2020版高考数学一轮复习课时跟踪检测三十六数列求和含解析
2020版高考数学一轮复习教案 第5章_第4节_数列求和(含答案解析)
第四节 数列求和[考纲传真] 1.掌握等差、等比数列的前n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法.1.公式法(1)等差数列的前n 项和公式: S n =n (a 1+a n )2=na 1+n (n -1)2d ;(2)等比数列的前n 项和公式:2.分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. 3.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 4.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解.5.倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.6.并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050. [常用结论]1.一些常见的数列前n 项和公式: (1)1+2+3+4+…+n =n (n +1)2; (2)1+3+5+7+…+2n -1=n 2; (3)2+4+6+8+…+2n =n 2+n . 2.常用的裂项公式 (1)1n (n +k )=1k ⎝ ⎛⎭⎪⎫1n -1n +k ; (2)14n 2-1=1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1; (3)1n +n +1=n +1-n ;(4)log a ⎝ ⎛⎭⎪⎫1+1n =log a (n +1)-log a n .[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q .( )(2)当n ≥2时,1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1. ( ) (3)求S n =a +2a 2+3a 3+…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( )[答案] (1)√ (2)√ (3)× (4)√2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 5等于( )A .1 B.56 C.16D.130B [∵a n =1n (n +1)=1n -1n +1,∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=56.]3.若S n =1-2+3-4+5-6+…+(-1)n -1·n ,则S 50=________. -25 [S 50=(1-2)+(3-4)+…+(49-50)=-25.]4.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于________. n 2+1-12n [S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+14+18+ (12)=n 2+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=n 2+1-12n .] 5.3·2-1+4·2-2+5·2-3+…+(n +2)·2-n =__________.4-n +42n [设S =3×12+4×122+5×123+…+(n +2)×12n ,则12S =3×122+4×123+5×124+…+(n +2)×12n +1.两式相减得12S =3×12+⎝ ⎛⎭⎪⎫122+123+…+12n -n +22n +1.∴S =3+⎝ ⎛⎭⎪⎫12+122+…+12n -1-n +22n =3+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-n +22n=4-n +42n.]【例1】 (2019·黄山模拟)已知数列{a n }的前n 项和S n =n 2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.[解] (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n ,故b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+ (22),B =-1+2-3+4-…+2n ,则A =2(1-22n)1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2. [拓展探究] 在本例(2)中,如何求数列{b n }的前n 项和T n . [解] 由本例(1)知b n =2n +(-1)n ·n . 当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +11-2+n 2=2n +1+n 2-2; 当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ] =2n +1-2+n -12-n=2n +1-n 2-52.所以T n =⎩⎪⎨⎪⎧2n +1+n 2-2,n 为偶数,2n +1-n 2-52,n 为奇数.n n n 112+S 2=10,a 5-2b 2=a 3.(1)求数列{a n }和{b n }的通项公式; (2)令c n =⎩⎪⎨⎪⎧2S n,n 为奇数,b n ,n 为偶数,设数列{c n }的前n 项和为T n ,求T 2n .[解] (1)设数列{a n }的公差为d ,数列{b n }的公比为q , 由⎩⎪⎨⎪⎧b 2+S 2=10,a 5-2b 2=a 3,得⎩⎪⎨⎪⎧ q +6+d =10,3+4d -2q =3+2d ,解得⎩⎪⎨⎪⎧d =2.q =2, ∴a n =3+2(n -1)=2n +1,b n =2n -1. (2)由a 1=3,a n =2n +1, 得S n =n (a 1+a n )2=n (n +2),则c n =⎩⎪⎨⎪⎧2n (n +2),n 为奇数,2n -1,n 为偶数,即c n =⎩⎪⎨⎪⎧1n -1n +2,n 为奇数,2n -1,n 为偶数,∴T 2n =(c 1+c 3+…+c 2n -1)+(c 2+c 4+…+c 2n )=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝⎛⎭⎪⎫12n -1-12n +1+(2+23+…+22n -1)=1-12n+1+2(1-4n)1-4=2n2n+1+23(4n-1).【例2】(2017·天津高考)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{an}和{b n}的通项公式;(2)求数列{a2n b2n-1}的前n项和(n∈N*).[解](1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q2+q-6=0.又因为q>0,解得q=2,所以b n=2n.由b3=a4-2a1,可得3d-a1=8. ①由S11=11b4,可得a1+5d=16. ②联立①②,解得a1=1,d=3,由此可得a n=3n-2.所以数列{a n}的通项公式为a n=3n-2,数列{b n}的通项公式为b n=2n.(2)设数列{a2n b2n-1}的前n项和为T n,由a2n=6n-2,b2n-1=2×4n-1,得a2n b2n-1=(3n-1)×4n,故T n=2×4+5×42+8×43+…+(3n-1)×4n,①4T n=2×42+5×43+8×44+…+(3n-4)×4n+(3n-1)×4n+1,②①-②,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1=12×(1-4n)1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8, 得T n =3n -23×4n +1+83.所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.n n n 公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .[解] (1)由题意得⎩⎪⎨⎪⎧ 10a 1+45d =100,a 1d =2,即⎩⎪⎨⎪⎧2a 1+9d =20,a 1d =2, 解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎨⎧a 1=9,d =29.故⎩⎪⎨⎪⎧a n =2n -1,b n =2n -1或⎩⎪⎨⎪⎧a n =19(2n +79),b n =9·⎝ ⎛⎭⎪⎫29n -1.(2)由d >1,知a n =2n -1,b n=2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+925+…+2n -12n . ②①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n , 故T n =6-2n +32n -1.►考法1 形如a n =1n (n +k )型【例3】 (2019·济南模拟)已知数列{a n }的各项都为正数,其前n 项和为S n ,且满足4S n =a 2n +2a n -3对任意的正整数n 都成立.(1)证明数列{a n }是等差数列,并求其通项公式; (2)设b n =1S n,求数列{b n }的前n 项和T n .[解] (1)当n =1时,4S 1=a 21+2a 1-3,即a 21-2a 1-3=0,解得a 1=3或a 1=-1(舍去),由4S n =a 2n +2a n -3,得当n ≥2时,4S n -1=a 2n -1+2a n -1-3,两式相减, 得4a n =a 2n -a 2n -1+2a n -2a n -1,即(a n +a n -1)(a n -a n -1-2)=0,又a n >0,∴a n -a n -1-2=0,即a n -a n -1=2(n ≥2), ∴数列{a n }是以3为首项,2为公差的等差数列, ∴a n =3+2(n -1)=2n +1.(2)由a n =2n +1,得S n =3+2n +12·n =n (n +2),∴b n =1S n =1n (n +2)=12⎝⎛⎭⎪⎫1n-1n +2, ∴T n =b 1+b 2+b 3+…+b n -1+b n =121-13+12-14+13-15+…+1n -1-1n +1+1n -1n +2=12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=34-2n +32(n +1)(n +2). ►考法2 形如a n =1n +k +n型【例4】 已知函数f (x )=x α的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 019=________.2505-1 [由f (4)=2,可得4α=2, 解得α=12,则f (x )=x 12.∴a n =1f (n +1)+f (n )=1n +1+n =n +1-n ,S 2 019=a 1+a 2+a 3+…+a 2 019=(2-1)+(3-2)+(4-3)+…+( 2 019- 2 018)+( 2 020- 2 019)= 2 020-1=2505-1.].n 2147为S n .(1)求数列{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n +2n 的前n 项和T n .[解] (1)设等差数列{a n }的公差为d .法一:由已知可得⎩⎪⎨⎪⎧a 1+d =4,a 1+(a 1+3d )+(a 1+6d )=30,即⎩⎪⎨⎪⎧ a 1+d =4,3a 1+9d =30,解得⎩⎪⎨⎪⎧a 1=1,d =3, 所以a n =a 1+(n -1)d =1+(n -1)×3=3n -2.法二:由等差数列的性质可得a 1+a 4+a 7=3a 4=30,解得a 4=10, 所以d =a 4-a 24-2=10-42=3,所以a n =a 2+(n -2)d =4+(n -2)×3=3n -2. (2)由(1)知S n =3n 2-n2,所以S n +2n =3n 2-n 2+2n =3n 2+3n 2=3n (n +1)2,所以1S n +2n =23n (n +1)=23⎝ ⎛⎭⎪⎫1n -1n +1. 所以T n =23×⎝ ⎛⎭⎪⎫1-12+23×⎝ ⎛⎭⎪⎫12-13+…+23⎝ ⎛⎭⎪⎫1n -1n +1=23⎝ ⎛⎭⎪⎫1-1n +1=2n3(n +1).1.(2017·全国卷Ⅲ)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n .(1)求{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +1的前n 项和.[解] (1)因为a 1+3a 2+…+(2n -1)a n =2n ,故当n ≥2时, a 1+3a 2+…+(2n -3)a n -1=2(n -1),两式相减得(2n -1)a n =2,所以a n =22n -1(n ≥2). 又由题设可得a 1=2,满足上式,所以{a n }的通项公式为a n =22n -1. (2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n . 由(1)知a n2n +1=2(2n +1)(2n -1)=12n -1-12n +1, 则S n =11-13+13-15+…+12n -1-12n +1=2n 2n +1.2.(2014·全国卷Ⅰ)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根.(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.[解] (1)方程x 2-5x +6=0的两根为2,3, 由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d ,故d =12,从而a 1=32.所以{a n }的通项公式为a n =12n +1.(2)设⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和为S n .由(1)知a n 2n =n +22n +1,则 S n =322+423+…+n +12n +n +22n +1, 12S n =323+424+…+n +12n +1+n +22n +2.两式相减得 12S n =34+⎝ ⎛⎭⎪⎫123+…+12n +1-n +22n +2 =34+14⎝ ⎛⎭⎪⎫1-12n -1-n +22n +2. 所以S n =2-n +42n +1.。
2020版高考数学一轮复习 课时跟踪检测(三十一)数列求和 理(含解析)苏教版
课时跟踪检测(三十一) 数列求和一抓基础,多练小题做到眼疾手快1.(2019·镇江调研)已知{}a n 是等差数列,S n 为其前n 项和,若a 3+a 7=8,则S 9=_______.解析:在等差数列{}a n 中,由a 3+a 7=8, 得a 1+a 9=8, 所以S 9=a 1+a 9×92=8×92=36.答案:36 2.数列{1+2n -1}的前n 项和为________.解析:由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n-1.答案:n +2n-13.数列{a n }的通项公式是a n =(-1)n(2n -1),则该数列的前100项之和为________. 解析:根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100. 答案:1004.(2018·泰州期末)已知数列{}a n 的通项公式为a n =n ·2n -1,前n 项和为S n ,则S n =________.解析:∵a n =n ·2n -1,∴S n =1×1+2×2+3×22+…+n ×2n -1,2S n =1×2+2×22+3×23+…+n ×2n, 两式相减可得-S n =1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n,化简可得S n =(n -1)2n+1. 答案:(n -1)2n+15.已知等比数列{}a n 的公比q >1,且a 5-a 1=30,a 4-a 2=12,则数列⎩⎨⎧⎭⎬⎫a na n -1a n +1-1的前n 项和为________. 解析:因为a 5-a 1=30,a 4-a 2=12, 所以a 1(q 4-1)=30,a 1(q 3-q )=12, 两式相除,化简得2q 2-5q +2=0, 解得q =12或2,因为q >1,所以q =2,a 1=2. 所以a n =2·2n -1=2n.所以a na n -1a n +1-1=2n2n-12n +1-1=12n-1-12n +1-1, 所以T n =1-13+13-17+…+12n -1-12n +1-1=1-12n +1-1.答案:1-12n +1-16.若数列{a n }满足a n -(-1)na n -1=n (n ≥2),S n 是{a n }的前n 项和,则S 40=________. 解析:当n =2k 时,即a 2k -a 2k -1=2k , ① 当n =2k -1时,即a 2k -1+a 2k -2=2k -1,② 当n =2k +1时,即a 2k +1+a 2k =2k +1, ③ ①+②得a 2k +a 2k -2=4k -1, ③-①得a 2k +1+a 2k -1=1,S 40=(a 1+a 3+a 5+...+a 39)+(a 2+a 4+a 6+a 8+...+a 40)=1×10+(7+15+23+ (79)=10+107+792=440. 答案:440二保高考,全练题型做到高考达标1.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =________.解析:依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项、2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n 2+2n2=n 2+n .答案:n 2+n2.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.解析:由已知得b 1=a 2=-3,q =-4, 所以b n =(-3)×(-4)n -1,所以|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列. 所以|b 1|+|b 2|+…+|b n |=31-4n1-4=4n-1.答案:4n-13.已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16=________.解析:根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数列重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7. 答案:74.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项为2n,则数列{a n }的前n 项和S n =________.解析:因为a n +1-a n =2n,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n ,所以S n =2-2n +11-2=2n +1-2.答案:2n +1-25.(2019·宿迁调研)已知数列{}a n 中,a 1=1,a 2=3,若a n +2+2a n +1+a n =0对任意n ∈N *都成立,则数列{}a n 的前n 项和S n =________.解析:∵a 1=1,a 2=3,a n +2+2a n +1+a n =0, ∴a n +2+a n +1=-(a n +1+a n ),a 2+a 1=4.则数列{}a n +1+a n 是首项为4,公比为-1的等比数列, ∴a n +1+a n =4×(-1)n -1.当n =2k -1时,a 2k +a 2k -1=4×(-1)2k -2=4.∴S n =(a 1+a 2)+(a 3+a 4)+…+(a 2k -1+a 2k )=4k =2n . 当n =2k 时,a 2k +1+a 2k =-4.S n =a 1+(a 2+a 3)+…+(a 2k -2+a 2k -1)=1-4×(k -1)=5-4k =5-4×n +12=3-2n .∴S n =⎩⎪⎨⎪⎧3-2n ,n 为奇数,2n ,n 为偶数.答案:⎩⎪⎨⎪⎧3-2n ,n 为奇数,2n ,n 为偶数6.在等差数列{a n }中,首项a 1=3,公差d =2,若某学生对其中连续10项进行求和,在漏掉一项的前提下,求得余下9项的和为185,则此连续10项的和为________.解析:由已知条件可得数列{a n }的通项公式a n =2n +1,设连续10项为a i +1,a i +2,a i +3,…,a i +10,i ∈N ,设漏掉的一项为a i +k,1≤k ≤10,由a i +1+a i +10×102-a i +k =185,得(2i +3+2i +21)×5-2i -2k -1=185,即18i -2k =66,即9i -k =33,所以34≤9i =k +33≤43,3<349≤i ≤439<5,所以i =4,此时,由36=33+k 得k =3,所以a i +k =a 7=15,故此连续10项的和为200.答案:2007.(2019·邵阳模拟)《九章算术》是我国古代的数学名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知A ,B ,C ,D ,E 五人分5钱,A ,B 两人所得与C ,D ,E 三人所得相同,且A ,B ,C ,D ,E 每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E 分得________钱.解析:由题意,设A 所得为a -4d ,B 所得为a -3d ,C 所得为a -2d ,D 所得为a -d ,E 所得为a ,则⎩⎪⎨⎪⎧5a -10d =5,2a -7d =3a -3d ,解得a =23,故E 分得23钱.答案:238.已知数列{a n }中,a 1=2,a 2n =a n +1,a 2n +1=n -a n ,则{a n }的前100项和为________. 解析:由a 1=2,a 2n =a n +1,a 2n +1=n -a n ,得a 2n +a 2n +1=n +1,所以a 1+(a 2+a 3)+(a 4+a 5)+…+(a 98+a 99)=2+2+3+…+50=1 276,因为a 100=1+a 50=1+(1+a 25)=2+(12-a 12)=14-(1+a 6)=13-(1+a 3)=12-(1-a 1)=13,所以a 1+a 2+…+a 100=1 276+13=1 289.答案:1 2899.(2018·苏北四市期末)已知正项数列{a n }的前n 项和为S n ,且a 1=a ,(a n +1)(a n +1+1)=6(S n +n ),n ∈N *.(1)求数列{a n }的通项公式;(2)若对于∀n ∈N *,都有S n ≤n (3n +1)成立,求实数a 的取值范围. 解:(1)当n =1时,(a 1+1)(a 2+1)=6(S 1+1),故a 2=5. 当n ≥2时,(a n -1+1)(a n +1)=6(S n -1+n -1),所以(a n +1)(a n +1+1)-(a n -1+1)(a n +1)=6(S n +n )-6(S n -1+n -1), 即(a n +1)(a n +1-a n -1)=6(a n +1). 又a n >0,所以a n +1-a n -1=6,所以a 2k -1=a +6(k -1)=6k +a -6,a 2k =5+6(k -1)=6k -1,故a n =⎩⎪⎨⎪⎧3n +a -3,n 为奇数,3n -1,n 为偶数.(2)当n 为奇数时,S n =12(3n +a -2)(n +1)-n ,由S n ≤n (3n +1),得a ≤3n 2+3n +2n +1恒成立,令f (n )=3n 2+3n +2n +1,则f (n +1)-f (n )=3n 2+9n +4n +2n +1>0,所以a ≤f (1)=4.当n 为偶数时,S n =12n (3n +a +1)-n ,由S n ≤n (3n +1)得,a ≤3(n +1)恒成立, 所以a ≤9.又a 1=a >0,所以实数a 的取值范围是(0,4].10.(2019·宿迁中学调研)已知各项均为正数的数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足a n S n +1-a n +1S n +a n -a n +1=λa n a n +1(λ≠0,n ∈N *).(1)若a 1,a 2,a 3成等比数列,求实数λ的值; (2)若λ=12,求S n .解:(1)令n =1,得a 2=21+λ.令n =2,得a 2S 3-a 3S 2+a 2-a 3=λa 2a 3, 所以a 3=2λ+4λ+12λ+1.由a 22=a 1a 3,得⎝⎛⎭⎪⎫21+λ2=2λ+4λ+12λ+1, 因为λ≠0,所以λ=1.(2)当λ=12时,a n S n +1-a n +1S n +a n -a n +1=12a n a n +1,所以S n +1a n +1-S n a n +1a n +1-1a n =12,即S n +1+1a n +1-S n +1a n =12, 所以数列⎩⎨⎧⎭⎬⎫S n +1a n 是以2为首项,12为公差的等差数列,所以S n +1a n =2+(n -1)·12, 即S n +1=⎝ ⎛⎭⎪⎫n 2+32a n ,①当n ≥2时,S n -1+1=⎝ ⎛⎭⎪⎫n2+1a n -1,② ①-②得,a n =n +32a n -n +22a n -1,即(n +1)a n =(n +2)a n -1,所以a n n +2=a n -1n +1(n ≥2), 所以⎩⎨⎧⎭⎬⎫a n n +2是常数列,且为13,所以a n =13(n +2). 代入①得S n =⎝ ⎛⎭⎪⎫n 2+32a n -1=n 2+5n 6. 三上台阶,自主选做志在冲刺名校1.(2018·启东检测)《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果墙足够厚,S n 为前n 天两只老鼠打洞长度之和,则S n =________尺.解析:依题意大老鼠每天打洞的距离构成以1为首项,2为公比的等比数列,所以前n 天大老鼠打洞的距离共为1×1-2n1-2=2n-1.同理可得前n 天小老鼠打洞的距离共为1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=2-12n -1,所以S n =2n -1+2-12n -1=2n-12n -1+1. 答案:2n-12n -1+12.(2018·苏州高三暑假测试)等差数列{a n }的前n 项和为S n ,且a n -S n =n 2-16n +15(n ∈N *),若对任意n ∈N *,总有S n ≤S k ,则k 的值为________.解析:设等差数列{a n }的公差为d ,则a n -S n =a 1+(n -1)d -⎣⎢⎡⎦⎥⎤na 1+n n -12d =-d 2n 2+⎝ ⎛⎭⎪⎫32d -a 1n +a 1-d =n 2-16n +15,所以⎩⎪⎨⎪⎧-d2=1,32d -a 1=-16,a 1-d =15,解得⎩⎪⎨⎪⎧a 1=13,d =-2,所以S n =13n +n n -12×(-2)=-n 2+14n =-(n -7)2+49,所以(S n )max =S 7,所以S n ≤S 7对任意n ∈N *恒成立,所以k 的值为7.答案:73.(2019·南京一模)平面内的“向量列”{a n },如果对于任意的正整数n ,均有a n +1-a n =d ,则称此“向量列”为“等差向量列”,d 称为“公差向量”;平面内的“向量列”{b n },如果对于任意的正整数n ,均有b n +1=q ·b n (q ≠0),则称此“向量列”为“等比向量列”,常数q 称为“公比”.(1)如果“向量列”{a n }是“等差向量列”,用a 1和“公差向量”d 表示a 1+a 2+…+a n ; (2)已知{a n }是“等差向量列”,“公差向量”d =(3,0),a 1=(1,1),a n =(x n ,y n ),{b n }是“等比向量列”,“公比”q =2,b 1=(1,3),b n =(m n ,k n ),求a 1·b 1+a 2·b 2+…+a n ·b n .解:(1)∵“向量列”{a n }是“等差向量列”, ∴a 1+a 2…+a n =n a 1+(1+2+…+n -1)d =n a 1+n n -12d.(2)∵a 1=(1,1),d =(3,0),∴a n =(3n -2,1). ∵b 1=(1,3),q =2,∴b n =(2n -1,3·2n -1).∴a n ·b n =(3n -2,1)·(2n -1,3·2n -1)=(3n -2)·2n -1+3·2n -1=(3n +1)·2n -1,设S n =a 1·b 1+a 2·b 2+…+a n ·b n , 则S n ==4·20+7·21+…+(3n +1)·2n -1,2S n =4·2+7·22+…+(3n +1)·2n, 两式相减可得,-S n =4+3(2+22+…+2n -1)-(3n +1)·2n=4+3·21-2n -11-2-(3n +1)·2n =(2-3n )·2n-2,∴a 1·b 1+a 2·b 2+…+a n ·b n =(3n -2)·2n+2.。
高考数学一轮复习 课后限时集训36 数列求和 理 北师大版-北师大版高三全册数学试题
课后限时集训36数列求和 建议用时:45分钟一、选择题1.在等差数列{a n }中,若a 3+a 5+a 7=6,a 11=8,则数列⎩⎨⎧⎭⎬⎫1a n +3a n +4的前n 项和S n =( ) A.n +1n +2B .nn +1C.nn +2D.2n n +1B [设等差数列{a n }的公差为d ,由a 3+a 5+a 7=6,a 11=8,得a 5=2,d =1,所以a n =n -3.则a n +3=n ,a n +4=n +1,所以1a n +3a n +4=1nn +1=1n -1n +1.所以S n =1-1n +1=nn +1.故选B.]2.数列{(-1)n(2n -1)}的前2 020项和S 2 020等于( ) A .-2 018 B .2 018 C .-2 020D .2 020D [S 2 020=-1+3-5+7+…-(2×2 019-1)+(2×2 020-1)=2×1 010=2 020.故选D.]3.在数列{a n }中,已知a 1+a 2+…+a n =2n -1,则a 21+a 22+…+a 2n =( ) A .(2n -1)2B.2n -123C .4n-1D.4n-13D [由题意得,当n =1时,a 1=1,当n ≥2时,a 1+a 2+…+a n -1=2n -1-1,则a n =2n-1-(2n -1-1)=2n -1(n ≥2),n =1时也成立,所以a n =2n -1,则a 2n =22n -2,所以数列{a 2n }的首项为1,公比为4的等比数列,所以a 21+a 22+…+a 2n =1×1-4n1-4=4n-13,故选D.]4.数列{a n }中,a 1=2,且a n +a n -1=na n -a n -1+2(n ≥2),则数列⎩⎨⎧⎭⎬⎫1a n -12前 2 019项和为( )A.4 0362 019 B.2 0191 010 C.4 0372 019D.4 0392 020B [∵a n +a n -1=na n -a n -1+2(n ≥2),∴a 2n -a 2n -1-2(a n -a n -1)=n , 整理,得(a n -1)2-(a n -1-1)2=n , ∴(a n -1)2-(a 1-1)2=n +(n -1)+…+2, 又a 1=2, ∴(a n -1)2=n n +12,即1a n -12=2nn +1=2⎝ ⎛⎭⎪⎫1n -1n +1. 则数列⎩⎨⎧⎭⎬⎫1a n -12前2 019项和为: 2⎝ ⎛⎭⎪⎫1-12+12-13+…+12 019-12 020=2⎝ ⎛⎭⎪⎫1-12 020=2 0191 010.故选B.] 5.设数列{a n }的前n 项和为S n ,且a 1=2,a n +a n +1=2n(n ∈N +),则S 13=( )A.213-43B.213+23C.214-43D.214+23C [∵a 1=2,∴n =2时,a 2+a 3=22,n =4时,a 4+a 5=24,n =6时,a 6+a 7=26,n =8时,a 8+a 9=28, n =10时,a 10+a 11=210,n =12时,a 12+a 13=212,∴S 13=2+22+24+26+28+210+212=2+22[1-226]1-22=214-43.故选C.]二、填空题6.(2019·某某某某期中)已知数列{a n }满足1a n =1a n +1-1,且a 1=1,则a n =________,数列{b n }满足b n =2na n,则数列{b n }的前n 项和S n =________.1n(n -1)·2n +1+2 [由1a n =1a n +1-1可得1a n +1-1a n=1,所以⎩⎨⎧⎭⎬⎫1a n 为等差数列,公差、首项都为1,由等差数列的通项公式可得 1a n=n ,a n =1n ,2na n=n ×2n,S n =1×2+2×22+…+n ×2n ,2S n =1×22+…+(n -1)×2n +n ×2n +1, 相减得S n =-(2+22+…+2n )+n ×2n +1=-21-2n1-2+n ×2n +1=(n -1)×2n +1+2.]7.已知数列{a n }满足a 1=1,a n +1·a n =2n(n ∈N +),则S 2 018=________. 3·21 009-3 [∵数列{a n }满足a 1=1,a n +1·a n =2n,①∴n =1时,a 2=2,n ≥2时,a n ·a n -1=2n -1,②由①÷②得a n +1a n -1=2, ∴数列{a n }的奇数项、偶数项分别成等比数列, ∴S 2 018=1-21 0091-2+21-21 0091-2=3·21 009-3.]8.已知等差数列{a n }满足a 3=7,a 5+a 7=26,b n =1a 2n -1(n ∈N +),数列{b n }的前n 项和为S n ,则S 100的值为________.25101[因为a 3=7,a 5+a 7=26,所以公差d =2, 所以a n =a 3+2(n -3)=2n +1. 所以b n =1a 2n -1=12n +12-1=14nn +1=14⎝ ⎛⎭⎪⎫1n -1n +1.所以S 100=b 1+b 2+…+b 100 =14⎝ ⎛⎭⎪⎫1-12+12-13+…+1100-1101=25101.]三、解答题9.已知等差数列{a n }满足a 6=6+a 3,且a 3-1是a 2-1,a 4的等比中项. (1)求数列{a n }的通项公式;(2)设b n =1a n a n +1(n ∈N +),数列{b n }的前项和为T n ,求使T n <17成立的最大正整数n 的值 [解] (1)设等差数列{a n }的公差为d , ∵a 6-a 3=3d =6,即d =2,∴a 3-1=a 1+3,a 2-1=a 1+1,a 4=a 1+6, ∵a 3-1是a 2-1,a 4的等比中项, ∴(a 3-1)2=(a 2-1)·a 4,即(a 1+3)2=(a 1+1)(a 1+6),解得a 1=3. ∴数列{a n }的通项公式为a n =2n +1. (2)由(1)得b n =1a n a n +1=12n +12n +3=12⎝ ⎛⎭⎪⎫12n +1-12n +3.∴T n =b 1+b 2+…+b n=12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3=n32n +3,由n 32n +3<17,得n <9.∴使T n <17成立的最大正整数n 的值为8.10.(2019·某某高考)设{a n }是等差数列,{b n }是等比数列,公比大于0,已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式; (2)设数列{}满足=求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N +).[解] (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .依题意,得⎩⎪⎨⎪⎧ 3q =3+2d ,3q 2=15+4d ,解得⎩⎪⎨⎪⎧d =3,q =3,故a n =3+3(n -1)=3n ,b n =3×3n -1=3n.所以{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n. (2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n ) =⎣⎢⎡⎦⎥⎤n ×3+n n -12×6+(6×31+12×32+18×33+…+6n ×3n )=3n 2+6(1×31+2×32+…+n ×3n). 记T n =1×31+2×32+…+n ×3n,① 则3T n =1×32+2×33+…+n ×3n +1,②②-①得,2T n =-3-32-33-…-3n +n ×3n +1=-31-3n1-3+n ×3n +1=2n -13n +1+32.所以a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×2n -13n +1+32=2n -13n +2+6n 2+92(n ∈N +).1.定义在[0,+∞)上的函数f (x )满足:当0≤x <2时,f (x )=2x -x 2;当x ≥2时,f (x )=3f (x -2).记函数f (x )的极大值点从小到大依次记为a 1,a 2,…,a n ,…,并记相应的极大值为b 1,b 2,…,b n ,…,则a 1b 1+a 2b 2+…+a 20b 20的值为( )A .19×320+1 B .19×319+1 C .20×319+1D .20×320+1A [由题意当0≤x <2时,f (x )=2x -x 2=-(x -1)2+1极大值点为1,极大值为1,当x ≥2时,f (x )=3f (x -2).则极大值点形成首项为1,公差为2 的等差数列,极大值形成首项为1,公比为3的等比数列,故a n =2n -1,b n =3n -1, 故a n b n =(2n -1)3n -1,设S =a 1b 1+a 2b 2+…+a 20b 20=1×1+3×31+5×32+…+39×319, 3S =1×31+3×32+…+39×320,两式相减得-2S =1+2(31+32+…+319)-39×320=1+2×31-3191-3-39×320,∴S =19×320+1,故选A.]2.(2019·金山中学模拟)数列{a n }且a n=⎩⎪⎨⎪⎧1n 2+2n ,n 为奇数,sin n π4,n 为偶数,若S n 是数列{a n }的前n 项和,则S 2 018=________.3 0282 019 [数列{a n }且a n=⎩⎪⎨⎪⎧1n 2+2n ,n 为奇数,sin n π4,n 为偶数,①当n 为奇数时,a n =1n 2+2n =12⎝ ⎛⎭⎪⎫1n -1n +2,②当n 为偶数时,a n =sinn π4,所以S 2 018=(a 1+a 3+a 5+…+a 2 017)+(a 2+a 4+a 6+…+a 2 018), =12⎝ ⎛⎭⎪⎫1-13+13-15+…+12 017-12 019+(1+0-1+…+0),=1 0092 019+1=3 0282 019.]3.(2019·某某模拟)如图,将平面直角坐标系中的格点(横、纵坐标均为整数的点)按如下规则标上标签:原点处标数字0,记为a 0;点(1,0)处标数字1,记为a 1;点(1,-1)处标数字0,记为a 2;点(0,-1)处标数字-1,记为a 3;点(-1,-1)处标数字-2,记为a 4;点(-1,0)处标数字-1,记为a 5;点(-1,1)处标数字0,记为a 6;点(0,1)处标数字1,记为a 7;……;以此类推,格点坐标为(i ,j )的点处所标的数字为i +j (i ,j 均为整数),记S n =a 1+a 2+…+a n ,则S 2 018=________.-249 [设a n 的坐标为(x ,y ),则a n =x +y .第一圈从点(1,0)到点(1,1)共8个点,由对称性可知a 1+a 2+…+a 8=0;第二圈从点(2,1)到点(2,2)共16个点,由对称性可知a 9+a 10+…+a 24=0,……;以此类推,可得第n 圈的8n 个点对应的这8n 项的和也为0.设a 2 018在第k 圈,则8+16+…+8k =4k (k +1),由此可知前22圈共有2 024个数,故S 2 024=0,则S 2 018=S 2 024-(a 2 024+a 2 023+…+a 2 019),a 2 024所在点的坐标为(22,22),a 2 024=22+22,a 2 023所在点的坐标为(21,22),a 2 023=21+22,以此类推,可得a 2 022=20+22,a 2 021=19+22,a 2 020=18+22,a 2 019=17+22,所以a 2 024+a 2 023+…+a 2 019=249,故S 2 018=-249.]4.已知各项均不相等的等差数列{a n }的前四项和S 4=14,且a 1,a 3,a 7成等比数列. (1)求数列{a n }的通项公式; (2)设T n 为数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和,若λT n ≤a n +1对一切n ∈N +恒成立,某某数λ的最大值.[解] (1)设数列{a n }的公差为d (d ≠0),由已知得,⎩⎪⎨⎪⎧4a 1+6d =14,a 1+2d 2=a 1a 1+6d ,解得⎩⎪⎨⎪⎧a 1=2,d =1或⎩⎪⎨⎪⎧a 1=72,d =0(舍去),所以a n =n+1.(2)由(1)知1a n a n +1=1n +1-1n +2, 所以T n =⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2=n2n +2. 又λT n ≤a n +1恒成立, 所以λ≤2n +22n=2⎝⎛⎭⎪⎫n +4n +8,而2⎝⎛⎭⎪⎫n +4n +8≥16,当且仅当n =2时等号成立.所以λ≤16,即实数λ的最大值为16.1.(2017·全国卷Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .110A [设首项为第1组,接下来的两项为第2组,再接下来的三项为第3组,依此类推,则第n 组的项数为n ,前n 组的项数和为n 1+n2.由题意知,N >100, 令n 1+n2>100⇒n ≥14且n ∈N +,即N 出现在第13组之后.第n 组的各项和为1-2n1-2=2n-1,前n 组所有项的和为21-2n1-2-n =2n +1-2-n .设N 是第n +1组的第k 项,若要使前N 项和为2的整数幂,则第n +1组的前k 项的和2k-1应与-2-n 互为相反数,即2k-1=2+n (k ∈N +,n ≥14),k =log 2(n +3)⇒n 最小为29,此时k =5,则N =29×1+292+5=440.故选A.]2.已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2. (1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2),…,P n +1(x n +1,n +1)得到折线P 1P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .[解] (1)设数列{x n }的公比为q ,由已知知q >0.由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2.所以3q 2-5q -2=0.因为q >0,所以q =2,x 1=1. 因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,…,Q n +1. 由(1)得x n +1-x n =2n-2n -1=2n -1,记梯形P n P n +1Q n +1Q n 的面积为b n , 由题意b n =n +n +12×2n -1=(2n +1)×2n -2,所以T n =b 1+b 2+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2,① 2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1.②①-②得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+21-2n -11-2-(2n +1)×2n -1.所以T n =2n -1×2n+12.。
2020版高考理科数学(人教版)一轮复习课时跟踪检测(三十五)+数列求和+Word版含解析
课时跟踪检测(三十五) 数列求和一、题点全面练1.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12D .-15解析:选A a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8+a 9+a 10=-1+4-7+10-13+16-19+22-25+28=5×3=15.2.在数列{a n }中,若a n +1+(-1)n a n =2n -1,则数列{a n }的前12项和等于( ) A .76 B .78 C .80D .82解析:选B 由已知a n +1+(-1)n a n =2n -1,得a n +2+(-1)n +1a n +1=2n +1,得a n +2+a n =(-1)n (2n -1)+(2n +1),取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.故选B.3.(2019·开封调研)已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 018等于( ) A .22 018-1 B .3×21 009-3 C .3×21 009-1D .3×21 008-2解析:选B ∵a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n =2n +12n =2,∴a n +2a n=2.∴a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列, ∴S 2 018=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 017+a 2 018 =(a 1+a 3+a 5+…+a 2 017)+(a 2+a 4+a 6+…+a 2 018) =1-21 0091-2+2(1-21 009)1-2=3×21 009-3.故选B.4.(2019·郑州质量预测)已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n +2-2a n +1+a n =0(n ∈N *),记T n =1S 1+1S 2+…+1S n(n ∈N *),则T 2 018=( )A.4 0342 018B.2 0172 018C.4 0362 019D.2 0182 019解析:选C 由a n +2-2a n +1+a n =0(n ∈N *),可得a n +2+a n =2a n +1,所以数列{a n }为等差数列,公差d =a 2-a 1=2-1=1,通项公式a n =a 1+(n -1)×d =1+n -1=n ,则其前n 项和S n =n (a 1+a n )2=n (n +1)2,所以1S n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,T n =1S 1+1S 2+…+1S n =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2⎝ ⎛⎭⎪⎫1-1n +1=2nn +1,故T 2 018=2×2 0182 018+1=4 0362 019,故选C. 5.已知数列{a n },若a n +1=a n +a n +2(n ∈N *),则称数列{a n }为“凸数列”.已知数列{b n }为“凸数列”,且b 1=1,b 2=-2,则数列{b n }的前2 019项和为( )A .5B .-4C .0D .-2解析:选B 由“凸数列”的定义及b 1=1,b 2=-2,得b 3=-3,b 4=-1,b 5=2,b 6=3,b 7=1,b 8=-2,…,∴数列{b n }是周期为6的周期数列,且b 1+b 2+b 3+b 4+b 5+b 6=0,于是数列{b n }的前2 019项和等于b 1+b 2+b 3=-4.6.(2019·肇庆模拟)正项数列{a n }中,满足a 1=1,a 2=12,1a n +1=1a n ·1a n +2(n ∈N *),那么a 1·a 3+a 2·a 4+a 3·a 5+…+a n ·a n +2=________.解析:由1a n +1=1a n ·1a n +2(n ∈N *), 可得a 2n +1=a n a n +2, ∴数列{a n }为等比数列.∵a 1=1,a 2=12,∴q =12,∴a n =12n -1,∴a n ·a n +2=12n -1·12n +1=14n,∴a 1·a 3=14, ∴a 1·a 3+a 2·a 4+a 3·a 5+…+a n ·a n +2 =14⎝⎛⎭⎫1-14n 1-14=13⎝⎛⎭⎫1-14n . 答案:13⎝⎛⎭⎫1-14n7.(2019·合肥模拟)数列{a n }满足:a 1=13,且a n +1=(n +1)a n 3a n +n (n ∈N *),则数列{a n }的前n项和S n =________.解析:a n +1=(n +1)a n 3a n +n ,两边同时取倒数得1a n +1=3a n +n (n +1)a n =3n +1+n (n +1)a n ,整理得n +1a n +1=n a n +3,所以n +1a n +1-n a n =3,所以数列⎩⎨⎧⎭⎬⎫n a n 是以1a 1=3为首项,3为公差的等差数列,所以n a n =3n ,所以a n =13,所以数列{a n }是常数列,所以S n =n 3.答案:n38.(2019·益阳、湘潭调研)已知S n 为数列{a n }的前n 项和,若a 1=2且S n +1=2S n ,设b n=log 2a n ,则1b 1b 2+1b 2b 3+…+1b 2 018b 2 019的值是________. 解析:由S n +1=2S n 可知,数列{S n }是首项为S 1=a 1=2,公比为2的等比数列,所以S n=2n.当n ≥2时,a n =S n -S n -1=2n-2n -1=2n -1,bn =log 2a n =⎩⎪⎨⎪⎧1,n =1,n -1,n ≥2,当n ≥2时,1b n b n +1=1(n -1)n =1n -1-1n ,所以1b 1b 2+1b 2b 3+…+1b 2 018b 2 019=1+1-12+12-13+…+12 017-12 018=2-12 018=4 0352 018. 答案:4 0352 0189.(2019·广州调研)已知数列{a n }满足a 1+4a 2+42a 3+…+4n -1a n =n 4(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =4n a n2n +1,求数列{b n b n +1}的前n 项和T n .解:(1)当n =1时,a 1=14.因为a 1+4a 2+42a 3+…+4n -2a n -1+4n -1a n =n4,①所以a 1+4a 2+42a 3+…+4n -2a n -1=n -14(n ≥2,n ∈N *),② ①-②得4n -1a n =14(n ≥2,n ∈N *),所以a n =14n (n ≥2,n ∈N *).当n =1时也适合上式,故a n =14n (n ∈N *).(2)由(1)得b n =4n a n 2n +1=12n +1,所以b n b n +1=1(2n +1)(2n +3)=12⎝ ⎛⎭⎪⎫12n +1-12n +3,故T n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3 =n6n +9. 10.(2019·石家庄质检)已知数列{a n }满足:a 1=1,a n +1=n +1n a n +n +12n . (1)设b n =a nn ,求数列{b n }的通项公式;(2)求数列{a n }的前n 项和S n .解:(1)由a n +1=n +1n a n +n +12n ,可得a n +1n +1=a n n +12n ,又b n =a n n ,∴b n +1-b n =12n ,由a 1=1,得b 1=1,累加可得(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =121+122+…+12n -1, 即b n -b 1=12⎝ ⎛⎭⎪⎫1-12n -11-12=1-12n -1,∴b n =2-12n -1.(2)由(1)可知a n =2n -n2n -1,设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫n 2n -1的前n 项和为T n ,则T n =120+221+322+…+n 2n -1,①12T n =121+222+323+…+n 2n ,② ①-②得12T n =120+121+122+…+12n -1-n 2n=1-12n1-12-n2n =2-n +22n ,∴T n =4-n +22n -1.易知数列{2n }的前n 项和为n (n +1), ∴S n =n (n +1)+n +22n -1-4.二、专项培优练(一)易错专练——不丢怨枉分1.1-4+9-16+…+(-1)n +1n 2=( ) A.n (n +1)2B .-n (n +1)2C .(-1)n+1n (n +1)2D .以上均不正确解析:选C 当n 为偶数时,1-4+9-16+…+(-1)n +1n 2=-3-7-…-(2n -1)=-n2(3+2n -1)2=-n (n +1)2;当n 为奇数时,1-4+9-16+…+(-1)n +1n 2=-3-7-…-[2(n -1)-1]+n 2=-n -12[3+2(n -1)-1]2+n 2=n (n +1)2.综上可得,原式=(-1)n +1n (n +1)2.2.已知函数f (n )=⎩⎪⎨⎪⎧n 2,n 为奇数,-n 2,n 为偶数,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 2 018=( )A .-2 017B .-2 018C .2 017D .2 018解析:选D 当n 为奇数时,n +1为偶数,则a n =n 2-(n +1)2=-2n -1,所以a 1+a 3+a 5+…+a 2 017=-(3+7+11+…+4 035).当n 为偶数时,n +1为奇数,则a n =-n 2+(n +1)2=2n +1,所以a 2+a 4+a 6+…+a 2 018=5+9+13+…+4 037.所以a 1+a 2+a 3+…+a 2 018=(5-3)+(9-7)+(13-11)+…+(4 037-4 035)=2×1 009=2 018,故选D.3.已知数列{a n }的前n 项和S n =n 2-6n ,则数列{|a n |}的前n 项和T n 等于( ) A .6n -n 2B .n 2-6n +18C.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n +18(n >3)D.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n (n >3)解析:选C 由S n =n 2-6n 得{a n }是等差数列,且首项为-5,公差为2,∴a n =-5+(n -1)×2=2n -7,∴当n ≤3时,a n <0,T n =(-a 1)+(-a 2)+(-a 3)=-S n =6n -n 2.当n >3时,a n >0,T n =(-a 1)+(-a 2)+(-a 3)+a 4+…+a n =S n -2S 3=n 2-6n +18.∴T n =⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n +18(n >3).(二)难点专练——适情自主选4.已知数列{a n }为等差数列且公差d ≠0,{a n }的部分项组成等比数列{b n },其中b n =ak n ,若k 1=1,k 2=5,k 3=17,(1)求k n ;(2)若a 1=2,求{a n k n }的前n 项和S n .解:(1)由k 1=1,k 2=5,k 3=17,知a 1(a 1+16d )=(a 1+4d )2,得a 1=2d . 从而a k =(k +1)d ,则ak n +1ak n =(k n +1+1)d (k n +1)d =ak 2ak 1=3,即(k n +1+1)=3(k n +1),所以数列{k n +1}是首项为k 1+1=2,公比为3的等比数列,所以k n +1=2·3n -1,所以k n =2·3n -1-1.(2)由a 1=2,得d =1,则a n =n +1,a n k n =2(n +1)·3n -1-(n +1), 所以S n =2[2+3·3+…+(n +1)3n -1]-n (n +3)2, 令T n =2+3·3+…+(n +1)3n -1, 则3T n =2·3+3·32+…+(n +1)3n ,两式相减,得-2T n =2+3+32+…+3n -1-(n +1)3n =1+3n -12-(n +1)3n .所以T n =-3n +14+(n +1)3n 2=(2n +1)3n -14,S n =(2n +1)3n -(n 2+3n +1)2.5.在数1和100之间插入n 个实数,使得这n +2个数构成递增的等比数列,将这n +2个数的乘积记作T n ,再令a n =lg T n ,n ≥1.(1)求数列{a n }的通项公式;(2)设b n =tan a n tan a n +1,求数列{b n }的前n 项和S n .解:(1)设t 1,t 2,…,t n +2构成等比数列,其中t 1=1,t n +2=100,则T n =t 1·t 2·…·t n +1·t n+2,①T n =t n +2·t n +1·…·t 2·t 1,②由①×②并利用t i ·t n +3-i =100(1≤i ≤n +2),得T 2n =100n +2,所以a n =lg T n =n +2. (2)由题意和(1)中计算结果,知b n =tan(n +2)tan(n +3),n ≥1, 另一方面,由tan 1=tan [(k +1)-k ] =tan (k +1)-tan k1+tan (k +1)tan k , 得tan(k +1)tan k =tan (k +1)-tan ktan 1-1,所以S n =∑k =1nb k =∑k =3n +2tan(k +1)tan k=∑k =3n +2⎣⎢⎡⎦⎥⎤tan (k +1)-tan k tan 1-1=tan (n +3)-tan 3tan 1-n .。
2020版高考数学一轮复习课时规范练36数学归纳法理北师大版
课时规范练36 数学归纳法基础巩固组1.如果命题p(n)对n=k(k∈N+)成立,则它对n=k+2也成立.若p(n)对n=2也成立,则下列结论正确的是()A.p(n)对所有正整数n都成立B.p(n)对所有正偶数n都成立C.p(n)对所有正奇数n都成立D.p(n)对所有自然数n都成立2.用数学归纳法证明命题“当n是正奇数时,x n+y n能被x+y整除”,在第二步时,正确的证法是()A.假设n=k(k∈N+),证明n=k+1时命题成立B.假设n=k(k是正奇数),证明n=k+1时命题成立C.假设n=2k+1(k∈N+),证明n=k+1时命题成立D.假设n=k(k是正奇数),证明n=k+2时命题成立3.(2018安徽蚌埠期末,5)用数学归纳法证明不等式“+…+(n>2)”的过程中,归纳递推由n=k到n=k+1时,不等式的左边()A.增加了一项B.增加了两项C.增加了两项,又减少了一项D.增加了一项,又减少了一项4.(2018辽宁辽阳期末,6)证明等式12+22+32+…+n2=(n∈N+)时,某学生的证明过程如下:(1)当n=1时,12=,等式成立;(2)假设n=k(k∈N+)时,等式成立,即12+22+32+…+k2=,则当n=k+1时,12+22+32+…+k2+(k+1)2=+(k+1)2===,所以当n=k+1时,等式也成立,故原等式成立.那么上述证明()A.全过程都正确B.当n=1时验证不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确5.(2018辽宁抚顺期中,14)用数学归纳法证明:“两两相交且不共点的n条直线把平面分为f(n)部分,则f(n)=1+.”证明第二步归纳递推时,用到f(k+1)=f(k)+.6.试证:当n∈N+时,f(n)=32n+2-8n-9能被64整除.7.(2018山东师范大学附属中学期中,18)证明:对任意的n∈N+,不等式·…·成立.8.(2018广东中山一中三模,21)设数列{a n}满足a1=3,a n+1=-2na n+2(n∈N+).(1)求a2,a3,a4的值,并猜想数列{a n}的通项公式(不需证明);(2)记S n为数列{a n}的前n项和,用数学归纳法证明:当n≥6时,有S n<2n成立.综合提升组9.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立”.则下列命题总成立的是()A.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立B.若f(5)≥25成立,则当k≤5时,均有f(k)≤k2成立C.若f(7)<49成立,则当k≥8时,均有f(k)<k2成立D.若f(4)=25成立,则当k≥4时,均有f(k)≥k2成立10.设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n 条直线交点的个数,则f(4)=;当n>4时,f(n)=(用n表示).11.(2018辽宁六校协作体期中,17)是否存在常数a,b使得等式12+22+…+n2=n(2n+1)(an+b)对一切正整数n都成立?若存在,求出a,b值,并用数学归纳法证明你的结论;若不存在,请说明理由.创新应用组12.(2018河南洛阳模拟,18)将正整数作如下分组:(1),(2,3),(4,5,6),(7,8,9,10),(11,12,13,14,15),(16,17,18,19,20,21),….分别计算各组包含的正整数的和如下,S1=1,S2=2+3=5,S3=4+5+6=15,S4=7+8+9+10=34,S5=11+12+13+14+15=65,S6=16+17+18+19+20+21=111,(1)求S7的值;(2)由S1,S1+S3,S1+S3+S5,S1+S3+S5+S7的值,试猜测S1+S3+…+S2n-1的结果,并用数学归纳法证明.13.已知函数f0(x)=(x>0),设f n(x)为f n-1(x)的导数,n∈N+.(1)求2f1+f2的值;(2)证明:对任意的n∈N+,等式nf n-1+f n=都成立.参考答案课时规范练36 数学归纳法1.B n=k时成立,当n=2时,n=k+2成立,n为2,4,6,…,故n为所有正偶数.2.D相邻两个正奇数相差2,故D选项正确.3.C当n=k时,左边=++…+,①当n=k+1时,左边=++…++,②所以增加了两项+,又减少了一项,故答案为C.4.A考查所给的证明过程:当n=1时验证是正确的,归纳假设是正确的,从n=k到n=k+1的推理也是正确的,即证明过程中不存在任何的问题.故选A.5.k+1当n=k(k≥2)时,有f(k)=1+,当n=k+1时,f(k+1)=1+,∴从k到k+1左端需增加的代数式1+-1-=(k+2-k)=k+1,∴在证明第二步归纳推理的过程中,用到f(k+1)=f(k)+(k+1).6.证明 (1)当n=1时,f(1)=64,命题显然成立.(2)假设当n=k(k∈N+,k≥1)时,f(k)=32k+2-8k-9能被64整除,则当n=k+1时,f(k+1)=32(k+1)+2-8(k+1)-9=9(32k+2-8k-9)+9·8k+9·9-8(k+1)-9=9(32k+2-8k-9)+64(k+1),即f(k+1)=9f(k)+64(k+1),因此当n=k+1时命题也成立.根据(1)(2)可知,对于任意n∈N+,命题都成立.7.证明①当n=1时,左边=,右边=,因为>,所以不等式成立.②假设当n=k时不等式成立,即···…·>成立.则当n=k+1时,左边···…··>·===>,所以当n=k+1时,不等式也成立.由①②可得不等式恒成立.8.解 (1)a2=5,a3=7,a4=9,猜想a n=2n+1.(2)S n==n2+2n,下证:n≥6(n∈N+)时都有2n>n2+2n.当n=6时,26>62+2×6,即64>48成立;假设n=k(k≥6,k∈N+)时,2k>k2+2k成立,那么当n=k+1时,2k+1=2·2k>2(k2+2k)=k2+2k+k2+2k>k2+2k+3+2k=(k+1)2+2(k+1),即n=k+1时,不等式成立.故对于所有的n≥6(n∈N+),都有2n>n2+2n成立.9.D对A,当k=1或2时,不一定有f(k)≥k2成立;对B,只能得出:对于任意的k≥5,均有f(k)≥k2成立,不能得出:对任意的k≤5,均有f(k)≤k2成立;对C,若f(7)<49成立不能推出任何结论;对D,∵f(4)=25≥16,∴对于任意的k≥4,均有f(k)≥k2成立.故选D.10.5(n+1)(n-2)f(3)=2,f(4)=f(3)+3=2+3=5,f(n)=f(3)+3+4+…+(n-1)=2+3+4+…+(n-1)=(n+1)(n-2).11.解分别令n=1,2,可得解得故猜想等式12+22+…+n2=对一切正整数n都成立.下面用数学归纳法证明:①当n=1时,由上面的探求可知等式成立.②假设n=k(k∈N+,k≥1)时猜想成立,即12+22+…+k2=.当n=k+1时,12+22+…+k2+(k+1)2=+(k+1)2===.所以当n=k+1时,等式也成立.由①②知猜想成立,即存在a=,b=使命题成立.12.解 (1)S7=22+23+24+25+26+27+28=175.(2)S1=1;S1+S3=16;S1+S3+S5=81;S1+S3+S5+S7=256;猜测S1+S3+S5+…+S2n-1=n4.证明如下:记M n=S1+S3+S5+…+S2n-1,①当n=1时,猜想成立.②设当n=k时,命题成立,即M k=S1+S3+S5+…+S2k-1=k4.下面证明当n=k+1时,猜想也成立.事实上,由题设可知S n是由1+2+3+…+(n-1)+1=+1开始的n个连续自然数的和.所以S n=+1++2+…++n=,所以S2k+1==(2k+1)(2k2+2k+1)=4k3+6k2+4k+1,从而M k+1=M k+S2k+1=k4+4k3+6k2+4k+1=(k+1)4,所以猜想在n=k+1时也成立.综合(1)(2)可知猜想对任何n∈N+都成立.13.(1)解由已知,得f1(x)=f'0(x)='=-,于是f2(x)=f'1(x)='-'=--+,所以f1=-,f2=-+,故2f1+f2=-1.(2)证明由已知,得xf0(x)=sin x,等式两边分别对x求导,得f0(x)+xf'0(x)=cos x,即f0(x)+xf1(x)=cos x=sin x+,类似可得,2f1(x)+xf2(x)=-sin x=sin(x+π),3f2(x)+xf3(x)=-cos x=sin x+,4f3(x)+xf4(x)=sin x=sin(x+2π).下面用数学归纳法证明等式nf n-1(x)+xf n(x)=sin x+对所有的x∈N+都成立.①当n=1时,由上可知等式成立.②假设当n=k时,等式成立,即kf k-1(x)+xf k(x)=sin x+.因为[kf k-1(x)+xf k(x)]'=kf'k-1(x)+f k(x)+xf'k(x)=(k+1)f k(x)+xf k+1(x),sin x+'=cos x+·x+'=sin x+,所以(k+1)f k(x)+xf k+1(x)=sin x+.因此当n=k+1时,等式也成立.综合①②可知等式nf n-1(x)+xf n(x)=sin x+对所有的n∈N+都成立.令x=,可得nf n-1+f n=sin +(n∈N+),所以nf n-1+f n=(n∈N+).。
(人教版)2020届高考数学一轮复习 第六章 数列 课时跟踪训练33 数列求和 文
课时跟踪训练(三十三) 数列求和[基础巩固]一、选择题1.(2018·湖南师大附中月考)已知公差不为0的等差数列{a n }满足a 1,a 3,a 4成等比数列,S n 为数列{a n }的前n 项和,则S 3-S 2S 5-S 3的值为( ) A .2 B .3 C .-2 D .-3[解析] 设等差数列的公差为d ,首项为a 1,所以a 3=a 1+2d ,a 4=a 1+3d . 因为a 1、a 3、a 4成等比数列,所以(a 1+2d )2=a 1(a 1+3d ),解得:a 1=-4d . 所以S 3-S 2S 5-S 3=a 1+2d2a 1+7d=2,故选A. [答案] A2.(2017·河南百校联盟质量监测)已知等差数列{a n }的前n 项和为S n ,S 5=-20,则-6a 4+3a 5=( )A .-20B .4C .12D .20 [解析] 设{a n }的公差为d ,∵S 5=5a 1+a 52=-20,∴a 1+a 5=-8,∴a 3=-4.又-6a 4+3a 5=-6(a 3+d )+3(a 3+2d )=-3a 3=12.选C.[答案] C3.已知等比数列{a n }的首项为1,若4a 1,2a 2,a 3成等差数列,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.3116 B .2 C.3316 D.1633[解析] 设数列{a n }的公比为q ,则有4+q 2=2×2q ,解得q =2,所以a n =2n -1.1a n =12n -1,所以S 5=1-⎝ ⎛⎭⎪⎫1251-12=3116.故选A. [答案] A4.已知数列{a n }是等差数列,a 1=tan225°,a 5=13a 1,设S n 为数列{(-1)na n }的前n 项和,则S 2018=( )A .2018B .-2018C .3027D .-3027[解析] 由题意得a 1=1,a 5=13,∵{a n }是等差数列,∴公差d =3,∴a n =3n -2,∴S 2018=-1+4-7+10-13+17+…-6049+6052=3×20182=3027,选C. [答案] C5.(2017·安徽安庆模拟)已知数列{a n }满足a n +2=-a n (n ∈N +),且a 1=1,a 2=2,则数列{a n }的前2017项的和为( )A .2B .-3C .3D .1[解析] ∵a n +2=-a n =-(-a n -2)=a n -2,n >2,∴数列{a n }是以4为周期的周期数列.S 2017=504(a 1+a 2+a 3+a 4)+a 2017=504(a 1+a 2-a 1-a 2)+a 504×4+1=a 1=1.故选D.[答案] D 6.122-1+132-1+142-1+…+1n +12-1的值为( )A.n +12n +2B.34-n +12n +2C.34-12⎝ ⎛⎭⎪⎫1n +1+1n +2D.32-1n +1-1n +2 [解析] 因为1n +12-1=1n 2+2n =1n n +2=12⎝ ⎛⎭⎪⎫1n -1n +2 所以原式=12⎣⎢⎡⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1n +2=12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2,故选C.[答案] C 二、填空题7.若数列{a n }的通项公式为a n =1n +n +2,前n 项和为S n ,则S 16=________.[解析] 由a n =1n +n +2=12()n +2-n ,得S 16=12(3-1+4-2+5-3+…+17-15+18-16)=12(18+17-2-1)=17+22-12.[答案]17+22-128.数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________.[解析] 依题意得a n +a n +1=a n +1+a n +2=12,则a n +2=a n ,即数列{a n }中的奇数项、偶数项分别相等,则a 21=a 1=1,S 21=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)+a 21=10(a 1+a 2)+a 21=10×12+1=6.[答案] 69.(2017·陕西西安期中)如果数列{a n }的前n 项之和为S n =3+2n ,那么a 21+a 22+a 23+…+a 2n =________.[解析] ∵S n =3+2n ,∴S n -1=3+2n -1(n ≥2),∴a n =2n -2n -1=2n -1,∴a 2n =4n -1,n =1时a 1=S 1=5,∴当n ≥2时,a 21+a 22+a 23+…+a 2n =25+41-4n -11-4=4n+713;当n =1时a 21=25也适合上式,故a 21+…+a 2n =4n+713.[答案] 4n+713三、解答题10.(2017·全国卷Ⅲ)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和. [解] (1)因为a 1+3a 2+…+(2n -1)a n =2n ,故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1).两式相减得(2n -1)a n =2,所以a n =22n -1(n ≥2).又由题设可得a 1=2也适合,从而{a n }的通项公式为a n =22n -1.(2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n . 由(1)知a n 2n +1=22n +12n -1=12n -1-12n +1.则S n =11-13+13-15+…+12n -1-12n +1=2n2n +1.[能力提升]11.若a n >0,S n =a 1+a 2+…+a n ,且2S n =a n +1a n(n ∈N *),则S 2017=( )A .2017+20172017B .2017-20162016C .2016D.2017[解析] 令n =1,则2S 1=a 1+1a 1,所以a 1=1,S 1=1;令n =2,则2(a 1+a 2)=a 2+1a 2,所以a 2=2-1,S 2=2;令n =3,则2(2+a 3)=a 3+1a 3,解得a 3=3-2,S 3=3;依此类推,a 2017=2017-2016,S 2017=2017.故选D.[答案] D12.(2017·全国卷Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .110[解析] 设第一项为第1组,接下来的两项为第2组,再接下来的三项为第3组,依此类推,则第n 组的项数为n ,前n 组的项数和为n n +12.由题意可知,N >100,令n n +12>100,所以n ≥14,n ∈N *,即N 出现在第13组之后.易得第n 组的所有项的和为1-2n1-2=2n-1,前n 组的所有项的和为21-2n1-2-n =2n +1-n -2.设满足条件的N 在第k +1(k ∈N *,k ≥13)组,且第N 项为第k +1组的第t (t ∈N *)个数,第k +1组的前t 项的和2t-1应与-2-k 互为相反数,即2t-1=k +2,所以2t=k +3,所以t =log 2(k +3),所以当t =4,k =13时,N =13×13+12+4=95<100,不满足题意,当t =5,k =29时,N =29×29+12+5=440,当t >5时,N >440,故选A.[答案] A13.(2017·安徽马鞍山期中)设数列{a n }的通项公式为a n =(-1)n(2n -1)·cos n π2+1(n ∈N *),其前n 项和为S n ,则S 120=( )A .-60B .-120C .180D .240 [解析] 由a n =(-1)n(2n -1)cosn π2+1,得a 1=-cos π2+1=1,a 2=3cosπ+1=-2, a 3=-5cos 3π2+1=1,a 4=7cos2π+1=8, a 5=-9cos5π2+1=1,a 6=11cos3π+1=-10, a 7=-13cos7π2+1=1,a 8=15cos4π+1=16, …由上可知,数列{a n }的奇数项为1,每两个偶数项的和为6,∴S 120=(a 1+a 3+…+a 119)+(a 2+a 4+…+a 58+a 120)=60+30×6=240.故选D.[答案] D14.(2017·河北邯郸质量检测)在公差大于1的等差数列{a n }中,已知a 21=64,a 2+a 5+a 8=36,则数列{|a n |}的前20项和为________.[解析] ∵a 2+a 5+a 8=3a 5=36,∴a 5=12,∵a 21=64,∴a 1=±8. 当a 1=8,d =1,不合题意. 当a 1=-8,d =5>1,∴a n =5n -13. 故数列{|a n |}的前20项和为8+3+2+7+87×172=812.[答案] 81215.(2017·广东珠海模拟)已知等差数列{a n }的首项为a ,公差为d ,n ∈N *,且不等式ax 2-3x +2<0的解集为(1,d ).(1)求数列{a n }的通项公式a n ;(2)若b n =3a n +a n -1,n ∈N *,求数列{b n }的前n 项和T n . [解析] (1)易知a ≠0,由题设可知 ⎩⎪⎨⎪⎧1+d =3a ,1·d =2a,解得⎩⎪⎨⎪⎧a =1,d =2.故数列{a n }的通项公式为a n =1+(n -1)·2=2n -1. (2)由(1)知b n =32n -1+2n -1-1,则T n =(3+1)+(33+3)+…+(32n -1+2n -1)-n=(31+33+…+32n -1)+(1+3+…+2n -1)-n=311-9n1-9+1+2n -1n2-n=38(9n -1)+n 2-n . 16.(2017·山东枣庄期末质量检测)已知S n 为各项均为正数的数列{a n }的前n 项和,a 1∈(0,2),a 2n +3a n +2=6S n .(1)求{a n }的通项公式; (2)设b n =1a n a n +1,数列{b n }的前n 项和为T n ,若对∀n ∈N *,t ≤4T n 恒成立,求实数t 的最大值.[解] (1)当n =1时,由a 2n +3a n +2=6S n ,得a 21+3a 1+2=6a 1,即a 21-3a 1+2=0. 又a 1∈(0,2),解得a 1=1.由a 2n +3a n +2=6S n ,可知a 2n +1+3a n +1+2=6S n +1. 两式相减,得a 2n +1-a 2n +3(a n +1-a n )=6a n +1,即(a n +1+a n )(a n +1-a n -3)=0.由于a n >0,可得a n +1-a n -3=0.即a n +1-a n =3,所以{a n }是首项为1,公差为3的等差数列.所以a n =1+3(n -1)=3n -2. (2)由a n =3n -2,可得b n =1a n a n +1=13n -23n +1=13⎝ ⎛⎭⎪⎫13n -2-13n +1,T n =b 1+b 2+…+b n=13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫13n -2-13n +1=n3n +1. 因为T n +1-T n =n +13n +1+1-n 3n +1=13n +13n +4>0,所以T n +1>T n ,所以数列{T n }是递增数列.所以t ≤4T n ⇔t 4≤T n ⇔t 4≤T 1=14⇔t ≤1,所以实数t 的最大值是1.[延伸拓展]下面的图形无限向内延续,最外面的正方形的边长是2,从外到内,第n 个正方形与其内切圆之间的深色图形面积记为S n (n ∈N *).(1)证明:S n =2S n +1(n ∈N *); (2)证明:S 1+S 2+…+S n <8-2π.[证明] (1)设第n (n ∈N *)个正方形的边长为a n ,则其内切圆半径为a n2,第n +1个正方形的边长为22a n ,其内切圆半径为24a n ,所以S n =a 2n -π⎝ ⎛⎭⎪⎫a n 22=a 2n ⎝⎛⎭⎪⎫1-π4(n ∈N *),S n +1=⎝ ⎛⎭⎪⎫22a n 2-π⎝ ⎛⎭⎪⎫24a n 2=a 2n ⎝ ⎛⎭⎪⎫12-π8=12S n (n ∈N *).所以S n =2S n +1(n ∈N *).(2)由(1)可知,S 1=22×⎝⎛⎭⎪⎫1-π4=4-π,S 2=2-π2,…,S n =(4-π)⎝ ⎛⎭⎪⎫12n -1,所以T n =S 1+S 2+…+S n =(4-π)×⎝ ⎛⎭⎪⎫1+12+122+…+12n -1=(4-π)×1-⎝ ⎛⎭⎪⎫12n 1-12=(8-2π)⎝ ⎛⎭⎪⎫1-12n <8-2π.。
高考数学一轮复习课时作业(三十六) 数列求和 (3)
课时作业(三十六) 数列求和1.数列{a n }的通项公式是a n =1n +n +1,若前n 项和为10,则项数n 为( )A .120B .99C .11D .121 A [a n =1n +n +1 =n +1-n(n +1+n )(n +1-n )=n +1 -n ,所以a 1+a 2+…+a n =( 2 -1)+( 3 - 2 )+…+(n +1 -n )=n +1 -1=10.即n +1 =11,所以n +1=121,n =120.]2.(2021·山东济南实验中学检测)已知等差数列{a n }的前n 项和为S n ,若S 3=9,S 5=25,则S 7=( )A .41B .48C .49D .56C [设S n =An 2+Bn ,由题意知⎩⎪⎨⎪⎧S3=9A +3B =9,S5=25A +5B =25, 解得A =1,B =0,所以S 7=49,故选C 项.]3.数列{1+2n -1}的前n 项和为( ) A .1+2n B .2+2n C .n +2n -1D .n +2+2nC [由题意得a n =1+2n -1,所以S n =1+20+1+21+…+1+2n -1=n +1-2n1-2 =n +2n -1.故选C 项.]4.(多选)已知数列{a n }:12 ,13 +23 ,14 +24 +34 ,…,110 +210 +…+910 ,…,若b n =1an·an -1,设数列{b n }的前n 项和为S n ,则( )A .a n =n2B .a n =nC .S n =4nn +1D .S n =5nn +1AC [由题意得a n =1n +1 +2n +1 +…+n n +1 =1+2+3+…+n n +1 =n 2 ,所以b n =1n2·n +12 =4n (n +1)=4⎝ ⎛⎭⎪⎫1n -1n +1 ,所以数列{b n }的前n 项和S n =b 1+b 2+b 3+…+b n =4⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1 =4⎝ ⎛⎭⎪⎫1-1n +1 =4nn +1.故选AC 项.] 5.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 020等于( ) A .22 020-1 B .3×21 010-3 C .3×22 021-1D .3×21 009-2B [∵a 1=1,a 2=2a1=2,又an +2·an +1an +1·an=2n +12n =2,∴an +2an =2.∴a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列, ∴S 2 020=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 019+a 2 020 =(a 1+a 3+a 5+…+a 2 019)+(a 2+a 4+a 6+…+a 2 020) =1-21 0101-2 +2(1-21 010)1-2=3×21 010-3.故选B.]6.S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 解析: 由3S 1,2S 2,S 3成等差数列,得4S 2=3S 1+S 3,即3S 2-3S 1=S 3-S 2,则3a 2=a 3,得公比q =3,所以a n =a 1q n -1=3n -1.答案: 3n -17.设S n 是数列{a n }的前n 项和,且a 1=1,a n +1+S n S n +1=0,则S n =________,数列{S n S n +1}的前n 项和为________.解析: ∵a n +1=S n +1-S n ,a n +1+S n S n +1=0, ∴S n +1-S n +S n S n +1=0, ∴1Sn +1 -1Sn=1.又∵1S1 =1a1=1,∴⎩⎨⎧⎭⎬⎫1Sn 是以1为首项,1为公差的等差数列, ∴1Sn =n ,∴S n =1n .∴S n S n +1=1n (n +1) =1n -1n +1 , ∴T n =⎝⎛⎭⎫1-12 +⎝⎛⎭⎫12-13 +…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1 =nn +1 .答案: 1n ;nn +18.(2020·南京市金陵中学适应性训练)数列{a n }的通项公式为a n =n cos nπ2 ,其前n 项和为S n ,则S 2 020=________.解析: ∵数列a n =n cos nπ2 呈周期性变化,观察此数列规律如下:a 1=0,a 2=-2,a 3=0,a 4=4.故S 4=a 1+a 2+a 3+a 4=2. a 5=0,a 6=-6,a 7=0,a 8=8, 故a 5+a 6+a 7+a 8=2,∴周期T =4. ∴S 2 020=2 0204 ×2=1 010.答案: 1 0109.已知等差数列{a n }满足a n +1+n =2a n +1. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和,求数列{1Sn }的前n 项和T n .解析: (1)由已知{a n }为等差数列,记其公差为d .①当n ≥2时,⎩⎪⎨⎪⎧an +1+n =2an +1an +n -1=2an -1+1,所以d =1,②当n =1时,a 2+1=2a 1+1,所以a 1=1. 所以a n =n .(2)由(1)可得S n =n (n +1)2 ,所以1Sn =2n (n +1) =2(1n -1n +1),所以T n =2[(1-12 )+(12 -13 )+(13 -14 )+…+(1n -1n +1 )]=2(1-1n +1 )=2n n +1.10.(2020·福州市适应性考试)已知数列{a n }满足a 1=2,na n +1-(n +1)a n =2n (n +1),设b n =ann. (1)求数列{b n }的通项公式;(2)若c n =2bn -n ,求数列{c n }的前n 项和.解析: (1)法一:因为b n =ann 且na n +1-(n +1)a n =2n (n +1),所以b n +1-b n =an +1n +1 -ann =2,又b 1=a 1=2,所以{b n }是以2为首项,以2为公差的等差数列. 所以b n =2+2(n -1)=2n .法二:因为b n =ann ,所以a n =nb n ,又na n +1-(n +1)a n =2n (n +1),所以n (n +1)b n +1-(n +1)nb n =2n (n +1), 即b n +1-b n =2, 又b 1=a 1=2,所以{b n }是以2为首项,以2为公差的等差数列. 所以b n =2+2(n -1)=2n .(2)由(1)及题设得,c n =22n -n =4n -n ,所以数列{c n }的前n 项和S n =(41-1)+(42-2)+…+(4n -n ) =(41+42+…+4n )-(1+2+…+n )=4-4n×41-4 -n (1+n )2=4n +13 -n2+n 2 -43.11.(多选)(2020·江苏南京高三月考)若数列{a n }的前n 项和是S n ,且S n =2a n -2,数列{b n }满足b n =log 2a n ,则下列选项正确的是( )A .数列{a n }是等差数列B .a n =2nC .数列{a 2n }的前n 项和为22n +1-23D .数列⎩⎨⎧⎭⎬⎫1bn·bn +1 的前n 项和为T n ,则T n <1BD [当n =1时,a 1=2,当n ≥2时,由S n =2a n -2,得S n -1=2a n -1-2, 两式相减得:a n =2a n -1, 又a 2=2a 1,所以数列{a n }是以2为首项以2为公比的等比数列,所以a n =2n ,a 2n =4n ,数列{a 2n }的前n 项和为S ′n =4(1-4n )1-4 =4n +1-43 , 则b n =log 2a n =log 22n =n ,所以1bn·bn +1 =1n·(n +1) =1n -1n +1,所以T n =11 -12 +13 -14 +…+1n -1n +1 =1-1n +1 <1,故选BD.]12.(2020·天一大联考)已知数列{a n }满足a 1+4a 2+7a 3+…+(3n -2)a n =4n ,则a 2a 3+a 3a 4+…+a 21a 22=( )A .58B .34C .54D .52C [当n =1时,a 1=4.a 1+4a 2+7a 3+…+(3n -2)a n =4n ,当n ≥2时,a 1+4a 2+7a 3+…+(3n -5)·a n -1=4(n -1),两式相减,可得(3n -2)a n =4,故a n =43n -2 ,因为a 1=4也适合上式,所以a n =43n -2 ,n ∈N *.则a n +1a n +2=16(3n +1)(3n +4) =163 ·⎝ ⎛⎭⎪⎫13n +1-13n +4 ,故a 2a 3+a 3a 4+…+a 21a 22=163 ×(14 -17 +17 -110 +110 -113 +…+161 -164 )=163 ×⎝⎛⎭⎫14-164 =54.] 13.(开放题)(2020·山东模拟)在等差数列{a n }中,已知a 6=12,a 18=36. (1)求数列{a n }的通项公式a n ;(2)若________,求数列{b n }的前n 项和S n .在①b n =4anan +1 ,②b n =(-1)n a n ,③b n =2a n ·a n 这三个条件中任选一个补充在第(2)问中,并对其求解.解析: (1)设数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧a1+5d =12,a1+17d =36,解得d =2,a 1=2. ∴a n =2+(n -1)×2=2n .(2)选条件①:b n =42n·2(n +1) =1n (n +1) =1n -1n +1 ,∴S n =⎝⎛⎭⎫11-12 +⎝⎛⎭⎫12-13 +…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1 =n n +1 . 选条件②:∵a n =2n ,b n =(-1)n a n =(-1)n ·2n , ∴S n =-2+4-6+8-…+(-1)n ·2n ,当n 为偶数时,S n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ]=n2 ×2=n ;当n 为奇数时,n -1为偶数,S n =(n -1)-2n =-n -1.∴S n =⎩⎪⎨⎪⎧n ,n 为偶数,-n -1,n 为奇数.选条件③:∵a n =2n ,∴b n =22n ·2n =2n ·4n , ∴S n =2×41+4×42+6×43+…+2n ·4n ,4S n =2×42+4×43+6×44+…+2(n -1)·4n +2n ·4n +1, ∴-3S n =2×41+2×42+2×43+…+2·4n -2n ·4n +1=8(1-4n )1-4 -2n ·4n +1=8(1-4n )-3-2n ·4n +1,∴S n =89 (1-4n )+2n3·4n +1.14.已知数列{a n }的前n 项和为S n ,且满足2S n =n -n 2(n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =⎩⎪⎨⎪⎧2an ,n =2k -1,2(1-an )(1-an +2),n =2k k ∈N *,数列{b n }的前n 和为T n .若T 2n =a ⎝⎛⎭⎫14 n -12n +2+b 对n ∈N *恒成立,求实数a ,b 的值. 解析: (1)①当n =1时,由2S 1=2a 1=1-12得a 1=0;②当n ≥2时,2a n =2S n -2S n -1=n -n 2-[(n -1)-(n -1)2]=2-2n ,则a n =1-n (n ≥2), 显然当n =1时也适合上式, 所以a n =1-n (n ∈N *). (2)因为2(1-an )(1-an +2)=2n (n +2) =1n -1n +2,所以T 2n =(b 1+b 3+…+b 2n -1)+(b 2+b 4+…+b 2n )=(20+2-2+…+22-2n )+⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫12-14+⎝⎛⎭⎫14-16+…+⎝ ⎛⎭⎪⎫12n -12n +2 = 1-⎝⎛⎭⎫14n1-14+12 -12n +2 =116 -43 ⎝⎛⎭⎫14 n -12n +2 . 因为T 2n =a ⎝⎛⎭⎫14 n-12n +2+b 对n ∈N *恒成立,所以a =-43 ,b =116 .15.已知数列{a n }的所有项都是正数,且满足a1 +a2 +…+an =n 2+3n (n ∈N *),下列说法正确的是( )A .数列{a n }的通项公式为a n =4(n +1)2B .数列⎩⎨⎧⎭⎬⎫an n +1 是等差数列C .数列⎩⎨⎧⎭⎬⎫an n +1 的前n 项和是n (n +3) D .数列⎩⎨⎧⎭⎬⎫an 2n +1 是等比数列BD [当n =1时,a1 =4,可得a 1=16,当n ≥2时,由a1 +a2 +…+an -1 +an =n 2+3n ,可得a1 +a2 +…+an -1 =(n -1)2+3(n -1)=n 2+n -2,两式相减得an =2(n +1),得a n =4(n +1)2,又a 1=16也适合上式,则数列{a n }的通项公式为a n =4(n +1)2(n ∈N *),所以A 正确.因为ann +1 =4(n +1),所以a12 +a23 +…+ann +1=8+12+…+4(n +1)=(8+4n +4)n 2 =2n (n +3),所以C 不正确.结合等差数列、等比数列的定义,显然B ,D 都正确.]16.已知数列{a n }中,a 1=1,1an +1 =⎣⎡⎦⎤1-1(n +1)2 ·1an .若b n =ann2 ,数列{b n }的前n 项和为S n ,则S 100=( )A .100101B .200101C .300101D .400101B [因为1an +1 =⎣⎢⎡⎦⎥⎤1-1(n +1)2 ·1an ,所以a n +1·n +2n +1 =a n ·n +1n ,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫an·n +1n 是常数列,又a 1·1+11 =1×2=2,所以a n ·n +1n =2,解得a n =2n n +1.所以b n =an n2 =2n (n +1) =2⎝ ⎛⎭⎪⎫1n -1n +1 ,所以S n =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1 =2n n +1,所以S 100=200101 .故选B 项.]。
新课改瘦专用2020版高考数学一轮复习课时跟踪检测三十六等比数列及其前n项和含解析
课时跟踪检测(三十六) 等比数列及其前n 项和一、题点全面练1.(2019·武汉联考)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10等于( ) A .7 B .5 C .-5D .-7解析:选D 由⎩⎪⎨⎪⎧ a 4+a 7=2,a 5a 6=a 4a 7=-8,解得⎩⎪⎨⎪⎧a 4=-2,a 7=4或⎩⎪⎨⎪⎧a 4=4,a 7=-2.∴⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,∴a 1+a 10=a 1(1+q 9)=-7.2.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5等于( ) A.152 B.314 C.334D.172解析:选B 设数列{a n }的公比为q ,则显然q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 1-q 31-q =7,解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9,q =-13(舍去),∴S 5=a 1-q 51-q=4⎝ ⎛⎭⎪⎫1-1251-12=314.3.(2018·邵阳二模)设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( ) A .2 B.73 C.310D .1或2解析:选B 设S 2=k ,S 4=3k ,∵数列{a n }为等比数列,∴S 2,S 4-S 2,S 6-S 4也为等比数列,又S 2=k ,S 4-S 2=2k ,∴S 6-S 4=4k ,∴S 6=7k ,∴S 6S 4=7k 3k =73,故选B.4.(2018·安庆二模)数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n-1}是等比数列,则λ的值等于( )A .1B .-1 C.12D .2解析:选D 由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎝ ⎛⎭⎪⎫a n -2λ.由于数列{a n -1}是等比数列,所以2λ=1,得λ=2.5.一个等比数列的前三项的积为3,最后三项的积为9,且所有项的积为729,则该数列的项数是( )A .13B .12C .11D .10解析:选B 设该等比数列为{a n },其前n 项积为T n ,则由已知得a 1·a 2·a 3=3,a n -2·a n-1·a n =9,(a 1·a n )3=3×9=33,∴a 1·a n =3,又T n =a 1·a 2·…·a n -1·a n =a n ·a n -1·…·a 2·a 1,∴T 2n =(a 1·a n )n ,即7292=3n,∴n =12.6.(2019·重庆调研)在各项均为正数的等比数列{a n }中,若a 5=5,则log 5a 1+log 5a 2+…+log 5a 9=________.解析:因为数列{a n }是各项均为正数的等比数列,所以由等比数列的性质可得a 1·a 9=a 2·a 8=a 3·a 7=a 4·a 6=a 25=52,则log 5a 1+log 5a 2+…+log 5a 9=log 5(a 1·a 2·…·a 9)=log 5[(a 1·a 9)·(a 2·a 8)·(a 3·a 7)·(a 4·a 6)·a 5]=log 5a 95=log 559=9.答案:97.设各项都是正数的等比数列{a n }的前n 项和为S n ,且S 10=10,S 30=70,那么S 40=________.解析:易知S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列,因此有(S 20-S 10)2=S 10(S 30-S 20),即(S 20-10)2=10(70-S 20),故S 20=-20或S 20=30.又S 20>0,所以S 20=30,S 20-S 10=20,S 30-S 20=40,故S 40-S 30=80,所以S 40=150.答案:1508.在等比数列{a n }中,若a 1+a 2+a 3+a 4=158,a 2a 3=-98,则1a 1+1a 2+1a 3+1a 4=________.解析:1a 1+1a 2+1a 3+1a 4=a 1+a 4a 1·a 4+a 2+a 3a 2·a 3.∵在等比数列{a n }中,a 1·a 4=a 2·a 3, ∴原式=a 1+a 2+a 3+a 4a 2·a 3=158×⎝ ⎛⎭⎪⎫-89=-53.答案:-539.(2018·全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 解:(1)设{a n }的公比为q ,由题设得a n =q n -1.由已知得q 4=4q 2,解得q =0(舍去)或q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1--n3.由S m =63,得(-2)m=-188, 此方程没有正整数解. 若a n =2n -1,则S n =1-2n1-2=2n-1.由S m =63,得2m=64,解得m =6. 综上,m =6.10.已知数列{a n }的首项a 1>0,a n +1=3a n 2a n +1(n ∈N *),且a 1=23.(1)求证:⎩⎨⎧⎭⎬⎫1a n-1是等比数列,并求出{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和T n .解:(1)证明:记b n =1a n -1,则b n +1b n =1a n +1-11a n -1=2a n +13a n -11a n-1=2a n +1-3a n3-3a n=1-a n -a n =13, 又b 1=1a 1-1=32-1=12,所以⎩⎨⎧⎭⎬⎫1a n -1是首项为12,公比为13的等比数列.所以1a n -1=12·⎝ ⎛⎭⎪⎫13n -1,即a n =2·3n -11+2·3n -1.所以数列{a n }的通项公式为a n =2·3n -11+2·3n -1.(2)由(1)知,1a n -1=12·⎝ ⎛⎭⎪⎫13n -1,即1a n =12·⎝ ⎛⎭⎪⎫13n -1+1. 所以数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和T n =12⎝ ⎛⎭⎪⎫1-13n 1-13+n =34⎝ ⎛⎭⎪⎫1-13n +n .二、专项培优练(一)易错专练——不丢怨枉分1.各项均为正数的等比数列{a n }中,若a 1≥1,a 2≤2,a 3≥3,则a 4的取值范围是________. 解析:设{a n }的公比为q ,则根据题意得q =a 2a 1=a 3a 2, ∴32≤q ≤2,a 4=a 3q ≥92,a 4=a 2q 2≤8,∴a 4∈⎣⎢⎡⎦⎥⎤92,8. 答案:⎣⎢⎡⎦⎥⎤92,8 2.已知四个数成等比数列,其积为1,第二项与第三项之和为-32,求这四个数.解:设这四个数依次为a ,aq ,aq 2,aq 3,则由题意知,⎩⎪⎨⎪⎧a 4q 6=1, ①aq +q =-32, ②得⎩⎪⎨⎪⎧a 2q 3=±1, ③a 2q 2+q 2=94. ④把a 2q 2=1q 代入④,得q 2-14q +1=0,此方程无解;把a 2q 2=-1q 代入④,得q 2+174q +1=0,解此方程得q =-14或q =-4.当q =-14时,a =8;当q =-4时,a =-18.所以这四个数为8,-2,12,-18或-18,12,-2,8.(二)交汇专练——融会巧迁移3.[与方程交汇]在等比数列{a n }中,若a 3,a 7是方程x 2+4x +2=0的两根,则a 5的值是( )A .-2B .- 2C .± 2D. 2解:选B 根据根与系数之间的关系得a 3+a 7=-4,a 3a 7=2,由a 3+a 7=-4<0,a 3a 7>0,得a 3<0,a 7<0,即a 5<0,由a 3a 7=a 25,得a 5=-a 3a 7=- 2.故选B.4.[与集合交汇]设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则q 等于( )A .-12B.12 C .-32D.32解:选C {b n }有连续四项在{-53,-23,19,37,82}中且b n =a n +1,即a n =b n -1,则{a n }有连续四项在{-54,-24,18,36,81}中.∵{a n }是等比数列,等比数列中有负数项,∴q <0,且负数项为相隔两项,又∵|q |>1,∴等比数列各项的绝对值递增.按绝对值由小到大的顺序排列上述数值18,-24,36,-54,81,相邻两项相除-2418=-43,36-24=-32,-5436=-32,81-54=-32,则可得-24,36,-54,81是{a n }中连续的四项.∴q =-32.5.[与等差数列的交汇]已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的各项均为正数,公比是q ,且满足:a 1=3,b 1=1,b 2+S 2=12,S 2=b 2q .(1)求a n 与b n ; (2)设c n =3b n -λ·2n a 3(λ∈R),若数列{c n }是递增数列,求λ的取值范围.解:(1)由已知可得⎩⎪⎨⎪⎧q +3+a 2=12,3+a 2=q 2,所以q 2+q -12=0,解得q =3或q =-4(舍去),从而a 2=6, 所以a n =3n ,b n =3n -1.(2)由(1)知,c n =3b n -λ·2na 3=3n -λ·2n.由题意,知c n +1>c n 对任意的n ∈N *恒成立, 即3n +1-λ·2n +1>3n -λ·2n恒成立,亦即λ·2n <2·3n 恒成立,即λ<2·⎝ ⎛⎭⎪⎫32n 对任意的n ∈N *恒成立.由于函数y =⎝ ⎛⎭⎪⎫32n在[1,+∞)上是增函数,所以⎣⎢⎡⎦⎥⎤2·⎝ ⎛⎭⎪⎫32n min =2×32=3, 故λ<3,即λ的取值范围是(-∞,3).(三)素养专练——学会更学通6.[逻辑推理]已知数列{a n }是等比数列,a 1,a 2,a 3依次位于下表中第一行、第二行、第三行中的某一格内,又a 1,a 2,a 3中任何两个都不在同一列,则a n =________(n ∈N *).123n 2,公比为3的等比数列,∴a n =2×3n -1. 答案:2×3n -17.[数学建模]一种专门占据内存的计算机病毒开机时占据内存1 KB ,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机________分钟,该病毒占据内存64 MB(1 MB =210KB).解析:由题意可知,病毒每复制一次所占内存的大小构成一等比数列{a n },且a 1=2,q =2,∴a n =2n,∵2n=64×210=216,∴n =16, 即病毒共复制了16次.∴所需时间为16×3=48(分钟). 答案:48。
2020版高考理科数学人教版一轮复习课时跟踪检测三十六 有关数列的4大难点问题突破 Word版含解析
课时跟踪检测(三十六)有关数列的4大难点问题突破1??m*)N的,则数列(n∈(x)=2x+).(2019·深圳模拟)设函数f(x=x1+ax的导函数f′1????nf??前n项和是()n+2nB. A.1n+n1+n+1nD. C. n1n-m1-+a=2x+1,∴a=1,∵f′(x)=mxm=2,解析:选A11111111==-,用裂项法求和得,则S=1-+-+…+-∴f(x)=x(x+1)n nn32211n??n+?n?n+fn1. =1+n+1n,若xx)=f(f2.(2019·柳州模拟)设函数(x)定义为如下数表,且对任意自然数n均有n1n+)的值为=x6,则x(2 0190…x 456321…)f(x 46 32 5 12 1 .BA.5C.4 D .解析:选D∵数列{x}满足x=6,且对任意自然数n均有x=f(x),∴利用表格可nn1n0 x=f(x)=f(6)=4,x=f(x)=f(4)=2,x=f(x)=f(2)=1,x=f(x)=f(1)=5,x=f(x)=4025311342f(5)+得=6,x=f(x)=f(6)=4,…,∴x=x,∴x=x=x=5.42 01965n45n5403++×3.(2019·安徽知名示范高中联考)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比率偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还粟a升,b升,c升,1斗为10升,则下列判断正确的是() 50 a=成公比为2的等比数列,且,A.a,bc750 的等比数列,且c成公比为2c=,.Ba,b7150C.a,b,c成公比为的等比数列,且a=27150D.a,b,c成公比为的等比数列,且c=72.111解析:选D由题意可得,a,b,c成公比为的等比数列,b=a,c=b,故4c+2c+c 22250.故选D. 50,解得c==71????λ-,6?1?n<n+??2*?,则>Na都有a若对于任意的n∈4.已知数列{a}满足a=1nnnn+?5n-?λ,6??n≥)λ的取值范围是(实数711????,0,A.B. ????122271????1,,1D. C.????1221?,0-λ<?2?,10<λ<解{a}是递减数列,所以a因为a>解析:选B,所以数列1nnn+?1???λ-<λ,×15+??217得<λ<,故选B. 21219,其前n项之和为)数列a=,则在平面直角坐标系中,直5.(2019·南昌模拟n10?1n+n?线(n +1)x+y+n=0在y轴上的截距为()A.-10 B.-9D..10 9C111,且其前n项和为++…+解析:选B∵数列{a}的通项公式为a=nn322?1×1n?n+×n119=1-==,101+1+1n?n+n?n∴n=9,∴直线方程为10x+y+9=0.令x=0,得y=-9,∴该直线在y轴上的截距为-9.112**都有N+∈),=2n且对任意(n∈Nn…}.6(2019·郑州质检)已知数列{a满足aaaan1n32aa211+…+<t,则实数t的取值范围为()a n11????,+∞,+∞A.B. ????3322????,+∞,+∞C.D. ????332aa…aan2n132222n1-解析:选D依题意得,当n≥2时,a==,=2n-(n-1)=22n?1-n…aaaa?21132n-1111111????121n1112n---×2==2a=2,==×又,即数列是以为首项,为公比,因此a????1n21n a-4a4222??nn11??-1n??421122????-1<,因此实数t的前n项和等于=的取值范围是的等比数列,等比数列??n??a4313??n1-42??∞,+. ??37.用[x]表示不超过x的最大整数,例如[3]=3,[1.2]=1,[-1.3]=-2.已知数列{a}满n aaa??2 019212+…++=,则________.a=aa+足a=1,??n1nn1+1+1aa++1a212 01911111112解析:因为a=1,a=a+a>1,所以==-,即=-,nn1n1+aaa?1aa ++a1a?a+1nn11nnnnnn++1111111111??????---=1-+=+…+∈++所以+…??????aaaaaaa11aa+a++13122 02022 0192 0202 01912a1n(0,1).又=1-,1+1a+a nn1aaa??2 01912-1. -+=2 019所以++…??a1+1+a1a+a2 0202 01921aaa??2 01921+…++=2 018.所以??1a+1a+a1+22 0191答案:2 0182n1-,…的前)),…,lg(1 000·cos,lg(1 000·cos 60°),lg(1 000·cos60°60°8.数列lg 1 000________项和为最大.11n1-60°)=3+(n-1)lg,公差d=lg<0解析:依题意知,数列的通项a=lg(1 000·cos,n22数列单调递减.1因为a=3+(n-1)lg>0时,n≤10,所以数列的前10项均为正,从第11项开始为负,n2故可知数列前10项的和最大.答案:10*),必有a=a∈(p,qN,那么就称)9.(2019·济宁模拟若数列{a}满足:只要a=a1n1qqpp++数列{a}具有性质P.已知数列{a}具有性质P,且a=1,a=2,a=3,a=2,a+a+a=83521nn7621,则a=____________.2 020解析:根据题意,数列{a}具有性质P,且a=a=2,5n2则有a=a=3,a=a,a=a=2. 867345由a+a+a=21,可得a+a+a=21,547386则a=21-3-2=16,4进而分析可得a=a=a=…=a=3,a=a=a=…=a=16,a=a=…=a3n1nn369347103582++=2(n≥1),则a=a=16. 16732 0203+×答案:16π2ππn*),则在S,S,…,sin (n∈NS中,正数的个数10.若S=sin +sin +…+2 019n21777是____________.π2π6π7πππ8解析:由于sin >0,sin >0,…,sin >0,sin =0,sin =-sin <0,…,77777713π6π14π=-sin <0,sin =0,可得到S>0,…,S>0,Ssin =0,S=0,∵2 019=141213177714×144+3,∴S,S,…,S中,正数的个数是144×12+3=1 731.2 01912答案:1 73111.为了加强城市环保建设,某市计划用若干年时间更换5 000辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,替换车为电力型和混合动力型两种车型.今年年初投入了电力型公交车128辆,混合动力型公交车300辆;计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a辆.市政府根据人大代表的建议,要求5年内完成全部更换,则a 的最小值为________.3解析:依题意知,电力型公交车的数量组成首项为128,公比为1+50%=的等比数列,2混合动力型公交车的数量组成首项为300,公差为a的等差数列,则5年后的数量和为33????????551-1-128128××????????225×5×44+300×5+a,则+300×5+a≥5 000,即10a≥1 812,23321-1-22解得a ≥181.2,因为5年内更换公交车的总和不小于5 000,所以a的最小值为182.答案:182n)2满足条-,b=(1,1n项和为S,向量a=(S2)的前(2019·12.遂宁模拟)已知数列{a}n,nn件a⊥b.(1)求数列{a}的通项公式;n n(2)设c=,求数列{c}的前n项和T.nnn a nn1+,2-2=0=∵解:(1)a⊥b,∴a·bS+nn1n+=2,-≥2时,a=SS=∴S2n-2,当1nnnn-当n=1时,a=S=2满足上式,11n. 2∴a=n nn(2)∵c==,nn a2nn-1n12∴T=++…++,n21nn-22221两边同乘,2n-1n112得T=++…++,n231nn+22222n+2n1111两式相减得T=++…+-=1-,n211nnn++222222n+2*(n∈N)∴T=2-.n n22+Bx+)=xCn,S)在函数f(x13.(2019·安阳模拟)设等差数列{a}的前n项和为S,点(nnn-1(B,C∈R)的图象上,且a =C.1(1)求数列{a}的通项公式;n(2)记数列b=a(a+1),求数列{b}的前n项和T. nn1n2nn-解:(1)设等差数列{a}的公差为d,n n?n-1?dd??2-ann+. d=则S=na+??11n2222+Bn+C-S=n1,又n dd两式比较得=1,B=a-,C-1=0.又a=C,1122解得d=2,C=1=a,B=0,1∴a=1+2(n-1)=2n-1.nn1n-2,n-21)×-1+1)=(2n∵(2)b=a(a+1)=(2-1)(2×1nnn2-23n,2 n-1)5×2×+…+=∴数列{b}的前n项和T2+3×2(2+nn23nn1+×22,+(2n-23+×21)+…+(2n-3)×∴2T=n23nn1+×2)-(22+×(2n+2-+…+21)∴-T=2nn1-?1-4?21nn1++,×2-×26=(3-2n)(2=2+2×-n-1)12-n1+6.3)×2+故T=(2n-n1114.(2018·淮南一模)若数列{a}的前n项和为S,点(a,S)在y=-x的图象上(n∈nnnn63*).N(1)求数列{a}的通项公式;n111(2)若c=0,且对任意正整数n都有c-c=log a.求证:对任意正整数n≥2,总有≤nn1n1+c3221113+++…+<. c4cc n43.11解:(1)∵S=-a,nn6311∴当n≥2时,a=S-S=a-a,n1nnnn1--331∴a=a.1nn-4111又∵S=-a,∴a=,111638111????1n1n2+-=.=×∴a???n4281(2)证明:由c-c=loga=2n+1,得当n≥2时,c=c+(c-c)+(c-c)+…+(c nn11n2n1n32+22-1=(n+n1)(n-1).)-c=0+3+5+…+(2n-1)=1n-1111∴+++…+cccc n4321111++=+…+22221n14--2-31-111111111??????????-1---=×+++…+??????????1124nn-335+21111??????++1 -=??n????2n+1211331??+<-. =n??1+n442111111又∵+++…+≥=,∴原式得证.cccc3c n4322.。
2020版高考数学一轮复习课时跟踪检测三十六数列求和含解析
课时跟踪检测(三十六) 数列求和1.(2019·河北“五个一名校联盟”模拟)已知数列{a n }满足:a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,S n 为数列{a n }的前n 项和,则S 2 018=( )A .3B .2C .1D .0解析:选A ∵a n +1=a n -a n -1,a 1=1,a 2=2,∴a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1,a 8=2,…,故数列{a n }是周期为6的周期数列,且每连续6项的和为0,故S 2 018=336×0+a 2 017+a 2 018=a 1+a 2=3.故选A2.在数列{a n }中,若a n +1+(-1)na n =2n -1,则数列{a n }的前12项和等于( ) A .76 B .78 C .80D .82解析:选B 由已知a n +1+(-1)n a n =2n -1,得a n +2+(-1)n +1a n +1=2n +1,得a n +2+a n =(-1)n (2n -1)+(2n +1),取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.故选B.3.(2019·开封调研)已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 018等于( ) A .22 018-1B .3×21 009-3 C .3×21 009-1D .3×21 008-2解析:选B ∵a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n =2n +12n =2,∴a n +2a n=2.∴a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,∴S 2 018=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 017+a 2 018=(a 1+a 3+a 5+…+a 2 017)+(a 2+a 4+a 6+…+a 2 018)=1-21 0091-2+21-21 0091-2=3×21 009-3.故选B.4.已知数列{a n }的通项公式是a n =2n -3⎝ ⎛⎭⎪⎫15n,则其前20项和为( )A .380-35⎝ ⎛⎭⎪⎫1-1519B .400-25⎝ ⎛⎭⎪⎫1-1520C .420-34⎝ ⎛⎭⎪⎫1-1520D .440-45⎝ ⎛⎭⎪⎫1-1520解析:选C 令数列{a n }的前n 项和为S n ,则S 20=a 1+a 2+…+a 20=2(1+2+…+20)-3⎝ ⎛⎭⎪⎫15+152+…+1520=2×20×20+12-3×15⎝ ⎛⎭⎪⎫1-15201-15=420-34⎝ ⎛⎭⎪⎫1-1520.5.1-4+9-16+…+(-1)n +1n 2=( )A.n n +12B .-n n +12C .(-1)n +1n n +12D .以上均不正确解析:选C 当n 为偶数时,1-4+9-16+…+(-1)n +1n 2=-3-7-…-(2n -1)=-n23+2n -12=-n n +12;当n 为奇数时,1-4+9-16+…+(-1)n +1n 2=-3-7-…-[2(n -1)-1]+n 2=-n -12[3+2n -1-1]2+n 2=n n +12.综上可得,原式=(-1)n +1n n +12.6.(2019·郑州质量预测)已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n +2-2a n +1+a n =0(n ∈N *),记T n =1S 1+1S 2+…+1S n(n ∈N *),则T 2 018=( )A.4 0342 018 B .2 0172 018 C.4 0362 019D .2 0182 019解析:选C 由a n +2-2a n +1+a n =0(n ∈N *),可得a n +2+a n =2a n +1,所以数列{a n }为等差数列,公差d =a 2-a 1=2-1=1,通项公式a n =a 1+(n -1)×d =1+n -1=n ,则其前n 项和S n =n a 1+a n 2=n n +12,所以1S n=2n n +1=2⎝ ⎛⎭⎪⎫1n -1n +1,T n =1S 1+1S 2+…+1S n =2( 1-12+12-13+…+1n -1n +1 )=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1,故T 2 018=2×2 0182 018+1=4 0362 019,故选C. 7.已知数列{a n }的前n 项和S n =n 2+n +1,则数列⎩⎨⎧⎭⎬⎫4a n a n +1的前n 项和T n =________. 解析:∵数列{a n }的前n 项和S n =n 2+n +1,∴S n -1=n 2-n +1(n ≥2),两式作差得到a n =2n (n ≥2).故a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.∴4a n a n +1=1nn +1=1n -1n +1(n ≥2),∴T n =13+12-13+13-14+…+1n -1n +1=56-1n +1. 答案:56-1n +18.(2019·安徽十大名校联考)在数列{a n }中,a 1=-2,a 2=3,a 3=4,a n +3+(-1)na n +1=2(n ∈N *).记S n 是数列{a n }的前n 项和,则S 20的值为________.解析:由题意知,当n 为奇数时,a n +3-a n +1=2,又a 2=3,所以数列{a n }中的偶数项是以3为首项,2为公差的等差数列,所以a 2+a 4+a 6+…+a 20=10×3+10×92×2=120.当n 为偶数时,a n +3+a n +1=2,又a 3+a 1=2, 所以数列{a n }中的相邻的两个奇数项之和均等于2,所以a 1+a 3+a 5+…+a 17+a 19=(a 1+a 3)+(a 5+a 7)+…+(a 17+a 19)=2×5=10,所以S 20=120+10=130.答案:1309.(2019·益阳、湘潭调研)已知S n 为数列{a n }的前n 项和,若a 1=2且S n +1=2S n ,设b n =log 2a n ,则1b 1b 2+1b 2b 3+…+1b 2 018b 2 019的值是________.解析:由S n +1=2S n 可知,数列{S n }是首项为S 1=a 1=2,公比为2的等比数列,所以S n =2n.当n ≥2时,a n =S n -S n -1=2n -2n -1=2n -1,b n =log 2a n =⎩⎪⎨⎪⎧1,n =1,n -1,n ≥2,当n ≥2时,1b n b n +1=1n -1n =1n -1-1n,所以1b 1b 2+1b 2b 3+…+1b 2 018b 2 019=1+1-12+12-13+…+12 017-12 018=2-12 018=4 0352 018.答案:4 0352 01810.(2019·大连模拟)设数列{a n }的前n 项和为S n ,已知a 1=1,a n +1=3S n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)记T n 为数列{n +a n }的前n 项和,求T n . 解:(1)由a n +1=3S n +1, 得当n ≥2时,a n =3S n -1+1, 两式相减,得a n +1=4a n (n ≥2). 又a 1=1,a 2=4,a 2a 1=4,所以数列{a n }是首项为1,公比为4的等比数列, 所以数列{a n }的通项公式是a n =4n -1(n ∈N *).(2)T n =(1+a 1)+(2+a 2)+(3+a 3)+…+(n +a n ) =(1+2+…+n )+(1+4+42+…+4n -1)=n 1+n2+1×1-4n1-4=n +n 22+4n -13.11.(2019·广州调研)已知数列{a n }满足a 1+4a 2+42a 3+…+4n -1a n =n4(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =4na n2n +1,求数列{b n b n +1}的前n 项和T n .解:(1)当n =1时,a 1=14.因为a 1+4a 2+42a 3+…+4n -2a n -1+4n -1a n =n4,①所以a 1+4a 2+42a 3+…+4n -2a n -1=n -14(n ≥2,n ∈N *),②①-②得4n -1a n =14(n ≥2,n ∈N *),所以a n =14n (n ≥2,n ∈N *).当n =1时也适合上式,故a n =14n (n ∈N *).(2)由(1)得b n =4na n 2n +1=12n +1,所以b n b n +1=12n +12n +3=12⎝ ⎛⎭⎪⎫12n +1-12n +3,故T n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3 =n 6n +9. 12.已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2. 所以b n =2n.由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16.②由①②,解得a 1=1,d =3,由此可得a n =3n -2.所以数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n. (2)设数列{a 2n b 2n -1}的前n 项和为T n , 由a 2n =6n -2,b 2n -1=2×4n -1,得a 2n b 2n -1=(3n -1)×4n,故T n =2×4+5×42+8×43+…+(3n -1)×4n,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1=12×1-4n1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.故T n =3n -23×4n +1+83.所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83。
2020高考文科数学(人教版)一轮复习作业手册 第36讲 等差数列的概念及基本运算 含解析
第36讲 等差数列的概念及基本运算1.已知数列{a n }是等差数列,且a 7-2a 4=6,a 3=2,则公差d =(B)A .2 2B .4C .8D .16因为a 7-2a 4=a 7-(a 1+a 7)=-a 1=6,所以a 1=-6.又a 3=2,所以公差d =a 3-a 13-1=2-(-6)2=4. 2.(2018·武汉二月调研)在等差数列{a n }中,前n 项和S n 满足S 7-S 2=45,则a 5=(B)A .7B .9C .14D .18因为S 7-S 2=a 3+a 4+a 5+a 6+a 7=45,所以5a 5=45,所以a 5=9.3.已知正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ≥2),则a 6等于(D)A .16B .8C .2 2D .4由2a 2n =a 2n +1+a 2n -1可知数列{a 2n }是等差数列,且首项为a 21=1,公差d =a 22-a 21=4-1=3. 所以{a 2n }的通项a 2n =1+3(n -1)=3n -2,所以a n =3n -2.所以a 6=3×6-2=4.4.(2018·汕头模拟)记S n 为等差数列{a n }的前n 项和,S 5=15a 5,S 5-S 2=18,则3a 3-a 4的值为(A)A .21B .24C .27D .30因为{a n }是等差数列,由等差数列的性质和前n 项和公式及S 5=15a 5,得a 3=3a 5, ① 又因为S 5-S 2=18,得a 3+a 4+a 5=3a 4=18,得a 4=6,且a 4=a 3+d ,a 4+d =a 5,②由①②得 a 4-d =3(a 4+d ),解得a 4=-2d =6,所以d =-3,则3a 3-a 4=3(a 4-d )-a 4=2a 4-3d =2×6-3×(-3)=12+9=21.5.(2018·北京卷)设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为__a n =6n -3__.(方法一)设公差为d .因为a 2+a 5=36,所以(a 1+d )+(a 1+4d )=36,所以2a 1+5d =36.因为a 1=3,所以d =6,所以通项公式a n =a 1+(n -1)d =6n -3.(方法二)设公差为d ,因为a 2+a 5=a 1+a 6=36,a 1=3,所以a 6=33,所以d =a 6-a 15=6. 因为a 1=3,所以通项公式a n =6n -3.6.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n = -1n.由已知得a n +1=S n +1-S n =S n +1·S n ,两边同除以S n +1·S n ,得1S n +1-1S n=-1, 故数列⎩⎨⎧⎭⎬⎫1S n 是以-1为首项,-1为公差的等差数列, 所以1S n =-1-(n -1)=-n ,所以S n =-1n. 7.(2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15.(1)求{a n }的通项公式;(2)求S n ,并求S n 的最小值.(1)设{a n }的公差为d ,由题意得3a 1+3d =-15.由a 1=-7得d =2.所以{a n }的通项公式为a n =a 1+(n -1)d =2n -9.(2)由(1)得S n =a 1+a n 2·n =n 2-8n =(n -4)2-16. 所以当n =4时,S n 取得最小值,最小值为-16.8.(2018·郑州市二模)设数列{a n }满足:a 1=1,a 2=3,且2na n =(n -1)a n -1+(n +1)a n +1,则a 20的值是(D)A .415B .425C .435D .445由2na n =(n -1)a n -1+(n +1)a n +1,得na n -(n -1)a n -1=(n +1)a n +1-na n ,又因为1×a 1=1,2×a 2-1×a 1=5,所以数列{na n }为首项为1,公差为5的等差数列,则20a 20=1+19×5=96,解得a 20=245. 9.数列{a n }是等差数列,且a 1+a 2+…+a 10=10,a 11+a 12+…+a 20=20,则a 41+a 42+…+a 50= 50 .因为A 1=S 10,A 2=S 20-S 10,A 3=S 30-S 20,…,数列{A n }构成等差数列,其中A 1=S 10=10,公差d =10,所以a 41+a 42+…+a 50=A 5=A 1+(5-1)×d=10+4×10=50.10.已知数列{a n }中,a 1=5且a n =2a n -1+2n -1(n ≥2且n ∈N *).(1)求证数列⎩⎨⎧⎭⎬⎫a n -12n 为等差数列; (2)求数列{a n }的通项公式.(1)(方法一:构造法)因为a 1=5且a n =2a n -1+2n -1,所以当n ≥2时,a n -1=2(a n -1-1)+2n ,所以a n -12n =a n -1-12n -1+1, 所以a n -12n -a n -1-12n -1=1,所以⎩⎨⎧⎭⎬⎫a n -12n 是以a 1-12=2为首项,以1为公差的等差数列. (方法二:代入法)因为a 1=5,n ≥2时,所以a n -12n -a n -1-12n -1=(2a n -1+2n -1)-12n -a n -1-12n -1=1, 所以⎩⎨⎧⎭⎬⎫a n -12n 是以a 1-12=2为首项,以1为公差的等差数列. (2)由(1)知a n -12n =2+(n -1)×1=n +1, 所以a n =(n +1)2n +1.。
2020版江苏高考数学一轮复习教程:随堂巩固训练36含答案解析
x-y+ 2≥ 0,
9. 已知实数 x,y 满足不等式组 x+y- 4≥ 0, 若使得目标函数 z= y-ax 取得最大值的唯一最优解是 (1,3),
2x-y- 5≤ 0, 则实数 a 的取值范围为 __(1,+∞ )__.
解析: 作出不等式组表示的平面区域,将 z= y- ax 化为 y=ax+ z, z 为直线的截距,由图可知若使 取得最大值的唯一最优解是 B(1 , 3),必有 a>1.
4x+ y+ 10≥ 0,
解析: 设 O→M ·O→P= (2,1) ·(x ,y) = 2x+ y= t,作出可行域, 可得当直线
2x+y= t 经过点
A(4
,1)
时,
(O→M
→ ·OP)
max
=2× 4+ 1= 9.
|x+ y|≤ 1,
6. 已知实数 x, y 满足
则 z= |3x+4y - 5|的最大值为 __9__.
3. 设实数 x, y 满足不等式组
x-y-2≤0, x+2y- 4≥ 0, 则 yx的最大值为 __32__.
2y-3≤ 0,
解析: y表示的是点 (x , y) 与原点连线所在直线的斜率,作出可行域,可知当直线过点 x
Hale Waihona Puke 3 1, 2时,y有最大值 x
3 .
2
y≤x, 4. 已知变量 x, y 满足约束条件 x+ y≥ 2, 则 z= x2+ y2 的最大值为 __18__.
随堂巩固训练 (36)
2x+y≥ 4, 1. 设实数 x, y 满足不等式组 x- y≥- 1,则 z= x+ y 的最小值是 __2__.
x- 2y≤ 2, 解析: 当直线 z=x+ y 经过点 (2, 0)时, z 取得最小值 2.
2020届高考数学一轮总复习第六单元数列与算法第36讲数列的概念及其表示法练习理(含解析)新人教A版
第36讲 数列的概念及其表示法1.数列{a n }的前n 项和S n =n 2-7n +3,则(D) A .S 3最小 B .S 4最小 C .S 7最小 D .S 3、S 4最小因为S n =n 2-7n +3=(n -72)2-374(n ∈N *),所以n =3或n =4时取到最小值.2.(2018·北京海淀模拟)数列{a n }的前n 项和为S n ,若S n -S n -1=2n -1(n ≥2),且S 2=3,则a 1+a 3的值为(C)A .1B .3C .5D .6由条件,当n ≥2时,a n =2n -1, 令n =2,则S 2-S 1=3,又S 2=3,所以a 1=0.a 3=2×3-1=5.故a 1+a 3=5.3.(2018·河南洛阳模拟)设数列{a n }满足a 1+2a 2+22a 3+…+2n -1a n =n2(n ∈N *),则数列{a n }的通项公式是(C)A .a n =12nB .a n =12n -1C .a n =12nD .a n =12n +1设{2n -1a n }的前n 项和为T n ,因为数列{a n }满足a 1+2a 2+22a 3+…+2n -1a n =n 2,所以T n =n2,所以2n -1a n =T n -T n -1=n 2-n -12=12(n ≥2),所以a n =122n -1=12n (n ≥2),经检验,当n =1时也成立,所以a n =12n .4.(2018·哈师大附中模拟)已知{a n }是递增数列,对于任意的正整数n ,均有a n =n2+λn ,则实数λ的取值范围是(B)A .[-2,+∞) B.(-3,+∞) C .R D .∅因为{a n }是递增数列,对于任意的正整数n 均有a n =n 2+λn ,所以(n +1)2+λ(n+1)>n 2+λn ,所以λ>-(2n +1),所以λ>-3.5.数列112,245,3910,41617,…的一个通项公式为 a n =n +n2n 2+1.每一项都可以分成三部分,整数部分、分子、分母,注意到整数部分就等于序号n ,分子是序号n 的平方,分母是分子加1,所以a n =n +n 2n 2+1.6.已知数列{a n }满足a 1=0,a n +1=a n +2n ,那么a 100= 9900 .因为a n -a n -1=2(n -1),所以a n -a 1=2[1+2+…+(n -1)]=n (n -1), 因为a 1=0,所以a n =n (n -1). 所以a 100=100×99=9900.7.已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8,求数列{a n }的通项公式.因为S n =-12(n -k )2+12k 2,所以当n =k 时,S n 的最大值为12k 2.所以12k 2=8,所以k ∈N *,所以k =4.所以S n =-12n 2+4n .当n ≥2时,a n =S n -S n -1=-12n 2+4n -[-12(n -1)2+4(n -1)]=-12(2n -1)+4=92-n ;当n =1时,a 1=S 1=-12+4=72=92-1.所以a n =92-n (n ∈N *).8.(2018·山东济南模拟)已知数列{a n }中,a 2=102,a n +1-a n =4n ,则数列{a n n}中的最小项是(B)A .第6项B .第7项C .第8项D .第9项由a n +1-a n =4n ,得a 2-a 1=4,又a 2=102, 所以a 1=98.当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=98+4×1+4×2+…+4(n -1)=98+2n (n -1),又n =1时适合上式,故a n =98+2n (n -1),n ∈N *.故a n n=98n+2n -2≥298n·2n -2=26,当且仅当98n=2n ,即n =7时,等号成立.9.(2018·石家庄二模)已知数列{a n }的前n 项和为S n =(-12)n,如果存在正整数n ,使得(m -a n )(m -a n +1)<0成立,则实数m 的取值范围是__(-12,34)__.因为S n =(-12)n ,所以a 1=S 1=-12,a 2=S 2-S 1=14+12=34,a 2n =S 2n -S 2n -1=(-12)2n -(-12)2n -1=(12)2n +2(12)2n =3×(12)2n>0, a 2n +1=S 2n +1-S 2n =(-12)2n +1-(-12)2n=-12×(12)2n -(12)2n =-32×(12)2n<0,所以数列{a n }的奇数项为递增的等比数列,且各项为负;偶数项为递减的等比数列,且各项为正.所以a 1<a 3<…<a 2n +1<m<a 2n <…<a 4<a 2,如果存在正整数n ,使得(m -a n )(m -a n +1)<0成立, 则a 1<m<a 2,所以-12<m<34.即实数m 的取值范围是(-12,34).10.已知数列{a n }满足1a n-a n =2n ,且a n >0.(1)求数列{a n }的通项公式; (2)证明S n =a 1+a 2+…+a n <n ;(3)数列{a n }是否存在最大项?若存在最大项,求出该项和相应的项数;若不存在,说明理由.(1)由1a n-a n =2n ,得a 2n +2na n -1=0,由一元二次方程的求根公式得:a n =-2n ±4n +42=-n ±n +1,因为a n >0,所以a n =n +1-n . (2)证明:因为a n =n +1-n , 所以S n =a 1+a 2+…+a n=(2-1)+(3-2)+…+(n +1-n ) =n +1-1. 因为n +1-1-n =1n +1+n-1<0,所以n +1-1<n . 所以S n =a 1+a 2+…+a n <n . (3)(方法1)因为a n =n +1-n >0, 所以a n +1a n =n +2-n +1n +1-n =n +1+n n +2+n +1<1, 所以a n +1<a n ,所以数列{a n }是递减数列,所以数列{a n }有最大项,最大项为第一项a 1=2-1.(方法2)由a n =n +1-n 知数列{a n }各项满足函数f (x )=x +1-x , 因为f ′(x )=12x +1-12x,x >0时,12x +1<12x,所以x >0时,f ′(x )<0,即函数f (x )=x +1-x 在(0,+∞)上为减函数, 由此得到a n =n +1-n 为递减数列,所以数列{a n }有最大项,最大项为第一项a 1=2-1.。
高考数学一轮复习课时跟踪检测三十六数列求和含解析
课时跟踪检测(三十六) 数列求和1.(·河北“五个一名校联盟”模拟)已知数列{a n }满足:a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,S n 为数列{a n }的前n 项和,则S 2 018=( )A .3B .2C .1D .0解析:选A ∵a n +1=a n -a n -1,a 1=1,a 2=2,∴a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1,a 8=2,…,故数列{a n }是周期为6的周期数列,且每连续6项的和为0,故S 2 018=336×0+a 2 017+a 2 018=a 1+a 2=3.故选A.2.在数列{a n }中,若a n +1+(-1)na n =2n -1,则数列{a n }的前12项和等于( ) A .76 B .78 C .80D .82解析:选B 由已知a n +1+(-1)n a n =2n -1,得a n +2+(-1)n +1a n +1=2n +1,得a n +2+a n=(-1)n(2n -1)+(2n +1),取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.故选B.3.(·开封调研)已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 018等于( ) A .22 018-1B .3×21 009-3 C .3×21 009-1D .3×21 008-2解析:选B ∵a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n =2n +12n =2,∴a n +2a n=2.∴a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,∴S 2 018=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 017+a 2 018=(a 1+a 3+a 5+…+a 2 017)+(a 2+a 4+a 6+…+a 2 018)=1-21 0091-2+21-21 0091-2=3×21 009-3.故选B.4.已知数列{a n }的通项公式是a n =2n -3⎝ ⎛⎭⎪⎫15n,则其前20项和为( )A .380-35⎝ ⎛⎭⎪⎫1-1519B .400-25⎝ ⎛⎭⎪⎫1-1520C .420-34⎝ ⎛⎭⎪⎫1-1520D .440-45⎝ ⎛⎭⎪⎫1-1520解析:选C 令数列{a n }的前n 项和为S n ,则S 20=a 1+a 2+…+a 20=2(1+2+…+20)-3⎝ ⎛⎭⎪⎫15+152+…+1520=2×20×20+12-3×15⎝ ⎛⎭⎪⎫1-15201-15=420-34⎝ ⎛⎭⎪⎫1-1520.5.1-4+9-16+…+(-1)n +1n 2=( )A.n n +12B .-n n +12C .(-1)n +1n n +12D .以上均不正确解析:选C 当n 为偶数时,1-4+9-16+…+(-1)n +1n 2=-3-7-…-(2n -1)=-n23+2n -12=-n n +12;当n 为奇数时,1-4+9-16+…+(-1)n +1n 2=-3-7-…-[2(n -1)-1]+n 2=-n -12[3+2n -1-1]2+n 2=n n +12.综上可得,原式=(-1)n+1n n +12.6.(·郑州质量预测)已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n +2-2a n +1+a n=0(n ∈N *),记T n =1S 1+1S 2+…+1S n(n ∈N *),则T 2 018=( )A.4 0342 018 B .2 0172 018 C.4 0362 019D .2 0182 019解析:选C 由a n +2-2a n +1+a n =0(n ∈N *),可得a n +2+a n =2a n +1,所以数列{a n }为等差数列,公差d =a 2-a 1=2-1=1,通项公式a n =a 1+(n -1)×d =1+n -1=n ,则其前n 项和S n =n a 1+a n 2=n n +12,所以1S n =2n n +1=2⎝ ⎛⎭⎪⎫1n -1n +1,T n =1S 1+1S 2+…+1S n =2( 1-12+12-13+…+1n -1n +1 )=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1,故T 2 018=2×2 0182 018+1=4 0362 019,故选C. 7.已知数列{a n }的前n 项和S n =n 2+n +1,则数列⎩⎨⎧⎭⎬⎫4a n a n +1的前n 项和T n =________.解析:∵数列{a n }的前n 项和S n =n 2+n +1,∴S n -1=n 2-n +1(n ≥2),两式作差得到a n=2n (n ≥2).故a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.∴4a n a n +1=1nn +1=1n -1n +1(n ≥2),∴T n =13+12-13+13-14+…+1n -1n +1=56-1n +1. 答案:56-1n +18.(·安徽十大名校联考)在数列{a n }中,a 1=-2,a 2=3,a 3=4,a n +3+(-1)na n +1=2(n ∈N *).记S n 是数列{a n }的前n 项和,则S 20的值为________.解析:由题意知,当n 为奇数时,a n +3-a n +1=2,又a 2=3,所以数列{a n }中的偶数项是以3为首项,2为公差的等差数列,所以a 2+a 4+a 6+…+a 20=10×3+10×92×2=120.当n 为偶数时,a n +3+a n +1=2,又a 3+a 1=2, 所以数列{a n }中的相邻的两个奇数项之和均等于2,所以a 1+a 3+a 5+…+a 17+a 19=(a 1+a 3)+(a 5+a 7)+…+(a 17+a 19)=2×5=10,所以S 20=120+10=130.答案:1309.(·益阳、湘潭调研)已知S n 为数列{a n }的前n 项和,若a 1=2且S n +1=2S n ,设b n =log 2a n ,则1b 1b 2+1b 2b 3+…+1b 2 018b 2 019的值是________.解析:由S n +1=2S n 可知,数列{S n }是首项为S 1=a 1=2,公比为2的等比数列,所以S n=2n.当n ≥2时,a n =S n -S n -1=2n-2n -1=2n -1,b n =log 2a n =⎩⎪⎨⎪⎧1,n =1,n -1,n ≥2,当n ≥2时,1b n b n +1=1n -1n =1n -1-1n ,所以1b 1b 2+1b 2b 3+…+1b 2 018b 2 019=1+1-12+12-13+…+12 017-12 018=2-12 018=4 0352 018. 答案:4 0352 01810.(·大连模拟)设数列{a n }的前n 项和为S n ,已知a 1=1,a n +1=3S n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)记T n 为数列{n +a n }的前n 项和,求T n . 解:(1)由a n +1=3S n +1, 得当n ≥2时,a n =3S n -1+1, 两式相减,得a n +1=4a n (n ≥2). 又a 1=1,a 2=4,a 2a 1=4,所以数列{a n }是首项为1,公比为4的等比数列, 所以数列{a n }的通项公式是a n =4n -1(n ∈N *).(2)T n =(1+a 1)+(2+a 2)+(3+a 3)+…+(n +a n ) =(1+2+…+n )+(1+4+42+…+4n -1)=n 1+n2+1×1-4n1-4=n +n 22+4n -13.11.(·广州调研)已知数列{a n }满足a 1+4a 2+42a 3+…+4n -1a n =n4(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =4na n2n +1,求数列{b n b n +1}的前n 项和T n .解:(1)当n =1时,a 1=14.因为a 1+4a 2+42a 3+…+4n -2a n -1+4n -1a n =n4,①所以a 1+4a 2+42a 3+…+4n -2a n -1=n -14(n ≥2,n ∈N *),②①-②得4n -1a n =14(n ≥2,n ∈N *),所以a n =14n (n ≥2,n ∈N *).当n =1时也适合上式,故a n =14n (n ∈N *).(2)由(1)得b n =4na n 2n +1=12n +1,所以b n b n +1=12n +12n +3=12⎝ ⎛⎭⎪⎫12n +1-12n +3,故T n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3 =n 6n +9. 12.已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2. 所以b n =2n.由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16.②由①②,解得a 1=1,d =3,由此可得a n =3n -2.所以数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n. (2)设数列{a 2n b 2n -1}的前n 项和为T n , 由a 2n =6n -2,b 2n -1=2×4n -1,得a 2n b 2n -1=(3n -1)×4n,故T n =2×4+5×42+8×43+…+(3n -1)×4n,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1=12×1-4n1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.故T n =3n -23×4n +1+83.所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.。
新课改瘦专用高考数学一轮复习课时跟踪检测三十六数列求和含解析
答案:130
9.(2019·益阳、湘潭调研)已知 Sn 为数列{an}的前 n 项和,若 a1=2 且 Sn+1=2Sn,设 bn=
log2an,则b11b2+b21b3+…+b2
1 018b2
019的值是________.
解析:由 Sn+1=2Sn 可知,数列{Sn}是首项为 S1=a1=2,公比为 2 的等比数列,所以 Sn
+…+a11+a12=78.故选 B.
3.(2019·开封调研)已知数列{an}满足 a1=1,an+1·an=2n(n∈N*),则 S2 018 等于( )
B.3×21 009-3
A.22 018-1
D.3×21 008-2
C.3×21 009-1
2
an+2·an+1 2n+1
an+2
解析:选 B ∈a1=1,a2=a1=2,又 an+1·an = 2n =2,∈ an =2.∈a1,a3,
11
( ) ( ) ( ) =2×20
×
220+1-3×5
1-520 1-15
=420-34
1-5120
.
15+512+…+5120
5.1-4+9-16+…+(-1)n+1n2=( )
B.-
nn+1 2
A.nn+2 1
D.以上均不正确
C.(-1)n+1nn+2 1
解析:选 C 当 n 为偶数时,1-4+9-16+…+(-1)n+1n2=-3-7-…-(2n-1)=-
11
1
an=0(n∈N*),记 Tn=S1+S2+…+Sn(n∈N*),则 T2 018=( )
2 017 B.2 018
4 034 A.2 018
D.22
018 019
2020届高考数学一轮复习:课时作业33《数列求和》(含解析)
课时作业33 数列求和1.已知等比数列{a n }中,a 2·a 8=4a 5,等差数列{b n }中,b 4+b 6=a 5,则数列{b n }的前9项和S 9等于( B )A .9B .18C .36D .72 解析:∵a 2·a 8=4a 5, 即a 25=4a 5,∴a 5=4,∴a 5=b 4+b 6=2b 5=4,∴b 5=2. ∴S 9=9b 5=18,故选B.2.(2019·广州调研)数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( A )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n -1D .n 2-n +1-12n解析:该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+122+…+12n =n 2+1-12n . 3.(2019·开封调研)已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 018=( B )A .22 018-1B .3×21 009-3C .3×21 009-1D .3×21 008-2解析:a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n =2n +12n =2,∴a n +2a n=2.∴a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列, ∴S 2 018=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 017+a 2 018=(a 1+a 3+a 5+…+a 2 017)+(a 2+a 4+a 6+…+a 2 018) =1-21 0091-2+2(1-21 009)1-2=3×21 009-3.4.定义n p 1+p 2+…+p n为n 个正数p 1,p 2,…,p n 的“均倒数”.若已知正项数列{a n }的前n 项的“均倒数”为12n +1,又b n =a n +14,则1b 1b2+1b 2b 3+…+1b 10b 11=( C )A.111B.112C.1011D.1112解析:依题意有n a 1+a 2+…+a n =12n +1,即前n 项和S n =n (2n +1)=2n 2+n , 当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=4n -1,a 1=3满足该式. 则a n =4n -1,b n =a n +14=n . 因为1b n b n +1=1n (n +1)=1n -1n +1,所以1b 1b 2+1b 2b 3+…+1b 10b 11=1-12+12-13+…+110-111=1011.5.(2019·华中师大联盟质量测评)在数列{a n }中,已知a 1=3,且数列{a n +(-1)n }是公比为2的等比数列,对于任意的n ∈N *,不等式a 1+a 2+…+a n ≥λa n +1恒成立,则实数λ的取值范围是( C )A.⎝ ⎛⎦⎥⎤-∞,25B.⎝ ⎛⎦⎥⎤-∞,12 C.⎝ ⎛⎦⎥⎤-∞,23 D .(-∞,1]解析:由已知,a n +(-1)n =[3+(-1)1]·2n -1=2n ,∴a n =2n -(-1)n .当n 为偶数时,a 1+a 2+…+a n =(2+22+…+2n )-(-1+1-…+1)=2n +1-2,a n +1=2n +1-(-1)n +1=2n +1+1,由a 1+a 2+…+a n ≥λa n +1,得λ≤2n +1-22n +1+1=1-32n +1+1对n ∈N *恒成立,∴λ≤23;当n 为奇数时,a 1+a 2+…+a n =(2+22+…+2n )-(-1+1-…+1-1)=2n +1-1,a n +1=2n +1-(-1)n +1=2n +1-1, 由a 1+a 2+…+a n ≥λa n +1得, λ≤2n +1-12n +1-1=1对n ∈N *恒成立, 综上可知λ≤23.6.(2019·衡水质检)中国古代数学有着很多令人惊叹的成就.北宋沈括在《梦溪笔谈》卷十八《技艺》篇中首创隙积术,隙积术意即:将木桶一层层堆放成坛状,最上一层长有a 个,宽有b 个,共计ab 个木桶,每一层长宽各比上一层多一个,共堆放n 层,设最底层长有c 个,宽有d 个,则共计有木桶n [(2a +c )b +(2c +a )d +(d -b )]6个.假设最上层有长2宽1共2个木桶,每一层的长宽各比上一层多一个,共堆放15层,则木桶的个数为 1 360 .解析:各层木桶长与宽的木桶数自上而下组成一等差数列,且公差为1,根据题意得,a =2,b =1,c =2+14=16,d =1+14=15,n =15,则木桶的个数为15[(2×2+16)×1+(2×16+2)×15+(15-1)]6=1 360(个). 7.(2019·安阳模拟)已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |= 4n -1 .解析:由已知得b 1=a 2=-3,q =-4, ∴b n =(-3)×(-4)n -1, ∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列, ∴|b 1|+|b 2|+…+|b n |=3(1-4n )1-4=4n-1.8.(2019·海口调研)设数列{a n }的前n 项和为S n ,且a 1=1,a n +a n +1=12n (n =1,2,3,…),则S 2n +3=43⎝⎛⎭⎪⎫1-14n +2 .解析:依题意得S 2n +3=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2n +2+a 2n +3)=1+14+116+…+14n +1=1-14n +21-14=43⎝ ⎛⎭⎪⎫1-14n +2. 9.(2019·广东潮州模拟)已知S n 为数列{a n }的前n 项和,a n =2·3n-1(n ∈N *),若b n =a n +1S n S n +1,则b 1+b 2+…+b n = 12-13n +1-1.解析:因为a n +1a n=2·3n2·3n -1=3,且a 1=2,所以数列{a n }是以2为首项,3为公比的等比数列, 所以S n =2(1-3n )1-3=3n-1,又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1,所以b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n-1S n +1=1S 1-1S n +1=12-13n +1-1. 10.(2019·潍坊模拟)若数列{a n }的前n 项和S n 满足S n =2a n -λ(λ>0,n ∈N *).(1)证明数列{a n }为等比数列,并求a n ;(2)若λ=4,b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n ,n 为偶数(n ∈N *),求数列{b n }的前2n项和T 2n .解:(1)证明:∵S n =2a n -λ,当n =1时,得a 1=λ, 当n ≥2时,S n -1=2a n -1-λ, ∴S n -S n -1=2a n -2a n -1, 即a n =2a n -2a n -1,∴a n =2a n -1,∴数列{a n }是以λ为首项,2为公比的等比数列, ∴a n =λ2n -1.(2)∵λ=4,∴a n =4·2n -1=2n +1,∴b n =⎩⎪⎨⎪⎧2n +1,n 为奇数,n +1,n 为偶数,∴T 2n =22+3+24+5+26+7+…+22n +2n +1 =(22+24+…+22n )+(3+5+…+2n +1) =4-4n ·41-4+n (3+2n +1)2 =4n +1-43+n (n +2), ∴T 2n =4n +13+n 2+2n -43.11.(2019·江西百校联盟联考)已知数列{a n }的前n 项和为S n ,数列⎩⎨⎧⎭⎬⎫S n n 是公差为1的等差数列,且a 2=3,a 3=5. (1)求数列{a n }的通项公式;(2)设b n =a n ·3n ,求数列{b n }的前n 项和T n . 解:(1)由题意,得S nn =a 1+n -1, 即S n =n (a 1+n -1),所以a 1+a 2=2(a 1+1),a 1+a 2+a 3=3(a 1+2),且a 2=3,a 3=5. 解得a 1=1,所以S n =n 2,所以当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,又n =1时也满足,故a n =2n -1. (2)由(1)得b n =(2n -1)·3n ,所以T n =1×3+3×32+…+(2n -1)·3n , 则3T n =1×32+3×33+…+(2n -1)·3n +1.∴T n -3T n =3+2×(32+33+…+3n )-(2n -1)·3n +1,则-2T n =3+2×32-3n ×31-3-(2n -1)·3n +1=3n +1-6+(1-2n )·3n +1=(2-2n )·3n +1-6,故T n =(n -1)·3n +1+3.12.(2019·贵阳一模)已知数列{a n }的前n 项和是S n ,且S n +12a n=1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =log 13(1-S n +1)(n ∈N *),令T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .解:(1)当n =1时,a 1=S 1, 由S 1+12a 1=1,得a 1=23,当n ≥2时,S n =1-12a n ,S n -1=1-12a n -1, 则S n -S n -1=12(a n -1-a n ),即a n =12(a n -1-a n ),所以a n =13a n -1(n ≥2). 故数列{a n }是以23为首项,13为公比的等比数列.故a n =23·⎝ ⎛⎭⎪⎫13n -1=2·⎝ ⎛⎭⎪⎫13n (n ∈N *). (2)因为1-S n =12a n =⎝ ⎛⎭⎪⎫13n .所以b n =log 13(1-S n +1)=log 13⎝ ⎛⎭⎪⎫13n +1=n +1,因为1b n b n +1=1(n +1)(n +2)=1n +1-1n +2,所以T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2=n 2(n +2).13.(2019·湖北四地七校联考)数列{a n }满足a 1=1,na n +1=(n +1)a n+n (n +1),且b n =a n cos 2n π3,记S n 为数列{b n }的前n 项和,则S 24=( D )A .294B .174C .470D .304解析:∵na n +1=(n +1)a n +n (n +1), ∴a n +1n +1-a n n=1, ∴数列⎩⎨⎧⎭⎬⎫a n n 是公差与首项都为1的等差数列.∴a nn =1+(n -1)×1,可得a n =n 2. ∵b n =a n cos 2n π3,∴b n =n 2cos 2n π3, 令n =3k -2,k ∈N *,则b 3k -2=(3k -2)2cos 2(3k -2)π3= -12(3k -2)2,k ∈N *,同理可得b 3k -1=-12(3k -1)2,k ∈N *, b 3k =(3k )2,k ∈N *.∴b 3k -2+b 3k -1+b 3k =-12(3k -2)2-12(3k -1)2+(3k )2=9k -52,k ∈N *,则S 24=9×(1+2+…+8)-52×8=304.14.(2019·衡水联考)已知数列{a n }与{b n }的前n 项和分别为S n ,T n ,且a n >0,6S n =a 2n +3a n ,n ∈N *,b n =2a n(2a n -1)(2a n +1-1),若∀n ∈N *,k >T n 恒成立,则k 的最小值是( B )A.17B.149 C .49D.8441解析:当n =1时,6a 1=a 21+3a 1,解得a 1=3或a 1=0. 由a n >0,得a 1=3.由6S n =a 2n +3a n ,得6S n +1=a 2n +1+3a n +1. 两式相减得6a n +1=a 2n +1-a 2n +3a n +1-3a n .所以(a n +1+a n )(a n +1-a n -3)=0. 因为a n >0,所以a n +1+a n >0,a n +1-a n =3.即数列{a n }是以3为首项,3为公差的等差数列, 所以a n =3+3(n -1)=3n . 所以b n =2a n (2a n -1)(2a n +1-1)=8n(8n -1)(8n +1-1) =17⎝ ⎛⎭⎪⎫18n -1-18n +1-1. 所以T n =17⎝⎛18-1-182-1+182-1-183-1+…⎭⎪⎫+18n -1-18n +1-1 =17⎝ ⎛⎭⎪⎫17-18n +1-1<149. 要使∀n ∈N *,k >T n 恒成立,只需k ≥149.故选B.15.设f (x )=4x4x +2,若S =f ⎝ ⎛⎭⎪⎫12 017+f ⎝ ⎛⎭⎪⎫22 017+…+f ⎝ ⎛⎭⎪⎫2 0162 017,则S = 1 008 .解析:∵f (x )=4x4x +2,∴f (1-x )=41-x 41-x +2=22+4x ,∴f (x )+f (1-x )=4x 4x +2+22+4x=1.S =f ⎝ ⎛⎭⎪⎫12 017+f ⎝ ⎛⎭⎪⎫22 017+…+f ⎝ ⎛⎭⎪⎫2 0162 017,① S =f ⎝ ⎛⎭⎪⎫2 0162 017+f ⎝ ⎛⎭⎪⎫2 0152 017+…+f ⎝ ⎛⎭⎪⎫12 017,②①+②,得2S =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12 017+f ⎝ ⎛⎭⎪⎫2 0162 017+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫22 017+f ⎝ ⎛⎭⎪⎫2 0152 017+…+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫2 0162 017+f ⎝ ⎛⎭⎪⎫12 017 =2 016, ∴S =2 0162=1 008.16.已知数列{a n }的首项a 1=3,前n 项和为S n ,a n +1=2S n +3,n ∈N *.(1)求数列{a n }的通项公式.(2)设b n =log 3a n ,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n ,并证明:13≤T n <34.解:(1)由a n +1=2S n +3, 得a n =2S n -1+3(n ≥2),两式相减得a n +1-a n =2(S n -S n -1)=2a n , 故a n +1=3a n (n ≥2),所以当n ≥2时,{a n }是以3为公比的等比数列. 因为a 2=2S 1+3=2a 1+3=9,a 2a 1=3,所以{a n }是首项为3,公比为3的等比数列,a n =3n . (2)a n =3n ,故b n =log 3a n =log 33n =n ,b n a n =n3n =n ·⎝ ⎛⎭⎪⎫13n ,T n =1×13+2×⎝ ⎛⎭⎪⎫132+3×⎝ ⎛⎭⎪⎫133+…+n ×⎝ ⎛⎭⎪⎫13n ,① 13T n =1×⎝ ⎛⎭⎪⎫132+2×⎝ ⎛⎭⎪⎫133+3×⎝ ⎛⎭⎪⎫134+…+(n -1)×⎝ ⎛⎭⎪⎫13n +n ×⎝ ⎛⎭⎪⎫13n +1.②①-②,得23T n =13+⎝ ⎛⎭⎪⎫132+⎝ ⎛⎭⎪⎫133+…+⎝ ⎛⎭⎪⎫13n -n ×⎝ ⎛⎭⎪⎫13n +1=13-⎝ ⎛⎭⎪⎫13n +11-13-n ×⎝ ⎛⎭⎪⎫13n +1=12-⎝ ⎛⎭⎪⎫32+n ⎝ ⎛⎭⎪⎫13n +1,所以T n =34-12⎝ ⎛⎭⎪⎫32+n ⎝ ⎛⎭⎪⎫13n.因为⎝ ⎛⎭⎪⎫32+n ⎝ ⎛⎭⎪⎫13n >0,所以T n <34.又因为T n +1-T n =n +13n +1>0,所以数列{T n }单调递增, 所以(T n )min =T 1=13, 所以13≤T n <34.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(三十六) 数列求和1.(2019·河北“五个一名校联盟”模拟)已知数列{a n }满足:a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,S n 为数列{a n }的前n 项和,则S 2 018=( )A .3B .2C .1D .0解析:选A ∵a n +1=a n -a n -1,a 1=1,a 2=2,∴a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1,a 8=2,…,故数列{a n }是周期为6的周期数列,且每连续6项的和为0,故S 2 018=336×0+a 2 017+a 2 018=a 1+a 2=3.故选A.2.在数列{a n }中,若a n +1+(-1)na n =2n -1,则数列{a n }的前12项和等于( ) A .76 B .78 C .80D .82解析:选B 由已知a n +1+(-1)n a n =2n -1,得a n +2+(-1)n +1a n +1=2n +1,得a n +2+a n =(-1)n (2n -1)+(2n +1),取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.故选B.3.(2019·开封调研)已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 018等于( ) A .22 018-1B .3×21 009-3 C .3×21 009-1D .3×21 008-2解析:选B ∵a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n =2n +12n =2,∴a n +2a n=2.∴a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,∴S 2 018=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 017+a 2 018=(a 1+a 3+a 5+…+a 2 017)+(a 2+a 4+a 6+…+a 2 018)=1-21 0091-2+-2 1 0091-2=3×21 009-3.故选B.4.已知数列{a n }的通项公式是a n =2n -3⎝ ⎛⎭⎪⎫15n,则其前20项和为( )A .380-35⎝ ⎛⎭⎪⎫1-1519B .400-25⎝ ⎛⎭⎪⎫1-1520C .420-34⎝ ⎛⎭⎪⎫1-1520D .440-45⎝ ⎛⎭⎪⎫1-1520解析:选C 令数列{a n }的前n 项和为S n ,则S 20=a 1+a 2+…+a 20=2(1+2+…+20)-3⎝ ⎛⎭⎪⎫15+152+…+1520=2×+2-3×15⎝ ⎛⎭⎪⎫1-15201-15=420-34⎝ ⎛⎭⎪⎫1-1520.5.1-4+9-16+…+(-1)n +1n 2=( )A.n n +2B .-n n +2C .(-1)n +1n n +2D .以上均不正确解析:选C 当n 为偶数时,1-4+9-16+…+(-1)n +1n 2=-3-7-…-(2n -1)=-n2+2n -2=-n n +2;当n 为奇数时,1-4+9-16+…+(-1)n +1n 2=-3-7-…-[2(n -1)-1]+n 2=-n -12[3+n --1]2+n 2=n n +2.综上可得,原式=(-1)n +1n n +2.6.(2019·郑州质量预测)已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n +2-2a n +1+a n =0(n ∈N *),记T n =1S 1+1S 2+…+1S n(n ∈N *),则T 2 018=( )A.4 0342 018 B .2 0172 018 C.4 0362 019D .2 0182 019解析:选C 由a n +2-2a n +1+a n =0(n ∈N *),可得a n +2+a n =2a n +1,所以数列{a n }为等差数列,公差d =a 2-a 1=2-1=1,通项公式a n =a 1+(n -1)×d =1+n -1=n ,则其前n 项和S n =n a 1+a n 2=n n +2,所以1S n=2n n +=2⎝ ⎛⎭⎪⎫1n -1n +1,T n =1S 1+1S 2+…+1S n =2( 1-12+12-13+…+1n -1n +1 )=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1,故T 2 018=2×2 0182 018+1=4 0362 019,故选C. 7.已知数列{a n }的前n 项和S n =n 2+n +1,则数列⎩⎨⎧⎭⎬⎫4a n a n +1的前n 项和T n =________. 解析:∵数列{a n }的前n 项和S n =n 2+n +1,∴S n -1=n 2-n +1(n ≥2),两式作差得到a n =2n (n ≥2).故a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.∴4a n a n +1=1nn +=1n -1n +1(n ≥2),∴T n =13+12-13+13-14+…+1n -1n +1=56-1n +1. 答案:56-1n +18.(2019·安徽十大名校联考)在数列{a n }中,a 1=-2,a 2=3,a 3=4,a n +3+(-1)na n +1=2(n ∈N *).记S n 是数列{a n }的前n 项和,则S 20的值为________.解析:由题意知,当n 为奇数时,a n +3-a n +1=2,又a 2=3,所以数列{a n }中的偶数项是以3为首项,2为公差的等差数列,所以a 2+a 4+a 6+…+a 20=10×3+10×92×2=120.当n 为偶数时,a n +3+a n +1=2,又a 3+a 1=2, 所以数列{a n }中的相邻的两个奇数项之和均等于2,所以a 1+a 3+a 5+…+a 17+a 19=(a 1+a 3)+(a 5+a 7)+…+(a 17+a 19)=2×5=10,所以S 20=120+10=130.答案:1309.(2019·益阳、湘潭调研)已知S n 为数列{a n }的前n 项和,若a 1=2且S n +1=2S n ,设b n =log 2a n ,则1b 1b 2+1b 2b 3+…+1b 2 018b 2 019的值是________.解析:由S n +1=2S n 可知,数列{S n }是首项为S 1=a 1=2,公比为2的等比数列,所以S n =2n.当n ≥2时,a n =S n -S n -1=2n -2n -1=2n -1,b n =log 2a n =⎩⎪⎨⎪⎧1,n =1,n -1,n ≥2,当n ≥2时,1b n b n +1=1n -n =1n -1-1n ,所以1b 1b 2+1b 2b 3+…+1b 2 018b 2 019=1+1-12+12-13+…+12 017-12 018=2-12 018=4 0352 018.答案:4 0352 01810.(2019·大连模拟)设数列{a n }的前n 项和为S n ,已知a 1=1,a n +1=3S n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)记T n 为数列{n +a n }的前n 项和,求T n . 解:(1)由a n +1=3S n +1, 得当n ≥2时,a n =3S n -1+1, 两式相减,得a n +1=4a n (n ≥2). 又a 1=1,a 2=4,a 2a 1=4,所以数列{a n }是首项为1,公比为4的等比数列, 所以数列{a n }的通项公式是a n =4n -1(n ∈N *).(2)T n =(1+a 1)+(2+a 2)+(3+a 3)+…+(n +a n ) =(1+2+…+n )+(1+4+42+…+4n -1)=n+n2+-4n1-4=n +n 22+4n -13.11.(2019·广州调研)已知数列{a n }满足a 1+4a 2+42a 3+…+4n -1a n =n4(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =4na n2n +1,求数列{b n b n +1}的前n 项和T n .解:(1)当n =1时,a 1=14.因为a 1+4a 2+42a 3+…+4n -2a n -1+4n -1a n =n4,①所以a 1+4a 2+42a 3+…+4n -2a n -1=n -14(n ≥2,n ∈N *),②①-②得4n -1a n =14(n ≥2,n ∈N *),所以a n =14n (n ≥2,n ∈N *).当n =1时也适合上式,故a n =14n (n ∈N *).(2)由(1)得b n =4na n 2n +1=12n +1,所以b n b n +1=1n +n +=12⎝ ⎛⎭⎪⎫12n +1-12n +3,故T n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3 =n 6n +9. 12.已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2. 所以b n =2n.由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16.②由①②,解得a 1=1,d =3,由此可得a n =3n -2.所以数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n. (2)设数列{a 2n b 2n -1}的前n 项和为T n , 由a 2n =6n -2,b 2n -1=2×4n -1,得a 2n b 2n -1=(3n -1)×4n,故T n =2×4+5×42+8×43+…+(3n -1)×4n,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1=-4n1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.故T n =3n -23×4n +1+83.所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.。