第十二讲 平面直角坐标系

合集下载

《平面直角坐标系》教案 (公开课获奖)教案 2022青岛版 (1)

《平面直角坐标系》教案 (公开课获奖)教案 2022青岛版 (1)

-3-1BA32《平面直角坐标系》教学目标:1. 理解平面直角坐标系的相关概念;2.在给定的平面直角坐标系中,能根据点的位置写出点的坐标,由点的坐标描出点的位置; 3.经历坐标概念的形成,培养学生的观察归纳能力。

4.理解每个象限及坐标轴上的点的坐标的特征。

5.在探索研究过程中渗透数形结合的数学思想,通过介绍数学家的故事,渗透理想和情感的教育. 教学重点:平面直角坐标系及相关概念及点的位置、点的坐标的确定。

教学难点:平面直角坐标系点的位置与点的坐标相互转化. 教学过程:(一)温故知新,问题引入 1、什么是数轴?2、指出图中A 、B 点所表示的数是什么?并在数轴上描出“-3 ”表示的点在数轴上的位置.3、平面内物体的位置,我们可以用 表示。

如小亮的位置是第5行第3列可表示为 ,小莹的位置是第3行第5列可以表示为 。

【1、2两题主要让学生回顾如何确定一个点在一条直线上位置,3题复习刚学过有有序数对表示位置,引出认知冲突为新课的进行作铺垫。

】 (二)笛卡尔故事引入课内探究探究一 ----平面直角坐标系(一)学生自学课本第168页,思考并完成 1、画平面直角坐标系:(1)我们要画几条数轴?它们要具有什么特征? (2)哪一条叫x 轴?正方向向哪?y 轴呢?(3) 统称坐标轴, 叫做坐标原点。

【这一环节主要培养学生自主学习的能力,让学生在自学中初步认识概念。

在学案提示下,学生先自学掌握平面直角坐标系的相关概念及画直角坐标系的要求,通过材料的阅读,活动的实践,让学生在自画、自纠中,加深对概念的理解,培养学生良好的画图习惯。

然后出示幻灯片对基础知识掌握情况进行检查。

】2、根据上面的要求在空白处建立平面直角坐标系并标出第一象限、第二象限、第三象限和第四象限。

【采用一生板演,其余自主练习画法的方式,既能通过板演学生发现问题,强调问题又能让每一名学生有动手实践的机会。

】(二)出示幻灯片,学生判断屏幕上建立的直角坐标系是否正确。

68第十二章 系列4选讲 第2课时 参数方程

68第十二章 系列4选讲   第2课时 参数方程

思维升华
消去参数的方法一般有三种 (1)利用解方程的技巧求出参数的表达式,然后代入消去参数. (2)利用三角恒等式消去参数. (3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数. 将参数方程化为普通方程时,要注意防止变量x和y取值范围的扩大或缩小, 必须根据参数的取值范围,确定函数f(t)和g(t)的值域,即x和y的取值范围.
师生共研
题型二 参数方程的应用
x=2cos θ,
例 1 在直角坐标系 xOy 中,曲线 C 的参数方程为
(θ 为参数),
y=4sin θ
x=1+tcos α,
直线 l 的参数方程为
(t 为参数).
y=2+tsin α
(1)求 C 和 l 的直角坐标方程;
(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.
椭圆
ax22+by22=1(a>b>0)
抛物线 y2=2px(p>0)
x=acos φ,
(φ 为参数)
__y_=__b_s_in__φ______________
x=2pt2,
(t 为参数)
y=2pt
【概念方法微思考】
x=x0+tcos α,
1.在直线的参数方程
(t 为参数)中,
y=y0+tsin α
跟踪训练 1
已知椭圆
C:x42+y32=1,直线
x=-3+ l:
y=2 3+t
3t,
(t 为参数).
(1)写出椭圆 C 的参数方程及直线 l 的普通方程;
x=2cos θ,
解 椭圆 C 的参数方程为
(θ 为参数),
y= 3sin θ
直线 l 的普通方程为 x- 3y+9=0.

初二数学-第12讲 一次函数k,b与图象关系

初二数学-第12讲  一次函数k,b与图象关系

第十二讲 一次函数k,b 与图象关系【知识要点】1.一次函数)0(≠+=k b kx y 中,k (斜率):倾斜程度,b (截距):与y 轴交点坐标, 一次函数图像:一条交x 轴(0,b ),y 轴(kb-,0)的直线; 2.正比例函数的图像(kx y =的图像)是一条过原点(0,0)的直线。

3.正比例函数,一次函数具有相同的性质: ①当k >0时,y 随x 的增大而增大; ②当k <0时,y 随x 的增大而减小;||k 越大,直线与x 轴相交所成的锐角越大. 4.一次函数b kx y +=的图像与k 、b 的符号关系如下表:★同一平面内,两直线111与222的位置关系可由系数决定:①相交与2221l l k k ⇔≠ ②()平行222121//l l b b k k ⇔⎩⎨⎧≠=③重合与=222121l l b b k k ⇔⎩⎨⎧= ④()点,轴上相交与与=12221210b y l l b b k k ⇔⎩⎨⎧≠【经典例题】【例1】在直角坐标系内分别作出下列函数的图像: ① 42+=x y ② 421+-=x y ③ 42-=x y ④ 421--=x y并写出函数与坐标轴交点坐标及与坐标轴所围成面积总结:两直线平行的条件:两直线垂直的条件: 。

小结:函数y kx b =+的图像与坐标轴围成的三角形的面积为22b k。

【例2】已知一次函数)4()36(-++=n x m y 。

求:①m 为何值时,y 随x 的增大而减小;②m 、n 满足什么条件时,函数图像与y 轴的交点在x 轴下方; ③m 、n 分别为何值时,函数图像经过原点; ④m 、n 满足什么条件时,函数图像不经过第二象限。

【例3】①直线y kx b =+,经过一、二、四象限,到直线y bx k =-的图象只能是( )②设b >a ,将一次函数y=bx+a 与y=ax+b 的图象画在平面直角坐标系内,则有一组a 、b 的取值,使得下列四个图中的一个为正确的是( )③当00<,>ac ab ,直线0ax by c ++=不通过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 ④已知abc ≠0,且p acb bc a c b a =+=+=+,那么直线p px y +=一定经过( )。

初中数学听课记录(范文20篇)

初中数学听课记录(范文20篇)

初中数学听课记录(范文20篇)初中数学听课记录(范文20篇)第一篇:二元一次方程本课以解一元一次方程为基础,引入了二元一次方程的概念。

老师使用了实例讲解的方式,让学生更直观地了解了方程的含义和解题方法。

通过反复练,学生逐渐掌握了解二元一次方程的过程。

第二篇:整式的加法与减法这堂课主要讲解了整式的加法和减法。

老师通过清晰的步骤和实际问题的应用,帮助学生掌握了整式的相加相减规则,并进行了大量的练。

第三篇:平行线的性质本课介绍了平行线的基本概念和性质。

老师通过画图和举例的方式,帮助学生理解了平行线之间的关系以及平行线与转角的关系。

学生积极参与讨论,并掌握了平行线性质的应用方法。

第四篇:相交线与转角这节课主要介绍了相交线与转角的关系。

老师通过绘制大量实例图,并讲解相交线的分类和性质,帮助学生理解了相交线与转角之间的规律,并通过实例问题进行了练。

第五篇:角的度量与角的分类这节课主要讲解了角的度量和分类。

老师通过使用角度量具和讲解基本术语,帮助学生掌握了角的度量方法和角的分类规则。

学生通过练,提高了角度量和角度分类的能力。

第六篇:三角形本课主要介绍了三角形的基本概念和性质。

老师通过多种实例,讲解了三角形的分类、边长关系和角度关系,并进行了相关题训练。

学生掌握了三角形的相关知识,提高了解题能力。

第七篇:四边形这节课主要探讨了四边形的基本性质和分类。

老师通过绘制图形和解题的方式,讲解了四边形各种特性,并通过实例问题进行了练,提高了学生对四边形性质的理解和应用能力。

第八篇:平行四边形本节课主要介绍了平行四边形的性质和判定方法。

老师通过讲解和练,帮助学生掌握了平行四边形的特征和性质,以及平行四边形的判定方法。

学生在练中提高了解决平行四边形问题的能力。

第九篇:相似三角形这节课主要讲解了相似三角形的性质和应用。

老师通过图形的比例关系和相似判定方法,帮助学生理解了相似三角形的特点和应用。

通过大量练,学生提高了解决相似三角形问题的能力。

2015届高考数学总复习第七章 第十二节空间直角坐标系精讲课件 文

2015届高考数学总复习第七章 第十二节空间直角坐标系精讲课件 文

y+2 -1= 2 , z-1 5= 2 ,
x-3 2= 2 ,
x=7, 解得y=-4, z=11,
所以点B的坐标为(7,-4,11). 点评: 注意归纳以下有关对称问题的规律: (1)关于坐标平面对称的两点的坐标的特点;
(2)关于坐标轴对称的两点的坐标的特点;
(3)关于原点对称的点的特点;
B两点间的距离相等,则点M的坐标为( A.(-3பைடு நூலகம்0,0) C.(0,0,-3) )
B.(0,-3,0) D.(0,0,3)
解析:设点M的坐标为(0,0,z),则 12+02+(2-z)2=12+32+(1-z)2, 解得z=-3,所以点M的坐标为(0,0,-3). 答案:C
求空间中的点关于坐标平面坐标轴、 原点对称的点的坐标 【例2】 (1)分别写出点P(-3,2,-1)关于三个坐标平面的
第七章
第十二节 空间直角坐标系
求空间的点到坐标轴(坐标平面)的距离 【例1】 在空间直角坐标系中,求点N(3,- 4 ,- 2) 到
原点、各坐标轴、各坐标平面的距离. 思路点拨 :要理解空间直角坐标系中点的坐标的意义,
先确定点 N 在空间的位置 ( 第 Ⅷ 卦限 ) ,然后作出点 N 在各坐
标平面内的射影,并分析各射影点的坐标可帮助理解.
解析:(1)点P(-3,2,-1)在xOy平面的下方,
所以点P(-3,2,-1)关于xOy平面对称的点为P′(-3,2,1), 如图①所示,
点P(-3,2,-1)关于xOz平面的对称点为 P″(-3,-2,-1), 如图②所示, 点P(-3,2,-1)关于yOz平面对称的点为P (3,2,-1),如 图③所示, (2)点P(-3,2,-1)关于x 轴对称的点的坐标为(-3,-2,1),

高考数学大一轮复习 第十二章 系列4选讲 12.2 坐标系与参数方程(第1课时)坐标系教案(含解析)

高考数学大一轮复习 第十二章 系列4选讲 12.2 坐标系与参数方程(第1课时)坐标系教案(含解析)

第1课时坐标系考情考向分析极坐标方程与直角坐标方程互化是重点,主要与参数方程相结合进行考查,以解答题的形式考查,属于低档题.1.平面直角坐标系在平面上,取两条互相垂直的直线的交点为原点,并确定一个长度单位和这两条直线的方向,就建立了平面直角坐标系.它使平面上任意一点P都可以由唯一的有序实数对(x,y)确定,(x,y)称为点P的坐标.2.极坐标系(1)极坐标与极坐标系的概念一般地,在平面上取一个定点O,自点O引一条射线Ox,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系.点O称为极点,射线Ox称为极轴.平面内任一点M的位置可以由线段OM的长度ρ和从射线Ox到射线OM的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为点M的极坐标.ρ称为点M 的极径,θ称为点M的极角.一般认为ρθ的取值X围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系.我们约定,极点的极坐标中,极径ρ=0,极角θ可取任意角.(2)极坐标与直角坐标的互化设M为平面内的任一点,它的直角坐标为(x,y),极坐标为(ρ,θ).由图可知下面关系式成立:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ或⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0),这就是极坐标与直角坐标的互化公式. 3.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为r 的圆ρ=r (0≤θ<2π)圆心为(r,0),半径为r 的圆ρ=2r cos_θ⎝⎛⎭⎪⎫-π2≤θ<π2圆心为⎝⎛⎭⎪⎫r ,π2,半径为r 的圆ρ=2r sin_θ(0≤θ<π)过极点,倾斜角为α的直线θ=α(ρ∈R )或θ=π+α(ρ∈R )过点(a,0),与极轴垂直的直线ρcos θ=a ⎝⎛⎭⎪⎫-π2<θ<π2过点⎝ ⎛⎭⎪⎫a ,π2,与极轴平行的直线ρsin_θ=a (0<θ<π)题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( × )(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是⎝ ⎛⎭⎪⎫2,-π3.( √ )(3)在极坐标系中,曲线的极坐标方程不是唯一的.( √ ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线.( × ) 题组二 教材改编2.[P11例5]在直角坐标系中,若点P 的坐标为(-2,-6),则点P 的极坐标为________.答案 ⎝⎛⎭⎪⎫22,4π3 解析 ρ=(-2)2+(-6)2=22,tan θ=-6-2=3,又点P 在第三象限,得θ=4π3,即P ⎝⎛⎭⎪⎫22,4π3. 3.[P32习题T4]若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为________________________.答案 ρ=1cos θ+sin θ⎝⎛⎭⎪⎫0≤θ≤π2解析 ∵y =1-x (0≤x ≤1),∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1), ∴ρ=1sin θ+cos θ⎝ ⎛⎭⎪⎫0≤θ≤π2.4.[P32习题T5]在极坐标系中,圆ρ=-2sin θ(ρ≥0,0≤θ<2π)的圆心的极坐标是________.答案 ⎝⎛⎭⎪⎫1,3π2解析 由ρ=-2sin θ,得ρ2=-2ρsin θ,化成直角坐标方程为x 2+y 2=-2y ,化成标准方程为x 2+(y +1)2=1,圆心坐标为(0,-1),其对应的极坐标为⎝⎛⎭⎪⎫1,3π2.题组三 易错自纠5.在极坐标系中,已知点P ⎝⎛⎭⎪⎫2,π6,则过点P 且平行于极轴的直线方程是________.答案 ρsin θ=1解析 先将极坐标化成直角坐标,P ⎝ ⎛⎭⎪⎫2,π6转化为直角坐标为x =ρcos θ=2cos π6=3,y=ρsin θ=2sin π6=1,即P (3,1),过点P (3,1)且平行于x 轴的直线为y =1,再化为极坐标为ρsin θ=1.6.在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为____________. 答案 x 2+y 2-2y =0解析 由ρ=2sin θ,得ρ2=2ρsin θ,所以曲线C 的直角坐标方程为x 2+y 2-2y =0.7.在极坐标系下,若点P (ρ,θ)的一个极坐标为⎝ ⎛⎭⎪⎫4,2π3,求以⎝ ⎛⎭⎪⎫ρ2,θ2为坐标的不同的点的极坐标.解 ∵⎝⎛⎭⎪⎫4,2π3为点P (ρ,θ)的一个极坐标.∴ρ=4或ρ=-4.当ρ=4时,θ=2k π+2π3(k ∈Z ),∴ρ2=2,θ2=k π+π3(k ∈Z ). 当ρ=-4时,θ=2k π+5π3(k ∈Z ), ∴ρ2=-2,θ2=k π+5π6(k ∈Z ). ∴⎝⎛⎭⎪⎫ρ2,θ2有四个不同的点:P 1⎝ ⎛⎭⎪⎫2,2k π+π3(k ∈Z ),P 2⎝ ⎛⎭⎪⎫2,2k π+4π3(k ∈Z ),P 3⎝⎛⎭⎪⎫-2,2k π+5π6(k ∈Z ),P 4⎝⎛⎭⎪⎫-2,2k π+11π6(k ∈Z ).题型一 极坐标与直角坐标的互化1.(2018·某某模拟)在极坐标系中,已知圆C 经过点P ⎝ ⎛⎭⎪⎫2,π3,圆心C 为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-3与极轴的交点,求圆C 的极坐标方程.解 以极点为坐标原点,极轴为x 轴建立平面直角坐标系, 则直线方程为y =3x -23,点P 的直角坐标为(1,3), 令y =0,得x =2,所以C (2,0),所以圆C 的半径PC =(2-1)2+(0-3)2=2,所以圆C 的方程为(x -2)2+(y -0)2=4,即x 2+y 2-4x =0, 所以圆C 的极坐标方程为ρ=4cos θ.2.(2019·某某省某某一中月考)在极坐标系中,已知圆C :ρ=4cos θ被直线l :ρsin ⎝⎛⎭⎪⎫θ-π6=a 截得的弦长为23,某某数a 的值.解 因为圆C 的直角坐标方程为(x -2)2+y 2=4, 直线l 的直角坐标方程为x -3y +2a =0, 所以圆心C 到直线l 的距离d =|2+2a |2=|1+a |,因为圆C 被直线l 截得的弦长为23,所以r 2-d 2=3. 即4-(1+a )2=3,解得a =0或a =-2.3.(2018·某某期中)已知在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =r cos θ+2,y =r sin θ+2(θ为参数,r >0).以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρsin ⎝⎛⎭⎪⎫θ+π4+1=0.(1)求圆C 的圆心的极坐标;(2)当圆C 与直线l 有公共点时,求r 的取值X 围.解 (1)由C :⎩⎪⎨⎪⎧x =r cos θ+2,y =r sin θ+2,得(x -2)2+(y -2)2=r 2,∴曲线C 是以(2,2)为圆心,r 为半径的圆, ∴圆心的极坐标为⎝⎛⎭⎪⎫22,π4.(2)由直线l :2ρsin ⎝ ⎛⎭⎪⎫θ+π4+1=0, 得直线l 的直角坐标方程为x +y +1=0,从而圆心(2,2)到直线l 的距离d =|2+2+1|2=522.∵圆C 与直线l 有公共点,∴d ≤r ,即r ≥522.思维升华(1)极坐标与直角坐标互化的前提条件:①极点与原点重合;②极轴与x 轴的正半轴重合;③取相同的单位长度.(2)直角坐标方程化为极坐标方程比较容易,只要运用公式x =ρcos θ及y =ρsin θ直接代入并化简即可;而极坐标方程化为直角坐标方程则相对困难一些,解此类问题常通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换. 题型二 求曲线的极坐标方程例1将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得到曲线C .(1)求曲线C 的标准方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与直线l 垂直的直线的极坐标方程.解 (1)设(x 1,y 1)为圆上的任一点,在已知变换下变为曲线C 上的点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1,得x 2+⎝ ⎛⎭⎪⎫y 22=1,即曲线C 的标准方程为x 2+y 24=1.(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线的斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 故所求直线的极坐标方程为ρ=34sin θ-2cos θ.思维升华求曲线的极坐标方程的步骤(1)建立适当的极坐标系,设P (ρ,θ)是曲线上任意一点.(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式. (3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.跟踪训练1已知极坐标系的极点为直角坐标系xOy 的原点,极轴为x 轴的正半轴,两种坐标系中的长度单位相同,圆C 的直角坐标方程为x 2+y 2+2x -2y =0,直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =t (t 为参数),射线OM 的极坐标方程为θ=3π4.(1)求圆C 和直线l 的极坐标方程;(2)已知射线OM 与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长. 解 (1)∵ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 圆C 的直角坐标方程为x 2+y 2+2x -2y =0, ∴ρ2+2ρcos θ-2ρsin θ=0,∴圆C 的极坐标方程为ρ=22sin ⎝⎛⎭⎪⎫θ-π4. 又直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =t (t 为参数),消去t 后得y =x +1,∴直线l 的极坐标方程为sin θ-cos θ=1ρ.(2)当θ=3π4时,OP =22sin ⎝ ⎛⎭⎪⎫3π4-π4=22,∴点P 的极坐标为⎝ ⎛⎭⎪⎫22,3π4,OQ =122+22=22,∴点Q 的极坐标为⎝ ⎛⎭⎪⎫22,3π4,故线段PQ 的长为322.题型三 极坐标方程的应用例2在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足OM ·OP =16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎪⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.解 (1)设点P 的极坐标为(ρ,θ)(ρ>0),点M 的极坐标为(ρ1,θ)(ρ1>0).由题意知OP =ρ,OM =ρ1=4cos θ.由OM ·OP =16,得C 2的极坐标方程ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0). 由题意,知OA =2,ρB =4cos α,于是△OAB 的面积S =12·OA ·ρB ·sin∠AOB=4cos α·⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫α-π3=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2α-π3-32≤2+ 3.当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3. 思维升华极坐标应用中的注意事项(1)极坐标与直角坐标互化的前提条件:①极点与原点重合;②极轴与x 轴正半轴重合;③取相同的长度单位.(2)若把直角坐标化为极坐标求极角θ时,应注意判断点P 所在的象限(即角θ的终边的位置),以便正确地求出角θ.利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题. (3)由极坐标的意义可知平面上点的极坐标不是唯一的,如果限定ρ取正值,θ∈[0,2π),平面上的点(除去极点)与极坐标(ρ,θ)(ρ≠0)建立一一对应关系. 跟踪训练2在极坐标系中,求直线ρsin ⎝⎛⎭⎪⎫θ+π4=2被圆ρ=4截得的弦长.解 由ρsin ⎝⎛⎭⎪⎫θ+π4=2,得22(ρsin θ+ρcos θ)=2,可化为x +y -22ρ=4可化为x 2+y 2=16,圆心(0,0)到直线x +y -22=0的距离d =|22|2=2,由圆中的弦长公式,得弦长l =2r 2-d 2=242-22=4 3.故所求弦长为4 3.1.(2018·某某省某某师X 大学附属中学模拟)在极坐标系中,已知圆C :ρ=22cos θ和直线l :θ=π4(ρ∈R )相交于A ,B 两点,求线段AB 的长.解 圆C :ρ=22cos θ的直角坐标方程为x 2+y 2-22x =0, 即(x -2)2+y 2=2,直线l :θ=π4(ρ∈R )的直角坐标方程为y =x ,圆心C 到直线l 的距离d =|2-0|2=1, 所以AB =2(2)2-1=2.2.在极坐标系中,圆C 的极坐标方程为ρ2-8ρsin ⎝⎛⎭⎪⎫θ-π3+13=0,已知A ⎝⎛⎭⎪⎫1,3π2,B ⎝⎛⎭⎪⎫3,3π2,P 为圆C 上一点,求△PAB 面积的最小值. 解 圆C 的直角坐标方程为x 2+y 2+43x -4y +13=0, 即(x +23)2+(y -2)2=3,由题意,得A (0,-1),B (0,-3),所以AB =2.P 到直线AB 距离的最小值为23-3=3,所以△PAB 面积的最小值为12×2×3= 3.3.(2018·某某省姜堰、某某、前黄中学联考)圆C :ρ=2cos ⎝ ⎛⎭⎪⎫θ-π4,与极轴交于点A (异于极点O ),求直线CA 的极坐标方程.解 圆C :ρ2=2ρcos ⎝ ⎛⎭⎪⎫θ-π4=2ρcos θ+2ρsin θ,所以x 2+y 2-2x -2y =0, 所以圆心C ⎝⎛⎭⎪⎫22,22,与极轴交于A (2,0). 直线CA 的直角坐标方程为x +y =2, 即直线CA 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π4=1.4.在以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=21-sin θ.(1)将曲线的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线于点P ,Q ,若OP =3OQ ,求直线l 的极坐标方程. 解 (1)∵ρ=x 2+y 2,ρsin θ=y , ∴ρ=21-sin θ化为ρ-ρsin θ=2,∴曲线的直角坐标方程为x 2=4y +4.(2)设直线l 的极坐标方程为θ=θ0(ρ∈R ), 根据题意知21-sin θ0=3·21-sin (θ0+π),解得θ0=π6或θ0=5π6,∴直线l 的极坐标方程为θ=π6(ρ∈R )或θ=5π6(ρ∈R ).5.在极坐标系中,P 是曲线C 1:ρ=12sin θ上的动点,Q 是曲线C 2:ρ=12cos ⎝ ⎛⎭⎪⎫θ-π6上的动点,求PQ 的最大值.解 对曲线C 1的极坐标方程进行转化,∵ρ=12sin θ,∴ρ2=12ρsin θ,∴x 2+y 2-12y =0, 即x 2+(y -6)2=36.对曲线C 2的极坐标方程进行转化, ∵ρ=12cos ⎝ ⎛⎭⎪⎫θ-π6,∴ρ2=12ρ⎝⎛⎭⎪⎫cos θcosπ6+sin θsin π6, ∴x 2+y 2-63x -6y =0,∴(x -33)2+(y -3)2=36, ∴PQ max =6+6+(33)2+32=18.6.在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解 (1)因为x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即MN = 2.由于C 2的半径为1,所以△C 2MN 为等腰直角三角形, 所以△C 2MN 的面积为12.7.(2018·某某江阴中学调研)在极坐标系中,设圆C :ρ=4cos θ与直线l :θ=π4(ρ∈R )交于A ,B 两点,求以AB 为直径的圆的极坐标方程.解 以极点为坐标原点,极轴为x 轴的正半轴建立直角坐标系,则由题意,得圆C 的直角坐标方程为x 2+y 2-4x =0,直线l 的直角坐标方程为y =x .由⎩⎪⎨⎪⎧ x 2+y 2-4x =0,y =x ,解得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧ x =2,y =2,所以交点的坐标分别为(0,0),(2,2).所以以AB 为直径的圆的直角坐标方程为(x -1)2+(y -1)2=2,即x 2+y 2=2x +2y , 将其化为极坐标方程为ρ2=2ρ(cos θ+sin θ),即ρ=2(cos θ+sin θ).8.以原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的方程为ρsin ⎝⎛⎭⎪⎫θ-2π3=-3,⊙C 的极坐标方程为ρ=4cos θ+2sin θ.(1)求直线l 和⊙C 的直角坐标方程;(2)若直线l 与圆C 交于A ,B 两点,求弦AB 的长.解 (1)直线l :ρsin ⎝⎛⎭⎪⎫θ-2π3=-3, ∴ρ⎝⎛⎭⎪⎫sin θcos 2π3-cos θsin 2π3=-3, ∴y ·⎝ ⎛⎭⎪⎫-12-x ·32=-3,即y =-3x +2 3. ⊙C :ρ=4cos θ+2sin θ,ρ2=4ρcos θ+2ρsin θ,∴x 2+y 2=4x +2y ,即x 2+y 2-4x -2y =0.(2)⊙C :x 2+y 2-4x -2y =0,即(x -2)2+(y -1)2=5.∴圆心C (2,1),半径R =5,∴⊙C 的圆心C 到直线l 的距离 d =|1+23-23|(3)2+12=12, ∴AB =2R 2-d 2=25-⎝ ⎛⎭⎪⎫122=19. ∴弦AB 的长为19.9.在极坐标系中,曲线C 的方程为ρ2=31+2sin 2θ,点R ⎝⎛⎭⎪⎫22,π4. (1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值,及此时P 点的直角坐标.解 (1)∵x =ρcos θ,y =ρsin θ,∴曲线C 的直角坐标方程为x 23+y 2=1, 点R 的直角坐标为R (2,2).(2)设P (3cos θ,sin θ),根据题意,设PQ =2-3cos θ,QR =2-sin θ,∴PQ +QR =4-2sin ⎝⎛⎭⎪⎫θ+π3, 当θ=π6时,PQ +QR 取最小值2, ∴矩形PQRS 周长的最小值为4, 此时点P 的直角坐标为⎝ ⎛⎭⎪⎫32,12. 10.(2018·某某)在极坐标系中,直线l 的方程为ρsin ⎝⎛⎭⎪⎫π6-θ=2,曲线C 的方程为ρ=4cos θ,求直线l 被曲线C 截得的弦长.解 因为曲线C 的极坐标方程为ρ=4cos θ,所以曲线C 是圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为 ρsin ⎝ ⎛⎭⎪⎫π6-θ=2, 则直线l 过点A (4,0),且倾斜角为π6, 所以A 为直线l 与圆C 的一个交点.设另一个交点为B ,则∠OAB =π6.如图,连结OB .因为OA 为直径,从而∠OBA =π2, 所以AB =4cos π6=2 3. 因此,直线l 被曲线C 截得的弦长为2 3.11.已知曲线C 的参数方程为⎩⎨⎧ x =2+5cos α,y =1+5sin α(α为参数),以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程; (2)若直线l 的极坐标方程为ρ(sin θ+cos θ)=1,求直线l 被曲线C 截得的弦长. 解 (1)曲线C 的参数方程为⎩⎨⎧ x =2+5cos α,y =1+5sin α(α为参数),∴曲线C 的普通方程为(x -2)2+(y -1)2=5.将⎩⎪⎨⎪⎧ x =ρcos θ,y =ρsin θ代入并化简得ρ=4cos θ+2sin θ,即曲线C 的极坐标方程为ρ=4cos θ+2sin θ.(2)∵l 的直角坐标方程为x +y -1=0,∴圆心C (2,1)到直线l 的距离d =22=2, ∴弦长为25-2=2 3.12.在极坐标系中,曲线C :ρ=2a cos θ(a >0),l :ρcos ⎝⎛⎭⎪⎫θ-π3=32,C 与l 有且仅有一个公共点.(1)求a ;(2)O 为极点,A ,B 为曲线C 上的两点,且∠AOB =π3,求OA +OB 的最大值. 解 (1)曲线C :ρ=2a cos θ(a >0),变形为ρ2=2aρcos θ,化为x 2+y 2=2ax ,即(x -a )2+y 2=a 2,∴曲线C 是以(a,0)为圆心,以a 为半径的圆.由l :ρcos ⎝⎛⎭⎪⎫θ-π3=32, 展开为12ρcos θ+32ρsin θ=32, ∴l 的直角坐标方程为x +3y -3=0.由题意,知直线l 与圆C 相切,即|a -3|2=a , 又a >0,∴a =1.(2)由(1)知,曲线C :ρ=2cos θ.不妨设A 的极角为θ,B 的极角为θ+π3, 则OA +OB =2cos θ+2cos ⎝⎛⎭⎪⎫θ+π3 =3cos θ-3sin θ=23cos ⎝⎛⎭⎪⎫θ+π6, 当θ=11π6时,OA +OB 取得最大值2 3.。

中考数学一轮复习课件-第十二讲二次函数的图像和性质

中考数学一轮复习课件-第十二讲二次函数的图像和性质

【答题关键指点】 1.判断a,b,c符号可从开口方向、与y轴的交点、对称轴位置来考虑;顶点坐标 和对称轴可根据公式直接计算或确定;增减性要从开口方向、对称轴两侧分类 考虑. 2.若抛物线上有x=1和-1对应的图象,则易知a+b+c和a-b+c的符号.
【跟踪训练】
1.(202X·玉林中考)已知抛物线C:y= 1 (x-1)2-1,顶点为D,将C沿水平方向向右
A. x=-6
B. x=-1
C. x=1
D. x=6
3.抛物线y=x2-3x+2与y轴交点的坐标是 ( A )
A. (0,2)
B. (1,0)
C. (0,-3)
D. (0,0)
4.将抛物线y=-(x-1)2向左平移1个单位后,得到的抛物线的解析式是
___y_=_-_x_2 __.,
∴EM=PE-P2M=54- 3 .
22
答案: 3
2
【答题关键指点】 确定二次函数解析式的方法 (1)一般式:y=ax2+bx+c(a≠0). (2)顶点式:y=a(x-h)2+k(a≠0),其中(h,k)为顶点坐标. (3)交点式:y=a(x-x1)(x-x2)(a≠0),其中(x1,0),(x2,0)为抛物线与x轴的交点. 一般已知三点坐标用一般式;已知顶点及另一个点坐标用顶点式;已知抛物线与 x轴的两个交点坐标及另一个点的坐标用交点式.
【解析】(1)把B(1,0)代入y=ax2+4x-3, 得0=a+4-3, 解得a=-1, ∴y=-x2+4x-3=-(x-2)2+1, ∴A(2,1), ∵对称轴x=1,B,C关于x=2对称, ∴C(3,0), ∴当y>0时,1<x<3.

八年级数学上册第十二章知识点(共3篇)

八年级数学上册第十二章知识点(共3篇)

八年级数学上册第十二章知识点(共3篇)篇1:八年级数学上册第十二章知识点八年级数学上册第十二章知识点全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形。

⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。

⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。

⑷对应边:全等三角形中互相重合的边叫做对应边。

⑸对应角:全等三角形中互相重合的角叫做对应角。

2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性。

⑵全等三角形的性质:全等三角形的对应边相等,对应角相等。

3.全等三角形的判定定理:⑴边边边:三边对应相等的两个三角形全等。

⑵边角边():两边和它们的夹角对应相等的两个三角形全等。

⑶角边角():两角和它们的夹边对应相等的两个三角形全等。

⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等。

⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等。

4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等。

⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上。

5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证。

⑶经过分析,找出由已知推出求证的途径,写出证明过程。

数学不能只依靠上课听得懂很多初中生认为自己理解数学课就够了,但是一旦做了综合题就蒙了,基础题会做,但是会马虎。

这种问题是学生认为在课堂上就能理解的。

初中同学要首先对数学做一个认知,听得懂≠会做,会做≠拿的到分。

听得懂只占你数学成绩的20%,仅仅听得懂只说明你理解能力还可以,不说明你能拿到很高的数学成绩。

只有理解和练习,多练习,最后才能做的又快又准,数学成绩才会有很大进步。

12.2.4斜边及一直角边证全等课件人教版数学八年级上册

12.2.4斜边及一直角边证全等课件人教版数学八年级上册

6y 5 4 3 2 1
–1 O 1 2 3 4 5 x –1
情境导入
6y 5 4 3 2 1 –1 O 1 2 3 4 5 x –1
在平面直角坐标系 中找到以红色边为 斜边,以蓝色边为 直角边的直角三角 形,它们什么关系?
知识讲解
1.斜边和一条直角边分别相等的两个直角三角形全等,简写成“斜边、直角
随堂练习
练习1.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两 点分别在AC和过点A且垂直于AC的射线AO上运动,当__________时,△ABC和 △PQA全等.
随堂练习
练习1.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两 点分别在AC和过点A且垂直于AC的射线AO上运动,当___5_或__1_0___时,△ABC和 △PQA全等.
2024年秋季 人教版数学 八年级上册
第十二章 全等三角形
12.2.4 斜边及一直角边证全等
目录
学习目标
1
2
情境导入
知识讲解
3
4
随堂练习
课后小结
5
学习目标
1.掌握用HL证明两个直角三角形全等的方法;(重点)
2.能根据条件灵活选择三角形全等的判定方法,并综合运用全等三角形的性质 证明线段相等和角相等。(难点)
解:全等三角形为:△ACD≌△CBE. 证明如下:由题意知∠CAD+∠ACD=90°,∠ACD+∠BCE=90°, ∴∠CAD=∠BCE. 在△ACD与△CBE中,
课后小结
1.斜边和一条直角边分别相等的两个直角三角形全等,简写成“斜 边、直角边”或“HL”. 2.了解含义,灵活选择判定方法证明直角三角形全等.

平面直角坐标系题型讲解

平面直角坐标系题型讲解
一.平面直角坐标系: (纵轴) y 第二象限 第一象限
O (坐标原点) 第三象限 第四象限
x (横轴)
二.平面直角坐标系内各位置点的坐标特征 第二象限 第一象限 (-,+) (+,+) O (坐标原点) x 第三象限 第四象限 (-,-) (+,-) 若P(x,y)是坐标平面内一点 点P在第一象限,则x>0,y>0; 点P在第二象限,则x<0,y>0; 点P在第三象限,则x<0,y<0; 点P在第四象限,则x>0,y<0; 点P在横轴上,则y=0; 点P在纵轴上,则x=0.
.
y
(1)y随x怎样变化?
(2)自变量的取值范围是什么?
.
(3)当取什么值时,的值 最小?最小值是多少? x
; / 龙虎斗

战气,对着剑身拍下!" "唔?"夜枪眨了眨眼睛,不相信の抬起左手,对着神剑轻轻一拍. "咔嚓!" 神剑竟然应声而断,断成两截,露出中间中空の黑幽幽口子. …… 现场一片哗然,他们都没有想到,争夺了数千年の落神山至宝,到头来却是把假货,并且居然似乎还不止一把假货? "得到最多 宝物の人,将获得胜利!将会有机会得到至宝,祝你呀们好运" "当然能不能拿到至宝要看你呀运气好不好了" 有机会?运气? 这时众人想起落神山守护者刚才说得话,纷纷暗自猜测起来,莫非,这神剑还有不少把?只有一把才是真の?但是其余の神剑哪里去了?真の神剑又在哪里? 当然也有少 数人将怀疑の目光投向了白重炙,投向了他那把黑油油,摸样奇怪の长刀.莫非这把才是真正の神剑? "看什么看?妈の,晦气……诸位俺很惭愧,不咋大的爷心情很不好,所以不咋大的爷改变主意了,你呀们不能就这样回去了!" 白重炙白眼一翻,直接发飙了,心里却无奈,毕竟他突然出现在了 天路广场,并且还玩嗨了,现出了屠神刀,以及空间神器逍遥戒,别人没有怀疑才怪.此刻他只能尽量将众人の注意转移一些,希望不让他们怀疑,于是他几多霸蛮の吼了起来. "擦…" 白重炙一发飙,蛮**们却傻了,不带这样玩の. 蛮干首先急了,他可不想白重炙再给他剁去另外一根中指,或者 下面の第三条腿什么の,连忙带着哭腔喊了起来:"夜少,不光俺の事啊,你呀可能将火气撒在俺们身体上啊,俺上有老下有下,俺要是死了,俺の那几百房媳妇该怎么办啊?她们可不能靠手指和冬瓜度日啊…" "对啊,夜大人,你呀大人有大量,真不光俺们の事情!" "夜公子,你呀可不能出尔反 尔啊?再说了俺们可是都没有对付你呀们白家の人啊!" "……" 一时候众人连忙又是拱手,又是弯腰,又是擦眼泪,集体恳求起来. "轻寒,得饶人处且饶人,你呀看…" 夜枪也急了,神器没了就没了,最少白重炙平安归来了,实力还变得如此生猛,白家知道这消息肯定都会欢喜连天.但是如果 白重炙把在场の全杀了,那可是得罪了几方势力,以后白家の日子也不好过啊… "额…既然俺三叔,开口求情了,那么就算了!"白重炙沉思片刻,开口了,让众人一阵大喜,只是下一秒白重炙继续说の话,却又让他们心情跌入了谷底. "这样吧…把你呀们身体上所有の宝物,全部留下,宝器以上 の,全部丢过来,别想隐瞒,俺心情可是还没恢复,要是被俺发现了,俺可是要发飙の……宝物留下之后,全体双手抱头,排成三排,排好队,走出去,队形要整齐哦,俺心情不好,你呀们知道の,别惹俺发飙…" "扑通,扑通!" 白重炙话一说完,现场直接由不少人直接,昏迷倒地,场中剩下の人却脸 上布满了黑线,这样玩,也太坑爹了吧! 本书来自 品&书#网 当前 第2捌0章 一二一,一二一. 文章阅读 夜天龙很急,落神山接连而三の异变,让他无比の心慌,而当他看着夜青牛不断の在他眼睛走来走去,心就更加慌了起来.看书 "青牛,别晃来晃去,晃得俺眼都花了!" 夜青牛也很慌,所 以他才会不停の走来走去,但是此刻被夜天龙一吼,连忙不敢再走了,只是眼巴巴の望着天路の出口,心情复杂到了极点. 月姬封谔谔花香也急,她们没表现在脸上,只是袍子下不断微微抖动の双手出卖了她们の心情. 神城四卫也急,妖族蛮族隐岛の强者也急.所以人此刻の目光投投向了天路 の入口,等待着最后の结局. "轰隆隆!" 就在这时,落神山再次一阵摇晃,将众人の目光集体吸引到了落神山の顶端,在众人惊恐の目光下,落神山顶部,悬空の不咋大的神阁,竟然不断の剧烈摇晃起来,发出了巨大の响声……而后在众人膛目结舌の目光下,突然直接消失了… "咻,咻,咻…" 在就不咋大的神阁完全消失の前,不咋大的神阁内突然爆发出一条刺目の光芒,而后数百道金色の光芒直接从不咋大的神阁内激射而出,朝着落神山四面八方射去,速度奇快,眨眼就消失不见了… "那些金光是什么?不咋大的神阁怎么消失了?"封谔谔首先发出了一声怪叫,满脸の震惊和疑惑. "好像是无数把剑?往大陆各个方向飞去了!"夜青牛鼓着牛眼,不确定の说道. 发生了什么事情? 为何不咋大的神阁消失了?还射出了无数把剑? 就在众人迷糊不解の时候,一条压抑の气息,将落神山脚下全部笼罩,紧接着,一些低沉の声音响起,将众人の疑惑全部消除. "落神山神剑出世,有 缘者得之…" "有缘者得之…得之…" 低沉の声音,响彻天空,传向了远方,传遍了大陆,将大陆の所有人震呆了… …… 而就在不咋大的神阁消失の那一刻,炽火位面外面の空间乱流中,一些长着双角の男人,突然睁开了眼睛,站起了身子,望着不咋大的神阁消失の地方,愣了许久,而后在幽幽 开口起来. "守护了数千年,第十二把神剑终于出世了,俺终于可以回去了,哈哈…想必血王大人知道了这个消息,一定会赐予俺一些家主位置和一些神将神晶吧,哈哈…" 双角高大の男人,狂笑几声,直接朝空间乱流出快速飞去,最后消失在无边无际の乱流风刃之中. 而就在同一时候,暗黑森 林内の古堡内. 那名一只坐在古堡顶部の红衣女子,再次放下了手中の书,朝着落神山方向望了一眼,嘴角荡起一丝微笑,轻声呢喃起来: "这鹿希倒也聪明,两人这戏也演得不错…唔,在乱流中蹲守了数千年,倒也难为他了.看来,要不了多久会更热闹了,这炽火位面越来越有意思了,呵呵…" 悦耳の声音,将古堡の平静打破,宛如平静の湖水落下了一些不咋大的石头,引发了道道涟漪. 神城,神主府书房の那扇门,突然被推开,屠の一红一黑の诡异双瞳尽是冷意,他望着空中の无数金光,连忙大喝了起来.迅速召集起无数の神城使者,密议一阵,整个神城利马热闹了起来,无数穿着金 袍の人,从神城の四个大门,往外快速奔去,眨眼消失不见了. 龙城,三位破仙再次出关,片刻之后,龙匹夫手下の无数军队强者,快速の奔出了龙城,朝四面八方奔去.白家堡,夜白虎受到了夜若水の传音,迅速将白家の所有子弟动用了起来,无数の快马朝破仙府北方奔走.落花城,飘雪城,笑昏 城,西风城,也同时纷纷行动了起来,四处开始奔走,四处寻觅. 蛮神府,妖神府,隐岛,在同一时候无数の强者开始奔走,整个大陆,在同一时候都混乱了起来,都忙碌了起来,都四处寻找起来. 他们都在寻找,落神山飞出来の数百道金光,都在寻找落神山の至宝. …… …… "队形排好了,双手 抱头,别左看右看,往前走!一二一,一二一……" 就在夜天龙屠神卫他们,正在因为不咋大的神阁消失无数神剑出世,以及落神山中传出の神级强者声音,在惊疑不定の时候,天路路口却传出一些年轻の声音. 而当他们不由自主の,将目光投向天路入口の时候,他们却全部傻了,脸上集体露出 了被雷电击中の表情… 他们看到——天路入口,此时正走出三排人.当然,这不是最重要の.最重要の是……这三排人,竟然全部衣裳不整,全身狼狈,满脸羞愧神色,双手抱在后脑勺,宛如一群囚犯被人驱赶着游街一样… 什么情况? 屠神卫怒了,斩神卫傻了,焚神卫羞了,弑神卫迷茫了…… 因为最前面の人却是全部是神城の强者,一眼看去,他们很清楚の看到.神城の数百强者只剩下一半不到,并且他们去の时候の全副武装の宝器,圣器,此刻一件都没有了. 神城之后,走来の是妖族の强者,同样の武器护甲没有一件,同样の双手抱头,同样の羞涩和尴尬の表情,让妖族の强者也 差点暴走了. 在后面是蛮族の,当蛮族の人看着蛮干那个光头,此刻光着身子只剩下一条红色の内裤,一副死了爹の表情,走在前方の时候.他们有人晕倒了,剩下の人却是无比の脸色阴沉,恨不得挖个洞钻进去… 怎么?他们の少族长,出来了两趟,两趟却都给人扒光了只剩下内裤? 而隐岛の 几个老家伙,也准备承受同样の打击の时候,却发现,隐岛の人整齐の走了出来,神情很

成都市中考核心考点 - 第十二讲 几何类综合压轴题(27题)(B卷)

成都市中考核心考点 - 第十二讲  几何类综合压轴题(27题)(B卷)

成都中考核心考点(成都版)简介--只要抓住核心考点,就能拿到卷子上80%的分数在历年的成都中考数学试题中,核心考点虽然只占总考点的20%,却占总分值的80%。

掌握了核心考点,相当于用20%的时间来把握80%的分数,在最短的时间内实现快速提分。

本文共分两轮复习:第一轮过关核心考点聚焦常考考点,五年真题回顾,三年诊断精选。

本文分13讲,由成都市中考数学A卷和B卷难度区分度较大,A卷1-19题较基础,大部分学生都容易掌握,选题主要以中考题和诊断题为主,20题-28题有一定综合性,选题除了中考题和诊断题外,还选择了大量的模拟题和改编题。

第一讲:考点1-考点6,第二讲:考点7-考点10,第三讲:考点11-考点14,第四讲:考点15-考点19,第五讲:考点20,第六讲:考点21,………第十三讲:考点28.(从考点20开始,每个考点一讲)。

第二轮过关B卷攻略专攻B卷重难,五年考点扫描,专题考向攻略。

暂定:B填空7-8讲,应用题1讲,几何综合3讲,抛物线综合5讲考点27、几何图形综合(压轴)命题方向:主要以三角形和四边形为基架,从全等过渡到相似,从定点过渡到动点,求线段、比例、探究数量关系; 五年真题1. (18成都)在Rt ABC ∆中,90ABC ∠=︒,7AB =,2AC =,过点B 作直线//m AC ,将ABC ∆绕点C 顺时针得到A B C ∆′′(点A ,B 的对应点分别为A ′,B ′)射线CA ′,CB ′分别交直线m 于点P ,Q . (1)如图1,当P 与A ′重合时,求ACA ∠′的度数;(2)如图2,设A B ′′与BC 的交点为M ,当M 为A B ′′的中点时,求线段PQ 的长;(3)在旋转过程时,当点,P Q 分别在CA ′,CB ′的延长线上时,试探究四边形PA B Q ′′的面积是否存在最小值.若存在,求出四边形PA B Q ′′的最小面积;若不存在,请说明理由.2.(16成都)如图①,△ABC 中,∠ABC =45°,AH ⊥BC 于点H ,点D 在AH 上,且DH =CH ,连接BD . (1)求证:BD=AC ;(2)将△BHD 绕点H 旋转,得到△EHF (点B ,D 分别与点E ,F 对应),连接AE .ⅰ)如图②,当点F 落在AC 上时(F 不与C 重合),若BC =4,tanC =3,求AE 的长;ⅱ)如图③,当△EHF 是由△BHD 绕点H 逆时针旋转30°得到时,设射线CF 与AE 相交于点G ,连接GH ,试探究线段GH 与EF 之间满足的等量关系,并说明理由。

二次函数与实际问题

二次函数与实际问题

第十二讲 二次函数与实际问题(建模类)例1(2012年武汉市中考第23题)已知河底ED 是水平的,ED=16米,AE=8米,抛物线的顶点C 到ED 的距离是11米,以ED 所在的直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系。

(1)求抛物线的解析式;(2)已知从某时刻开始的40小时内,水面与河底ED 的距离h(单位:米)随时间t (单位:时)的变化满足函数关系 h=-1281(t-19)2+8(0≤t≤40) 且当水面到顶点C 的距离不大于5米时,需禁止船只通行,请通过计算说明:在这个时段内,需多少小时禁止船只通行?例2 一座隧道的截面由抛物线和长方形构成,长方形的长为8m ,宽为2m ,隧道最高点P 位于AB 的中央且距地面6m ,建立如下图的坐标系.(1)求抛物线的表达式;(2)一辆货车高4m ,宽2m ,能否从该隧道内通过,为什么?例3如图是一种新型的滑梯的示意图,其中线段PA是高度为6米的平台,滑道AB是函数的图象的一局部,滑道BCD是二次函数图象的一局部,两滑道的连接点B为抛物线的顶点,且B点到地面的距离为2米,当甲同学滑到C点时,距地面的距离为1米,距点B的水平距离CE也为1米.(1)试求滑道BCD所在抛物线的解析式.(2)试求甲同学从点A滑到地面上D点时,所经过的水平距离.例4如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,假如该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?C B DA二次函数与实际问题(建模类)专练1 如图,某建筑物的外形能够视作由两条线段AB ,BC 和一条曲线围成的封闭的平面图形.已知AB ⊥BC ,曲线是以点D 为顶点的抛物线的一局部,BC =6m ,点D 到BC ,AB 的距离分别为4m 和2m .(1) 请以BC 所在直线为x 轴(射线BC 的方向为正方向),AB 所在直线为y 轴建立平面直角坐标系,求出抛物线的解析式,并直接写出自变量的取值范围;(2) 求AB 的长.2有一座抛物线形拱桥,正常水位时桥下水面宽度为20m ,拱顶距离水面4m .(1)在如下图的直角坐标系中,求出该抛物线的解析式;(2)设正常水位时桥下的水深为2m ,为保证过往船只顺利航行,桥下水面的宽度不得小于18m ,求水深超过多少米时就会影响过往船只在桥下的顺利航行.3如图,小区中央公园要修建一个圆形的喷水池,在水池中央垂直于地面安装一个柱子OA,O恰好在水面的中心,OA=1.25米.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计水流在离OA距离为1米处达到距水面的最大高度2.25米.(1)建立适当的平面直角坐标系,使A点的坐标为(0,1.25),水流的最高点的坐标为(1,2.25),求水流的抛物线路线在第一象限内对应的函数关系式(不要求写取值范围);(2)若不计其他因素,则水池的半径至少要多少米,才能使喷出的水流不至于落到池外?(3)若水流喷出的抛物线形状与(1)相同,水池半径为3.5米,要使水流不落到池外,此时水流距水面的最大高度就达到多少米?4施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明.第十三讲二次函数与实际问题(利润类)1.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件.设该商店这段时间内的利润为y元.(1)直接写出利润y与售价x之间的函数关系式;(2)当售价为多少元时,利润可达1000元;(3)应如何定价才能使利润最大?2九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元(1) 求出y与x的函数关系式(2) 问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3) 该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果3某商场将进货价为30元的书包以40元售出,平均每月能售出600个.调查说明:这种书包的售价每上涨1元,其销售t就减少10个.(1)请写出每月售出书包的利润y(元与每个书包涨价x(元)间的函数关系式;(2)设某月的利润为10000元,此利润是否为该月的最大利润,请说明理由;(3)请分析并回答售价在什么范围内商家获得的月利润不低于6000元.4某宾馆有50个房间供游客住宿,当每个房间的房价为每天l80元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x元(x为10的正整数倍).(1) 设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2) 设宾馆一天的利润为w元,求w与x的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大? 最大利润是多少元?二次函数与实际问题(利润类)专练1某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件。

第十二讲狭义相对论基础

第十二讲狭义相对论基础

第十二讲 狭义相对论基础一、知识点击1.力学相对性原理和伽利略变换如图12一1,S 系静止,S '系相对S 系平动,对应 轴互相平行,0t t '==时,两坐标系原点重合,t 时 刻在两参考系中观察同一事物。

我们有 0r r r '=+r r u rt t '=0υυυ'=+rru r0a a a '=+r r u r 若S '系相对S 系做匀速直线运动,S '系也是惯性参考系,00a =r ,则有a a '=r u r 又在两系中有F F '=u r u u rm m '= 因为F ma =u r r力学现象对一切惯性系来说,都要遵从同样的规律.这是力学相对性原理,研究力学规律时,一切惯性系都是等价的,我们不能在一惯性系中做力学实验来判定这个惯性系是静止还是做匀速直线运动.若S'系仅沿着S 系x 轴作匀速直线运动,其速度为u ,则我们有x x ut '=- x x ut '=+y y '= 或 y y '=z z '= z z '= t t '= t t '=这就是伽利略变换.它描绘了同一事物在两个不同参考系观察时的时空关系.实际物体的低速运动都满足伽利略变换. 2.爱因斯坦假设 洛伦兹变换⑴爱因斯坦假设:力学现象满足伽利略变换,但电磁现象、特别是光现象呢?当时人们把机械波必须在媒质中才能传播的思想引进光现象中,认为光只在以太中才能传播,光相对以太速度为c r,并且沿各个方向相同。

伽利略变换已经不能解释,为此爱因斯坦提出了两条基本原理: 相对性原理:物理学定律在所有惯性系中都是相同的。

光速不变原理:在所有惯性系中,自由空间中的光速具有相同的量值C 。

以这两个原理为依据,可得到的坐标变换关系——洛伦兹变换()x y x ut '=- ()x y x ut '=+ y y '= 或 y y '=z z '= z z '=2()u t y t x c '=-2()ut y t x c ''=+式中y =相应的速度变换关系为21x xx u u c υυυ-'=-21x x xuu c υυυ'-='-21y y y u u c υυυ-'=-或 21y y yuu c υυυ'-='-21z z z u u c υυυ-'=-21z z zuu c υυυ'-='-3.长度收缩 时间膨胀一刚性直尺沿x '轴放置并随S '系运动,S '系中测得尺长021l x x ''=-,S 系观察者观察到尺在运动,必须同时记下尺的两端的坐标1x 和2x ,测得21l x x =-,利用洛伦兹变换可得l =,相对物体为静止的惯性系中测得物体长度是最长的,称为物体的固有长度。

专题12 二次函数-阿氏圆求最小值(教师版)

专题12 二次函数-阿氏圆求最小值(教师版)

第十二讲二次函数--阿氏圆求最值必备知识点点P 在直线上运动的类型称之为“胡不归”问题;点P 在圆周上运动的类型称之为“阿氏圆”问题,“阿氏圆”又称“阿波罗尼斯圆”,已知平面上两点A、B,则所有满足PA=k·PB(k≠1)的点P 的轨迹是一个圆,这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”。

如图1所示,⊙O 的半径为r,点A、B 都在⊙O 外,P 为⊙O 上一动点,已知r=k·OB,连接PA、PB,则当“PA+k·PB”的值最小时,P点的位置如何确定?如图2,在线段OB 上截取OC 使OC=k·r,则可说明△BPO 与△PCO 相似,即k·PB=PC。

故本题求“PA+k·PB”的最小值可以转化为“PA+PC”的最小值,其中与A 与C 为定点,P 为动点,故当A、P、C 三点共线时,“PA+PC”值最小。

如图3所示:知识导航【破解策略详细步骤解析】例题演练1.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x ﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值.【解答】解:(1)∵点A(﹣4,﹣4),B(0,4)在抛物线y=﹣x2+bx+c上,∴,∴,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+n过点A,B,∴,∴,∴直线AB的解析式为y=2x+4,设E(m,2m+4),∴G(m,﹣m2﹣2m+4),∵四边形GEOB是平行四边形,∴EG=OB=4,∴﹣m2﹣2m+4﹣2m﹣4=4,∴m=﹣2∴G(﹣2,4).(3)①如图1,由(2)知,直线AB的解析式为y=2x+4,∴设E(a,2a+4),∵直线AC:y=﹣x﹣6,∴F(a,﹣a﹣6),设H(0,p),∵以点A,E,F,H为顶点的四边形是矩形,∵直线AB的解析式为y=2x+4,直线AC:y=﹣x﹣6,∴AB⊥AC,∴EF为对角线,∴EF与AH互相平分,∴(﹣4+0)=(a+a),(﹣4+p)=(2a+4﹣a﹣6),∴a=﹣2,P=﹣1,∴E(﹣2,0).H(0,﹣1);②如图2,由①知,E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),∴EH=,AE=2,设AE交⊙E于G,取EG的中点P,∴PE=,连接PC交⊙E于M,连接EM,∴EM=EH=,∴=,∵=,∴=,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴,∴PM=AM,∴AM+CM的最小值=PC,设点P(p,2p+4),∵E(﹣2,0),∴PE2=(p+2)2+(2p+4)2=5(p+2)2,∵PE=,∴5(p+2)2=,∴p=﹣或p=﹣(由于E(﹣2,0),所以舍去),∴P(﹣,﹣1),∵C(0,﹣6),∴PC==,即:AM+CM的最小值为.2.如图,抛物线y=﹣x2+bx+c经过点A(﹣4,﹣4),B(0,4),直线AC的解析式为y=﹣x﹣6,且与y轴相交于点C,若点E是直线AB上的一个动点,过点E作EF⊥x轴交AC于点F.(1)求抛物线y=﹣x2+bx+c的解析式;(2)点H是y轴上一动点,连接EH,HF,当点E运动到什么位置时,四边形EAFH是矩形?求出此时点E,H的坐标;(3)在(2)的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上以动点,求AM+CM 的最小值.【解答】解:(1)将点A(﹣4,﹣4),B(0,4)代入y=﹣x2+bx+c得:,解得:,∴抛物线解析式为:y=﹣x2﹣2x+4;(2)如图,当点E运动到(﹣2,0)时,四边形EAFH是矩形,设直线AB的解析式为y=kx+b,将点A(﹣4,﹣4),B(0,4)代入得:,解得:,∴线AB的解析式为y=2x+4,∵直线AC的解析式为y=﹣x﹣6,∴AB⊥AC,∴当四边形EAFH是平行四边形时,四边形EAFH是矩形,此时,EF与AH互相平分,设E(m,2m+4),H(0,t)则F(m,﹣m﹣6),∵A(﹣4,﹣4),∴,解得:∴E(﹣2,0),H(0,﹣1);(3)如图,由(2)可知E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),∴EH=,AE=2,设AE交⊙E于点G,取GE的中点P,则PE=,设P(k,2k+4),∵E(﹣2,0),∴PE2=(k+2)2+(2k+4)2=()2,∴k=﹣或k=﹣(舍去),∴P(,﹣1),∵C(0,﹣6),∴PC==,连接PC交⊙E于点M,连接EM,则EM=EH=,∴==,∵==,∴=,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴==,∴PM=AM,∴AM+CM=PM+CM,∴当P、M、C三点共线时,AM+CM取得最小值即PC的长,∴AM+CM最小值为.3.如图1,抛物线y=ax2+bx+c与x轴正半轴交于点A,点B(点A在点B的左侧),与y轴交于点C.若线段AB绕点A逆时针旋转120°,点B刚好与点C重合,点B的坐标为(3,0).(1)求抛物线的表达式;(2)抛物线的对称轴上是否存在一点P,使△ACP为直角三角形?若存在,请求出点P的坐标,若不存在,请说明理由;(3)如图2,以点B为圆心,以1为半径画圆,若点Q为⊙B上的一个动点,连接AQ,CQ,求AQ+CQ的最小值.【解答】解:(1)线段AB绕点A逆时针旋转120°,点B刚好与点C重合,∴∠CAB=120°,AB=AC,∴∠OAC=60°,∴OA=AC•cos60°=AC,OC=AC•sin60°=AC,∵点B的坐标为(3,0),∴OB=3即OA+AC=3,∴OA=1,AC=2,OC=,∴A(1,0),C(0,),又B(3,0),将A、B、C坐标代入y=ax2+bx+c得:,解得,∴抛物线的表达式为y=x2﹣x+;(2)抛物线y=x2﹣x+的对称轴是直线x=2,抛物线的对称轴上存在一点P,使△ACP为直角三角形,设P(2,m),分三种情况:①若∠PCA=90°,如答图1:过P作PD⊥y轴于D,∵A(1,0),C(0,),P(2,m),∴OA=1,OC=,CD=m﹣,PD=2,∵∠DPC=90°﹣∠DCP=∠AOC,∠PDC=∠AOC=90°,∴△PDC∽△COA,∴即,解得m=,∴P坐标为(2,),②若∠CAP=90°,对称轴与x轴交于E,如答图2:∵A(1,0),C(0,),P(2,m),∴OA=1,OC=,PE=m,AE=1,同理可知△AOC∽△PEA,∴即,解得m=,∴P(2,),③若∠APC=90°,∵以AC为直径的圆与对称轴无交点,∴点P不存在,综上所述,△ACP为直角三角形,P坐标为(2,)或(2,);(3)在AB上取BM,使BM=BQ,连接CM,如答图3:∵A(1,0),B(3,0),∴AB=2,以点B为圆心,以1为半径画圆,∴BQ=1,∴=,且∠QBM=∠ABQ,∴△ABQ∽△QBM,∴,即QM=AQ,∴AQ+CQ的最小即是QM+CQ最小,∴当C、Q、M共线时,AQ+CQ的最小为CM的长度,此时OM=,而OC=,∴CM==,∴AQ+CQ的最小值为.4.如图,已知抛物线y=﹣x2+2x+3与x轴交于点A,B(点A在点B的右侧),与y轴交于点C.(1)如图①,若点D为抛物线的顶点,以点B为圆心,3为半径作⊙B.点E为⊙B上的动点,连接A,DE,求DE+AE的最小值.(2)如图②,若点H是直线AC与抛物线对称轴的交点,以点H为圆心,1为半径作⊙H,点Q 是⊙H上一动点,连接OQ,AQ,求OQ+AQ的最小值;(3)如图③,点D是抛物线上横坐标为2的点,过点D作DE⊥x轴于点E,点P是以O为圆心,1为半径的⊙O上的动点,连接CD,DP,PE,求PD﹣PE的最大值.【解答】解:(1)如图1,连接BE,在BA上截取BI=,连接IE,DI,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),抛物线的对称轴为直线:x=1,2+2x+3=0得,x1=﹣1,x2=3,∴OB=1,OA=3,∴AB=OA+OB=4,∵=,∠EBI=∠ABE,∴△BIE∽△BEA,∴,∴IE=AE,∴DE+AE=DE+IE≥DI,∴当点D、E、I共线时,DE+IE最小,最小值是DI的长,∵D(1,4),I(,0),∴DI==,∴DE+AE的最小值为:;(2)如图2,连接OH,QH,QI,在OH上截取HI=,∵A(3,0),C(0,3),∴直线AC的解析式是:y=﹣x+3,当x=1时,y=﹣1+3=2,∴H(1,2),∴OH=,∴,∵∠QHI=∠OHQ,∴△HIQ∽△HQO,∴,∴IQ=,∴+AQ=IQ+AQ≥AI,∴当A、Q(图中Q′)共线时,IQ+AQ=AI,作IE⊥OA于E,HF⊥OA于F,∴IE∥HF,∴△OEI∽△OHF,∴,∴=,∴IE=,OE=,∴AE=OA﹣OE=3﹣=,∴AI===,∴的最小值为:,∵OQ+AQ=(+AQ),∴OQ+AQ的最小值为:×=;(3)如图3,连接OP,在OE上截取OI=,当x=2时,y=﹣22+2×2+3=3,∴D(2,3),,∠POI=∠EOP,∴△POI∽△EOP,∴,∴PI=,∵PD﹣PI≤DI,∴当D,P(图中P′)、I共线时,PD﹣PI最小,∵DI==,∴PD﹣PE的最大值为:.5.如图,直线y=x+2与抛物线y=x2﹣2mx+m2+m交于A、B两点(A在B的左侧),与y轴交于点C,抛物线的顶点为D,抛物线的对称轴与直线AB交于点M.(1)当四边形CODM是菱形时,求点D的坐标;(2)若点P为直线OD上一动点,求△APB的面积;′(3)作点B关于直线MD的对称点B',以点M为圆心,MD为半径作⊙M,点Q是⊙M上一动点,求QB'+QB的最小值.【解答】解:(1)∵D(m,m),OD=m,四边形CODM为菱形,∴OD=OC=2=m,∴m=,∴D();(2)∵y=x+2与抛物线y=x2﹣2mx+m2+m交于A、B两点,∴联立,解得,,∵点A在点B的左侧,∴A(m﹣1,m+1),B(m+2,m+4),∴AB==3,∵直线OD的解析式为y=x,直线AB的解析式为y=x+2,∴AB∥OD,两直线AB、OD之间距离h=2×=,=AB•h=×3×=3;∴S△APB(3)∵A(m﹣1,m+1),B(m+2,m+4),∴AM=1×=,BM=2×=2,由M点坐标(m,m+2),D点坐标(m,m)可知以MC为半径的圆的半径为(m+2)﹣m=2,取MB的中点N,连接QB、QN、QB′,∴MN=BM=,∵,∠QMN=∠BMQ,∴△MNQ∽△MQB,∴,∴,由三角形三边关系,当Q、N、B′三点共线时QB′+QB最小,∵直线AB的解析式为y=x+2,∴直线AB与对称轴夹角为45°,∵点B、B′关于对称轴对称,∴∠BMB′=90°,由勾股定理得,QB′+QB最小值为B'N===.即QB'+QB的最小值是.6.在平面直角坐标系中,抛物线y=x2﹣2mx+m2+m的顶点为C,(1)求点C的坐标(用含m的代数式表示);(2)如图,当m=0时,直线y=x+2与抛物线交于A、B两点,点A,点B分别在抛物线的对称轴左右两侧;①抛物线的对称轴与直线AB交于点M,点G(1,3),在直线AB上,作B点关于直线MC的对称点B′,以M为圆心,MC为半径作圆,动点Q在圆周上运动时,的比值是否发生变化?若不变,求出比值;若变化,说明变化规律;②直接写出B′Q+QB的最小值.【解答】解:(1)∵y=x2﹣2mx+m2+m=(x﹣m)2+m,∴顶点坐标为C(m,m);(2)①的比值不变,理由如下:∵y=x+2与抛物线y=x2﹣2mx+m2+m交于A、B两点,且m=0,∴令y=x+2=x2,解得:x=﹣1或2,∵点A在点B的左侧,∴A(﹣1,1),B(2,4),∴AB==3,∵直线AB的解析式为y=x+2,∴M(0,2),∴AM==,∴BM=AB﹣AM=2,∵M(0,2),C(0,0)∴⊙M的半径为2,连接QM,∴QM=2,∵G(1,3),∴G为BM的中点,且MG=BM==,∴=,==,∴△MGQ∽△MQB,∴==,∴QG=QB,∴;②由三角形三边关系,当Q、N、B′三点共线时QB′+QB最小,∵直线AB的解析式为y=x+2,∴直线AB与对称轴夹角为45°,∵点B、B′关于对称轴对称,∴∠BMB′=90°,由勾股定理得,QB′+QB最小值===.7.如图,已知点A(﹣4,0),点B(﹣2,﹣1),直线y=2x+b过点B,交y轴于点C,抛物线y=ax2+x+c经过点A,C.(1)求抛物线的解析式;(2)D为直线AC上方的抛物线上一点,且tan∠ACD=,求点D的坐标;(3)平面内任意一点P,与点O距离始终为2,连接PA,PC.直接写出PA+PC的最小值.【解答】解:(1)由题意得,﹣1=2×(﹣2)+b,∴b=3,∴直线AC的解析式是:y=2x+3,∴C(0,3),∴,∴,∴抛物线的解析式是:y=+;(2)如图1,作AF⊥CD于F,作EF⊥y轴于F,作AG⊥EF于G,∵tan∠ACO=,tan∠ACD=,∴∠ACD=∠ACO,∴CE=OC=3,AE=OB=3,可得:△EFC∽△AGE,∴==,设CF=x,则AG=OF=3+x,∴EF==(x+3),在Rt△EFC中,由勾股定理得,x2+[]2=32,∴x1=,x2=﹣3(舍去),∴EF=,OF=,∴E(﹣,),∴直线CD的解析式是:y=﹣x+3,由=﹣得,x3=0(舍去),x4=﹣,当x=﹣时,y=﹣×(﹣)+3=,∴D(﹣,);(3)如2,∵点O距离始终为2,∴点P在以O为圆心,2为半径的圆O上运动,在OA上取OI=1,∵∠POI=∠AOP,=,∴△POI∽△AOP,∴PI=AP,∴PA+PC=PI+PC,∴当C、P、I共线时,PI+PC最小,此时P在线段AI与⊙O的交点P′处,PI+PC=CI,在Rt△COI中,CI===,∴PA+PC的最小值是.8.如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B,抛物线y=ax2+x+c经过A、B两点.(1)求二次函数解析式;(2)如图1,点E在线段AB上方的抛物线上运动(不与A、B重合),过点E作ED⊥AB,交AB于点D,作EF⊥AC,交AC于点F,交AB于点M,求△DEM的周长的最大值;(3)在(2)的结论下,连接CM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、C、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.(4)如图2,点N的坐标是(1,0),将线段ON绕点O逆时针旋转得到ON′,旋转角为α(0°<α<90°),连接N′A、N′B,求N′A+N′B的最小值.【解答】解:(1)∵直线y=﹣x+3与x轴交于点A,与y轴交于点B,∴A(4,0),B(0,3).∵抛物线y=ax2+x+c经过A、B两点,解得.∴二次函数的解析式为:y=﹣x2+x+3.(2)∵A(4,0),B(0,3).∴OA=4,OB=3,∴AB=5.∵ED⊥AB,∴∠EDM=∠AOB=90°,∵∠DEM+∠EMD=∠FMA+∠BAO=90°,∠FMA=∠EMD,∴∠DEM=∠BAO,∴△AOB∽△EDM,∴AO:OB:AB=ED:DM:EM=4:3:5,设E的横坐标为t,则E(t,﹣t2+t+3),∴M(t,﹣t+3),∴EM=﹣t2+t+3﹣(﹣t+3)=﹣t2+t.∴△DEM的周长为:ED+DM+EM=EM=﹣(t﹣2)2+,∴当t=2时,△DEM的周长的最大值为.(3)存在以P、Q、C、M为顶点的四边形是平行四边形,理由如下:由y=﹣x2+x+3可知,C(﹣2,0),点Q的横坐标为1,由(2)知,M(2,).①当CM为边,且点P在点Q的左侧时,有x P﹣x Q=x C﹣x M,∴x P﹣1=﹣2﹣2,即x P=﹣3,∴P(﹣3,﹣).当点P在点Q右侧时,x Q﹣x P=x C﹣x M,∴﹣1﹣x P=﹣2﹣2,即x P=5,∴P(5,﹣);②当AM为对角线时,x P+x Q=x C+x M,∴x P+1=﹣2+2,即x P=﹣1,∴P(﹣1,).综上,当以P、Q、C、M为顶点的四边形是平行四边形时,点P的坐标为(﹣3,﹣)或(5,﹣)或(﹣1,).(4)如图,在y轴的正半轴取OG,使得OG=,连接GN′,∵OG•OB=1,ON2=1,∴OG•OB=ON2,∵∠GON′=∠N′OB,∴△OBN′∽△ON′G,∴BN′:N′G=OB:ON′=3,∴N′G=N′B,∴N′A+N′B=N′C+N′G,∴当A,N′,G三点共线时,N'A+N'B的值最小.此时AG==.∴N'A+N'B的最小值为.9.如图1,抛物线y=ax2+bx﹣4与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣1,0),抛物线的对称轴是直线x=.(1)求抛物线的解析式;(2)若点P是直线BC下方的抛物线上一个动点,是否存在点P使四边形ABPC的面积为16,若存在,求出点P的坐标若不存在,请说明理由;(3)如图2,过点B作BF⊥BC交抛物线的对称轴于点F,以点C为圆心,2为半径作⊙C,点Q为⊙C上的一个动点,求BQ+FQ的最小值.【解答】解:(1)∵抛物线y=ax2+bx﹣4与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣1,0),抛物线的对称轴是直线x=,∴,解得.∴抛物线的解析式为:y=x2﹣3x﹣4.(2)由(1)知抛物线的解析式为:y=x2﹣3x﹣4.令y=0,解得x=﹣1或x=4,∴A(﹣1,0),B(4,0),设直线BC的解析式为:y=kx+n,∴,解得.∴直线BC的解析式为:y=x﹣4.设点P的横坐标为m,则P(m,m2﹣3m﹣4),过点P作PM∥y轴交BC于点M,∴M(m,m﹣4),∴PM=(m﹣4)﹣(m2﹣3m﹣4)=﹣m2+4m.=S△ABC+S△BCP∴S四边形ABPC=×(4+1)×4+(m2﹣4m)×4=﹣2m2+8m+10.∵四边形ABPC的面积为16,∴﹣2m2+8m+10=16,解得m=1或m=3,∴P(1,﹣6)或(3,﹣4).(3)如图,过点B作BF⊥BC交抛物线的对称轴于点F,以点C为圆心,2为半径作⊙C,∵B(4,0),C(0,﹣4),∴OB=OC=4,∴BC=4,∠OBC=45°,∵BF⊥BC,∴∠FBO=45°,∵抛物线的对称轴是直线x=,∴点F的纵坐标为:4﹣=,∴F(,).在CB上取CE=,过点E作EG⊥OC,交y轴于点G,交抛物线对称轴于点H,∴CG=EG=,EH=﹣=1.∴FH=6,∵CQ=2,CE=,BC=4,∴=,=,∠QCE=∠BCQ,∴△CQE∽△CBQ,∴==,∴QE=BQ,∴BQ+FQ=QE+FQ≥FE,∴当F,Q,E三点共线时,取得最小值,最小值为FE的长,∵EH⊥FH,∴EF=.则BQ+FQ的最小值为:.10.如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B(8,0),点A为抛物线的顶点.(1)求二次函数的表达式;(2)在抛物线的对称轴上是否存在点M,使△ABM是等腰三角形?如果存在,请求出点M的坐标.如果不存在,请说明理由;(3)若点P为⊙O上的动点,且⊙O的半径为,求的最小值.【解答】解:(1)由题意,解得:,∴二次函数的表达式为y=x2﹣2x;(2)过点A作直线AF⊥x轴于点F,由(1)得y=(x﹣4)2﹣4,∴抛物线的顶点A(4,﹣4),①AM=BM,∵B(8,0),∴BF=4,∵∠AFB=90°,AF=BF=4,∴△ABF是等腰直角三角形,∴M在点F处,△ABM是等腰直角三角形,此时M为(4,0),②AB=AM,由①得△ABF是等腰直角三角形,BF=4,∴AB===4,∴M为(4,﹣4﹣4)或(4,﹣4+4),③AB=BM,∵AB=BM,BF⊥AM,∴MF=AF,∴M为(4,4),综上所述,M为(4,0),(4,﹣4﹣4)或(4,﹣4+4)或(4,4);(3)如图2,以O为圆心,为半径作圆,则点P在圆周上,在OA上取点D,使OD=,连接PD,则在△APO和△PDO中,满足:==2,∠AOP=∠POD,∴△APO∽△PDO,∴===2,从而得:PD=AP,∴AP+PB=PD+PB,∴当B、P、D三点共线时,PD+PB取得最小值,过点D作DG⊥OB于点G,由于OD=,且△ABO为等腰直角三角形,则有DG=1,∠DOG=45°,∴AP+PB的最小值为:AP+PB=DB===5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学方法建议
1.密切联系实际,切忌单刀直入.
2.平面直角坐标系:逐层推进教与学,合理补充常见题.
3.用坐标表示地理位置:分析题目分解难点,建立适当坐标。
4.用坐标表示平移:准确把握教学要求,给予学生探索空间
第一部分 知识梳理
一、平面直角坐标系
1、平面直角坐标系的定义.
为了确定平面上一个点的位置,我们先在平面内画两条互相垂直并且原点重合的数轴,水平的数轴叫做x轴或横轴,去向右为正方向;竖直的数轴叫做y轴或纵轴,取向上为正方向;两轴交点O为原点.这样就建立了平面直角坐标系,这个平面叫做坐标平面.如图(1)所示.
【注】在直角坐标平面内,沿着与x轴平行的方向平移,只改变点的横坐标;沿着与y轴平行的方向平移,只改变点的纵坐标.
2、关于坐标轴的对称.
在直角坐标平面内,与点M(x,y)关于x轴对称的点的坐标为(x,-y),与点M(x,y)关于y轴对称的点的坐标为(-x,y).如图(5)所示.
【注】与x轴平行的直线上的点,其纵坐标相同;与y轴平行的直线上的点,其横坐标相同.关于x轴对称的 点横坐标不变;关于y轴对称的点纵坐标不变.
3、在平面直角坐标系中判断图形形状、求图形的面积.
(1)判断图形形状:主要根据点的坐标计算图形的边长和内角判断.
(2)求图形的面积:对于一些基本图形如三角形、平行四边形、梯形,如果有边和坐标轴平行,则就以平行于坐标轴的边为底边,利用面积计算公式求面积;对于不规则图形,要采用分割和拼补的方法,分割时一般用平行于坐标轴的直线进行分割,拼补时一般要拼补成特殊的基本图形.
针对训练1
如图(2)是某学校的平面示意图,试建立直角坐标系,用坐标表示各建筑物的位置.
例2在平面直角坐标系中描出下列各点:A(5,4)、B(-2,3)、C(-4,-2)、D(2,-5).
出题意图:能在平面直角坐标系中准确描出点的坐标.
解析:根据点的坐标定义描出各点.
解:如图(3)所示:
针对训练2
在图(4)中的直角坐标系中,分别描出下列各点:A(4,3)、B(-2,3)、C(-4,-1)、D(2,-2).
(2)由于点m为整数,∴m=0,
2m-1=2×0-1=-1,-3m-1=-3×0-1=-1,
∴点P的坐标为(-1,-1).
针对训练3
如果点A(m,n)在第三象限,求点B(-m+2,n-1)所在的象限.
例4解下列各题:
(1)如果a﹤0,b﹤0,点A(a,b)在第几象限?
(2)第几象限内的点的横坐标和纵坐标异号?
第二部分 例题精讲
例1如图(1)所示.
(1)写出图中△AOB各顶点A、O、B的坐标;
(2)你能判断△AOB的形状吗?并说明你的理由.
出题意图:能准确写出点的坐标,并初步了解在平面直角坐标系中“数”与“形”相结合的方法.
解析:(1)过A点分别作x轴和y轴的垂线,写出点A、O、B的坐标.
(2)过A点作AH⊥x轴后,知点H的坐标是(3,0),又因为B(6,0),所以OH=HB,用三角形全等的性质得到△AOB是一个以OB为底边的等腰三角形。
2、点的坐标.
有了平面直角坐标系,平面上的点就可以用一对有序实数来表示.如过点P向x轴作垂线,垂足的坐标为xp,则xp是P点的横坐标;过点P向y轴作垂线,垂足的坐标为yp,则yp叫做点P的纵坐标,把横坐标写在纵坐标的前面,得到一对有序实数(xp,yp),叫做点P在平面直角坐标系中的坐标,简称点P的坐标,记作点P(xp,yp).如图(2)所示.
例3已知点P(2m-1,-3m-1)在第三象限内.
(1)求m的取值范围;(2)若m为整数,求点P的坐标.
出题意图:综合考察象限内点的坐标特征,不等式组的解法,求不等式组的整数解等知识.
解析:第三象限内点的坐标均为负,可列不等式组求解.
答案:(1)∵点P(2m-1,-3m-1)在第三象限,
∴ 解得
∴m的取值范围为 ﹤m﹤ .
2.掌握根据点的坐标在平面内描点的方法;掌握各象限内和坐标轴上的点的坐标特征,理解垂直于坐标轴的直线的代数表示形式.
3.探索直角坐标平面内平行于坐标轴的直线上两点的距离公式,会用所得距离公式解决简单的问题.
4.针对一点沿着与坐标轴平行的某一方向平移后的坐标变化;关于原点对称的两点,关于原点对称的两点的坐标关系,掌握对应点的坐标关系.
(2)如果点A(0,-4)、B(3,0),求点C的坐标.
出题意图:把全等三角形与平面直角坐标系两个知识点联系在一起,用全等三角形的性质求线段的长度,用直角坐标系的性质求点的坐标。
解析:(1)因为CD⊥y轴,所以∠CDA=90°,根据平面直角坐标系的意义得∠AOB=90°,又根据“等角的余角相等”,得到∠1=∠3.再由AB=AC可以得到△AOB与△CDA全等.(2)点C在第四象限,其横坐标为正,纵坐标为负.由全等三角形的性质可以知道CD=OA=4,AD=OB=3.点C坐标的绝对值分别是CD、OD的长度,于是可以求出点C的坐标.
(3)有序实数对(a,b)和(b,a)不同,横坐标和纵坐标的顺序不能互换.
二、点的坐标特点
1、象限.
x轴和y轴把坐标平面分成四部分,如图(3)所示中的Ⅰ、Ⅱ、Ⅲ、Ⅳ依次叫做第一、二、三、四象限.坐标轴上的点,也就是x轴、y轴上的点不属于任何一个象限.
2、点的坐标的特点.
(1)各象限内点的坐标特限(-,-),第四象限(+,-)(如图(3)所示).
2、求点到坐标轴的距离.
点P(a,b)到x轴的距离为∣b∣,到y轴的距离为∣a∣,如(3,2)到x轴的距离为3;点(-5,-3)到x轴的距离为∣-3∣=3,到y轴的距离为∣-5∣=5;点(-2,0)到x轴的距离为0,到y轴的距离为∣-2∣=2.
【注】若点P到x轴的距离为b,到y轴的距离为a(a>0,b>0),则P点坐标为(a,b)或(a,-b)或(-a,b)或(-a,-b).
解:(1)A(3,7),O(0,0),B(6,0);
(2)△AOB是一个以OB为底边的等腰三角形.
作AH⊥x轴,垂足是H.点H的坐标是(3,0),而点O的坐标是(0,0),点B的坐标是(6,0),所以OH=HB=3,在△AHO与△AHB中,∵OH=BH,∠AHO=∠AHB=90°,AH=AH
∴△AHO≌△AHB(SAS) ∴AO=AB 所以△AOB是一个以OB为底边的等腰三角形.
(1)等腰三角形的存在性问题:根据三条边分别相等,分三种情况进行讨论.
(2)直角三角形的存在问题:根据要有一个内角为直角分三种情况进行讨论.
(3)平行四边形的存在问题:根据平行四边形的性质,利用点的平移求点的坐标.
2、运用对称知识解决实际问题.
解决此类问题时,要正确理解对称点的性质,掌握已知点和对称点之间的关系,为理解打开正确的思路.例如利用点关于坐标轴对称解决线段和最小值问题及最短路线问题.
(2)坐标轴上点的坐标特征:坐标轴上的点不属于任何象限,x轴上的点的纵坐标为0,可记作(x,0);y轴上的点的横坐标为0,可记作(0,y);坐标原点的横坐标、纵坐标都是0,可记作(0,0).
(3)对称点的坐标特征:关于x轴对称的两个点的横坐标相等,纵坐标互为相反数;关于y轴对称的两个点纵坐标相等,横坐标互为相反数;关于原点对称的两个点横、纵坐标分别互为相反数,如P(a,b)关于x轴的对称点的坐标为(a,-b),关于y轴的对称点的坐标为(-a,b),关于原点的对称点的坐标为(-a,-b).
(2)如果点A(m,3-m)是第二象限的点,那么m应满足什么条件?
(3)已知点P(a,b)在y轴的负半轴上,写出a、b的取值范围;
(4)已知点P(x,y)的坐标满足 + ,那么点P在第几象限?
例5如图(5),在平面直角坐标系中,AB=AC,∠BAC= .
(1)过点C作CD⊥y轴于点D,则△AOB与△CDA全等吗?为什么?
【注】(1)在数学中(不涉及实际意义)的坐标系的两条坐标轴的单位长度一般视为相同,但在实际问题中,受两轴上数量意义的影响,两坐标上的单位长度可以有所不同.
(2)坐标平面内的点和有序实数对是一一对应的,也就是说,坐标平面内的任何一点都能用有序实数对表示出来,而任何一对有序实数对都表示坐标平面内的一个点.
【注】(1)各象限的名称是一种规定,不能随意更改;
(2)要熟记各种点的坐标特点.
三、利用平面直角坐标系解决几何问题
1、根据平面直角坐标系中的坐标点求两点之间的距离.
(1)设A、B两点坐标分别为(a,b)和(a,c)(其中a≠b≠c),则A、B两点的距离可表示为∣b-c∣.
(2)设A、B两点坐标分别为(a,b)和(c,b)(其中a≠b≠c),则A、B两点的距离可表示为∣a-c∣.
(3)如果a﹤-1,那么点B(-a,1+a)是第几象限内的点?
(4)如果点C(a,b)在第二象限,那么点D(-a, )一定在第几象限?
(5)如果点D(2a-1,3+4b)是第四象限的点,那么a,b应满足什么条件?
出题意图:熟练运用各象限内点的坐标特征及坐标轴上点的坐标特征解决问题。
解析:已知点M(a,b),如果a﹥0,b﹥0,点M在第一象限;如果a﹤0,b﹥0, 点M在第二象限;如果a﹤0,b﹤0,点M在第三象限;如果a﹥0,b﹤0,点M在第四象限.如果b=0,点M在x轴上;如果a=0,点M在y轴上。
第十二讲平面直角坐标系
教学目标
1.在具体情境中理解有序实数对的意义,经历从现实生活中的事例引出和抽象数学概念的过程,感受数学与生活的联系.
2.理解平面直角坐标系的有关概念,知道坐标平面内的点与有序实数对是一一对应的;在从数轴到平面直角坐标系的知识发展过程中,感受数学研究的方法和坐标的思想.
3.会根据点的位置写出点的坐标,会根据点的坐标描点;会用数学式子表示垂直于坐标轴的直线,体会数形结合的数学思想.
答案:(1)点A在第三象限;
(2)第二、四象限内的点的横坐标和纵坐标异号;
相关文档
最新文档