7.2014-6-10-各区初三二模统计概率分类
北京市各区县2014年中考数学二模试题分类汇编 应用题
应用题汇总一、 不等式类型:1、(丰台)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获利润100元,每生产一个乙种产品可获利润180元.在这10名工人中,如果要使此车间每天所获利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适.解:(1)设车间每天安排x 名工人生产甲种产品,其余工人生产乙种产品. ………1分 根据题意可得,()12100101018015600x x ⨯+-⨯≥, ……………………3分 解得4x ≤…………………………………………4分∴106x -≥.……………………………………………………………………5分∴至少要派6名工人去生产乙种产品才合适.2、(海淀)每年的5月20日是中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?解:设这份快餐含有x 克的蛋白质. ……………………………………………………1分 根据题意可得:440070%x x +≤⨯,……………………………………………3分 解不等式,得56.x ≤…………………………………………………………4分答:这份快餐最多含有56克的蛋白质. …………………………………………5分二、整式方程3、(大兴)如图,要建一个面积为40平方米的矩形宠物活动场地ABCD ,为了节约材料,宠物活动场地的一边AD 借助原有的一面墙,墙长为8米(AD < 8),另三边恰好用总长为24米的栅栏围成,求矩形宠物活动场地的一边AB 的长.解:设AB 长为x 米,则BC 长为(24-2x )米. …………………… 1分依题意,得40)224(=-x x . ………………………… 2分整理,得 020122=+-x x .解方程,得 2,1021==x x . …………………………… 3分所以当10=x 时,4224=-x ;当2=x 时,20224=-x (不符合题意,舍去).………… 4分答:矩形宠物活动场地的一边AB 的长为10米.………………5分4、(通州)列方程或方程组解应用题:某停车场的收费标准如下:中型汽车的停车费为每辆6元,小型汽车的停车费为每辆4元.现在停车场有中、小型汽车共50辆,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?解:设中型汽车有x 辆,小型汽车有y 辆.根据题意得:⎩⎨⎧=+=+2304650y x y x ………………………………..(2分)解方程组得:15=x ,35=y ………………………………..(4分)答:中、小型汽车各有15辆和35辆 …………………….…..(5分)5、(西城)一列“和谐号”动车组,有一等车厢和二等车厢共6节,一共设有座位496个.其中每节一等车厢设有座位64个,每节二等车厢设有座位92个.问该列车一等车厢和二等车厢各有多少节?解:设该列车一等车厢有x 节,二等车厢有y 节.1分8由题意,得66494,296x y x y +=+=⎧⎨⎩,2分解得4,2x y ==⎧⎨⎩,4分 答:该列车一等车厢有2节,二等车厢有4节5分6.(石景山)某郊区景点门票价格:成人票每X40元,学生票每X 是成人票的半价.小明和小华两家人买了12X 门票共花了420元,求两家人的学生和成人各有几人?解:设两家人有学生x 人,成人y 人 ……………………………………… 1分 据题意:⎩⎨⎧=+=+420402012y x y x ……………………………………… 3分 解之:⎩⎨⎧==93y x ……………………………………… 4分答:两家人的学生有3人,成人有9人. ……………………………………… 5分三、分式方程:7、(顺义)A 、B 两地相距15千米,甲从A 地出发步行前往B 地,15分钟后,乙从B 地出发骑车前往A 地,且乙骑车的速度是甲步行速度的3倍.乙到达A 地后停留45分钟,然后骑车按原路原速返回,结果甲、乙二人同时到达B 地.求甲步行的速度.解:设甲步行的速度是x 千米/小时,……………………………………………… 1分 由题意,得 301513x x+=. ……………………………………………… 2分 解得 5x =.………………………………………………………… 3分经检验,5x =是所列方程的解.…………………………………………… 4分答:甲步行的速度是5千米/小时. ……………………………………………… 5分8、(昌平).如图,李大爷要借助院墙围成一个矩形菜园ABCD ,用篱笆围成的另外三边总长为24m ,设BC 的长为x m ,矩形的面积为y m 2,则y 与x 之间的函数表达式为. 21122y x x =-+ 9、(东城)列方程或方程组解应用题:甲、乙两公司各为“希望工程”捐款20000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的45.问甲、乙两公司人均捐款各为多少元? 解:设甲公司人均捐款x 元,则乙公司人均捐款(x +20)元.………………1分 根据题意得:20000420000520x x ⨯=+.………………3分 解得:x =80.……………4分经检验x =80是原方程的解.………5分x +20=100.答:甲公司人均捐款80元,则乙公司人均捐款100元.10、(某某)母亲节来临之际,小红去花店为自己的母亲选购鲜花,在花店中同一种鲜花每支的价格相同.小红如果选择由三支康乃馨和两支百合组成的一束花,则需要花34元;如果选择由两支康乃馨和三支百合组成的一束花,则需要花36元.一支康乃馨和一支百合花的价格分别是多少?11、(平谷)A 、B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运20千克,A 型机器人搬运1000千克所用时间与B 型机器人搬运800千克所用时间相等,求A 型、B 型两种机器人每小时分别搬运多少化工原料?解:设 A 型机器人每小时搬运化工原料x 千克,则B 型机器人每小时搬运(x -20)千克. -------------------------------------------------------------------------------------------------------------1分依题意得: 100080020x x =- ------------------------------------------------------------------------ 3分解这个方程得:100x=. --------------------------------------------------------------------- 4分经检验100x=是方程的解且符合实际意义,所以x-20=80. ------------------------5分答:A、B两种机器人每小时分别搬运化工原料100千克和80千克.四、函数问题12、(怀柔)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y (元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数表达式是.乙种收费的函数表达式是.(2)该校某年级每次需印制320~350份学案,选择哪种印刷方式较合算?解:(1)设甲种收费的函数表达式y1=kx+b,乙种收费的函数表达式是y2=k1x,把(0,6),(100,16)代入y1=kx+b,得616100bk b=⎧⎨=+⎩,解得:0.16kb=⎧⎨=⎩,∴y1=0.1x+6(x≥0的整数),…………………………………2分把(100,12)代入y2=k1x,解得:k1=0.12,………………………………………3分∴y 2(x≥0的整数);∴y1=0.1x+6(x≥0的整数),y2(x≥0的整数).(2)由题意,得当y1>y2时,0.1x+6>0.12x,得x<300;当y1=y2时,0.1x+6=0.12x,得x=300;………………………………………4分当y1<y2时,0.1x+6<0.12x,得x>300;∴当x在320~350X围时,选择甲种方式合算.………………………………………5分。
中考试题各区二模《统计与概率》解答题汇总无答案
2016年各区二模《统计与概率》解答题汇总1(西城25).阅读下列材料:根据联合国《人口老龄化及其社会经济后果》中提到的标准,当一个国家或地区65岁及以上老年人口数量占总人口比例超过7%时,意味着这个国家或地区进入老龄化.从经济角度,一般可用“老年人口抚养比”来反映人口老龄化社会的后果.所谓“老年人口抚养比”是指某范围人口中,老年人口数(65岁及以上人口数)与劳动年龄人口数(15–64岁人口数)之比,通常用百分比表示,用以表明每100名劳动年龄人口要负担多少名老年人.以下是根据我国近几年的人口相关数据制作的统计图和统计表.2011–2014年全国人口年龄分布图2011–2014年全国人口年龄分布表*以上图表中数据均为年末的数据. 根据以上材料解答下列问题:(1)2011年末,我国总人口约为________亿,全国人口年龄分布表中m 的值为_________; (2)若按目前我国的人口自然增长率推测,到2027年末我国约有14.60亿人.假设0-14岁人口占总人口的百分比一直稳定在16.5%,15-64岁的人口一直稳定在10亿,那么2027年末我国0-14岁人口约为___________亿,“老年人口抚养比”约为___________;(精确到1%)(3)2016年1月1日起我国开始施行“全面二孩”政策,一对夫妻可生育两个孩子.在未来..10..年内..,假设出生率显著提高,这________(填“会”或“不会”)对我国的2011年 2012年 2013年 2014年 0-14岁人口占总人口的百分比 16.4% 16.5% 16.4% 16.5% 15-64岁人口占总人口的百分比 74.5% 74.1% 73.9% 73.5% 65岁及以上人口占总人口的百分比m9.4%9.7%10.0%“老年人口抚养比”产生影响.2(昌平24).阅读下列材料:根据北京市统计局、国家统计局北京调查总队及《北京市统计年鉴》数据,2004年本市常住人口总量约为1493万人,2013年增至2115万人,10年间本市常住人口增加了622万人. 如果按照数据平均计算,本市常住人口每天增加1704人. 我们还能在网上获取以下数据:2010年北京常住人口约1962万人,2011年北京常住人口约2019万人,2014年北京常住人口为2152万人, 2015年北京常住人口约2171万人.北京市近几年常住人口平稳增长,而增长的速度有所放缓. 其中,2011年比上一年增加2.91%,2012年比上一年增加2.53%,2013年比上一年增加2.19%,2014年比上一年增加1.75%. 相关人士认为,常住人口出现增速连续放缓的原因,主要与经济增速放缓相关. 2011年开始,随着GDP 增速放缓,人口增速也随之放缓. 还有一个原因是就业结构发生变化,劳动密集型行业就业人员在2013年出现下降,住宿、餐饮业、居民服务业、制造业的就业人数下降.根据以上材料解答下列问题:(部分数据列出算式即可) (1)2011年北京市常住人口约为万人; (2)2012年北京市常住人口约为万人;(3)利用统计表或.统计图将2013 — 2015年北京市常住人口总量及比上一年增速百分比表示出来.3(顺义25).为了传承中华优秀传统文化,某校组织了一次八年级350名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表: 成绩x /分 频数 频率 50≤x <60 2 0.04 60≤x <70 6 0.1270≤x <80 9b80≤x <90 a0.36 90≤x ≤100150.30请根据所给信息,解答下列问题:(1)a = ,b = ; (2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在 分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该年级参加这次比赛的350名学生中成绩“优”等的约有多少人?频数(人数)1620124810005*********成绩/分4(海淀25).据报道,2015年我国每千名儿童所拥有的儿科医生数为0.43(将0~14岁的人群定义为儿童),远低于世界主要发达国家,儿科医生存在较大缺口.根据2000-2015年报道的相关数据,绘制统计图表如下:全国人口、儿童人口、儿科医生及每千名儿童拥有的儿科医生数统计表年份全国人口(亿人)儿童人口(亿人)儿科医生(万人)每千名儿童拥有的儿科医生数2000 12.67 2.9 9.57 0.332005 13.06 2.65 10.07 0.382010 13.4 2.22 10.43 0.472015 13.7 2.26 9.72 0.432015年全国人口年龄构成统计图根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)根据统计表估计2020年我国人口数约为亿人;(3)若2020年我国儿童占总人口的百分比与2015年相同,请你估算到2020年我国儿科医生需比2015年增加多少万人,才能使每千名儿童拥有的儿科医生数达到0.6.5(东城24).阅读下列材料:2013年是北京市正式执行新《环境空气质量标准》的第一年.这一年,北京建立起35个覆盖全市的监测站点,正式对PM2.5、二氧化硫、二氧化氮等六项污染物开展监测.2013年全年,本市空气质量一级优的天数有41天;二级良天数135天.本市主要大气污染物PM2.5年均浓度为89.5微克/立方米,单就PM2.5的浓度而言,全年共有204天达到一级优或二级良水平.2014年全年,PM2.5年均浓度为85.9微克/立方米.,PM2.5优良天数总计204天,其中PM2.5一级优天数达到93天,比2013年的71天增加了22天.前四天每天接待的观众人数统计图图1图22015年全年,本市空气质量达标天数为186天,即空气质量优良的好天儿占了一半,比2014年增加了14天. 本市主要大气污染物PM2.5年均浓度为80.6微克/立方米,单就PM2.5的浓度而言,2015年PM2.5优良天数累计达到223天,其中一级优天数首次突破100达到105天,二级良天数累计为118天. 根据以上材料解答下列问题:(1)北京市2014年空气质量达到优良的天数为天;单就PM2.5的浓度而言,北京市2013年全年达到二级良的天数为天;(2)选择统计表或统计图,将2013—2015年北京市PM2.5的年均浓度和PM2.5的优良天数表示出来.6(朝阳25).为弘扬中国传统文化,2016年4月30日“北京戏曲文化周”在北京园博园开始举行,活动期间开展了丰富多样的戏曲文化互动体验活动,同时也推出了好戏连台园博看大戏的活动,主办方统计了前几天观看戏剧情况的部分相关数据,绘制统计图表如下:(1)m =_______;(2)若5月3日当天看豫剧的人数为93人,请你补全图1;(3)请你根据前四天接待观众人数,估计“北京戏曲文化周”活动在5月4日接待观众约为________人.5月4日的戏曲活动,分别演出“京剧”、“北京曲剧”、“沪剧”、“秦腔”、“粤剧”.通过对100名观众的调查发现,有12人喜欢“沪剧”,5人喜欢“秦腔”,8人喜欢“粤剧”.主办方希望把“沪剧”、“秦腔”、“粤剧”三种戏剧安排到以下五个园(如下表)中的三个园进行演出.请你结合下表为这三种戏剧选择合适的演出地点,并说明理由.园中可以容纳人数北京园130人江苏园100人岭南园70人福建园60人晋中园30人7(丰台25). 阅读下列材料:日前,微信发布《2016微信春节大数据报告》显示,2016年除夕当日,利用微信传递春节祝福的音视频通话时长达4.2亿分钟,是2015年除夕的4倍,“红包不要停”成为春节期间最热门微信表情,其作者共获得124508元的“赞赏”.报告显示,除夕当日,微信红包的参与者达4.2亿人,收发总量达80.8亿个,是2015年除夕的8倍. 除了通常的定额红包、拼手气红包,除夕到初一期间,微信还推出可以添加照片的拜年红包、引爆朋友圈的红包照片,以及和诸多品牌商家联合推出的摇一摇红包.其中,在除夕当日拼手气红包的收发量约为微信红包收发总量的20%.作为一款“国民社交平台”,微信在春节通过红包激活了用户的使用热情,用音视频通话、朋友圈、微信群等串联起了五湖四海的情感,实现了科技与人文的交汇,成为“过好春节”的标配.根据以上材料回答下列问题:(1)2016年除夕当日,拼手气红包收发量约为亿个;(2)选择统计表或.统计图将2015年和2016年除夕当日微信红包收发总量和音视频的通话时长表示出来.8(房山23). 当雾霾出现红色预警时,全市中小学就随即展开“停课不停学”的活动,这一活动倍受家长们的关注.为此某媒体记者随机调查了某市城区若干名中学生家长对“停课不停学”的态度(态度分为:A:无所谓;B:赞成;C:反对),并将调査结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调査中,共调査了名中学生家长;(2)将图①补充完整;(3)请就雾霾期间如何学习的问题说说你的看法.9(石景山24).阅读下面材料:当前,中国互联网产业发展迅速,互联网教育市场增长率位居全行业前列.以下是根据某媒体发布的2012 2015年互联网教育市场规模的相关数据,绘制的统计图表的一部分.(1)2015年互联网教育市场规模约是亿元(结果精确到1亿元),并补全条形 统计图;(2)截至2015年底,约有5亿网民使用互联网进行学习,互联网学习用户的年龄分布 如右图所示,请你补全扇形统计图,并估 计7-17岁年龄段有亿网民通过互联 网进行学习;(3)根据以上材料,写出你的思考、感受或建议(一条即可). 10(怀柔25). 阅读下列材料:我国以2015年11月1日零时为标准时点进行了全国人口抽样调查.这次调查以全国人口为总体,抽取占全国总人口的1.6%的人口为调查对象.国家统计局在2016年4月20日根据这次抽查结果推算的全国人口主要数据权威发布.明明同学感兴趣的数据如下: 一、总人口全国大陆31个省、自治区、直辖市和现役军人的人口为13.7亿人.同第六次全国人口普查2010年11月1日零时的133972万人相比,五年共增加3377万人. 二、年龄构成大陆31个省、自治区、直辖市和现役军人的人口中,0-14岁人口为22696万人,占16.52%;15-59岁人口为92471万人,占67.33%;60岁及以上人口为22182万人,占16.15%,其中65岁及以上人口为14374万人,占10.47%.同2010年第六次全国人口普查相比,0-14岁人口比重下降0.08个百分点,15-59岁人口比重下降2.81个百分点,60岁及以上人口比重上升2.89个百分点,65岁及以上人口比重上升1.60个百分点.年份年增长率/%7-17岁%三、各种受教育程度人口大陆31个省、自治区、直辖市和现役军人的人口中,具有大学(指大专以上)教育程度人口为17093万人;具有高中(含中专)教育程度人口为21084万人,;具有初中教育程度人口为48942万人;具有小学教育程度人口为33453万人,(以上各种受教育程度的人包括各类学校的毕业生、肄业生和在校生).2010年第六次全国人口普查时,具有大学(指大专以上)文化程度的人口为11964万人;具有高中(含中专)文化程度的人口为18799万人;具有初中文化程度的人口为51966万人;具有小学文化程度的人口为35876万人. 根据以上材料回答下列问题:(1)2015年11月1日零时为标准时点进行的全国人口抽样调查的样本容量万(保留整数); (2)请你根据这次抽查调查结果推算的全国人口主要数据,写出一条全国年龄构成特点或年龄发展趋势;(3)选择统计表或.统计图,将我国2010年和2015年受教育程度人口表示出来. 11(通州24).为了了解某区的绿化进程,小明同学查询了园林绿化政务网,根据网站发布的近几年该城市城市绿化资源情况的相关数据,绘制了如下统计图(不完整)某市2011-2015年人均公共绿地面积年增长率统计图某市2011-2015年人均公共绿地面积统计图(1)请根据以上信息解答下列问题:①求2014年该市人均公共绿地面积是多少平方米(精确到0.1)? ②补全条那统计图:(2)小明同学还了解到自己身边的许多同学都树立起了绿色文明理念,从自身做起,多种树,为提高人均公共绿地面积做贡献,他对所在班级的40多名同学2015年参与植树的情况做了调查,并根据调查情况绘制出如下统计表:12.312.6 14.5 15.3 0369 121518 2011 20122013 2014 20154 7.9 6.6 3.4 2.60123456789 2011 2012 2013 2014 2015 年份年份年增长率(%) ?人均占有绿地面积(平方米)种树棵数(棵)0 1 2 3 4 5人数10 5 6 9 4 6如果按照小明的统计数据,请你通过计算估计,他所在学校的300名同学在2015年共植树多少棵?12(平谷24).青少年“心理健康”问题越来越引起社会的广泛关注,某区为了解学生的心理健康状况,对中学初二学生进行了一次“心理健康”知识测试,随机抽取了部分学生的成绩(得分取整数,满分为100分)作为样本,绘制了频率分布表和频率分布直方图的一部分.分组频数频率50~60 40.0860~70 14 0.2870~80 m0.3280~90 6 0.1290~100 10 0.20合计 1.00请解答下列问题:(1)学生心理健康测试成绩频率统计表中的m=;(2)请补全学生心理健康测试成绩频数统计图;(3)若成绩在60分以下(不含60分)心理健康状况为不良,60分—70分(含60分)为一般,70分—90分(含70分)为良好,90分(含90分)以上为优秀,请补全学生心理健康状况扇形统计图.初中数学试卷灿若寒星制作学生心理健康测试成绩频率统计表。
2020年上海16区中考数学二模分类汇编-专题04 统计与概率(解析版)
2020年上海市16区中考数学二模汇编专题04 统计与概率1. (2020闵行二模)2.(2020松江二模)3.(2020宝山二模)4.(2020奉贤二模)5.(2020金山二模)6.(2020静安二模)7.(2020嘉定二模)8.(2020长宁二模)9.(2020崇明二模) 10.(2020浦东二模) 11.(2020徐汇二模) 12.(2020青浦二模) 13.(2020虹口二模) 14(2020杨浦二模) 15(2020黄浦二模) 16.(2020普陀二模)一.选择题1.(2020闵行二模)某同学参加射击训练,共发射8发子弹,击中的环数分别为5,3,7,5,6,4,5,5,则下列说法错误的是( ) A. 其平均数为5 B. 其众数为5 C. 其方差为5 D. 其中位数为5【答案】C 【分析】直接根据平均数,方差,中位数的求法和众数的概念逐一判断即可. 【详解】A. 其平均数为5375645558+++++++=,故该选项正确;B. 5出现的次数最多,所以其众数为5,故该选项正确;C. 其方差为22222222(55)(35)(75)(55)(65)(45)(55)(55)584-+-+-+-+-+-+-+-=,故该选项错误; D. 其中位数为5552+=,故该选项正确; 【点睛】本题主要考查同类项的概念,掌握同类项的概念是解题的关键.2.(2020松江二模)某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( ) A .方差B .极差C .中位数D .平均数【分析】由于比赛取前6名参加决赛,共有13名选手参加,根据中位数的意义分析即可. 【解答】解:13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了. 故选:C .3.(2020宝山二模)为备战奥运会,甲、乙、丙、丁四位优秀短跑选手参加训练,近期的10次百米测试平均成绩都是10.3秒,但他们成绩的方差分别是0.020、0.019、0.021、0.022(单位:秒²)则这四人中发挥最稳定的是( ) A. 甲 B. 乙C. 丙D. 丁【答案】B【分析】利用方差越小,表明这组数据分布越稳定解答即可. 【详解】解:∵0.019<0.020<0.021<0.022, ∴乙的方差最小, ∴这四人中乙发挥最稳定, 故选:B .【点睛】本题考查了方差意义,掌握方差是来衡量一组数据波动大小的量,方差越小,数据越稳定. 4.(2020奉贤二模)甲、乙、丙、丁四位同学本学期5次50米短跑成绩的平均数(秒)及方差S 2(秒2)如表所示.如果从这四位同学中选出一位成绩较好且状态稳定的同学参加学校比赛,那么应该选的同学是( )甲 乙 丙丁7 77.5 7.5 S 2 2.11.921.8A .甲B .乙C .丙D .丁【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 解:∵乙的平均分最好,方差最小,最稳定, ∴应选乙. 故选:B .5.(2020金山二模)某区对创建全国文明城区的满意程度进行随机调查,结果如图所示,据此可估计全区75万居民对创建全国文明城区工作不满意的居民人数为( )的A.1.2万B.1.5万C.7.5万D.66万【分析】用总人数乘以样本中对创建全国文明城区工作不满意的居民人数所对应的百分比可得.解:估计全区75万居民对创建全国文明城区工作不满意的居民人数为75×2%=1.5(万人),故选:B.6.(2020静安二模)体育课上,甲同学练习双手头上前掷实心球,测得他5次投掷的成绩为:8,8.5,9.2,8.5,8.8(单位:米),那么这组数据的平均数、中位数分别是()A.8.5,8.6B.8.5,8.5C.8.6,9.2D.8.6,8.5【分析】直接根据平均数和中位数的概念求解可得.【解答】解:这组数据的平均数为×(8+8.5+9.2+8.5+8.8)=8.6,将数据重新排列为8、8.5、8.5、8.8、9.2,所以这组数据的中位数为8.5,故选:D.7.(2020嘉定二模)一组数据:3、4、4、5,如果再添加一个数字4,那么会发生变化的统计量是()(A)平均数;(B)中位数;(C)众数;(D)方差.【考查内容】数据的分布,统计量的概念【评析】简单【解析】添加一个数字4后,平均数,中位数及众数都还是4,方差会产生变化,所以D选项错误。
7.2018-6-10-各区初三二模统计概率分类
2019年初三中考二模统计概率分类昌平20.在某中学开展的“书香伴我行”读书活动中,为了解九年级300名学生读书情况,随机调查了九年级50名学生读书的册数.统计数据如下表所示:(1)这50个样本数据的众数是,中位数是;(2)根据样本数据,估计该校九年级300名学生在本次活动中读书多于2册的人数;(3)学校广播站的小记者对被调查的50名学生中读书册数最少和最多的人进行随即采访,请利用树状图或列表,求被采访的两人恰好都是读书册数最多的学生的概率.怀柔20.从2019年1月7日起,中国中东部大部分地区持续出现雾霾天气。
某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查请根据图表中提供的信息解答下列问题:(1)填空:m=,n=,扇形统计图中E组所占的百分比为 %.(2)若该市人口约有100万人,请你计算其中持D组“观点”的市民人数.(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?通州19.某区八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分进行统计.请你根据不完整的表格,回答下列问题:(1)补全频率分布直方图;(2)若将得分转化为等级,规定50≤x <60评为“D”,60≤x <70评为“C”,70≤x <90评为“B”,90≤x <100评为“A”.这次全区八年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?平谷21.某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题. (1)将条形统计图补充完整;(2)本次抽样调查的样本容量是____________;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.师生出行方式统计图丰台21.某市在2019年义务教育质量监测过程中,为了解学生的家庭教育情况,就八年级学生平时主要和谁在一起生活进行了抽样调查.下面是根据这次调查情况制作的不完整请根据上述信息,回答下列问题:(1)a =________,b =________,c =_______;(2)在扇形统计图中,和父母一起生活的学生所对应扇形圆心角的度数是______;(3)如果该市八年级学生共有30000人,估计不与父母一起生活的学生有_______ 人.房山20.房山某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下的两个统计图.请根据下面两个不完整的统计图回答以下问题:(1)这次抽样调查中,共调查了名学生;(2)补全两幅..统计图;(3)根据抽样调查的结果,估算该校1000名学生中大约有多少人选择“小组合作学习”?大兴20. 某校开设了排球、篮球、羽毛球、体操共四项体育活动.学生可根据自己的爱好任选其中一项,老师对学生报名情况进行了统计,并绘制了下面尚未完成的扇形统计图和条形统计图,请你结合图中的信息,解答下列问题: (1)该校学生报名总人数有___________人;(2)选排球和篮球的人数分别占报名总人数的___________%和______________%; (3)将条形统计图补充完整.顺义20.保障房建设是民心工程,某市从2009年加快保障房建设工程.现统计了该市从2009年到2019年这5年新建保障房情况,绘制成如图1、2所示的折线统计图和不完整的条形统计图.某市2009-2019年新建保障房套数年增长率折线统计图 某市2009-2019年新建保障房套数条形统计图图2年份年份图1(1)小颖看了统计图后说:“该市2019年新建保障房的套数比2011年少了.”你认为小颖的说法正确吗?请说明理由;(2)求2019年新建保障房的套数,并补全条形统计图; (3)求这5年平均每年新建保障房的套数.海淀20.为了满足广大手机用户的需求,某移动通信公司推出了三种套餐,资费标准如下表所示:(1)已知小莹2019年10月套餐外通话费为33.6元,则她选择的上网套餐为套餐(填“一”、“二”或“三”);(2)补全条形统计图,并在图中标明相应的数据;(3)根据2019年后半年每月的消费情况,小莹估计自己每月本地主叫市话通话大约430分钟,发短信大约240条,国内移动数据流量使用量大约为120兆,除此之外不再产生其他费用,则小莹应该选择套餐 最划算(填“一”、“二”或“三”);选择该套餐后,她每月的手机消费总额约为 元.35%42%11.75%11.25% 86.176.088.184.683.1总额/元月份套餐费用套餐外 通话费套餐外 短信费套餐外数 据流量费2013年后半年每月手机消费总额统计图门头沟21. 在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下三个统计图表(如图1,图2,图3),请根据图表提供的信息,回答下列问题:(1)图1中“统计与概率”所在扇形的圆心角为 度; (2)图2、3中的a = ,b = ;(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?石景山20.以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制的北京(1)根据北京市2009--2019年生产总值年增长率,请计算出2011年北京市年生产总值是_________(结果精确到1百亿元),并补全条形统计图;(2)若从2019年以后,北京市年生产总值都按15%的年增长率增长,则请你估算,若年生产总值不低于...2009年的2倍,至少要到_________年.(填写年份)北京市2009-2013年 生产总值年增长率统计图(3)在(1)的条件下,2009--2019这四年间,比上一年增长的生产总值的平均数为多少百亿元?若按此平均数增长,请你预测2019年北京地区的生产总值多少百亿元? 东城20. 图①表示的是某综合商场今年1—5月的商品各月销售总额的情况,图②表示商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1—5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整; (2)商场服装部5月份的销售额是多少万元?(3)小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了,你同意他的看法吗?请说明理由.西城21.据报道:2019年底我国微信用户规模已到达6亿.以下是根据相关数据制作的统计图表的一部分:请根据以上信息,回答以下问题:(1)从2019年到2019年微信的人均使用时长增加了________分钟;(2)补全2019年微信用户对“微信公众平台”参与关注度扇形统计图,在我国6亿微信用户中,经常使用户约为_________亿(结果精确到0.1); (3)从调查数学看,预计我国微信用户今后每年将以20%的增长率递增,请你估计两年后,我国微信用户的规模将到达_________亿.密云20.《中学生体质健康标准》规定学生体质健康等级标准为:86分及以上为优秀;76的(1)在抽取的学生中不及格人数所占的百分比是 ;(2)小明按以下方法计算出所抽取学生测试结果的平均分是:(90+82+65+40)÷4=69.25.根据所学的统计知识判断小明的计算是否正确,若不正确,请写出正确的算式并计算出结果.朝阳20.某校对部分初三学生的体育训练成绩进行了随机抽测,并绘制了如下的统计图:女生篮球障碍运球成绩折线统计图 男生引体向上成绩条形统计图根据以上统计图解答下列问题:(1)所抽测的女生篮球障碍运球成绩的众数是多少?极差是多少?(2)该校所在城市规定“初中毕业升学体育现场考试”中,男生做引体向上满13次,可以获得满分10分;满12次,可以获9.5分;满11次,可以获得9分;满10次,可以获得8.5分;满9次,可以获得8分.①所抽测的男生引体向上得分..的平均数是多少?②如果该校今年有120名男生在初中毕业升学体育现场考试中报名做引体向上,请你根据本次抽测的数据估计在报名的这些学生中得分不少于9分的学生有多少人?。
2014年九年级中考二模考试数学试题参考答案及评分建议
2014年九年级中考模拟考试数学试题参考答案及评分建议说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分)9.1x ≠- 10.66.34410⨯ 11.2 12.20<<y 13.乙14.2m a - 15 16.245 17.3218.注:12题写y<2扣1分三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.(1)(1)原式= 23 —4 …………………………………………4分(2)移项配方得:2(2)5x -= ………………………………………2分解之得:1222x x ==………………………………4分20.原式=122122+--÷--x x x x x ……………………………………………………2分 =1+-x ……………………………………………………4分解不等式组得 12x -<≤, …………………………………………6分 符合不等式解集的整数是0,1,2. ……………………7分 当0x =时,原式2= ……………………………………………………8分21.解:(1)列表或画树状图正确(略) …………………………………………4分 ∴P (两次都是红色)=1/9 . …………………………………………………6分(2)两次都是白色或两次一红一白。
…………………………8分22.(1)5 8 图略 …………………………………………………3分(2)95(1分) 95 (2分) …………………………………………………6分(3)54 …………………8分23.证明:(1)∵ BC = CD ,∴ ∠CDB =∠CBD .∵ AD // BC ,∴ ∠ADB =∠CBD .∴ ∠ADB =∠CDB .……………1分又∵ AB ⊥AD ,BE ⊥CD ,∴ ∠BAD =∠BED = 90°. ………2分在△ABD 和△EBD 中,∵ ∠ADB =∠CDB ,∠BAD =∠BED ,BD = BD ,∴ △ABD ≌△EBD . ………………………………………………4分∴ AD = ED . ………………………………………………………5分(2)∵AF // CD ,∴ ∠AFD =∠EDF . ∴∠AFD =∠ADF ,即得 AF = AD .又∵ AD = ED ,∴ AF = DE . …………………………………7分于是,由 AF // DE ,AF = DE ,得四边形ADEF 是平行四边形. ……9分又∵ AD = ED ,∴ 四边形ADEF 是菱形. ………………………10分24.(1)在Rt △BOP 中 ,∠BOP =90°,∠BPO =45°,OP =100,∴OB=OP =100.…………………………………………………………………2分在Rt △AOP 中, ∠AOP =90°,∠APO =60°,tan AO OP APO ∴=⋅∠. AO ∴=. …………………………………4分∴1031)AB =(米). ………………………………………………6分(2)v 此车速度1)=250.7318.25≈⨯=(米/秒) . ………8分 18.25米/秒 =65.7千米/小时. ……………………………………9分65.770<, ∴此车没有超过限制速度. ………………………………………………10分25.(1)设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =kx +b , ……1分由图可知,函数图象过点(2,30)、(6,50),∴⎩⎨⎧=+=+506302b k b k 解得⎩⎨⎧==205b k ……………………………………………4分 ∴y =5x +20. ……………………………………………………………………5分(2)由图可知,甲队速度是:60÷6=10(米/时). ……………………………6分设甲队从开始到完工所铺设彩色道砖的长度为z 米,依题意,得6050.1012z z --= ……………………………………………………8分解得 z =110. ………………………………………………………9分答:甲队从开始到完工所铺设彩色道砖的长度为110米. …………10分26.(1)证明:连接AE ………………………………………………………1分∵AB 为⊙O 的直径,∴∠AEB =90°∴∠BAE +∠ABE =90° …………………2分∵AB =AC ,AE ⊥BC ∴AE 平分∠BAC ∴CBF BAC BAE ∠=∠=∠21 ………3分 ∴︒=∠+∠90ABE CBF ∴AB ⊥BF∴BF 为⊙O 的切线 ………………………………………………………5分(2)过点C 作CG ⊥BF , ………………………………………………………6分在Rt △ABF 中1022=+=BF AB AF∵AC =6 ∴CF =4 ………………7分∵CG ⊥BF ,AB ⊥BF ∴CG ∥AB∴△CFG ∽△AFB ………………8分 ∴ABCG BF GF AF CF == G∴512516==CG CF , ∴5245168=-=-=GF BF BG ………………………………9分 在Rt △BCG 中21tan ==∠BG CG CBF ………………………………………………10分27.(1)等腰三角形 …………………………………3分(2)因为抛物线y=-x2+bx (b >0)过原点,设抛物线顶点为B 点,抛物线与X 轴的另一交点为A 点,若“抛物线三角形”是等腰直角三角形,△OAB 中,∠OBA=90°,抛物线的对称轴是x=b/2,B 点坐标为(b/2,b/2)代入函数表达式,算出b=2 …………3分(3)存在,(略) …………4分(4)m=2 …………………………………2分28.解:(1)由题意可知 44m =,1m =.(1分)∴ 二次函数的解析式为24y x =-+.∴ 点A 的坐标为(- 2, 0). …………………………………3分(2)①∵ 点E (0,1),由题意可知, 241x -+=.解得 x = AA …………………………………5分②如图,连接EE ′.由题设知AA ′=n (0<n <2),则A ′O = 2 - n .在Rt △A ′BO 中,由A ′B 2 = A ′O 2 + BO 2,得A ′B 2 =(2–n )2 + 42 = n 2 - 4n + 20. …6分∵△A ′E ′O ′是△AEO 沿x 轴向右平移得到的,∴EE ′∥AA ′,且EE ′=AA ′.∴∠BEE ′=90°,EE ′=n .又BE =OB - OE =3.∴在Rt △BE ′E 中,BE ′2 = E ′E 2 + BE 2 = n 2 + 9, ……………………7分∴A ′B 2 + BE ′2 = 2n 2 - 4n + 29 = 2(n –1)2 + 27. ……………………8分当n = 1时,A ′B 2 + BE ′2可以取得最小值,此时点E ′的坐标是(1,1). ………9分③如图,过点A 作AB ′⊥x 轴,并使AB ′ = BE = 3.易证△AB ′A ′≌△EBE ′,∴B ′A ′ = BE ′,∴A ′B + BE ′ = A ′B + B ′A ′.………………10分当点B ,A ′,B ′在同一条直线上时,A ′B + B ′A ′最小,即此时A ′B +BE ′取得最小值.易证△AB ′A ′∽△OBA ′, ∴34AA AB A O OB ''==',∴AA ′=36277⨯=,∴EE ′=AA ′=67, …………………11分 ∴点E ′的坐标是(67,1). ……………………………………12分。
中考二模数学分类汇编:概率统计中考数学知识点总结
【东城二模】24.十八大报告首次提出建设生态文明,建设美丽中国. 十九大报告再次明确,到美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1 全国森林面积和森林覆盖率表2 北京森林面积和森林覆盖率请根据以上信息解答下列问题:(1) 从第________次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2) 补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3) 第八次清查的全国森林面积8.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到________万公顷(用含a和b的式子表示).24. 解:(1)四;---------------------------------------------------------------------1分(2)如图:---------------------------------------------------------------------3分(3)5432000ab.------------------------------------------------------5分【西城二模】22.阅读下列材料:材料一:早在9月25日,北京故宫博物院就开始尝试网络预售门票,全年网络售票仅占1.68%.至,全年网络售票占比都在2%左右.全年网络售票占17.33%,全年网络售票占比增长至41.14%.8月实现网络售票占比77%.10月2日,首次实现全部网上售票.与此同时,网络购票也采用了“人性化”的服务方式,为没有线上支付能力的观众提供代客下单服务.实现全网络售票措施后,在北京故宫博物院的精细化管理下,观众可以更自主地安排自己的行程计划,获得更美好的文化空间和参观体验.材料二:以下是某同学根据网上搜集的数据制作的-度中国国家博物馆参观人数及年增长率统计表.年度参观人数(人次)7 450 000 7 630 000 7 290 000 7 550 000 8 060 000年增长率(%)38.7 2.4 -4.5 3.6 6.8 他还注意到了如下的一则新闻:3月8日,中国国家博物馆官方微博发文,宣布取消纸质门票,观众持身份证预约即可参观. 国博正在建设智慧国家博物馆,同时馆方工作人员担心的是:“虽然有故宫免(纸质)票的经验在前,但对于国博来说这项工作仍有新的挑战.参观故宫需要观众网上付费购买门票,他遵守预约的程度是不一样的.但(国博)免费就有可能约了不来,挤占资源,所以难度其实不一样.” 尽管如此,国博仍将积极采取技术和服务升级,希望带给观众一个更完美的体验方式.根据以上信息解决下列问题:(1)补全以下两个统计图;(2)请你预估中国国家博物馆的参观人数,并说明你的预估理由.22.解:(1)补全统计图如图3.…………………………………………………………………4分(2)答案不唯一,预估理由合理,支撑预估数据即可.………………………6分【海淀二模】24.如图是甲、乙两名射击运动员的10次射击测试成绩的折线统计图.图3(1)根据折线图把下列表格补充完整;运动员平均数中位数众数甲8.5 9乙8.5(2)根据上述图表运用所学统计知识对甲、乙两名运动员的射击水平进行评价并说明理由. 24.(1)补充表格:运动员平均数中位数众数甲8.5 9 9乙8.5 8.5 7和10(2)答案不唯一,可参考的答案如下:甲选手:和乙选手的平均成绩相同,中位数高于乙,打出9环及以上的次数更多,打出7环的次数较少,说明甲选手相比之下发挥更加稳定;乙选手:与甲选手平均成绩相同,打出10环次数和7环次数都比甲多,说明乙射击时起伏更大,但也更容易打出10环的成绩.【朝阳二模】24.“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整②这30户家庭4月份义务植树数量的平均数是,众数是;(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有户.24. 解:(1)①……………2分② 3.4, 3 ………………………………………………………4分(2)70 ……………………………………………………5分【丰台二模】23.某校七年级6个班的180名学生即将参加北京市中学生开放性科学实践活动送课到校课程的学习.学习内容包括以下7个领域:A.自然与环境,B.健康与安全,C.结构与机械,D.电子与控制,E.数据与信息,F.能源与材料,G.人文与历史.为了解学生喜欢的课程领域,学生会开展了一次调查研究,请将下面的过程补全.收集数据学生会计划调查30名学生喜欢的课程领域作为样本,下面抽样调查的对象选择合理的是___________;(填序号)①选择七年级1班、2班各15名学生作为调查对象②选择机器人社团的30名学生作为调查对象③选择各班学号为6的倍数的30名学生作为调查对象调查对象确定后,调查小组获得了30名学生喜欢的课程领域如下:A,C,D,D,G,G,F,E,B,G,C,C,G,D,B,A,G,F,F,A,G,B,F,G,E,G,A,B,G,G整理、描述数据整理、描述样本数据,绘制统计图表如下,请补全统计表和统计图.某校七年级学生喜欢的课程领域统计表某校七年级学生喜欢的课程领域统计图课程领域人数分析数据、推断结论 请你根据上述调查结果向学校推荐本次送课到校的课程领域,你的推荐是__________(填A-G 的字母代号),估计全年级大约有_________名学生喜欢这个课程领域.23.收集数据 抽样调查对象选择合理的是③. ………………………1分整理、描述数据 如下: ………………………4分某校七年级学生喜欢的课程领域统计表某校七年级学生喜欢的课程领域统计图分析数据、推断结论 G ,60.………………………6分【石景山二模】23.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.E F CDGA B(1)这次被调查的同学共有 人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐.23.解: (1)1000; ………………2分 (2)………………4分(3)50180009001000⨯=. ………………6分 答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.【昌平二模】23.某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,过程如下,请补充完整. 收集数据从八、九两个年级各随机抽取20名学生,进行了体质健康测试,测试成绩(百分制)如下:八年级 78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77九年级 93 73 88 81 72 81 94 83 7783 80 81 70 81 73 78 82 80 70 40 整理、描述数据剩大量60%不剩剩少量剩一半部分同学用餐剩余情况统计图餐余情况剩大量不剩餐余情况剩大量不剩按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:请将以上两个表格补充完整;得出结论(1)估计九年级体质健康优秀的学生人数为__________;(2)可以推断出_______年级学生的体质健康情况更好一些,理由为__________________.(至少从两个不同的角度说明推断的合理性).23.解:(1)分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:…………………………………2分(2)108;………………………………3分(3)答案不唯一,理由需支撑推断结论………………………………………6分【房山二模】24. 某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:甲7.2 9.6 9.6 7.8 9.3 4 6. 5 8.5 9.9 9.6乙 5.8 9.7 9.7 6.8 9.9 6.9 8.2 6.7 8.6 9.7根据上面的数据,将下表补充完整:(说明:月销售额在8.0万元及以上可以获得奖金,7.0~7.9万元为良好,6.0~6.9万元为合格,6.0万元以下为不合格)两组样本数据的平均数、中位数、众数如下表所示:人员平均数(万元)中位数(万元)众数(万元)甲8.28.99.6乙8.28.49.7结论(1)估计乙业务员能获得奖金的月份有个;(2)可以推断出业务员的销售业绩好,理由为.(至少从两个不同的角度说明推断的合理性)24. 解:……………………………………………………………………………………2′(1)6;………………………………………………………………………………………4′(2)答案不唯一,理由结合数据支撑选项即可…………………………………………6′。
2014年北京市各城区中考二模数学——代数综合题23题汇总
备用图x2014年北京市各城区中考二模数学——代数综合题23题汇总1、(2014年门头沟二模)23. 已知二次函数223y x x =-++图象的对称轴为直线. (1)请求出该函数图像的对称轴; (2)在坐标系内作出该函数的图像;(3)有一条直线过点p (1,5)223y x x =-++只有一个交点,请求出所有满足条件的直线的关系式.2、(2014年丰台二模)23.如图,二次函数2y x bx c =++经过点(-1,0)和点(0,-3).(1)求二次函数的表达式;(2)如果一次函数4y x m =+的图象与二次函数的图象有且只有一个公共点,求m 的值和该公共点的坐标; (3)将二次函数图象y 轴左侧部分沿y 轴翻折,翻折后得到的图象与原图象剩余部分组成一个新的图象,该图象记为G ,如果直线4y x n =+与图象G 有3个公共点,求n 的值.3、(2014年平谷二模)23.已知关于x 的一元二次方程210x mx m -+-=. (1)求证:无论m 取任何实数时,方程总有实数根;(2)关于x 的二次函数211y x mx m =-+-的图象1C 经过2(168)k k k --+,和2(568)k k k -+-+,两点.①求这个二次函数的解析式;②把①中的抛物线1C 沿x 轴翻折后,再向左平移2个单位,向上平移8个单位得到抛物线2C .设抛物线2C 交x 轴于M 、N 两点(点M 在点N 的左侧),点P (a ,b )为抛物线2C 在x 轴上方部分图象上的一个动点.当∠MPN ≤45°时,直接写出a 的取值范围.4、(2014年顺义二模) 23.已知关于x 的一元二次方程2440mx x m ++-=. (1)求证:方程总有两个实数根;(2)若m 为整数,当此方程有两个互不相等的负整数根时,求m 的值;(3)在(2)的条件下,设抛物线244y mx x m =++-与x 轴交点为A 、B (点B 在点A的右侧),与y 轴交于点C .点O 为坐标原点,点P 在直线BC 上,且OP =12BC ,求点P 的坐标.5、(2014年石景山二模)23. 关于x 的一元二次方程023)1(32=+++-m x m x . (1)求证:无论m 为何值时,方程总有一个根大于0;(2)若函数23)1(32+++-=m x m x y 与x 轴有且只有一个交点,求m 的值;(3)在(2)的条件下,将函数23)1(32+++-=m x m x y 的图象沿直线2=x 翻折,得到新的函数图象G .在x y ,轴上分别有点P (t ,0),Q (0,2t ),其中0t >,当线段PQ 与函数图象G 只有一个公共点时,求t 的值.解:6、(2014年海淀二模)23.已知关于x 的方程:2(1)0x m x m ---=①和2(9)2(1)3x m x m --++=②,其中0m >.(1)求证:方程①总有两个不相等的实数根;(2)设二次函数21(1)y x m x m =---的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),将A 、B 两点按照相同的方式平移后,点A 落在点'(1,3)A 处,点B 落在点'B 处,若点'B 的横坐标恰好是方程②的一个根,求m 的值;(3)设二次函数22(9)2(1)y x m x m =--++,在(2)的条件下, 函数1y ,2y 的图象位于直线3x =左侧的部分与直线y kx =(0k >)交于两点,当向上平移直线y kx =时,交点位置随之变化,若交点间的距离始终不变,则k 的值是________________.7、(2014年西城二模)23.经过点(1,1)的直线l : 2 (0)y kx k =+≠与反比例函数G 1:1 (0)my m x=≠的图象交于点(1,)A a -,B (b ,-1),与y 轴交于点D . (1)求直线l 对应的函数表达式及反比例函数G 1的表达式;12345-1-2-3-4-5-5-4-3-2-154321yxO(2)反比例函数G 2::2 (0)ty t x=≠, ①若点E 在第一象限内,且在反比例函数G 2的图象上,若EA =EB ,且△AEB 的面积为8,求点E 的坐标及t 值;②反比例函数G 2的图象与直线l 有两个公共点M ,N (点M 在点N 的左侧),若DM DN +<出t 的取值范围.8、(2014年通州二模)无9、(2014年东城二模)23.已知:关于x 的一元二次方程2(3)-30mx m x +-=.(1)求证:无论m 取何值,此方程总有两个实数根; (2)设抛物线2(3)-3y mx m x =+-,证明:此函数图像一定过x 轴,y 轴上的两个定点(设x 轴上的定点为点A ,y 轴上的定点为点C ); (3)设此函数的图像与x 轴的另一交点为B ,当△ABC 为锐角三角形时,求m 的取值范围.10、(2014年朝阳二模)23.在平面直角坐标系xOy 中,点P (m ,0)为x 轴正半轴上的一点,过点P 做x 轴的垂线,分别交抛物线y =-x 2+2x 和y =-x 2+3x 于点M ,N . (1)当21=m 时, _____MN PM =;(2)如果点P 不在这两条抛物线中的任何一条上.当四条线段OP ,PM ,.PN ,MN 中恰好有三条线段相等时, 求m 的值.11、(2014年密云二模)23. 已知P (﹣3,m )和Q (1,m两点.(1)求b 的值;(2)判断关于x 的一元二次方程2x 2+bx+1=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线y=2x 2+bx+1的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.12、(2014年延庆二模)13、(2014年房山二模) 23. 已知关于x 的一元二次方程0132=-+-k x x 有实数根,k 为正整数.(1)求k 的值;(2)当此方程有两个不为0的整数根时,将关于x 的二次函数132-+-=k x x y 的图象向下平移2个单位,求平移后的函数图象的解析式;(3)在(2)的条件下,将平移后的二次函数图象位于y 轴左侧的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象G .当直线5y x b =+与图象G 有3个公共点时,请你直接写出b 的取值范围.14、(2014年昌平二模)23.已知抛物线2(31)2(1)(0)y ax a x a a =-+++≠. (1)求证:无论a 为任何非零实数,该抛物线与x 轴都有交点;(2)若抛物线2(31)2(1)y ax a x a =-+++与x 轴交于A (m ,0)、 B (n ,0)两点,m 、n 、a 均为整数,一次函数y =kx +b (k ≠0)的图象经过点P (n -l ,n +l )、Q (0,a ),求一次函数的表达式.15、(2014年怀柔二模)23.如图,抛物线y=与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A 、B 的坐标;(2)设D 为y 轴上的一点,当△ACD 的面积等于△ACB 的面积时,求D 点的坐标; (3)已知:直线y=k k x k(4+->0)交x 轴于点E ,M 为直线上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有四个时,求k 的取值范围.16、(2014年大兴二模)23.已知:关于x 的一元二次方程02)13()1(22=+---x k x k . (1)当方程有两个相等的实数根时,求k 的值;(2)若k 是整数,且关于x 的一元二次方程02)13()1(22=+---x k x k 有两个不相等的整数根时,把抛物线2)13()1(22+---=x k x k y 向右平移21个单位长度,求平移后抛物线的顶点坐标.17、(2014年燕山二模)23. 已知关于x 的一元二次方程032)1(222=--++-k k x k x 有两个不相等的实数根.(1)求k 的取值范围;(2)当k 取最小的整数时,求抛物线 32)1(222--++-=k k x k x y 的 顶点坐标以及它与x 轴的交点坐标; (3)将(2)中求得的抛物线在x 轴下方的 部分沿x 轴翻折到x 轴上方,图象的 其余部分不变,得到一个新图象. 请你画出这个新图象,并求出新图象 与直线m x y +=有三个不同公共点时m 的值.xyCBAO。
2014年中考数学二轮考点分类训练专题07 统计与概率(答案详解+名师点评)-1.doc
浙教版2014年中考数学二轮考点分类训练专题专题07 统计与概率班级姓名一、选择题C.上城区与下城区的人口数之和超过江干区的人口数D.杭州市区的人口数已超过600万【考点】众数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是8,故这组数据的众数为8。
故选C。
4. 随机掷两枚硬币,落地后全部正面朝上的概率是【】A.1B.12C.13D.145. 下列调查中,适合用全面调查方式的是【】A.了解某班学生“50米跑”的成绩B.了解一批灯泡的使用寿命C.了解一批炮弹的杀伤半径D.了解一批袋装食品是否含有防腐剂【答案】A。
【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查。
因此,6. 将1、2、3三个数字随机生成的点的坐标,列成下表.如果每个点出现的可能性相等,那么从中任意取一点,则这个点在函数y=x图象上的概率是【】(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2)(3,3)A.0.3 B.0.5 C.13D.23A. 12B.14C.34D.110. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:这些运动员跳高成绩的中位数和众数分别是【】A.1.65,1.70 B.1.70,1.65 C.1.70,1.70 D.3,5二、填空题1. 下列几个命题中正确的个数为▲个.①“掷一枚均匀骰子,朝上点数为负”为必然事件(骰子上各面点数依次为1,2,3,4,5,6).②5名同学的语文成绩为90,92,92,98,103,则他们平均分为95,众数为92.③射击运动员甲、乙分别射击10次,算得甲击中环数的方差为4,乙击中环数的方差为16,则这一过程中乙较甲更稳定.④某部门15名员工个人年创利润统计表如下,其中有一栏被污渍弄脏看不清楚数据,所以对于“该部门员工个人年创利润的中位数为5万元”的说法无法判断对错.2. 甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲心中任-≤,则称选一个数字,记为m,再由乙猜甲刚才所选的数字,记为n。
2014北京市海淀区初三数学二模试题及答案
海淀区九年级第二学期期末测评数学试卷答案及评分参考2014.6 一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分)13. 解:011|π12cos302--++-()()122=+-…………………………………………………………4分=1. …………………………………………………………………………………5分14.323 1.x yx y+=⎧⎨-=⎩,①②解:由①3⨯+②得, 510x=.解得, 2x=. …………………………………………………………………………2分把2x=代入①得,1y=. ……………………………………………………………4分∴原方程组的解为2,1.xy=⎧⎨=⎩……….……………………………………………………5分15.证明:在△CAE和△DBE中,,,,C DCEA DEBEA EB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CAE≌△DBE.……………………………………………………………………3分∴CE=DE.……………………………………………………………………………4分∵EA= EB,∴CE+EB=DE+EA.即BC=AD. ……………………………………………………5分A16. 解:∵22440,a ab b -+=2(2)0.a b -=∴ ………………………………………………………………………1分2.a b =∴ ……………………………………………………………………………2分∵0ab ≠, ∴2222()()()()a b a ba b a b a b a b a b ++⋅-=⋅---+ 2a ba b+=+ ………………………………………………………3分 222b bb b+=+ ………………………………………………………4分 4.3= ……………………………………………………………5分 17. 解:设这份快餐含有x 克的蛋白质. ……………………………………………………1分 根据题意可得:440070%x x +≤⨯,……………………………………………3分 解不等式,得56.x ≤ …………………………………………………………4分 答:这份快餐最多含有56克的蛋白质. …………………………………………5分18.解:(1)A (1)m ,在4y x=的图象上,∴441m ==. …………………………………………………………………………1分 ∴A 点的坐标为(14),. ∵A 点在一次函数2+=kx y 的图象上, 4 2 .k =+∴2 .k =∴2 2.y x =+∴一次函数的解析式为 …………………………………………………2分令0,y =即220x +=,解得1x =-.∴点B 的坐标为(-1,0). ...............................................................3分 (2)点P 的坐标为(2,2);点C 的坐标为(3,0). (5)分 四、解答题(本题共20分,每小题5分)19.(1)证明:∵点D 、E 分别是边BC 、AC 的中点,∴DE ∥AB . ……………………………………………………………………1分 ∵AF ∥BC ,∴四边形ABDF 是平行四边形. ………………………………………………2分(2)解:过点F 作FG ⊥AC 于G 点. ∵BC=4,点D 是边BC 的中点,∴BD=2. 由(1)可知四边形ABDF 是平行四边形,∴AF =BD=2. ∵∠CAF =45°,∴AG =…………………………………………………………………3分 在Rt △FGC 中,∠FGC =90°,∴=…………………………………………………4分 ∴AC =AG+GC=113.22CAFSAC FG =⋅=⨯ ……………………………………5分 20. 解:(1)二;……………………………………………………………………………1分(2)……………………………………3分(3)三;77. ………………………………………………………………………5分21. 证明:(1)连接OC .∵OA OC =,∴1 2.∠=∠. 又∵312,∠=∠+∠∴32 1.∠=∠又∵421∠=∠,∴4 3.∠=∠ ……………………1分 ∴OC ∥DB . ∵CE ⊥DB , ∴OC ⊥CF .又∵OC 为⊙O 的半径,∴CF 为⊙O 的切线. ………………………………………………………2分 (2)连结AD .在Rt △BEF 中,∠BEF =90°, BF =5,3sin 5F =,∴3BE =. ……………………………………………………………………3分 ∵OC ∥BE ,∴FBE △∽FOC △. ∴.FB BEFO OC=A设⊙O 的半径为r ,∴53.5r r =+ ∴152r =. ……………………………………………………………………4分∵AB 为⊙O 直径, ∴15AB =. ∴90ADB ∠=. ∵4EBF ∠=∠, ∴F BAD ∠=∠. ∴3sin sin .5BD BAD F AB ∠=== ∴3.155BD = ∴9BD =.……………………………………………………………………5分22. 解:(1; …………………………………………………………………1分……………………………………………………………2分(2)…………………4分最大三角形的斜边长分别是2a ,2a .………………………………………………………5分 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. 解:(1)222(1)421(1)m m m m m ∆=-+=++=+,……………………………1分由0m >知必有10m +>,故0∆>.∴方程①总有两个不相等的实数根. ……………………………………………2分 (2)令10y =,依题意可解得(1,0)A -,(,0)B m .∵平移后,点A 落在点'(1,3)A 处,∴平移方式是将点A 向右平移2个单位,再向上平移3个单位得到.∴点(,0)B m 按相同的方式平移后,点'B 为(2,3)m +. ……………………3分 则依题意有2(2)(9)(2)2(1)3m m m m +--+++=. …………………………4分 解得13m =,252m =-(舍负). ∴m 的值为3. ………………………………………………………………………5分(3)32k =. ………………………………………………………………………7分 24.解:(1) …………………………………………………2分(2)连接BF . ∵将ABD △沿射线BC 方向平移,得到FCE △,∴AD ∥EF , AD =EF ;AB ∥FC , AB =FC .∵∠ABC=90°,∴四边形ABCF 为矩形.∴AC =BF . ……………………………………3分∵AD BE ⊥,∴EF BE ⊥. …………………………………4分∵AD a =,AC b =,∴EF a =,BF b =.∴BE ………………………………………………………………5分(3)180α︒-; α . ……………………………………………………………7分 25. 解:(1)①P 2,P 3; ……………………………………………………………………2分 ②P (-4,6)或P (4,-2). …………………………………………………4分 (2)①解:∵⊙P 同时为正方形ABCD 与正方形EFGH 的“等距圆”,∴⊙P 同时过正方形ABCD 的对称中心E 和正方形EFGH 的对称中心I .∴点P 在线段EI 的中垂线上.∵A (2,4),正方形ABCD 的边CD 在x 轴上;F (6,2),正方形EFGH 的边HE 在y 轴上,∴E (0,2),I (3,5)∴∠I EH=45°,设线段EI 的中垂线与y 轴交于点L ,与x 轴交于点M ,∴△LIE 为等腰直角三角形,LI ⊥y 轴,∴L (0,5),∴△LOM 为等腰直角三角形,LO=OM∴M (5,0),∴P 在直线y=-x +5上,∴设P (p ,-p +5)过P 作PQ ⊥直线BC 于Q ,连结PE ,∵⊙P 与BC 所在直线相切,∴PE=PQ ,∴()()222522p p p +-+-=+,解得:15p =+25p =-∴.12(5(5P P +--. .……………………………………5分 ∵⊙P 过点E ,且E 点在y 轴上,∴⊙P 在y 轴上截得的弦长为224224-=或.…6分②0r r <<>…………………………………………………8分注:其他解法请参照给分.。
014年中考数学二轮专题复习试卷--概率与统计(五份附问卷与答卷)-6.doc
2014年中考数学二轮专题复习试卷——概率与统计(3)考试范围:概率与统计 考试分值:120分 考试时间:120分钟 试题难度:★★★姓名 班级 得分一、选择题:(本大题共6题,每小题3分,共18分) 1.某班级中男生和女生各若干,若随机抽取1人,抽到男生的概率是53,则抽到女生的概率是( ) A.不确定 B.53 C.52 D.51 2.从一副未曾启封的扑克牌中取出1张红桃、2张黑桃,共3张,洗匀后,从这3张牌中任取一张牌,恰好是黑桃的概率是( )A .21 B . 31 C . 32D . 13.下列调查:①调查一批灯泡的使用寿命;②调查全班同学的身高;③调查市场上某种食品的色素含量是否符合国家标准;④企业招聘,对应聘人员进行面试.其中符合用抽样调查的是( )A .①②B .①③C .②④D .②③ 4.下列成语所描述的事件是必然事件的是( )A .水中捞月B .守株待兔C .画饼充饥D .水涨船高5.下图中以OA 为边的角出现的频率为( ) A.20% B. 40% C. 60% D. 80%6.今年5月,某校举行“唱红歌”歌咏比赛,有17位同学参加选拔赛,所得分数互不相同,按成绩取前8名进入决赛,若知道某同学分数,要判断他能否进入决赛,只需知道17位同学分数的( )A.中位数B.众数C.平均数D.方差 二、填空题:(本大题共6题,每小题3分,共18分) 7.商店某天销售了14件衬衫,其领口尺寸统计如下表:则这14件衬衫领口尺寸的众数是________cm ,平均数是________cm .8.学校本学期安排初二学生参加军训,李小明同学5次实弹射击的成绩(单位:环)如下:9,4,10,8,9. 这组数据的极差是____ ;方差是___ O EDB C A9.市运会举行射击比赛,校射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如下表.请你根据表中数据选一10.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率约为(精确到0.1).11.从标有1到9序号的9张卡片中任意抽取一张,抽到序号是3的倍数的概率是.12.小张的三位朋友甲、乙、丙想破译他在电脑中设置的登录密码.但是他们只知道这个密码共有五位数字.他们根据小张平时开电脑时输入密码的手势,分别猜测密码是“51932”、“85778”或“74906”.实际上他们每个人都只猜对了密码中对应位置不相邻的两个数字.由此你知道小张设置的密码是________.三、计算题:(本大题共5题,每小题6分,共30分)13.掷一枚均匀的正方体骰子,6个面上分别标有数字1-6,随意掷出这个正方体,求下列事件发生的概率.(1)掷出的数字恰好是奇数的概率(2)掷出的数字大于4的概率;(3)掷出的数字恰好是7的概率(4)掷出的数字不小于3的概率.14.某学校课程安排中,各班每天下午只安排三节课.(1)初一(1)班星期二下午安排了数学、英语、生物课各一节,通过画树状图求出把数学课安排在最后一节的概率;(2)星期三下午,初二(1)班安排了数学、物理、政治课各一节,初二(2)班安排了数学、语文、地理课各一节,此时两班这六节课的每一种课表排法出现的概率是136.已知这两个班的数学课都有同一个老师担任,其他课由另外四位老师担任.求这两个班数学课不相冲突的概率(直接写结果).15.一只箱子里原有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出两个球,用树状图或列表法列举出所有可能并求两次摸出球的都是 白球的概率.(2)若从箱子中任意摸出一个球是红球的概率为53,则需要再加入几个红球?.16.爸爸、妈妈和小明一家三人准备在下周六每人骑一辆车出行,家里有三辆车:自行车1、自行车2和电瓶车,小明只能骑自行车,爸爸、妈妈可以骑任意一辆车.(1)请列举出他们出行有哪几种骑车方案;(2)如果下周日三人继续这样每人骑一辆车出行,请用列表或画树状图的方法计算两次出行骑车方案相同的概率.(为了便于描述,骑车方案一、方案二可以分别用a、b来表示)17.“一方有难,八方支援”,在四川汶川大地震后,某市文华中学全体师生踊跃捐款,向灾区人民献爱心. 为了了解该校学生捐款情况,对其中60个学生捐款数x(元)分五组进行统计,第一组:1≤x≤5,第二组:6≤x≤10,第三组:11≤x≤15,第四组:16≤x≤20;,第五组:x≥21,并绘制如下频数分布直方图(假定每名学生捐款数均为整数),解答下列问题:(1) 补全频数分布直方图;(2) 这60个学生捐款数的中位数落在第____组;(3)已知文华中学共有学生1800人,请估算该校捐款数不少于16元的学生人数.四、解答题:(本大题共6题,18—22每小题8分,23题14分,共54分)解答应写出文字说明,证明过程或演算步骤.18.小明有2枚黑棋子,小亮有2枚白棋子,两人随机将4枚棋子放在下图的格子中(每格只放一枚)。
2014年上海市各区中考数学二模压轴题图文解析
目录
1
华东师大出版社荣誉出品 《挑战中考数学压轴题》系列产品·8
例
2014 年上海市宝山区中考模拟第 24 题
如图 1,在平面直角坐标系中,抛物线 y=mx -mx+n(m、 n 为常数)与 y 轴交于点
2
,且 tan∠ABC= 3 .如果将抛物 A(0, 2 3) ,与 x 轴交于 B、C 两点(点 C 在点 B 左侧) 线 y=mx2-mx+n 沿 x 轴向右平移 4 个单位,点 B 的对应点为 E. (1)求抛物线 y=mx -mx+n 的对称轴及其解析式; (2)联结 AE,记平移后的抛物线的对称轴与 AE 的交点为 D,求点 D 的坐标; (3)如果点 F 在 x 轴上,且△ABD 与△EFD 相似,求 EF 的长.
②当
考点伸展
如果第(3)题探究△ABC 与△EFD 相似,那么 EF 的长又是多少? 因为△ABE 是 30°底角的等腰三角形,腰长与底边的比是 1: 3 ,因此存在两种情况:
①当
EF 3 EF 1 时,EF=3 (如图 3) .②当 时,EF=1(如图 4) . ED 1 ED 3
图3
3
图4
所以点 D 的坐标为 ( ,
9 3 ). 2 2
图2 (3)因为∠BAD =∠E=30 °,所以△ABD 与△EFD 相似存在两种情况: ①当
EF AB 4 EF 4 时, .此时 EF . ED AD 3 3 3 3 EF AD 9 EF 3 3 时, .此时 EF . ED AB 4 4 3
2
华东师大出版社荣誉出品 《挑战中考数学压轴题》系列产品·8那么 EH 源自 6 9 3 . 2 2
3 ,∠E=30°, AE 4 3 . 3
中考一模、二模试题分类汇编概率与统计
中考⼀模、⼆模试题分类汇编概率与统计“2009年春晚我最喜爱的⼩品节⽬” 调查结果条形统计图(单位:⼈)“2009年春晚我最喜爱的⼩品节⽬”调查结果扇形统计图概率与统计1.(⽯景⼭⼀)20.在我国,除⼣之夜,全家⼀起看春节联欢晚会是⼈们传统的娱乐活动,尤其是⼩品类节⽬为我们带来了很多的欢乐.为了统计观众对2009年春晚⼩品类节⽬的喜好,中央电视台在⽹上进⾏了“2009年春晚我最喜爱的⼩品”调查问卷,并将统计结果绘制成两幅统计图,请你结合图中所给信息解答下列问题:(1)求参加调查的观众喜欢⼩品《暖冬》的⼈数占总投票⼈数的百分⽐;(2)求参加调查的观众喜欢⼩品《黄⾖黄》的⼈数并补全条形图;(3)若北京市共有1200万⼈收看了春晚节⽬,请你估算北京市喜欢⼩品《不差钱》的观众约有多少⼈?2.(昌平⼀)20.某校欲从甲、⼄、丙三名候选⼈中挑选⼀名作为学⽣会主席,根据设定的录⽤程序,⾸先,随机抽取校内200名学⽣对三名候选⼈进⾏投票选举,要求每名学⽣最多推荐⼀⼈. 投票结果统计如下:200名学⽣投票结果统计图三名候选⼈得票情况统计图请你根据以上信息解答下列问题:(1)补全图1和图2;(2)若每名候选⼈得⼀票记1分,根据投票、笔试、⾯试三项得分按3:4:3的⽐例确定个⼈综合成绩,综合成绩⾼的被录⽤,请你分析谁将被录⽤.弃权2%⼄38% 丙%甲25% 图1 图2 ⼄⼈数分数23 5 1011 85分~100分60分以下60分~85分62%20 %%图中的各部分都只含最低分不含最⾼分3.(朝阳⼀)19. 通常情况居民⼀周时间可以分为常规⼯作⽇(周⼀⾄周五)和常规休息⽇(周六和周⽇). 居民⼀天的时间可以划分为⼯作时间、个⼈⽣活必须时间、家务劳动时间和可以⾃由⽀配时间等四部分. 2008年5⽉,北京市统计局在全市居民家庭中开展了时间利⽤调查,并绘制了统计图:图②(1)由图①,调查表明,我市居民⼈均常规⼯作⽇⼯作时间占⼀天时间的百分⽐为;(2)调查显⽰,看电视、上⽹、健⾝游戏、读书看报是居民在可⾃由⽀配时间中的主要活动⽅式,其中平均每天上⽹占可⾃由⽀配时间的12%,⽐读书看报的时间多8分钟. 请根据以上信息补全图②;(3)由图②,调查表明,我市居民在可⾃由⽀配时间中看电视的时间最长. 根据这⼀信息,请你在可⾃由⽀配时间的利⽤⽅⾯提出⼀条建议:___ ____________.4.(崇⽂⼀)20.中考⼀班的两位学⽣对本班的⼀次数学成绩(分数取整数,满分为100分)进⾏了⼀次初步统计,80分以上(含80分)有17⼈,但没有满分,也没有低于30分的.为更清楚了解本班的考试情况,他们分别⽤两种⽅式进⾏了统计分析,如图1和图2所⽰.请根据图中提供的信息回答下列问题:(I )该班60分以下(不含60分)的有⼈;(II )该班共有名学⽣参加了考试;(III )补全两个图中三个空缺的部分.图①北京市居民每天可⾃由⽀配时间利⽤情况1042230191510102030405060708090100110看电视读书看报上⽹健⾝游戏学习参观社会交往交通时间其他(单位:分)北京市居民⼈均常规⼯作⽇时间利⽤情况5.(房⼭⼀)20.今年4⽉,国民体质监测中⼼等机构开展了青少年形体测评.专家组随机抽查了某市若⼲名初中学⽣坐姿、站姿、⾛姿的好坏情况.我们对专家的测评数据作了适当处理(如果⼀个学⽣有⼀种以上不良姿势,我们以他最突出的⼀种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)在这次形体测评中,⼀共抽查了名学⽣,如果全市有10万名初中⽣,那么全市初中⽣中,三姿良好的学⽣约有⼈;(3)根据统计结果,请你简单谈谈⾃⼰的看法.16.(密云⼀)21.国家教委规定“中⼩学⽣每天在校体育活动时间不低于1⼩时”.为此,某地区今年初中毕业⽣学业考试体育学科分值提⾼到40分,成绩记⼊考试总分.某中学为了了解学⽣体育活动情况,随机调查了720名毕业班学⽣,调查内容是:“每天锻炼是否超过1⼩时及未超过1⼩时的原因”,所得的数据制成了的扇形统计图和频数分布直⽅图.根据图⽰,解答下列问题:(1)若在被调查的学⽣中随机选出⼀名学⽣测试其体育成绩,选出的恰好是“每天锻炼超过1⼩时”的学⽣的概率是多少?(2)“没时间”的⼈数是多少?并补全频数分布直⽅图;(3)2008年这个地区初中毕业⽣约为4.3万⼈,按此调查,可以估计2008年这个地区初中毕业⽣中每天锻炼未超过1⼩时的学⽣约有多少万⼈? (4)请根据以上结论谈谈你的看法.站姿不良 31%坐姿不良 20%⾛姿不良 37%三姿良好25 50 75 100 125 150 175 200 坐姿不良站姿不良⾛姿不良类别⼈数锻炼未超过1⼩时⼈数频数分布直⽅图原因⼈数不喜欢没时间其它270超过1⼩时未超过1⼩时步⾏ 20%步⾏20%骑⾃⾏车 33%坐公共汽车其他3%7.(门头沟⼀)20.阅读对⼈成长的影响是巨⼤的,联合国教科⽂组织把每年的4⽉23⽇确定为“世界读书⽇” .某校为了了解该校学⽣⼀个学期阅读课外书籍的情况,在全校范围内随机对100名学⽣进⾏了问卷调查,根据调查的结果,绘制了统计图表的⼀部分:请你根据以上信息解答下列问题:(1)补全图1、图2 ;(2)这100名学⽣⼀个学期平均每⼈阅读课外书籍多少本?若该校共有3000名学⽣,请你估计这个学校学⽣⼀个学期阅读课外书籍共多少本?(3)根据统计图和统计表,请你对该校学⽣阅读课外书籍的情况,谈谈你的看法.8.(平⾕⼀)20.清明节到来之前,某中学准备组织学⽣去烈⼠陵园扫墓,就该校学⽣如何到烈⼠陵园问题进⾏了⼀次调查,并将调查结果制成了表格、条形统计图和扇形统计图,请你根据图表信息完成下列各题:(1)此次共调查了多少位学⽣?(2)请将表格填充完整;(3)请将条形统计图补充完整.⼀个学期平均⼀天阅读课外书籍所⽤时间统计表24515314312010080604020⼈数(名)时间(分钟)图2⼀个学期阅读课外书籍种类⼈数分布统计图其他 6%动漫类 25%传记类 %科普类 35%图1/本⼈数/名⼀个学期阅读课外书籍数量统计图3911253897654314035302520151005步⾏骑⾃⾏车坐公共汽车其他 609.(顺义⼀)20. 在学校组织的“我的家乡知多少?”知识竞赛中,每班参加⽐赛的⼈数相同,成绩分为四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的⼀班和⼆班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中⼆班成绩在级以上(包括级)的⼈数为;(2)请你将表格补充完整:平均数(分)中位数(分)众数(分)⼀班 87.690⼆班87.6100(3)请从下列不同⾓度对这次竞赛成绩的结果进⾏分析:①从平均数和中位数的⾓度来⽐较⼀班和⼆班的成绩;②从平均数和众数的⾓度来⽐较⼀班和⼆班的成绩;③从级以上(包括级)的⼈数的⾓度来⽐较⼀班和⼆班的成绩.10.(通州⼀)20.在“六⼀”⼉童节来临之际,初中某校开展了向⼭区“希望⼩学”捐赠图书活动,全校1000名学⽣每⼈都捐赠了⼀定数量的图书.已知各年级⼈数分布的扇形统计图如图(1)所⽰.学校为了了解各年级捐赠图书情况,从各年级中随机抽查了200名学⽣,进⾏捐赠图书情况的统计,绘制成如图(2)的频数分布直⽅图.根据以上信息解答下列问题:(1)(2)(1)本次调查的样本是;(2)从图(2)中,我们可以看出⼈均捐赠图书最多的是;(3)随机抽查的200名学⽣中初三年级学⽣共捐赠图书多少册?(4)估计全校共捐赠图书多少册?AB C D ,,,C C B B A B C D等级12 10 8 6420 ⼈数6122 5 ⼀班竞赛成绩统计图⼆班竞赛成绩统计图16%D 级 36%C 级 44% A 级B 级4%11.(延庆⼀)20.为了降低能源消耗,减少环境污染,国务院办公厅下发了“关于限制⽣产销售使⽤塑料购物袋的通知”(简称“限塑令”),并从2008年6⽉1⽇起正式实施.⼩宇同学为了了解“限塑令”后使⽤购物袋的情况,6⽉8⽇到某集贸市场对部分购物者进⾏了调查,据了解该市场按塑料购物袋的承重能⼒提供了0.1元,0.2元,0.3元三种质量不同的塑料袋.下⾯两幅图是这次调查得到的不完整的统计图(若每⼈每次只使⽤⼀个购物袋),请你根据图中的信息,回答下列问题:(1)这次调查的购物者总⼈数是;(2)请补全条形统计图,并说明扇形统计图中0.2元部分所对应的圆⼼⾓是度0.3元部分所对应的圆⼼⾓是度;(3)若6⽉8⽇到该市场购物的⼈数有3000⼈次,则该市场需销售塑料购物袋多少个?并根据调查情况,谈谈你的看法.12.(海淀⼀)20. 某种⼦培育基地⽤A 、B 、C 、D 四种型号的⼩麦种⼦共2 000粒进⾏发芽实验,从中选出发芽率⾼的种⼦进⾏推⼴.通过实验得知,C 型号种⼦的发芽率为94%. 根据实验数据绘制了图1和图2两幅尚不完整的统计图.请你根据所给信息,解答下列问题:(1)D 型号种⼦数是粒;(2)请你将图2的统计图补充完整;(3)通过计算说明,应选哪⼀个型号的种⼦进⾏推⼴;如果所选型号进⾏推⼴的种⼦共有200 000粒,估计能有多少粒种⼦会发芽.类别10 20 3040500 ⼈数453312⾃备 0.1元 0.2元 0.3元⾃备0.2元0.3元135?0.1元90?B (第20题)380发芽数/粒号630370A B C D各种型号种⼦数的百分⽐35 %D C BA 25 %20 %13.(东城⼀)19.阅读对⼈成长的影响是巨⼤的,⼀本好书往往能改变⼈的⼀⽣.每年的4⽉23⽇被联合国教科⽂组织确定为“世界读书⽇”.如图是某校全校三个年级学⽣⼈数分布扇形统计图,其中⼋年级⼈数为350⼈,表(1)是该校学⽣阅读课外书籍情况统计表.请你根据图表中的信息,解答下列问题:(1)求该校中考的⼈数占全校总⼈数的百分率.(2)求出表(1)中A B ,的值.(3)该校学⽣平均每⼈读多少本课外书?图书种类频数频率科普常识 B 0.2 名⼈传记 500 0.25 漫画丛书 800 A 其它300 0.15表(1)14.(⼤兴⼀)20、某中学团委为汶川地震灾区组织献爱⼼捐献活动,⼩明对本班同学的捐款情况进⾏了统计,其中捐10元的⼈数占全班总⼈数的%40.⼩明还绘制了频数分布直⽅图.(1)请求出⼩明所在班级同学的⼈数; (2)本次捐款的中位数是____元; (3)请补齐频数分布直⽅图.15.(崇⽂⼆)20.端午节吃粽⼦是中华民族的传统习俗.五⽉初五早晨,妈妈为洋洋准备了四只粽⼦:⼀只⾹肠馅,⼀只红枣馅,两只什锦馅,四只粽⼦除内部馅料不同外,其他⼀切均相同.洋洋喜欢吃什锦馅的粽⼦.(1)请你⽤树状图或列表法为洋洋预测⼀下吃两只粽⼦刚好都是什锦馅的概率;(2)在吃粽⼦之前,洋洋准备⽤如图所⽰的转盘进⾏吃粽⼦的模拟试验(此转盘被等分成四个扇形区域,指针的位置是固定的,转动转盘后任其⾃由停⽌,其中的某个扇形会恰好停在指针所指的位置.若指针指向两个扇形的交线时,重新转动转盘),规定:连续转动两次转盘表⽰随机吃两只粽⼦,从⽽估计吃两只粽⼦刚好都是什锦馅的概率.你认为这样模拟正确吗?试说明理由.⼋年级 35%九年级七年级 25%(第19题)⼈数捐款⾦额2015105⾹肠什锦什锦红枣16.(西城⼆)19.某地⼀商场贴出“五⼀”期间的促销海报,内容如图所⽰.某校⼀个课外实践活动⼩组的同学在商场促销活动期间,在该商场门⼝随机调查了参与促销活动的部分顾客抽奖的情况,以下是根据其中200⼈次的抽奖情况画出的统计图的⼀部分:(1)补全获奖情况频数统计图;(2)求所调查的200⼈次抽奖的中奖率;(3)如果促销活动期间商场每天约有2 000⼈次抽奖,请根据调查情况估计,该商场⼀天送出的购物券的总⾦额是多少元?17.(⼤兴⼆)20、某校为组建篮球队,对甲、⼄两名备选同学进⾏定位投篮测试,每次投10个球共投10次,甲、⼄两名同学测试情况如图所⽰。
2014年各区初三一模统计概率分类(平均数,众数,中位数)
2014年初三中考一模统计概率分类1 密云.某中学书法兴趣小组12名成员的年龄情况如下:A . 15,16B . 13,14C . 13,15D .14,142石景山为了解居民用水情况,晓娜在某小区随机抽查了10户家庭的月用水量,结果 如下表:则这10户家庭的月用水量的平均数和众数分别是A .7.8,9B .7.8,3C .4.5,9D .4.5,33房山.国家统计局公布了2014年1月的居民消费价格指数(CPI ),16个省市CPI 同比涨幅超过全国平均水平,其中7个省市的涨幅如下表:则这组数据的众数和中位数分别是A . 2.8,2.8 B .2.8,2.9 C .3.3,2.8 D .2.8,3.0 4大兴.则这组数据的中位数与众数分别是A.18,17 B .17.5,18 C .17,18 D .16.5,17 5丰台. 某中学书法兴趣小组12名成员的年龄情况如下:A . 15,16B . 13,14C . 13,15D .14,146昌平学校体育课进行定点投篮比赛,10位同学参加,每人连续投5次,投中情况统计如下:这10位同学投中球数量.....的众数和中位数分别是A.4, 2 B.3,4 C.2,3.5 D.3,3.57平谷.某校篮球班则该校篮球班21名同学身高的众数和中位数分别是A.186,188 B.188,186 C.186,186 D.208,1888通州.某市2014年4月份一周空气质量报告中某种污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数和众数分别是()A.32,31 B.31,32 C.31,31 D.32,359燕山. 小贝家买了一辆小轿车,小贝记录了连续七天中每天行驶的路程:A.33,52B.43,52C.43,43D.52,4310顺义.某校有9名同学报名参加科技竞赛,学校通过测试取前4名参加决赛,测试成绩各不相同,小英已经知道了自己的成绩,她想知道自己能否参加决赛,还需要知道这9名同学测试成绩的A.中位数B.平均数C.众数D.方差11朝阳.期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年初三中考二模统计概率分类
昌平20.在某中学开展的“书香伴我行”读书活动中,为了解九年级300名学生读书情况,随机调查了九年级50名学生读书的册数.统计数据如下表所示:
(1)这50个样本数据的众数是,中位数是;
(2)根据样本数据,估计该校九年级300名学生在本次活动中读书多于2册的人数;
(3)学校广播站的小记者对被调查的50名学生中读书册数最少和最多的人进行随即采访,请利用树状图或列表,求被采访的两人恰好都是读书册数最多的学生的概
率.
怀柔20.从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气。
某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查
请根据图表中提供的信息解答下列问题:
(1)填空:m=,n=,
扇形统计图中E组所占的百分比为 %.
(2)若该市人口约有100万人,请你计算其中持D组“观点”的市民人数.
(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?
通州19.某区八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分进行统计.
请你根据不完整的表格,回答下列问题:
(1)补全频率分布直方图;
(2)若将得分转化为等级,规定50≤x <60评为“D”,60≤x <70评为“C”,70≤x <90
评为“B”,90≤x <100评为“A”.这次全区八年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?
平谷21.某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题. (1)将条形统计图补充完整;
(2)本次抽样调查的样本容量是____________;
(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.
师生出行方式统计图
丰台21.某市在2013年义务教育质量监测过程中,为了解学生的家庭教育情况,就八年级学生平时主要和谁在一起生活进行了抽样调查.下面是根据这次调查情况制作的不完整
请根据上述信息,回答下列问题:
(1)a =________,b =________,c =_______;
(2)在扇形统计图中,和父母一起生活的学生所对应扇形圆心角的度数是______;
(3)如果该市八年级学生共有30000人,估计不与父母一起生活的学生有_______ 人.
房山20.房山某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下的两个统计图.请根据下面两个不完整的统计图回答以下问题:
(1)这次抽样调查中,共调查了名学生;
(2)补全两幅
..统计图;
(3)根据抽样调查的结果,估算该校1000名学生中大约有多少人选择“小组合作学习”?
大兴20. 某校开设了排球、篮球、羽毛球、体操共四项体育活动.学生可根据自己的爱好任选其中一项,老师对学生报名情况进行了统计,并绘制了下面尚未完成的扇形统计图和条形统计图,请你结合图中的信息,解答下列问题: (1)该校学生报名总人数有___________人;
(2)选排球和篮球的人数分别占报名总人数的___________%和______________%; (3)将条形统计图补充完整.
顺义20.保障房建设是民心工程,某市从2009年加快保障房建设工程.现统计了该市从
2009年到2013年这5年新建保障房情况,绘制成如图1、2所示的折线统计图和不完整的条形统计图.
某市2009-2013年新建保障房套数年增长率折线统计图 某市2009-2013年新建保障房套数条形统计图
图2
图1
(1)小颖看了统计图后说:“该市2012年新建保障房的套数比2011年少了.”你认为小颖
的说法正确吗?请说明理由;
(2)求2012年新建保障房的套数,并补全条形统计图; (3)求这5年平均每年新建保障房的套数.
海淀20.为了满足广大手机用户的需求,某移动通信公司推出了三种套餐,资费标准如下表所示:
套餐资费标准
小莹选择了该移动公司的一种套餐,下面两个统计图都反映了她的手机消费情况.
(1)已知小莹2013年10月套餐外通话费为33.6元,则她选择的上网套餐为套餐
(填“一”、“二”或“三”);
(2)补全条形统计图,并在图中标明相应的数据;
(3)根据2013年后半年每月的消费情况,小莹估计自己每月本地主叫市话通话大约
430分钟,发短信大约240条,国内移动数据流量使用量大约为120兆,除此之外不再产生其他费用,则小莹应该选择套餐 最划算(填“一”、“二”或“三”);选择该套餐后,她每月的手机消费总额约为 元.
35%
42%
11.75%
11.25% 86.1
76.0
88.1
84.6
83.1
总额/元
月份
套餐
费用
套餐外 通话费
套餐外 短信费
套餐外数 据流量费
2013年后半年每月手机消费总额统计图
门头沟21. 在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下三个统计图表(如图1,图2,图3),请根据图表提供的信息,回答下列问题:
(1)图1中“统计与概率”所在扇形的圆心角为 度; (2)图2、3中的a = ,b = ;
(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?
石景山20.以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制的北京
(1)根据北京市2009--2013年生产总值年增长率,请计算出2011年北京市年生产总值是_________(结果精确到1百亿元),并补全条形统计图;
(2)若从2013年以后,北京市年生产总值都按15%的年增长率增长,则请你估算,若年生产总值不低于...2009年的2倍,至少要到_________年.(填写年份) (3)在(1)的条件下,2009--2013这四年间,比上一年增长的生产总值的平均数为多少百亿元?若按此平均数增长,请你预测2014年北京地区的生产总值多少百亿元?
北京市2009-2013年 生产总值年增长率统计图
东城20.图①表示的是某综合商场今年1—5月的商品各月销售总额的情况,图②表示商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:
(1)来自商场财务部的数据报告表明,商场1—5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整;
(2)商场服装部5月份的销售额是多少万元?
(3)小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了,你同意他的看法吗?请说明理由.
西城21.据报道:2013年底我国微信用户规模已到达6亿.以下是根据相关数据制作的统计图表的一部分:
请根据以上信息,回答以下问题:
(1)从2012年到2013年微信的人均使用时长增加了________分钟;
(2)补全2013年微信用户对“微信公众平台”参与关注度扇形统计图,在我国6亿微信用户中,经常使用户约为_________亿(结果精确到0.1);
(3)从调查数学看,预计我国微信用户今后每年将以20%的增长率递增,请你估计两年后,我国微信用户的规模将到达_________亿.
密云20.《中学生体质健康标准》规定学生体质健康等级标准为:86分及以上为优秀;76分~85分为良好; 60分~75分为及格;59分及以下为不及格.某校抽取八年级学生人数的
)在抽取的学生中不及格人数所占的百分比是 ;(2)小明按以下方法计算出所抽取学生测试结果的平均分是:(90+82+65+40)÷4=69.25.根据所学的统计知识判断小明的计算是否正确,若不正确,请写出正确的算式并计算出结果.
朝阳20.某校对部分初三学生的体育训练成绩进行了随机抽测,并绘制了如下的统计图:
女生篮球障碍运球成绩折线统计图 男生引体向上成绩条形统计图
根据以上统计图解答下列问题:
(1)所抽测的女生篮球障碍运球成绩的众数是多少?极差是多少?
(2)该校所在城市规定“初中毕业升学体育现场考试”中,男生做引体向上满13次,可
以获得满分10分;满12次,可以获9.5分;满11次,可以获得9分;满10次,可以获得8.5分;满9次,可以获得8分. ①所抽测的男生引体向上得分..
的平均数是多少? ②如果该校今年有120名男生在初中毕业升学体育现场考试中报名做引体向上,请你根据本次抽测的数据估计在报名的这些学生中得分不少于9分的学生有多少人?。