:若要选出一个成绩较好状态稳定的运动员去参赛,那么应选运动员()A.甲B.乙C.丙D.丁7.(4分)如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则▱ABCD的周长是()A.16B.14C.26D.248.(4分)函数y=kx+b的图象如图所示,则()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0二、填空题(每小题3分,共18分)9.(3分)一名学生军训时现需射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,7,8.则这名学生射击环数的众数是.10.(3分)函数y=的自变量x的取值范围是.11.(3分)一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是.12.(3分)如图,三个正方形围成一个直角三角形,字母C所表示的正方形面积是100,字母B所表示的正方形面积是36,则字母A所表示的正方形面积为.13.(3分)如图,在△MBN中,已知:BM=6,BN=7,MN=10,点A,C,D分别是MB,NB,MN的中点,则四边形ABCD的周长是.14.(3分)如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b<ax+3的解集为.三、解答题(70分)15.(5分)计算:÷﹣×+.16.(6分)先化简,再求值:(1﹣)÷,其中x=+2.17.(6分)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.18.(10分)某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创利润进行统计,并绘制如图1,图2统计图.(1)将图2补充完整;(2)本次共抽取员工人,每人所创年利润的众数是万元,平均数是万元,中位数是万元;(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?19.(8分)已知一次函数y=kx+b,当x=2时,y=﹣3,当x=1时,y=﹣1.(1)求一次函数的解析式;(2)若该一次函数的图形交x轴y轴分别于A、B两点,求△ABO的面积.20.(7分)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.21.(8分)如图,E、F分别为△ABC的边BC、AB的中点,延长EF到D,使得DF=EF,连接DA、DB、AE.(1)求证:四边形ACED是平行四边形;(2)若AB=AC,试说明四边形AEBD是矩形.22.(10分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图所示.(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?23.(10分)如图所示,O是矩形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE、CE 相交于点E.求证:(1)四边形OCED是菱形.(2)连接OE,若AD=4,CD=3,求菱形OCED的周长和面积.2018年云南省昭通市昭阳区中考数学模拟试卷参考答案与试题解析一、选择题(本大题共8小题,每小题4分,共32分)1.(4分)下列二次根式中,是最简二次根式的为()A.B.C.D.【解答】解:A、=,被开方数含分母,不是最简二次根式;B、=2,被开方数含能开得尽方的因数,不是最简二次根式;C、是最简二次根式;D、=5,被开方数含能开得尽方的因数,不是最简二次根式.故选:C.2.(4分)若一直角三角形两边长分别为12和5,则第三边长为()A.13B.13或C.13或15D.15【解答】解:当12是斜边时,第三边是=;当12是直角边时,第三边是=13.故选:B.3.(4分)在▱ABCD中,∠B+∠D=260°,那么∠A的度数是()A.130°B.100°C.50°D.80°【解答】解:如图所示:∵四边形ABCD是平行四边形,∴∠B=∠D,∠A+∠B=180°,∵∠B+∠D=260°,∴∠B=∠D=130°,∴∠A的度数是:50°.故选:C.4.(4分)矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角【解答】解:矩形、菱形、正方形都具有的性质是对角线互相平分.故选:B.5.(4分)要使函数y=(m﹣2)x n﹣1+n是一次函数,应满足()A.m≠2,n≠2B.m=2,n=2C.m≠2,n=2D.m=2,n=0【解答】解:∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选:C.6.(4分)甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均环数及方差S2如下表所示:若要选出一个成绩较好状态稳定的运动员去参赛,那么应选运动员()A.甲B.乙C.丙D.丁【解答】解:∵乙、丙射击成绩的平均环数较大,∴乙、丙成绩较好,∵乙的方差<丙的方差,∴乙比较稳定,∴成绩较好状态稳定的运动员是乙,故选:B.7.(4分)如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则▱ABCD的周长是()A.16B.14C.26D.24【解答】解:∵在▱ABCD中,AD=8,∴BC=AD=8,AD∥BC,∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠CED,∴CD=CE=5,∴▱ABCD的周长是:2(AD+CD)=26.故选:C.8.(4分)函数y=kx+b的图象如图所示,则()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0【解答】解:根据图象知,函数y=kx+b的图象经过第一、二、四象限,∴k<0,b>0.故选:C.二、填空题(每小题3分,共18分)9.(3分)一名学生军训时现需射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,7,8.则这名学生射击环数的众数是8.【解答】解:数据8出现了三次最多为众数.故答案为:8.10.(3分)函数y=的自变量x的取值范围是x≥.【解答】解:由题意得,2x﹣5≥0,解得x≥.故答案为:x≥.11.(3分)一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是m>﹣2.【解答】解:∵一次函数y=(m+2)x+1,若y随x的增大而增大,∴m+2>0,解得,m>﹣2.故答案是:m>﹣2.12.(3分)如图,三个正方形围成一个直角三角形,字母C所表示的正方形面积是100,字母B所表示的正方形面积是36,则字母A所表示的正方形面积为64.【解答】解:由题意得,c2=100,b2=36,从而可得a2=c2﹣b2=64,即字母A所表示的正方形的面积为:64.故答案为:64.13.(3分)如图,在△MBN中,已知:BM=6,BN=7,MN=10,点A,C,D分别是MB,NB,MN的中点,则四边形ABCD的周长是13.【解答】解:∵A,C,D分别是各边中点,∴AB=BM=×6=3;BC=BN=×7=;AD=BN=×7=;CD=BM=×6=3.四边形ABCD的周长是AD+AB+BC+CD=+3++3=13.故答案为13.14.(3分)如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b<ax+3的解集为x<1.【解答】解:由图知:当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b<ax+3成立;由于两直线的交点横坐标为:x=1,观察图象可知,当x<1时,x+b<ax+3;故答案为:x<1.三、解答题(70分)15.(5分)计算:÷﹣×+.【解答】解:原式=﹣+2=4+16.(6分)先化简,再求值:(1﹣)÷,其中x=+2.【解答】解:(1﹣)÷===,当x=+2时,原式===.17.(6分)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥DC,∴AE∥CF,又∵AE=CF,∴四边形AECF是平行四边形,∴AF=CE.18.(10分)某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创利润进行统计,并绘制如图1,图2统计图.(1)将图2补充完整;(2)本次共抽取员工50人,每人所创年利润的众数是8万元,平均数是8.12万元,中位数是8万元;(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?【解答】解:(1)3万元的员工的百分比为:1﹣36%﹣20%﹣12%﹣24%=8%,抽取员工总数为:4÷8%=50(人),5万元的员工人数为:50×24%=12(人),8万元的员工人数为:50×36%=18(人),如图所示:;(2)抽取员工总数为:4÷8%=50(人),每人所创年利润的众数是8万元,平均数是:(3×4+5×12+8×18+10×10+15×6)=8.12(万元).每人所创年利润的中位数是8万元;(3)1200×=384(人).答:在公司1200员工中有384人可以评为优秀员工.故答案为:50,8,8.12,8.19.(8分)已知一次函数y=kx+b,当x=2时,y=﹣3,当x=1时,y=﹣1.(1)求一次函数的解析式;(2)若该一次函数的图形交x轴y轴分别于A、B两点,求△ABO的面积.【解答】解:(1)把(2,﹣3)与(1,﹣1),代入y=kx+b,得:,解得:,所以这个函数的解析式为:y=﹣2x+1;(2)当x=0时,y=1;当y=0时,x=,即与x轴、y轴分别相交于A、B两点的坐标是A(,0),B(0,1),所以△ABO的面积是S△ABO=×1×=.20.(7分)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.【解答】解:∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,CD===15,∴S△ABC=BC•AD=(BD+CD)•AD=×21×8=84,因此△ABC的面积为84.答:△ABC的面积是84.21.(8分)如图,E、F分别为△ABC的边BC、AB的中点,延长EF到D,使得DF=EF,连接DA、DB、AE.(1)求证:四边形ACED是平行四边形;(2)若AB=AC,试说明四边形AEBD是矩形.【解答】证明:(1)∵E、F分别为△ABC的边BC、BA的中点,∴EF∥AC,EF=AC,∵DF=EF,∴EF=DE,∴AC=DE,∴四边形ACED是平行四边形;(2)∵DF=EF,AF=BF,∴四边形AEBD是平行四边形,∵AB=AC,AC=DE,∴AB=DE,∴四边形AEBD是矩形.22.(10分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图所示.(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?【解答】解:(1)第20天的总用水量为1000米3(3分)(2)当x≥20时,设y=kx+b∵函数图象经过点(20,1000),(30,4000)∴(5分)解得∴y与x之间的函数关系式为:y=300x﹣5000(7分)(3)当y=7000时,由7000=300x﹣5000,解得x=40答:种植时间为40天时,总用水量达到7000米3(10分)23.(10分)如图所示,O是矩形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE、CE 相交于点E.求证:(1)四边形OCED是菱形.(2)连接OE,若AD=4,CD=3,求菱形OCED的周长和面积.【解答】解:(1)证明:∵DE∥OC,CE∥OD,∵四边形OCED是平行四边形.∴OC=DE,OD=CE∵四边形ABCD是矩形,∴AO=OC=BO=OD.∴CE=OC=BO=DE.∴四边形OCED是菱形;(2)如图,连接OE.在Rt△ADC中,AD=4,CD=3由勾股定理得,AC=5∴OC=2.5∴C菱形OCED=4OC=4×2.5=10,在菱形OCED中,OE⊥CD,又∵OE⊥CD,∴OE∥AD.∵DE∥AC,OE∥AD,∴四边形AOED是平行四边形,∴OE=AD=4.∴S菱形OCED=.。

云南省昭通市昭阳区2022年中考数学仿真试卷含解析

云南省昭通市昭阳区2022年中考数学仿真试卷含解析

2021-2022中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知等边三角形的内切圆半径,外接圆半径和高的比是()A.1:2:3B.2:3:4 C.1:3:2 D.1:2:32.如图,在6×4的正方形网格中,△ABC的顶点均为格点,则sin∠ACB=()A.12B.2 C.255D.1343.下列运算正确的是()A.x4+x4=2x8B.(x2)3=x5C.(x﹣y)2=x2﹣y2D.x3•x=x44.如图是一个几何体的主视图和俯视图,则这个几何体是()A.三棱柱B.正方体C.三棱锥D.长方体581)A.9 B.±9 C.±3 D.36.分式方程213xx=-的解为()A.x=-2 B.x=-3 C.x=2 D.x=37.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:成绩(单位:米) 2.10 2.20 2.25 2.30 2.35 2.40 2.45 2.50人数 2 3 2 4 5 2 1 1则下列叙述正确的是()A.这些运动员成绩的众数是5B.这些运动员成绩的中位数是2.30C.这些运动员的平均成绩是2.25D.这些运动员成绩的方差是0.07258.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm9.用五个完全相同的小正方体组成如图所示的立体图形,从正面看到的图形是()A.B.C.D.10.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、4011.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A .4.5cmB .5.5cmC .6.5cmD .7cm12.如图,等腰直角三角形的顶点A 、C 分别在直线a 、b 上,若a ∥b ,∠1=30°,则∠2的度数为( )A .30°B .15°C .10°D .20°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.我们知道方程组345456x y x y +=⎧⎨+=⎩的解是12x y =-⎧⎨=⎩,现给出另一个方程组3(23)4(2)54(23)5(2)6x y x y ++-=⎧⎨++-=⎩,它的解是____. 14.二次根式1a + 中的字母a 的取值范围是_____.15.已知点A (2,0),B (0,2),C (-1,m )在同一条直线上,则m 的值为___________.16.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b )6= . 17.如图,在梯形ABCD 中,//AD BC ,3BC AD =,点E 、F 分别是边AB 、CD 的中点.设AD a =,DC b =,那么向量EC 用向量,a b 表示是________.18.若分式15x -有意义,则实数x 的取值范围是_______. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球),第一次变化:从左边小桶中拿出两个小球放入中间小桶中;第二次变化:从右边小桶中拿出一个小球放入中间小桶中;第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球个数是最初的两倍.(1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的____倍;(2)若每个小桶中原有a 个小球,则第二次变化后中间小桶中有_____个小球(用a 表示);(3)求第三次变化后中间小桶中有多少个小球?20.(6分)如图,矩形OABC 摆放在平面直角坐标系xOy 中,点A 在x 轴上,点C 在y 轴上,8 ,6OA OC ==.(1)求直线AC 的表达式;(2)若直线y x b =+与矩形OABC 有公共点,求b 的取值范围;(3)直线: 10l y kx =+与矩形OABC 没有公共点,直接写出k 的取值范围.21.(6分)如图,AB 是⊙O 的直径,点C 是AB 延长线上的点,CD 与⊙O 相切于点D ,连结BD 、AD .求证;∠BDC =∠A .若∠C =45°,⊙O 的半径为1,直接写出AC 的长.22.(8分)如图,抛物线212y x bx c =-++经过点A (﹣2,0),点B (0,4). (1)求这条抛物线的表达式; (2)P 是抛物线对称轴上的点,联结AB 、PB ,如果∠PBO=∠BAO ,求点P 的坐标;(3)将抛物线沿y 轴向下平移m 个单位,所得新抛物线与y 轴交于点D ,过点D 作DE ∥x 轴交新抛物线于点E ,射线EO 交新抛物线于点F ,如果EO =2OF ,求m 的值.23.(8分)如图,在平面直角坐标系中,直线y =x+2与x 轴,y 轴分别交于A ,B 两点,点C (2,m )为直线y =x+2上一点,直线y =﹣12x+b 过点C . 求m 和b 的值;直线y =﹣12x+b 与x 轴交于点D ,动点P 从点D 开始以每秒1个单位的速度向x 轴负方向运动.设点P 的运动时间为t 秒.①若点P 在线段DA 上,且△ACP 的面积为10,求t 的值;②是否存在t 的值,使△ACP 为等腰三角形?若存在,直接写出t 的值;若不存在,请说明理由.24.(10分)已知:如图所示,在ABC ∆中,AB AD DC ==,26BAD ∠=︒,求B 和C ∠的度数.25.(10分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.26.(12分)某水果批发市场香蕉的价格如下表购买香蕉数(千克) 不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?27.(12分)给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且点P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.在平面直角坐标系xOy中,⊙O的半径为1.(1)如图2,已知M 22),N22),在A(1,0),B(1,1),C2,0)三点中,是线段MN关于点O的关联点的是;(2)如图3,M(0,1),N(32,﹣12),点D是线段MN关于点O的关联点.①∠MDN的大小为;②在第一象限内有一点E3,m),点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E 的坐标;③点F在直线y=﹣33x+2上,当∠MFN≥∠MDN时,求点F的横坐标x的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】试题分析:图中内切圆半径是OD,外接圆的半径是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,则OD:OC=1:2,因而OD:OC:AD=1:2:1,所以内切圆半径,外接圆半径和高的比是1:2:1.故选D.考点:正多边形和圆.2、C【解析】如图,由图可知BD=2、CD=1、BC=5,根据sin∠BCA=BDBC可得答案.【详解】解:如图所示,∵BD=2、CD=1,∴22BD CD+2221+5则sin∠BCA=BDBC525,故选C.【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理.3、D【解析】A. x4+x4=2x4,故错误;B. (x2)3=x6,故错误;C. (x﹣y)2=x2﹣2xy+y2,故错误;D. x3•x=x4,正确,故选D.4、A【解析】【分析】根据三视图的知识使用排除法即可求得答案.【详解】如图,由主视图为三角形,排除了B、D,由俯视图为长方形,可排除C,故选A.【点睛】本题考查了由三视图判断几何体的知识,做此类题时可利用排除法解答.5、D【解析】根据算术平方根的定义求解.【详解】,又∵(±1)2=9,∴9的平方根是±1,∴9的算术平方根是1.1.故选:D.【点睛】考核知识点:算术平方根.理解定义是关键.6、B【解析】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解.故选B.7、B【解析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.8、D【解析】解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.【详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.则剪去的直角三角形的斜边长为1cm.故选D.【点睛】本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.9、A【解析】从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A.10、D【解析】【分析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.11、A【解析】试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的长RN+NQ=3+2.5=3.5(cm).故选A.考点:轴对称图形的性质12、B【解析】分析:由等腰直角三角形的性质和平行线的性质求出∠ACD=60°,即可得出∠2的度数.详解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故选B.点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD的度数是解决问题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、24 xy=-⎧⎨=⎩【解析】观察两个方程组的形式与联系,可得第二个方程组中23122xy+=-⎧⎨-=⎩,解之即可.【详解】解:由题意得23122xy+=-⎧⎨-=⎩,解得24xy=-⎧⎨=⎩.故答案为:24x y =-⎧⎨=⎩. 【点睛】本题考查了二元一次方程组的解,用整体代入法解决这种问题比较方便.14、a≥﹣1.【解析】根据二次根式的被开方数为非负数,可以得出关于a 的不等式,继而求得a 的取值范围.【详解】由分析可得,a+1≥0,解得:a≥﹣1.【点睛】熟练掌握二次根式被开方数为非负数是解答本题的关键.15、3【解析】设过点A (2,0)和点B (0,2)的直线的解析式为:y kx b =+,则202k b b +=⎧⎨=⎩,解得:12k b =-⎧⎨=⎩ , ∴直线AB 的解析式为:2y x =-+,∵点C (-1,m )在直线AB 上,∴(1)2m --+=,即3m =.故答案为3.点睛:在平面直角坐标系中,已知三点共线和其中两点的坐标,求第3点坐标中待定字母的值时,通常先由已知两点的坐标求出过这两点的直线的解析式,在将第3点的坐标代入所求解析式中,即可求得待定字母的值.16、a 2+2a 5b+25a 4b 2+20a 3b 3+25a 2b 4+2ab 5+b 2.【解析】通过观察可以看出(a+b )2的展开式为2次7项式,a 的次数按降幂排列,b 的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.【详解】通过观察可以看出(a+b )2的展开式为2次7项式,a 的次数按降幂排列,b 的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.17、1 22 a b+【解析】分析:根据梯形的中位线等于上底与下底和的一半表示出EF,然后根据向量的三角形法则解答即可.详解:∵点E、F分别是边AB、CD的中点,∴EF是梯形ABCD的中位线,FC=12DC,∴EF=12(AD+BC).∵BC=3AD,∴EF=12(AD+3AD)=2AD,由三角形法则得,EC=EF+FC=2AD+12DC AD.=a DC,=b EC∴,=2a+12b.故答案为:2a+12 b.点睛:本题考查了平面向量,平面向量的问题,熟练掌握三角形法则和平行四边形法则是解题的关键,本题还考查了梯形的中位线等于上底与下底和的一半.18、【解析】由于分式的分母不能为2,x-1在分母上,因此x-1≠2,解得x.解:∵分式15x-有意义,∴x-1≠2,即x≠1.故答案为x≠1.本题主要考查分式有意义的条件:分式有意义,分母不能为2.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)5;(2)(a+3);(3)第三次变化后中间小桶中有2个小球.【解析】(1)(2)根据材料中的变化方法解答;(3)设原来每个捅中各有a个小球,根据第三次变化方法列出方程并解答.【详解】解:(1)依题意得:(3+2)÷(3﹣2)=5故答案是:5;(2)依题意得:a+2+1=a+3;故答案是:(a+3)(3)设原来每个捅中各有a个小球,第三次从中间桶拿出x个球,依题意得:a﹣1+x=2ax =a+1所以 a+3﹣x =a+3﹣(a+1)=2答:第三次变化后中间小桶中有2个小球.【点睛】考查了一元一次方程的应用和列代数式,解题的关键是找到描述语,列出等量关系,得到方程并解答.20、(1)364y x =-+;(2)86b -≤≤;(3)12k >- 【解析】(1)由条件可求得A 、C 的坐标,利用待定系数法可求得直线AC 的表达式;(2)结合图形,当直线平移到过C 、A 时与矩形有一个公共点,则可求得b 的取值范围;(3)由题意可知直线l 过(0,10),结合图象可知当直线过B 点时与矩形有一个公共点,结合图象可求得k 的取值范围.【详解】解:(1) 8 , 6OA OC ==()()8,0 , 0,6A C ∴,设直线AC 表达式为y kx b =+,806k b b +=⎧∴⎨=⎩,解得346k b ⎧=-⎪⎨⎪=⎩ ∴直线AC 表达式为364y x =-+; (2) 直线 y x b =+可以看到是由直线y x =平移得到,∴当直线 y x b =+过A C 、时,直线与矩形OABC 有一个公共点,如图1,当过点A 时,代入可得08b =+,解得8b =-.当过点C 时,可得6b =∴直线 y x b =+与矩形OABC 有公共点时,b 的取值范围为86b -≤≤;(3) 10y kx =+,∴直线l 过()0, 10D ,且()8, 6B ,如图2,直线l 绕点D 旋转,当直线过点B 时,与矩形OABC 有一个公共点,逆时针旋转到与y 轴重合时与矩形OABC 有公共点,当过点B 时,代入可得6810k =+,解得12k =- ∴直线l :10y kx =+与矩形OABC 没有公共点时k 的取值范围为12k >-【点睛】本题为一次函数的综合应用,涉及待定系数法、直线的平移、旋转及数形结合思想等知识.在(1)中利用待定系数法是解题的关键,在(2)、(3)中确定出直线与矩形OABC 有一个公共点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.21、(1)详见解析;(2)2【解析】(1)连接OD ,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC ,再求AC.【详解】(1)证明:连结OD .如图, CD 与O 相切于点D ,OD CD ,∴⊥ 2BDC 90∠∠∴+︒=,AB 是O 的直径,ADB 90∠∴︒=,即1290∠∠+︒=,1BDC ∠∠∴=,OA OD =,1A ∠∠∴=,BDC A ∠∠∴=;(2)解:在Rt ODC 中,C 45∠︒=, 2212OC OD AC OA OC ∴==∴=+=+ .【点睛】此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.22、(1)2142y x x =-++;(2)P (1,72); (3)3或5. 【解析】(1)将点A 、B 代入抛物线212y x bx c =-++,用待定系数法求出解析式. (2)对称轴为直线x=1,过点P 作PG ⊥y 轴,垂足为G , 由∠PBO=∠BAO ,得tan ∠PBO=tan ∠BAO ,即PG BO BG AO =,可求出P 的坐标.(3)新抛物线的表达式为2142y x x m =-++-,由题意可得DE =2,过点F 作FH ⊥y 轴,垂足为H ,∵DE ∥FH ,EO=2OF ,∴2=1DE EO DO FH OF OH ==,∴FH=1.然后分情况讨论点D 在y 轴的正半轴上和在y 轴的负半轴上,可求得m 的值为3或5.【详解】解:(1)∵抛物线经过点A (﹣2,0),点B (0,4)∴2204b c c --+=⎧⎨=⎩,解得14b c =⎧⎨=⎩, ∴抛物线解析式为2142y x x =-++, (2)()2211941222y x x x =-++=--+, ∴对称轴为直线x =1,过点P 作PG ⊥y 轴,垂足为G,∵∠PBO=∠BAO ,∴tan ∠PBO=tan ∠BAO , ∴PG BO BG AO =, ∴121BG =, ∴12BG =, 72OG =, ∴P (1,72), (3)设新抛物线的表达式为2142y x x m =-++- 则()0,4D m -,()2,4E m -,DE =2过点F 作FH ⊥y 轴,垂足为H ,∵DE ∥FH ,EO=2OF∴2=1DE EO DO FH OF OH ==, ∴FH=1.点D 在y 轴的正半轴上,则51,2F m ⎛⎫-- ⎪⎝⎭, ∴52OH m =-, ∴42512DO m OH m -==-, ∴m=3,点D 在y 轴的负半轴上,则91,2F m ⎛⎫- ⎪⎝⎭,∴92OH m =-, ∴42912DO m OH m -==-, ∴m=5,∴综上所述m 的值为3或5.【点睛】本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键.23、(1)4,5;(2)①7;②4或12-或12+8.【解析】()1分别令y 0=可得b 和m 的值;()2①根据ACP 的面积公式列等式可得t 的值;②存在,分三种情况:i)当AC CP =时,如图1,ii)当AC AP =时,如图2,iii)当AP PC =时,如图3,分别求t 的值即可.【详解】()1把点()C 2,m 代入直线y x 2=+中得:m 224=+=,∴点()C 2,4, 直线1y x b 2=-+过点C , 142b 2=-⨯+,b 5=; ()2①由题意得:PD t =,y x 2=+中,当y 0=时,x 20+=,x 2=-,()A 2,0∴-,1y x 52=-+中,当y 0=时,1x 502-+=, x 10=,()D 10,0∴,AD 10212∴=+=,ACP 的面积为10, ()112t 4102∴-⋅=, t 7=,则t 的值7秒;②存在,分三种情况:i)当AC CP =时,如图1,过C 作CE AD ⊥于E ,PE AE 4∴==,PD 1284∴=-=,即t 4=;ii)当AC AP =时,如图2,2212AC AP AP 4442===+=1DP t 1242∴==-,2DP t 1242==+;iii)当AP PC =时,如图3,OA OB 2==,BAO 45∠∴=,CAP ACP 45∠∠∴==,APC 90∠∴=,AP PC 4∴==,PD 1248∴=-=,即t 8=;综上,当t 4=秒或(1242-秒或(1242+秒或8秒时,ACP 为等腰三角形.【点睛】本题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,勾股定理,等腰三角形的判定,以及一次函数与坐标轴的交点,熟练掌握性质及定理是解本题的关键,并注意运用分类讨论的思想解决问题.24、77B ∠=︒,38.5C ∠=︒.【解析】根据等腰三角形的性质即可求出∠B ,再根据三角形外角定理即可求出∠C.【详解】在ABC ∆中,AB AD DC ==,∵AB AD =,在三角形ABD 中, ()118026772B ADB ∠=∠=︒-︒⨯=︒, 又∵AD DC =,在三角形ADC 中, ∴117738.522C ADB ∠=∠=︒⨯=︒. 【点睛】此题主要考查等腰三角形的性质,解题的关键是熟知等边对等角.25、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析【解析】解:(1)设每台电脑x 万元,每台电子白板y 万元,根据题意得:x 2y 3.5{2x y 2.5+=+=,解得:x 0.5{y 1.5==。

2018年云南省中考数学试卷及答案解析word版

2018年云南省中考数学试卷及答案解析word版

2018年云南省中考数学试卷一、填空题(共6小题,每小题3分,满分18分)1.(3.00分)﹣1的肯定值是.2.(3.00分)已知点P(a,b)在反比例函数y=的图象上,则ab=.3.(3.00分)某地举办主题为“不忘初心,牢记使命”的报告会,参与会议的人员3451人,将3451用科学记数法表示为.4.(3.00分)分解因式:x2﹣4=.5.(3.00分)如图,已知AB∥CD,若=,则=.6.(3.00分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4.00分)函数y=的自变量x的取值范围为()A.x≤0 B.x≤1 C.x≥0 D.x≥18.(4.00分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥9.(4.00分)一个五边形的内角和为()A.540°B.450°C.360° D.180°10.(4.00分)按肯定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n11.(4.00分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形12.(4.00分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.C.D.13.(4.00分)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为理解学生对这次大赛的理解程度,在全校1300名学生中随机抽取局部学生进展了一次问卷调查,并依据搜集到的信息进展了统计,绘制了下面两幅统计图.下列四个选项错误的是()A.抽取的学生人数为50人B.“特别理解”的人数占抽取的学生人数的12%C.a=72°D.全校“不理解”的人数估计有428人14.(4.00分)已知x+=6,则x2+=()A.38 B.36 C.34 D.32三、解答题(共9小题,满分70分)15.(6.00分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)016.(6.00分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.17.(8.00分)某同学参与了学校实行的“五好小公民•红旗飘飘”演讲竞赛,7名评委给该同学的打分(单位:分)状况如下表:评委评委1评委2评委3评委4评委5评委6评委7打分6878578(1)干脆写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数18.(6.00分)某社区主动响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进展绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?19.(7.00分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形态、大小、质地,颜色等其他方面完全一样,若反面上放在桌面上,这三张卡片看上去无任何差异)洗匀后,反面对上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,反面对上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)全部可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.20.(8.00分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明状况.21.(8.00分)某驻村扶贫小组为解决当地贫困问题,带着大家致富.经过调查探讨,他们确定利用当地消费的甲乙两种原料开发A,B两种商品,为科学决策,他们试消费A、B两种商品100千克进展深化探讨,已知现有甲种原料293千克,乙种原料314千克,消费1千克A商品,1千克B商品所须要的甲、乙两种原料及消费本钱如下表所示.甲种原料(单位:千克)乙种原料(单位:消费本钱(单位:元)千克)A商品32120B商品 2.5 3.5200设消费A种商品x千克,消费A、B两种商品共100千克的总本钱为y元,依据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并干脆写出x的取值范围;(2)x取何值时,总本钱y最小?22.(9.00分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影局部的面积.23.(12.00分)如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由A、E、F三点确定的圆的周长为t.(1)若△ABE的面积为30,干脆写出S的值;(2)求证:AE平分∠DAF;(3)若AE=BE,AB=4,AD=5,求t的值.2018年云南省中考数学试卷参考答案与试题解析一、填空题(共6小题,每小题3分,满分18分)1.(3.00分)﹣1的肯定值是1.【分析】第一步列出肯定值的表达式;第二步依据肯定值定义去掉这个肯定值的符号.【解答】解:∵|﹣1|=1,∴﹣1的肯定值是1.【点评】此题考察了肯定值的性质,要求驾驭肯定值的性质及其定义,并能娴熟运用到实际当中.肯定值规律总结:一个正数的肯定值是它本身;一个负数的肯定值是它的相反数;0的肯定值是0.2.(3.00分)已知点P(a,b)在反比例函数y=的图象上,则ab=2.【分析】接把点P(a,b)代入反比例函数y=即可得出结论.【解答】解:∵点P(a,b)在反比例函数y=的图象上,∴b=,∴ab=2.故答案为:2【点评】本题考察的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标肯定合适此函数的解析式是解答此题的关键.3.(3.00分)某地举办主题为“不忘初心,牢记使命”的报告会,参与会议的人员3451人,将3451用科学记数法表示为 3.451×103.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点挪动了多少位,n的肯定值与小数点挪动的位数一样.当原数肯定值大于10时,n是正数;当原数的肯定值小于1时,n是负数.【解答】解:3451=3.451×103,故答案为:3.451×103.【点评】此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)分解因式:x2﹣4=(x+2)(x﹣2).【分析】干脆利用平方差公式进展因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考察了平方差公式因式分解.能用平方差公式进展因式分解的式子的特点是:两项平方项,符号相反.5.(3.00分)如图,已知AB∥CD,若=,则=.【分析】利用相像三角形的性质即可解决问题;【解答】解:∵AB∥CD,∴△AOB∽△COD,∴==,故答案为.【点评】本题考察平行线的性质,相像三角形的断定和性质等学问,解题的关键是娴熟驾驭根本学问,属于中考常考题型.6.(3.00分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为9或1.【分析】△ABC中,∠ACB分锐角和钝角两种:①如图1,∠ACB是锐角时,依据勾股定理计算BD和CD的长可得BC的值;②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,依据BC=BD﹣CD代入可得结论.【解答】解:有两种状况:①如图1,∵AD是△ABC的高,∴∠ADB=∠ADC=90°,由勾股定理得:BD===5,CD===4,∴BC=BD+CD=5+4=9;②如图2,同理得:CD=4,BD=5,∴BC=BD﹣CD=5﹣4=1,综上所述,BC的长为9或1;故答案为:9或1.【点评】本题考察了勾股定理的运用,娴熟驾驭勾股定理是关键,并留意运用了分类探讨的思想解决问题.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4.00分)函数y=的自变量x的取值范围为()A.x≤0 B.x≤1 C.x≥0 D.x≥1【分析】依据被开方数大于等于0列式计算即可得解.【解答】解:∵1﹣x≥0,∴x≤1,即函数y=的自变量x的取值范围是x≤1,故选:B.【点评】本题考察了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.(4.00分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】由三视图及题设条件知,此几何体为一个的圆锥.【解答】解:此几何体是一个圆锥,故选:D.【点评】考察对三视图的理解与应用,主要考察三视图与实物图之间的关系,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.9.(4.00分)一个五边形的内角和为()A.540°B.450°C.360° D.180°【分析】干脆利用多边形的内角和公式进展计算即可.【解答】解:解:依据正多边形内角和公式:180°×(5﹣2)=540°,答:一个五边形的内角和是540度,故选:A.【点评】此题主要考察了正多边形内角和,关键是驾驭内角和的计算公式.10.(4.00分)按肯定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【分析】视察字母a的系数、次数的规律即可写出第n个单项式.【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选:C.【点评】考察了单项式,数字的改变类,留意字母a的系数为奇数时,符号为正;系数字母a的系数为偶数时,符号为负.11.(4.00分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形【分析】依据轴对称图形与中心对称图形的概念求解.【解答】解:A、三角形不肯定是轴对称图形和中心对称图形,故本选项错误;B、菱形既是轴对称图形又是中心对称图形,故本选项正确;C、角不肯定是轴对称图形和中心对称图形,故本选项错误;D、平行四边形不肯定是轴对称图形和中心对称图形,故本选项错误;故选:B.【点评】此题主要考察了中心对称图形与轴对称图形的概念:推断轴对称图形的关键是找寻对称轴,图形两局部沿对称轴折叠后可重合;推断中心对称图形是要找寻对称中心,旋转180度后与原图重合.12.(4.00分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.C.D.【分析】依据锐角三角函数的定义求出即可.【解答】解:∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值为==3,故选:A.【点评】本题考察了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.13.(4.00分)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为理解学生对这次大赛的理解程度,在全校1300名学生中随机抽取局部学生进展了一次问卷调查,并依据搜集到的信息进展了统计,绘制了下面两幅统计图.下列四个选项错误的是()A.抽取的学生人数为50人B.“特别理解”的人数占抽取的学生人数的12%C.a=72°D.全校“不理解”的人数估计有428人【分析】利用图中信息一一推断即可解决问题;【解答】解:抽取的总人数为6+10+16+18=50(人),故A正确,“特别理解”的人数占抽取的学生人数的=12%,故B正确,α=360°×=72°,故正确,全校“不理解”的人数估计有1300×=468(人),故D错误,故选:D.【点评】本题考察条形统计图、扇形统计图等学问,解题的关键是娴熟驾驭根本概念,属于中考常考题型.14.(4.00分)已知x+=6,则x2+=()A.38 B.36 C.34 D.32【分析】把x+=6两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把x+=6两边平方得:(x+)2=x2++2=36,则x2+=34,故选:C.【点评】此题考察了分式的混合运算,以及完全平方公式,娴熟驾驭运算法则及公式是解本题的关键.三、解答题(共9小题,满分70分)15.(6.00分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)0【分析】本题涉及零指数幂、负指数幂、锐角三角函数、二次根式化简4个考点.在计算时,须要针对每个考点分别进展计算,然后依据实数的运算法则求得计算结果.【解答】解:原式=3﹣2×﹣3﹣1=2﹣4【点评】本题主要考察了实数的综合运算实力,是各地中考题中常见题型.解决此类题目的关键是娴熟驾驭负整数指数幂、零指数幂、二次根式、肯定值、特别角的锐角三角函数值等学问点.16.(6.00分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.【分析】依据角平分线的定义得到∠BAC=∠DAC,利用SAS定理推断即可.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,在△ABC和△ADC中,,∴△ABC≌△ADC.【点评】本题考察的是全等三角形的断定、角平分线的定义,驾驭三角形全等的SAS定理是解题的关键.17.(8.00分)某同学参与了学校实行的“五好小公民•红旗飘飘”演讲竞赛,7名评委给该同学的打分(单位:分)状况如下表:评委评委1评委2评委3评委4评委5评委6评委7打分6878578(1)干脆写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数【分析】(1)依据众数与中位数的定义求解即可;(2)依据平均数的定义求解即可.【解答】解:(1)从小到大排列此数据为:5,6,7,7,8,8,8,数据8出现了三次最多为众数,7处在第4位为中位数;(2)该同学所得分数的平均数为(5+6+7×2+8×3)÷7=7.【点评】本题考察了平均数、众数与中位数,用到的学问点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷个数.18.(6.00分)某社区主动响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进展绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?【分析】设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x平方米的绿化面积,依据工作时间=总工作量÷工作效率结合甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x平方米的绿化面积,依据题意得:﹣=3,解得:x=50,经检验,x=50是分式方程的解.答:乙工程队每小时能完成50平方米的绿化面积.【点评】本题考察了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.(7.00分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形态、大小、质地,颜色等其他方面完全一样,若反面上放在桌面上,这三张卡片看上去无任何差异)洗匀后,反面对上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,反面对上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)全部可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.【分析】(1)首先依据题意画出树状图,然后由树状图即可求得全部等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果中数字之和为偶数的状况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:由树状图知共有6种等可能的结果:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);(2)∵共有6种等可能结果,其中数字之和为偶数的有2种结果,∴取出的两张卡片上的数字之和为偶数的概率P==.【点评】此题考察的是用列表法或画树状图法求概率.留意列表法或画树状图法可以不重复不遗漏地列出全部可能的结果,列表法合适于两步完成的事务,树状图法合适两步或两步以上完成的事务.留意概率=所求状况数与总状况数之比.20.(8.00分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明状况.【分析】(1)把点A、B的坐标分别代入函数解析式求得b、c的值;(2)利用根的判别式进展推断该函数图象是否与x轴有交点,由题意得到方程﹣x2+x+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.【解答】解:(1)把A(0,3),B(﹣4,﹣)分别代入y=﹣x2+bx+c,得,解得;(2)由(1)可得,该抛物线解析式为:y=﹣x2+x+3.△=()2﹣4×(﹣)×3=>0,所以二次函数y=﹣x2+bx+c的图象与x轴有公共点.∵﹣x2+x+3=0的解为:x1=﹣2,x2=8∴公共点的坐标是(﹣2,0)或(8,0).【点评】考察了抛物线与x轴的交点,二次函数图象上点的坐标特征.留意抛物线解析式与一元二次方程间的转化关系.21.(8.00分)某驻村扶贫小组为解决当地贫困问题,带着大家致富.经过调查探讨,他们确定利用当地消费的甲乙两种原料开发A,B两种商品,为科学决策,他们试消费A、B两种商品100千克进展深化探讨,已知现有甲种原料293千克,乙种原料314千克,消费1千克A商品,1千克B商品所须要的甲、乙两种原料及消费本钱如下表所示.甲种原料(单位:千克)乙种原料(单位:消费本钱(单位:元)千克)A商品32120B商品 2.5 3.5200设消费A种商品x千克,消费A、B两种商品共100千克的总本钱为y元,依据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并干脆写出x的取值范围;(2)x取何值时,总本钱y最小?【分析】(1)依据题意表示出两种商品须要的本钱,再利用表格中数据得出不等式组进而得出答案;(2)利用一次函数增减性进而得出答案.【解答】解:(1)由题意可得:y=120x+200(100﹣x)=﹣80x+20000,,解得:72≤x≤86;(2)∵y=﹣80x+20000,∴y随x的增大而减小,∴x=86时,y最小,则y=﹣80×86+20000=13120(元).【点评】此题主要考察了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键.22.(9.00分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影局部的面积.【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分别计算△OAC的面积以及扇形OAC的面积即可求出影响局部面积【解答】解:(1)连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2=×2×1=易求S△AOCS扇形OAC==∴阴影局部面积为﹣【点评】本题考察圆的综合问题,涉及圆的切线断定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等学问,须要学生敏捷运用所学学问.23.(12.00分)如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由A、E、F三点确定的圆的周长为t.(1)若△ABE的面积为30,干脆写出S的值;(2)求证:AE平分∠DAF;(3)若AE=BE,AB=4,AD=5,求t的值.=×AB×EG=30得AB•EG=60,即可得【分析】(1)作EG⊥AB于点G,由S△ABE出答案;(2)延长AE交BC延长线于点H,先证△ADE≌△HCE得AD=HC、AE=HE及AD+FC=HC+FC,结合AF=AD+FC得∠FAE=∠CHE,依据∠DAE=∠CHE即可得证;(3)先证∠ABF=90°得出AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,据此求得FC的长,从而得出AF的长度,再由AE=HE、AF=FH知FE⊥AH,即AF 是△AEF的外接圆直径,从而得出答案.【解答】解:(1)如图,作EG⊥AB于点G,则S=×AB×EG=30,则AB•EG=60,△ABE∴平行四边形ABCD的面积为60;(2)延长AE交BC延长线于点H,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠HCE,∠DAE=∠CHE,∵E为CD的中点,∴CE=ED,∴△ADE≌△HCE,∴AD=HC、AE=HE,∴AD+FC=HC+FC,由AF=AD+FC和FH=HC+FC得AF=FH,∴∠FAE=∠CHE,又∵∠DAE=∠CHE,∴∠DAE=∠FAE,∴AE平分∠DAF;(3)连接EF,∵AE=BE、AE=HE,∴AE=BE=HE,∴∠BAE=∠ABE,∠HBE=∠BHE,∵∠DAE=∠CHE,∴∠BAE+∠DAE=∠ABE+∠HBE,即∠DAB=∠CBA,由四边形ABCD是平行四边形得∠DAB+∠CBA=180°,∴∠CBA=90°,∴AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,解得:FC=,∴AF=FC+CH=,∵AE=HE、AF=FH,∴FE⊥AH,∴AF是△AEF的外接圆直径,∴△AEF的外接圆的周长t=π.【点评】本题主要考察圆的综合问题,解题的关键是驾驭平行四边形的性质、矩形的断定与性质、全等三角形的断定与性质及等腰三角形的性质、勾股定理等学问点.。

(完整版)2018年云南省中考数学试卷及答案.doc

(完整版)2018年云南省中考数学试卷及答案.doc

机密★2018 年云南省学业水平考试试题卷数学一、填空(共 6 小,每小 3 分,分 18 分)1.(3 分) 1 的是.2.(3 分)已知点 P(a,b)在反比例函数 y= 的象上, ab= .3.(3 分)某地主“不忘初心,牢使命”的告会,参加会的人3451 人,将3451 用科学数法表示.4.(3 分)分解因式: x 2 4= .5.(3 分)如,已知 AB∥ CD,若= ,= .6.(3 分)在△ ABC中,AB= ,AC=5,若 BC上的高等于 3, BC的.二、(共8 小,每小 4 分,分 32 分 . 每小只有一个正确)7.(4 分)函数 y= 的自量 x 的取范()A. x≤ 0 B .x≤1C. x≥ 0 D .x≥18.(4 分)下列形是某几何体的三(其中主也称正,左也称),个几何体是()A.三棱柱 B .三棱C.柱 D .9.(4 分)一个五形的内角和()A.540° B .450°C.360° D .180°10.(4 分)按一定律排列的式:a, a2,a3, a4, a5,6个式是()a ,⋯⋯,第 nA. a n B . a nC.( 1)n+1a n D .( 1)n a n11.(4 分)下列形既是称形,又是中心称形的是()A.三角形 B. 菱形C.角 D .平行四形12.(4 分)在 Rt△ ABC中,∠ C=90°, AC=1,BC=3,∠ A 的正切()A. 3 B .C. D .13.(4 分) 2017 年 12 月 8 日,以“ [ 数字工匠 ] 玉汝于成, [ 数字工坊 ] 溪达四海” 主的2017 一一路数学科技文化?玉溪第 10 届全国三数字化新大(称“全国 3D大”)决在玉溪幕.某学校了解学生次大的了解程度,在全校 1300 名学生中随机抽取部分学生行了一次卷,并根据收集到的信息行了,制了下面两幅.下列四个的是()A .抽取的学生人数为 50 人B.“非常了解”的人数占抽取的学生人数的 12%C.a=72°2+ =(D.全校“不了解”的人数估计有 428 人.(分)已知x+ ,则)14 4 =6xA .38 B. 36 C. 34 D. 32三、解答题(共9 小题,满分70 分)15.(6 分)计算:﹣2cos45 °﹣()﹣1 0 ﹣(π﹣1)16.(6 分)如图,已知 AC 平分∠ BAD , AB=AD .求证:△ ABC ≌△ ADC .17.(8 分)某同学参加了学校举行的“五好小公民 ?红旗飘飘”演讲比赛, 7 名评委给该同学的打分(单位:分)情况如下表:评委评委 1评委2评委3评委4评委5评委6评委7打分6878578 (1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数18.(6 分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的 2 倍,并且甲工程队完成 300 平方米的绿化面积比乙工程队完成 300 平方米的绿化面积少用 3 小时,乙工程队每小时能完成多少平方米的绿化面积?19.(7 分)将正面分别写着数字 1,2,3 的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为 x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为 y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出( x, y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.20.(8 分)已知二次函数 y=﹣x2+bx+c 的图象经过 A (0,3), B(﹣ 4,﹣)两点.(2)二次函数 y=﹣ x2+bx+c 的图象与 x 轴是否有公共点,求公共点的坐标;若没有,请说明情况.21.(8 分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发 A ,B 两种商品,为科学决策,他们试生产 A 、B 两种商品100 千克进行深入研究,已知现有甲种原料 293 千克,乙种原料 314 千克,生产 1 千克 A 商品, 1 千克 B 商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千生产成本(单位:元)克)A 商品 3 2 120B 商品 2.5 3.5 200设生产 A 种商品 x 千克,生产 A 、 B 两种商品共 100 千克的总成本为 y 元,根据上述信息,解答下列问题:(1)求 y 与 x 的函数解析式(也称关系式),并直接写出 x 的取值范围;(2)x 取何值时,总成本y 最小?22.( 9 分)如图,已知 AB 是⊙ O 上的点,C 是⊙ O 上的点,点 D 在 AB 的延长线上,∠BCD= ∠BAC .(1)求证: CD 是⊙ O 的切线;(2)若∠ D=30°,BD=2 ,求图中阴影部分的面积.23.(12 分)如图,在平行四边形 ABCD 中,点 E 是 CD 的中点,点 F 是 BC 边上的点,AF=AD +FC,平行四边形 ABCD 的面积为 S,由 A 、E、F 三点确定的圆的周长为 t.(1)若△ ABE 的面积为 30,直接写出 S 的值;(2)求证: AE 平分∠ DAF ;(3)若 AE=BE ,AB=4 , AD=5 ,求 t 的值.2018 年云南省中考数学试卷参考答案与试题解析一、填空题(共 6 小题,每小题 3 分,满分 18 分)1.(3.00 分)﹣ 1 的绝对值是1.【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵ | ﹣ 1| =1,∴﹣ 1 的绝对值是 1.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是 0.2.( 3.00 分)已知点 P(a,b)在反比例函数y=的图象上,则ab= 2.【分析】接把点 P(a,b)代入反比例函数y=即可得出结论.【解答】解:∵点 P( a,b)在反比例函数y=的图象上,∴b=,∴ab=2.故答案为: 2【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3.(3.00 分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451 人,将3451 用科学记数法表示为 3.451×103 .【分析】科学记数法的表示形式为 a× 10n的形式,其中 1≤ | a| <10, n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值大于 10 时, n 是正数;当原数的绝对值小于 1 时, n 是负数.【解答】解: 3451=3.451×103,故答案为: 3.451×103.a×10n的形式,其中 1 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为≤| a| <10, n 为整数,表示时关键要正确确定 a 的值以及 n 的值.4.(3.00 分)分解因式: x 2﹣ 4=(x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解答】解: x2﹣4=( x+2)( x﹣ 2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.5.(3.00 分)如图,已知 AB ∥ CD,若=,则=.【分析】利用相似三角形的性质即可解决问题;【解答】解:∵ AB ∥CD ,∴△ AOB ∽△ COD,∴= = ,故答案为.【点评】本题考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3.00 分)在△ ABC 中, AB=,AC=5,若BC边上的高等于3,则 BC 边的长为9 或1 .【分析】△ABC 中,∠ ACB 分锐角和钝角两种:①如图 1,∠ ACB 是锐角时,根据勾股定理计算BD 和 CD 的长可得 BC 的值;②如图 2,∠ ACB 是钝角时,同理得: CD=4, BD=5,根据 BC=BD ﹣ CD 代入可得结论.【解答】解:有两种情况:①如图 1,∵ AD 是△ ABC 的高,∴∠ ADB= ∠ADC=90°,由勾股定理得: BD===5,CD===4,∴BC=BD +CD=5+4=9;②如图 2,同理得: CD=4, BD=5,∴BC=BD ﹣ CD=5﹣4=1,综上所述, BC 的长为 9 或 1;故答案为: 9 或 1.【点评】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.二、选择题(共8 小题,每小题 4 分,满分 32 分.每小题只有一个正确选项)7.(4.00 分)函数 y=的自变量x的取值范围为()A .x ≤0B. x≤ 1C. x≥ 0D. x≥ 1【分析】根据被开方数大于等于0 列式计算即可得解.【解答】解:∵ 1﹣ x≥0,∴x≤1,即函数 y= 的自变量 x 的取值范围是 x ≤1,故选: B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:( 1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式 ,被开方数非 .8.(4.00 分)下列 形是某几何体的三 (其中主 也称正 ,左 也称 ) ,个几何体是( )A .三棱柱B .三棱C . 柱D . 【分析】 由三 及 条件知,此几何体 一个的 . 【解答】 解:此几何体是一个 , 故 : D .【点 】 考 三 的理解与 用,主要考 三 与 物 之 的关系,三 的投影是: “主 、俯 正;主 、左 高平 ,左 、俯相等 ”.9.(4.00 分)一个五 形的内角和 ( ) A .540° B . 450° C . 360° D . 180° 【分析】 直接利用多 形的内角和公式 行 算即可. 【解答】 解:解:根据正多 形内角和公式: 180°×( 5 2)=540°,答:一个五 形的内角和是 540 度,故 : A . 【点 】 此 主要考 了正多 形内角和,关 是掌握内角和的 算公 式..( 分)按一定 律排列的 式:2, a 3 , a 4, a 5, a 6,⋯⋯ ,第 n 个 10 4.00 a , a式是( ) A .a n B . a n C .( 1)n +1a n D .( 1)n a n 【分析】 察字母 a 的系数、次数的 律即可写出第 n 个 式.2 3 4 56,⋯⋯ ,( 1) n +1 n.【解答】 解: a , a ,a , a ,a , a?a故 : C .a 的系数 奇数 ,符号 正;系数字母【点 】 考 了 式,数字的 化 ,注意字母 a 的系数 偶数 ,符号 .11.(4.00 分)下列 形既是 称 形,又是中心 称 形的是()A .三角形B .菱形C .角D .平行四 形 【分析】 根据 称 形与中心 称 形的概念求解.【解答】 解: A 、三角形不一定是 称 形和中心 称 形,故本 ;B 、菱形既是 称 形又是中心 称 形,故本 正确;C 、角不一定是 称 形和中心 称 形,故本 ;D 、平行四 形不一定是 称 形和中心 称 形,故本 ;故 : B .【点 】 此 主要考 了中心 称 形与 称 形的概念:判断 称 形的关 是 找 称 , 形两部分沿 称 折叠后可重合; 判断中心 称 形是要 找 称中心,旋 180度后与原图重合.12.(4.00 分)在 Rt △ABC 中,∠ C=90°,AC=1, BC=3,则∠ A 的正切值为()A .3B .C .D .【分析】 根据锐角三角函数的定义求出即可.【解答】 解:∵在 Rt △ABC 中,∠ C=90°, AC=1,BC=3,∴∠ A 的正切值为= =3,故选: A .【点评】 本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.13.(4.00 分) 2017 年 12 月 8 日,以 “[数字工匠 ] 玉汝于成, [ 数字工坊 ] 溪达四海 ”为主题的 2017 一带一路数学科技文化节 ?玉溪暨第 10 届全国三维数字化创新设计大赛(简称 “全国 3D 大赛 ”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校 1300 名 学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下 面两幅统计图.下列四个选项错误的是( )A .抽取的学生人数为 50 人B . “非常了解 ”的人数占抽取的学生人数的 12%C .a=72°D .全校 “不了解 ”的人数估计有 428 人【分析】 利用图中信息一一判断即可解决问题;【解答】 解:抽取的总人数为 6+10+16+18=50(人),故 A 正确,“非常了解 ”的人数占抽取的学生人数的 =12%,故 B 正确,α =360×° =72°,故正确,全校 “不了解 ”的人数估计有1300× =468(人),故 D 错误,故选: D .【点评】 本题考查条形统计图、扇形统计图等知识,解题的关键是熟练掌握基本概念,属于中考常考题型..( 4.00 分)已知x+ =6,则 x 2+ =( )14A .38B .36C .34D . 32【分析】 把 x+ =6 两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把 x+ =6 两边平方得:( x+)2=x2++2=36,则x2+ =34,故选: C.【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.三、解答题(共 9 小题,满分70 分)15.(6.00 分)计算:﹣ 2cos45 °﹣()﹣1 0 ﹣(π﹣ 1)【分析】本题涉及零指数幂、负指数幂、锐角三角函数、二次根式化简 4 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式 =3 ﹣2×﹣ 3﹣ 1=2 ﹣4【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角的锐角三角函数值等知识点.16.(6.00 分)如图,已知AC 平分∠ BAD , AB=AD .求证:△ ABC ≌△ ADC .【分析】根据角平分线的定义得到∠BAC= ∠DAC ,利用 SAS 定理判断即可.【解答】证明:∵ AC 平分∠ BAD ,∴∠ BAC= ∠DAC ,在△ ABC 和△ ADC 中,,∴△ ABC ≌△ ADC .【点评】本题考查的是全等三角形的判定、角平分线的定义,掌握三角形全等的 SAS 定理是解题的关键.17.(8.00 分)某同学参加了学校举行的“五好小公民 ?红旗飘飘”演讲比赛, 7 名评委给该同学的打分(单位:分)情况如下表:评委评委 1评委2评委3评委4评委5评委6评委7打分6878578(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数【分析】( 1)根据众数与中位数的定义求解即可;(2)根据平均数的定义求解即可.【解答】解:(1)从小到大排列此数据为: 5, 6, 7,7,8,8,8,数据 8 出现了三次最多为众数,7 处在第 4 位为中位数;(2)该同学所得分数的平均数为(5+6+7× 2+8×3)÷ 7=7.【点评】本题考查了平均数、众数与中位数,用到的知识点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数 =总数÷个数.18.(6.00 分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的 2 倍,并且甲工程队完成 300 平方米的绿化面积比乙工程队完成 300 平方米的绿化面积少用 3 小时,乙工程队每小时能完成多少平方米的绿化面积?【分析】设乙工程队每小时能完成 x 平方米的绿化面积,则甲工程队每小时能完成2x 平方米的绿化面积,根据工作时间 =总工作量÷工作效率结合甲工程队完成300 平方米的绿化面积比乙工程队完成300 平方米的绿化面积少用 3 小时,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设乙工程队每小时能完成 x 平方米的绿化面积,则甲工程队每小时能完成 2x 平方米的绿化面积,根据题意得:﹣=3,解得: x=50,经检验, x=50 是分式方程的解.答:乙工程队每小时能完成50 平方米的绿化面积.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.(7.00 分)将正面分别写着数字 1,2,3 的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为 x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为 y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出( x, y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.【分析】( 1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;(2)由( 1)中的树状图,可求得抽取的两张卡片结果中数字之和为偶数的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:由树状图知共有 6 种等可能的结果:( 1,2)、( 1, 3)、( 2, 1)、(2,3)、(3,1)、( 3,2);(2)∵共有 6 种等可能结果,其中数字之和为偶数的有 2 种结果,∴取出的两张卡片上的数字之和为偶数的概率P= =.【点评】此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率 =所求情况数与总情况数之比.20.(8.00 分)已知二次函数 y=﹣x2+bx+c 的图象经过 A ( 0, 3),B(﹣ 4,﹣)两点.(1)求 b, c 的值.(2)二次函数 y=﹣x2+bx+c 的图象与 x 轴是否有公共点,求公共点的坐标;若没有,请说明情况.【分析】( 1)把点 A 、 B 的坐标分别代入函数解析式求得b、 c 的值;( 2 )利用根的判别式进行判断该函数图象是否与x 轴有交点,由题意得到方程﹣x2 + x+3=0,通过解该方程求得 x 的值即为抛物线与 x 轴交点横坐标.【解答】解:(1)把 A (0,3), B(﹣ 4,﹣)分别代入 y=﹣x2+bx+c,得,解得;(2)由( 1)可得,该抛物线解析式为:y=﹣x2+ x+3.△=()2﹣4×(﹣)× 3=>0,所以二次函数 y=﹣x2+bx+c 的图象与 x 轴有公共点.∵﹣x2+ x +3=0 的解为: x1=﹣2,x2=8∴公共点的坐标是(﹣ 2, 0)或( 8,0).【点评】考查了抛物线与 x 轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.21.(8.00 分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发 A ,B 两种商品,为科学决策,他们试生产 A 、B 两种商品 100 千克进行深入研究,已知现有甲种原料293 千克,乙种原料314 千克,生产 1 千克A商品, 1 千克 B 商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:生产成本(单位:元)千克)A商品B商品设生产 A 种商品解答下列问题:3 2 1202.53.5 200x 千克,生产 A 、 B 两种商品共100 千克的总成本为 y 元,根据上述信息,(1)求 y 与 x 的函数解析式(也称关系式),并直接写出 x 的取值范围;(2)x 取何值时,总成本y 最小?【分析】( 1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;【解答】解:(1)由题意可得: y=120x+200(100﹣x)=﹣80x+20000,,解得: 72≤x ≤86;(2)∵ y=﹣80x+20000,∴y 随 x 的增大而减小,∴x=86 时, y 最小,则y=﹣80× 86+20000=13120(元).【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键.22.(9.00 分)如图,已知 AB 是⊙ O 上的点, C 是⊙ O 上的点,点 D 在 AB 的延长线上,∠BCD=∠ BAC .(1)求证: CD 是⊙ O 的切线;(2)若∠ D=30°,BD=2 ,求图中阴影部分的面积.【分析】( 1)连接 OC,易证∠ BCD= ∠ OCA,由于 AB 是直径,所以∠ ACB=90°,所以∠OCA+OCB=∠ BCD+∠ OCB=90°,CD 是⊙ O 的切线(2)设⊙ O 的半径为 r,AB=2r,由于∠ D=30°,∠OCD=90°,所以可求出 r=2,∠AOC=120°,BC=2,由勾股定理可知: AC=2 ,分别计算△ OAC 的面积以及扇形 OAC 的面积即可求出影响部分面积【解答】解:(1)连接 OC,∵OA=OC ,∴∠ BAC= ∠OCA ,∵∠ BCD= ∠ BAC ,∴∠ BCD= ∠OCA ,∵AB 是直径,∴∠ ACB=90°,∴∠ OCA+OCB=∠ BCD+∠OCB=90°∴∠ OCD=90°∵OC 是半径,∴CD 是⊙ O 的切线(2)设⊙ O 的半径为 r ,∴AB=2r ,∵∠ D=30°,∠ OCD=90°,∴OD=2r,∠ COB=60°∴r+2=2r,∴r=2,∠ AOC=120°∴B C=2,∴由勾股定理可知: AC=2易求 S △ AOC = ×2× 1=S 扇形 OAC = =∴阴影部分面积为 ﹣【点评】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含 30 度的直角三角形的性质,等边三角形的性质等知识,需要学生灵活运用所学知识.23.(12.00 分)如图,在平行四边形 ABCD 中,点 E 是 CD 的中点,点 F 是 BC 边上的点, AF=AD +FC ,平行四边形 ABCD 的面积为 S ,由 A 、E 、F 三点确定的圆的周长为 t .(1)若△ ABE 的面积为 30,直接写出 S 的值;(2)求证: AE 平分∠ DAF ;(3)若 AE=BE ,AB=4 , AD=5 ,求 t 的值.【分析】( 1)作 EG ⊥AB 于点 G ,由 S △ ABE = ×AB × EG=30 得 AB?EG=60,即可得出答案; ( 2 )延长 AE 交 BC 延长线于点 H ,先证△ ADE ≌△ HCE 得 AD=HC 、 AE=HE 及 AD +FC=HC+FC ,结合 AF=AD +FC 得∠ FAE=∠CHE ,根据∠ DAE= ∠CHE 即可得证;(3)先证∠ ABF=90°得出 AF 22+BF 2 ( ﹣ )2 = ( FC+CH )2 ( ) 2,据此求 =AB =16+ 5 FC= FC+5 得 FC 的长,从而得出 AF 的长度,再由 AE=HE 、AF=FH 知 FE ⊥AH ,即 AF 是△ AEF 的外 接圆直径,从而得出答案.【解答】 解:(1)如图,作 EG ⊥ AB 于点 G ,则 S △ ABE = × AB × EG=30,则 AB?EG=60,∴平行四边形 ABCD 的面积为 60;(2)延长 AE 交 BC 延长线于点 H ,∵四边形 ABCD 是平行四边形,∴AD ∥BC ,∴∠ ADE= ∠HCE ,∠ DAE= ∠CHE ,∵E 为 CD 的中点,∴CE=ED,∴△ ADE ≌△ HCE,∴AD=HC 、 AE=HE ,∴AD +FC=HC+FC,由AF=AD +FC 和 FH=HC+FC 得AF=FH ,∴∠ FAE=∠ CHE,又∵∠ DAE= ∠CHE,∴∠ DAE= ∠FAE,∴AE 平分∠ DAF ;(3)连接 EF,∵AE=BE 、AE=HE ,∴AE=BE=HE ,∴∠ BAE= ∠ ABE ,∠ HBE= ∠BHE,∵∠ DAE= ∠CHE,∴∠BAE +∠DAE= ∠ABE +∠HBE ,即∠DAB= ∠CBA ,由四边形ABCD 是平行四边形得∠DAB+∠CBA=180°,∴∠ CBA=90°,∴AF 2=AB 2+BF2 =16+( 5﹣ FC)2=(FC+CH)2=(FC+5)2,解得: FC= ,∴AF=FC +CH=,∵AE=HE 、AF=FH ,∴FE⊥ AH ,∴AF 是△ AEF 的外接圆直径,∴△ AEF 的外接圆的周长t=π.【点评】本题主要考查圆的综合问题,解题的关键是掌握平行四边形的性质、矩形的判定与性质、全等三角形的判定与性质及等腰三角形的性质、勾股定理等知识点.。

2018年中考数学模拟试题及答案(共五套)

2018年中考数学模拟试题及答案(共五套)

中考模拟试卷数学卷一、仔细选一选。

(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案. 1.下列四个运算中,结果最小的是( ). A 、2017的相反数 B 、2017的绝对值 C 、2017的0次幂 D 、2017的立方根 2.已知∠α=23°45′,则∠α的余角=( ).A .66°55′B .156°15′C .66°15′D .156°55′3.若代数式x 2+bx 可以分解因式,则常数b 不可以是( ). A .﹣1B .0C .1D .24.在代数式x ﹣y, 4a, y+,,yz, ,中有( ).A .5个整式B .3个单项式,4个多项式C .6个整式,4个单项式D .单项式与多项式的个数相同5.下图是小方送给她外婆的生日蛋糕,则下面关于三种视图判断正确的( ).A.主视图、俯视图、左视图都正确B.主视图、俯视图、左视图都错误C.主视图、左视图正确、俯视图错误D. 左视图、俯视图正确、主视图错误 6.已知⎩⎨⎧>≤-,,a xb x 则的值( ).A.大于0B.小于0C.大于或等于0D.小于或等于07.某超市举办促销活动,促销方式是将原价x 元的衣服以(45x -10) 元出售,则下列说法中,能正确表达该超市促销方式的是( ).A. 原价减去10元后再打8折B. 原价打8折后再减去10元C. 原价减去10元后再打2折D. 原价打2折后再减去10元8.如图为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是( ).(第8题图) A .△ACD 的外心 B .△ABC 的外心C .△ACD 的内心 D .△ABC 的内心9.在同一直角坐标系中,对于以下四个函数①y=-x-1;②y=x+1;③y=-x+1; ④y=-2(x+1)的图像。

人教版2018年云南省昭通市昭阳区中考数学模拟试卷(二)含答案

人教版2018年云南省昭通市昭阳区中考数学模拟试卷(二)含答案

2018年云南省昭通市昭阳区中考数学模拟试卷(二)一.选择题(共8小题,满分32分,每小题4分)1.下列各式属于最简二次根式的是()A.B.C.D.2.如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75B.100C.120D.1253.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G.若BG=4,则△CEF的面积是()A.B.2C.3D.44.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16B.17C.18D.195.y=(m﹣1)x|m|+3m表示一次函数,则m等于()A.1B.﹣1C.0或﹣1D.1或﹣16.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大7.如图,在平行四边形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A .①和④B .②和③C .③和④D .②和④8.若bk <0,则直线y=kx +b 一定通过( ) A .第一、二象限 B .第二、三象限 C .第三、四象限D .第一、四象限二.填空题(共6小题,满分18分,每小题3分) 9.一组数据1,4,4,3,4,3,4的众数是 .10.函数y=+中,自变量x 的取值范围是 .11.一次函数y=(k ﹣3)x ﹣k +2的图象经过第一、三、四象限.则k 的取值范围是 . 12.直角三角形两直角边长分别为5和12,则它斜边上的高为 .13.如图,四边形ABCD 中,点P 是对角线BD 的中点,点E ,F 分别是AB ,CD 的中点,AD=BC ,∠PEF=35°,则∠PFE 的度数是 .14.如图,平面直角坐标系中,经过点B (﹣4,0)的直线y=kx +b 与直线y=mx +2相交于点,则不等式mx +2<kx +b <0的解集为 .三.解答题(共9小题,满分70分)15.(5分)计算:×(2﹣)﹣÷+.16.(6分)附加题:(y ﹣z )2+(x ﹣y )2+(z ﹣x )2=(y +z ﹣2x )2+(z +x ﹣2y )2+(x +y ﹣2z )2.求的值.17.(6分)如图,在平行四边形ABCD中,AE⊥BC,垂足为E,点F为边CD上一点,且DF=BE,过点F作FG⊥CD,交AD于点G.求证:DG=DC.18.(10分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A、B、C、D,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:(Ⅰ)本次抽查测试的学生人数为,图①中的a的值为;(Ⅱ)求统计所抽查测试学生成绩数据的平均数、众数和中位数.19.(8分)一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1)和点B(1,5),求一次函数的解析式.20.(7分)如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=20.求:△ABD的面积.21.(8分)如图,在△ABC中,∠ACB=90°,AC=15.sin∠A=,点D是BC的中点,点P是AB 上一动点(不与点B重合),延长PD至E,使DE=PD,连接EB、EC.(1)求证;四边形PBEC是平行四边形;(2)填空:①当AP的值为时,四边形PBEC是矩形;②当AP的值为时,四边形PBEC是菱形.22.(10分)A,B两地相距20km.甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发.设甲的骑行时间为x(h)(0≤x≤2)(Ⅰ)根据题意,填写下表:(Ⅱ)设甲,乙两人与A地的距离为y1(km)和y2(k m),写出y1,y2关于x的函数解析式;(Ⅲ)设甲,乙两人之间的距离为y,当y=12时,求x的值.23.(10分)如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.参考答案一.选择题1.解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.2.解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.故选:B.3.解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=4,∴AG═2,∴AE=2AG=4;=AE•BG=×4×4=8.∴S△ABE∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1.∵AB∥FC,∴△ABE∽△FCE,∴S△ABE :S△CEF=(BE:CE)2=4:1,则S△CEF=S△ABE=2.故选:B.4.解:当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选:A.5.解:由题意得,|m|=1且m﹣1≠0,解得m=±1且m≠1,所以,m=﹣1.故选:B.6.解:原数据的平均数为=188,则原数据的方差为×[(180﹣188)2+(184﹣188)2+(188﹣188)2+(190﹣188)2+(192﹣188)2+(194﹣188)2]=,新数据的平均数为=187,则新数据的方差为×[(180﹣187)2+(184﹣187)2+(188﹣187)2+(190﹣187)2+(186﹣187)2+(194﹣187)2]=,所以平均数变小,方差变小,故选:A.7.解:∵四边形ABCD是平行四边形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②与④不一定成立,∵当四边形是菱形时,②和④成立.故选:D.8.解:由bk<0,知①b>0,k<0;②b<0,k>0,①当b>0,k<0时,直线经过第一、二、四象限,②b<0,k>0时,直线经过第一、三、四象限.综上可得函数一定经过一、四象限.故选:D.二.填空题(共6小题,满分18分,每小题3分)9.解:在这一组数据中4是出现次数最多的,故众数是4.故答案为:4.10.解:由题意得,1﹣x≠0,x+2≥0,解得,x≥﹣2且x≠1,故答案为:x≥﹣2且x≠1.11.解:∵一次函数y=(k﹣3)x﹣k+2的图象经过第一、三、四象限,∴,解得,k>3.故答案是:k>3.12.解:由勾股定理可得:斜边长2=52+122,则斜边长=13,直角三角形面积S=×5×12=×13×斜边的高,可得:斜边的高=.故答案为:.13.解:∵在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC,∴PF=PE,故△EPF是等腰三角形.∵∠PEF=35°,∴∠PEF=∠P FE=35°,故答案为:35°.14.解:不等式mx+2<kx+b<0的解集是﹣4<x<﹣.故答案是:﹣4<x<﹣.三.解答题(共9小题,满分70分)15.解:原式=3×(2﹣)﹣+=6﹣﹣+=5﹣16.解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z﹣x+z+x﹣2y)(z ﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.17.证明:∵四边形ABCD为平行四边形,∴∠B=∠D,AB=CD,∵AE⊥BC,FG⊥CD,∴∠AEB=∠GFD=90°,在△AEB和△GFD中,,∴△AEB≌△GFD,∴AB=DG,∴DG=DC.18.解:(Ⅰ)本次抽查测试的学生人数为14÷28%=50人,a%=×100%=24%,即a=24,故答案为:50、24;(Ⅱ)观察条形统计图,平均数为=7.88,∵在这组数据中,8出现了20次,出现的次数最多,∴这组数据的众数是8.∵将这组数据从小到大的顺序排列,其中处于中间的两个数都是8,有.∴这组数据的中位数是8.19.解:∵一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1)和点B(1,5),∴,解得.故一次函数的解析式为y=2x+3.20.解:在△ADC中,AD=15,AC=12,DC=9,AC2+DC2=122+92=152=AD2,即AC2+DC2=AD2,∴△ADC是直角三角形,∠C=90°,在Rt△ABC中,BC===16,∴BD=BC﹣DC=16﹣9=7,∴△ABD的面积=×7×12=42.21.解:∵点D是BC的中点,∴BD=CD,∵DE=PD,∴四边形PBEC是平行四边形;(2)①当∠APC=90°时,四边形PBEC是矩形,∵AC=15.sin∠A=,∴PC=12,由勾股定理得AP=9,∴当AP的值为9时,四边形PBEC是矩形;②∵在△ABC中,∠ACB=90°,AC=15.sin∠A=,所以设BC=4x,AB=5x,则(4x)2+152=(5x)2,解得:x=5,∴AB=5x=25,当PC=PB时,四边形PBEC是菱形,此时点P为AB的重点,所以AP=12.5,∴当AP的值为12.5时,四边形PBEC是菱形.22.解(Ⅰ)由题意知:甲、乙二人平均速度分别是平均速度为10km/h和40km/h,且比甲晚1.5h出发.当时间x=1.8 时,甲离开A的距离是10×1.8=18(km)当甲离开A的距离20km时,甲的行驶时间是20÷10=2(时)此时乙行驶的时间是2﹣1.5=0.5(时),所以乙离开A的距离是40×0.5=20(km)故填写下表:(Ⅱ)由题意知:y1=10x (0≤x≤1.5),(Ⅲ)根据题意,得当0≤x≤1.5时,由10x=12,得x=1.2当1.5<x≤2时,由﹣30x+60=12,得x=1.6因此,当y=12时,x的值是1.2或1.612 23.(1)证明:∵CE ∥OD ,DE ∥OC ,∴四边形OCED 是平行四边形,∵矩形ABCD ,∴AC=BD ,OC=AC ,OD=BD ,∴OC=OD ,∴四边形OCED 是菱形;(2)解:在矩形ABCD 中,∠ABC=90°,∠BAC=30°,AC=4, ∴BC=2,∴AB=DC=2,连接OE ,交CD 于点F ,∵四边形OCED 为菱形,∴F 为CD 中点,∵O 为BD 中点,∴OF=BC=1,∴OE=2OF=2,∴S 菱形OCED=×OE ×CD=×2×2=2.。

云南省昭通市中考数学试卷含答案.docx

云南省昭通市中考数学试卷含答案.docx

云南省昭通市2018年中考数学试卷一、选择题 < 本大题共10 个小题,每小题只有一个正确选项,每小题 3 分,满分 30 分)1. <3 分) <2018? 昭通)﹣ 4 的绝对值是 <)A B C4D﹣4....考绝对值.点:分根据绝对值的性质一个负数的绝对值等于这个数的相反析数,直接就得出答案.:解解: | ﹣4|=4.答故选 C.:点此题主要考查了绝对值的性质,熟练应用绝对值的性质评是解决问题的关键.:2. <3 分) <2018? 昭通)下列各式计算正确的是 <)A <a+b )23=a5824 D a?a2=a3B a+aC a÷a =a.2 =a 2 +b 2...考同底数幂的除法;合并同类项;同底数幂的乘法;完全点平方公式.:专计算题.题:分 A、利用完全平方公式展开得到结果,即可作出判断;析 B 、原式不能合并,错误;: C 、利用同底数幂的除法法则计算得到结果,即可作出判断;D 、利用同底数幂的乘法法则计算得到结果,即可作出判断.解解: A、 <a+b )2 =a 2+2ab+b 2,本选项错误;答 B 、原式不能合并,错误;: C 、 a8÷a2 =a 6,本选项错误;D 、 a?a 2=a 3,本选项正确,故选 D点此题考查了同底数幂的乘除法,完全平方公式,以及合评并同类项,熟练掌握公式及法则是解本题的关键.:3. <3 分) <2018? 昭通)如图,AB∥ CD, DB⊥ BC,∠ 2=50 °,则∠1的度数是 <)A 40°B 50°C 60°D 140°....考平行线的性质;直角三角形的性质.点:分根据直角三角形两锐角互余求出∠3,再根据两直线平析行,同位角相等解答.:解解:∵ DB⊥ BC,∠ 2=50 °,答∴∠ 3=90 °﹣∠ 2=90 °﹣ 50 ° =40 °,:∵ AB∥ CD,∴∠ 1= ∠ 3=40 °.故选 A.点本题考查了平行线的性质,直角三角形两锐角互余的性评质,熟记性质是解题的关键.:4. <3 分) <2018? 昭通)已知一组数据:12 ,5,9,5,14 ,下列说法不正确的是 <)A 平均数是 9B 中位数是 9C众数是5D极差是5....考极差;算术平均数;中位数;众数.点:分分别计算该组数据的平均数、中位数、众数及极差后即析可得到正确的答案.:解解:平均数为 <12+5+9+5+14)÷ 5=9 ,故 A 正确;答中位数为9,故 B 正确;: 5 出现了 2 次,最多,众数是5,故 C 正确;极差为: 14 ﹣5=9 ,故 D 错误.故选 D.点本题考查了数据的平均数、中位数、众数及极差,属于评基础题,比较简单.:5. <3 分) <2018? 昭通)如图,已知 AB 、 CD 是⊙O 的两条直径,∠ ABC=28 °,那么∠ BAD=< ) b5E2RGbCAP---A 28°B 42°C 56°D 84°....考圆周角定理.点:分根据等腰三角形性质求出∠OCB的度数,根据圆周角析定理得出∠BAD=∠ OCB,代入求出即可.:解解:∵ OB=OC,∠ ABC=28 °,答∴∠ OCB=∠ ABC=28 °,:∵弧 AC 对的圆周角是∠BAD和∠ OCB,∴∠ BAD=∠ OCB=28°,故选 A.点本题考查了等腰三角形性质和圆周角定理的应用,关键评是求出∠OCB的度数和得出∠BAD=∠ OCB.:6. <3 分) <2018? 昭通)如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是<)p1EanqFDPwA美B丽C云D南....考专题:正方体相对两个面上的文字---:分根据正方体的特点得出其中上面的和下面的是相对的2析个面,即可得出正方体中与“建”字所在的面相对的面:上标的字是“南”.解解:由正方体的展开图特点可得:“建”和“南”相答对;“设”和“丽”相对;“美”和“云”相对;:故选 D.点此题考查了正方体相对两个面上的文字的知识;掌握常评见类型展开图相对面上的两个字的特点是解决本题的关:键.7. <3 分) <2018? 昭通)如图, A、 B 、 C 三点在正方形网格线的交点处,若将△ABC绕着点 A 逆时针旋转得到△ AC′ B′,则 tanB ′的值为 <)DXDiTa9E3dA B C D....考锐角三角函数的定义;旋转的性质点:分过 C 点作 CD⊥ AB,垂足为 D ,根据旋转性质可知,析∠ B′ =∠ B,把求 tanB ′的问题,转化为在:Rt △ BCD 中求 tanB .解解:过 C 点作 CD⊥ AB,垂足为 D .答根据旋转性质可知,∠B′ =∠ B.:在 Rt △ BCD 中, tanB== ,∴ tanB ′ =tanB= .故选 B.点本题考查了旋转的性质,旋转后对应角相等;三角函数评的定义及三角函数值的求法.:8. <3 分) <2018? 昭通)已知点 P<2a ﹣1 , 1﹣ a)在第一象限,则 a 的取值范围在数轴上表示正确的是<)RTCrpUDGiTA B C D....考在数轴上表示不等式的解集;解一元一次不等式组;点点的坐标.:分首先根据点 P 在第一象限则横纵坐标都是正数即可得到析关于 a 的不等式组求得 a 的范围,然后可判断.:解解:根据题意得:,答解得: 0.5 < a< 1 .:故选 C.点把每个不等式的解集在数轴上表示出来<>,≥向右评画;<,≤向左画),数轴上的点把数轴分成若干段,:如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9. <3 分) <2018? 昭通)已知二次函数y=ax 2 +bx+c<a ≠ 0)的图象如图所示,则下列结论中正确的是 <)5PCzVD7HxAA a> 0B 3 是方程 ax 2+bx+c=0的..一个根C a+b+c=0D 当 x < 1 时, y 随 x 的增大..而减小考二次函数图象与系数的关系;二次函数的性质点:分根据抛物线的开口方向可得 a< 0 ,根据抛物线对称轴析可得方程 ax 2 +bx+c=0的根为 x= ﹣ 1 , x=3 ;根据图象:可得 x=1 时, y> 0;根据抛物线可直接得到x < 1时,y 随 x 的增大而增大.解解: A、因为抛物线开口向下,因此 a< 0 ,故此选项错答误;: B 、根据对称轴为 x=1 ,一个交点坐标为 < ﹣1 , 0 )可得另一个与 x 轴的交点坐标为 <3 ,0)因此 3 是方程 ax 2+bx+c=0 的一个根,故此选项正确;C 、把 x=1 代入二次函数 y=ax 2 +bx+c<a ≠ 0)中得:y=a+b+c ,由图象可得, y > 0 ,故此选项错误;D 、当 x < 1 时, y 随 x 的增大而增大,故此选项错误;故选: B.点此题主要考查了二次函数图象与系数的关系,关键是从评抛物线中的得到正确信息.:①二次项系数 a 决定抛物线的开口方向和大小.当 a>0 时,抛物线向上开口;当a< 0时,抛物线向下开口; IaI 还可以决定开口大小, IaI 越大开口就越小.②一次项系数 b 和二次项系数 a 共同决定对称轴的位置.当 a 与 b 同号时 <即 ab > 0 ),对称轴在y 轴左;当 a 与 b 异号时 < 即 ab < 0 ),对称轴在 y 轴右. <简称:左同右异)③常数项 c 决定抛物线与y 轴交点.抛物线与 y 轴交于<0 , c ).④抛物线与 x 轴交点个数.△2> 0 时,抛物=b﹣ 4ac线与 x 轴有 2 个交点;△2=b﹣ 4ac=0 时,抛物线与 x轴有 1 个交点;△2时,抛物线与 x 轴没=b﹣ 4ac < 0有交点.10 . <3 分) <2018? 昭通)如图所示是某公园为迎接“中国﹣﹣南亚博览会”设置的一休闲区.∠AOB=90 °,弧AB 的半径 OA 长是 6M ,C 是 OA 的中点,点 D 在弧 AB上, CD∥ OB,则图中休闲区< 阴影部分)的面积是<) jLBHrnAILgA <10 πB <)C <6 π)D<6).)M2.M2.M2. M 2考扇形面积的计算.点---:分先根据半径OA 长是 6M , C 是 OA 的中点可知析 OC= OA=3M ,再在 Rt △ OCD 中,利用勾股定理求:出 CD 的长,根据锐角三角函数的定义求出∠的DOC 度数,由 S 阴影 =S 扇形AOD﹣ S△DOC即可得出结论.解解:连接 OD ,答∵弧 AB 的半径 OA 长是 6M ,C:∴ OC= OA=3M ,∵∠ AOB=90 °, CD∥ OB,∴CD⊥ OA,在 Rt △ OCD 中,∵OD=6, OC=3 ,∴ CD==3 M,∵sin ∠ DOC= = ,∴∠ DOC=60°,∴S阴影=S 扇形AOD﹣ S△DOC=× 3×3=6 π<M 2).是 OA 的中点,﹣点本题考查的是扇形的面积,根据题意求出∠的DOC 度评数,再由 S 阴影 =S 扇形AOD﹣ S△DOC得出结论是解答此题:的关键.二、填空题 < 本大题共 7 个小题,每小题 3分,满分 21---11 . <3 分) <2018? 昭通)根据云南省统计局发布我省生产总值的主要数据显示:去年生产总值突破万亿大关,2018年第一季度生产总值为226 040 000 000元人民币,增速居全国第一.这个数据用科学记数法可表示为2.2604× 1011元.xHAQX74J0X考科学记数法—表示较大的数点:分科学记数法的表示形式为a× 10 n的形式,其中析 1≤ |a| <10 , n 为整数.确定 n 的值时,要看把原数:变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.解解: 226 040 000 000=2.260411× 10,答故答案为:11 2.2604 × 10.:点此题考查科学记数法的表示方法.科学记数法的表示形评式为 a× 10 n的形式,其中 1≤ |a|<10 , n 为整数,:表示时关键要正确确定 a 的值以及 n 的值.12 . <3 分) <2018? 昭通)实数中的无理数是.考无理数点:分无理数就是无限不循环小数.理解无理数的概念,一定析要同时理解有理数的概念,有理数是整数与分数的统:称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.---解解:、 8、=6 ,它都是有理数.答是无理数.:故答案是;.点此主要考了无理数的定,其中初中范内学的无理数有:π,等2π;开方开不尽的数;以及像:0.1010010001 ⋯,等有律的数.13 . <3 分) <2018? 昭通)因式分解: 2x 2 18= 2<x+3 )<x 3 ).考提公因式法与公式法的合运用点:分提公因式 2 ,再运用平方差公式因式分解.析:解解:2x218=2<x 29 ) =2<x+3 ) <x 3 ),答故答案:2<x+3)<x 3 ).:点本考了用提公因式法和公式法行因式分解,一个多式有公因式首先提取公因式,然后再用其他方法:行因式分解,同因式分解要底,直到不能分解止.14 . <3 分) <2018? 昭通)如, AF=DC , BC∥ EF,只需充一个条件 BC=EF ,就得△ABC≌△ DEF. LDAYtRyKfE考全等三角形的判定.点---:专开放型.题:分补充条件BC=EF ,首先根据AF=DC可得AC=DF,析再根据BC∥ EF可得∠EFC=∠ BCF,然后再加上条:件CB=EF可利用SAS定理证明△ABC≌△ DEF.解解:补充条件BC=EF ,答∵ AF=DC,:∴ AF+FC=CD+FC,即 AC=DF ,∵ BC∥ EF,∴∠ EFC=∠ BCF,∵在△ABC 和△ DEF 中,,∴△ ABC≌△ DEF<S AS ).故答案为: BC=EF .点此题主要考查了全等三角形的判定,关键是掌握判定两评个三角形全等的一般方法有: SSS 、SAS 、 ASA 、:AAS 、HL .注意: AAA 、 SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15 . <3 分) <2018? 昭通)使代数式有意义的x 的取值范围是x ≠ .考分式有意义的条件点:分根据分式有意义的条件可得2x ﹣ 1≠ 0,再解即可.析:解解:由题意得:2x ﹣ 1≠ 0,答解得:x ≠,:故答案为:x ≠.点此题主要考查了分式有意义的条件,关键是掌握分式有评意义的条件是分母不等于零.:16 . <3 分) <2018? 昭通)如图, AB 是⊙O 的直径,弦BC=4cm ,F 是弦 BC 的中点,∠ ABC=60 °.若动点 E以 1cm/s 的速度从 A 点出发在 AB 上沿着 A→ B→A运动,设运动时间为 t<s ) <0 ≤ t <16 ),连接 EF ,当△ BEF 是直角三角形时, t<s )的值为 4s . < 填出一个正确的即可) Zzz6ZB2Ltk考圆周角定理;垂径定理;相似三角形的判定与性质.点:专开放型.题:分根据圆周角定理得到∠C=90 °,由于∠ABC=60 °,析 BC=4cm ,根据含 30 度的直角三角形三边的关系得到:AB=2BC=8cm ,而 F 是弦 BC 的中点,所以当EF∥ AC ,△BEF是直角三角形,此E AB 的中点,易得t=4s ;当从 A 点出运到 B 点名,再运到 O 点,此t=12s ;也可以 F 点作 AB 的垂,点 E 点运到垂足,△BEF是直角三角形.解解:∵AB是⊙O 的直径,答∴∠ C=90°,:而∠ ABC=60°,BC=4cm,∴AB=2BC=8cm ,∵F是弦 BC 的中点,∴当 EF∥ AC ,△ BEF 是直角三角形,此 EAB 的中点,即 AE=AO=4cm ,∴t= =4<s ).故答案4s .点本考了周角定理:在同或等中,同弧或等弧所的周角相等,都等于条弧所的心角的一:半.也考了周角定理的推以及含 30 度的直角三角形三的关系.17 . <3 分) <2018? 昭通)如中每一个小方格的面1,可根据面算得到如下算式:1+3+5+7+ ⋯ +<2n 1 ) = n 2< 用 n 表示, n 是正整数) dvzfvkwMI1考律型:形的化;律型:数字的化点:数形合.---:分根据形面得出,第 2 个形面 2 2,第 3 个析形面 3 2,第4 个形面 42,⋯第 n 个形面: n 2,即可得出答案.解解:利用每个小方格的面 1 ,可以得出:答 1+3=4=2 2,:1+3+5=9=3 2,1+3+5+7=16=4 2,⋯1+3+5+7+ ⋯ +<2n 1 )=n 2.故答案: n 2.点此主要考了数字化律以及形化律,根据形面得出化律是解关,也是中考中考:重点.三、解答 < 本大共8 个小,分49 分)18 . <6 分) <2018? 昭通)算:.考数的运算;零指数;整数指数;特殊角的三角点函数.:分首先算乘方,化二次根式,再根据零指数和整析数指数运算法教,然后行乘法,加减即可.:解解:原式=2 1 5+1+9 ,答 =6.:点本考数的合运算能力,是各地中考中常的算型.解决此目的关是熟掌握二次根式的:化,正确特殊角的三角函数19 . <5 分) <2018? 昭通)小明有 2 件上衣,分别为红色和蓝色,有 3 条裤子,其中 2 条为蓝色、 1 条为棕色.小明任意拿出 1 件上衣和 1 条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率. rqyn14ZNXI考列表法与树状图法.点:分首先根据题意画出树状图,由树状图求得所有等可能的析结果与小明穿的上衣和裤子恰好都是蓝色的情况,然后:利用概率公式求解即可求得答案.解解:画树状图得:答如图:共有 6 种可能出现的结果,:∵小明穿的上衣和裤子恰好都是蓝色的有 2 种情况,∴小明穿的上衣和裤子恰好都是蓝色的概率为:= .点此题考查了列表法与树状图法求概率的知识.注意列表评法与树状图法可以不重复不遗漏的列出所有可能的结:果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率 =所求情况数与总情况数之比.20 . <5 分) <2018? 昭通)为了推动课堂教学改革,打造高效课堂,配合地区“两型课堂”的课题研究,羊街中学对八年级部分学生就一学期以来“分组合作学习”方式的支持程度进行调查,统计情况如图1 .请根据图中提供的信息,回答下列问题. EmxvxOtOco<1 )求本次被调查的八年级学生的人数,并补全条形统计图 2 ;<2 )若该校八年级学生共有540 人,请你计算该校八年级有多少名学生支持“分组合作学习”方式 < 含“非常喜欢”和“喜欢”两种情况的学生)? SixE2yXPq5考条形统计图;用样本估计总体;扇形统计图.点:分 <1 )根据喜欢“分组合作学习”方式的圆心角度数和析频数可求总数,进而得出非常喜欢“分组合作学习”方:式的人数;<2 )利用扇形图得出支持“分组合作学习”方式所占的百分比,利用样本估计总体即可.解解: <1 )∵喜欢“分组合作学习”方式的圆心角度数答为 120 °,频数为 18 ,:∴喜欢“分组合作学习”方式的总人数为:18 ÷=54 人,故非常喜欢“分组合作学习”方式的人数为:54 ﹣18﹣ 6=30人,如图所示补全条形图即可;<2 )∵“非常喜欢”和“喜欢”两种情况在扇形统计图中所占圆心角为:120 ° +200 ° =320 °,∴支持“分组合作学习”方式所占百分比为:× 100%,∴该校八年级学生共有 540 人,有 540 ×=480 名学生支持“分组合作学习”方式.点本题考查的是条形统计图和扇形统计图的综合运用.读评懂统计图,从不同的统计图中得到必要的信息是解决问:题的关键.条形统计图能清楚地表示出每个工程的数据;扇形统计图直接反映部分占总体的百分比大小.21 . <5 分) <2018? 昭通)小亮一家在一湖泊中游玩,湖泊中有一孤岛,妈妈在孤岛P 处观看小亮与爸爸在湖中划船< 如图所示).小船从P 处出发,沿北偏东60 °方向划行 200M到A处,接着向正南方向划行一段时间到B 处.在 B 处小亮观测到妈妈所在的P 处在北偏西37 °的方向上,这时小亮与妈妈相距多少M< 精确到 1M )?6ewMyirQFL<参考数据:sin37°≈ 0.60,cos37°≈ 0.80,tan37 °≈ 0.75 ,≈ 1.41 ,≈ 1.73)kavU42VRUs考解直角三角形的应用- 方向角问题---点:分先过P作PC⊥ AB于C,在Rt△ APC中,根据析 AP=200m ,∠ ACP=90 °,∠ PAC=60 °求出 PC 的:长,再根据在 Rt △ PBC 中, sin37 °=,得出 PB 的值,即可得出答案.解解:过P作PC⊥AB于C,答在Rt△ APC中,AP=200m,∠ ACP=90°,:∠ PAC=60°.∴ PC=200 × sin60° =200×=100.∵在 Rt △ PBC 中, sin37°= ,∴ PB==≈ 288<m),答:小亮与妈妈相距约288M .点此题考查了解直角三角形的应用﹣方向角问题,用到的评知识点是方向角、解直角三角形,关键是根据方向角求:出角的度数.22 . <6 分) <2018? 昭通)如图,直线 y=k 1 x+b<k 1≠ 0)与双曲线 y= <k 2≠ 0)相交于 A<1 ,m )、 B< ﹣ 2 ,﹣1)两点. y6v3ALoS89<1 )求直线和双曲线的解读式.---<2 )若 A 1<x 1, y 1), A 2 <x 2, y 2), A3 <x 3,y 3)为双曲线上的三点,且 x 1< x 2< 0 < x 3,请直接写出 y 1, y 2,y 3的大小关系式. M2ub6vSTnP考反比例函数与一次函数的交点问题点:专计算题.题:分<1 )将 B 坐标代入双曲线解读式求出k 2的值,确定出析反比例解读式,将 A 坐标代入反比例解读式求出m 的:值,确定出 A 的坐标,将 A 与 B 坐标代入直线解读式求出 k 1与 b 的值,即可确定出直线解读式;<2 )先根据横坐标的正负分象限,再根据反比例函数的增减性判断即可.解解: <1 )∵双曲线 y=经过点 B< ﹣2 ,﹣ 1 ),答∴k2 =2 ,:∴双曲线的解读式为:y= ,∵点 A<1 ,m )在双曲线y= 上,∴m=2,即 A<1 , 2),由点 A<1 ,2 ), B< ﹣ 2 ,﹣ 1 )在直线 y=k 1 x+b 上,得,---解得:,∴直线的解读式为:y=x+1 ;<2 )∵A1<x 1,y 1), A 2<x 2, y 2), A3 <x 3,y 3)为双曲线上的三点,且 x 1< x 2< 0< x 3,∴A1与 A2在第三象限, A3在第一象限,即y 1< 0 , y 2<0 , y 3>0 ,则 y 2< y 1<y 3.点此题考查了反比例函数与一次函数的交点问题,利用了评待定系数法,熟练掌握待定系数法是解本题的关键.:23 .<7 分)<2018? 昭通)如图,已知AB 是⊙O 的直径,点 C 、 D 在⊙O 上,点 E 在⊙O 外,∠EAC=∠ B=60 °. 0YujCfmUCw<1 )求∠ ADC 的度数;<2 )求证: AE 是⊙O 的切线.考切线的判定;圆周角定理点:分 <1 )根据“同弧所对的圆周角相等”可以得到析∠ ADC=∠ B=60 °;:<2 )欲证明 AE 是⊙O 的切线,只需证明BA⊥ AE 即可.解解: <1 )∵∠ ABC 与∠ ADC 都是弧 AC 所对的圆周答角,:∴∠ ADC=∠ B=60°.<2 )∵ AB 是⊙O 的直径,∴∠ ACB=90 °,∴∠ BAC=30 °.∴∠ BAE=∠ BAC+∠ EAC=30 ° +60 ° =90 °,即BA⊥ AE.∴ AE 是⊙O 的切线.点本题考查了切线的判定与圆周角定理.要证某线是圆的评切线,已知此线过圆上某点,连接圆心与这点<即为半:径),再证垂直即可.24 . <7 分) <2018? 昭通)如图,在菱形 ABCD 中, AB=2 ,∠ DAB=60 °,点 E 是 AD 边的中点,点 M 是 AB 边上的一个动点 <不与点 A 重合),延长 ME 交 CD 的延长线于点 N,连接MD ,AN .eUts8ZQVRd <1 )求证:四边形 AMDN 是平行四边形.<2 )当 AM 的值为何值时,四边形 AMDN 是矩形?请说明理由.考菱形的性质;全等三角形的判定与性质;平行四边形的点判定;矩形的判定.:分<1 )根据菱形的性质可得ND∥ AM,再根据两直线平析行,内错角相等可得∠NDE=∠ MAE,:∠ DNE=∠ AME,根据中点的定义求出DE=AE ,然后利用“角角边”证明△NDE和△ MAE 全等,根据全等三角形对应边相等得到ND=MA ,然后利用一组对边平行且相等的四边形是平行四边形证明;<2 )根据矩形的性质得到DM⊥ AB,再求出∠ ADM=30°,然后根据直角三角形 30 °角所对的直角边等于斜边的一半解答.解 <1 )证明:∵四边形 ABCD 是菱形,答∴ ND∥ AM,:∴∠ NDE=∠ MAE,∠ DNE=∠ AME,∵点E是AD 中点,∴DE=AE,在△ NDE 和△ MAE 中,,∴△ NDE≌△ MAE<AAS),∴ND=MA,∴四边形AMDN是平行四边形;<2 )AM=1 .理由如下:∵四边形ABCD是菱形,∴AD=AB=2 ,∵平行四边形AMDN是矩形,∴DM⊥ AB,即∠ DMA=90°,∵∠ A=60 °,∴∠ ADM=30°,∴AM= AD=1 .点本题考查了菱形的性质,平行四边形的判定,全等三角评形的判定与性质,矩形的性质,熟记各性质并求出三角:形全等是解题的关键,也是本题的突破口.25 . <8 分) <2018? 昭通)如图 1,已知 A<3 ,0 )、B<4 ,4 )、原点 O<0 ,0 )在抛物线 y=ax 2 +bx+c<a ≠ 0)上. sQsAEJkW5T<1 )求抛物线的解读式.<2 )将直线 OB 向下平移 m 个单位长度后,得到的直线与抛物线只有一个交点 D ,求 m 的值及点 D 的坐标.<3 )如图 2 ,若点 N 在抛物线上,且∠NBO=∠ ABO,则在<2 )的条件下,求出所有满足△POD∽△ NOB的点 P 的坐标 < 点 P、O、D 分别与点 N、O、B 对应)GMsIasNXkA考二次函数综合题点:分 <1 )利用待定系数法求二次函数解读式进而得出答案析即可;:<2 )首先求出直线 OB 的解读式为 y=x ,进而将二次函数以一次函数联立求出交点即可;<3 )首先求出直线 A′B的解读式,进而由△P1 OD∽△NOB,得出△P 1 OD∽△N 1OB 1,进而求出点P1的坐标,再利用翻折变换的性质得出另一点的坐标.解解:<1)∵ A<3,0)、B<4,4)、O<0,0)在抛物答线y=ax2+bx+c <a≠ 0)上.:∴,---解得:,故抛物线的解读式为:y=x 2﹣3x ;<2 )设直线 OB 的解读式为 y=k 1 x< k 1≠ 0),由点 B<4 ,4)得4=4 k 1,解得 k 1 =1 .∴直线 OB 的解读式为y=x ,∠ AOB=45 °.∵B<4 ,4 ),∴点 B 向下平移m 个单位长度的点B′的坐标为<4 ,0),故 m=4 .∴平移 m 个单位长度的直线为y=x ﹣ 4 .解方程组解得:,∴点 D 的坐标为 <2 ,﹣ 2 ).<3 )∵直线 OB 的解读式y=x ,且 A<3 , 0 ).∵点 A 关于直线OB 的对称点 A′的坐标为 <0 , 3 ).设直线 A′B的解读式为y=k 2 x+3 ,此直线过点B<4 ,4).∴4k 2 +3=4 ,解得 k 2= .∴直线 A′B的解读式为 y= x+3 .∵∠ NBO=∠ ABO,∴点N 在直线 A′B上,设点 N<n , n+3 ),又点 N 在抛物线 y=x 2﹣ 3x 上,∴n+3=n 2﹣ 3n .解得n 1 = , n 2=4< 不合题意,舍去),∴点 N 的坐标为 <﹣,).如图,将△ NOB沿 x 轴翻折,得到△N1OB 1,则N1 <﹣,﹣),B1<4,﹣ 4).∴O、 D 、B 1都在直线 y= ﹣ x上.∵△P1 OD∽△ NOB,∴△P1 OD∽△N 1 OB 1,∴P1为 ON 1的中点.∴= = ,∴点 P1的坐标为 <﹣,﹣).将△P1 OD沿直线y=﹣x翻折,可得另一个满足条件的点到x 轴距离等于 P1到 y 轴距离,点到 y 轴距离等于 P1到 x轴距离,∴此点坐标为:<,).综上所述,点 P 的坐标为 <﹣,﹣)和<,).点此题主要考查了翻折变换的性质以及待定系数法求一次评函数和二次函数解读式以及相似三角形的判定与性质等:知识,利用翻折变换的性质得出对应点关系是解题关键.四、附加题 < 共 4 个小题,满分50 分)26 . <12 分) <2018? 昭通)已知一个口袋中装有7 个只有颜色不同、其它都相同的球,其中 3 个白球、 4 个黑球. TIrRGchYzg<1 )求从中随机取出一个黑球的概率.<2 )若往口袋中再放入x 个黑球,且从口袋中随机取出一个白球的概率是,求代数式的值.考概率公式;分式的化简求值点:分<1 )根据黑球的个数为 4 个,小球总数为3+4 ,利用析黑球个数除以总数得出概率即可;:<2 )利用概率公式求出 x 的值,进而化简分式代入求值即可.解解:<1)P<取出一个黑球)= = .答:<2 )设往口袋中再放入 x 个黑球,从口袋中随机取出一个白球的概率是,即 P< 取出一个白球)= = .由此解得x=5 .经检验 x=5 是原方程的解.∵原式=÷=×=,∴当 x=5 时,原式 =.点本题考查了统计与概率中概率的求法以及分式的化简求评值.用到的知识点为:概率=所求情况数与总情况数之:比.27 . <12 分) <2018? 昭通)为提醒人们节约用水,及时修好漏水的水龙头.两名同学分别做了水龙头漏水实验,他们用于接水的量筒最大容量为100 毫升. 7EqZcWLZNX 实验一:小王同学在做水龙头漏水实验时,每隔10 秒观察量筒中水的体积,记录的数据如表< 漏出的水量精确到1毫升): lzq7IGf02E时间 t< 秒)10 20 30 40 50 60 70漏出的水量V< 2 5 8 11 14 17 20毫升)<1 )在图 1 的坐标系中描出上表中数据对应的点;<2 )如果小王同学继续实验,请探求多少秒后量筒中的水会满而溢出 < 精确到 1 秒)?<3 )按此漏水速度,一小时会漏水 1.1千克<精确到0.1 千克)实验二:小李同学根据自己的实验数据画出的图象如图 2 所示,为什么图象中会出现与横轴“平行”的部分?考一次函数的应用.点:---分实验一:析 <1 )根据图中的数据直接在坐标系中描出各点即可;:<2 )先设出 V 与 t 的函数关系式为V=kt+b,根据表中数据,得出,求出 V 与 t 的函数关系式,再根据t ﹣ 1≥ 100 和量筒的容量,即可求出多少秒后,量筒中的水会满面开始溢出;<3 )根据 <2 )中的函数关系式,把t=60代入即可求出答案.实验二:根据小李同学接水的量筒装满后开始溢出,量筒内的水不再发生变化,即可得出图象中会出现与横轴“平行”的部分.解解:实验一:答<1 )画图象如图所示::<2 )设 V 与 t 的函数关系式为 V=kt+b ,根据表中数据知:当t=10 时,V=2 ;当 t=20 时, V=5 ,所以,---解得:,所以 V 与 t 的函数关系式为V=t ﹣ 1,由题意得:t ﹣ 1≥ 100 ,解得 t ≥=336,所以 337 秒后,量筒中的水会满面开始溢出;<3 )一小时会漏水× 3600﹣1=1079<毫升)=1079< 克)≈ 1.1千克;故答案为: 1.1 ;实验二:因为小李同学接水的量筒装满后开始溢出,量筒内的水位不再发生变化,所以图象中会出现与横轴“平行”的部分.点此题考查了一次函数的应用,解题的关键是根据已知条评件求出 V 与 t 的函数关系式,在解题时要能把函数的图:象与实际相结合.28 . <12 分) <2018? 昭通)如图,在⊙C 的内接△ AOB 中,AB=AO=4 , tan ∠ AOB= ,抛物线 y=a<x ﹣2 )2+m<a≠ 0)经过点A<4 , 0 )与点 <﹣ 2 ,6). zvpgeqJ1hk<1 )求抛物线的解读式;<2 )直线 m 与⊙C 相切于点 A,交 y 轴于点 D ,动点 P 在线段OB 上,从点 O 出发向点 B 运动,同时动点 Q 在线段 DA 上,从点 D 出发向点 A 运动,点 P 的速度为每秒 1 个单位长,点 Q 的速度为每秒 2 个单位长.当PQ⊥AD 时,求运动时间t 的值. NrpoJac3v1考二次函数综合题.点:分 <1 )利用待定系数法求二次函数解读式解读式即可;析 <2 )连接 AC 交 OB 于 E,作 OF⊥ AD 于 F,得出: m∥ OB,进而求出 OD ,OF 的长,进而利用勾股定理得出 DF 的长.解解: <1 )将点 A<4 , 0 )和点 <﹣ 2 , 6 )的坐标代入答 y=a<x ﹣ 2 )2 +m 中,得方程组,:解得,故抛物线的解读式为y= x 2﹣ 2x .<2 )如图所示,连接AC 交 OB 于 E .作 OF⊥ AD 于F ,∵直线 m 切⊙C 于点 A ,∴AC⊥ m.∵弦 AB=AO ,∴= .∴AC⊥ OB,∴m∥ OB.∴∠ OAD=∠ AOB.∵OA=4, tan ∠ AOB= ,∴ OD=OA?tan ∠ OAD=4×=3 .则 OF=OA?sin ∠ OAD=4×=2.4 .t 秒时, OP=t , DQ=2t ,若 PQ⊥ AD,则 FQ=OP=t . DF=DQ ﹣ FQ=t .∴△ ODF 中, t=DF==1.8< 秒).点此题主要考查了二次函数的综合应用以及垂径定理的推评论和勾股定理等知识,根据切线的性质以及锐角三角函:数关系得出 OF 的长是解题关键.29 . <14 分) <2018? 昭通)已知△ABC为等边三角形,点 D 为直线 BC 上的一动点 <点 D 不与 B 、C 重合),以AD 为边作菱形ADEF<A 、D 、 E 、 F 按逆时针排列),使∠ DAF=60 °,连接CF . 1nowfTG4KI<1 )如图 1 ,当点 D 在边 BC 上时,求证:①BD=CF;② AC=CF+CD;<2 )如图 2 ,当点 D 在边 BC 的延长线上且其他条件不变时,结论AC=CF+CD 是否成立?若不成立,请写出AC 、CF 、CD 之间存在的数量关系,并说明理由; fjnFLDa5Zo <3 )如图3 ,当点 D 在边 CB 的延长线上且其他条件不变时,补全图形,并直接写出 AC 、 CF 、 CD 之间存在的数量关系. tfnNhnE6e5----。

云南省昭通市昭阳区达标名校中考数学全真模拟试卷含解析

云南省昭通市昭阳区达标名校中考数学全真模拟试卷含解析

中考数学期末测试卷必考(基础题)含解析注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(共10小题,每小题3分,共30分)1.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A.12 B.16 C.18 D.242.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD 的度数是()A.45°B.85°C.90°D.95°3.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1 B.m<1 C.m>﹣1 D.m>14.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°5.把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是()A.y=﹣2x2+1 B.y=﹣2x2﹣1 C.y=﹣2(x+1)2D.y=﹣2(x﹣1)26.如图,平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别落在x 、y 轴上,点B 坐标为(6,4),反比例函数6y x =的图象与AB 边交于点D ,与BC 边交于点E ,连结DE ,将△BDE 沿DE 翻折至△B 'DE 处,点B '恰好落在正比例函数y =kx 图象上,则k 的值是( )A .25-B .121-C .15- D .124- 7.如图,直线AB 、CD 相交于点O ,EO ⊥CD ,下列说法错误的是( )A .∠AOD =∠BOCB .∠AOE +∠BOD =90°C .∠AOC =∠AOED .∠AOD +∠BOD =180°8.如图,已知直线AD 是⊙O 的切线,点A 为切点,OD 交⊙O 于点B ,点C 在⊙O 上,且∠ODA =36°,则∠ACB 的度数为( )A .54°B .36°C .30°D .27°9.小手盖住的点的坐标可能为( )A .()5,2B .()3,4-C .()6,3-D .()4,6--10.如图,下列条件不能判定△ADB ∽△ABC 的是( )A .∠ABD=∠ACBB .∠ADB=∠ABC C .AB 2=AD•ACD . AD AB AB BC= 二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,小红作出了边长为1的第1个正△A 1B 1C 1,算出了正△A 1B 1C 1的面积,然后分别取△A 1B 1C 1三边的中点A 2,B 2,C 2,作出了第2个正△A 2B 2C 2,算出了正△A 2B 2C 2的面积,用同样的方法,作出了第3个正△A 3B 3C 3,算出了正△A 3B 3C 3的面积…,由此可得,第8个正△A 8B 8C 8的面积是_____.12.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是14,则袋中小球的总个数是_____ 13.用一张扇形纸片围成一个圆锥的侧面(接缝处不计),若这个扇形纸片的面积是90πcm 2,围成的圆锥的底面半径为15cm ,则这个圆锥的母线长为_____cm .14.如图,四边形ABCD 中,点P 是对角线BD 的中点,点E ,F 分别是AB ,CD 的中点,AD=BC ,∠PEF=35°,则∠PFE 的度数是_____.15.化简1111x x -+-的结果是_______________. 16.因式分解:x 2﹣3x+(x ﹣3)=_____.三、解答题(共8题,共72分)17.(8分)如图,在矩形ABCD 中,E 是BC 边上的点,AE BC DF AE ⊥=,,垂足为F .(1)求证:AF BE =;(2)如果21BE EC :=:,求CDF 的余切值. 18.(8分)解方程:x x+1 +2x−1=1.19.(8分)已知如图,直线y=﹣3 x+43 与x 轴相交于点A ,与直线y=33x 相交于点P . (1)求点P 的坐标; (2)动点E 从原点O 出发,沿着O→P→A 的路线向点A 匀速运动(E 不与点O 、A 重合),过点E 分别作EF ⊥x轴于F ,EB ⊥y 轴于B .设运动t 秒时, F 的坐标为(a ,0),矩形EBOF 与△OPA 重叠部分的面积为S .直接写出:S 与a 之间的函数关系式(3)若点M 在直线OP 上,在平面内是否存在一点Q,使以A ,P,M ,Q 为顶点的四边形为矩形且满足矩形两边AP:PM 之比为1:3 若存在直接写出Q 点坐标。

最新-昭通市2018年中考数学试题卷 精品

最新-昭通市2018年中考数学试题卷 精品

绝密★昭通市2018年初中毕业生升学考试数 学 试 题 卷(全卷三个大题,共30个小题,共6页;满分150分,考试用时150分钟) 注意事项:1.本卷为试题卷,考生必须在答题卷上解题作答,答案书写在答题卷相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卷一并交回.一、选择题(本大题共10小题,每小题只有一个正确选项,每小题3分,满分30分) 1.下列结论正确的是A .2523a a a =+ B .39±= C .()()22b a b a b a -=-+ D .326x x x =÷2.下列图形中既是中心对称图形,又是轴对称图形的图形有A .1个C .3个D .4个 3.一组数据2、1、5、4的方差和中位数分别是A .2.5和2B .1.5和3C .2.5和3D .1.5和2 4.图1所示是一个由4个相同的正方体组成的立体图形,它的三视图为AB C D图15.下列说法中正确的是A .“打开电视,正在播放《新闻联播》”是必然事件.B .某次抽奖活动中奖的概率为1001,说明每买100张奖券,一定有一次中奖. C .某地明天下雨的概率是80%,表示明天有80%的时间下雨. D .想了解某地区城镇居民人均年收入水平,宜采用抽样调查. 6.将一副直角三角板如图2所示放置,使含角的三角板的一条直角边和含45板的一条直角边重合,则∠1的度数为 A .45° B .60°C .75°D .85°7.由于国家出台对房屋的限购令,我省某地的房屋价格原价为2400元/米2,通过连续两次降价%a 后,售价变为2000元/米2,下列方程中正确的是 A .2000]%)(1[24002=-a B .2400%)1(20002=-a C .2000%)1(24002=+a D .2000%)1(24002=-a 8.如图3所示,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C '处,折痕为EF ,若125='∠C EF ,那么ABE ∠的度数为A .15B .20C .25D .30°9.已知两圆的半径R 、r 分别为方程0232=+-x x 的两根,这两圆的圆心距为3,则这两圆的位置关系是A .外切B .内切C .相交D .外离10.函数m mx y -=与my =(0≠m )在同一直角坐标系中的图象可能是A B C Dx图4ACD BEF二、填空题(本大题共10小题,每小题3分,满分30分) 11.-2的倒数是 .12.分解因式:2732-a = .13.如图4所示,已知点A 、D 、B 、F 在一条直线上,EF AC =,AD FB =,要使ABC ∆≌FDE ∆,还需添加一个..条件,这个条 件可以是 .(只需填一个即可) 14.使2-x 有意义的x 的取值范围是 . 15.如图5所示,AB 是⊙O 的直径,弦DC 与AB 相交于点E ,若50=∠ACD ,则DAB ∠ . 16.不等式413>+-x 的解集是 .17.如图6所示,某班上体育课,甲、乙两名同学分别站在C 、D 的位置时,乙的影子恰好在甲的影子里边,已知甲身高8.1米,乙身高5.1米,甲的影长是6米,则甲、 乙同学相距 米.18.地球与太阳之间的距离约为000600149千米,用科学记数法表示(保留2个有效数字)约为 千米.19.已知圆锥的母线长是cm 12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为 cm .20.把抛物线42++=bx x y 的图象向右平移3个单位,再向上平移2个单位,所得图象的解析式为322+-=x x y ,则b 的值为 .三、解答题(本大题共10小题,满分90分)21.(6分)计算:01)23(60cos 221(|2|π-+-+-- .ACDBE图6A图522.(7分)解分式方程:212423=---x x x .23.(8分)如图7所示,在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为A (0,1),B (1-,1),C (1-,3).(1)画出ABC ∆关于x 轴对称的图形111C B A ∆点1C 的坐标;(2)画出ABC ∆绕原点O 顺时针方向旋转90图形222C B A ∆,并求出点C 所走过的路径的长.24.(9分)老张进行苹果树科学管理试验.把一片苹果林分成甲、乙两部分,甲地块用新技术管理,乙地块用老方法管理,管理成本相同.在甲、乙两地块上各随机选取20棵苹果树,根据每棵树产量把苹果树划分成A ,B ,C ,D ,E 五个等级(甲、乙的等级划分标准相同,每组数据包括左端点不包括右端点)画出统计图8:(1)认真阅读图8补齐直方图,求a 的值及相应扇形的圆心角度数; (2)选择合适的统计量,比较甲乙两地块的产量水平,并说明试验结果.图7图825.(9分)如图9E CF 的对角线相交于点O ,DB 经过点O ,分别与AE ,CF 交于点B ,D .求证:四边形ABCD 是平行四边形.26.(9分)如图10所示,若河岸的两边平行,河宽为900米,一只船由河岸的A 处沿直线方向开往对岸的B 处,AB 与河岸的夹角是60°,船从A 到B 处需时间23分钟。

2018中考数学真题汇编《反比例函数》

2018中考数学真题汇编《反比例函数》

反比例函数一.选择题1.(2018•玉林)等腰三角形底角与顶角之间的函数关系是()A.正比例函数B.一次函数 C.反比例函数D.二次函数2.(2018•怀化)函数y=kx﹣3与y=(k≠0)在同一坐标系内的图象可能是()A. B. C. D.3.(2018•永州)在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx (a≠0)的图象大致是()A.B.C.D.4.(2018•菏泽)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.5.(2018•大庆)在同一直角坐标系中,函数y=和y=kx﹣3的图象大致是()A.B.C.D.6.(2018•香坊区)对于反比例函数y=,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上 B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大 D.当x<0时,y随x的增大而减小7.(2018•衡阳)对于反比例函数y=﹣,下列说法不正确的是()A.图象分布在第二、四象限 B.当x>0时,y随x的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y28.(2018•柳州)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2 B.a≠﹣2 C.a≠±2 D.a=±29.(2018•德州)给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③ B.③④ C.②④ D.②③10.(2018•嘉兴)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A.1 B.2 C.3 D.411.(2018•温州)如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为()A.4 B.3 C.2 D.12.(2018•宁波)如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8 B.﹣8 C.4 D.﹣413.(2018•郴州)如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.114.(2018•无锡)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n二.填空题(共9小题)22.(2018•上海)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是.23.(2018•齐齐哈尔)已知反比例函数y=的图象在第一、三象限内,则k的值可以是.(写出满足条件的一个k的值即可)24.(2018•连云港)已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,则y1与y2的大小关系为.25.(2018•南京)已知反比例函数y=的图象经过点(﹣3,﹣1),则k= .26.(2018•陕西)若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为.27.(2018•东营)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为.28.(2018•成都)设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.29.(2018•安顺)如图,已知直线y=k1x+b与x轴、y轴相交于P、Q两点,与y=的图象相交于A(﹣2,m)、B(1,n)两点,连接OA、OB,给出下列结论:①k1k2<0;②m+n=0;③S△AOP=S△BOQ;④不等式k1x+b的解集是x<﹣2或0<x<1,其中正确的结论的序号是.三.解答题31.(2018•贵港)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.(1)求k和n的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y 的取值范围.32.(2018•泰安)如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=的图象经过点E,与AB交于点F.(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF﹣AE=2,求反比例函数的表达式.33.(2018•岳阳)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A 的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.34.(2018•柳州)如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A(3,1),B(﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.35.(2018•白银)如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标.36.(2018•菏泽)如图,已知点D在反比例函数y=的图象上,过点D作DB⊥y轴,垂足为B(0,3),直线y=kx+b经过点A(5,0),与y轴交于点C,且BD=OC,OC:OA=2:5.(1)求反比例函数y=和一次函数y=kx+b的表达式;(2)直接写出关于x的不等式>kx+b的解集.37.(2018•湘西州)反比例函数y=(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).(1)求反比例函数的解析式及B点的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.38.(2018•大庆)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标;(3)求△OAP的面积.39.(2018•枣庄)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD ⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.。

云南省昭通市昭阳区2024届中考冲刺卷数学试题含解析

云南省昭通市昭阳区2024届中考冲刺卷数学试题含解析

云南省昭通市昭阳区2024届中考冲刺卷数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某射手在同一条件下进行射击,结果如下表所示:射击次数(n)10 20 50 100 200 500 ……击中靶心次数(m)8 19 44 92 178 451 ……击中靶心频率()0.80 0.95 0.88 0.92 0.89 0.90 ……由此表推断这个射手射击1次,击中靶心的概率是( )A.0.6 B.0.7 C.0.8 D.0.92.已知关于x的一元二次方程mx2+2x-1=0有两个不相等的实数根,则m的取值范围是().A.m>-1且m≠0B.m<1且m≠0C.m<-1 D.m>13.下列图形中,是轴对称图形的是()A.B.C.D.4.下列计算正确的是()A.x2+x3=x5B.x2•x3=x5C.(﹣x2)3=x8D.x6÷x2=x35.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.6.已知抛物线c:y=x2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是()A.将抛物线c沿x轴向右平移52个单位得到抛物线c′ B.将抛物线c沿x轴向右平移4个单位得到抛物线c′C .将抛物线c 沿x 轴向右平移72个单位得到抛物线c′ D .将抛物线c 沿x 轴向右平移6个单位得到抛物线c′ 7.如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( )A .3cmB .4cmC .5cmD .6cm 8.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .掷一枚质地均匀的正六面体骰子,向上一面的点数是4C .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃D .抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上 9.如图,ABC 内接于O ,若A 40∠=,则BCO (∠= )A .40B .50C .60D .8010.如图,在△ABC 中,∠C=90°,AC=BC=3cm.动点P 从点A 2cm/s 的速度沿AB 方向运动到点B .动点Q 同时从点A 出发,以1cm/s 的速度沿折线AC →CB 方向运动到点B .设△APQ 的面积为y (cm 2).运动时间为x (s ),则下列图象能反映y 与x 之间关系的是 ( )A .B .C .D .11.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是( )A .50,50B .50,30C .80,50D .30,5012.2(3)-的化简结果为( )A .3B .3-C .3±D .9二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知抛物线和x 轴交于两点A 、B ,和y 轴交于点C ,已知A 、B 两点的横坐标分别为﹣1,4,△ABC 是直角三角形,∠ACB=90°,则此抛物线顶点的坐标为_____.14.边长为3的正方形网格中,⊙O的圆心在格点上,半径为3,则tan∠AED=_______.15.使21x-有意义的x的取值范围是__________.16.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为C',再将所折得的图形沿EF折叠,使得点D和点A重合.若AB3=,BC4=,则折痕EF的长为______.17.如图,A、B、C是⊙O上的三点,若∠C=30°,OA=3,则弧AB的长为______.(结果保留π)18.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD 中点,线段CM长度的最大值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸出一个小球,求下列事件的概率:两次取出的小球标号相同;两次取出的小球标号的和等于4.20.(6分)已知:如图,在四边形ABCD中,AD∥BC,点E为CD边上一点,AE与BE分别为∠DAB和∠CBA的平分线.(1)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,sin∠AGF=,求⊙O的半径.21.(6分)计算:(-1)-1-27+12⎛⎫-⎪⎝⎭+|1-33|22.(8分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.设x天后每千克苹果的价格为p元,写出p与x的函数关系式;若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?23.(8分)综合与实践﹣猜想、证明与拓广问题情境:数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG.猜想证明(1)当图1中的点E与点B重合时得到图2,此时点G也与点B重合,点H与点A重合.同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为:;(2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”…小丽:连接AF,图中出现新的等腰三角形,如△AFB,…小凯:不妨设图中不断变化的角∠BAF的度数为n,并设法用n表示图中的一些角,可证明结论.请你参考同学们的思路,完成证明;(3)创新小组的同学在图1中,发现线段CG∥DF,请你说明理由;联系拓广:(4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,∠ABC=α,其余条件不变,请探究∠DFG的度数,并直接写出结果(用含α的式子表示).24.(10分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.求证:CD 是⊙O的切线;若∠D=30°,BD=2,求图中阴影部分的面积.25.(10分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.(1)判断直线AC与圆O的位置关系,并证明你的结论;(2)若AC=8,cos∠BED=,求AD的长.26.(12分)已知△ABC 中,AD 是∠BAC 的平分线,且AD=AB,过点C 作AD 的垂线,交AD 的延长线于点H.(1)如图1,若∠BAC=60°.①直接写出∠B 和∠ACB 的度数;②若AB=2,求AC 和AH 的长;(2)如图2,用等式表示线段AH 与AB+AC 之间的数量关系,并证明.27.(12分)解不等式组:21512x xxx+>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解.【题目详解】依题意得击中靶心频率为0.90,估计这名射手射击一次,击中靶心的概率约为0.90.故选:D.【题目点拨】此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.2、A【解题分析】∵一元二次方程mx2+2x-1=0有两个不相等的实数根,∴m≠0,且22-4×m×(﹣1)>0,解得:m>﹣1且m≠0.故选A.【题目点拨】本题考查一元二次方程ax2+bx+c=0(a≠0)根的判别式:(1)当△=b2﹣4ac>0时,方程有两个不相等的实数根;(2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;(3)当△=b2﹣4ac<0时,方程没有实数根.3、B【解题分析】分析:根据轴对称图形的概念求解.详解:A 、不是轴对称图形,故此选项不合题意;B 、是轴对称图形,故此选项符合题意;C 、不是轴对称图形,故此选项不合题意;D 、不是轴对称图形,故此选项不合题意;故选B .点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.4、B【解题分析】分析:直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.详解:A 、不是同类项,无法计算,故此选项错误;B 、235x x x ⋅=, 正确;C 、()326x x -=-,故此选项错误; D 、624x x x ÷=, 故此选项错误;故选:B .点睛:此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键. 5、C【解题分析】根据左视图是从左面看所得到的图形进行解答即可.【题目详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C .【题目点拨】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6、B【解题分析】∵抛物线C :y=x 2+2x ﹣3=(x+1)2﹣4,∴抛物线对称轴为x=﹣1.∴抛物线与y轴的交点为A(0,﹣3).则与A点以对称轴对称的点是B(2,﹣3).若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.则B点平移后坐标应为(4,﹣3),因此将抛物线C向右平移4个单位.故选B.7、A【解题分析】分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.详解:设CN=xcm,则DN=(8﹣x)cm,由折叠的性质知EN=DN=(8﹣x)cm,而EC=12BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=1.故选:A.点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.8、B【解题分析】根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.【题目详解】解:在“石头、剪刀、布”的游戏中,小明随机出剪刀的概率是13,故A选项错误,掷一枚质地均匀的正六面体骰子,向上一面的点数是4的概率是16≈0.17,故B选项正确,一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃得概率是14,故C选项错误,抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上的概率是18,故D选项错误,故选B .【题目点拨】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.9、B【解题分析】根据圆周角定理求出BOC ∠,根据三角形内角和定理计算即可.【题目详解】解:由圆周角定理得,BOC 2A 80∠∠==,OB OC =,BCO CBO 50∠∠∴==,故选:B .【题目点拨】本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键. 10、D【解题分析】在△ABC 中,∠C=90°,AC=BC=3cm ,可得AB=A=∠B=45°,分当0<x≤3(点Q 在AC 上运动,点P 在AB 上运动)和当3≤x≤6时(点P 与点B 重合,点Q 在CB 上运动)两种情况求出y 与x 的函数关系式,再结合图象即可解答.【题目详解】在△ABC 中,∠C=90°,AC=BC=3cm ,可得AB=A=∠B=45°,当0<x≤3时,点Q 在AC 上运动,点P 在AB 上运动(如图1), 由题意可得x ,AQ=x ,过点Q 作QN ⊥AB 于点N ,在等腰直角三角形AQN 中,求得QN=2x ,所以y=12AP QN ⋅=211=222x x ⨯(0<x≤3),即当0<x≤3时,y 随x 的变化关系是二次函数关系,且当x=3时,y=4.5;当3≤x≤6时,点P 与点B 重合,点Q 在CB 上运动(如图2),由题意可得PQ=6-x ,,过点Q 作QN ⊥BC 于点N ,在等腰直角三角形PQN 中,求得QN=2(6-x),所以y=12AP QN ⋅=13)=922x x ⨯--+(3≤x≤6),即当3≤x≤6时,y 随x 的变化关系是一次函数,且当x=6时,y=0.由此可得,只有选项D符合要求,故选D.【题目点拨】本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答.11、A【解题分析】分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解.详解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元).故选A.点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.12、A【解题分析】2(3)93-==.故选A.考点:二次根式的化简二、填空题:(本大题共6个小题,每小题4分,共24分.)13、(32,258)【解题分析】连接AC,根据题意易证△AOC∽△COB,则AO OCOC OB=,求得OC=2,即点C的坐标为(0,2),可设抛物线解析式为y=a(x+1)(x﹣4),然后将C点坐标代入求解,最后将解析式化为顶点式即可. 【题目详解】解:连接AC,∵A、B两点的横坐标分别为﹣1,4,∴OA=1,OB=4,∵∠ACB=90°,∴∠CAB+∠ABC=90°,∵CO⊥AB,∴∠ABC+∠BCO=90°,∴∠CAB=∠BCO,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴AO OC OC OB=,即1OC=4OC,解得OC=2,∴点C的坐标为(0,2),∵A、B两点的横坐标分别为﹣1,4,∴设抛物线解析式为y=a(x+1)(x﹣4),把点C的坐标代入得,a(0+1)(0﹣4)=2,解得a=﹣12,∴y=﹣12(x+1)(x﹣4)=﹣12(x2﹣3x﹣4)=﹣12(x﹣32)2+258,∴此抛物线顶点的坐标为(32,258).故答案为:(32,258).【题目点拨】本题主要考查相似三角形的判定与性质,抛物线的顶点式,解此题的关键在于熟练掌握其知识点,利用相似三角形的性质求得关键点的坐标.14、12【解题分析】根据同弧或等弧所对的圆周角相等知∠AED =∠ABD ,所以tan ∠AED 的值就是tan B 的值.【题目详解】解: ∵∠AED =∠ABD (同弧所对的圆周角相等),∴tan ∠AED =tan B =12AD AB =. 故答案为:12. 【题目点拨】本题主要考查了圆周角定理、锐角三角函数的定义.解答网格中的角的三角函数值时,一般是将所求的角与直角三角形中的等角联系起来,通过解直角三角形中的三角函数值来解答问题.15、12x ≥ 【解题分析】根据二次根式的被开方数为非负数求解即可.【题目详解】由题意可得:210x -≥,解得:12x ≥. 所以答案为12x ≥. 【题目点拨】本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.16、2512【解题分析】首先由折叠的性质与矩形的性质,证得BND 是等腰三角形,则在Rt ABN 中,利用勾股定理,借助于方程即可求得AN 的长,又由ANB ≌C'ND ,易得:FDM ABN ∠∠=,由三角函数的性质即可求得MF 的长,又由中位线的性质求得EM 的长,则问题得解【题目详解】如图,设BC'与AD 交于N ,EF 与AD 交于M ,根据折叠的性质可得:NBD CBD ∠∠=,1AM DM AD 2==,FMD EMD 90∠∠==, 四边形ABCD 是矩形, AD //BC ∴,AD BC 4==,BAD 90∠=,ADB CBD ∠∠∴=,NBD ADB ∠∠∴=,BN DN ∴=,设AN x =,则BN DN 4x ==-,在Rt ABN 中,222AB AN BN +=,2223x (4x)∴+=-,7x 8∴=, 即7AN 8=, C'D CD AB 3===,BAD C'90∠∠==,ANB C'ND ∠∠=,ANB ∴≌()C'ND AAS ,FDM ABN ∠∠∴=,tan FDM tan ABN ∠∠∴=,AN MF AB MD∴=, 7MF 832∴=,7MF12∴=,由折叠的性质可得:EF AD⊥,EF//AB∴,AM DM=,13ME AB22∴==,3725 EF ME MF21212∴=+=+=,故答案为25 12.【题目点拨】本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用.17、π【解题分析】∵∠C=30°,∴∠AOB=60°,∴603180ABlππ⨯==.即AB的长为π.18、1【解题分析】作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后在△CEM中根据三边关系即可求解.【题目详解】作AB的中点E,连接EM、CE,在直角△ABC中,22AC BC+2268+=10,∵E是直角△ABC斜边AB上的中点,∴CE=12AB=5,∵M是BD的中点,E是AB的中点,∴ME=12AD=2,∴在△CEM中,5-2≤CM≤5+2,即3≤CM≤1,∴最大值为1,故答案为1.【题目点拨】本题考查了点与圆的位置关系、三角形的中位线定理的知识,要结合勾股定理、直角三角形斜边上的中线等于斜边的一半解答.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)14(2)316【解题分析】试题分析:首先根据题意进行列表,然后求出各事件的概率.试题解析:(1)P(两次取得小球的标号相同)=41 164;(2)P(两次取得小球的标号的和等于4)=3 16.考点:概率的计算.20、(1)作图见解析;(2)⊙O的半径为.【解题分析】(1)作出相应的图形,如图所示;(2)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE与BE为角平分线,可得出AE与BE 垂直,利用直径所对的圆周角为直角,得到AF 与FB 垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB ,根据sin ∠AGF 的值,确定出sin ∠AEB 的值,求出AB 的长,即可确定出圆的半径.【题目详解】解:(1)作出相应的图形,如图所示(去掉线段BF 即为所求).(2)∵AD ∥BC ,∴∠DAB +∠CBA =180°.∵AE 与BE 分别为∠DAB 与∠CBA 的平分线,∴∠EAB +∠EBA =90°,∴∠AEB =90°.∵AB 为⊙O 的直径,点F 在⊙O 上,∴∠AFB =90°,∴∠FAG +∠FGA =90°. ∵AE 平分∠DAB ,∴∠FAG =∠EAB ,∴∠AGF =∠ABE ,∴sin ∠ABE =sin ∠AGF ==.∵AE =4,∴AB =5,∴⊙O 的半径为.【题目点拨】此题属于圆综合题,涉及的知识有:圆周角定理,平行四边形的判定与性质,角平分线性质,以及锐角三角函数定义,熟练掌握各自的性质及定理是解本题的关键.21、-1【解题分析】试题分析:根据运算顺序先分别进行负指数幂的计算、二次根式的化简、0次幂的运算、绝对值的化简,然后再进行加减法运算即可.试题解析:原式=-1-331331+=-1.22、()1?0.14p x =+;()22580040000y x x =-++;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【解题分析】(1)根据按每千克4元的市场价收购了这种苹果10000千克,此后每天每千克苹果价格会上涨0.1元,进而得出x 天后每千克苹果的价格为p 元与x 的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【题目详解】()1根据题意知,0.14p x =+;()()()220.141000050580040000y x x x x =+-=-++.()3300410000w y x =--⨯25500x x =-+25(50)12500x =--+∴当50x =时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【题目点拨】此题主要考查了二次函数的应用以及二次函数最值求法,得出w 与x 的函数关系是解题关键.23、 (1) GF=GD ,GF ⊥GD;(2)见解析;(3)见解析;(4) 90°﹣2α. 【解题分析】(1)根据四边形ABCD 是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,点D 关于直线AE 的对称点为点F ,即可证明出∠DBF=90°,故GF ⊥GD ,再根据∠F=∠ADB ,即可证明GF=GD ;(2)连接AF ,证明∠AFG=∠ADG ,再根据四边形ABCD 是正方形,得出AB=AD ,∠BAD=90°,设∠BAF=n ,∠FAD=90°+n ,可得出∠FGD=360°﹣∠FAD ﹣∠AFG ﹣∠ADG=360°﹣(90°+n )﹣(180°﹣n )=90°,故GF ⊥GD ; (3)连接BD ,由(2)知,FG=DG ,FG ⊥DG ,再分别求出∠GFD 与∠DBC 的角度,再根据三角函数的性质可证明出△BDF ∽△CDG ,故∠DGC=∠FDG ,则CG ∥DF ;(4)连接AF ,BD ,根据题意可证得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根据菱形的性质可得∠ADB=∠ABD=12α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+12α)+12α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG .【题目详解】解:(1)GF=GD ,GF ⊥GD ,理由:∵四边形ABCD 是正方形,∴∠ABD=∠ADB=45°,∠BAD=90°,∵点D关于直线AE的对称点为点F,∠BAD=∠BAF=90°,∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,∴∠DBF=90°,∴GF⊥GD,∵∠BAD=∠BAF=90°,∴点F,A,D在同一条线上,∵∠F=∠ADB,∴GF=GD,故答案为GF=GD,GF⊥GD;(2)连接AF,∵点D关于直线AE的对称点为点F,∴直线AE是线段DF的垂直平分线,∴AF=AD,GF=GD,∴∠1=∠2,∠3=∠FDG,∴∠1+∠3=∠2+∠FDG,∴∠AFG=∠ADG,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,设∠BAF=n,∴∠FAD=90°+n,∵AF=AD=AB,∴∠FAD=∠ABF,∴∠AFB+∠ABF=180°﹣n,∴∠AFB+∠ADG=180°﹣n,∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,∴GF⊥DG,(3)如图2,连接BD,由(2)知,FG=DG,FG⊥DG,∴∠GFD=∠GD F=12(180°﹣∠FGD)=45°,∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°,∴∠BDC=∠DBC=12(180°﹣∠BCD )=45°, ∴∠FDG=∠BDC ,∴∠FDG ﹣∠BDG=∠BDC ﹣∠BDG , ∴∠FDB=∠GDC ,在Rt △BDC 中,sin ∠DFG=DG DF =sin45°=22, 在Rt △BDC 中,sin ∠DBC=DC DB =sin45°=22, ∴DG DC DF DB=, ∴DG DF DC DB =, ∴△BDF ∽△CDG ,∵∠FDB=∠GDC ,∴∠DGC=∠DFG=45°,∴∠DGC=∠FDG ,∴CG ∥DF ;(4)90°﹣2α,理由:如图3,连接AF ,BD , ∵点D 与点F 关于AE 对称,∴AE 是线段DF 的垂直平分线,∴AD=AF ,∠1=∠2,∠AMD=90°,∠DAM=∠FAM , ∴∠DAM=90°﹣∠2=90°﹣∠1,∴∠DAF=2∠DAM=180°﹣2∠1,∵四边形ABCD 是菱形,∴AB=AD ,∴∠AFB=∠ABF=∠DFG+∠1,∵BD 是菱形的对角线,∴∠ADB=∠ABD=12α, 在四边形ADBF 中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+12α)+α+(180°﹣2∠1)=360° ∴2∠DFG+2∠1+α﹣2∠1=180°,∴∠DFG=90°﹣2α.【题目点拨】本题考查了正方形、菱形、相似三角形的性质,解题的根据是熟练的掌握正方形、菱形、相似三角形的性质.24、(1)证明见解析;(2)阴影部分面积为433π-【解题分析】【分析】(1)连接OC ,易证∠BCD=∠OCA ,由于AB 是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD 是⊙O 的切线;(2)设⊙O 的半径为r ,AB=2r ,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:3△OAC 的面积以及扇形OAC 的面积即可求出阴影部分面积.【题目详解】(1)如图,连接OC ,∵OA=OC ,∴∠BAC=∠OCA ,∵∠BCD=∠BAC ,∴∠BCD=∠OCA ,∵AB 是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC 是半径,∴CD 是⊙O 的切线(2)设⊙O 的半径为r ,∴AB=2r ,∵∠D=30°,∠OCD=90°,∴OD=2r ,∠COB=60°∴r+2=2r ,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=23,易求S△AOC=12×23×1=3S扇形OAC=12044 3603ππ⨯=,∴阴影部分面积为43 3π-.【题目点拨】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.25、(1)AC与⊙O相切,证明参见解析;(2).【解题分析】试题分析:(1)由于OC⊥AD,那么∠OAD+∠AOC=90°,又∠BED=∠BAD,且∠BED=∠C,于是∠OAD=∠C,从而有∠C+∠AOC=90°,再利用三角形内角和定理,可求∠OAC=90°,即AC是⊙O的切线;(2)连接BD,AB是直径,那么∠ADB=90°,在Rt△AOC中,由于AC=8,∠C=∠BED,cos∠BED=,利用三角函数值,可求OA=6,即AB=12,在Rt△ABD中,由于AB=12,∠OAD=∠BED,cos∠BED=,同样利用三角函数值,可求AD.试题解析:(1)AC与⊙O相切.∵弧BD是∠BED与∠BAD所对的弧,∴∠BAD=∠BED,∵OC⊥AD,∴∠AOC+∠BAD=90°,∴∠BED+∠AOC=90°,即∠C+∠AOC=90°,∴∠OAC=90°,∴AB⊥AC,即AC与⊙O相切;(2)连接BD.∵AB是⊙O直径,∴∠ADB=90°,在Rt△AOC中,∠CAO=90°,∵AC=8,∠ADB=90°,cos∠C=cos∠BED=,∴AO=6,∴AB=12,在Rt△ABD中,∵cos∠OAD=cos∠BED=,∴AD=AB•cos∠OAD=12×=.考点:1.切线的判定;2.解直角三角形.26、(1)①45°,②3+32;(2)线段AH 与AB+AC 之间的数量关系:2AH=AB+AC.证明见解析.【解题分析】(1)①先根据角平分线的定义可得∠BAD=∠CAD=30°,由等腰三角形的性质得∠B=75°,最后利用三角形内角和可得∠ACB=45°;②如图1,作高线DE,在Rt△ADE 中,由∠DAC=30°,AB=AD=2 可得DE=1,AE=3,在Rt△CDE 中,由∠ACD=45°,DE=1,可得EC=1,AC= 3+1,同理可得AH 的长;(2)如图2,延长AB 和CH 交于点F,取BF 的中点G,连接GH,易证△ACH≌△AFH,则AC=AF,HC=HF,根据平行线的性质和等腰三角形的性质可得AG=AH,再由线段的和可得结论.【题目详解】(1)①∵AD 平分∠BAC,∠BAC=60°,∴∠BAD=∠CAD=30°,∵AB=AD,∴∠B=180302︒︒-=75°,∴∠ACB=180°﹣60°﹣75°=45°;②如图1,过 D 作DE⊥AC 交AC 于点E,在Rt△ADE 中,∵∠DAC=30°,AB=AD=2,∴DE=1,3在Rt△CDE 中,∵∠ACD=45°,DE=1,∴EC=1,∴AC=3+1, 在 Rt △ACH 中,∵∠DAC=30°,∴CH=12AC=3+12∴AH=222231(31)2AC CH ⎛⎫+-=+- ⎪⎝⎭=332+; (2)线段 AH 与 AB+AC 之间的数量关系:2AH=AB+AC .证明:如图 2,延长 AB 和 CH 交于点 F ,取 BF 的中点 G ,连接 GH .易证△ACH ≌△AFH ,∴AC=AF ,HC=HF ,∴GH ∥BC ,∵AB=AD ,∴∠ABD=∠ADB ,∴∠AGH=∠AHG ,∴AG=AH ,∴AB+AC=AB+AF=2AB+BF=2(AB+BG )=2AG=2AH .【题目点拨】本题是三角形的综合题,难度适中,考查了三角形全等的性质和判定、等腰三角形的性质和判定、勾股定理、三角形的中位线定理等知识,熟练掌握这些性质是本题的关键,第(2)问构建等腰三角形是关键.27、则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析.【解题分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【题目详解】21x 512x x x +>⎧⎪⎨+-≥⎪⎩①,②解不等式①得:x>﹣1,解不等式②得:x≤3,则不等式组的解集是:﹣1<x≤3,不等式组的解集在数轴上表示为:.【题目点拨】本题考查了解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.也考查了在数轴上表示不等式组的解集.。

2018年云南省昭通市昭阳区中考数学模拟试卷(二)

2018年云南省昭通市昭阳区中考数学模拟试卷(二)

2018年云南省昭通市昭阳区中考数学模拟试卷(二)一.选择题(共8小题,满分32分,每小题4分)1.下列各式属于最简二次根式的是()A.B.C.D.2.如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75B.100C.120D.1253.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G.若BG=4,则△CEF的面积是()A.B.2C.3D.44.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16B.17C.18D.195.y=(m﹣1)x|m|+3m表示一次函数,则m等于()A.1B.﹣1C.0或﹣1D.1或﹣16.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大7.如图,在平行四边形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④B.②和③C.③和④D.②和④8.若bk<0,则直线y=kx+b一定通过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限二.填空题(共6小题,满分18分,每小题3分)9.一组数据1,4,4,3,4,3,4的众数是.10.函数y=+中,自变量x的取值范围是.11.一次函数y=(k﹣3)x﹣k+2的图象经过第一、三、四象限.则k的取值范围是.12.直角三角形两直角边长分别为5和12,则它斜边上的高为.13.如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD 的中点,AD=BC,∠PEF=35°,则∠PFE的度数是.14.如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点,则不等式mx+2<kx+b<0的解集为.三.解答题(共9小题,满分70分)15.(5分)计算:×(2﹣)﹣÷+.16.(6分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.17.(6分)如图,在平行四边形ABCD中,AE⊥BC,垂足为E,点F为边CD上一点,且DF=BE,过点F作FG⊥CD,交AD于点G.求证:DG=DC.18.(10分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A、B、C、D,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:(Ⅰ)本次抽查测试的学生人数为,图①中的a的值为;(Ⅱ)求统计所抽查测试学生成绩数据的平均数、众数和中位数.19.(8分)一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1)和点B(1,5),求一次函数的解析式.20.(7分)如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=20.求:△ABD的面积.21.(8分)如图,在△ABC中,∠ACB=90°,AC=15.sin∠A=,点D是BC的中点,点P是AB上一动点(不与点B重合),延长PD至E,使DE=PD,连接EB、EC.(1)求证;四边形PBEC是平行四边形;(2)填空:①当AP的值为时,四边形PBEC是矩形;②当AP的值为时,四边形PBEC是菱形.22.(10分)A,B两地相距20km.甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发.设甲的骑行时间为x(h)(0≤x≤2)(Ⅰ)根据题意,填写下表:(Ⅱ)设甲,乙两人与A地的距离为y1(km)和y2(k m),写出y1,y2关于x 的函数解析式;(Ⅲ)设甲,乙两人之间的距离为y,当y=12时,求x的值.23.(10分)如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.参考答案一.选择题1.解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.2.解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.故选:B.3.解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=4,∴AG═2,∴AE=2AG=4;∴S△ABE=AE•BG=×4×4=8.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1.∵AB∥FC,∴△ABE∽△FCE,∴S△ABE :S△CEF=(BE:CE)2=4:1,则S△CEF=S△ABE=2.故选:B.4.解:当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选:A.5.解:由题意得,|m|=1且m﹣1≠0,解得m=±1且m≠1,所以,m=﹣1.故选:B.6.解:原数据的平均数为=188,则原数据的方差为×[(180﹣188)2+(184﹣188)2+(188﹣188)2+(190﹣188)2+(192﹣188)2+(194﹣188)2]=,新数据的平均数为=187,则新数据的方差为×[(180﹣187)2+(184﹣187)2+(188﹣187)2+(190﹣187)2+(186﹣187)2+(194﹣187)2]=,所以平均数变小,方差变小,故选:A.7.解:∵四边形ABCD是平行四边形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②与④不一定成立,∵当四边形是菱形时,②和④成立.故选:D.8.解:由bk<0,知①b>0,k<0;②b<0,k>0,①当b>0,k<0时,直线经过第一、二、四象限,②b<0,k>0时,直线经过第一、三、四象限.综上可得函数一定经过一、四象限.故选:D.二.填空题(共6小题,满分18分,每小题3分)9.解:在这一组数据中4是出现次数最多的,故众数是4.故答案为:4.10.解:由题意得,1﹣x≠0,x+2≥0,解得,x≥﹣2且x≠1,故答案为:x≥﹣2且x≠1.11.解:∵一次函数y=(k﹣3)x﹣k+2的图象经过第一、三、四象限,∴,解得,k>3.故答案是:k>3.12.解:由勾股定理可得:斜边长2=52+122,则斜边长=13,直角三角形面积S=×5×12=×13×斜边的高,可得:斜边的高=.故答案为:.13.解:∵在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC , ∴PF=PE ,故△EPF 是等腰三角形. ∵∠PEF=35°, ∴∠PEF=∠P FE=35°, 故答案为:35°.14.解:不等式mx +2<kx +b <0的解集是﹣4<x <﹣.故答案是:﹣4<x <﹣.三.解答题(共9小题,满分70分)15.解:原式=3×(2﹣)﹣+=6﹣﹣+=5﹣16.解:∵(y ﹣z )2+(x ﹣y )2+(z ﹣x )2=(y +z ﹣2x )2+(z +x ﹣2y )2+(x +y ﹣2z )2.∴(y ﹣z )2﹣(y +z ﹣2x )2+(x ﹣y )2﹣(x +y ﹣2z )2+(z ﹣x )2﹣(z +x ﹣2y )2=0,∴(y ﹣z +y +z ﹣2x )(y ﹣z ﹣y ﹣z +2x )+(x ﹣y +x +y ﹣2z )(x ﹣y ﹣x ﹣y +2z )+(z ﹣x +z +x ﹣2y )(z ﹣x ﹣z ﹣x +2y )=0, ∴2x 2+2y 2+2z 2﹣2xy ﹣2xz ﹣2yz=0, ∴(x ﹣y )2+(x ﹣z )2+(y ﹣z )2=0. ∵x ,y ,z 均为实数, ∴x=y=z .∴==1.17.证明:∵四边形ABCD 为平行四边形, ∴∠B=∠D ,AB=CD , ∵AE ⊥BC ,FG ⊥CD , ∴∠AEB=∠GFD=90°, 在△AEB 和△GFD 中,,∴△AEB≌△GFD,∴AB=DG,∴DG=DC.18.解:(Ⅰ)本次抽查测试的学生人数为14÷28%=50人,a%=×100%=24%,即a=24,故答案为:50、24;(Ⅱ)观察条形统计图,平均数为=7.88,∵在这组数据中,8出现了20次,出现的次数最多,∴这组数据的众数是8.∵将这组数据从小到大的顺序排列,其中处于中间的两个数都是8,有.∴这组数据的中位数是8.19.解:∵一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1)和点B(1,5),∴,解得.故一次函数的解析式为y=2x+3.20.解:在△ADC中,AD=15,AC=12,DC=9,AC2+DC2=122+92=152=AD2,即AC2+DC2=AD2,∴△ADC是直角三角形,∠C=90°,在Rt△ABC中,BC===16,∴BD=BC﹣DC=16﹣9=7,∴△ABD的面积=×7×12=42.21.解:∵点D是BC的中点,∴BD=CD,∵DE=PD,∴四边形PBEC是平行四边形;(2)①当∠APC=90°时,四边形PBEC是矩形,∵AC=15.sin∠A=,∴PC=12,由勾股定理得AP=9,∴当AP的值为9时,四边形PBEC是矩形;②∵在△ABC中,∠ACB=90°,AC=15.sin∠A=,所以设BC=4x,AB=5x,则(4x)2+152=(5x)2,解得:x=5,∴AB=5x=25,当PC=PB时,四边形PBEC是菱形,此时点P为AB的重点,所以AP=12.5,∴当AP的值为12.5时,四边形PBEC是菱形.22.解(Ⅰ)由题意知:甲、乙二人平均速度分别是平均速度为10km/h和40km/h,且比甲晚1.5h出发.当时间x=1.8 时,甲离开A的距离是10×1.8=18(km)当甲离开A的距离20km时,甲的行驶时间是20÷10=2(时)此时乙行驶的时间是2﹣1.5=0.5(时),所以乙离开A的距离是40×0.5=20(km)故填写下表:(Ⅱ)由题意知:y1=10x (0≤x≤1.5),(Ⅲ)根据题意,得当0≤x≤1.5时,由10x=12,得x=1.2当1.5<x≤2时,由﹣30x+60=12,得x=1.6因此,当y=12时,x的值是1.2或1.623.(1)证明:∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,∵矩形ABCD,∴AC=BD,OC=AC,OD=BD,∴OC=OD,∴四边形OCED是菱形;(2)解:在矩形ABCD中,∠ABC=90°,∠BAC=30°,AC=4,∴BC=2,∴AB=DC=2,连接OE,交CD于点F,∵四边形OCED为菱形,∴F为CD中点,∵O为BD中点,∴OF=BC=1,∴OE=2OF=2,=×OE×CD=×2×2=2.∴S菱形OCED。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年云南省昭通市昭阳区中考数学模拟试卷一、选择题(本大题共8小题,每小题4分,共32分)1.(4分)下列二次根式中,是最简二次根式的为()A.B.C. D.2.(4分)若一直角三角形两边长分别为12和5,则第三边长为()A.13 B.13或C.13或15 D.153.(4分)在▱ABCD中,∠B+∠D=260°,那么∠A的度数是()A.130°B.100°C.50°D.80°4.(4分)矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直 D.对角线平分对角5.(4分)要使函数y=(m﹣2)x n﹣1+n是一次函数,应满足()A.m≠2,n≠2 B.m=2,n=2 C.m≠2,n=2 D.m=2,n=06.(4分)甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均环数及方差S2如下表所示:若要选出一个成绩较好状态稳定的运动员去参赛,那么应选运动员()A.甲B.乙C.丙D.丁7.(4分)如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则▱ABCD的周长是()A.16 B.14 C.26 D.248.(4分)函数y=kx+b的图象如图所示,则()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0二、填空题(每小题3分,共18分)9.(3分)一名学生军训时现需射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,7,8.则这名学生射击环数的众数是.10.(3分)函数y=的自变量x的取值范围是.11.(3分)一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是.12.(3分)如图,三个正方形围成一个直角三角形,字母C所表示的正方形面积是100,字母B所表示的正方形面积是36,则字母A所表示的正方形面积为.13.(3分)如图,在△MBN中,已知:BM=6,BN=7,MN=10,点A,C,D分别是MB,NB,MN的中点,则四边形ABCD的周长是.14.(3分)如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b<ax+3的解集为.三、解答题(70分)15.(5分)计算:÷﹣×+.16.(6分)先化简,再求值:(1﹣)÷,其中x=+2.17.(6分)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.18.(10分)某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创利润进行统计,并绘制如图1,图2统计图.(1)将图2补充完整;(2)本次共抽取员工人,每人所创年利润的众数是万元,平均数是万元,中位数是万元;(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?19.(8分)已知一次函数y=kx+b,当x=2时,y=﹣3,当x=1时,y=﹣1.(1)求一次函数的解析式;(2)若该一次函数的图形交x轴y轴分别于A、B两点,求△ABO的面积.20.(7分)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.21.(8分)如图,E、F分别为△ABC的边BC、CA的中点,延长EF到D,使得DF=EF,连接DA、DB、AE.(1)求证:四边形ACED是平行四边形;(2)若AB=AC,试说明四边形AEBD是矩形.22.(10分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图所示.(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?23.(10分)如图所示,O是矩形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE、CE相交于点E.求证:(1)四边形OCED是菱形.(2)连接OE,若AD=4,CD=3,求菱形OCED的周长和面积.2018年云南省昭通市昭阳区中考数学模拟试卷参考答案与试题解析一、选择题(本大题共8小题,每小题4分,共32分)1.【解答】解:A、=,被开方数含分母,不是最简二次根式;B、=2,被开方数含能开得尽方的因数,不是最简二次根式;C、是最简二次根式;D、=5,被开方数含能开得尽方的因数,不是最简二次根式.故选:C.2.【解答】解:当12是斜边时,第三边是=;当12是直角边时,第三边是=13.故选:B.3.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴∠B=∠D,∠A+∠B=180°,∵∠B+∠D=260°,∴∠B=∠D=130°,∴∠A的度数是:50°.故选:C.【解答】解:矩形、菱形、正方形都具有的性质是对角线互相平分.故选:B.5.【解答】解:∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选:C.6.【解答】解:∵乙、丙射击成绩的平均环数较大,∴乙、丙成绩较好,∵乙的方差<丙的方差,∴乙比较稳定,∴成绩较好状态稳定的运动员是乙,故选:B.7.【解答】解:∵在▱A BCD中,AD=8,∴BC=AD=8,AD∥BC,∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠CED,∴CD=CE=5,∴▱ABCD的周长是:2(AD+CD)=26.故选:C.【解答】解:根据图象知,函数y=kx+b的图象经过第一、二、四象限,∴k<0,b>0.故选:C.二、填空题(每小题3分,共18分)9.【解答】解:数据8出现了三次最多为众数.故答案为:8.10.【解答】解:由题意得,2x﹣5≥0,解得x≥.故答案为:x≥.11.【解答】解:∵一次函数y=(m+2)x+1,若y随x的增大而增大,∴m+2>0,解得,m>﹣2.故答案是:m>﹣2.12.【解答】解:由题意得,c2=100,b2=36,从而可得a2=c2﹣b2=64,即字母A所表示的正方形的面积为:64.故答案为:64.13.【解答】解:∵A,C,D分别是各边中点,∴AB=BM=×6=3;BC=BN=×7=;AD=BN=×7=;CD=BM=×6=3.四边形ABCD的周长是AD+AB+BC+CD=+3++3=13.故答案为13.14.【解答】解:由图知:当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b <ax+3成立;由于两直线的交点横坐标为:x=1,观察图象可知,当x<1时,x+b<ax+3;故答案为:x<1.三、解答题(70分)15.【解答】解:原式=﹣+2=4+16.【解答】解:(1﹣)÷===,当x=+2时,原式===.17.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥DC,∴AE∥CF,又∵AE=CF,∴四边形AECF是平行四边形,∴AF=CE.18.【解答】解:(1)3万元的员工的百分比为:1﹣36%﹣20%﹣12%﹣24%=8%,抽取员工总数为:4÷8%=50(人),5万元的员工人数为:50×24%=12(人),8万元的员工人数为:50×36%=18(人),如图所示:;(2)抽取员工总数为:4÷8%=50(人),每人所创年利润的众数是8万元,平均数是:(3×4+5×12+8×18+10×10+15×6)=8.12(万元).每人所创年利润的中位数是8万元;(3)1200×=384(人).答:在公司1200员工中有384人可以评为优秀员工.故答案为:50,8,8.12,8.19.【解答】解:(1)把(2,﹣3)与(1,﹣1),代入y=kx+b,得:,解得:,所以这个函数的解析式为:y=﹣2x+1;(2)当x=0时,y=1;当y=0时,x=,即与x轴、y轴分别相交于A、B两点的坐标是A(,0),B(0,1),=×1×=.所以△ABO的面积是S△ABO20.【解答】解:∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,CD===15,=BC•AD=(BD+CD)•AD=×21×8=84,∴S△ABC因此△ABC的面积为84.答:△ABC的面积是84.21.【解答】证明:(1)∵E、F分别为△ABC的边BC、CA的中点,∴EF∥AC,EF=AC,∵DF=EF,∴EF=DE,∴AC=DE,∴四边形ACED是平行四边形;(2)∵DF=EF,AF=BF,∴四边形AEBD是平行四边形,∵AB=AC,AC=DE,∴AB=DE,∴四边形AEBD是矩形.22.【解答】解:(1)第20天的总用水量为1000米3(3分)(2)当x≥20时,设y=kx+b∵函数图象经过点(20,1000),(30,4000)∴(5分)解得∴y与x之间的函数关系式为:y=300x﹣5000(7分)(3)当y=7000时,由7000=300x﹣5000,解得x=40答:种植时间为40天时,总用水量达到7000米3(10分)23.【解答】解:(1)证明:∵DE∥OC,CE∥OD,∵四边形OCED是平行四边形.∴OC=DE,OD=CE∵四边形ABCD是矩形,∴AO=OC=BO=OD.∴CE=OC=BO=DE.∴四边形OCED是菱形;(2)如图,连接OE.在Rt△ADC中,AD=4,CD=3由勾股定理得,AC=5∴OC=2.5=4OC=4×2.5=10,∴C菱形OCED在菱形OCED中,OE⊥CD,又∵OE⊥CD,∴OE∥AD.∵DE∥AC,OE∥AD,∴四边形AOED是平行四边形,∴OE=AD=4.=.∴S菱形OCED。

相关文档
最新文档