圆周角定理的推论
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周角和圆心角的关系
圆周角定理的推论
情境导入
1. 理解圆周角定理的推论 2. 运用数学分类思想给予逻辑证明 定理,得出推导,动手证明定理推 论的正确性,最后运用定理及其推 论解决问题
想一想:(小组讨论得出结论并证明) (1)如图,BC是⊙O的直径,那么 它所对的圆周角有什么特点?你能 证明你的结论吗?
O
B
C
圆内接四边形的对角互补.
想一想:
如图:∠DCE是圆内接四边形ABCD是一个 外角,∠A与∠DCE的大小有什么关系?
当堂检测
1、填空题:
A
Dwenku.baidu.com
(1)如图所示,
∠BAC= ∠BDC,∠DAC= ∠DBC.
C
B
(2)如图所示,⊙O的直径AB=10cm,
C为⊙O上一点,∠BAC=30°,
A
则BC= 5 cm
议一议
(2)如图:点C的位置发生了变化, ∠BAD与∠BCD之间的关系还成立吗?为 什么?
D
A
像这样,四个顶点都在⊙O
O
上的四边形叫做圆内接四边形,
⊙O为四边形ABCD外接圆。
B
C
解:如图,圆内接四边形ABCD中
∵ 弧BCD和弧BAD所对的圆心角
的和是周角
D
∴∠A+∠C= 180° A
同理∠B+∠D=180°
(2)如图,圆周角∠A =90º,弦BC 是直径吗?为什么?
(3)由此你能得出什么结论?
圆周角定理的推论2: 用于构造直角
半圆(或直径)所对的圆周角是直 角;90°的圆周角所对的弦是直径。
用于判断某条弦 是否是直径
议一议
(1)如图,A、B、C、D是⊙O上的四个 点,AC为⊙O的直径,∠BAD与∠BCD之 间有什么关系?为什么?
●O
C
B
2、如图,△ABC的顶点均在⊙O上, AB=4, ∠C=30°,求⊙O的直径.
解:连接AO并延长交⊙O点E ,连接BE
∵AE是⊙O的直径
∴∠ABE=90°
B
又∵∠C=30°
∴∠E=30°
A
●O C
∵ AB=4
∴AE= 8
E
在寻求真理的长河中,唯有学习,不断地 学习,勤奋地学习,有创造性地学习,才能越 重山跨峻岭。 —— 华罗庚
圆周角定理的推论
情境导入
1. 理解圆周角定理的推论 2. 运用数学分类思想给予逻辑证明 定理,得出推导,动手证明定理推 论的正确性,最后运用定理及其推 论解决问题
想一想:(小组讨论得出结论并证明) (1)如图,BC是⊙O的直径,那么 它所对的圆周角有什么特点?你能 证明你的结论吗?
O
B
C
圆内接四边形的对角互补.
想一想:
如图:∠DCE是圆内接四边形ABCD是一个 外角,∠A与∠DCE的大小有什么关系?
当堂检测
1、填空题:
A
Dwenku.baidu.com
(1)如图所示,
∠BAC= ∠BDC,∠DAC= ∠DBC.
C
B
(2)如图所示,⊙O的直径AB=10cm,
C为⊙O上一点,∠BAC=30°,
A
则BC= 5 cm
议一议
(2)如图:点C的位置发生了变化, ∠BAD与∠BCD之间的关系还成立吗?为 什么?
D
A
像这样,四个顶点都在⊙O
O
上的四边形叫做圆内接四边形,
⊙O为四边形ABCD外接圆。
B
C
解:如图,圆内接四边形ABCD中
∵ 弧BCD和弧BAD所对的圆心角
的和是周角
D
∴∠A+∠C= 180° A
同理∠B+∠D=180°
(2)如图,圆周角∠A =90º,弦BC 是直径吗?为什么?
(3)由此你能得出什么结论?
圆周角定理的推论2: 用于构造直角
半圆(或直径)所对的圆周角是直 角;90°的圆周角所对的弦是直径。
用于判断某条弦 是否是直径
议一议
(1)如图,A、B、C、D是⊙O上的四个 点,AC为⊙O的直径,∠BAD与∠BCD之 间有什么关系?为什么?
●O
C
B
2、如图,△ABC的顶点均在⊙O上, AB=4, ∠C=30°,求⊙O的直径.
解:连接AO并延长交⊙O点E ,连接BE
∵AE是⊙O的直径
∴∠ABE=90°
B
又∵∠C=30°
∴∠E=30°
A
●O C
∵ AB=4
∴AE= 8
E
在寻求真理的长河中,唯有学习,不断地 学习,勤奋地学习,有创造性地学习,才能越 重山跨峻岭。 —— 华罗庚