2018年上海市高三数学竞赛试题含答案解析
(完整版)【解析版】2018年高考上海卷数学试题
2018年普通高等学校招生全国统一考试(上海卷)数学注意事项:1 •答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2 •选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3 •非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4 •考试结束后,请将本试题卷和答题卡一并上交。
一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)4 11. 行列式'门的值为___________________________X22~~ y ■ == 12. 双曲线4 ■的渐近线方程为________3. •的二项展开式中-的系数为____________________ (结果用数值表示)4. 设常数,■',函数汀-竺二泊吻【X *茂.:,若虑的反函数的图像经过点,则5. 已知复数H满足11 + i) ' = 1 _丄是虚数单位),则国=________________________________6. 记等差数列'的前••项和为「,若I ' _ 1 ,则Sj =(认+x )上递减,则c 二8.在平面直角坐标系中,已知点■ '' ■ !' ■'是■轴上的两个动点,且9.有编号互不相同的五个砝码 ,期中5克,3克,1克砝码各两个,从中随机挑选三个,则这三个砝码的总质量为9克的概率为 ______________ (结果用最简分数表示)考生应在答题纸的相应位置,将代表正确选项的小方格涂黑a E7.已知丨.若函数=書"为奇函数,且在,则.-.最小值为10.设等比数列■;的通项公式为'~ '(” €),前口项和为孔,若lim —1-,则'f (J :)= -----11.已知常数筮紳那,函数… ;‘十心-的图像经过点若’''■12.已知实数 X 1, X 2, y 1, y 2 满足:X 12y 121,血22 . 1 M .7211X 1X 271722,则二、选择题(本大题共有 4题,满分20分,每题5分)每题有且只有一个正确选项2 213.设p 是椭圆—"^―531上的动点 p 到该椭圆的两个焦点的距离之和为 ()A. 2.2B. 2 一3 D. 4.214.已知a R ,则“ a11 ”是“-aB.必要非充分条件 D.既非充分又非必要条件15•《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。
【解析版】2018年高考上海卷数学试题
2018年普通高等学校招生全国统一考试(上海卷)数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)1. 行列式的值为2.双曲线的渐近线方程为______3.的二项展开式中的系数为(结果用数值表示)4.设常数,函数,若的反函数的图像经过点,则=5.已知复数满足,(是虚数单位),则6.记等差数列的前项和为,若,则7.已知.若函数为奇函数,且在上递减,则8.在平面直角坐标系中,已知点是轴上的两个动点,且,则最小值为9.有编号互不相同的五个砝码,期中5克,3克,1克砝码各两个,从中随机挑选三个,则这三个砝码的总质量为9克的概率为___________(结果用最简分数表示)10.设等比数列的通项公式为,前项和为,若,则___________11.已知常数,函数的图像经过点,若,则=12.已知实数1212,,,x x y y 满足: 22221122121211,1,2x y x y x x y y +=+=+=,则_____二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设p 是椭圆22153x y +=上的动点,则p 到该椭圆的两个焦点的距离之和为( )A. B.C.D. 14.已知a R ∈,则“1a >”是“11a<”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。
上海卷2018年高考数学试题(word档含答案详细解析)
2018年普通高等学校招生全国统一考试(上海卷)数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)1. 行列式的值为2.双曲线的渐近线方程为______3.的二项展开式中的系数为(结果用数值表示)4.设常数,函数,若的反函数的图像经过点,则=5.已知复数满足,(是虚数单位),则6.记等差数列的前项和为,若,则7.已知.若函数为奇函数,且在上递减,则8.在平面直角坐标系中,已知点是轴上的两个动点,且,则最小值为9.有编号互不相同的五个砝码,期中5克,3克,1克砝码各两个,从中随机挑选三个,则这三个砝码的总质量为9克的概率为___________(结果用最简分数表示) 10.设等比数列的通项公式为,前项和为,若,则___________11.已知常数,函数的图像经过点,若,则= 12.已知实数1212,,,x x y y 满足:22221122121211,1,2x y x y x x y y ,则11221122x y x y 的最大值为_____二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13.设p 是椭圆22153x y 上的动点,则p 到该椭圆的两个焦点的距离之和为( )A.22B.23C.25D.4214.已知a R ,则“1a ”是“11a ”的( )。
2018年普通高等学校招生全国统一考试 数学(上海卷)word版 含答案
2018年普通高等学校招生全国统一考试(上海卷) 数 学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分) 1.行列式4125的值为 。
2.双曲线2214x y -=的渐近线方程为 。
3.在(1+x )7的二项展开式中,x ²项的系数为 。
(结果用数值表示) 4.设常数a R ∈,函数f x x a =+()㏒₂(),若f x ()的反函数的图像经过点31(,),则a= 。
5.已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。
6.记等差数列{} n a 的前几项和为S n ,若87014a a a =+=₃,,则S 7= 。
7.已知21123α∈---{,,,,,,},若幂函数()n f x x =为奇函数,且在0+∞(,)上速减,则α=_____8.在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且|EF |=2,则AE ·BF 的最小值为______ 9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示) 10.设等比数列{错误!未找到引用源。
}的通项公式为a n =q ⁿ+1(n ∈N*),前n 项和为S n 。
若1Sn 1lim 2n n a →∞+=,则q=____________ 11.已知常数a >0,函数222()(2)f x ax =+的图像经过点65p p ⎛⎫ ⎪⎝⎭,、15Q q ⎛⎫- ⎪⎝⎭,,若236p q pq +=,则a =__________ 12.已知实数x ₁、x ₂、y ₁、y ₂满足:²²1x y +=₁₁,²²1x y +=₂₂,212x x y y +=₁₂₁,则2+2的最大值为__________ 二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13.设P 是椭圆 ²5x + ²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) (A )2错误!未找到引用源。
【真题】2018年上海市高考数学试题含答案解析
【考查类型】中考真题
【试题级别】高三
【试题地区】上海
【试题来源】2018 年高考数学真题试卷(上海卷)
3.(2018•上海)在(1+x)7 的二项展开式中,x²项的系数为
。(结果用数值表示)
【答案】21
【解析】【解答】(1+x)7
中有
Tr+1=
C7r
xr
,故当
r=2
时,
C72
=
7
2
6
=21
【分析】注意二项式系数,与各项系数之间差别。考点公式 a b n 第 r+1 项为 Tr+1= Cnranrbr 。
3
当|q|<1
时,
lim
n
1
qn 1
qn
q
(舍)
【分析】 Sn
a1 a1qn 1 q
(等比数列前
n
项和公式)
【题型】填空题
【考查类型】中考真题
【试题级别】高三
【试题地区】上海
【试题来源】2018 年高考数学真题试卷(上海卷)
11.(2018•上海)已知常数
a
>0,函数
f
(x)
【试题地区】上海
【试题来源】2018 年高考数学真题试卷(上海卷)
8.(2018•上海)在平面直角坐标系中,已知点 A(-1,0),B(2,0),E,F 是 y 轴上的两个动点,且
| EF |=2,则 AE · BF 的最小值为______
【答案】-3
【解析】【解答】设 E(0,y1),F(0,y2),又 A(-1,0),B(2,0),
y1
2018年数学真题及解析_2018年上海市高考数学试卷
2018年上海市高考数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4.00分)行列式的值为.2.(4.00分)双曲线﹣y2=1的渐近线方程为.3.(4.00分)在(1+x)7的二项展开式中,x2项的系数为(结果用数值表示).4.(4.00分)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=.5.(4.00分)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|=.6.(4.00分)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7=.7.(5.00分)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=.8.(5.00分)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为.9.(5.00分)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).10.(5.00分)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n项和为S n.若=,则q=.11.(5.00分)已知常数a>0,函数f(x)=的图象经过点P(p,),Q (q,).若2p+q=36pq,则a=.12.(5.00分)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5.00分)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.414.(5.00分)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件15.(5.00分)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.1616.(5.00分)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14.00分)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.18.(14.00分)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.19.(14.00分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.20.(16.00分)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.21.(18.00分)给定无穷数列{a n},若无穷数列{b n}满足:对任意n∈N*,都有|b n﹣a n|≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4.00分)行列式的值为18.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.(4.00分)双曲线﹣y2=1的渐近线方程为±.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4.00分)在(1+x)7的二项展开式中,x2项的系数为21(结果用数值表示).【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x)7展开式的通项公式为T r+1=•x r,令r=2,得展开式中x2的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4.(4.00分)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=7.【分析】由反函数的性质得函数f(x)=1og2(x+a)的图象经过点(1,3),由此能求出a.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4.00分)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|=5.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4.00分)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7=14.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,d=2,由此能求出S7.【解答】解:∵等差数列{a n}的前n项和为S n,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.(5.00分)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且a<0,由此能求出a的值.【解答】解:∵α∈{﹣2,﹣1,﹣,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5.00分)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3.【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或b=a+2,并可求得,将a=b+2带入上式即可求出的最小值,同理将b=a+2带入,也可求出的最小值.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.(5.00分)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.(5.00分)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n项和为S n.若=,则q=3.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{a n}的通项公式为a=q n﹣1(n∈N*),可得a1=1,因为=,所以数列的公比不是1,=q n.,a n+1可得====,可得q=3.故答案为:3.【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.11.(5.00分)已知常数a>0,函数f(x)=的图象经过点P(p,),Q (q,).若2p+q=36pq,则a=6.【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.(5.00分)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+.【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,由两平行线的距离可得所求最大值.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且•=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5.00分)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.4【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.14.(5.00分)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5.00分)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×6=12,当A1ACC1为底面矩形,有2个满足题意,当A1AEE1为底面矩形,有2个满足题意,故有12+2+2=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5.00分)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14.00分)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.(14.00分)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.(14.00分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【分析】(1)由题意知求出f(x)>40时x的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30•x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)•x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16.00分)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;方法二:根据抛物线的定义,即可求得|BF|;(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;(3)设P及E点坐标,根据直线k PF•k FQ=﹣1,求得直线QF的方程,求得Q点坐标,根据+=,求得E点坐标,则()2=8(+6),即可求得P点坐标.【解答】解:(1)方法一:由题意可知:设B(t,2t),则|BF|==t+2,∴|BF|=t+2;方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),k QF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得:3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=;(3)存在,设P(,y),E(,m),则k PF==,k FQ=,直线QF方程为y=(x﹣2),∴y Q=(8﹣2)=,Q(8,),根据+=,则E(+6,),∴()2=8(+6),解得:y2=,∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.(18.00分)给定无穷数列{a n},若无穷数列{b n}满足:对任意n∈N*,都有|b n﹣a n|≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得a n﹣1≤b n≤a n+1,求得b i,i=1,2,3,4的范围,即可得到所求个数;(3)运用等差数列的通项公式可得a n,讨论公差d>0,d=0,﹣2<d<0,d≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{b n}与{a n}接近.理由:{a n}是首项为1,公比为的等比数列,可得a n=,b n=a n+1+1=+1,则|b n﹣a n|=|+1﹣|=1﹣<1,n∈N*,可得数列{b n}与{a n}接近;(2){b n}是一个与{a n}接近的数列,可得a n﹣1≤b n≤a n+1,数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=b i,i=1,2,3,4},M中元素的个数m=3或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,可得a n=a1+(n﹣1)d,①若d>0,取b n=a n,可得b n+1﹣b n=a n+1﹣a n=d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;②若d=0,取b n=a1﹣,则|b n﹣a n|=|a1﹣﹣a1|=<1,n∈N*,可得b n+1﹣b n=﹣>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;③若﹣2<d<0,可令b2n﹣1=a2n﹣1﹣1,b2n=a2n+1,则b2n﹣b2n﹣1=a2n+1﹣(a2n﹣1﹣1)=2+d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100个正数,符合题意;④若d≤﹣2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n﹣1≤b n≤a n+1,a n+1﹣1≤b n+1≤a n+1+1,可得b n+1﹣b n≤a n+1+1﹣(a n﹣1)=2+d≤0,b2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.综上可得,d的范围是(﹣2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.第21页(共21页)。
【解析版】2018年高考上海卷数学试题
2018年普通高等学校招生全国统一考试(上海卷)数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)1. 行列式的值为2.双曲线的渐近线方程为______3.的二项展开式中的系数为(结果用数值表示)4.设常数,函数,若的反函数的图像经过点,则=5.已知复数满足,(是虚数单位),则6.记等差数列的前项和为,若,则7.已知.若函数为奇函数,且在上递减,则8.在平面直角坐标系中,已知点是轴上的两个动点,且,则最小值为9.有编号互不相同的五个砝码,期中5克,3克,1克砝码各两个,从中随机挑选三个,则这三个砝码的总质量为9克的概率为___________(结果用最简分数表示)10.设等比数列的通项公式为,前项和为,若,则___________11.已知常数,函数的图像经过点,若,则=12.已知实数1212,,,x x y y 满足: 22221122121211,1,2x y x y x x y y +=+=+=,则_____二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设p 是椭圆22153x y +=上的动点,则p 到该椭圆的两个焦点的距离之和为( )A. B.C.D. 14.已知a R ∈,则“1a >”是“11a<”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。
2018年高考数学上海卷-答案
上海市2018年普通高等学校招生全国统一考试数学答案解析一、填空题1.【答案】18 【解析】直接利用行列式的定义,计算求解即可.解:行列式4145211825=⨯⨯=-. 故答案为:18.【考点】二阶行列式的定义.2.【答案】12x ± 【考点】双曲线的性质【解析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.解:∵双曲线的2a =,1b =,焦点在x 轴上而双曲线22221x y a b -=的渐近线方程为b y x a =± ∴双曲线2214x y -=的渐近线方程为12y x =± 故答案为:12x ± 【考点】双曲线的性质3.【答案】21【解析】利用二项式展开式的通项公式求得展开式中2x 的系数.解:二项式71x +()展开式的通项公式为17•r r r T C x +=,令2r =,得展开式中2x 的系数为27C 21=. 故答案为:21.【考点】二项式定理4.【答案】7【解析】由反函数的性质得函数21f x og x a=+()()的图象经过点(1,3),由此能求出a . 解:∵常数a R ∈,函数21f x og x a=+()(). f x ()的反函数的图象经过点(3,1), ∴函数21f x og x a=+()()的图象经过点(1,3), ∴213log a+=(), 解得7a =.故答案为:7.【考点】反函数5.【答案】5【解析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案. 解:由(1)17i z i +=-, 得17(17)(1)68341(1)(1)2i i i i z i i i i -----====--++-,则||5z ==.故答案为:5.【考点】复数的模6.【答案】14【解析】利用等差数列通项公式列出方程组,求出14a =-,2d =,由此能求出7S .解:∵等差数列{}n a 的前n 项和为n S ,367014a a a =+=,∴111205614a d a d a d +=⎧⎨+++=⎩,解得14a =-,2d =, ∴717672842142S a d ⨯=+=-+=. 故答案为:14.【考点】等差数列的前n 项和7.【答案】1-【解析】由幂函数f x x α=()为奇函数,且在(0,)+∞上递减,得到a 是奇数,且0a <,由此能求出a 的值. 【解答】解:∵112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭, 幂函数()f x x α=为奇函数,且在(0,+∞)上递减,∴a 是奇数,且0a <,∴1a =-.故答案为:1-.【考点】幂函数的概念、解析式、定义域、值域8.【答案】3-【解析】据题意可设0,E a (),0,F b (),从而得出2a b -=,即2a b =+,或2b a =+,并可求得2AE BF ab ⋅=-+,将2a b =+带入上式即可求出AE BF ⋅的最小值,同理将2b a =+带入,也可求出的最小值.【解答】解:根据题意,设0,0,E a F b (),();|EF ||a b |2∴=-=∴2a b =+或a 2b =+且(1,)AE a =,(2,)BF b =-∴2AE BF ab ⋅=-+当2a b =+时,22(2)22AE BF b b b b ⋅=-++⋅=+-;∵222b b +-的最小值为8434--=-; ∴AE BF ⋅的最小值为3-,同理求出2b a =+时,AE BF ⋅的最小值为3-.故答案为:3-.【考点】平面向量数量积的性质及其运算9.【答案】15【解析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可. 解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:3510C =,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:21=105, 故答案为:15. 【考点】古典概型及其概率计算公式10.【答案】3【解析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.解:等比数列{}n a 的通项公式为()1*n n ma q n N -=∈,可得1a 1=, 因为11lim 2n n n S a →∞+=,所以数列的公比不是1, ,1n n a q +=.可得,11111111lim lim lim (1)12n n nn n n n n q q q q q q q q q -→∞→∞→∞----====-- 可得3q =.故答案为:3.【考点】数列的极限11.【答案】6【解析】直接利用函数的关系式,利用恒等变换求出相应的a 值. 【解答】解:函数2()2x x f x ax =+的图象经过点61,,,55P p Q q ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭. 则: p q P q 226112ap 2aq 55+==++, 整理得:222221222p q p q p qp q p q aq ap aq ap a pq++++++=+++, 解得:,22p q a pq += 由于:236p q pq +=,所以:236a =,由于0a >,故:6a =.故答案为:6【考点】函数的图象与图象的变换12.【解析】设()11,A x y ,()22,B x y ,()11,OA x y =,()22,OB x y =,由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB 为等边三角形,1AB =的几何意义为点A ,B 两点到直线10x y +-=的距离1d 与2d 之和,由两平行线的距离可得所求最大值.【解答】解:设()11,A x y ,()22,B x y ,()11,OA x y =,()22,OB x y =,由222211221,1x y x y +=+=,121212x x y y +=, 可得A ,B 两点在圆221x y +=上, 且111cos 2OA OB AOB ⋅=⨯⨯∠=, 即有60AOB ∠=,即三角形OAB 为等边三角形, 1AB =,+的几何意义为点A ,B 两点到直线10x y +-=的距离1d 与2d 之和,显然A ,B 在第三象限,AB 所在直线与直线1x y +=平行,可设AB :0x y t ++=,(0t >),由圆心O 到直线AB的距离d =,可得1=,解得2t =,1=【考点】基本不等式及其应用,点到直线的距离公式二、选择题13【答案】C【解析】判断椭圆长轴(焦点坐标)所在的轴,求出a ,接利用椭圆的定义,转化求解即可.【考点】椭圆的性质.14.【答案】A【专题】11 :计算题;34 :方程思想;4O :定义法;5L :简易逻辑.【解析】“1a >”⇒“11a <”,“11a<”⇒“1a >或0a <”,由此能求出结果. 【考点】充分条件,必要条件,充要条件15.【答案】D【解析】根据新定义和正六边形的性质可得答案.【考点】排列、组合的实际应用16.【答案】B【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值.【解析】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转6π个单位后与下一个点会重合.我们可以通过代入和赋值的方法当(1)f =0时,此时得到的圆心角为3π,6π,0,然而此时0x =或者1x =时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y ,因此只有当x =6π,此时满足一个x 只会对应一个y ,因此答案就选:B . 故选:B .【考点】函数的图象与图象的变换三、解答题17.【答案】(1)∵圆锥的顶点为P ,底面圆心为O ,半径为2,圆锥的母线长为4,∴圆锥的体积2211233V r h ππ=⨯⨯⨯=⨯⨯=. (2)∵4PO =,OA ,OB 是底面半径,且90AOB ∠=︒,M 为线段AB 的中点,∴以O 为原点,OA 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,(004)P ,,,200A(,,),(0,2,0)B , (1,1,0)M ,(0,0,0),O(1,1,4),(0,2,0)PM OB =-=设异面直线PM 与OB 所成的角为θ,则||cos 18||||PM OB PM OB θ⋅===⋅∴arccos 6θ=∴异面直线PM 与OB 所成的角的为.【解析】(1)由圆锥的顶点为P ,底面圆心为O ,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O 为原点,OA 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线PM 与OB 所成的角.【考点】异面直线及其所成的角,旋转体(圆柱、圆锥、圆台),棱柱、棱锥、棱台的体积18.【答案】(1)2()sin 22cos f x a x x =+,2()sin 22cos f x a x x ∴-=-+,f x ()为偶函数, ()()f x f x ∴-=,22sin 22cos sin 22cos a x x a x x ∴-+=+,2sin 20a x ∴=,0a ∴=(2)|14f π⎛⎫= ⎪⎝⎭,2asin 2cos 1124a ππ⎛⎫∴+=+= ⎪⎝⎭,a ∴=2()22cos 2cos 212sin 216f x x x x x x π⎛⎫∴=+=++=++ ⎪⎝⎭,()1f x =,2sin 2116x π⎛⎫∴++=- ⎪⎝⎭sin 26x π⎛⎫∴+= ⎪⎝⎭, 2264x k πππ∴+=-+或522,64x k k Z πππ+=+∈5x k 24πππ∴=-+或 13x k ,k Z 24ππ=+∈ [,]x ππ∈-13x 24π∴=或19x 24π=或5x 24π=-或11x 24π=- 【解析】(1)根据函数的奇偶性和三角形的函数的性质即可求出.(2)先求出a 的值,再根据三角形函数的性质即可求出.【考点】两角和与差的三角函数,二倍角的三角函数19.【答案】(1)由题意知,当30100x <<时,1800()29040f x x x =+->, 即2659000x x -+>,解得20x <或45x >,∴45100x ∈(,)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间; (2)当030x <≤时,()30%40(1%)4010x g x x x =⋅+-=-; 当30100x <<时, 218013()290%40(1%)585010x g x x x x x x ⎛⎫=+-⋅+-=-+ ⎪⎝⎭; ∴24010()13585010x g x x x ⎧-⎪⎪=⎨⎪-+⎪⎩, 当032.5x <<时,g x ()单调递减;当32.5100x <<时,g x ()单调递增; 说明该地上班族S 中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【解析】(1)由题意知求出()40f x >时x 的取值范围即可;(2)分段求出g x ()的解析式,判断g x ()的单调性,再说明其实际意义. 【考点】分段函数的应用20.【答案】(1)由题意可知:设()B t ,则2BF t ==+, ∴2BF t =+;(2)(2,0)F ,2FQ =,3t =,则1FA =,AQ ∴=,Q ∴,设OQ 的中点D ,3D 2⎛ ⎝⎭,2K a 322-⋅==-PF方程:2)y x =-,联立22)8y x y x⎧=-⎪⎨=⎪⎩,整理得:2320120x x -+=, 解得:23x =,6x =(舍去), ∴AQP △的面积17236S ==; (3)存在,设2,8y P y ⎛⎫ ⎪⎝⎭,2,8m E m ⎛⎫ ⎪⎝⎭,则2281628PF y y k y y ==--,2168FQ y k y -=,直线QF 方程为216(2)8y y x y-=-, ∴2216483(82)84Q y y y y y --=-=,24838,4y Q y ⎛⎫- ⎪⎝⎭, 根据FP FQ FE +=,则22486,84y y E y ⎛⎫++ ⎪⎝⎭, ∴222488648y y y ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,解得:2165y =,∴存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在τ上,且2lP 5⎛ ⎝⎭.【解析】(1)设B 点坐标,根据两点之间的距离公式,即可求得BF ;(2)根据抛物线的性质,求得Q 点坐标,即可求得OD 的中点坐标,即可求得直线PF 的方程,代入抛物线方程,即可求得P 点坐标,即可求得AQP △的面积;(3)设P 及E 点坐标,根据直线1PF FQ k k ⋅=﹣,求得直线QF 的方程,求得Q 点坐标,根据FP FQ FE +=,求得E 点坐标,则222488648y y y ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,即可求得P 点坐标.【考点】直线与抛物线的位置关系21.【答案】(1)数列{}n b 与{}n a 接近.理由:{}n a 是首项为1,公比为12的等比数列, 可得112n n a -=,11112n n nb a +=+=+, 则011111111222n n n n b a ---=+-=-<,*n N ∈, 可得数列{}n b 与{}n a 接近;(2){}n b 是一个与{}n a 接近的数列,可得11n n n a b a +-≤≤,数列{}n a 的前四项为:11a =,22a =,34a =,48a =, 可得1[0,2]b ∈,2[1,3]b ∈,3[3,5]b ∈,4[7,9]b ∈,可能1b 与2b 相等,2b 与3b 相等,但1b 与3b 不相等,4b 与3b 不相等,集合1234{|,}i M x x b i ===,,,, M 中元素的个数3m =或4;(3){}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,可得11n a a n d =+-(), ①若0d >,取n n b a =,可得110n n n n b b a a d ++-=-=>, 则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意; ②若0d =,取11n b a n =-,则11111n n b a a a n n -=--=<,*n N ∈, 可得11101n n b b n n +-=->+, 则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意;③若20d ﹣<<,可令21211n n b a --=-,221n n b a =+, 则()2212211120n n n n b b a a d ---=+--=+>,则21b b -,32b b -,⋯,201200b b -中恰有100个正数,符合题意; ④若2d -,若存在数列{}n b 满足:{}n b 与{}n a 接近,即为11n n n a b a -+,11111n n n a b a +++-+,可得()111120n n n n b b a a d ++-+--=+,21b b -,32b b -,⋯,201200b b -中无正数,不符合题意. 综上可得,d 的范围是(2,)-+∞.【解析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得11n n n a b a +-≤≤,求得i b ,1,2,3,4i =的范围,即可得到所求个数;(3)运用等差数列的通项公式可得n a ,讨论公差0d >,0d =,20d -<<,2d ≤-,结合新定义“接近”,推理和运算,即可得到所求范围.【考点】等差数列与等比数列的综合。
2018年高考数学上海卷及答案解析
数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前上海市2018年普通高等学校招生全国统一考试数 学本试卷满分150分,考试时间120分钟.一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)1.行列式4125的值为 。
2.双曲线2214x y -=的渐近线方程为 。
3.在71x +()的二项展开式中,2x 项的系数为 。
(结果用数值表示) 4.设常数a R ∈,函数()2()f x log x a =+,若()f x 的反函数的图像经过点(3,1),则a = 。
5.已知复数z 满足(1)17i z i +=-(i 是虚数单位),则z = 。
6.记等差数列{}n a 的前几项和为Sn ,若3870,14a a a =+= ,则7S = 。
7.已知112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭,若幂函数()n f x x =为奇函数,且在()0,+∞上递减,则α= 。
8.在平面直角坐标系中,已知点(1,0),(2,0),,A B E F -是y 轴上的两个动点,且2EF =uu u r,则AE BF ⋅uu u r uu u r的最小值为 。
9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)10.设等比数列{}n a 的通项公式为n 1N*n a q n =+∈(),前n 项和为n S 。
若1Sn 1lim 2n n a →∞+=,则q = 。
11.已知常数0a >,函数()222()|2f x ax =+的图像经过点6,5p p ⎛⎫ ⎪⎝⎭、1,5Q q ⎛⎫- ⎪⎝⎭,若236p q pq +=,则a = 。
12.已知实数x x y y ₁、₂、₁、₂满足:22111x y +=,22221x y +=,121212x x y y +=,则的最大值为 。
2018年高考数学上海卷-答案
上海市2018年普通高等学校招生全国统一考试数学答案解析一、填空题1.【答案】18 【解析】直接利用行列式的定义,计算求解即可.解:行列式4145211825=⨯⨯=-. 故答案为:18.【考点】二阶行列式的定义.2.【答案】12x ± 【考点】双曲线的性质【解析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.解:∵双曲线的2a =,1b =,焦点在x 轴上而双曲线22221x y a b -=的渐近线方程为b y x a =± ∴双曲线2214x y -=的渐近线方程为12y x =± 故答案为:12x ± 【考点】双曲线的性质3.【答案】21【解析】利用二项式展开式的通项公式求得展开式中2x 的系数.解:二项式71x +()展开式的通项公式为 17•r r r T C x +=,令2r =,得展开式中2x 的系数为27C 21=. 故答案为:21.【考点】二项式定理4.【答案】7【解析】由反函数的性质得函数21f x og x a=+()()的图象经过点(1,3),由此能求出a . 解:∵常数a R ∈,函数21f x og x a=+()(). f x ()的反函数的图象经过点(3,1),∴函数21f x og x a=+()()的图象经过点(1,3), ∴213log a+=(), 解得7a =.故答案为:7.【考点】反函数5.【答案】5【解析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案. 解:由(1)17i z i +=-, 得17(17)(1)68341(1)(1)2i i i i z i i i i -----====--++-,则||5z ==.故答案为:5.【考点】复数的模6.【答案】14【解析】利用等差数列通项公式列出方程组,求出14a =-,2d =,由此能求出7S .解:∵等差数列{}n a 的前n 项和为n S ,367014a a a =+=,∴111205614a d a d a d +=⎧⎨+++=⎩,解得14a =-,2d =, ∴717672842142S a d ⨯=+=-+=. 故答案为:14.【考点】等差数列的前n 项和7.【答案】1-【解析】由幂函数f x x α=()为奇函数,且在(0,)+∞上递减,得到a 是奇数,且0a <,由此能求出a 的值. 【解答】解:∵112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭, 幂函数()f x x α=为奇函数,且在(0,+∞)上递减,∴a 是奇数,且0a <,∴1a =-.故答案为:1-.【考点】幂函数的概念、解析式、定义域、值域8.【答案】3-【解析】据题意可设0,E a (),0,F b (),从而得出2a b -=,即2a b =+,或2b a =+,并可求得2AE BF ab ⋅=-+uuu r uuu r ,将2a b =+带入上式即可求出AE BF ⋅uu u r uu u r 的最小值,同理将2b a =+带入,也可求出的最小值.【解答】解:根据题意,设0,0,E a F b (),();|EF||a b |2∴=-=u u r∴2a b =+或a 2b =+且(1,)AE a =u u u r ,(2,)BF b =-u u u r∴2AE BF ab ⋅=-+uu u r uu u r当2a b =+时,22(2)22AE BF b b b b ⋅=-++⋅=+-u u u r u u u r ;∵222b b +-的最小值为8434--=-; ∴AE BF ⋅uu u r uu u r 的最小值为3-,同理求出2b a =+时,AE BF ⋅uu u r uu u r 的最小值为3-.故答案为:3-.【考点】平面向量数量积的性质及其运算9.【答案】15【解析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可. 解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:3510C =,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:21=105, 故答案为:15. 【考点】古典概型及其概率计算公式10.【答案】3【解析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.解:等比数列{}n a 的通项公式为()1*n n ma q n N -=∈,可得1a 1=, 因为11lim 2n n n S a →∞+=,所以数列的公比不是1, ,1n n a q +=.可得,11111111lim lim lim (1)12n n nn n n n n q q q q q q q q q -→∞→∞→∞----====-- 可得3q =.故答案为:3.【考点】数列的极限11.【答案】6【解析】直接利用函数的关系式,利用恒等变换求出相应的a 值. 【解答】解:函数2()2x x f x ax =+的图象经过点61,,,55P p Q q ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭. 则: p q P q 226112ap 2aq 55+==++, 整理得:222221222p q p q p qp q p q aq ap aq ap a pq++++++=+++, 解得:,22p q a pq += 由于:236p q pq +=,所以:236a =,由于0a >,故:6a =.故答案为:6【考点】函数的图象与图象的变换12.【解析】设()11,A x y ,()22,B x y ,()11,OA x y =uu r ,()22,OB x y =uu u r ,由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB 为等边三角形,1AB =的几何意义为点A ,B 两点到直线10x y +-=的距离1d 与2d 之和,由两平行线的距离可得所求最大值.【解答】解:设()11,A x y ,()22,B x y ,()11,OA x y =uu r ,()22,OB x y =uu u r ,由222211221,1x y x y +=+=,121212x x y y +=, 可得A ,B 两点在圆221x y +=上, 且111cos 2OA OB AOB ⋅=⨯⨯∠=uu r uu u r , 即有60AOB ∠=,即三角形OAB 为等边三角形,1AB =,的几何意义为点A ,B 两点到直线10x y +-=的距离1d 与2d 之和,显然A ,B 在第三象限,AB 所在直线与直线1x y +=平行,可设AB :0x y t ++=,(0t >),由圆心O 到直线AB的距离d =可得1=,解得t =1+=【考点】基本不等式及其应用,点到直线的距离公式二、选择题13【答案】C【解析】判断椭圆长轴(焦点坐标)所在的轴,求出a ,接利用椭圆的定义,转化求解即可.【考点】椭圆的性质.14.【答案】A【专题】11 :计算题;34 :方程思想;4O :定义法;5L :简易逻辑.【解析】“1a >”⇒“11a <”,“11a<”⇒“1a >或0a <”,由此能求出结果. 【考点】充分条件,必要条件,充要条件15.【答案】D【解析】根据新定义和正六边形的性质可得答案.【考点】排列、组合的实际应用16.【答案】B【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值.【解析】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转6π个单位后与下一个点会重合.我们可以通过代入和赋值的方法当(1)f =,3,0时,此时得到的圆心角为3π,6π,0,然而此时0x =或者1x =时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y ,因此只有当2x =,此时旋转6π,此时满足一个x 只会对应一个y ,因此答案就选:B . 故选:B .【考点】函数的图象与图象的变换三、解答题17.【答案】(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积22112333V r hππ=⨯⨯⨯=⨯⨯=.(2)∵4PO=,OA,OB是底面半径,且90AOB∠=︒,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,(004)P,,,200A(,,),(0,2,0)B,(1,1,0)M,(0,0,0),O(1,1,4),(0,2,0)PM OB=-=u u u r u u u r设异面直线PM与OB所成的角为θ,则||cos||||PM OBPM OBθ⋅===⋅uuu r uu u ruuu r uu u r∴arccos6θ=∴异面直线PM与OB所成的角的为arccos6.【解析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM 与OB 所成的角.【考点】异面直线及其所成的角,旋转体(圆柱、圆锥、圆台),棱柱、棱锥、棱台的体积18.【答案】(1)2()sin 22cos f x a x x =+Q ,2()sin 22cos f x a x x ∴-=-+,f x Q ()为偶函数,()()f x f x ∴-=,22sin 22cos sin 22cos a x x a x x ∴-+=+,2sin 20a x ∴=,0a ∴=(2)|14f π⎛⎫= ⎪⎝⎭Q ,2asin 2cos 1124a ππ⎛⎫∴+=+= ⎪⎝⎭,a ∴=2()22cos 2cos 212sin 216f x x x x x x π⎛⎫∴=+=++=++ ⎪⎝⎭,()1f x =Q2sin 2116x π⎛⎫∴++= ⎪⎝⎭sin 26x π⎛⎫∴+= ⎪⎝⎭, 2264x k πππ∴+=-+或522,64x k k Z πππ+=+∈5x k 24πππ∴=-+或 13x k ,k Z 24ππ=+∈ [,]x ππ∈-Q13x 24π∴=或19x 24π=或5x 24π=-或11x 24π=- 【解析】(1)根据函数的奇偶性和三角形的函数的性质即可求出.(2)先求出a 的值,再根据三角形函数的性质即可求出.【考点】两角和与差的三角函数,二倍角的三角函数19.【答案】(1)由题意知,当30100x <<时,1800()29040f x x x =+->, 即2659000x x -+>,解得20x <或45x >,∴45100x ∈(,)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间; (2)当030x <≤时,()30%40(1%)4010x g x x x =⋅+-=-; 当30100x <<时, 218013()290%40(1%)585010x g x x x x x x ⎛⎫=+-⋅+-=-+ ⎪⎝⎭; ∴24010()13585010x g x x x ⎧-⎪⎪=⎨⎪-+⎪⎩, 当032.5x <<时,g x ()单调递减;当32.5100x <<时,gx ()单调递增; 说明该地上班族S 中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【解析】(1)由题意知求出()40f x >时x 的取值范围即可;(2)分段求出g x ()的解析式,判断g x ()的单调性,再说明其实际意义.【考点】分段函数的应用20.【答案】(1)由题意可知:设(,)B t ,则2BF t ==+, ∴2BF t =+;(2)(2,0)F ,2FQ =,3t =,则1FA =,AQ ∴=Q ∴,设OQ 的中点D ,3D ,22⎛ ⎝⎭,2K a 322-⋅==-PF方程:2)y x =-,联立22)8y x y x⎧=-⎪⎨=⎪⎩,整理得:2320120x x -+=, 解得:23x =,6x =(舍去), ∴AQP △的面积1723S == (3)存在,设2,8y P y ⎛⎫ ⎪⎝⎭,2,8m E m ⎛⎫ ⎪⎝⎭,则2281628PF y y k y y ==--,2168FQ y k y -=,直线QF 方程为216(2)8y y x y-=-, ∴2216483(82)84Q y y y y y --=-=,24838,4y Q y ⎛⎫- ⎪⎝⎭, 根据FP FQ FE +=u u r u u u r u u r ,则22486,84y y E y ⎛⎫++ ⎪⎝⎭, ∴222488648y y y ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,解得:2165y =,∴存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在τ上,且2lP 5⎛ ⎝⎭.【解析】(1)设B 点坐标,根据两点之间的距离公式,即可求得BF ;(2)根据抛物线的性质,求得Q 点坐标,即可求得OD 的中点坐标,即可求得直线PF 的方程,代入抛物线方程,即可求得P 点坐标,即可求得AQP △的面积;(3)设P 及E 点坐标,根据直线1PF FQk k ⋅=﹣,求得直线QF 的方程,求得Q 点坐标,根据FP FQ FE +=u u r u u u r u u r ,求得E 点坐标,则222488648y y y ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,即可求得P 点坐标.【考点】直线与抛物线的位置关系21.【答案】(1)数列{}n b 与{}n a 接近.理由:{}n a 是首项为1,公比为12的等比数列, 可得112n n a -=,11112n n nb a +=+=+, 则011111111222n n n n b a ---=+-=-<,*n N ∈, 可得数列{}n b 与{}n a 接近;(2){}n b 是一个与{}n a 接近的数列,可得11n n n a b a +-≤≤,数列{}n a 的前四项为:11a =,22a =,34a =,48a =, 可得1[0,2]b ∈,2[1,3]b ∈,3[3,5]b ∈,4[7,9]b ∈,可能1b 与2b 相等,2b 与3b 相等,但1b 与3b 不相等,4b 与3b 不相等,集合1234{|,}i M x x b i ===,,,, M 中元素的个数3m =或4;(3){}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,可得11n a a n d =+-(), ①若0d >,取n n b a =,可得110n n n n b b a a d ++-=-=>, 则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意; ②若0d =,取11n b a n=-,则11111n n b a a a n n -=--=<,*n N ∈, 可得11101n n b b n n +-=->+, 则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意; ③若20d ﹣<<,可令21211n n b a --=-,221n n b a =+,则()2212211120n n n n b b a a d ---=+--=+>,则21b b -,32b b -,⋯,201200b b -中恰有100个正数,符合题意; ④若2d -…,若存在数列{}n b 满足:{}n b 与{}n a 接近,即为11n n n a b a -+剟,11111n n n a b a +++-+剟, 可得()111120n n n n b b a a d ++-+--=+剟,21b b -,32b b -,⋯,201200b b -中无正数,不符合题意. 综上可得,d 的范围是(2,)-+∞.【解析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得11n n n a b a +-≤≤,求得i b ,1,2,3,4i =的范围,即可得到所求个数;(3)运用等差数列的通项公式可得n a ,讨论公差0d >,0d =,20d -<<,2d ≤-,结合新定义“接近”,推理和运算,即可得到所求范围.【考点】等差数列与等比数列的综合。
【真题】2018年上海市高考数学试题含答案解析
2018年高考数学真题试卷(上海卷)一、填空题1.(2018•上海)行列式4125的值为 。
【答案】18【解析】【解答】4125=45-21=18 【分析】a cb d=ad-bc 交叉相乘再相减。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)2.(2018•上海)双曲线2214x y -=的渐近线方程为 。
【答案】12y x =±【解析】【解答】2214x y -=,a=2,b=1。
故渐近线方程为12y x =± 【分析】渐近线方程公式。
注意易错点焦点在x 轴上,渐近线直线方程为22221x y ba -=时,by x a=±。
【题型】填空题 【考查类型】中考真题 【试题级别】高三【试题来源】2018年高考数学真题试卷(上海卷)3.(2018•上海)在(1+x )7的二项展开式中,x ²项的系数为 。
(结果用数值表示) 【答案】21【解析】【解答】(1+x )7中有T r+1=7r rC x ,故当r=2时,27C =762⨯=21 【分析】注意二项式系数,与各项系数之间差别。
考点公式()na b +第r+1项为T r+1=r n r rn C ab-。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)4.(2018•上海)设常数a R ∈,函数2()log ()f x x a =+,若f x ()的反函数的图像经过点31(,),则a= 。
【答案】7【解析】【解答】f x ()的反函数的图像经过点31(,),故()f x 过点3(1,),则()13f =,()2log 1a +=3,1+a=23所以a=23-1,故a=7.【分析】原函数()f x 与反函数图像关于y=x 对称,如:原函数上任意点()00,x y ,则反函数上点为()00,y x【题型】填空题 【考查类型】中考真题 【试题级别】高三【试题来源】2018年高考数学真题试卷(上海卷)5.(2018•上海)已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。
2018年普通高等学校招生全国统一考试数学试题(上海卷,含答案)
2018年普通高等学校招生全国统一考试数学试题(上海卷)一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)1.行列式4125的值为 。
2.双曲线2214x y -=的渐近线方程为 。
3.在(1+x )7的二项展开式中,x ²项的系数为 。
(结果用数值表示) 4.设常数a R ∈,函数f x x a =+()㏒₂(),若f x ()的反函数的图像经过点31(,),则a= 。
5.已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。
6.记等差数列{} n a 的前几项和为S n ,若87014a a a =+=₃,,则S 7= 。
7.已知21123α∈---{,,,,,,},若幂函数()nf x x =为奇函数,且在0+∞(,)上速减,则α=_____8.在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且|EF |=2,则AE ·BF 的最小值为______9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)10.设等比数列{}的通项公式为a n =q ⁿ+1(n ∈N*),前n 项和为S n 。
若1Sn 1lim2n n a →∞+=,则q=____________11.已知常数a >0,函数222()(2)f x ax =+的图像经过点65p p ⎛⎫ ⎪⎝⎭,、15Q q ⎛⎫- ⎪⎝⎭,,若236p q pq +=,则a =__________12.已知实数x ₁、x ₂、y ₁、y ₂满足:²²1x y +=₁₁,²²1x y +=₂₂,212x x y y +=₁₂₁,则22的最大值为__________二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设P 是椭圆²5x + ²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) (A )2(B )2(C )2(D )414.已知a R ,则“1a ﹥”是“1a1﹤”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件(D )既非充分又非必要条件15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA ₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA ₁为底面矩形的一边,则这样的阳马的个数是( )(A )4 (B )8 (C )12 (D )1616.设D 是含数1的有限实数集,f x ()是定义在D 上的函数,若f x ()的图像绕原点逆时针旋转π6后与原图像重合,则在以下各项中,1f ()的可能取值只能是( ) (A )3(B )3(C )3 (D )0三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分) 已知圆锥的顶点为P ,底面圆心为O ,半径为2 (1)设圆锥的母线长为4,求圆锥的体积;(2)设PO =4,OA ,OB 是底面半径,且∠AOB =90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.18.(本题满分14分,第1小题满分6分,第2小题满分8分) 设常数a R ∈,函数f x ()22?asin x cos x =+ (1)若f x ()为偶函数,求a 的值; (2)若4f π〔〕31=+,求方程12f x =-()在区间ππ-[,]上的解。
2018年上海市高考数学试卷-含答案详解
……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2018年普通高等学校招生全国统一考试(上海卷)数学副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx题号 一 二 三 总分 得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I 卷(选择题)一、单选题(本大题共4小题,共20.0分。
在每小题列出的选项中,选出符合题目的一项)1. 设P 是椭圆x 25+y 23=1上的动点,则P 到该椭圆的两个焦点的距离之和为( )A. 2√2B. 2√3C. 2√5D. 4√22. 已知a ∈R ,则“a >1”是“1a <1”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件D. 既非充分又非必要条件3. 《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA 1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA 1为底面矩形的一边,则这样的阳马的个数是( )A. 4B. 8C. 12D. 16……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………4. 设D 是含数1的有限实数集,f(x)是定义在D 上的函数,若f(x)的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f(1)的可能取值只能是 ( )A. √3B. √32C. √33D. 0第II 卷(非选择题)二、填空题(本大题共12小题,共54.0分) 5. 行列式∣∣∣4125∣∣∣的值为______.6. 双曲线x 24−y 2=1的渐近线方程为 .7. 在(1+x )7的二项展开式中,x 2项的系数为 .(结果用数值表示).8. 设常数a ∈R ,函数f(x)=log 2(x +a),若f(x)的反函数的图象经过点(3,1),则a = .9. 已知复数z 满足(1+i)z =1−7i(i 是虚数单位),则|z|= .10. 记等差数列{a n }的前n 项和为S n ,若a 3=0,a 6+a 7=14,则S 7= .11. 已知α∈{−2,−1,−12,12,1,2,3},若幂函数f(x)=x α为奇函数,且在(0,+∞)上递减,则α= .12. 在平面直角坐标系中,已知点A(−1,0),B(2,0),E ,F 是y 轴上的两个动点,且|EF ⃗⃗⃗⃗⃗ |=2,则AE ⃗⃗⃗⃗⃗ ⋅BF ⃗⃗⃗⃗⃗ 的最小值为……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………13. 有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是 (结果用最简分数表示).14. 设等比数列{a n }的通项公式为a n =q n−1(n ∈N ∗),前n 项和为S n .若lim n→+∞Sn a n+1=12,则q =______.15. 已知常数a >0,函数f(x)=2x2x +ax的图象经过点P(p,65),Q(q,−15).若2p+q =36pq ,则a = .16. 已知实数x 1、x 2、y 1、y 2满足:x 12+y 12=1,x 22+y 22=1,x 1x 2+y 1y 2=12,则|x 1+y 1−1|√2+|x 2+y 2−1|√2的最大值为 .三、解答题(本大题共5小题,共76.0分。
上海市2018年高考数学试题及答案汇总(word解析版)
2018年普通高等学校招生全国统一考试(上海卷)数学注意事项:1.答题前前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
1.填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)行列式的值为____。
2.3.4.5.6.7.8.9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)10.11.12.单选题(本大题共4小题,每小题____分,共____分。
)13.选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.A. AB. BC. CD. D14.A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件15.A. 4B. 8C. 12D. 1616.A. AB. BC. CD. D简答题(综合题)(本大题共5小题,每小题____分,共____分。
)17.解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.(本题满分14分,第1小题满分6分,第2小题满分8分)已知圆锥的顶点为P,底面圆心为O,半径为2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图,求异面直线PM与OB所成的角的大小.18.(本题满分14分,第1小题满分6分,第2小题满分8分)19.(本题满分14分,第1小题满分6分,第2小题满分8分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均勇士,某地上班族S中的成员仅以自驾或公交方式通勤,分析显示:当S中x%(0<x的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年上海市高三数学竞赛试题
一、填空题(本大题满分60分,前4小题每小题7分,后4小题每小题8分)
1.集合22{(,)100,x y x y +≤且,}x y Z ∈的元素个数是.
2.设函数()f x 是R R →的函数,满足对一切R x ∈,都有()(2)2f x xf x +-=,则()f x 的解析式为()f x =.
3.已知椭圆22
221(0)x y a b a b
+=>>,F 为椭圆的右焦点,AB 为过中心O 的弦,则ABF ∆面积的最大值为.
4.设集合111111{,,,,,}2711131532
A =的非空子集为1263,,,A A A ,记集合i A 中的所有元素的积为(1,2,,63)i p i = (单元数集的元素积是这个元素本身),则1263p p p +++ =.
5.已知一个等腰三角形的底边长为3,则它的一条底角的角平分线长的取值范围是.
6.设实数,,a b c 满足2221a b c ++=,记ab bc ca ++的最大值和最小值分别为M 和m ,
则M m -=.
7.在三棱锥P ABC -中,已知1,AB AC PB PC ===则22ABC PBC S S ∆∆+的取值范围是.
8.在平面直角坐标系xoy 中,有2018个圆:⊙1A ,⊙2A ,…,⊙2018A 其中⊙k A 的圆心为21(,)4k k k A a a ,半径为21(1,2,,2018)4k a k = ,这里12201812018a a a >>>= ,且⊙k A 与⊙1k A +外切(1,2,,2017)k = ,则1a =.
二、解答题(本大题满分60分,每小题15分)
9.已知三个有限集合,,A B C 满足A B C =∅ .
(1)求证:1()2
A B C A B C ≥++ (这里,X 表示有限集合X 的元素个数); (2)举例说明(1)中的等号可能成立.
10.求不定方程25x y z w +++=的满足x y <的正整数解(,,,)x y z w 的组数.
11.设,,,
abcd 是实数,求2222a b c d ab ac ad bc bd cd a b c d +++++++++++++的
最小值.
12.设n为给定的正整数,考虑平面直角坐标系xoy中的点集
==≤∈对T中的两点,P Q,当且仅当PQ=PQ与两条坐T x y x y n x y Z
{(,),,}
标轴之一平行时,称,P Q是“相邻的”,将T中的每个点染上红、蓝、绿三种颜色之一,要求任意两个相邻点被染不同的颜色,求染色方式的数目.
试卷答案
一、填空题
1.317
2.1
3. 4.
7965
5.(2,
6.32
7.17(]44,
8.22019
二、解答题
9.解:(1)∵A B C =∅ ∴()()A B A C =∅
∴集合A 可以拆分成三部分:A B ,A C ,A A B A C A '--=
(如图) 则A A A B A C '=++
B ,
C 集合同理. ∵A B C A B C =++ A B B C C A A B C ---+
∴命题⇔证1()2
A B C ++A B B C C A ≥++ 而A B C ++A B C '''++222A B B C C A +++ ∴1()2A B C A B B C C A ++--- 1()02
A B C '''=++≥ (2)当A B C '''===∅时取等号,如{}12A =,
,{}23B =,,{}31C =, 10.令Y X α-=,*N α∈
则225x z w α+++=
当x 取遍1~11时,252z w x α++=-的正整数解组数为2242x C -
∴总共222224622946C C C C ++++=
22(21)n C n n =-,∴2222n C n n =-∑∑∑(1)(21)(1)(1)(41)326
n n n n n n n n ++++-=-= 11.210210210210
F a b c d a F
b a
c
d b F
c a b
d c F d a b c d ∂⎧=++++=⎪∂⎪∂⎪=++++=⎪∂⎨∂⎪=++++=⎪∂⎪∂⎪=++++=∂⎩
∴当15a b c d ====-时,min 2()5
F a b c d =-,,, 12.从(00),
点向外一共有n 层正方形,染色要求:正方形相邻顶点颜色不同与上一层相邻点,也不同
记(00),点染了③号色,第1个正方形四个顶点①②
②①染色
A 类:①②
②①(一共用了2色)上层A 类,之后一层的染色情况:
A B ⎧⎪⎪⎨⎪⎪⎩②①③①②③三种①②①③③②②①②①②①②③四种①③①②③②①②
B 类:①②
③①(一共用了3色)上层为B 类,则下层的染色情况:
A B ⎧⎪⎪⎨⎪⎪⎩②①③①两种①②①③②③②①③①③①四种①②①③①②②③
构建数列,n O 表示第n 层为A 类染色方法,n b 表示第n 层为B 类染色方法
11
3244n n n n n n a a b b a b ++=+⎧⎨=+⎩11a =,10b =
∴1111))n n n n n n n n a a a a ++++⎧=+⎪⎪⎨⎪=⎪⎩
构造λ:11(34)(24)n n n n a J b a d b λ+++⋅=+++ 满足22442034d d
λλλ+=⇒--=
+λ=又11a =,10b =
,∴11n n n n n n a a --⎧+=⎪⎪⎨⎪+=⎪⎩
解得1111n n n n n n a b ----⎧=+⎪⎪⎨⎪-⎪⎩
∴11n n n n a b --+= 最后,①、②、③色号与红绿蓝之间有336P =种排法
∴染色方式有6()
n n n n a b ⎡⎤+-⎥⎦
种.
2018年上海市高三数学竞赛试题
时间:2小时,满分:120分姓名
一、填空题(本大题满分60分,前4小题每小题7分,后4小题每小题8分)
1.集合22{(,)100,x y x y +≤且,}x y Z ∈的元素个数是.
2.设函数()f x 是R R →的函数,满足对一切R x ∈,都有()(2)2f x xf x +-=,则()f x 的解析式为()f x =.
3.已知椭圆22
221(0)x y a b a b
+=>>,F 为椭圆的右焦点,AB 为过中心O 的弦,则ABF ∆面积的最大值为.
4.设集合111111{,,,,,}2711131532
A =的非空子集为1263,,,A A A ,记集合i A 中的所有元素的积为(1,2,,63)i p i = (单元数集的元素积是这个元素本身),则1263p p p +++ =.
5.已知一个等腰三角形的底边长为3,则它的一条底角的角平分线长的取值范围是.
6.设实数,,a b c 满足2221a b c ++=,记ab bc ca ++的最大值和最小值分别为M 和m ,
则M m -=.
7.在三棱锥P ABC -中,已知1,AB AC PB PC ===则22ABC PBC S S ∆∆+的取值范围是.
8.在平面直角坐标系xoy 中,有2018个圆:⊙1A ,⊙2A ,…,⊙2018A 其中⊙k A 的圆心为21(,)4k k k A a a ,半径为21(1,2,,2018)4k a k = ,这里12201812018
a a a >>>= ,且
⊙k A 与⊙1k A +外切(1,2,,2017)k = ,则1a =.
二、解答题(本大题满分60分,每小题15分)
9.已知三个有限集合,,A B C 满足A B C =∅ .
(1)求证:1()2
A B C A B C ≥++ (这里,X 表示有限集合X 的元素个数); (2)举例说明(1)中的等号可能成立.
10.求不定方程25x y z w +++=的满足x y <的正整数解(,,,)x y z w 的组数.
11.设,,,
abcd 是实数,求2222a b c d ab ac ad bc bd cd a b c d +++++++++++++的最小值.
12.设n 为给定的正整数,考虑平面直角坐标系xoy 中的点集
{(,),,}T x y x
y n x y Z ==≤∈对T 中的两点,P Q ,当且仅当PQ =PQ 与两条坐标轴之一平行时,称,P Q 是“相邻的”,将T 中的每个点染上红、蓝、绿三种颜色之一,要求任意两个相邻点被染不同的颜色,求染色方式的数目.。