概率论与数理统计1.4.2独立试验概型

合集下载

概率论与数理统计知识要点

概率论与数理统计知识要点

知识要点一 概念:1随机事件:用,,A B C 等表示 互不相容: AB =Φ互逆: AB =Φ且A B ⋃=Ω ,此时,B A = 互逆⇒互不相容 ,反之不行相互独立: ()()P A B P A =或()()()P AB P A P B =2 随机事件的运算律:(1) 交换律: ,A B B A AB BA ⋃=⋃= (2) 结合律: ()(),()()A B C A B C AB C A BC ⋃⋃=⋃⋃=(3) 分配律: (),()()()A B C AB AC A BC A B A C ⋃=⋃⋃=⋃⋃(4 ) De Morgen 律(对偶律)B A B A =⋃ B A AB ⋃= 推广:11n ni i i i A A ===U I11nni i i i A A ===IU3 随机事件的概率:()P A 有界性 0()1P A ≤≤ 若A B ⊂ 则()()P A P B ≤ 条件概率 ()()()P AB P A B P B =4 随机变量: 用大写,,X Y Z 表示 .若X 与Y 相互独立的充分必要条件是)()(),(y F x F y x F Y X =若X 与Y 是离散随机变量且相互独立的充分必要条件是(,)()()X Y f x y f x f y = 若X 与Y 是连续随机变量且相互独立的充分必要条件是(,)()()X Y p x y p x p y =若X 与Y 不相关,则cov(,)0X Y = 或 (,)0R X Y = 独立⇒不相关 反之不成立当X 与Y 服从正态分布时 ,则相互独立 ⇔不相关二 两种概率模型古典概型 :()MP A N=:M A 所包含的基本事件的个数 ;:N 总的基本事件的个数 伯努利概型 : n 次独立试验序列中事件A 恰好发生m 次的概率 ()m m n mn n P m C p q -=n 次独立试验序列中事件A 发生的次数为1m 到2m 之间的概率2112()()m n m m P m m m P m =≤≤=∑n 次独立试验序列中事件A 至少发生r 次的概率1()()1()nr n n m rm P m r P m P m -==≥==-∑∑特别的 ,至少发生一次的概率 (1)1(1)nP m p ≥=--三 概率的计算公式:加法公式:()()()()P A B P A P B P AB ⋃=+-若B A ,互不相容 ,则)()()(B P A P B A P +=+推广:)()()()()()()()(ABC P AC P BC P AB P C P B P A P C B A P +---++=⋃⋃若B A,,C 互不相容,则()()()()P A B C P A P B P C ++=++乘法公式:)()()(A B P A P AB P =或()()P B P A B = 若,A B 相互独立 ,()()()P AB P A P B =推广:)()()()()(12121312121-=n n n A A A A P A A A P A A P A P A A A P ΛΛΛΛΛΛ 若它们相互独立,则1212()()()()n n P A A A P A P A P A =L L L L全概率公式:若 A 为随机事件,n B B B ΛΛ21,互不相容的完备事件组,且 0)(>i B P 则 )()()()()()()(2211n n B A P B P B A P B P B A P B P A P +++=ΛΛ 注: 常用,B B 作为互不相容的完备事件组有诸多原因可以引发某种结果 ,而该结果有不能简单地看成这诸多事件的和 ,这样的概率问题属于全概问题. 用全概率公式解题的程序:(1) 判断所求解的问题 是否为全概率问题(2) 若是全概率类型,正确的假设事件A 及i B ,{}i B 要求是互斥的完备事件组 (3) 计算出(),()i i P B P A B(4) 代入公式计算结果四 一维随机变量:分布函数:)()(x X P x F ≤= 性质:(1) 1)(0≤≤x F(2) 若21x x < ,则)()(21x F x F ≤ (3) 右连续(4)1)(lim =+∞→x F x 即 1)(=+∞F0)(lim =-∞→x F x 即 0)(=-∞F ( 此性质常用来确定分布函数中的常数)利用分布函数计算概率:()()()P a X b F b F a <≤=- 一维离散随机变量:概率函数:()()1,2i i p x P X x i ===L (分布律)性质:()0i p x ≥()1iip x =∑ (此性质常用来确定概率函数中的常数)已知概率函数求分布函数 ()()()i i iix xx xF x P X x p x ≤≤===∑∑一维连续随机变量: 概率密度()f x性质:(1) 非负性()0f x ≥ (2)归一性:()1f x dx +∞-∞=⎰(常用此性质来确定概率密度中的常数)分布函数和概率密度的关系: ()()f x F x '= ()()xF x f x dx -∞=⎰(注意:当被导函数或被积函数是分段函数时,要分区间讨论,其结果也是分段函数) 利用概率密度求概率 ()()baP a X b f x dx <≤=⎰五 一维随机变量函数的分布:离散情形 : 列表 、整理、合并连续情形()Y g X =: 分布函数法. 先求Y 的分布函数 ,再求导 六 二维随机变量: 联合分布函数 :(,)(,)F xy P X x Y y =≤≤性质: (1) (,)0F -∞-∞= (2) (,)0F x -∞= (3) (,)0F y -∞= (4) (,)1F +∞+∞=(此极限性质常用来确定分布函数中的常数)边缘分布函数: ()(,)X F x F x =+∞ ()(,)Y F y F y =+∞ 二维离散随机变量:联合概率函数 (,)(,)i j i j p x y P X x Y y === 列表 边缘概率函数: ()(,)X i ijjp x p x y =∑ ()(,)Yi i j ipy p x y =∑二维连续随机变量: 联合概率密度 (,)f x y性质 (1)(,)0f x y ≥(2)(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰(常用此性质来确定概率密度中的常数)联合分布函数与联合概率密度的关系(,)(,)(,)(,)x yf x y F x y x yF x y f x y dxdy-∞-∞∂=∂∂=⎰⎰(注意:当被导函数或被积函数是分段函数时,要分区间讨论,其结果也是分段函数) 利用联合概率密度求概率((,))(,)RP x y R f x y dxdy ∈=⎰⎰已知联合概率密度求边缘概率密度()(,)X f x f x y dy +∞-∞=⎰()(,)Y f y f x y dx +∞-∞=⎰(注意:当被积函数是分段函数时,要分区间讨论,其结果也是分段函数)七 随机变量的数字特征: 若X 为离散随机变量:1()()niii E X x p x ==∑若X 为连续随机变量: ()()E X xf x dx +∞-∞=⎰二维情形 若(,)~(,)X Y f x y 为二维连续随机变量,则 ()()(,)X E X xf x dx xf x y dxdy +∞+∞+∞-∞-∞-∞==⎰⎰⎰()(,)E Y yf x y dxdy +∞+∞-∞-∞=⎰⎰若(,)~(,)i j X Y p x y 为二维离散随机变量,则()()(,)i X i i i j iijE X x p x x p x y ==∑∑∑()()(,)j Y j j i j jjiE Y y p y y p x y ==∑∑∑随机变量的函数的数学期望:若X 为离散随机变量:[]()()()iiiE g X g x p x =∑若X 为连续随机变量 []()()()E g X g x f x dx +∞-∞=⎰方差:定义 []{}2()()D X EX E X =-方差的计算公式:22()()()D X E X E X =- 注意这个公式的转化:22()()()E X D X E X =+关于期望的定理: 关于方差的定理 (1) ()E C C = (1) ()0D C =(2)()()E CX CE X = (2) 2()()D CX C D X =(3) ()()()E X Y E X E Y +=+ 相互独立: ()()()D X Y D X D Y +=+ ()()()E X Y E X E Y -=- ()()()D X Y D X D Y -=+ ()()()E X Y E X E Y λμλμ+=+ (注意:反之不成立) 相互独立()()()E XY E X E Y =(注意:反之不成立)八 要熟记的常用分布及其数字特征:01-分布 (1,)B p 1()0,1x xp x p q x -== ()()E X p D X pq == 二项分布(,)B n p ()0,1x x n xi n p x C p qx n -==L ()()E X np D X npq ==泊松分布()p λ ()0,1!xp x e x x λλ-==L ()()E X D X λλ==均匀分布:(,)U a b 1()0a x b f x b a ⎧<≤⎪=-⎨⎪⎩其他 ()01x aa xb b a F X x ax b -⎧≤<⎪-⎪=<⎨⎪≥⎪⎩2()()()212a bb a E X D X +-==指数分布:()e λ 0()00xe xf x x λλ-⎧>=⎨≤⎩ 10()00x e x F x x λ-⎧->=⎨≤⎩211()()E X D X λλ==正态分布:2~(,)X N μσ22()21()2x f x e μσπσ--=22()21()2x xF x edx μσπσ---∞=⎰2()()E X D X μσ==特别地(0,1)N 221()2x x e ϕπ-=221()2x xx edx π--∞Φ=⎰()(1)(x x Φ-=-Φ)()0()1E X D X ==2~(,)X N μσ 1212()()x x X P x X x P μμμσσσ---<<=<<21()()x x μμσσ--=Φ-Φ九 正态随机变量线性函数的分布十 统计部分:统计量 无偏性 有效性矩估计 最大似然估计 区间估计 假设检验例: 甲袋中有5只红球10只白球,乙袋中有8只红球6只白球,现先从甲袋中任取一球放入乙袋,然后又从乙袋中任取一球放入甲袋. 求这一个来回后甲袋中红球数不变的概率 . 解: 设A :从甲袋中取出放入乙袋的是红球,B :从乙袋中返还甲袋的是红球,C : 这一个来回后甲袋中红球数不变,则,B A AB C +=从而)()()()()()()(A B P A P A B P A P B A P B A P C P +=+=951581510159155=⋅+⋅=.例 高射炮向敌机发射三发炮弹(每弹击中与否相互独立),设每发炮弹击中敌机的概率均为3.0 ,又若敌机中一弹,其坠落的概率为2.0,若敌机中两弹,其坠落的概率为6.0,若敌机中三弹,则必然坠落。

概率论与数理统计知识点总结!

概率论与数理统计知识点总结!

《概率论与数理统计》第一章随机事件及其概率§1.1 随机事件一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率古典概型公式:P (A )=所含样本点数所含样本点数ΩA 实用中经常采用“排列组合”的方法计算补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A :“每个盒子恰有1个球”。

求:P(A)=?Ω所含样本点数:n n n n n =⋅⋅⋅...Α所含样本点数:!1...)2()1(n n n n =⋅⋅-⋅-⋅n nn A P !)(=∴补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少? 解:设A i :“信箱中信的最大封数为i”。

(i =1,2,3)求:P(A i )=?Ω所含样本点数:6444443==⋅⋅A 1所含样本点数:24234=⋅⋅A 2所含样本点数: 363423=⋅⋅CA 3所含样本点数:4433=⋅C注:由概率定义得出的几个性质: 1、0<P (A )<1 2、P(Ω)=1,P(φ) =0 §1.3 概率的加法法则定理:设A 、B 是互不相容事件(AB=φ),则: P (A ∪B )=P (A )+P (B )推论1:设A 1、 A 2、…、 A n 互不相容,则 P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n )推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1推论3: P (A )=1-P (A )推论4:若B ⊃A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式):对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律:§1.4 条件概率与乘法法则条件概率公式:P(A/B)=)()(B P AB P (P(B)≠0)P(B/A)= )()(A P AB P (P(A)≠0)∴P (AB )=P (A /B )P (B )= P (B / A )P (A )有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。

8讲独立试验序列概型

8讲独立试验序列概型
2010-7-6 16
伯努利定理) 定理 (伯努利定理 伯努利定理 设一次试验中事件A发生的概率 设一次试验中事件 发生的概率 重伯努利试验中, 为p(0<p<1), 则n重伯努利试验中 事 重伯努利试验中 恰好发生k次的概率用 表示, 件A恰好发生 次的概率用 n(k)表示 恰好发生 次的概率用p 表示 则
概率论与数理统计
第8讲 讲
2010-7-6
1
独立试验序列概型
2010-7-6
2
事件运算的最小项 任给n个事件 个事件A 取这n个事件 任给 个事件 1,A2,…,An, 取这 个事件 中的每一个,然后将其中的一些取逆 然后将其中的一些取逆, 中的每一个 然后将其中的一些取逆 则由 A1,A2,…,An产生的任何逻辑式都可由这 个 产生的任何逻辑式都可由这n个 事件中取逆的和不取逆的事件相交再相并 得到, 且称它们为这n个事件的一个最小项. 个事件的一个最小项 得到 且称它们为这 个事件的一个最小项 给定n个事件可产生多个不同的最小项 个事件可产生多个不同的最小项, 给定 个事件可产生多个不同的最小项 各 个最小项之间是互不相容的. 个最小项之间是互不相容的 而这n个事件能够逻辑上构成的任何事 而这 个事件能够逻辑上构成的任何事 可以由若干个最小项的并构成. 件, 可以由若干个最小项的并构成
P(B0 ) = P( ABC) = P( A)P(B)P(C) = 0.83 P(B ) = P( ABC + ABC + ABC ) 1 = P( ABC) + P( ABC) + P( ABC ) = 3×0.2×0.82 P(B2 ) = P( A BC + ABC + AB C ) = 3×0.2 ×0.8

概率论与数理统计浙大第四版

概率论与数理统计浙大第四版
必然事件——全体样本点组成的事件,记 为S, 每次试验必定发生的事件.
不可能事件——不包含任何样本点的事件, 记为 ,每次试验必定不发生的事件.
事件的关系和运算 文氏图 ( Venn diagram )
A
随机事件的关系和运算 雷同集合的关系和运算
1. 事件的包含
A B —— A 包含于B
事件 A 发生必 导致事件 B 发生
非负性: A , P( A) 0
归一性: P( ) 1
可列可加性:P
i 1
Ai
P ( Ai )
i 1
其中 A1, A2 , 为两两互斥事件,
概率的性质
P() 0
有限可加性: 设 A1,A2,An 两两互斥
P
n i1
Ai
n i1
P(Ai )
P(A)1P(A) P(A)1
解 P(AB) P(A)P(B)P(AB)
P(AB) P(A) P(B) P(AB)
P(A)P(B)10.3 —— 最小值
最小值在 P( A B) 1 时取得
P( A B) P( A) 0.6 —— 最大值
最大值在 P(AB) P(B) 时取得
§1.4 古典概型
概率的 设 随机试验E 具有下列特点: 古典定义 基本事件的个数有限
(2) nB C31C122C150C55
P( A) 25 91
P(B) 6 91
例2 把标有 1,2,3,4 的 4 个球随机地放入 标有1,2,3,4 的 4 个盒子中,每盒放一球, 求有至少有一个盒子的号码与放入的球 的号码一致的概率。
解 n A44 4!
设 Ai 表示 i 号球入 i 号盒, i = 1,2,3,4
§1.1 随机事件

《概率论与数理统计》1-4全概公式

《概率论与数理统计》1-4全概公式

365 400 97 146097
146097 20871 7
20871 52 400 71 P B 400 400
方法二 利用全概公式
A 表示平年,
则 A, A 构成一划分
B 表示有53个星期天
P A 97 400

1 2 P B | A , P B | A 7 7
125 198
注 : 一定要写清事件, 公式 , 不得只写算式.
p 2500 2000 1500 5% 3% 1% 3.3% X 6000 6000 6000
全概率公式和贝叶斯公式是概率论中的两个重要公式,
有着广泛的应用.若把事件Ai 理解为‘原因’, 而把 B理 解为‘结果’ P, 则 B| A 是原因 Ai
为 0.01, 各车间的产品数量分别为2500, 2000, 1500件 . 出厂时 , 三车间的产品完全混合, 现从中任取一产品, 求该 产品是次品的概率. 若已知抽到的产品是次品, 求该产品 是一车间的概率.
解 : 设 Ai 为取到第 i个车间的产品, B为取到次品 由全概率公式得:
P( B) P( Ai ) P( B Ai )
i 1
3
P( A1 ) P( B A1 ) P( A2 ) P( B A2 ) P( A3 ) P( B A3 )
2500 2000 1500 5% 3% 1% 3.3% 6000 6000 6000
由贝叶斯公式得:
P A1 B
P A1 P B A1 P B
P B P BA1 P BA2 P BA3 P A1 P B | A1 P A2 P B | A2 P A3 P B | A3

概率论与数理统计 第一章 第二节

概率论与数理统计 第一章 第二节

1. 2. 3. 4.
古典概型的几类基本问题
抽球问题 分球入盒问题 分组问题 随机取数问题
求解关键:古典概型定义式:
问题一:从甲、乙、丙3名同学中选出2名去参加某天的一 项活动,其中1名同学参加上午的活动,1名同学参加下午 的活动,有多少种不同的选法? 问题二:从甲、乙、丙3名同学中选出2名去参加某天一项 活动,有多少种不同的选法? 问题三:设盒中有3个白球,2个红球,现从盒中任抽2个 球,求取到一红一白的概率。 全班200个同学至少有两个人一天生日的概率?
• 不同点:
排列与元素的顺序有关, 而组合则与元素的顺序无关.
• 联系:构造排列分成两步完成,先取后排; 而构造组合就是其中一个步骤.第1步,先求 出从这n个不同元素中取出m个元素的组合 数 第2步,求每一个组合中m个元素 的全排列数 • 根据乘法原理
• 例6:两封信随机地向标号1、2、3、4的四个邮筒投 寄,求第二个邮筒恰好被投入1封信的概率。 首先,对于两封信而言(两个步骤),都有可能被 投入任意的一个邮筒,即每封信都有四个可能的选 择,因而两封信投递到四个邮筒的可能性有?种 其次,令事件A表示第二个邮筒被投入1封信,相当 于从两封信中选择一封投入到第二个邮筒,情况有? 种。选择之后另一封信被投入其他三个邮筒中的一个 ,共?种情况,根据乘法原理,组成事件A的不同 投法共?种。 根据古,十
人依次从袋中各取一球(不放回),问:第一个人取
得红球的概率是多少?第二个人取得红球的概率是 多少?
• 研究范围:作为条件的事件B具有正概率的情况; 条件概率也是一种概率,具有概率的三个性质; (1)对于任一事件A,有P(A|B)≥0; (2)P(Ω|B)=1 (3)可列可加性:设A1,A2,…是两两互不相容的事件,则有 P[(A1|B)∪(A2|B)∪ …]=P(A1|B)+P(A2|B)+… 一般有:

概率论与数理统计自学指导书

概率论与数理统计自学指导书

《概率论与数理统计》自学指导书一、课程名称:槪率论与数理统讣二、自学学时:120三、课件学时:四、教材名称:《概率论与数理统讣》,袁荫棠编,中国人民大学出版社。

五、参考资料:六、考核方式:章节同步习题(10%) +笔试(90%)七、课程简介本课程主要讲解概率统汁的基本概念、理论与方法。

内容主要包括:随机事件及其概率、随机变量及其分布、随机变量的数字特征、几种常见的分布、大数泄律与中心极限立理、样本分布、参数估计、假设检验以及回归分析等。

八、自学内容指导第一章随机事件及其概率(一)本章内容概述本章主要讲授随机试验、样本空间、古典概型、概率的立义和性质,加法及乘法公式、条件概率公式、全概率公式及贝叶斯公式,事件的独立性及独立试验概型等。

(二)自学课时安排(三)知识点1、随机事件(1)随机试验是指具有下列特点的试验:•在相同条件下可重复进行;•每次试验的结果不唯一,且试验前可确知所有可能结果;•每次试验前不可准确预知该次试验会岀现哪一种结果。

(2)随机事件在每次试验中,可能发生也可能不发生,而在大量试验中具有某种规律性的事件。

必然事件一一每次试验中一泄发生的事件,记不可能事何一每次试验中一定不发生的事件,记①。

基本事件与样本空间。

(3)事件的关系和运算①熟悉两个事件的和事件、积事件、差事件的含义及符号表示,并熟悉推广到多个事件的情形。

②此外,还有互斥事件、对立事件以及完备事件组的槪念。

互斥事件:如果事件A与B不能同时发生,即= ©,称事件A与B互不相容(也称互斥)。

对立事件:事件“非A”称为A的对立事件(或逆事件),记作7。

注意:AA=^,A + A = Q.,A = Q.-A,A = A O③事件的运算规律:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法对加法的分配律、对偶律,特别要注意对偶律:2、概率注意:三种概率的泄义(概率三种定义:统计泄义、古典定义、公理化左义),但重点是概率的古典左义,它是我们计算事件概率的主要依据。

自考概率论与数理统计(经管类)自学资料

自考概率论与数理统计(经管类)自学资料

自考概率论与数理统计(经管类)自学资料第一章随机事件与随机事件的概率1.1 随机事件例一,掷两次硬币,其可能结果有:{上上;上下;下上;下下}则出现两次面向相同的事件A与两次面向不同的事件B都是可能出现,也可能不出现的。

引例二,掷一次骰子,其可能结果的点数有:{1,2,3,4,5,6}则出现偶数点的事件A,点数≤4的事件B都是可能出现,也可能不出现的事件。

从引例一与引例二可见,有些事件在一次试验中,有可能出现,也可能不出现,即它没有确定性结果,这样的事件,我们叫随机事件。

(一)随机事件:在一次试验中,有可能出现,也可能不出现的事件,叫随机事件,习惯用A、B、C表示随机事件。

由于本课程只讨论随机事件,因此今后我们将随机事件简称事件。

虽然我们不研究在一次试验中,一定会出现的事件或者一定不出现的事件,但是有时在演示过程中要利用它,所以我们也介绍这两种事件。

必然事件:在一次试验中,一定出现的事件,叫必然事件,习惯用Ω表示必然事件。

例如,掷一次骰子,点数≤6的事件一定出现,它是必然事件。

不可能事件:在一次试验中,一定不出现的事件叫不可能事件,而习惯用φ表示不可能事件。

例如,掷一次骰子,点数>6的事件一定不出现,它是不可能事件。

(二)基本(随机)事件随机试验的每一个可能出现的结果,叫基本随机事件,简称基本事件,也叫样本点,习惯用ω表示基本事件。

例如,掷一次骰子,点数1,2,3,4,5,6分别是基本事件,或叫样本点。

全部基本事件叫基本事件组或叫样本空间,记作Ω,当然Ω是必然事件。

(三)随机事件的关系(1)事件的包含:若事件A发生则必然导致事件B发生,就说事件B包含事件A ,记作。

例如,掷一次骰子,A表示掷出的点数≤2,B表示掷出的点数≤3。

∴A={1,2},B={1,2,3}。

所以A发生则必然导致B 发生。

显然有(2)事件的相等:若,且就记A=B,即A与B相等,事件A等于事件B,表示A与B实际上是同一事件。

概率论与数理统计习题集及答案

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ;2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= .(2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: .(3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: .(5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: .2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A ,(4)B A ⋃= ,(5)B A = 。

§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= .2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。

概率论与数理统计的基本概念1

概率论与数理统计的基本概念1

定 理 5 . 4 独 立 同 分 布 的 中 心 极 限 定 理
设随机变量Z1,Z2,L ,Zn,L 相互独立同分布,EZi ,DZi 2,i 1,2,L
n
则 Zbn,0.75,
E Z n p 0 . 7 5 n ,D Z n p q 0 . 1 8 7 5 n ,

fn
A
Z n
而 P 0 . 7 4 Z n 0 . 7 6 P Z 0 . 7 5 n 0 . 0 1 n
1
0.1875n
0.01n 2
118n750.90
n18750
第三章 多维随机变量及其分布
❖ 3.1 二维随机变量
❖ 3.2 边缘分布
❖ 3.3 条件分布
2
❖ 3.4 相互独立的随机变量
第四章
随机变量的数字特征 4.1 数学期望 4.2 方差 4.3 协方差及相关系数 4.4 矩、协方差矩阵
第五章
大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理
第六章 数理统计的基本概念 6.1 总体和样本 6.2 常用的分布
3
第七章
参数估计 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计
第八章
假设检验 8.1 假设检验 8.2 正态总体均值的假设检验 8.3 正态总体方差的假设检验 8.4 置信区间与假设检验之间的关系 8.5 样本容量的选取 8.6 分布拟合检验 8.7 秩和检验
则 PZ fxdx x
x2
x
2
f xdx
f (x)
12
x2
fxdx
DZ
2
2 2
8
例1:在n重贝努里试验中,若已知每次试验事件A出 现

概率论与数理统计教案

概率论与数理统计教案
概率的性质:
性质1:
性质2(有限可加性):若A1,A2,…,An是两两互不相容的事件,则有P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An)。
性质3:设A,B是两个事件,若 ,则有P(B-A)=P(B)-P(A);P(B)≥P(A)。
性质4:对于任一事件A,P(A)≤1。
性质5(逆事件的概率):对于任一事件A,有 。
性质6(加法公式):对于任意两个事件A,B有 。
1.4等可能概型(古典概型)
具有以下两个特点得试验是大量存在的,这种试验称为等可能概型,也成为古典概型:
①试验的样本空间只包含有限个元素。
②试验中每个基本事件发生的可能性相同。
若事件A包含k个基本事件,即A={ei1}∪{ei2}∪…∪{eik},其中i1,i2,…,ik是1,2,…,n中某k个不同的数,则等可能概型中事件A的概率计算公式为:
(贝叶斯(Bayes)公式)
1.6独立性
定义:设A,B是两事件,若满足等式
P(AB)=P(A)P(B),则称事件A,B相互独立,简称A,B独立。
交换律:
结合律:
分配率:
摩根率:
1.3频率与概率
(1)频率
定义:在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数nA称为事件A发生的频数。比值nA/n称为事件A发生的频率,并记为fn(A)。
频率具有如下基本性质:
①0≤fn(A)≤1
②fn(S)=1
③若A1,A2,…,Ak是两两互不相容的事件,则fn(A1∪A2∪…∪Ak)=fn(A1)+fn(A2)+…+fn(Ak)。
(3)事件间的关系与事件的运算
设试验E的样本空间为S,而A,B,Ak(k=1,2,……)是S的子集:

概率论与数理统计ppt课件

概率论与数理统计ppt课件

称这种试验为等可能概型(或古典概型)。
*
例1:一袋中有8个球,其中3个为红球,5个为黄球,设摸到每一球的可能性相等,从袋中不放回摸两球, 记A={恰是一红一黄},求P(A). 解:
(注:当L>m或L<0时,记 )
例2:有N件产品,其中D件是次品,从中不放 回的取n件, 记Ak={恰有k件次品},求P(Ak). 解:
*
第四章 随机变量的数字特征 4.1 数学期望 4.2 方差 4.3 协方差及相关系数 4.4 矩、协方差矩阵 第五章 大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理 第六章 数理统计的基本概念 6.1 总体和样本 6.2 常用的分布
*
第七章 参数估计 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计 第八章 假设检验 8.1 假设检验 8.2 正态总体均值的假设检验 8.3 正态总体方差的假设检验 8.4 置信区间与假设检验之间的关系 8.5 样本容量的选取 8.6 分布拟合检验 8.7 秩和检验 第九章 方差分析及回归分析 9.1 单因素试验的方差分析 9.2 双因素试验的方差分析 9.3 一元线性回归 9.4 多元线性回归
解: 设 Ai={ 这人第i次通过考核 },i=1,2,3 A={ 这人通过考核 },
亦可:
*
例:从52张牌中任取2张,采用(1)放回抽样,(2)不放 回抽样,求恰是“一红一黑”的概率。
利用乘法公式
与 不相容
(1)若为放回抽样:
(2)若为不放回抽样:
解: 设 Ai={第i次取到红牌},i=1,2 B={取2张恰是一红一黑}



1 2 N


1 2 N
……

概率论与数理统计(第3版)(谢永钦)第1章 概率论的基本概念

概率论与数理统计(第3版)(谢永钦)第1章  概率论的基本概念
(3)分配律:A ∩ (B∪C)= (A∩B)∪( A ∩ C )
(4)
A∪(B ∩ C)=(A∪B)∩(A∪C)
(5)
概率论与数理统计
02
第2节 概率、古典概率
概率论与数理统计
1. 概率 定义1.1
在相同条件下,进行了n次试验.若随机事件A在这n次试验中发 生了k次,则比值 称为事件A在n次实验中发生的频率,记为
并按其出现的先后排成一行.试求下列事件的概率
概率论与数理统计
P(A2 )
C19 103 104

0.9
P(A3 )
C24 92 104
0.0486
概率论与数理统计
例题
(一个古老的问题)一对骰子连掷25次.问出现双 6与不出现双6的概率哪个大?
概率论与数理统计
4. 几何概型
若试验具有如下特征:
频率具有下列性质:
(1)对于任一事件A,有 (2)
概率论与数理统计
概率论与数理统计
定义1.2 设事件A在n次重复试验中发生了k次, n很大时,频率 k/n稳定在某一数值p的附近波动,而随着试验次数n的增 加,波动的幅度越来越小,则称p为事件A发生的概率, 记为:P(A)=p.
概率论与数理统计
历史上著名的统计学家德·摩根(De Morgan)蒲丰(Buffon)和皮尔逊
对于任意的事件A,B只有如下分解:
概率论与数理统计
AB

A B
AB

AB
A B

AB
A B

AB
A B

概率论与数理统计
A
AB
B

A
A

概率论与数理统计

概率论与数理统计第1-3章复习资料

概率论与数理统计第1-3章复习资料

其中λ = n P 例2:在例1的试验中,求: (1)A=“点数和为奇数的概率”; (2)B=“点数不同的概率” 例3:某产品40件,其中有次品3件。现从其中任取3件, 求下列事件的概率: (1)A=“3件中恰有2件次品”;(111/9880) (2)B=“ 3件中至少有1件次品”(633/2964)
xi R , i 1 , , n , n 元函数
F ( x1 ,, xn ) P( X 1 x1 ,, X n xn ) ( 是 X 1 ,, X n ) 的分布函数。
(1)’
注:r, v 取值的规律称 r, v 的分布,分布函数是描 述 r, v 的概分布的主要方法之一。 (二)分布函数的性质: 一维:1、有界性:0 F ( X ) 1
m 4、由公式 P( A) 进行计算 n
(二)几何概型 所求概率为: P(A)=[A所包含的区域度量] / [样本空间的度量] (三)条件概率及其全概率公式 1、条件概率:若P(B) >0,则
P( A B) P( AB) P( B)
2、全概率公式 如果B1,…,Bn为一完备事件组,即满足: (1) B1,…,Bn两两不相容i=1, …,n;
例4:一盒装有10只晶体管,其中有4只次品,6只正品,随 机地抽取 1只测试,直到4只次品晶体管都找到。求最后 一只次品晶体管在下列情况发现的概率: (1)A=“在第 5 次测试发现”。(2/105) (2)B=“在第10次测试发现”。(2/5) 例5:将编号1,2,3的三本书任意地排列在书架上,求事件 A=“至少有一本书自左到右的排列顺序号与它的编号相同” 的概率。 例6:五个乒乓球,其中三个旧球,二个新球,每次取一个, 共取两次,以有放回和无放回两种方式求下列事件的概率: (1)A=“两次都取到新球”; (2)B=“第一次取到新球,第二次取到旧球”; (3)C=“至少有一次取到新球”。

概率论基本公式

概率论基本公式

概率论与数理统计基本公式第一部分 概率论基本公式1、)(;A B A B A AB A B A B A -⋃=⋃-==--2、对偶率:.----⋃=⋂⋂=⋃B A B A B A B A ;3、概率性率:)()();()()(),()()(B P A P B P A P B A P A B AB P A P B A P ≥-=-⊂-=-时有:特别,4、古典概型5、条件概率例:有三个罐子,1号装有2红1黑共3个球,2号装有3红1黑4个球,3号装有2红2黑4个球,某人随机从其中一罐,再从该罐中任取一个球,(1)求取得红球的概率;(2)如果取得是红球,那么是从第一个罐中取出的概率为多少?.348.0)()()|()|()2(.639.0)(31)()()(.21)|(;43)|(;32)|()|()()(}{3,2,1i }{)1(111321321i i 321≈=≈∴==========∑A P B P B A P A B P A P B P B P B P B A P B A P B A P A B P A P B P B B B A i B ii 由贝叶斯公式:,,依题意,有:由全概率公式是一个完备事件、、,由题知取得是红球。

,号罐球取自设解:6、独立事件(1)P(AB)=P(A)P(B),则称A 、B 独立。

(2)伯努利概型如果随机试验只有两种可能结果:事件A 发生或事件A 不发生,则称为伯努利试验,即: P(A)=p,q p A P =-=-1)( (0<p<1,p+q=1)相同条件独立重复n 次,称之为n 重伯努利试验,简称伯努利概型。

伯努利定理:k n k k n p p C p n k b --=)1(),;( (k=0,1,2……)事件A 首次发生概率为:1)1(--k p p例:设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号,(1)进行5次重复独立试验,求指示灯发出信号的概率;(2)进行了7次重复独立试验,求指示灯发出信号的概率。

概率论与数理统计1.4

概率论与数理统计1.4
1 1 1 2 1 3 8 3 5 3 5 3 3 15
1
2
3
P ( B ) P ( Ai ) P ( B|Ai )
i 1
3
Ai={球取自i 号盒子} B ={取得红球}
将此例中所用的方法推广到一般的情形,就 得到在概率计算中常用的全概率公式。
全概率公式
定理1.1 设事件 A1,A2,…,An 为一个完备事 件组,而且 P(Ai) > 0 (i=1,2 ,…, n), 则对一 事件B,有 P(B) = P(A1)P(B|A1) +P(A2)P(B|A2) +…+ P(An)P(B|An)
§1.4 全概率公式与贝叶斯公式 全概率公式和贝叶斯公式主要用于计算 比较复杂事件的概率,它们实质上是加法公式 和乘法公式的综合运用.
综合运用
加法公式
A1 , A2 ,..., An两两互斥 P ( Ai )
i 1 n
P( A )
i 1 i
n
乘法公式 P(AB)= P(A)P(B|A) P(A)>0
P( A ) P( B|A )
j 1 j j
运用全概率公式 计算 P(B)
将这里得到的公式一般化,就得到 贝叶斯公式
贝叶斯公式
定理1.2(Bayes公式 1763年)
设事件A1,A2,…,An 为一个完备事件组, 且 P(Ai ) > 0 (i=1,2,…,n) , 则对任一事件B, P(B) > 0, 有

P A1 P C1C2C3 P C1C2C3 P C1C2C3
P C1 P C2 P C3 P C1 P C2 P C3 P C1 P C2 P C3

概率论与数理统计整理(一二章)

概率论与数理统计整理(一二章)

一、随机事件和概率考试内容:随机事件(可能发生可能不发生的事情)与样本空间(包括所有的样本点) 事件的关系(包含相等和积差互斥对立)与运算(交换分配结合德摸根对差事件文氏图) 完全事件组(所有基本事件的集合) 概率的概念概率的基本性质(非负性规范性可列可加性) 古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求:1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率(弄清几何意义),掌握概率的加法公式(PAUB=PA+PB--PAB)、减法公式(P(A--B)=PA--PAB)、乘法公式(PAB=PA*PB|A)、全概率公式(关键是对S进行正确的划分),以及贝叶斯公式.3.理解事件的独立性(PAB=PA*PB)的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.整理重点:1. 随机事件:可能发生也可能给不发生的事件。

0<概率<1。

2. 样本空间:实验中的结果的每一个可能发生的事件叫做实验的样本点,实验的所有样本点构成的集合叫做样本空间,大写字母S表示。

3. 事件的关系:(1)包含:事件A发生必然导致事件B发生,称事件B包含事件A。

(2)相等:事件A包含事件B且事件B包含事件A。

(3)和:事件的并,记为A∪B。

(4)差:A-B称为A与B的差,A发生而B不发生,A-B=A-AB。

(5)积:事件的交,事件A与B都发生,记为AB或A∩B。

(6)互斥:事件A与事件B不能同时发生,AB=空集。

(7)对立:A∪B=S。

4. 集合的运算:(1)交换律:A∪B=B∪A AB=BA (2结合律:(A∪B)∪C=A∪(B∪C)(AB)C=A(B C)(3)分配率:A (B∪C)=AB∪AC A∪(BC)=(A∪B)(A∪C) (4)德*摩根定律5. 完全事件组:如果n个事件中至少有一个事件一定发生,则称这n个事件构成完全事件组(特别地:互不相容的完全事件组)。

《概率论与数理统计》第一章知识点

《概率论与数理统计》第一章知识点

第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。

2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。

二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。

(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。

2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。

1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。

2.基本事件:试验的每一可能的结果称为基本事件。

一个样本点w 组成的单点集{w}就是随机试验的基本事件。

3.必然事件:每次实验中必然发生的事件称为必然事件。

用Ω表示。

样本空间是必然事件。

4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。

1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。

2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。

3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。

4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。

5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则称这三个事件相互独立。
定义3 若n 个事件中任意 k 2 k n个事件的积事件的
概率等于这k 个事件概率之积,则称这n个事件相互独立。
河北农业大学理学院
ቤተ መጻሕፍቲ ባይዱ
n 重伯努利试验
若随机试验 E 满足:
(1)只有两种结果 A或A (2)在相同条件下可以重复进行n 次,且结果互不影响 则称该n 次试验为n 重独立试验,又称n 重伯努利试验.
河北农业大学理学院
二项概率公式
定理 设在一次试验中事件A发生的概率 为p(0<p<1),则在n 重伯努利试验中,事件A恰好 发生k次的概率为
Pn(k) Cnk pk (1 p)nk (k 0,1, 2, n)
河北农业大学理学院
例题
例3 在一批次品率为0.2的产品中随机抽检 5个样品,求其中次品数分别为3,4的概率。
概率论与数理统计
独立试验概型
目录
CONTENTS
独立试验概型
事件的独立性 n 重伯努利试验 二项概率公式 例题
河北农业大学理学院
事件的独立性
定义1 设A,B是任意两个事件,若
P(AB) P(A)P(B)
则称事件A与B相互独立,简称A与B独立。 定义2 设有三个事件A,B,C
P(AB) P(A)P(B) P(AC) P(A)P(C) P(BC) P(B)P(C) P(ABC) P(A)P(B)P(C)
例4 10道单选题至少懵对6题的概率。
例5 假设一个人事任命有两个候选人, 一个正确一个错误。
两种方案: 1.由一个英明的领导做决定,该领导做正确决定 的概率是75%; 2.由三个草民A,B,C投票来做决定,他们每 个人做正确决定的概率是70%。 请问哪种机制更好?
河北农业大学理学院
雅各布·伯努利 (Jakob Bernoulli 1654-1705) 伯努利家族代表人物之一,瑞士数 学家。被公认的概率论的先驱之一。撰 写了经典巨著《猜度术》。
河北农业大学理学院
n 重伯努利试验
例1 假设试验成功率为 p,求n 次独立试验中 至少成功一次的概率。
例2 建一水坝,预计使用100年,问此100年中 发生“千年一遇的洪水”的概率是多少?
相关文档
最新文档