北师大版九年级数学下册二次函数专题训练

合集下载

精品解析:北师大版九年级数学下册 第 二 章《二次函数》经典题型单元测试题(原卷版)

精品解析:北师大版九年级数学下册 第 二 章《二次函数》经典题型单元测试题(原卷版)

九年级数学下册第 二 章《二次函数》经典题型单元测试题一.选择题(共12小题)1. 对于二次函数y=2(x(2(2+1,下列说法中正确的是( )A. 图象的开口向下B. 函数的最大值为1C. 图象的对称轴为直线x=(2D. 当x(2时y 随x 的增大而减小2. 已知一元二次方程1–(x –3)(x +2)=0,有两个实数根x 1和x 2(x 1<x 2),则下列判断正确的是( )A. –2<x 1<x 2<3B. x 1<–2<3<x 2C. –2<x 1<3<x 2D. x 1<–2<x 2<33. 已知抛物线:y=ax 2+bx+c(a(0)经过A(2(4((B((1(1)两点,顶点坐标为(h(k ),则下列正确结论的序号是( )(b(1((c(2((h(12 ((k≤1(A. ((((B. (((C. (((D. ((( 4. 函数y =ax 2+bx 与y =ax+b(ab ≠0)的图象大致是( )A. B.C. D.5. 若抛物线2y x 2x c =-+与y 轴的交点为(0,﹣3),则下列说法不正确的是【 】A. 抛物线开口向上B. 抛物线的对称轴是x=1C. 当x=1时,y 的最大值为﹣4D. 抛物线与x 轴交点为(-1,0),(3,0)6. 已知抛物线2y x bx c =++的对称轴为2x =,若关于x 的一元二次方程20x bx c ---=在13x -<<的范围内有实数根,则c 的取值范围是( )A. 4c =B. 54c -<≤C. 53c -<<或4c =D. 53c -<≤或4c = 7. 如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于点A 、B 两点,与y 轴交于点C ,对称轴为直线x=-1,点B 的坐标为(1,0),则下列结论:①AB=4;②b 2-4ac >0;③ab <0;④a 2-ab+ac <0,其中正确的结论有( )个.A. 3B. 4C. 2D. 18. 设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,则1y ,2y ,3y 的大小关系为( )A. 123y y y >>B. 132y y y >>C. 321y y y >>D. 312y y y >> 9. 抛物线y=ax 2+bx+3(a≠0)过A (4,4),B (2,m )两点,点B 到抛物线对称轴的距离记为d ,满足0<d≤1,则实数m 的取值范围是( )A. m≤2或m≥3B. m≤3或m≥4C. 2<m <3D. 3<m <410. 已知二次函数y=(x 2+2x+m 的图象与x 轴的一个交点的横坐标是a ,且3(a(4,则关于x 的方程﹣x 2+2x+m=0的解在什么范围内( )A. 0(x 1(1(3(x 2(4B. (1(x 1(0(3(x 2(4C. (2(x 1((1(3(x 2(4D. (4(x 1((3(3(x 2(411. 二次函数y =ax 2+bx +c 的图象如图所示,则下列结论中错误的是( )A. 函数有最小值B. 当﹣1<x <2时,y >0C. a +b +c <0D. 当x <12,y 随x 的增大而减小 12. 如图是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a -b +c >0;②3a +b =0;③b 2=4a (c -n );④一元二次方程ax 2+bx +c =n -1有两个不等的实数根.其中正确结论的个数是()A. 1B. 2C. 3D. 4二.填空题(共6小题)13. 如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x米,花圃面积为S平方米,则S关于x的函数解析式是______(不写定义域).14. 已知抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,则a+c=_______.15. 二次函数y(mx2(2x+1,当x<13时,y的值随x值的增大而减小,则m的取值范围是_____(16. 抛物线y=(2x2+6x(1的顶点坐标为_____(17. 如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.18. 如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_______.三.解答题(共7小题)19. 已知二次函数y=x2+2x+m图象过点A((1(0(((1)求m的值;(2)当x取何值时,函数值y随x的增大而减小.20. 某店只销售某种进价为40元/kg的产品,已知该店按60元kg出售时,每天可售出100kg,后来经过市场调查发现,单价每降低1元,则每天的销售量可增加10kg((1(若单价降低2元,则每天的销售量是_____千克,每天的利润为_____元;若单价降低x元,则每天的销售量是_____千克,每天的利润为______元;(用含x的代数式表示)(2(若该店销售这种产品计划每天获利2240元,单价应降价多少元?(3(当单价降低多少元时,该店每天的利润最大,最大利润是多少元?21. 如图,在平面直角坐标系中,∠ACB=90°,OC=2BO,AC=6,点B的坐标为(1,0),抛物线y=﹣x2+bx+c经过A、B两点.(1)求点A的坐标;(2)求抛物线的解析式;(3)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=12 DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.x+m交x轴于点A,二次函数y=ax2(3ax+c(a≠0,且a(c是常22. 如图,平面直角坐标系中,直线l(y=12数)图象与x轴交于A(B两点(点A在点B的左侧),与y轴交于点C,与直线l交于点D,已知CD 与x轴平行,且S△ACD(S△ABD=3(5((1)求点A的坐标;(2)求此二次函数的解析式;(3)点P为直线l上一动点,将线段AC绕点P顺时针旋转α°(0°(α°(360°)得到线段A'C'(点A(A'是对应点,点C(C'是对应点).请问:是否存在这样点P,使得旋转后点A'和点C'分别落在直线l 和抛物线y=ax2(3ax+c的图象上?若存在,请直接写出点A'的坐标;若不存在,请说明理由.23. 根据对宁波市相关的市场物价调研,某批发市场内甲种水果的销售利润1y (千元)与进货量x (吨)近似满足函数关系10.25y x =,乙种水果的销售利润2y (千元)与进货量x (吨)之间的函数22y ax bx c =++的图像如图所示.(1)求出2y 与x 之间的函数关系式;(2)如果该市场准备进甲、乙两种水果共8吨,设乙水果的进货量为t 吨,写出这两种水果所获得的销售利润之和W (千元)与t (吨)之间的函数关系式,并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?24. 如图,抛物线y=ax 2+c (a≠0)经过C (2,0),D (0,﹣1)两点,并与直线y=kx 交于A 、B 两点,直线l 过点E (0,﹣2)且平行于x 轴,过A 、B 两点分别作直线l 的垂线,垂足分别为点M 、N .(1)求此抛物线解析式;(2)求证:AO=AM ;(3)探究:(当k=0时,直线y=kx与x轴重合,求出此时11AM BN+的值;(试说明无论k取何值,11AM BN+的值都等于同一个常数.25. 如图1,已知二次函数y=mx2+3mx(274m的图象与x轴交于A(B两点(点A在点B的左侧),顶点D和点B关于过点A的直线333(1)求A(B两点的坐标及二次函数解析式;(2)如图2,作直线AD,过点B作AD的平行线交直线1于点E,若点P是直线AD上的一动点,点Q 是直线AE上的一动点.连接DQ(QP(PE,试求DQ+QP+PE的最小值;若不存在,请说明理由:(3)将二次函数图象向右平移32个单位,再向上平移3M,其横坐标为3,在y轴上是否存在点F,使得∠MAF=45°?若存在,请求出点F坐标;若不存在,请说明理由.第7页/共7页。

北师大版数学九年级下二次函数专题训练题

北师大版数学九年级下二次函数专题训练题

二次函数专题训练(一)1、已知:抛物线y=ax 2+6ax+c 与x 轴的一个交点为A (-2,0)①求抛物线与x 轴的另一个交点B 的坐标。

②点C 是抛物线与y 轴的交点,D 是抛物线上一点,且以AB 为一底的梯形ABCD 的面积为32,求此抛物线的解析式。

③ E 是第二象限内到x 轴、y 轴距离之比为3:1的点。

若E 在②中的抛物线上,且a >0, E 和A 在对称轴同侧。

问在抛物线的对称轴上是否存在P 点,使△APE 周长最小。

若存在,求出P 点的坐标,若不存在,请说明理由。

2、二次函数y=x 2-2(m -1)x -1-m 的图像与x 轴交于两点A (x 1,0)和B (x 2,0), x 1<0<x 2,与y 轴交于点C ,且满足COBO AO 211=- ①求这个二次函数的解析式②是否存在着直线y=kx+b 与抛物线交于点P 、Q ,使y 轴平分△CPQ 的面积。

若存在,求出k 、b 应满足的条件,若不存在,请说明理由。

3、如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,与y轴交于C点。

△ABC为直角三角形。

①求代数式ac的值②如果A O:BO=1:3,且2A O·CO=3,求此二次函数的解析式。

x新课标第一网4、已知抛物线y=x2-(2k-1)x+4k-6与x轴交于原点异侧两点A(x1,0)和B(x2,0), x1<x2,它的对称轴与x轴交于点N(x3,0),若A、B两点间的距离小于6。

①求k的取值范围②试判断:是否存在k的值,使过点A和点N能作圆与y轴切于点(0,1),或过点B和点N 能作圆与y轴切于点(0,1).若存在,找出所有满足条件的值,若不存在,请说明理由。

二次函数专题训练(二)1、如图:在直角坐标系中,以点A ( 3 ,0)为圆心,以2 3 为半径的圆与X 轴交于B 、C 两点,与y 轴交于点D.(1)、求D 点的坐标。

(2)、若B 、C 、D 三点在抛物线y=ax 2 +bx+c 上,求这条抛物线的解析式.(3)若⊙A 的切线交x 正半轴于点M,交y 轴的负半轴于点N,切点为P,且∠OMN=30° ,试判断直线MN 是否经过所求抛物线的顶点?并说明理由.2、已知:过点M (1,4)的抛物线y=ax 2+bx+c 与直线y =-a x +1相交于A 、P 两点,与y 轴相交于点Q ,点E 是线段PQ 的中点,点A 在x 轴的负半轴上,且OA 的长为2+a 1 ①、求直线和抛物线的解析式②、求△PQM 的外接圆的直径③、若点B (1+23,t )在△PQM 的外接圆上,直线QM 与直线EB 相交于T ,求∠QTB 的度数。

新北师大版九年级下《二次函数》专项训练题

新北师大版九年级下《二次函数》专项训练题

新北师大版《二次函数》专项练习题第一节 二次函数所描述的关系时间45分钟1.下列函数中,哪些是二次函数?(1)y=3(x-1)²+1 (2)y=x +x 1 (3)s=3-2t (4)y=xx -21 (5)y=(x+3)²-x² (6) v=10πr² 2.下列函数中:①y =-x 2;②y =2x ;③y =22+x 2-x 3;④m =3-t -t 2是二次函数的是______(其中x 、t 为自变量).3.若y=(m +1)x 562--m m 是二次函数,则m=( )A .-1B .7C .-1或7D .以上都不对4.下列各关系式中,属于二次函数的是(x 为自变量)A .y =81x 2B .y =12-xC .y =21xD .y =a 2x5.函数y =ax 2+bx +c (a ,b ,c 是常数)是二次函数的条件是A .a ≠0,b ≠0,c ≠0B .a <0,b ≠0,c ≠0C .a >0,b ≠0,c ≠0D .a ≠06.自由落体公式h =21gt 2(g 为常量),h 与t 之间的关系是 A.正比例函数 B.一次函数 C.二次函数 D.以上答案都不对7.下列结论正确的是A .y =ax 2是二次函数B .二次函数自变量的取值范围是所有实数C .二次方程是二次函数的特例D .二次函数的取值范围是非零实数8.已知函数y =(m 2-m )x 2+(m -1)x +m +1.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,则m 的值应怎样?9.如果函数y=x 232+-k k +kx+1是二次函数,则k 的值一定是______10.如图5,一块草地是长80 m 、宽60 m 的矩形,欲在中间修筑两条互相垂直的宽为x m 的小路,这时草坪面积为y m 2.求y 与x 的函数关系式,并写出自变量x 的取值范围.11.用总长为60m 的篱笆围成矩形场地,场地面积S(m ²)与矩形一边长a(m)之间的关系是什么?是函数关系吗?是哪一种函数?12.如果函数y=(k -3) x 232+-k k +kx+1是二次函数,则k 的值一定是______13.已知抛物线y=ax²经过点A (-2,-8).(1)求此抛物线的函数解析式;(2)判断点B (-1,-4)是否在此抛物线上.(3)求出此抛物线上纵坐标为-6的点的坐标.14.函数y=ax²(a ≠0)与函数y=k x -2的图象相交于点A (-1,-1)。

北师大版九年级下册数学第二章 二次函数含答案(高分练习)

北师大版九年级下册数学第二章 二次函数含答案(高分练习)

北师大版九年级下册数学第二章二次函数含答案一、单选题(共15题,共计45分)1、已知点A(﹣3,7)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为()A.(0,7)B.(﹣1,7)C.(﹣2,7)D.(﹣3,7)2、若将函数y=a(x+3)(x-5)+b(a≠0)的图象向右平行移动1个单位,则它与直线y=b的交点坐标是( )A.(-3,0)和(5,0)B.(-2,b)和(6,b)C.(-2,0)和(6,0)D.(-3,b)和(5,b)3、将抛物线向左平移3个单位得到的抛物线的解析式是( )A. B. C. D.4、若抛物线y=x2﹣2x﹣1与x轴的一个交点坐标为(m,0),则代数式m2﹣2m+2017的值为()A.2019B.2018C.2016D.20155、下列二次函数的图象中,其对称轴是x=1的为()A.y=x 2+2xB.y=x 2﹣2xC.y=x 2﹣2D.y=x 2﹣4x6、如图,在平面直角坐标系中,抛物线经过平移得到抛物线,其对称轴与两段抛物线所围成的阴影部分的面积为()A.2B.4C.8D.167、记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关于x的二次函数.已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y与x的函数关系式是()A.y=﹣(x﹣60)2+1825B.y=﹣2(x﹣60)2+1850C.y=﹣(x ﹣65)2+1900D.y=﹣2(x﹣65)2+20008、如图所示,桥拱是抛物线形,其函数的表达式为y=﹣x2,当水位线在AB位置时,水面宽 12m,这时水面离桥顶的高度为()A.3 mB. mC.4 mD.9 m9、函数y=2x2﹣8x+m的图象上有两点A(x1, y1),B(x2, y2),且|x1﹣2|>|x2﹣2|,则()A.y1<y2B.y1=y2C.y1>y2D.y1、y2的大小不确定10、在同一直角坐标系中,a≠0,函数y=ax与y=ax2的图象可能正确的有()A.0B.1C.2D.311、已知二次函数图象的对称轴为,其图象如图所示,现有下列结论:① ;② ;③ ;④;⑤ .正确的是()A.①③B.②⑤C.③④D.④⑤12、由二次函数,可知()A.其图象的开口向下B.其图象的对称轴为直线C.当x<3时,y随x的增大而增大D.其最小值为113、抛物线y=(x+2)2+1的对称轴是()A.直线x=-1B.直线x=1C.直线x=2D.直线x=-214、已知抛物线y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有两个同号的实数根D.没有实数根15、函数图像的大致位置如图所示,则ab,bc,2a+b,,,b2-a2 等代数式的值中,正数有()A.2个B.3个C.4个D.5个二、填空题(共10题,共计30分)16、如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为处达到最高,高度为,水柱落地处离池中心距离为,则水管的长度是________ .17、一个函数有下列性质:①它的图象不经过第四象限;②图象经过点(1,2);③当x>1时,函数值y随自变量x的增大而增大.满足上述三条性质的二次函数解析式可以是________(只要求写出一个).18、如图,菱形OABC的顶点O、A、C在抛物线上,其中点O为坐标原点,对角线OB在y轴上,且OB=2.则菱形OABC的面积是________.19、已知函数y=-3(x-2)2+4,当x=________时,函数取得最大值为________.20、已知函数的图象与两坐标轴共有两个交点,则的值为________.21、如果抛物线y=(2+k)x2﹣k的开口向下,那么k的取值范围是________ .22、抛物线y=x2﹣3x﹣15 与x 轴的一个交点是(m,0),则2m2﹣6m 的值为________.23、已知二次函数y=ax2(a≠0的常数),则y与x2成________ 比例.24、设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为________.25、若一个二次函数的二次项系数为﹣1,且图象的顶点坐标为(0,﹣3).则这个二次函数的表达式为________三、解答题(共5题,共计25分)26、已知抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴相交于A、B两点,且AB=2,求m的值.27、某宾馆有30个房间供游客住宿,当每个房间的房价为每天160元时,房间会全部住满。

九年级数学下册 专项综合全练 二次函数试题 (新版)北师大版

九年级数学下册 专项综合全练 二次函数试题 (新版)北师大版

二次函数一、选择题1.二次函数y=-x2+2x+4的最大值为( )A.3B.4C.5D.6答案 C y=-x2+2x+4=-(x-1)2+5,∵a=-1<0,∴当x=1时,y有最大值,最大值为5,故选C.2.将抛物线y=-2x2+1向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )A.y=-2(x+1)2B.y=-2(x+1)2+2C.y=-2(x-1)2+2D.y=-2(x-1)2+1答案 C 将抛物线y=-2x2+1向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为y=-2(x-1)2+2.故选C.3.已知二次函数y=ax2+bx+c(a<0)的自变量x与因变量y的部分图象如图2-7-1所示,当-5≤x≤0时,下列说法正确的是( )图2-7-1A.有最小值-5,最大值0B.有最小值-3,最大值6C.有最小值0,最大值6D.有最小值2,最大值6答案 B 根据题中图象知,当-5≤x≤0时,图象的最高点的坐标是(-2,6),最低点的坐标是(-5,-3),所以当x=-2时,y有最大值6;当x=-5时,y有最小值-3.二、填空题4.二次函数y=ax2+bx+c(a≠0)的x与y的部分对应值如下表:该函数图象的对称轴为直线x= ,x=2对应的函数值y= .答案1;-8解析根据题表知,点(-3,7)与点(5,7)关于对称轴对称,从而可确定抛物线的对称轴是直线x=1,根据抛物线上关于对称轴对称的一对对称点的纵坐标相等,得x=2对应的函数值y=-8.5.如图2-7-2,四边形ABCD是矩形,A、B两点在x轴的正半轴上,C、D两点在抛物线y=-x2+6x上,设OA=m(0<m<3),矩形ABCD的周长为l,则l与m之间的函数关系式为.图2-7-2答案l=-2m2+8m+12(0<m<3)解析由OA=m可知点D的横坐标为m,∵点D在抛物线y=-x2+6x上,∴点D的纵坐标为-m2+6m,即AD=-m2+6m.∵A(m,0),且抛物线的对称轴为直线x=3,根据抛物线的对称性可知B(6-m,0),∴AB=6-2m,∴矩形ABCD的周长l=2(AD+AB)=2(-m2+6m+6-2m)=-2m2+8m+12(0<m<3).5.如图2-7-3,在平面直角坐标系中,点A在抛物线y=x2-2x+2上运动,过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连接BD.则对角线BD的最小值为.图2-7-3答案 1解析∵四边形ABCD是矩形,∴AC=BD.当A在抛物线的顶点处时,AC最短,此时A(1,1),AC=1,∴BD=1,即对角线BD的最小值为1.三、解答题6.二次函数y=x2+bx+c的图象经过点(4,3),(3,0).(1)求b、c的值;(2)求该二次函数图象的顶点坐标和对称轴;(3)在所给的坐标系(图2-7-4)中画出二次函数y=x2+bx+c的图象.图2-7-4解析(1)由题意可得解得(2)由(1)可知二次函数的表达式是y=x2-4x+3=(x-2)2-1,∴其图象的顶点坐标是(2,-1),对称轴是直线x=2.(3)画出二次函数的图象如图所示.7.如图2-7-5,抛物线与直线y=x+3分别交于x轴和y轴上同一点,交点分别是点A和点C,且抛物线的对称轴为直线x=-2.(1)求抛物线与x轴的两个交点A、B的坐标;(2)试确定抛物线的表达式;(3)观察图象,请直接写出使二次函数的值小于一次函数的值的自变量x的取值范围.图2-7-5解析(1)∵点A在直线y=x+3上,当y=0时,x=-3,∴点A的坐标为(-3,0).∵抛物线的对称轴为直线x=-2,∴点A与点B关于直线x=-2对称,∴点B的坐标为(-1,0).(2)设抛物线的表达式为y=ax2+bx+c(a≠0).当x=0时,y=x+3=3,∴点C的坐标为(0,3).∵抛物线经过点C(0,3)和点A(-3,0),且抛物线的对称轴是直线x=-2,∴解得∴抛物线的表达式为y=x2+4x+3.(也可将点A、点B、点C的坐标依次代入表达式中求出a、b、c的值)(3)观察图象可知,当-3<x<0时,二次函数的值小于一次函数的值.8.某商家计划从厂家采购空调和冰箱两种产品共20台.空调的采购单价y1(元)与采购量x1(台)满足y1=-20x1+1 500(0<x1≤20,x1为整数);冰箱的采购单价y2(元)与采购量x2(台)满足y2=-10x2+1 300(0<x2≤20,x2为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1 200元,问该商家共有几种进货方案;(2)该商家分别以1 760元和1 700元的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大,并求最大利润.解析设空调的采购数量为x台,则冰箱的采购数量为(20-x)台.(1)根据题意可得解得11≤x≤15,因为x为整数,所以x可取的值为11,12,13,14,15,所以该商家共有5种进货方案.(2)设总利润为W(元),则W=(1 760-y1)x1+(1 700-y2)x2=1 760x-(-20x+1 500)x+1 700(20-x)-[-10(20-x)+1 300](20-x)=1 760x-(-20x+1 500)x+1 700(20-x)-(10x+1 100)(20-x)=30x2-540x+12 000=30(x-9)2+9 570,当x>9时,W随着x的增大而增大,因为11≤x≤15,所以当x=15时,W最大值=30×(15-9)2+9 570=10 650.所以采购空调15台时,获得的总利润最大,最大利润为10 650 元.9.如图2-7-6,在平面直角坐标系内,A(0,0),B(12,0),C(12,6),D(0,6).点Q沿DA边从点D 开始,向点A以1单位/秒的速度移动,点P沿AB边从点A开始,向点B以2单位/秒的速度移动,假设P、Q同时出发,t(单位:秒)表示移动的时间(0≤t≤6).图2-7-6(1)写出△PQA的面积S与t的函数表达式;(2)当t为何值时,△PQC的面积最小?最小值是多少?解析(1)AQ=6-t,AP=2t,∴S=(6-t)×2t=-t2+6t(0≤t≤6).(2)S△PQC=S梯形ABCQ-S△PBC-S△APQ=(6-t+6)×12-(12-2t)×6-(6-t)×2t=t2-6t+36=(t-3)2+27.∵0≤t≤6,∴当t=3时,S△PQC有最小值,最小值为27.10.一座拱桥的轮廓是抛物线型,如图2-7-7,拱高6 m,跨度为20 m,相邻两支柱间的距离均为5 m.(1)建立适当的直角坐标系,求抛物线的表达式;(2)求支柱EF的长度;(3)拱桥下面是双向行车道(正中间是一条宽为2 m的隔离带),其中的一条行车道能否并排通过宽2 m、高3 m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.图2-7-7解析(1)以AB所在直线为横轴,AB的垂直平分线为纵轴建立如图的平面直角坐标系,则A,B,C的坐标分别是(-10,0),(10,0),(0,6).由此设抛物线的表达式为y=ax2+6(a≠0),将点B的坐标代入,得100a+6=0,解得a=-.所以抛物线的表达式是y=-x2+6(-10≤x≤10).(2)易知点F的横坐标为5,于是y F=-×52+6=4.5.所以支柱EF的长度是10-4.5=5.5(m).(3)如图,设DN为隔离带的宽,NG是三辆汽车的宽度和,则点G的坐标是(7,0). 过点G作GH⊥AB交抛物线于点H,则y H=-×72+6=3.06>3.所以一条行车道能并排通过这样的三辆汽车.。

北师大版九年级数学下册二次函数专题训练(参考答案)

北师大版九年级数学下册二次函数专题训练(参考答案)

九年级数学下册二次函数及其应用一、填空题:1、抛物线 y =-x 2+1 的开口向 。

2、函数 y =2 (x -1)2图象的顶点坐标为 。

4、将抛物线 y =2x 2 向下平移 2 个单位,向右平移3个单位,所得的抛物线的解析式为 。

5、函数 y =x 2+bx +3 的图象经过点(-1, 0),则 b = 。

6、二次函数 y =(x -1)2+2,当 x = 时,y 有最小值。

7、函数 y =12(x -1)2+3,当 x 时,函数值 y 随 x 的增大而增大。

8、将 y =-2x 2+4x +6 化成 y =a (x -h)2+k 的形式,则 y = 。

9、若点 A ( 2, m) 在函数 y =x 2-1 的图像上,则 A 点的坐标是 。

10、抛物线 y =2x 2+3x -4 与 Y 轴的交点坐标是 。

抛物线 y =x 2+3x -4 与X是 。

11、请写出一个二次函数以(2, 3)为顶点,且开口向上。

12、已知二次函数 y =ax 2+bx +c 的图像如图所示:则这个二次函数的解析式是 y 二、选择题: 1、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 2、已知函数 y =(m +2) 22mx 是二次函数,则 m 等于( )A 、±2B 、2C 、-2D 、±23、已知 y =ax 2+bx +c 的图像如图2所示,则 a 、b 、c 满足( )A 、a <0,b <0,c <0B 、a >0,b <0,c >0 图2C 、a <0,b >0,c >0D 、a <0,b <0,c >04、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D5、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点6、抛物线 y =x 2-4x +c 的顶点在 x 轴,则 c 的值是( )A 、0B 、4C 、-4D 、2 三、解答题:t tt t1、矩形的长是 4cm,宽是 3cm,如果将长和宽都增加 x cm,那么面积增加 ycm2,①求 y 与 x 之间的函数关系式。

北师大版九年级数学下册第二章 二次函数 单元测试训练卷(word 含答案)

北师大版九年级数学下册第二章 二次函数    单元测试训练卷(word 含答案)

北师大版九年级数学下册第二章 二次函数单元测试训练卷一、选择题(共8小题,4*8=32)1. 下列函数中,不是二次函数的是( )A .y =1-2x 2B .y =2(x -1)2+4C .y =12(x -1)(x +4) D .y =(x -2)2-x 2 2. 如图是有相同对称轴的两条抛物线,下列关系不正确的是( )A .h =mB .k =nC .k >nD .h <0,k >03. 已知二次函数y =x 2-4x +a ,下列说法错误的是( )A .当x<1时,y 随x 的增大而减小B .若图象与x 轴有交点,则a≤4C .当a =3时,不等式x 2-4x +3>0的解集是1<x<3D .若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a =-34. 下列关于二次函数的说法错误的是( )A .抛物线y =-2x 2+12x +1的对称轴是直线x =3B .对于抛物线y =x 2-2x -3,点A(3,0)不在它的图象上C .二次函数y =(x +3)2-3的顶点坐标是(-3,-3)D .函数y =2x 2+4x -3的图象的最低点是(-1,-5)5. 点P(m ,n)在以y 轴为对称轴的二次函数y =x 2+ax +4的图像上.则m -n 的最大值等于( )A .154B .4C .-154D .-1746. 函数y =ax +b 和y =ax 2+bx +c 在同一直角坐标系内的图象可能是( )7. 如图是抛物线y =ax 2+bx +c(a≠0)的部分图象,其顶点坐标为(1,n),且与x 轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a -b +c >0;②3a +b =0;③b 2=4a(c -n);④一元二次方程ax 2+bx +c =n -1有两个不相等的实数根.其中正确结论的个数是( )A .1B .2C .3D .48. 如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE ∥AC ,交BC 于E 点;过E 点作EF ⊥DE ,交AB 的延长线于F 点.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x 函数关系的图象是( )二.填空题(共6小题,4*6=24)9.抛物线y =-x 2+15有最________点,其坐标是________.10. 若二次函数y =x 2+2x +a 的图象与x 轴有两个不同的交点,则a 的取值范围是__________.11. 如图,已知二次函数y =x 2+bx +c 的图象的对称轴是直线x =1,过抛物线上两点的直线AB 平行于x 轴,若点A 的坐标为⎝⎛⎭⎫0,32,则点B 的坐标为 .12. 已知二次函数y =x 2+2mx +2,当x>2时,y 随x 的增大而增大,则实数m 的取值范围是________.13. 抛物线y =ax 2+bx +c 经过点A(-3,0),对称轴是直线x =-1,则a +b +c =________.14. 如图,二次函数y =ax 2+bx +c 的对称轴在y 轴的右侧,其图象与x 轴交于点A(-1,0),点C(x 2,0),且与y 轴交于点B(0,-2),小强得到以下结论:①0<a <2;②-1<b <0;③c=-1;④当|a|=|b|时,x2>5-1.以上结论中,正确的结论序号是________.三.解答题(共5小题,44分)15.(6分) 已知抛物线y=ax2+bx-3(a≠0)经过点(-1,0),(3,0),求a,b的值.16.(8分)如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求m的值和抛物线的表达式;(2)求不等式x2+bx+c>x+m的解集.(直接写出答案)17.(8分) 抛物线y=-x2+bx+c的对称轴为直线x=2,且顶点在x轴上.(1)求b、c的值;(2)在如图所示的平面直角坐标系中画出抛物线并写出它与y轴的交点C的坐标;(3)根据图像直接写出:点C关于直线x=2的对称点D的坐标为________;若E(m,n)为抛物线上一点,则点E关于直线x=2的对称点的坐标为________(用含m、n的式子表示).18.(10分) 如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.(1)求二次函数与一次函数的表达式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.19.(12分) 如图是某同学正在设计的一动画示意图,x轴上依次有A,O,N三个点,且AO=2,在ON上方有五个台阶T1~T5(各拐角均为90°),每个台阶的高、宽分别是1和1.5,台阶T1到x轴的距离OK=10.从点A处向右上方沿抛物线L:y=-x2+4x+12发出一个带光的点P.(1)求点A的横坐标,且在图中补画出y轴,并指出点P会落在哪个台阶上;(2)当点P落到台阶上后立即弹起,又形成了另一条与L形状相同的抛物线C,且最大高度为11,求C的表达式,并说明其对称轴是否与台阶T5有交点;(3)在x轴上从左到右有两点D,E,且DE=1,从点E向上作EB⊥x轴,且BE=2.在△BDE 沿x轴左右平移时,必须保证(2)中沿抛物线C下落的点P能落在边BD(包括端点)上,则点B横坐标的最大值比最小值大多少?[注:(2)中不必写x的取值范围]参考答案1-4 DBCB 5-8CCCA9.高,(0,15)10.a <111.⎝⎛⎭⎫2,32 12.m≥-213.014.①④15.解:把(-1,0),(3,0)分别代入y =ax 2+bx -3,得⎩⎪⎨⎪⎧0=a -b -3,0=9a +3b -3,解得⎩⎪⎨⎪⎧a =1,b =-2. 即a 的值为1,b 的值为-2.16.解: (1)∵直线y =x +m 经过点A(1,0),∴0=1+m .∴m =-1.∴y =x -1.∵抛物线y =x 2+bx +c 经过点A(1,0),B(3,2),∴⎩⎪⎨⎪⎧0=1+b +c ,2=9+3b +c ,解得⎩⎪⎨⎪⎧b =-3,c =2.∴抛物线的表达式为y =x 2-3x +2 (2)x<1或x>317.解:(1)∵抛物线y =-x 2+bx +c 的对称轴为直线x =2,且顶点在x 轴上,∴顶点为(2,0).∴抛物线为y =-(x -2)2=-x 2+4x -4,∴b =4,c =-4.(2)画出抛物线如图:点C 的坐标为(0,-4).(3)(4,-4);(4-m ,n)18.(1)将点A(1,0)代入y =(x -2)2+m 中得(1-2)2+m =0,解得m =-1,所以二次函数的表达式为y =(x -2)2-1.当x =0时,y =4-1=3,所以点C 坐标为(0,3),由于点C 和点B 关于对称轴对称,而抛物线的对称轴为直线x =2,所以点B 坐标为(4,3),将A(1,0),B(4,3)代入y =kx +b 中,得⎩⎪⎨⎪⎧k +b =0,4k +b =3,解得⎩⎪⎨⎪⎧k =1,b =-1.所以一次函数的表达式为y =x -1 (2)当kx +b≥(x -2)2+m 时,1≤x≤419.解:(1)对于抛物线y =-x 2+4x +12,令y =0,则-x 2+4x +12=0,解得x =-2或x =6,∵OA =2,∴A(-2,0),∴点A 的横坐标为-2.补画y 轴,如图所示,由题意知台阶T 4左边的端点坐标为(4.5,7),右边的端点为(6,7).当x =4.5时,y =9.75>7,当x =6时,y =0<7,对于y =-x 2+4x +12,当y =7时,7=-x 2+4x +12,解得x =-1或x =5,∴抛物线与台阶T 4有交点,∴点P 会落在台阶T 4上.(2)设抛物线C 的表达式为y =-x 2+bx +c ,抛物线y =-x 2+4x +12与台阶T 4的交点为R ,则R(5,7).由题意知抛物线C :y =-x 2+bx +c 经过R(5,7),最高点的纵坐标为11,∴⎩⎪⎨⎪⎧-4c -b 2-4=11,-25+5b +c =7,解得⎩⎪⎨⎪⎧b =14,c =-38或⎩⎪⎨⎪⎧b =6,c =2(舍去),∴抛物线C 的表达式为y =-x 2+14x -38,∴抛物线C 的对称轴为直线x =7,易知台阶T 5的左边的端点为(6,6),右边的端点为(7.5,6),∴抛物线C 的对称轴与台阶T 5有交点.(3)对于抛物线C :y =-x 2+14x -38,令y =0,得到-x 2+14x -38=0,解得x =7+11或x =7-11(舍去),∴抛物线C 交x 轴于(7+11,0),当y =2时,2=-x 2+14x -38,解得x =4(舍去)或x =10,∴抛物线经过(10,2),在Rt △BDE 中,∠DEB =90°,DE =1,BE =2,∴当点D 与(7+11,0)重合时,点B 的横坐标最大,最大值为8+11,当点B 与(10,2)重合时,点B 的横坐标最小,最小值为10,∴点B 横坐标的最大值比最小值大11-2.。

数学北师大版九年级下册二次函数专题

数学北师大版九年级下册二次函数专题

专题(三) 二次函数一、选择题1.二次函数2y 2x 13=--+()的图象的顶点坐标是【 】A .(1,3)B .(1-,3)C .(1,3-)D .(1-,3-) 2.下列函数是二次函数的是【 】A .y 2x 1=+B .y 2x 1=-+C .2y x 2=+D .1y x 22=- 3.将二次函数y =x 2-2x +3化为y =(x -h)2+k 的形式结果为 ( )A .y =(x +1)2+4B .y =(x -1)2+4C .y =(x +1)2+2D . y =(x -1)2+24.二次函数y =-3x 2-6x +5的图像的顶点坐标是A .(-1,2)B .(1,-4)C .(-1,8)D .(1,8))5.如图,抛物线21y x =+与双曲线k y x =的交点A 的横坐标是1,则关于x 的不等式012<++-x x k 的解集是( )A .x>1B .x <1C .0<x<1D .-1<x<06.已知二次函数)0,(22<+-=m n m n mx mx y 为常数,且,下列自变量取值范围中y 随x 增大而增大的是( ).A .x<2B .x<-1C .0<x<2D .x>-17.直角坐标平面上将二次函数y=x 2﹣2的图象向左平移1个单位,再向上平移1个单位,则其顶点为( )A .(0,0)B .(1,﹣1)C .(0,﹣1)D .(﹣1,﹣1)8.已知二次函数3)1(2--=x y ,则此二次函数( )A. 有最大值1B. 有最小值1C. 有最大值-3D. 有最小值-39.如图,已知抛物线c bx x y ++=2的对称轴为1x =,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(n ,3),则点B 的坐标为 ( ).A .(n+2,3)B .(2n -,3)C .(2n -,3)D .(22n -,3)10.将抛物线22y x =向下平移1个单位,得到的抛物线是( ).A .221y x =+B .221y x =-C .22(1)y x =+D .22(1)y x =- 11.已知二次函数2y x 3x m =-+(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程2x 3x m 0-+=的两实数根是A .x 1=1,x 2=-1B .x 1=1,x 2=2C .x 1=1,x 2=0D .x 1=1,x 2=312.若二次函数2y ax =的图象经过点P (-2,4),则该图象必经过点【 】A .(2,4)B .(-2,-4)C .(-4,2)D .(4,-2)13.若一次函数y=ax+b (a≠0)的图象与x 轴的交点坐标为(﹣2,0),则抛物线y=ax 2+bx 的对称轴为【 】A .直线x=1B .直线x=﹣2C .直线x=﹣1D .直线x=﹣414.若抛物线2y x 2x c =-+与y 轴的交点为(0,﹣3),则下列说法不正确的是【 】A .抛物线开口向上B .抛物线的对称轴是x=1C .当x=1时,y 的最大值为﹣4D .抛物线与x 轴的交点为(-1,0),(3,0) 15.如图,⊙O 的圆心在角∠α的角平分线上运动,且⊙O 与∠α的两边相切,图中阴影部分的面积S 关于⊙O 的半径r (r >0)变化的函数图象大致是【 】A .B .C .D .16.如图,二次函数2y ax bx c =++的图象开口向上,对称轴为直线x=1,图象经过(3,0), 下列结论中,正确的一项是【 】A .abc <0B .2a +b <0C .a -b +c <0D .4ac -b 2<017.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,在下列五个结论中:①2a ﹣b <0;②abc <0;③a+b+c <0;④a ﹣b+c >0;⑤4a+2b+c >0,错误的个数有【 】A .1个B .2个C .3个D .4个18.若二次函数2y ax bx c =++ (a≠0)的图象与x 轴有两个交点,坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,则下列判断正确的是A .a>0B .b 2-4ac≥0C .x 1<x 0<x 2D .a(x 0-x 1)( x 0-x 2)<019.如图,Rt △OAB 的顶点A (-2,4)在抛物线2y ax =上,将Rt △OAB 绕点O顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为A . ()22 ,B .()22 ,C .()22 ,D .()22 ,20.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列说法错误的是A 、图象关于直线x=1对称B 、函数ax 2+bx+c (a≠0)的最小值是﹣4C 、﹣1和3是方程ax 2+bx+c (a≠0)的两个根D 、当x <1时,y 随x 的增大而增大二、填空题21.在平面直角坐标系中,抛物线2y=x -3x-4与x 轴的交点的个数是___________.22.二次函数y=x 2+1的图象的顶点坐标是 .23.二次函数y=﹣x 2+bx+c 的图象如图所示,则一次函数y=bx+c 的图象不经过第 象限.24.在平面直角坐标系中,把抛物线21y x 12=-+向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是 .25.抛物线2y x 1=+的最小值是 .26.2013年5月26日,中国羽毛球队蝉联苏迪曼杯团体赛冠军,成就了首个五连冠霸业.比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度y (米)与水平距离x (米)之间满足关系22810y x x 999=-++,则羽毛球飞出的水平距离为 米.27.已知二次函数y=x 2+2mx+2,当x >2时,y 的值随x 值的增大而增大,则实数m 的取值范围是 .28.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,给出以下结论:①b 2>4ac ;②abc >0;③2a ﹣b=0;④8a+c <0;⑤9a+3b+c <0,其中结论正确的是 .(填正确结论的序号)29.二次函数y=﹣2(x ﹣5)2+3的顶点坐标是 .30.如图,已知⊙P 的半径为2,圆心P 在抛物线2112y x =-上运动,当⊙P 与x 轴相切时,圆心P 的坐标为三、解答题31.已知二次函数的图象以)4,1(-A 为顶点,且过点)5,2(-B .(1)求该二次函数的解析式;(2)求该二次函数图象与坐标轴的交点坐标;32.某公司销售一种进价为20元/个的计算机,其销售量y (万个)与销售价格x (元/个)的变化如下表: 价格x (元/个) … 30 40 50 60 …销售量y (万个) … 5 4 3 2 …同时,销售过程中的其他开支(不含造价)总计40万元.(1)观察并分析表中的y 与x 之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y (万个)与x (元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z (万个)与销售价格x (元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x (元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?33.如图,抛物线经过A (﹣1,0),B (5,0),C (0,52-)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P ,使PA+PC 的值最小,求点P 的坐标; (3)在抛物线上是否存在一点N ,使以A ,B , N 三点构成的三角形为直角三角形?若存在,求点N 的坐标;若不存在,请说明理由.34.如图,已知抛物线2y x bx c =++与x 轴交于点A ,B ,AB=2,与y 轴交于点C,对称轴为直线x=2.(1)求抛物线的函数表达式;(2)设P为对称轴上一动点,求△APC周长的最小值;(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为.35.如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q 两点同时运动,相遇后同时停止,设运动时间为t秒.(1)当t= 时,点P与点Q相遇;(2)在点P从点B到点C的运动过程中,当ι为何值时,△PCQ为等腰三角形?(3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为s平方单位.①求s与ι之间的函数关系式;②当s最大时,过点P作直线交AB于点D,将△ABC中沿直线PD折叠,使点A落在直线PC上,求折叠后的△APD与△PCQ重叠部分的面积.。

北师大版九年级下 第二章《二次函数》专题训练 (含答案)

北师大版九年级下 第二章《二次函数》专题训练 (含答案)

目录专题训练(一)二次函数的图象信息题类型一二次函数图象与系数的关系类型二利用二次函数的图象比较大小类型三利用二次函数的图象求方程的解或不等式的解集类型四二次函数与其他函数的组合图象问题类型五利用二次函数图象的位置变化求阴影部分的面积专题训练(二)二次函数与几何的综合问题类型一二次函数与三角形的结合类型二二次函数与平行四边形的结合类型三二次函数与特殊平行四边形的结合类型四二次函数与几何变换的综合专题训练(三)求二次函数表达式的常见类型类型一已知三点求表达式类型二已知顶点或对称轴求表达式类型三已知抛物线与x轴的交点求表达式类型四根据图形平移求表达式专题训练(四)巧用抛物线的对称性解题类型一利用抛物线的对称性求对称轴或点的坐标类型二利用抛物线的对称性比较函数值的大小类型三利用抛物线的对称性求代数式的值类型四利用抛物线的对称性确定自变量的取值范围类型五利用抛物线的对称性求面积类型六巧用抛物线的对称性求二次函数的表达式类型七利用对称性解决线段和最短问题详解详析专题训练(一) 二次函数的图象信息题► 类型一 二次函数图象与系数的关系1.2017·防城港期中二次函数y =ax 2+bx +c 的图象如图5-ZT -1所示,则点M(a ,b +c)在( )图5-ZT -1A .第一象限B .第二象限C .第三象限D .第四象限2.如图5-ZT -2,若a <0,b >0,c <0,则抛物线y =ax 2+bx +c 的大致图象为( )图5-ZT -23.2018·恩施州抛物线y =ax 2+bx +c 的对称轴为直线x =-1,部分图象如图5-ZT -3所示,下列判断中:①abc >0;②b 2-4ac >0;③9a -3b +c =0;④若点(-0.5,y 1),(-2,y 2)均在抛物线上,则y 1>y 2;⑤5a -2b +c <0.其中正确的个数为( )A .2B .3C .4D .55-ZT -3 5-ZT -44.如图5-ZT -4,抛物线y =ax 2+bx +c 的对称轴是直线x =-1,且过点(12,0),有下列结论:①abc >0;②a -2b +4c =0;③25a -10b +4c =0;④3b +2c >0;⑤a -b ≥m(am -b).其中所有正确的结论是________.(填写正确结论的序号)►类型二利用二次函数的图象比较大小5.2017·江津区期末点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y=-(x-1)2+2的图象上,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y3>y1=y2 C.y1>y2>y3D.y1=y2>y3►类型三利用二次函数的图象求方程的解或不等式的解集6.如图5-ZT-5,以点(1,-4)为顶点的二次函数y=ax2+bx+c的图象与x轴的负半轴交于点A,则一元二次方程ax2+bx+c=0的正数解的范围是()图5-ZT-5A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<67.如图5-ZT-6是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,它与x 轴的一个交点为A(3,0),根据图象,可知关于x的一元二次方程ax2+bx+c=0的解是________.图5-ZT-6 5-ZT-7 8.如图5-ZT-7是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx +c<0的解集是________.9.如图5-ZT-8,二次函数y1=a(x-2)2的图象与直线l交于A(0,-1),B(2,0)两点.(1)确定二次函数的表达式;(2)设直线l的表达式为y2=kx+b,根据图象,确定当y1>y2时,自变量x的取值范围.图5-ZT-8►类型四二次函数与其他函数的组合图象问题10.2017·曲靖一模在同一坐标系中,一次函数y=ax+b与二次函数y=ax2+b的大致图象是()图5-ZT-911.函数y=kx与y=-kx2+k(k≠0)在同一直角坐标系中的图象可能是()图5-ZT-1012.二次函数y=ax2+bx+c的图象如图5-ZT-11所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系中的大致图象为()图5-ZT-11图5-ZT-1213.二次函数y=-x2+bx+c的图象如图5-ZT-13所示,则一次函数y=bx+c的图象不经过第________象限.图5-ZT-13►类型五利用二次函数图象的位置变化求阴影部分的面积14.如图5-ZT-14,在平面直角坐标系中,抛物线y=12x2经过平移得到抛物线y=12x2-2x,新抛物线的对称轴与两段抛物线所围成的阴影部分的面积为()图5-ZT-14A.2 B.4 C.8 D.1615.如图5-ZT-15,抛物线y=-12x2+72x与矩形OABC的边AB交于点D,B,若A(0,3),C(6,0),则图中阴影部分的面积为()图5-ZT-15A.3 B.4 C.5 D.616.如图5-ZT-16,抛物线y1=-x2+2向右平移1个单位长度得到抛物线y2.回答下列问题:图5-ZT-16(1)抛物线y2的表达式是____________,顶点坐标为________;(2)阴影部分的面积为________;(3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,则抛物线y3的表达式为____________,开口向________,顶点坐标为________.17.如图5-ZT-17,7×8网格中的每个小正方形的边长均为1,将抛物线y1=x2-1向右平移2个单位长度得到抛物线y2.(1)请直接写出抛物线y2的函数表达式:________;(2)图中阴影部分的面积为________;(3)若将抛物线y2沿x轴翻折,求翻折后的抛物线的表达式.图5-ZT-17专题训练(二)二次函数与几何的综合问题►类型一二次函数与三角形的结合1.如图6-ZT-1,直线l过A(4,0)和B(0,4)两点,它与二次函数y=ax2的图象在第一象限内相交于点P,若S△AOP=92,求二次函数的表达式.图6-ZT-12.如图6-ZT-2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴相交于点A(-1,0)和点B,与y轴交于点C,对称轴为直线x=1.(1)求点C的坐标(用含a的代数式表示);(2)连接AC,BC,若△ABC的面积为6,求此抛物线的表达式.图6-ZT-2►类型二二次函数与平行四边形的结合3.如图6-ZT-3,四边形ABCD是平行四边形,过点A,C,D作抛物线y=ax2+bx +c,点A,B,D的坐标分别为(-2,0),(3,0),(0,4).求抛物线的表达式.图6-ZT-3►类型三二次函数与特殊平行四边形的结合4.如图6-ZT-4,直线y=-3x+3与x轴、y轴分别交于点A,B,抛物线y=a(x-2)2+k经过点A,B,且与x轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求点Q的坐标;(3)在抛物线及其对称轴上分别取点M,N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.图6-ZT-45.2017·邵阳如图6-ZT -5所示,顶点坐标为(12,-94)的抛物线y =ax 2+bx +c 过点M(2,0).(1)求抛物线的表达式;(2)点A 是抛物线与x 轴的交点(不与点M 重合),点B 是抛物线与y 轴的交点,点C 是直线y =x +1上一点(位于x 轴下方),点D 是反比例函数y =kx (k>0)图象上一点.若以点A ,B ,C ,D 为顶点的四边形是菱形,求k 的值.图6-ZT -5►类型四二次函数与几何变换的综合6.如图6-ZT-6所示,已知抛物线E:y=-2x2-4x,将其向右平移2个单位长度后得到抛物线F.(1)求抛物线F的表达式;(2)设抛物线F和x轴相交于点O,B(点B位于点O的右侧),顶点为C,点A位于y 轴的负半轴上,且到x轴的距离等于点C到x轴的距离的2倍,求AB所在直线的表达式.图6-ZT-67.已知二次函数y=2x2+4x+k-1.(1)当二次函数的图象与x轴有交点时,求k的取值范围;(2)若A(x1,0)与B(x2,0)是二次函数图象上的两个点,且当x=x1+x2时,y=-6,求二次函数的表达式,并在所提供的直角坐标系中画出它的大致图象;(3)在(2)的条件下,将抛物线在x轴下方的部分沿x轴翻折,其余部分保持不变,得到一个新的图象,当直线y=12x+m(m<3)与新图象有两个公共点,且m为整数时,求m的值.图6-ZT-7专题训练(三) 求二次函数表达式的常见类型►类型一已知三点求表达式1.已知:如图3-ZT-1,二次函数y=ax2+bx+c的图象经过A,B,C三点,求此抛物线的表达式.图3-ZT-12.如图3-ZT-2①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).图3-ZT-2►类型二已知顶点或对称轴求表达式3.如图3-ZT-3,已知抛物线y=-x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0),那么它对应的函数表达式是______________.图3-ZT-34.在平面直角坐标系内,二次函数图象的顶点为A(1,-4),且过点B(3,0),求该二次函数的表达式.5.已知抛物线经过点A(1,0),B(0,3),且对称轴是直线x=2,求该抛物线的表达式.6.如图3-ZT-4,已知抛物线的顶点为A(1,4),与y轴交于点B(0,3),与x轴交于C,D两点,点P是x轴上的一个动点.(1)求此抛物线的表达式;(2)当PA+PB的值最小时,求点P的坐标.图3-ZT-4►类型三已知抛物线与x轴的交点求表达式7.抛物线与x轴交于点(-1,0)和(3,0),与y轴交于点(0,-3),则此抛物线的表达式为()A.y=x2+2x+3 B.y=x2-2x-3 C.y=x2-2x+3 D.y=x2+2x-38.如图3-ZT-5,已知抛物线过A,B,C三点,点A的坐标为(-1,0),点B的坐标为(3,0),且3AB=4OC,则抛物线的表达式为______________.图3-ZT-59.已知抛物线的顶点坐标为(1,9),它与x轴有两个交点,两交点间的距离为6,求抛物线的表达式.►类型四根据图形平移求表达式10.一个二次函数图象的形状与抛物线y=-2x2相同,顶点坐标为(2,1),则这个二次函数的表达式为______________________________.11.将抛物线y=12x2平移,使顶点的坐标为(t,t2),并且经过点(1,1),求平移后抛物线对应的函数表达式.12.把抛物线y=x2先向左平移1个单位长度,再向下平移4个单位长度,得到如图3-ZT-6所示的抛物线.(1)求此抛物线的表达式;(2)在抛物线上存在一点M,使△ABM的面积为20,请直接写出点M的坐标.图3-ZT-613.如图3-ZT-7,经过点A(0,-6)的抛物线y=12x2+bx+c与x轴相交于B(-2,0),C两点.(1)求此抛物线的表达式和顶点D的坐标;(2)将(1)中求得的抛物线先向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在△ABC内,求m的取值范围.图3-ZT-7专题训练(四) 巧用抛物线的对称性解题►类型一利用抛物线的对称性求对称轴或点的坐标1.二次函数的图象与x轴的交点坐标分别为(2,0)和(-4,0),则该二次函数图象的对称轴是直线()A.x=1 B.x=-1 C.x=2 D.x=-22.已知抛物线y=ax2+bx+c的对称轴为直线x=2,且经过点P(3,0),则抛物线与x 轴的另一个交点的坐标为()A.(-1,0) B.(0,0) C.(1,0) D.(3,0)3.抛物线y=ax2+bx+c经过点A(-2,7),B(6,7),C(3,-8),求该抛物线上纵坐标为-8的另一点的坐标.►类型二利用抛物线的对称性比较函数值的大小4.已知(-1,y1),(-2,y2),(-4,y3)是抛物线y=-2x2-8x+m上的点,则() A.y1<y2<y3B.y3<y2<y1 C.y3<y1<y2D.y2<y3<y15.若二次函数y=x2-6x+c的图象经过A(-1,y1),B(2,y2),C(3+2,y3)三点,则y1,y2,y3从大到小排列是____________.►类型三利用抛物线的对称性求代数式的值6.已知P(a,m),Q(b,m)是抛物线y=2x2+4x-3上的两个不同的点,则a+b=________.7.当x=m或x=n(m≠n)时,代数式x2-2x+3的值相等,则当x=m+n时,代数式x2-2x+3的值为________.►类型四利用抛物线的对称性确定自变量的取值范围8.二次函数y=ax2+bx+c中x,y的部分对应值如下表:则当y<0时,x的取值范围为________.9.二次函数y=(x-1)2+1,当2≤y<5时,相应x的取值范围为________________.►类型五利用抛物线的对称性求面积10.如图4-ZT-1,⊙O的半径为2,C1是函数y=2x2的图象,C2是函数y=-2x2的图象,则图中阴影部分的面积为________.图4-ZT-111.已知二次函数y=2x2+m(m为常数).(1)若点(2,y1)与(3,y2)在此二次函数的图象上,则y1________y2(填“>”“=”或“<”);(2)如图4-ZT-2,此二次函数的图象经过点(0,-4),正方形ABCD的顶点A,B在抛物线上,顶点C,D在x轴上,求图中阴影部分的面积.图4-ZT-2►类型六巧用抛物线的对称性求二次函数的表达式12.已知二次函数y有最大值4,且图象与x轴两交点间的距离是8,对称轴为直线x =-3,则此二次函数的表达式为______________.13.已知二次函数的图象与x轴的两个交点A,B关于直线x=-1对称,且AB=6,顶点在函数y=2x的图象上,则这个二次函数的表达式为______________.14.二次函数的图象经过点A(0,0),B(12,0),且顶点P到x轴的距离为3,求该二次函数的表达式.►类型七利用对称性解决线段和最短问题15.已知二次函数y=ax2+bx+6的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A,B的横坐标是一元二次方程x2-4x-12=0的两个根.(1)请直接写出点A、点B的坐标.(2)请求出该二次函数的表达式及图象的对称轴和顶点坐标.(3)如图4-ZT-3,在二次函数图象的对称轴上是否存在点P,使△APC的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.图4-ZT-316.如图4-ZT-4,已知抛物线y=ax2+bx+c的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,它与x轴的另一个交点为B.(1)若直线y=mx+n经过B,C两点,求直线BC和抛物线的表达式;(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求点M的坐标;(3)设点P为抛物线的对称轴直线x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.图4-ZT-4详解详析专题训练(一)二次函数的图象信息题1.[解析] D∵抛物线开口向上,∴a>0.∵抛物线与y轴交于负半轴,∴c<0.∵对称轴在y轴右侧,∴a,b异号,即b<0,∴b+c<0,∴点M(a,b+c)在第四象限.故选D.2.[解析] B∵a<0,∴抛物线的开口向下,故C选项不合题意.∵c<0,∴抛物线与y轴的交点在y轴的负半轴上,故A选项不符合题意.∵a<0,b>0,对称轴为x=-b2a >0,∴对称轴在y轴右侧,故D选项不符合题意.故选B.3.[解析] B∵抛物线的对称轴为直线x=-1,它经过点(1,0),∴-b2a=-1,a+b+c=0,∴b=2a,c=-3a.∵a>0,∴b>0,c<0,∴abc<0,故①错误.∵抛物线与x轴有两个交点,∴b2-4ac>0,故②正确.∵由抛物线的对称性,知抛物线与x轴的另一个交点坐标为(-3,0),∴9a-3b+c=0,故③正确.∵由抛物线的对称性,知点(-1.5,y1)在抛物线上,又-1.5>-2,则y1<y2,故④错误.∵5a-2b+c=5a-4a-3a=-2a<0,故⑤正确.故选B.4.[答案] ①③⑤5.[解析] D∵y=-(x-1)2+2,∴图象的开口向下,对称轴是直线x=1,P1(-1,y1)关于直线x=1的对称点是(3,y1),∵1<3<5,∴y1=y2>y3,故选D.6.[解析] C∵二次函数y=ax2+bx+c的图象的顶点坐标为(1,-4),∴对称轴为直线x=1,而对称轴左侧图象与x轴交点的横坐标的取值范围是-3<x<-2,∴对称轴右侧图象与x轴交点的横坐标的取值范围是4<x<5.故选C.7.[答案] x 1=3,x 2=-1[解析] 设抛物线与x 轴的另一个交点坐标为(x ,0).∵抛物线与x 轴的两个交点到对称轴的距离相等,∴3+x 2=1,解得x =-1,∴抛物线与x 轴的另一个交点坐标为(-1,0),∴关于x 的一元二次方程ax 2+bx +c =0的解是x 1=3,x 2=-1.8.[答案] x <-1或x >5[解析] 由图可知,图象的对称轴为直线x =2,它与x 轴的一个交点坐标为(5,0),∴函数图象与x 轴的另一个交点坐标为(-1,0),∴ax 2+bx +c <0的解集是x <-1或x >5.9.[解析] (1)将(0,-1)代入抛物线的表达式,即可求出a 的值,进而确定二次函数的表达式.(2)确定y 1>y 2时,自变量x 的取值范围即为抛物线在一次函数图象上方时对应的x 的取值范围,观察图形即可得出.解:(1)∵二次函数y 1=a (x -2)2的图象与直线交于点A (0,-1),∴-1=a (0-2)2,解得a =-14, ∴二次函数的表达式为y 1=-14(x -2)2, 即y 1=-14x 2+x -1. (2)∵二次函数y 1=a (x -2)2的图象与直线l 交于A (0,-1),B (2,0)两点,直线l 的表达式为y 2=kx +b ,∴当y 1>y 2时,自变量x 的取值范围为0<x <2.10.[答案] C11.[解析] B 由表达式y =-kx 2+k (k ≠0)可得抛物线的对称轴为直线x =0.A 项,由双曲线的两支分别位于第二、四象限,可得k <0,则-k >0,抛物线开口向上,抛物线与y 轴的交点在y 轴的负半轴上.本选项图象与k 的取值相矛盾,故A 错误.B 项,由双曲线的两支分别位于第一、三象限,可得k >0,则-k <0,抛物线开口向下,抛物线与y 轴的交点在y 轴的正半轴上,本选项图象符合题意,故B 正确.C 项,由双曲线的两支分别位于第一、三象限,可得k >0,则-k <0,抛物线开口向下,抛物线与y 轴的交点在y 轴的正半轴上,本选项图象与k 的取值相矛盾,故C 错误.D 项,由双曲线的两支分别位于第一、三象限,可得k >0,则-k <0,抛物线开口向下,抛物线与y 轴的交点在y 轴的正半轴上,本选项图象与k 的取值相矛盾,故D 错误.故选B.12.[解析] B ∵二次函数的图象开口向上,∴a >0.∵x =-b 2a>0,∴b <0.∵抛物线与y 轴的正半轴相交,∴c >0.∴一次函数的图象经过第一、三、四象限,反比例函数的图象在第一、三象限.故选B.13.[答案] 四[解析] ∵二次函数图象的对称轴在y 轴的右侧,∴a ,b 异号.∵a <0,∴b >0.∵二次函数的图象与y 轴的交点在正半轴,∴c >0.∴一次函数y =bx +c 的图象经过第一、二、三象限,不经过第四象限.14.[答案] B15.[解析] A 过点D 作DE ⊥OC 于点E ,根据抛物线的对称性得到:S 阴影=S 矩形OADE .∵A (0,3),∴点D 的纵坐标为3,将y =3代入y =-12x 2+72x ,得 3=-12x 2+72x ,解得x =1或x =6, ∴AD =1,OA =3,∴S 阴影=S 矩形OADE =1×3=3.故选A.16.[解析] (1)根据抛物线的移动规律“左加右减”可直接得出抛物线y 2的表达式,再根据y 2的表达式求出顶点坐标即可;(2)利用割补法将阴影部分的面积转化为长方形的面积,再列式计算即可;(3)先求出抛物线y 2旋转后的开口方向和顶点坐标,从而得出抛物线y 3的表达式. 解:(1)∵抛物线y 1=-x 2+2向右平移1个单位长度得到抛物线y 2,∴抛物线y 2的表达式是y 2=-(x -1)2+2,顶点坐标为(1,2).故答案为:y 2=-(x -1)2+2,(1,2).(2)阴影部分的面积是1×2=2.故答案为:2.(3)∵将抛物线y 2绕原点O 旋转180°后,得到抛物线y 3的顶点坐标为(-1,-2), ∴抛物线y 3的表达式为y 3=(x +1)2-2,开口向上.故答案为:y 3=(x +1)2-2,上,(-1,-2).17.[解析] (1)根据左加右减的平移规律即可求解;(2)把阴影部分进行平移,可得到阴影部分的面积即为长为4,宽为2的长方形的面积;(3)根据平面直角坐标系中,点关于x轴对称的坐标特征得出答案.解:(1)将抛物线y1=x2-1向右平移2个单位长度得到抛物线y2,则y2=(x-2)2-1,即y2=x2-4x+3.(2)由题意,得图中阴影部分的面积为2×4=8.(3)将抛物线y2沿x轴翻折,翻折后的抛物线的表达式为-y=x2-4x+3,即y=-x2+4x-3.专题训练(二) 二次函数与几何的综合问题1.解:设直线l 的表达式为y =kx +b .∵直线l 过点A (4,0),B (0,4),∴⎩⎨⎧4k +b =0,b =4,∴⎩⎨⎧k =-1,b =4, ∴y =-x +4.设点P 的纵坐标为y P ,∵S △AOP =92,∴12×4·y P =92, ∴y P =94,∴94=-x +4,解得x =74,∴点P 的坐标为(74,94). 把⎝⎛⎭⎫74,94代入y =ax 2,解得a =3649, ∴二次函数的表达式为y =3649x 2. 2.解:(1)∵抛物线y =ax 2+bx +c 的对称轴为直线x =1, 而抛物线与x 轴的一个交点A 的坐标为(-1,0),∴抛物线与x 轴的另一个交点B 的坐标为(3,0).设抛物线的表达式为y =a (x +1)(x -3),即y =ax 2-2ax -3a ,当x =0时,y =-3a ,∴C (0,-3a ).(2)由(1)可得AB =4,OC =3a ,∴S △ABC =12AB ·OC =6a ,∴6a =6,解得a =1, ∴抛物线的表达式为y =x 2-2x -3.3.解:由题意可得点C 的坐标为(5,4).把(-2,0),(0,4),(5,4)代入y =ax 2+bx +c 中,得⎩⎨⎧0=4a -2b +c ,4=c ,4=25a +5b +c ,解得⎩⎪⎨⎪⎧a =-27,b =107,c =4. ∴抛物线的表达式为y =-27x 2+107x +4.4.解:(1)∵直线y =-3x +3与x 轴、y 轴分别交于点A ,B , ∴A (1,0),B (0,3).又∵抛物线y =a (x -2)2+k 经过点A (1,0),B (0,3),∴⎩⎨⎧a +k =0,4a +k =3,解得⎩⎪⎨⎪⎧a =1,k =-1.即a ,k 的值分别为1,-1.(2)设点Q 的坐标为(2,m ),对称轴x =2交x 轴于点F ,过点B 作BE ⊥直线x =2于点E .在Rt △AQF 中, AQ 2=AF 2+QF 2=1+m 2. 在Rt △BQE 中,BQ 2=BE 2+EQ 2=4+(3-m )2.∵AQ =BQ ,∴1+m 2=4+(3-m )2,∴m =2. ∴点Q 的坐标为(2,2).(3)当点N 在对称轴上时,NC 与AC 不垂直, ∴AC 应为正方形的对角线.又∵对称轴直线x =2是线段AC 的垂直平分线,∴点M 与顶点P (2,-1)重合,点N 为点P 关于x 轴的对称点,其坐标为(2,1).此时,MF =NF =AF =CF =1,且AC ⊥MN ,∴四边形AMCN 为正方形.在Rt △AFN 中,AN =AF 2+NF 2=2,即正方形的边长为 2.5.解:(1)依题意可设抛物线的表达式为y =a (x -12)2-94,将点M (2,0)代入可得a =1,∴抛物线的表达式为y =(x -12)2-94=x 2-x -2.(2)当y =0时,x 2-x -2=0,解得x 1=-1,x 2=2,∴A (-1,0). 当x =0时,y =-2,∴B (0,-2).在Rt △OAB 中,OA =1,OB =2,∴AB = 5.设直线y =x +1与y 轴的交点为点G ,易求G (0,1),∴Rt △AOG 为等腰直角三角形,∴∠AGO =45°.∵点D 是反比例函数y =kx (k>0)图象上一点,∴点D 只能在第一、三象限,因此符合条件的菱形只能有如下两种情况:∴①此菱形以AB 为边且AC 也为边,如图①所示,过点D 作DN ⊥y 轴于点N . 在Rt △BDN 中,∵∠DBN =∠AGO =45°,∴DN =BN =102,∴D (-102,-102-2).∵点D 在y =k x 的图象上,∴k =-102·(-102-2)=52+10.②此菱形以AB 为对角线,如图②所示,作AB 的垂直平分线CD 交直线y =x +1于点C ,交y =kx 的图象于点D ,再分别过点D ,B 作DE ⊥x 轴于点F ,BE ⊥y 轴,DE 与BE 相交于点E .在Rt △BDE 中,同①可证∠AGO =∠DBO =∠BDE =45°,∴BE =DE . 可设点D 的坐标为(x ,x -2).∵BE 2+DE 2=BD 2,∴BD =2BE =2x . ∵四边形ACBD 是菱形,∴AD =BD =2x . ∵在Rt △ADF 中,AD 2=AF 2+DF 2, 即(2x )2=(x +1)2+(x -2)2,解得x =52.∴点D 的坐标为(52,12).∵点D 在y =k x 的图象上,∴k =54. 综上所述,k 的值为52+10或54.6.解:(1)方法一:原抛物线y =-2x 2-4x =-2(x +1)2+2,其顶点坐标为(-1,2),向右平移2个单位长度后抛物线F 的顶点坐标为(1,2),∴抛物线F 的表达式为y =-2(x -1)2+2,即y =-2x 2+4x .方法二:当y =0时,即-2x 2-4x =0,解得x =0或x =-2,∴原抛物线与x 轴的交点坐标为(-2,0)和(0,0).平移后抛物线F 与x 轴的交点坐标为(0,0)和(2,0),∴抛物线F 的表达式为y =-2x (x -2),即y =-2x 2+4x .方法三:根据抛物线平移之间的关系,可得抛物线F 的表达式为y =-2(x -2)2-4(x -2)=-2x 2+4x .方法四:∵抛物线E 与抛物线F 关于y 轴对称,∴抛物线F 的表达式为y =-2(-x )2-4(-x )=-2x 2+4x .(2)∵抛物线F 的表达式为y =-2x 2+4x =-2(x -1)2+2, ∴顶点C 的坐标为(1,2).当y =0时,-2x 2+4x =0,解得x =0或x =2,∴点B 的坐标为(2,0). 设点A 的坐标为(0,y ),且y <0.∵点A 到x 轴的距离等于点C 到x 轴的距离的2倍,∴-y =2×2,解得y =-4, ∴点A 的坐标为(0,-4).设AB 所在直线的表达式为y =kx +b .由题意,得⎩⎨⎧b =-4,2k +b =0,解得⎩⎪⎨⎪⎧k =2,b =-4.∴AB 所在直线的表达式为y =2x -4. 7.解:(1)∵二次函数的图象与x 轴有交点, ∴b 2-4ac ≥0,即42-4×2×(k -1)≥0,解得k ≤3.(2)∵二次函数y =2x 2+4x +k -1图象的对称轴为直线x =-1, ∴x 1+x 2=2×(-1)=-2,∴当x =-2时,y =-6,即2×(-2)2+4×(-2)+k -1=-6,解得k =-5, ∴二次函数的表达式为y =2x 2+4x -6,图象如图①所示:(3)设(2)中二次函数y =2x 2+4x -6的图象与x 轴交于A ,B 两点,即A (-3,0),B (1,0).依题意可画出翻折后的图象如图②所示:当直线y =12x +m 经过点A 时,可得m =32,当直线y =12x +m 经过点B 时,可得m =-12,根据图象可知,符合题意的m 的取值范围为-12<m <32.∵m 为整数,∴m 的值为0或1.专题训练(三) 求二次函数表达式的常见类型1.解:把(-1,0),(0,-3),(4,5)代入y =ax 2+bx +c ,得⎩⎨⎧a -b +c =0,c =-3,16a +4b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3.所以此抛物线的表达式为y =x 2-2x -3.2.解:(1)把(0,3),(3,0),(4,3)代入y =ax 2+bx +c ,得⎩⎨⎧c =3,9a +3b +c =0,16a +4b +c =3,解得⎩⎪⎨⎪⎧a =1,b =-4,c =3.所以抛物线的表达式为y =x 2-4x +3. (2)因为y =x 2-4x +3=(x -2)2-1,所以抛物线的顶点坐标为(2,-1),对称轴是直线x =2. (3)阴影部分的面积为2. 3.[答案] y =-x 2+2x +3[解析] ∵抛物线y =-x 2+bx +c 的对称轴为直线x =1,∴b2=1,解得b =2.∵抛物线与x 轴的一个交点为(3,0),∴0=-9+6+c ,解得c =3, 故抛物线对应的函数表达式为y =-x 2+2x +3. 4.解:∵二次函数图象的顶点为A (1,-4),∴设该二次函数的表达式为y =a (x -1)2-4.将(3,0)代入表达式,得a =1, 故该二次函数的表达式为y =(x -1)2-4, 即y =x 2-2x -3.5.解:∵抛物线的对称轴是直线x =2且经过点A (1,0), ∴由抛物线的对称性可知,抛物线还经过点(3,0). 设抛物线的表达式为y =a (x -1)(x -3). 把(0,3)代入表达式,得3=3a , ∴a =1,∴该抛物线的表达式为y =(x -1)(x -3),即y=x2-4x+3.6.解:(1)∵抛物线的顶点坐标为(1,4), ∴设此抛物线的表达式为y =a (x -1)2+4. ∵抛物线过点B (0,3),∴3=a (0-1)2+4,解得a =-1, ∴此抛物线的表达式为y =-(x -1)2+4, 即y =-x 2+2x +3.(2)作点B 关于x 轴的对称点E (0,-3),连接AE 交x 轴于点P . 设直线AE 的表达式为y =kx +b ,则⎩⎨⎧k +b =4,b =-3,解得⎩⎨⎧k =7,b =-3,∴直线AE 的表达式为y =7x -3. 当y =0时,x =37,∴当P A +PB 的值最小时,点P 的坐标为(37,0).7.[解析] B 由抛物线与x 轴交于点(-1,0)和(3,0),设此抛物线的表达式为y =a (x +1)(x -3).又因为抛物线与y 轴交于点(0,-3),把x =0,y =-3代入y =a (x +1)(x -3),得-3=a (0+1)(0-3),即-3a =-3,解得a =1,故此抛物线的表达式为y =(x +1)(x -3)=x 2-2x -3.故选B.8.[答案] y =-x 2+2x +39.解:由抛物线的对称性可知抛物线与x 轴的两个交点分别为(-2,0)和(4,0), 所以设其表达式为y =a (x +2)(x -4). 将(1,9)代入表达式,得9=a (1+2)(1-4), 解得a =-1.所以抛物线的表达式为y =-(x +2)(x -4), 即y =-x 2+2x +8.10.[答案] y =-2x 2+8x -7或y =2x 2-8x +911.解:根据题意,得平移后的抛物线的表达式为y =12(x -t )2+t 2.∵平移后的抛物线经过点(1,1), ∴1=12(1-t )2+t 2,解得t =1或t =-13,∴平移后抛物线对应的函数表达式为y =12(x -1)2+1或y =12(x +13)2+19,即y =12x 2-x +32或y =12x 2+13x +16.12.解:(1)此抛物线的表达式为y =(x +1)2-4,即y =x 2+2x -3.(2)∵当y =0时,x 2+2x -3=0,解得x 1=-3,x 2=1,∴A (1,0),B (-3,0),∴AB =4.设点M 的坐标为(m ,n ). ∵△ABM 的面积为20, ∴12AB ·|n |=20,解得n =±10. 当n =10时,m 2+2m -3=10, 解得m =-1+14或m =-1-14, ∴M (-1+14,10)或M (-1-14,10); 当n =-10时,m 2+2m -3=-10,此方程无解. 故点M 的坐标为(-1+14,10)或(-1-14,10). 13.解:(1)∵点A 的坐标为(0,-6), ∴y =12x 2+bx -6.∵该抛物线过点B (-2,0),∴12×(-2)2-2b -6=0,解得b =-2, ∴此抛物线的表达式为y =12x 2-2x -6.∵y =12x 2-2x -6=12(x -2)2-8,∴抛物线的顶点D 的坐标为(2,-8).(2)平移后所得新抛物线的表达式为y 1=12(x -2+1)2-8+m ,即y 1=12(x -1)2-8+m ,∴顶点P 的坐标为(1,m -8).对于y =12x 2-2x -6,令y =0,得12x 2-2x -6=0,解得x 1=6,x 2=-2,∴C (6,0),∴直线AC 的表达式为y =x -6, 当x =1时,y =-5. ∵点P 在△ABC 内,∴⎩⎨⎧m -8<0,m -8>-5,解得3<m <8.专题训练(四) 巧用抛物线的对称性解题1.[解析] B ∵二次函数的图象与x 轴的交点坐标分别为(2,0)和(-4,0),∴图象的对称轴是直线x =2+(-4)2=-1.故选B.2.[解析] C 由于抛物线的对称轴为直线x =2,而点P (3,0)位于x 轴上,设抛物线与x 轴的另一个交点的坐标为(m ,0),根据题意得m +32=2,解得m =1,则抛物线与x 轴的另一个交点的坐标为(1,0),故选C.3.解:由点A (-2,7),B (6,7)的纵坐标相同,可知点A ,B 关于抛物线的对称轴对称,且对称轴方程为x =-2+62=2.设该抛物线上纵坐标为-8的另一点的坐标为(x 2,-8),则有2=3+x 22,从而得x 2=1,故该抛物线上纵坐标为-8的另一点的坐标为(1,-8).4.[解析] C 抛物线y =-2x 2-8x +m 的对称轴为直线x =-2,且开口向下,∴当x =-2时y 取得最大值.∵-4<-1,且-4到-2的距离大于-1到-2的距离,根据抛物线的对称性,知y 3<y 1.∴y 3<y 1<y 2.故选C. 5.[答案] y 1>y 3>y 2 6.[答案] -2[解析] 已知点P (a ,m )和Q (b ,m )是抛物线y =2x 2+4x -3上的两个不同的点,因为点P (a ,m )和Q (b ,m )的纵坐标相等,所以它们关于抛物线的对称轴对称,而抛物线y =2x 2+4x -3的对称轴为直线x =-1,故a +b =-2.故答案为-2. 7.[答案] 3[解析] 设y =x 2-2x +3,∵当x =m 或x =n (m ≠n )时,代数式x 2-2x +3的值相等,∴m +n2=--22×1,∴m +n =2,∴当x =m +n ,即x =2时,x 2-2x +3=22-2×2+3=3.故答案为3.8.[答案] -2<x <39.[答案] -1<x ≤0或2≤x <3[解析] 当y =2时,(x -1)2+1=2,解得x =0或x =2;当y =5时,(x -1)2+1=5,解得x =3或x =-1,又抛物线的对称轴为直线x =1,∴-1<x ≤0或2≤x <3.10.[答案] 2π[解析] 利用图形的对称性可知图中阴影部分的面积为半圆面积.∵⊙O 的半径为2,∴图中阴影部分的面积为12π×22=2π. 11.解:(1)∵y =2x 2+m ,∴图象开口向上,对称轴为直线x =0,则当x >0时,y 随x 的增大而增大,∴y 1<y 2, 故答案为:<.(2)∵二次函数的图象经过点(0,-4),将(0,-4)代入y =2x 2+m 可得m =-4,∴二次函数的表达式为y =2x 2-4.设AB 与y 轴交于点E ,∵四边形ABCD 为正方形,∴AB ∥x 轴.由抛物线的对称性知AE =EB ,∴BC =2OC .设点C 的坐标为(p ,0)(p >0),则点B 的坐标为(p ,2p ),将(p ,2p )代入二次函数表达式,得2p =2p 2-4,解得p =-1(舍去)或p =2, ∴点B 的坐标为(2,4),∴BC =4.由图形的对称性可知阴影部分的面积为正方形面积的一半,∴S 阴影=12S 正方形ABCD =12×BC 2=12×16=8. 12.[答案] y =-14x 2-32x +74[解析] ∵该函数图象与x 轴两交点间的距离是8,对称轴为直线x =-3,∴二次函数图象与x 轴的两个交点坐标分别是(-7,0),(1,0),故设该二次函数的表达式为y =a (x +7)(x -1).把顶点坐标(-3,4)代入,得4=a (-3+7)(-3-1),解得a =-14. 则该二次函数的表达式为y =-14(x +7)(x -1),即y =-14x 2-32x +74.13.[答案] y =29x 2+49x -169[解析] ∵对称轴为直线x =-1,且图象与x 轴交于A ,B 两点,AB =6,∴直线与x 轴交于(-4,0),(2,0),顶点的横坐标为-1.∵顶点在函数y =2x 的图象上,∴y =2×(-1)=-2,∴顶点坐标为(-1,-2).设二次函数的表达式为y =a (x +1)2-2,把(2,0)代入,得0=9a -2,解得a =29. ∴y =29(x +1)2-2=29x 2+49x -169. 14.解:∵A ,B 两点关于二次函数图象的对称轴对称,∴二次函数图象的对称轴为直线x =6.∵顶点P 到x 轴的距离为3,∴顶点P 的坐标为(6,3)或(6,-3).当二次函数图象的顶点P 的坐标为(6,3)时,设二次函数的表达式为y =a (x -6)2+3,把A (0,0)代入表达式,得a (0-6)2+3=0,解得a =-112, ∴二次函数的表达式为y =-112(x -6)2+3,即y =-112x 2+x ; 当二次函数图象的顶点P 的坐标为(6,-3)时,同理可求得二次函数的表达式为y =112(x -6)2-3,即y =112x 2-x . 故二次函数的表达式为y =-112x 2+x 或y =112x 2-x .15.解:(1)解方程x 2-4x -12=0得x 1=-2,x 2=6,即A (-2,0),B (6,0).(2)将A ,B 两点的坐标代入y =ax 2+bx +6,得⎩⎨⎧4a -2b +6=0,36a +6b +6=0,解得⎩⎪⎨⎪⎧a =-12,b =2, ∴二次函数的表达式为y =-12x 2+2x +6. ∵y =-12x 2+2x +6=-12(x -2)2+8, ∴二次函数图象的对称轴为直线x =2,顶点坐标为(2,8).(3)存在.如图,作点C 关于二次函数图象的对称轴的对称点C ′,连接AC ′,交二次函数图象的对称轴于点P ,此时△APC 的周长最小.∵C (0,6),∴C ′(4,6).设直线AC ′的表达式为y =kx +n ,则⎩⎨⎧-2k +n =0,4k +n =6,解得⎩⎨⎧k =1,n =2,∴y =x +2,当x =2时,y =4,即P (2,4).16.解:(1)依题意,得⎩⎪⎨⎪⎧-b 2a=-1,a +b +c =0,c =3,解之,得⎩⎪⎨⎪⎧a =-1,b =-2,c =3.∴抛物线的表达式为y =-x 2-2x +3.∵抛物线的对称轴为直线x =-1,且经过点A (1,0),∴B (-3,0).把B (-3,0),C (0,3)分别代入y =mx +n ,得⎩⎨⎧-3m +n =0,n =3,解之,得⎩⎪⎨⎪⎧m =1,n =3. ∴直线BC 的表达式为y =x +3.。

2020-2021年北师大版九年级下册数学二次函数专项练习(附答案)

2020-2021年北师大版九年级下册数学二次函数专项练习(附答案)

北师大版九年级下册数学二次函数专项练习一、单选题(共20题;共40分)1.如图,已知抛物线y =-x 2+px +q 的对称轴为x =﹣3,过其顶点M 的一条直线y =kx +b 与该抛物线的另一个交点为N (﹣1,1).要在坐标轴上找一点P,使得△PMN 的周长最小,则点P 的坐标为( )A. (0,2)B. (43,0)C. (0,2)或(43,0)D. 以上都不正确2.已知反比例函数y= k x 的图象如图所示,则二次函数y=2kx 2﹣x+k 2的图象大致为( )A. B. C. D. 3.把抛物线y=2x 2向左平移3个单位,再向上平移2个单位所得抛物线的解析式为( )A. y=2(x+3)2+2B. y=2(x ﹣2)2+3C. y=2(x+2)2+3D. y=2(x ﹣3)2+24.如图,O 为坐标原点,边长为√2的正方形OABC 的顶点A 在x 轴的正半轴上,将正方形OABC 绕顶点O 顺时针旋转75°,使点B 落在某抛物线的图象上,则该抛物线的解析式可能为( )A. y=23x 2B. y=﹣13x 2C. y=﹣12x 2D. y=﹣3x 25.超市有一种“喜之郎”果冻礼盒,内装两个上下倒置的果冻,果冻高为4cm ,底面是个直径为6cm 的圆,横截面可以近似地看作一个抛物线,为了节省成本,包装应尽可能的小,那么要制作这样一个包装盒至少纸板( )平方厘米.(不计重合部分)A. 253B. 288C. 206D. 2456.已知二次函数y =2 x 2+9x+34,当自变量x 取两个不同的值x 1、x 2时,函数值相等,则当自变量x 取x 1+x 2时的函数值与( )A. x =1时的函数值相等B. x =0时的函数值相等C. x =14时的函数值相等D. x =-94时的函数值相等7.下列对抛物线y=-2(x-1)2+3性质的描写中,正确的是( )A. 开口向上B. 对称轴是直线x=1C. 顶点坐标是(-1,3)D. 函数y 有最小值8.若函数y=(1﹣m ) x m 2−2 +2是关于x 的二次函数,且抛物线的开口向上,则m 的值为( )A. ﹣2B. 1C. 2D. ﹣19.若抛物线y=x 2﹣2x+c 与y 轴的交点为(0,﹣3),则下列说法不正确的是( )A. 抛物线开口向上B. 抛物线的对称轴是x=1C. 当x=1时,y 的最大值为4D. 抛物线与x 轴的交点为(﹣1,0),(3,0) 10.若函数 y =kx 2−2x −1 的图像与x 轴有交点,则k 的取值范围是( )A. k ≥−1B. k >−1C. k >−1 且 k ≠0D. k ≥−1 且 k ≠011.在同一直角坐标系中,函数 y =ax 2+b 与 y =ax +2b (ab≠0)的图象大致如图( )A. B. C. D.12.已知二次函数y =ax 2+bx +c 中,其函数y 与自变量x 之间的部分对应值如下表所示:点A(x1,y1)、B(x2,y2)在函数的图象上,则当1<x1<2,3<x2<4时,y1与y2的大小关系正确的是( )A. y1>y2B. y1<y2C. y1≥y2D. y1≤y213.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③若(﹣5,y1),(3,y2)是抛物线上两点,则y1=y2;④4a+2b+c<0,其中说法正确的()A. ①②B. ①②③C. ①②④D. ②③④14.已知抛物线y=(x-a) 2+a+1的顶点在第二象限,那么a的取值范围是()A. a <0B. a <-1C. a >-1D. -1<a<015.二次函数y=ax2+bx+c的图象如图所示,则下列式子中①abc<0;②0<b<-2a;③a<c−b;④a+b+c<02成立的个数有( )A. 1个B. 2个C. 3个D. 4个16.在平面直角坐标系中,将二次函数y=2x2的图象向上平移2个单位,所得图象的解析式为A. y=2x2-2B. y=2x2+2C. y=2(x-2)2D. y=2(x+2)217.二次函数y=a(x﹣m)2﹣n的图象如图,则一次函数y=mx+n的图象经过( )A. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限18.二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论:(1)c<0;(2)b>0;(3)4a+2b+c>0;(4)(a+c)2<b2其中不正确的有()A. 1个B. 2个C. 3个D. 4个19.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=c的大致图象是( )xA. B. C. D.(x+12)+1与y2=a(x-4)2-3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物20.如图,抛物线y1= 12线于B、C两点,且D、E分别为顶点.则下列结论:①a=2;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2. 其中正确的结论的个数是()3A. 1个B. 2个C. 3个D. 4个二、填空题(共15题;共25分)21.在平面直角坐标系中,点A,B的坐标分别为(2,m),(2,3m﹣1),若线段AB与抛物线y=x2﹣2x+2相交,则m的取值范围为________22.在平面直角坐标系中,把抛物线y=﹣1x2+1向上平移3个单位,再向左平移1个单位,则所得抛物线的2解析式是________23.已知抛物线y=x2+bx+2的顶点为P(2,−2),则b=________.24.如图所示的四个二次函数图象分别对应①y=ax2②y=bx2③y=cx2④y=dx2,则a,b,c,d的大小关系为________(用“>“连接)25.如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3;③a+b+c>0;④当x>1时,y随x的增大而增大.正确的说法有________.26.抛物线y=3(x-2)2的开口方向是________,顶点坐标为________,对称轴是________.当x________时,y随x的增大而增大;当x=________时,y有最________值是________,它可以由抛物线y=3x2向________平移________个单位得到.27.如图,过y轴上一点P(0,1)作平行于x轴的直线PB,分别交函数y1=x2(x≥0)与y2= x2(x≥0)的3图象于A1,B1两点,过点B1作y轴的平行线交y1的图象于点A2,再过A2作直线A2B2∥x轴,交y2的图象于点B2,依次进行下去,连接A1A2,B1B2,A2A3,B2B3,…,记△A2A1B1的面积为S1,△A2B1B2的面积为S2,△A3A2B2的面积为S3,△A3B2B3的面积为S4,…则S2016=________28.二次函数y=ax2+bx+c(a≠0)与x轴两交点坐标是(﹣1,0),(5,0),则关于x的一元二次方程ax2+bx+c=0的两根为________.29.已知二次函数y=3(x−1)2+k的图象上有三点A(√2,y1),B(2,y2),C(−√5,y3),则y1、y2、y3的大小关系为________.30.如图,在一幅长50cm,宽30cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂画,设整个挂画总面积为ycm2,金色纸边的宽为xcm,则y与x的关系式是________ .31.已知函数的图象经过点(2,1),且与x轴没有交点,写出一个满足题意的函数的表达式________.32.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(−2,0),抛物线的对称轴为直线x=2,则点B的坐标为________.33.抛物线y=ax2+bx+c经过点A(-5,4),且对称轴是直线x=-2,则a+b+c=________34.小颖用几何画板软件探索方程ax2+bx+c=0的实数根,作出了如图所示的图象,观察得一个近似根为x1=﹣4.5,则方程的另一个近似根为x2=________ (精确到0.1).35.有一长方形纸片,长、宽分别为8 cm和6 cm,现在长宽上分别剪去宽为x cm (x<6)的纸条(如图),则剩余部分(图中阴影部分)的面积y=________,其中________是自变量,________是因变量。

(常考题)北师大版初中数学九年级数学下册第二单元《二次函数》检测题(包含答案解析)

(常考题)北师大版初中数学九年级数学下册第二单元《二次函数》检测题(包含答案解析)

一、选择题1.已知二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则m 的取值范围是( )A .18m >B .18mC .18m >-且0m ≠ D .18m 且0m ≠ 2.在同一坐标系中,函数y ax b =+与2(0)y ax bx a =+≠的图象可能是( ) A . B . C . D . 3.对称轴为y 轴的二次函数是( )A .y=(x+1)2B .y=2(x-1)2C .y=2x 2+1D .y=-(x-1)2 4.已知二次函数()222y mx m x =+-,它的图象可能是( )A .B .C .D .5.如图,二次函数()20y ax bx c a =++≠图象的顶点为D ,其图像与x 轴的交点A 、B 的横坐标分别为-1,3,与y 轴负半轴交于点C .在下面四个结论中:①0a b c ++<;②13a c =-;③只有当12a =时,ABD △是等腰直角三角形; ④使ACB △为等腰三角形的a 值可以有两个.其中正确的结论有 A .1个B .2个C .3个D .4个 6.抛物线221y x =--的顶点坐标是( )A .(2,1)--B .(2,1)C .(0,1)-D .(0,1)7.二次函数223y x =-+在14x -≤≤内的最小值是( )A .3B .2C .-29D .-308.汽车刹车后行驶的距离s (单位:m )关于行驶的时间t (单位:s )的函数解析式是2156s t t =-.汽车刹车后到停下来前进了多远?( )A .10.35mB .8.375mC .8.725mD .9.375m 9.已知二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则下列结论:①abc >0;②a ﹣b +c >0;③4a ﹣2b +c <0,其中结论正确的个数为( )A .0个B .1个C .2个D .3个10.已知二次函数223y x x =--+,下列叙述中正确的是( )A .图象的开口向上B .图象的对称轴为直线1x =C .函数有最小值D .当1x >-时,函数值y 随自变量x 的增大而减小11.二次函数2y ax bx c =++的图像如图,现有以下结论:①0abc >;②42a c b +<;③320b c +<;④()(1)m am b b a m ++<≠-,其中正确结论序号为( )A .①③④B .②③④C .①②③D .①②③④ 12.如图,二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴负半轴交于点C ,它的对称轴为直线12x =,则下列选项中正确的是( )A .0abc <B .0a b -=C .40a c ->D .当2(1x n n =+为实数)时,y c ≤二、填空题13.如图,直线334y x =-+与x 轴交于点C ,与y 轴交于点B ,抛物线233384y x x =-++经过B ,C 两点,点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,则EM 的最大值为_____.14.如图,二次函数2y x mx =-+的图象与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在14x <<的范围内有解,则t 的取值范围是_______.15.二次函数2y ax bx c =++的图象如图所示,有如下结论:①0abc >;②20a b -=;③320b c +>;④2(am bm a b m +≤-为实数).其中正确结论是_____________(只填序号).16.如图1,AO ,BC 是两根垂直于地面的立柱,且长度相等.在两根立柱之间悬挂着一根绳子,如图2建立坐标系,绳子形如抛物线21410y x x =-+的图象.因实际需要,在OA 与BC 间用一根高为2.5m 的立柱MN 将绳子撑起,若立柱MN 到OA 的水平距离为3m ,MN 左侧抛物线的最低点D 与MN 的水平距离为1m ,则点D 到地面的距离为______.17.已知抛物线2(0)y ax bx c a =++>经过(2,0)A ,(4,0)B 两点.若()15,P y ,()2,Q m y 是抛物线上的两点,且12y y >,则m 的取值范围是______.18.写出一个二次函数,使其满足:①图象开口向下;②当0x >时,y 随着x 的增大而减小.这个二次函数的解析式可以是______.19.若函数2(1)42y a x x a =+-+的图像与x 轴有且只有一个交点,则a 的值为____. 20.把函数y =x 2+3的图像向下平移1个单位长度得到的图像对应的函数关系式为________.三、解答题21.某产品的成本是120元/件,在试销阶段,当产品的售价为x (元/件)时,日销售量为(200-x )件.(1)写出用售价x (元/件)表示每日的销售利润y (元)的表达式(2)当日销售利润是1500元时,产品的售价是多少?日销售量是多少件?(3)当售价定位多少时,日销售利润最大?最大日销售利润是多少元?22.已知地物线2y x bx c =-++()0a ≠与y 轴交于点A ,点()3,2B 在该抛物线上 (1)若抛物线的对称轴是直线x m =,请用含b 的式子表示m ;(2)如图1,过点B 作x 轴的垂线段,垂足为点C .连结AB 和AC ,当ABC 为等边三角形时,求抛物线解析式;(3)如图2,在(2)条件下,已知P 为x 轴上的一动点,连结AP 和BP ,当30APB ∠=︒时,求满足条件的点P 的坐标.23.抛物线y =2x 2+4mx +m -5的对称轴为直线x =1,求m 的值及抛物线的顶点坐标. 24.已知抛物线的顶点坐标是()1,4-,且过点(0,3).()1求这个抛物线对应的函数表达式.()2在所给坐标系中画出该函数的图象.()3当x 取什么值时,函数值小于0?25.已知抛物线2y ax c =+经过点()0,2A 和点()1,0B -.(1)求抛物线的解析式;(2)将(1)中的抛物线平移,使其顶点坐标为()2,1,平移后的抛物线与x 轴的两个交点分别为点,C D (点C 在点D 的左边).求点,C D 的坐标;(3)将(1)中的抛物线平移,设其顶点的纵坐标为m ,平移后的抛物线与x 轴两个交点之间的距离为n .若15m <≤,直接写出n 的取值范围.26.如图,已知某二次函数的顶点坐标是(1,4)-,且经过点(4,5)A(1)求该二次函数的表达式;(2)点(,)P m n 是该二次函数图象上一点,若点P 到y 轴的距离不大于4,请根据图象直接写出n 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,可得△=221410m m m -⨯->(+)()且0m ≠求解后即可得出结论.【详解】解:∵原函数是二次函数,∴0m ≠,∵二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则△=240b ac ->,即221410m m m -⨯->(+)(), 解得18m >-. ∴m 的取值范围是18m >-且0m ≠. 故选:C .【点睛】本题考查了抛物线与x 轴的交点问题,掌握抛物线与x 轴的交点问题与一元二次方程根之间的关系是解题的关键.2.A解析:A【分析】根据二次函数的c 值为0,确定二次函数图象经过坐标原点,再根据a 值确定出二次函数的开口方向与一次函数所经过的象限即可得解.【详解】解:2(0)y ax bx a =+≠,0c ,∴二次函数经过坐标原点,故B 、C 选项错误; A 、根据二次函数开口向上0a >,对称轴b x 02a =->, 所以,0b <,一次函数经过第一三象限,0a >,与y 轴负半轴相交,所以,0b <,符合,故本选项正确;D 、二次函数图象开口向下,0a <,一次函数经过第一三象限,0a >,矛盾,故本选项错误.故选:A .【点睛】本题考查了二次函数的图象,一次函数的图象,熟练掌握函数解析式的系数与图象的关系是解题的关键.3.C解析:C【分析】由已知可知对称轴为x =0,从而确定函数解析式y =ax 2+bx +c 中,b =0,由选项入手即可.【详解】解:二次函数的对称轴为y 轴,则函数对称轴为x =0,即函数解析式y =ax 2+bx +c 中,b =0,故选:C .【点睛】本题考查二次函数的性质;熟练掌握二次函数的图象及性质是解题的关键.4.B解析:B【分析】分m >0,m <0两种情形,判断对称轴与x=14的位置关系即可. 【详解】∵()222y mx m x =+-, ∴抛物线一定经过原点,∴选项A 排除;∵()222y mx m x =+- , ∴对称轴为直线x=22224m m m m ---=⨯, ∵24m m --14=24m m m --=24m-, 当m >0时,抛物线开口向上,24m -<0, ∴对称轴在直线x=14的左边, B 选项的图像符合;C 选项的图像不符合; 当m <0时,抛物线开口向下,24m ->0, ∴对称轴在直线x=14的右边, D 选项的图像不符合;故选B.【点睛】 本题考查了二次函数的图像,熟练掌握抛物线经过原点的条件,抛物线对称轴的位置与定直线的关系的判定是解题的关键.5.D解析:D【分析】先根据图象与x 轴的交点A ,B 的横坐标分别为﹣1,3确定出AB 的长及对称轴,再由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①由抛物线的开口方向向上可推出a >0,∵图像与x 轴的交点A 、B 的横坐标分别为-1,3,∴对称轴x =1,∴当x =1时,y <0,∴a +b +c <0;故①正确;②∵点A 的坐标为(﹣1,0),∴a ﹣b +c =0,又∵b =﹣2a ,∴a ﹣(﹣2a )+c =0,∴c =﹣3a ,∴13a c =-∴结论②正确.③如图1,连接AD ,BD ,作DE ⊥x 轴于点E , ,要使△ABD 是等腰直角三角形,则AD =BD ,∠ADB =90°,∵DE ⊥x 轴,∴点E 是AB 的中点,∴DE =BE ,即|244ac b a -|()312--==2,又∵b =﹣2a ,c =﹣3a ,∴|()()24324a a a a⨯---|=2,a >0, 解得a 12=, ∴只有当a 12=时,△ABD 是等腰直角三角形, 结论③正确 ④要使△ACB 为等腰三角形,则AB =BC =4,AB =AC =4,或AC =BC ,Ⅰ、当AB =BC =4时,在Rt △OBC 中,∵OB =3,BC =4,∴OC 2=BC 2﹣OB 2=42﹣32=16﹣9=7,即c 2=7,∵抛物线与y 轴负半轴交于点C ,∴c <0,c 7=-,∴a 73c =-=.Ⅱ、当AB =AC =4时,在Rt △OAC 中,∵OA =1,AC =4,∴OC 2=AC 2﹣OA 2=42﹣12=16﹣1=15,即c 2=15,∵抛物线与y 轴负半轴交于点C ,∴c <0,c=,∴a 3c =-= Ⅲ、当AC =BC 时,∵OC ⊥AB ,∴点O 是AB 的中点,∴AO =BO ,这与AO =1,BO =3矛盾,∴AC =BC 不成立.∴使△ACB 为等腰三角形的a . 结论④正确.故答案选:D【点睛】二次函数y =ax 2+bx +c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0;(2)b 由对称轴和a 的符号确定:由对称轴公式x 2b a=-判断符,(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0;(4)b 2﹣4ac 由抛物线与x 轴交点的个数确定:①2个交点,b 2﹣4ac >0;②1个交点,b 2﹣4ac =0;③没有交点,b 2﹣4ac <0.6.C解析:C【分析】根据题目中的函数解析式可以直接写出该抛物线的顶点坐标.【详解】解:∵y=-2x 2-1,∴该抛物线的顶点坐标为(0,-1),故选:C .【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,利用二次和函数的性质解答. 7.C解析:C【分析】根据图象,直接代入计算即可解答 【详解】解:由图可知,当x=4时,函数取得最小值y 最小值=-2×16+3=-29.故选:C . 【点睛】本题考查二次函数最小(大)值的求法.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.8.D解析:D 【分析】求出函数的最大值即可得求解. 【详解】∵22575156648s t t t ⎛⎫--- ⎪⎝⎭==+, ∴当54t =时,s 取得最大值759.3758=,即汽车刹车后到停下来前进的距离是9.375m 故选D . 【点睛】本题主要考查二次函数的应用,根据题意理解其最大值的实际意义是解题的关键.9.D解析:D 【分析】由抛物线开口向下,得到a <0,再由对称轴在y 轴左侧,得到a 与b 同号,可得出b <0,又抛物线与y 轴交于正半轴,得到c >0,可得出abc >0,得到①正确;根据图象知,当x =﹣1时,y >0,即a ﹣b +c >0,得到②正确;根据图象知,当x =﹣2时,y <0,即4a ﹣2b +c <0,得到③正确,从而得出结论. 【详解】解:∵抛物线的开口向下,∴a <0.∵02ba -<, ∴b <0.∵抛物线与y 轴交于正半轴, ∴c >0,∴abc >0,故①正确;根据图象知,当x =﹣1时,y >0,即a ﹣b +c >0,故②正确; 根据图象知,当x =﹣2时,y <0,即4a ﹣2b +c <0,故③正确. 则其中正确的有3个,为①②③. 故选:D . 【点睛】本题考查了二次函数图象与系数的关系,对于二次函数y =ax 2+bx +c (a ≠0)来说,a 的符号由抛物线开口方向决定;b 的符号由对称轴的位置及a 的符号决定;c 的符号由抛物线与y 轴交点的位置决定;此外还要注意利用抛物线的对称性及x =﹣1,﹣2时对应函数值的正负.10.D解析:D 【分析】将函数图形变成顶点式,依照二次函数的性质对比四个选项即可得出结论. 【详解】解:A. 2223=(1)4y x x x =--+-++∵a=-1<0,∴图象的开口向下,故选项A 错误; B.2223=(1)4y x x x =--+-++∴图象的对称轴为直线1x =-,故选项B 错误; C.2223=(1)4y x x x =--+-++ ∵a=-1<0,∴图象的开口向下,函数有最大值,故选项C 错误; D. 2223=(1)4y x x x =--+-++∴当1x >-时,函数值y 随自变量x 的增大而减小,故选项D 正确; 故选:D . 【点睛】本题考查二次函数的性质,解题的关键是将二次函数关系式变为顶点式,联立二次函数性质对比四个选项即可.11.A解析:A 【分析】由函数图像与对称轴的方程结合可判断①,由抛物线的对称性结合点()2,42a b c --+的位置可判断②,由抛物线的图像结合点()1,a b c ++的位置,对称轴方程,可判断③,由函数的最大值可判断④,从而可得答案. 【详解】 解:图像开口向下, a ∴<0,12bx a=-=-<0, b ∴<0,函数图像与y 轴交于正半轴,c ∴>0,abc ∴>0,故①符合题意; 抛物线与x 轴的一个交点在0~1之间,由抛物线的对称性可得:抛物线与x 轴的另一个交点在3~2--之间,∴ 当2x =-时,42y a b c =-+>0,4a c ∴+>2,b 故②不符合题意;12bx a=-=-, 2,b a ∴= 即1,2a b =当1x =时,y a b c =++<0, 12b bc ∴++<0, 32b c ∴+<0,故③符合题意; 当1x =-时,函数有最大值,y a b c =-+当1x m =≠-,2,y am bm c =++2am bm c ∴++<,a b c -+()m am b b ∴++<,a 故④符合题意.故选:.A 【点睛】本题考查的是抛物线的图像与系数之间的关系,二次函数的性质,掌握以上知识是解题的关键.12.D解析:D 【分析】根据二次函数的图像和性质,分别对每个选项进行判断,即可得到答案. 【详解】解:由图象开口向上,可知a<0, 与y 轴的交点在x 轴的下方,可知c<0,又对称轴方程为12x =,所以122b a -=>0,所以b >0, ∴abc >0,故A 错误;∵122b a -= ∴=-a b ,∴0a b +=,故B 错误;当12x =时,则11042y a b c =++>,∵=-a b ,∴11042a a c -+>, ∴104a c -+>, ∴40a c -<,故C 错误; 当21x n =+时,222(1)(1)y a n b n c =++++ 4222an an a an a c =++--+ 42an an c =++22(1)an n c =++;∵n 为实数,∴20an ≤,211n +≥, ∴22(1)an n c c ++≤, 即y c ≤,故D 正确; 故选:D . 【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】设出E 的坐标表示出M 坐标进而表示出EM 化成顶点式即可求得EM 的最大值【详解】解:∵点E 是直线BC 上方抛物线上的一动点∴点E 的坐标是(m )点M 的坐标是(m )∴EM =﹣()==(m2﹣4m )=(解析:32【分析】设出E 的坐标,表示出M 坐标,进而表示出EM ,化成顶点式即可求得EM 的最大值. 【详解】解:∵点E 是直线BC 上方抛物线上的一动点, ∴点E 的坐标是(m ,233384m m -++),点M 的坐标是(m ,334m -+), ∴EM =233384m m -++﹣(334m -+)=23382m m -+=38-(m 2﹣4m )=38-(m ﹣2)2+32, ∴当m =2时,EM 有最大值为32, 故答案为32. 【点睛】本题考查了二次函数图象上点的坐标特征,一次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.14.【分析】求出函数解析式求出函数值取值范围把t 的取值范围转化为函数值的取值范围【详解】先由已知可得二次函数y=−x2+mx 的图象与x 轴交于坐标原点和(40)所以对称轴x==所以m=4代入方程y=−x2 解析:04t <≤【分析】求出函数解析式,求出函数值取值范围,把t 的取值范围转化为函数值的取值范围. 【详解】先由已知可得,二次函数 y=−x 2+mx 的图象与 x 轴交于坐标原点和 (4,0) 所以对称轴 x=2b a-=()221m -=⨯-, 所以m=4,代入 方程y=−x 2+mx 得, y=-x 2+4x , 当x=2时,y=4 即顶点坐标是(2,4) 当x=1时,y=3, 当x=4时,y=0 由x 2−mx+t=0 得 t=-x 2+4x=y因为当 1<x<4 时, 0<y≤4,所以在 1<x<4 范围内有实数解,则 t 的取值范围是0<t≤4, 故答案为:0<t≤4 . 【点睛】本题考查了二次函数和一元二次方程数形结合分析问题,注意函数的最低点和最高点.15.①②④【分析】根据抛物线开口向下对称轴抛物线与轴相交于正半轴可得可以判断①和②正确;当时有解得由图像可知化简后可判断得③错误;由图像可知当时抛物线有最大值当时根据得到化简后得故④正确【详解】解:抛物解析:①②④. 【分析】根据抛物线开口向下,对称轴12bx a=-=-,抛物线与y 轴相交于正半轴,可得0a <,20b a =<,0c >,可以判断①和②正确;当0y =时,有210a x c a ,解得11a cx a ,21a cx a,由图像可知,011a c a,化简后可判断得③错误;由图像可知,当1x =-时,抛物线有最大值1y a bc ,当x m =时,22y am bmc ,根据12y y ≥得到20a bcam bmc化简后得2am bm a b +≤-,故④正确.【详解】 解:抛物线开口向下,0a ∴<,抛物线的对称轴12bx a=-=-, 20b a ∴=<,抛物线与y 轴相交于正半轴,0c ∴>,∴0abc >,故①正确;∴2220a b a a -=-=,故②正确;当0y =时,2220ax bx c ax ax c ,∴210a x c a∴11a cx a, 21a cx a由图像可知,011a c a∴14a c a则有30a c +<,∴62320a c b c +=+<,故③错误; 由图像可知,当1x =-时,抛物线有最大值1y a bc ,当x m =时,22y am bmc ,∵12y y ≥ ∴20a bcam bmc则2am bm a b +≤-,故④正确; 故答案是:①②④. 【点睛】本题考查了二次函数的图象与系数的关系,熟悉相关性质是解题的关键.16.2m 【分析】根据起始抛物线确定点A 的坐标结合已知确定N 的坐标从而确定新抛物线的解析式即可求解【详解】∵抛物线解析式为∴点A 的坐标为(04)∵立柱到的水平距离为左侧抛物线的最低点与的水平距离为∴新抛物解析:2m . 【分析】根据起始抛物线,确定点A 的坐标,结合已知确定N 的坐标,从而确定新抛物线的解析式即可求解. 【详解】∵抛物线解析式为21410y x x =-+, ∴点A 的坐标为(0,4),∵立柱MN 到OA 的水平距离为3m ,MN 左侧抛物线的最低点D 与MN 的水平距离为1m ,∴新抛物线的顶点坐标的横坐标为2,点N 的坐标为(3,52), 设抛物线的解析式为y=a 2(2)x k -+,把(0,4),(3,52)分别代入解析式,得 5a 244k a k ⎧+=⎪⎨⎪+=⎩, 解得1a 22k ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为y=21(2)22x -+, ∴抛物线的最小值为2即点D 到地面的距离为2, 故答案为:2. 【点睛】本题考查了二次函数的生活应用,解析式的确定,熟练把生活问题转化为函数问题,灵活确定抛物线的解析式是解题的关键.17.【分析】根据图像经过的两点确定抛物线的对称轴利用对称轴确定P 的对称点利用数形结合思想确定m 的范围即可【详解】∵抛物线经过两点∴解得b=-6a ∴抛物线的对称轴为直线x==3∴的对称点为∵∴故填【点睛】解析:15m <<. 【分析】根据图像经过的两点,确定抛物线的对称轴,利用对称轴,确定P 的对称点,利用数形结合思想,确定m 的范围即可. 【详解】∵抛物线2(0)y ax bx c a =++>经过(2,0)A ,(4,0)B 两点,∴4201640a b c a b c ++=⎧⎨++=⎩, 解得b=-6a ,∴抛物线的对称轴为直线x=2ba-=3, ∴()15,P y 的对称点为()11,P y ', ∵12y y >, ∴15m <<, 故填15m <<. 【点睛】本题考查了二次函数的对称性,熟记二次函数的性质是解题的关键.18.y=-x2-2x-1【分析】首先由①得到a <0;由②得到-≤0;只要举出满足以上两个条件的abc 的值即可得出所填答案【详解】解:二次函数y=ax2+bx+c①开口向下∴a <0;②当x >0时y 随着x 的解析:y=-x 2-2x-1. 【分析】首先由①得到a <0;由②得到-2ba≤0;只要举出满足以上两个条件的a 、b 、c 的值即可得出所填答案. 【详解】解:二次函数y=ax 2+bx+c , ①开口向下, ∴a <0;②当x >0时,y 随着x 的增大而减小,-2ba≤0,即b <0; ∴只要满足以上两个条件就行,如a=-1,b=-2,c=-1时,二次函数的解析式是y=-x 2-2x-1.故答案为:y=-x2-2x-1.【点睛】本题主要考查了二次函数的性质,熟练运用性质进行计算是解此题的关键.此题是一道开放型的题目.19.或或【分析】分该函数是一次函数和二次函数两种情况求解若为二次函数由抛物线与x轴只有一个交点时b2−4ac=0据此求解可得【详解】解:当a+1=0即a=−1时函数解析式为y=−4x−2与x轴只有一个交-或1解析:2-或1【分析】分该函数是一次函数和二次函数两种情况求解,若为二次函数,由抛物线与x轴只有一个交点时b2−4ac=0,据此求解可得.【详解】解:当a+1=0,即a=−1时,函数解析式为y=−4x−2,与x轴只有一个交点;当a+1≠0,即a≠−1时,根据题意知,(−4)2−4×(a+1)×2a=0,整理,得:a2+a−2=0,解得:a=1或a=−2;综上,a的值为−1或−2或1.-或1.故答案为:2-或1【点睛】本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2−4ac决定抛物线与x轴的交点个数:△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.20.y=x2+2【分析】根据向下平移纵坐标减求出平移后函数的顶点坐标再利用顶点式写出解析式即可【详解】解:函数y=x2+3的顶点坐标为(03)∵函数图象向下平移1个单位长度∴得到的函数图象顶点坐标为(0解析:y=x2+2.【分析】根据向下平移纵坐标减求出平移后函数的顶点坐标,再利用顶点式写出解析式即可.【详解】解:函数y=x2+3的顶点坐标为(0,3),∵函数图象向下平移1个单位长度,∴得到的函数图象顶点坐标为(0,2),∴得到函数解析式为y=x2+2.故答案为:y=x2+2.【点睛】本题考查了二次函数的平移变换,通过平移求出新图象顶点坐标是关键.三、解答题21.(1)y=-x 2+320x-24000 ;(2)当日销售利润1500元时,产品的售价是170元/件或150元/件,日销售量是30件或50件;(3)当售价定为160元/件时,日销售利润最大,最大日销售利润是1600元. 【分析】(1)根据利润=(销售价-成本价)×销售量可以得到解答;(2)令(1)中y=1500可以得到关于x 的一元二次方程,解方程即可得到产品售价x 的值,并进一步得到日销售量;(3)把(1)得到的函数配方,再根据二次函数的性质即可得到解答 . 【详解】解:(1)y =(x -120)(200-x )=-x 2+320x-24000 ; (2)日销售利润是1500元,即y=1500,则 1500=-x 2+320x-24000 解得:x 1=170,x 2=150当x=170时,日销售量是30件,当x=150时,日销售量是50件∴当日销售利润1500元时,产品的售价是170元/件或150元/件,日销售量是30件或50件 .(3)∵y=-x 2+320x-24000 =-(x-160)2+1600∴当售价定为160元/件时,日销售利润最大,最大日销售利润是1600元. 【点睛】本题考查二次函数的综合应用,由题意列出二次函数关系式,然后根据二次函数的性质求解即可.22.(1)2b m =;(2)21y x =-+;(3))12,0P ,)22,0P【分析】(1)直接根据对称轴为2bx a=-代入a ,b 计算即可得出答案; (2)首先根据点B 的坐标及等边三角形求出AC ,OC 的长度,然后利用勾股定理求出AO 的长度,从而得出c 的值,最后将点B 代入解析式中即可求解;(3)根据等边三角形的性质及圆周角定理确定出点P 的位置从而可确定出点P 的坐标. 【详解】 (1)∵22b b x a =-=, ∴2b m =.(2)∵ABC 为等边三角形,BC x ⊥轴,)B ,∴2AC BC ==,3OC =, 在Rt AOC 中, 221AO AC OC =-=∴1c =把()3,2B 代入21y x bx =-++,得43b =, ∴2431y x x =-++. (3)如图,由(2)知ABC 为等边三角形,∴60ACB ∠=︒,∵30APB ∠=︒,∴2ACB APB =∠∠,由同弦所对圆周角等于圆心角的一半可知,以点C 为圆心,BC 为半径作圆,经过点P . ∵P 在x 轴上,∴点P 即为圆C 与x 轴的交点,∵2BC =,∴2r,2CP = ∵()3,0C, ∴()132,0P -, 由轴对称性可知,()232,0P +.【点睛】本题主要考查二次函数与几何综合,掌握待定系数法,等边三角形的性质及圆的有关性质是解题的关键.23.m 的值是-1,抛物线的顶点坐标是(1,-8).【分析】根据y=2x 2+4mx+m-5的对称轴为直线x=1,可以求得m 的值,然后代入原来的解析中,将解析式化为顶点式即可解答本题.【详解】解:∵y =2x 2+4mx +m -5的对称轴为直线x =1,∴-422m ⨯=1, 解得m =-1, ∴y =2x 2-4x -6=2(x -1)2-8,∴此抛物线的顶点坐标为(1,-8),∴m 的值是-1,抛物线的顶点坐标是(1,-8).【点睛】本题考查二次函数的性质,解答本题的关键是知道抛物线的对称轴是直线x=-2b a,由二次函数的顶点式可以写出它的顶点坐标.24.()()2114y x =-++或223y x x =--+;()2见解析;()33x <-或1x > 【分析】(1)由抛物线的顶点坐标是()1,4-,设抛物线的解析式为()214y a x =++,由抛物线()214y a x =++过点(0,3),1a =-即可;(2)列表,描点在平面直角坐标系中描出点(-3,0),(-2,3),(-1,4),(0,3),(1,0)用平滑曲线连接即可;(3)由函数值小于0,可得函数图像再x 轴下方,在-3左侧和1右侧即可.【详解】解:(1)∵抛物线的顶点坐标是()1,4-,设抛物线的解析式为()214y a x =++,抛物线()214y a x =++过点(0,3), 4=3a +,1a =-,抛物线的解析式为()214y x =-++;(2)列表:0)连线:用平滑曲线连接,(3)∵函数值小于0,∴函数图像再x 轴下方,在-3左侧和1右侧,当x<-3或x>1时,函数值小于0.【点睛】本题考查抛物线的解析式,画函数图像,函数图像的位置关系,掌握抛物线的解析式的求法,描点画函数图像的方法,函数图像与x 轴关系自变量范围是解题关键.25.(1)222y x =-+;(2)222,0,222C D ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭;(3210n <≤【分析】(1)把点A 、B 的坐标分别代入函数解析式,列出关于a 、c 的方程组,通过解方程求得它们的值;(2)根据平移的规律写出平移后抛物线的解析式,然后令0y =,则解关于x 的方程,即可求得点C 、D 的横坐标;(3)根据抛物线与x 轴两个交点之间的距离为2211212||()4x x x x x x -+-的关系来即可求n 的取值范围;【详解】解:(1)抛物线2y ax c =+经过点(0,2)A 和点(1,0)B -, ∴20c a c =⎧⎨+=⎩, 解得:22a c =-⎧⎨=⎩, ∴此抛物线的解析式为222y x =-+;(2)此抛物线平移后顶点坐标为(2,1),∴抛物线的解析式为22(2)1y x =--+,令0y =,即22(2)10x --+=,解得 1222x =+,2222x =-,点C 在点D 的左边,(C ∴ 2-0),(2D +,0); (3)设平移后抛物线的解析式是22y x m =-+,该抛物线与x 轴的两交点横坐标为1x ,2x ,整理为:220x m -=.此时120x x +=,122m x x =-.则21||x x n -==.当1m =时,n =当5m =时,n =.所以,n n <≤【点睛】本题考查了待定系数法求二次函数解析式,二次函数图象的几何变换.要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.26.(1)223y x x =--;(2)421n -.【分析】(1)设二次函数的解析式是y=a (x-h )2+k ,先代入顶点A 的坐标,再把B 的坐标代入,即可求出a ,即可得出解析式;(2)由点P 到y 轴的距离不大于4,得出 ,结合二次函数的图象可知,请根据图象直接写出n 的取值范围.【详解】解:(1)某二次函数的顶点坐标是(1,4)-,且经过点(4,5)A ,设二次函数的解析式为2(1)4y a x =--,把(4,5)A 代入得:25(41)4a =--解得:1a =,所以函数表达式为:223y x x =--.(2)点P 到y 轴的距离为||m ,∴||m ≤4,∴44m -,∵2223(1)4y x x x =--=--,在44m -时,当m=1时,有最小值n=-4;当m=-4时,有最大值n=21,∴421n -.【点睛】本题考查了待定系数法求二次函数的表达式,二次函数求最值,二次函数图象和性质的应用,求二次函数的取值范围,掌握二次函数的图象和性质的应用是解题的关键.。

北师大九年级下专题训练(二)二次函数与几何的综合问题(含答案)

北师大九年级下专题训练(二)二次函数与几何的综合问题(含答案)

专题训练(二)二次函数与几何的综合问题►类型一二次函数与三角形的结合1.如图6-ZT-1,直线l过A(4,0)和B(0,4)两点,它与二次函数y=ax2的图象在第一象限内相交于点P,若S△AOP=92,求二次函数的表达式.图6-ZT-12.如图6-ZT-2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c 与x轴相交于点A(-1,0)和点B,与y轴交于点C,对称轴为直线x=1.(1)求点C的坐标(用含a的代数式表示);(2)连接AC,BC,若△ABC的面积为6,求此抛物线的表达式.图6-ZT-2►类型二二次函数与平行四边形的结合3.如图6-ZT-3,四边形ABCD是平行四边形,过点A,C,D作抛物线y=ax2+bx+c,点A,B,D的坐标分别为(-2,0),(3,0),(0,4).求抛物线的表达式.图6-ZT -3► 类型三 二次函数与特殊平行四边形的结合4.如图6-ZT -4,直线y =-3x +3与x 轴、y 轴分别交于点A ,B ,抛物线y =a(x -2)2+k 经过点A ,B ,且与x 轴交于另一点C ,其顶点为P.(1)求a ,k 的值;(2)抛物线的对称轴上有一点Q ,使△ABQ 是以AB 为底边的等腰三角形,求点Q 的坐标;(3)在抛物线及其对称轴上分别取点M ,N ,使以A ,C ,M ,N 为顶点的四边形为正方形,求此正方形的边长.图6-ZT -45.2017·邵阳如图6-ZT -5所示,顶点坐标为(12,-94)的抛物线y =ax 2+bx +c 过点M(2,0).(1)求抛物线的表达式;(2)点A 是抛物线与x 轴的交点(不与点M 重合),点B 是抛物线与y 轴的交点,点C 是直线y =x +1上一点(位于x 轴下方),点D 是反比例函数y =k x (k>0)图象上一点.若以点A ,B ,C ,D 为顶点的四边形是菱形,求k 的值.图6-ZT-5►类型四二次函数与几何变换的综合6.如图6-ZT-6所示,已知抛物线E:y=-2x2-4x,将其向右平移2个单位长度后得到抛物线F.(1)求抛物线F的表达式;(2)设抛物线F和x轴相交于点O,B(点B位于点O的右侧),顶点为C,点A位于y轴的负半轴上,且到x轴的距离等于点C到x轴的距离的2倍,求AB所在直线的表达式.图6-ZT-67.已知二次函数y=2x2+4x+k-1.(1)当二次函数的图象与x轴有交点时,求k的取值范围;(2)若A(x1,0)与B(x2,0)是二次函数图象上的两个点,且当x=x1+x2时,y=-6,求二次函数的表达式,并在所提供的直角坐标系中画出它的大致图象;(3)在(2)的条件下,将抛物线在x轴下方的部分沿x轴翻折,其余部分保持不变,得到一个新的图象,当直线y=12x+m(m<3)与新图象有两个公共点,且m为整数时,求m的值.图6-ZT-7详解详析1.解:设直线l 的表达式为y =kx +b .∵直线l 过点A (4,0),B (0,4),∴⎩⎪⎨⎪⎧4k +b =0,b =4,∴⎩⎪⎨⎪⎧k =-1,b =4, ∴y =-x +4.设点P 的纵坐标为y P ,∵S △AOP =92,∴12×4·y P =92,∴y P =94,∴94=-x +4,解得x =74,∴点P 的坐标为(74,94).把⎝ ⎛⎭⎪⎫74,94代入y =ax 2,解得a =3649, ∴二次函数的表达式为y =3649x 2.2.解:(1)∵抛物线y =ax 2+bx +c 的对称轴为直线x =1, 而抛物线与x 轴的一个交点A 的坐标为(-1,0),∴抛物线与x 轴的另一个交点B 的坐标为(3,0).设抛物线的表达式为y =a (x +1)(x -3),即y =ax 2-2ax -3a ,当x =0时,y =-3a ,∴C (0,-3a ).(2)由(1)可得AB =4,OC =3a ,∴S △ABC =12AB ·OC =6a ,∴6a =6,解得a =1,∴抛物线的表达式为y =x 2-2x -3.3.解:由题意可得点C 的坐标为(5,4).把(-2,0),(0,4),(5,4)代入y =ax 2+bx +c 中,得⎩⎪⎨⎪⎧0=4a -2b +c ,4=c ,4=25a +5b +c ,解得⎩⎪⎨⎪⎧a =-27,b =107,c =4.∴抛物线的表达式为y =-27x 2+107x +4.4.解:(1)∵直线y =-3x +3与x 轴、y 轴分别交于点A ,B , ∴A (1,0),B (0,3).又∵抛物线y =a (x -2)2+k 经过点A (1,0),B (0,3),∴⎩⎪⎨⎪⎧a +k =0,4a +k =3,解得⎩⎪⎨⎪⎧a =1,k =-1. 即a ,k 的值分别为1,-1.(2)设点Q 的坐标为(2,m ),对称轴x =2交x 轴于点F ,过点B 作BE ⊥直线x =2于点E .在Rt △AQF 中,AQ 2=AF 2+QF 2=1+m 2.在Rt △BQE 中,BQ 2=BE 2+EQ 2=4+(3-m )2.∵AQ =BQ ,∴1+m 2=4+(3-m )2,∴m =2.∴点Q 的坐标为(2,2).(3)当点N 在对称轴上时,NC 与AC 不垂直,∴AC 应为正方形的对角线.又∵对称轴直线x =2是线段AC 的垂直平分线,∴点M 与顶点P (2,-1)重合,点N 为点P 关于x 轴的对称点,其坐标为(2,1).此时,MF =NF =AF =CF =1,且AC ⊥MN ,∴四边形AMCN 为正方形.在Rt △AFN 中,AN =AF 2+NF 2=2,即正方形的边长为 2.5.解:(1)依题意可设抛物线的表达式为y =a (x -12)2-94,将点M (2,0)代入可得a =1,∴抛物线的表达式为y =(x -12)2-94=x 2-x -2.(2)当y =0时,x 2-x -2=0,解得x 1=-1,x 2=2,∴A (-1,0). 当x =0时,y =-2,∴B (0,-2).在Rt △OAB 中,OA =1,OB =2,∴AB = 5.设直线y =x +1与y 轴的交点为点G ,易求G (0,1),∴Rt △AOG 为等腰直角三角形,∴∠AGO =45°.∵点D 是反比例函数y =k x (k >0)图象上一点,∴点D 只能在第一、三象限,因此符合条件的菱形只能有如下两种情况:∴①此菱形以AB 为边且AC 也为边,如图①所示,过点D 作DN ⊥y 轴于点N .在Rt △BDN 中,∵∠DBN =∠AGO =45°,∴DN =BN =102,∴D (-102,-102-2).∵点D 在y =k x 的图象上,∴k =-102·(-102-2)=52+10.②此菱形以AB 为对角线,如图②所示,作AB 的垂直平分线CD 交直线y =x +1于点C ,交y =k x 的图象于点D ,再分别过点D ,B 作DE ⊥x 轴于点F ,BE ⊥y 轴,DE 与BE 相交于点E .在Rt △BDE 中,同①可证∠AGO =∠DBO =∠BDE =45°,∴BE =DE . 可设点D 的坐标为(x ,x -2).∵BE 2+DE 2=BD 2,∴BD =2BE =2x .∵四边形ACBD 是菱形,∴AD =BD =2x .∵在Rt △ADF 中,AD 2=AF 2+DF 2, 即(2x )2=(x +1)2+(x -2)2,解得x =52.∴点D 的坐标为(52,12).∵点D 在y =k x 的图象上,∴k =54.综上所述,k 的值为52+10或54.6.解:(1)方法一:原抛物线y =-2x 2-4x =-2(x +1)2+2,其顶点坐标为(-1,2),向右平移2个单位长度后抛物线F 的顶点坐标为(1,2),∴抛物线F 的表达式为y =-2(x -1)2+2,即y =-2x 2+4x .方法二:当y =0时,即-2x 2-4x =0,解得x =0或x =-2,∴原抛物线与x 轴的交点坐标为(-2,0)和(0,0).平移后抛物线F 与x 轴的交点坐标为(0,0)和(2,0),∴抛物线F 的表达式为y =-2x (x -2),即y =-2x 2+4x .方法三:根据抛物线平移之间的关系,可得抛物线F 的表达式为y =-2(x -2)2-4(x -2)=-2x 2+4x .方法四:∵抛物线E 与抛物线F 关于y 轴对称,∴抛物线F 的表达式为y =-2(-x )2-4(-x )=-2x 2+4x .(2)∵抛物线F 的表达式为y =-2x 2+4x =-2(x -1)2+2,∴顶点C 的坐标为(1,2).当y =0时,-2x 2+4x =0,解得x =0或x =2,∴点B 的坐标为(2,0). 设点A 的坐标为(0,y ),且y <0.∵点A 到x 轴的距离等于点C 到x 轴的距离的2倍,∴-y =2×2,解得y =-4,∴点A 的坐标为(0,-4).设AB 所在直线的表达式为y =kx +b .由题意,得⎩⎪⎨⎪⎧b =-4,2k +b =0,解得⎩⎪⎨⎪⎧k =2,b =-4. ∴AB 所在直线的表达式为y =2x -4.7.解:(1)∵二次函数的图象与x 轴有交点,∴b 2-4ac ≥0,即42-4×2×(k -1)≥0,解得k ≤3.(2)∵二次函数y =2x 2+4x +k -1图象的对称轴为直线x =-1,∴x 1+x 2=2×(-1)=-2,∴当x =-2时,y =-6,即2×(-2)2+4×(-2)+k -1=-6,解得k =-5,∴二次函数的表达式为y =2x 2+4x -6,图象如图①所示:(3)设(2)中二次函数y =2x 2+4x -6的图象与x 轴交于A ,B 两点,即A (-3,0),B (1,0).依题意可画出翻折后的图象如图②所示:当直线y =12x +m 经过点A 时,可得m =32,当直线y =12x +m 经过点B 时,可得m =-12,根据图象可知,符合题意的m 的取值范围为-12<m <32.∵m 为整数,∴m 的值为0或1.。

北师大版九年级数学下册第二章《二次函数》专题训练(含答案)

北师大版九年级数学下册第二章《二次函数》专题训练(含答案)

北师大版九年级下册第二章二次函数专题训练一.选择题(共10小题)1.下列函数关系中,是二次函数的是()A.在弹性限度内,弹簧的长度y与所挂物体质量x之间的关系B.当距离一定时,火车行驶的时间t与速度v之间的关系C.等边三角形的周长C与边长a之间的关系D.圆的面积S与半径R之间的关系2.抛物线y=2(x+3)2+5的对称轴是()A.x=3 B.x=﹣5 C.x=5 D.x=﹣33.抛物线向左平移1个单位,再向下平移1个单位后的抛物线解析式是()A.B.C.D.4.二次函数y=ax2+bx+c,当x=2时,y取得最大值为﹣4,且二次函数图象还经过点(1,﹣7),则二次函数的表达式为()A.y=﹣3x2+12x﹣16 B.y=﹣3x2+12x﹣8C.y=3x2+12x﹣16 D.y=3x2+12x﹣85.如果正三角形的边长为x,那么它的面积y与x之间的函数关系是()A.B.C.D.6.二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A.t>﹣5 B.﹣5<t<3 C.3<t≤4 D.﹣5<t≤4 7.某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:由于粗心,他算错了其中一个y值,则这个错误的数值是()x…﹣2 ﹣1 0 1 2 …y…﹣11 ﹣2 1 ﹣2 ﹣5 …A.﹣11 B.﹣2 C.1 D.﹣58.如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a>﹣1.其中正确的有()A.4个B.3个C.2个D.1个9.抛物线y=ax2+bx+c(a≠0)对称轴为直线x=﹣1,其部分图象如图所示,则下列结论:①b2﹣4ac>0;②2a=b;③t(at+b)≤a﹣b(t为任意实数);④3b+2c<0;⑤点(﹣,y1),(,y2),(,y3)是该抛物线上的点,且y1<y3<y2,其中正确结论的个数是()A.5 B.4 C.3 D.210.关于x的二次函数+,其中a为锐角,则:①当a为30°时,函数有最小值﹣;②函数图象与坐标轴可能有三个交点,并且当a为45°时,连接这三个交点所围成的三角形面积小于1;③当a<60°时,函数在x>1时,y随x的增大而增大;④无论锐角a怎么变化,函数图象必过定点.其中正确的结论有()A.①②B.①②③C.①②④D.②③④二.填空题(共8小题)11.抛物线y=﹣x2﹣6x+2的对称轴为直线.12.如果函数是关于x的二次函数,那么k的值是.13.如图,在△ABC中,BC=12,BC上的高AH=8,矩形DEFG的边EF在边BC 上,顶点D、G分别在边AB、AC上.设DE=x,矩形DEFG的面积为y,那么y 关于x的函数关系式是.(不需写出x的取值范围).14.在实际问题中往往需要求得方程的近似解,这个时候,我们通常利用函数的图象来完成.如,求方程x2﹣2x﹣2=0的实数根的近似解,观察函数y=x2﹣2x﹣2的图象,发现,当自变量为2时,函数值小于0(点(2,﹣2)在x 轴下方),当自变量为3时,函数值大于0(点(3,1)在x轴上方).因为抛物线y=x2﹣2x﹣2是一条连续不断的曲线,所以抛物线y=x2﹣2x﹣2在2<x<3这一段经过x轴,也就是说,当x取2、3之间的某个值时,函数值为0,即方程x2﹣2x﹣2=0在2、3之间有根.进一步,我们取2和3的平均数2.5,计算可知,对应的数值为﹣0.75,与自变量为3的函数值异号,所以这个根在2.5与3之间任意一个数作为近似解,该近似解与真实值的差都不会大于3﹣2.5=0.5.重复以上操作,随着操作次数增加,根的近似值越来越接近真实值.用以上方法求得方程x2﹣2x﹣2=0的小于0的解,并且使得所求的近似解与真实值的差不超过0.3,该近似解为15.将二次函数y=x2﹣2x化为y=(x﹣h)2+k的形式,结果为.16.二次函数y=﹣3(x+2)2﹣1的最大值是.17.已知A(m,n),B(m+8,n)是抛物线y=﹣(x﹣h)2+2036上两点,则n =.18.已知抛物线y=ax2﹣2ax+c(a<0)的图象过点A(3,m).(1)当a=﹣1,m=0时,求抛物线的顶点坐标;(2)如图,直线l:y=kx+c(k<0)交抛物线于B,C两点,点Q(x,y)是抛物线上点B,C之间的一个动点,作QD⊥x轴交直线l于点D,作QE⊥y 轴于点E,连接DE.设∠QED=β,当2≤x≤4时,β恰好满足30°≤β≤60°,a=.三.解答题(共8小题)19.已知函数y=3x2﹣2x﹣1,求出此抛物线与坐标轴的交点坐标.20.已知函数y=(m2﹣m)x2+(m﹣1)x﹣2(m为常数).(1)若这个函数是关于x的一次函数,求m的值;(2)若这个函数是关于x的二次函数,求m的值.21.已知二次函数y=﹣x2﹣x+4回答下列问题:(1)用配方法将其化成y=a(x﹣h)2+k的形式(2)指出抛物线的顶点坐标和对称轴(3)当x取何值时,y随x增大而增大;当x取何值时,y随x增大而减小?22.如图,二次函数y=(x﹣3)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)抛物线上是否存在一点P,使S△ABP=S△ABC?若存在,请求出点P的坐标,若不存在,请说明理由.23.如图,在平面直角坐标系中,已知某个二次函数的图象经过点A(1,2),B (2,﹣1),C(4,﹣1),且该二次函数的最小值是﹣2.(Ⅰ)请在图中描出该函数图象上另外的两个点,并画出图象;(Ⅱ)求出该二次函数的解析.24.抛物线y=a(x+h)2的顶点为(2,0),它的形状与y=3x2相同,但开口方向与之相反.(1)直接写出抛物线的解析式;(2)求抛物线与y轴的交点坐标.25.双十一期间,某百货商场打算对某商品进行一次促销活动,该商品的进价为每件20元.在之前的销售过程中发现,当每件售价定为30元时,每月销售量为500件,若售价每提高1元,每月的销售量将减少10件.(1)设该商品售价提高x元时,每月获得的利润为y元,求y关于x的函数解析式;(2)如果商场想要获得的月利润为8000元,则该商品的销售单价应定为每件多少元?(3)若有关物价部门规定,该商品的销售单价不得高于其进价的两倍,则此时商场获得的最大月利润是多少?26.已知二次函数y=ax2+bx+c(a≠0)自变量x的值和它对应的函数值y如表所示:x…0 1 2 3 4 …y… 3 0 ﹣1 0 m…(1)请写出该二次函数图象的开口方向、对称轴、顶点坐标和m的值;(2)设该二次函数图象与x轴的左交点为B,它的顶点为A,该图象上点C 的横坐标为4,求△ABC的面积.北师大版九年级下册第2章《二次函数》单元练习题参考答案与试题解析一.选择题(共10小题)1.下列函数关系中,是二次函数的是()A.在弹性限度内,弹簧的长度y与所挂物体质量x之间的关系B.当距离一定时,火车行驶的时间t与速度v之间的关系C.等边三角形的周长C与边长a之间的关系D.圆的面积S与半径R之间的关系【分析】根据二次函数的定义,分别列出关系式,进行选择即可.【解答】解:A、关系式为:y=kx+b,故A错误;B、关系式为t=,故错误;C、关系式为:C=3a,故C错误;D、S=πR2,故D正确.故选:D.2.抛物线y=2(x+3)2+5的对称轴是()A.x=3B.x=﹣5C.x=5D.x=﹣3【分析】根据题目中的函数解析式,可以得到该抛物线的对称轴,从而可以解答本题.【解答】解:∵抛物线y=2(x+3)2+5,∴该抛物线的对称轴是直线x=﹣3,故选:D.3.抛物线向左平移1个单位,再向下平移1个单位后的抛物线解析式是()A.B.C.D.【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:由“左加右减、上加下减”的原则可知,把抛物线向左平移1个单位,再向下平移1个单位,则平移后的抛物线的表达式为y=﹣(x+1)2﹣1.故选:B.4.二次函数y=ax2+bx+c,当x=2时,y取得最大值为﹣4,且二次函数图象还经过点(1,﹣7),则二次函数的表达式为()A.y=﹣3x2+12x﹣16B.y=﹣3x2+12x﹣8C.y=3x2+12x﹣16D.y=3x2+12x﹣8【分析】根据题意得出顶点坐标(2,﹣4),再由抛物线的顶点坐标设出,抛物线的解析式为:y=a(x﹣2)2﹣4,再把(1,﹣7)代入,求出a,b,c的值,即可得出二次函数的解析式.【解答】解:由题意得抛物线的顶点坐标(2,﹣4),∵图象的顶点为(2,﹣4),且经过点(1,﹣7),设抛物线的解析式为:y=a(x﹣2)2﹣4,再把(1,﹣7)代入,可得a(1﹣2)2﹣4=﹣7,∴a=﹣3,∴抛物线的解析式为:y=﹣3(x﹣2)2﹣4,即y=﹣3x2+12x﹣8;故选:B.5.如果正三角形的边长为x,那么它的面积y与x之间的函数关系是()A.B.C.D.【分析】首先画出图形,再利用三角函数值计算出三角形BC边上的高,然后再利用三角形面积公式算出面积即可.【解答】解:如图:∵△ABC为正三角形,AD为BC边上的高,且AB=AC=BC=x;∴AD=x.∴它的面积y与x之间的函数关系是:y=x×x=x2.故选:D.6.二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx ﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A.t>﹣5B.﹣5<t<3C.3<t≤4D.﹣5<t≤4【分析】如图,关于x的一元二次方程﹣x2+mx﹣t=0的解就是抛物线y=﹣x2+mx与直线y=t的交点的横坐标,利用图象法即可解决问题.【解答】解:如图,关于x的一元二次方程﹣x2+mx﹣t=0的解就是抛物线y=﹣x2+mx 与直线y=t的交点的横坐标,当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,直线y=t在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选:D.7.某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:由于粗心,他算错了其中一个y值,则这个错误的数值是()x…﹣2﹣1012…y…﹣11﹣21﹣2﹣5…A.﹣11B.﹣2C.1D.﹣5【分析】根据关于对称轴对称的自变量对应的函数值相等,可得答案.【解答】解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,﹣2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,函数解析式为y=﹣3x2+1x=2时y=﹣11,故选:D.8.如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a>﹣1.其中正确的有()A.4个B.3个C.2个D.1个【分析】利用抛物线与y轴的交点位置得到c>0,利用对称轴方程得到b=﹣2a,则2a+b+c =c>0,于是可对①进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣1,0)右侧,则当x=﹣1时,y<0,于是可对②进行判断;根据二次函数的性质得到x=1时,二次函数有最大值,则ax2+bx+c≤a+b+c,于是可对③进行判断;由于直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,利用函数图象得x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,然后把b=﹣2a代入解a的不等式,则可对④进行判断.【解答】解:∵抛物线与y轴的交点在x轴上方,∴c>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,∴2a+b+c=2a﹣2a+c=c>0,所以①正确;∵抛物线与x轴的一个交点在点(3,0)左侧,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣1,0)右侧,∴当x=﹣1时,y<0,∴a﹣b+c<0,所以②正确;∵x=1时,二次函数有最大值,∴ax2+bx+c≤a+b+c,∴x(ax+b)≤a+b,所以③正确;∵直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,∴x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,而b=﹣2a,∴9a﹣6a<﹣3,解得a<﹣1,所以④错误.故选:B.9.抛物线y=ax2+bx+c(a≠0)对称轴为直线x=﹣1,其部分图象如图所示,则下列结论:①b2﹣4ac>0;②2a=b;③t(at+b)≤a﹣b(t为任意实数);④3b+2c<0;⑤点(﹣,y1),(,y2),(,y3)是该抛物线上的点,且y1<y3<y2,其中正确结论的个数是()A.5B.4C.3D.2【分析】利用抛物线的开口方向、对称轴、顶点坐标、最大值(最小值),增减性逐个进行判断,得出答案.【解答】解:抛物线与x轴有两个不同交点,因此b2﹣4ac>0,故①正确;对称轴为x=﹣1,即:﹣=﹣1,也就是2a=b,故②正确;当x=﹣1时,y最大=a﹣b+c,当x=t时,y=at2+bt+c,∴at2+bt+c≤a﹣b+c,即:t(at+b)≤a﹣b,故③正确;由抛物线的对称性可知与x轴另一个交点0<x<1,当x=1时,y=a+b+c<0,又2a=b,即a=b,代入得:b+b+c<0,也就是3b+2c<0;因此④正确;点A(﹣,y1),B(,y2),C(,y3)到对称轴x=﹣1的距离分别为L A、L B、L C,则有L A>L C>L B,且A、B在对称轴左侧,C在对称轴的右侧,故y1<y3<y2,因此⑤正确,综上所述,正确的结论有5个,故选:A.10.关于x的二次函数+,其中a为锐角,则:①当a为30°时,函数有最小值﹣;②函数图象与坐标轴可能有三个交点,并且当a为45°时,连接这三个交点所围成的三角形面积小于1;③当a<60°时,函数在x>1时,y随x的增大而增大;④无论锐角a怎么变化,函数图象必过定点.其中正确的结论有()A.①②B.①②③C.①②④D.②③④【分析】①由于2sin a>0,所以函数一定有最小值,将a的值代入抛物线的解析式中,将解析式写成顶点式可得函数的最小值.②令y=0,在所得方程中若根的判别式大于0,那么抛物线的图象与坐标轴的交点可能有三个:与x轴有两个交点,与y轴有一个交点;当抛物线经过原点时,抛物线的图象与坐标轴只有两个交点.首先将a的值代入解析式,先设抛物线与x轴的两个交点横坐标为x1、x2,那么这两点间的距离可表示为|x1﹣x2|=,以这条线段为底,抛物线与y轴交点纵坐标的绝对值为高即可得到三交点围成的三角形的面积值,然后判断是否小于1即可.③由①知,抛物线的开口向上,所以一定有最小值;首先求出抛物线的对称轴方程,若x=1在抛物线对称轴右侧,那么y随x的增大而增大;若x=1在抛物线对称轴的左侧,那么随x的增大,y值先减小后增大.④图象若过定点,那么函数值就不能受到变量sin a的影响,所以先将所有含sin a的项拿出来,然后令sin a的系数为0,可据此求出x的值,将x的值代入抛物线的解析式中,即可得到这个定点的坐标.【解答】解:①当a=30°时,sin a=,二次函数解析式可写作:y=x2﹣x=(x﹣)2﹣;所以当a为30°时,函数的最小值为﹣;故①正确.②令y=0,则有:2sin ax2﹣(4sin a+)x﹣sin a+=0,△=(4sin a+)2﹣4×2sin a×(﹣sin a+)=24sin2a+>0,所以抛物线与x轴一定有两个交点,再加上抛物线与y轴的交点,即与坐标轴可能有三个交点(当图象过原点时,只有两个交点);设抛物线与x轴的交点为(x1,0)、(x2,0);当a=45°时,sin a=,得:y=x2﹣(2+)x﹣,则:三角形的面积S=|x1﹣x2|×=×=×≈0.3<1故②正确.③∵2sin a>0,且对称轴x=﹣=1+>1,∴x=1在抛物线对称轴的左侧,因此x>1时,y随x的增大先减小后增大;故③错误.④y=2sin ax2﹣(4sin a+)x﹣sin a+=sin a(2x2﹣4x﹣1)﹣x+;当2x2﹣4x﹣1=0,即x=1±时,抛物线经过定点,且坐标为:(1+,﹣)、(1﹣,);故④正确.综上,正确的选项是①②④,故选C.二.填空题(共8小题)11.抛物线y=﹣x2﹣6x+2的对称轴为直线x=﹣3.【分析】将题目中的函数解析式化为顶点式,即可写出该抛物线的对称轴.【解答】解:∵抛物线y=﹣x2﹣6x+2=﹣(x+3)2+11,∴该抛物线的对称轴是直线x=﹣3,故答案为:x=﹣3.12.如果函数是关于x的二次函数,那么k的值是0.【分析】根据二次函数的定义,列出方程与不等式求解即可.【解答】解:由题意得:k2﹣3k+2=2,解得k=0或k=3;又∵k﹣3≠0,∴k≠3.∴k的值是0时.故答案为:0.13.如图,在△ABC中,BC=12,BC上的高AH=8,矩形DEFG的边EF在边BC上,顶点D、G分别在边AB、AC上.设DE=x,矩形DEFG的面积为y,那么y关于x的函数关系式是y=﹣+12x.(不需写出x的取值范围).【分析】根据题意和三角形相似,可以用含x的代数式表示出DG,然后根据矩形面积公式,即可得到y与x的函数关系式.【解答】解:∵四边形DEFG是矩形,BC=12,BC上的高AH=8,DE=x,矩形DEFG 的面积为y,∴DG∥EF,∴△ADG∽△ABC,∴,得DG=,∴y=x=+12x,故答案为:y=+12x.14.在实际问题中往往需要求得方程的近似解,这个时候,我们通常利用函数的图象来完成.如,求方程x2﹣2x﹣2=0的实数根的近似解,观察函数y=x2﹣2x﹣2的图象,发现,当自变量为2时,函数值小于0(点(2,﹣2)在x轴下方),当自变量为3时,函数值大于0(点(3,1)在x轴上方).因为抛物线y=x2﹣2x﹣2是一条连续不断的曲线,所以抛物线y=x2﹣2x﹣2在2<x<3这一段经过x轴,也就是说,当x取2、3之间的某个值时,函数值为0,即方程x2﹣2x﹣2=0在2、3之间有根.进一步,我们取2和3的平均数2.5,计算可知,对应的数值为﹣0.75,与自变量为3的函数值异号,所以这个根在2.5与3之间任意一个数作为近似解,该近似解与真实值的差都不会大于3﹣2.5=0.5.重复以上操作,随着操作次数增加,根的近似值越来越接近真实值.用以上方法求得方程x2﹣2x﹣2=0的小于0的解,并且使得所求的近似解与真实值的差不超过0.3,该近似解为﹣0.75【分析】观察函数y=x2﹣2x﹣2的图象,发现,当自变量为0时,函数值小于0,当自变量为﹣1时,函数值大于0,求得﹣1和0的平均数﹣0.5,对应的数值为﹣0.75,与自变量为﹣1的函数值异号,再求﹣1和﹣0.5的平均数﹣0.75,对应的数值为0.0625,即可求得这个根在﹣0.75与﹣0.5之间任意一个数作为近似解,由﹣0.5﹣(﹣0.75)=0.25<0.3,即可求得近似值.【解答】解:观察函数y=x2﹣2x﹣2的图象,发现,当自变量为0时,函数值小于0,当自变量为﹣1时,函数值大于0,因为抛物线y=x2﹣2x﹣2是一条连续不断的曲线,所以抛物线y=x2﹣2x﹣2在﹣1<x<0这一段经过x轴,也就是说,当x取﹣1、0之间的某个值时,函数值为0,即方程x2﹣2x﹣2=0在﹣1、0之间有根.我们取﹣1和0的平均数﹣0.5,计算可知,对应的数值为﹣0.75,与自变量为﹣1的函数值异号,所以这个根在﹣1与﹣0.5之间,取﹣1和﹣0.5的平均数﹣0.75,计算可知,对应的数值为0.0625,与自变量为﹣0.5的函数值异号,所以这个根在﹣0.75与﹣0.5之间任意一个数作为近似解,该近似解与真实值的差都不会大于﹣0.5﹣(﹣0.75)=0.25<0.3,该近似解为﹣0.75,故答案为﹣0.75.15.将二次函数y=x2﹣2x化为y=(x﹣h)2+k的形式,结果为y=(x﹣1)2﹣1.【分析】加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:y=x2﹣2x=x2﹣2x+1﹣1=(x﹣1)2﹣1.故答案是:y=(x﹣1)2﹣1.16.二次函数y=﹣3(x+2)2﹣1的最大值是﹣1.【分析】因为此题中解析式为顶点式的形式,所以根据其解析式即可求解.【解答】解:∵二次函数y=﹣3(x+2)2﹣1,∴当x=﹣2时,二次函数y=﹣3(x+2)2﹣1的最大值为﹣1,故答案为﹣1.17.已知A(m,n),B(m+8,n)是抛物线y=﹣(x﹣h)2+2036上两点,则n=2020.【分析】由A(m,n)、B(m+8,n)是抛物线y=﹣(x﹣h)2+2018上两点,可得A(h ﹣4,0),B(h+4,0),当x=h+4时,n=﹣(h+4﹣h)2+2018=2002【解答】解:∵A(m,n)、B(m+8,n)是抛物线y=﹣(x﹣h)2+2036上两点,∴A(h﹣4,n),B(h+4,n),当x=h+4时,n=﹣(h+4﹣h)2+2036=2020,故答案为2020.18.已知抛物线y=ax2﹣2ax+c(a<0)的图象过点A(3,m).(1)当a=﹣1,m=0时,求抛物线的顶点坐标(1,4);(2)如图,直线l:y=kx+c(k<0)交抛物线于B,C两点,点Q(x,y)是抛物线上点B,C之间的一个动点,作QD⊥x轴交直线l于点D,作QE⊥y轴于点E,连接DE.设∠QED=β,当2≤x≤4时,β恰好满足30°≤β≤60°,a=﹣.【分析】(1)利用待定系数法求得抛物线解析式,然后利用配方法将抛物线解析式转化为顶点式,可以直接得到答案;(2)将点Q(x,y)代入抛物线解析式得到:y=ax2﹣2ax+c.结合一次函数解析式推知:D(x,kx+c).则由两点间的距离公式知QD=ax2﹣2ax+c﹣(kx+c)=ax2﹣(2a+k)x.在Rt△QED中,由锐角三角函数的定义推知tanβ===ax﹣2a﹣k.所以tanβ随着x的增大而减小.结合已知条件列出方程组,解该方程组即可求得a的值.【解答】解:(1)当a=﹣1,m=0时,y=﹣x2+2x+c,A点的坐标为(3,0),∴﹣9+6+c=0.解得c=3.∴抛物线的表达式为y=﹣x2+2x+3.即y=﹣(x﹣1)2+4.∴抛物线的顶点坐标为(1,4),故答案为:(1,4).(2)∵点Q(x,y)在抛物线上,∴y=ax2﹣2ax+c.又∵QD⊥x轴交直线l:y=kx+c(k<0)于点D,∴D点的坐标为(x,kx+c).又∵点Q是抛物线上点B,C之间的一个动点,∴QD=ax2﹣2ax+c﹣(kx+c)=ax2﹣(2a+k)x.∵QE=x,∴在Rt△QED中,tanβ===ax﹣2a﹣k.∴tanβ是关于x的一次函数,∵a<0,∴tanβ随着x的增大而减小.又∵当2≤x≤4时,β恰好满足30°≤β≤60°,且tanβ随着β的增大而增大,∴当x=2时,β=60°;当x=4时,β=30°.∴,解得,故答案为:﹣.三.解答题(共8小题)19.已知函数y=3x2﹣2x﹣1,求出此抛物线与坐标轴的交点坐标.【分析】根据函数y=3x2﹣2x﹣1,可以求得该函数与x轴和y轴的交点坐标,本题得以解决.【解答】解:∵函数y=3x2﹣2x﹣1,∴当y=0时,0=3x2﹣2x﹣1=(3x+1)(x﹣1),解得,x1=﹣,x2=1,当x=0时,y=﹣1,∴此抛物线与坐标轴的交点坐标是(﹣,0),(1,0),(0,﹣1).20.已知函数y=(m2﹣m)x2+(m﹣1)x﹣2(m为常数).(1)若这个函数是关于x的一次函数,求m的值;(2)若这个函数是关于x的二次函数,求m的值.【分析】(1)根据一次函数的定义即可解决问题;(2)根据二次函数的定义即可解决问题.【解答】解:(1)依题意m2﹣m=0且m﹣1≠0,所以m=0;(2)依题意m2﹣m≠0,所以m≠1且m≠0.21.已知二次函数y=﹣x2﹣x+4回答下列问题:(1)用配方法将其化成y=a(x﹣h)2+k的形式(2)指出抛物线的顶点坐标和对称轴(3)当x取何值时,y随x增大而增大;当x取何值时,y随x增大而减小?【分析】(1)利用配方法先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.(2)二次函数的一般形式中的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).(3)结合对称轴及开口方向可确定抛物线的增减性.【解答】解:(1)y=﹣x2﹣x+4=﹣(x+1)2+;(2)由(1)可得顶点为(﹣1,);对称轴x=﹣1;(3)图象开口向下,x<﹣1时,函数为增函数,此时y随x增大而增大;当x>﹣1时,函数为减函数,此时y随x增大而减小.22.如图,二次函数y=(x﹣3)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)抛物线上是否存在一点P,使S△ABP=S△ABC?若存在,请求出点P的坐标,若不存在,请说明理由.【分析】(1)先将点A(1,0)代入y=(x﹣3)2+m求出m的值,根据点的对称性确定B点坐标,然后根据待定系数法求出一次函数解析式;(2)假设存在点P,设点P(a,a2﹣6a+5),求出三角形ABC的面积,分两种情况画出图形,如图1,当点P在直线AB的下方时,过点P作PE∥y轴交直线AB于点E,如图2,当点P在直线AB的上方时,过点P作PF∥y轴交直线AB于F,根据三角形ABP面积为三角形ABC面积,表示出三角形ABP的面积,列出关于a的方程,求出方程的解得到a的值,即可确定出满足题意P的坐标.【解答】解:(1)将点A(1,0)代入y=(x﹣3)2+m得(1﹣3)2+m=0,解得m=﹣4.所以二次函数解析式为y=(x﹣3)2﹣4,即y=x2﹣6x+5;当x=0时,y=9﹣4=5,所以C点坐标为(0,5),由于C和B关于对称轴对称,而抛物线的对称轴为直线x=3,所以B点坐标为(6,5),将A(1,0)、B(6,5)代入y=kx+b得,,解得:.所以一次函数解析式为y=x﹣1;(2)假设存在点P,设点P(a,a2﹣6a+5),∵S△ABP=S△ABC,∵,如图1,当点P在直线AB的下方时,过点P作PE∥y轴交直线AB于点E,∴=15,∴E(a,a﹣1)∴PE=﹣a2+7a﹣6,∴,∴a2﹣7a+12=0解得:a1=4,a2=3,∴P1(3,﹣4),P2(4,﹣3),如图2,当点P在直线AB的上方时,过点P作PF∥y轴交直线AB于F,同理可得=15,∴,解得a=0(舍去),a=7,∴P3(7,12).综合以上可得P点坐标为(3,﹣4)或(4,﹣3)或(7,12).23.如图,在平面直角坐标系中,已知某个二次函数的图象经过点A(1,2),B(2,﹣1),C(4,﹣1),且该二次函数的最小值是﹣2.(Ⅰ)请在图中描出该函数图象上另外的两个点,并画出图象;(Ⅱ)求出该二次函数的解析.【分析】(Ⅰ)利用抛物线的对称性可过A、C分别作平行x轴的线段,且分别被对称轴平分,即可求得另外的两个点,利用描点法可画出函数图象;(Ⅱ)设出顶点式,代入A的坐标,即可求得解析式.【解答】解:(Ⅰ)∵B(2,﹣1),C(4,﹣1),且该二次函数的最小值是﹣2.∴该二次函数图象的顶点为(3,﹣2),∵点A(1,2),∴A关于对称轴对称的点为(5,2),利用描点法可画出函数图象,如图;(Ⅱ)设抛物线的解析式为y=a(x﹣3)2﹣2,代入A(1,2)得2=4a﹣2,解得a=1,∴该二次函数的解析式为y=x2﹣6x+7.24.抛物线y=a(x+h)2的顶点为(2,0),它的形状与y=3x2相同,但开口方向与之相反.(1)直接写出抛物线的解析式;(2)求抛物线与y轴的交点坐标.【分析】(1)由抛物线y=a(x+h)2的顶点为(2,0),得出h=﹣2,抛物线y=a(x+h)2的形状与y=3x2的相同,开口方向相反,得出a=﹣3,从而确定该抛物线的函数表达式;(2)根据图象上点的坐标特征求得即可.【解答】解:(1)∵抛物线y=a(x+h)2的顶点为(2,0),∴﹣h=2,∴h=﹣2,抛物线y=a(x+h)2的形状与y=3x2的相同,开口方向相反∴a=﹣3,则该抛物线的函数表达式是y=﹣3(x﹣2)2.(2)在函数y=﹣3(x﹣2)2中,令x=0,则y=﹣12,∴抛物线与y轴的交点坐标为(0,﹣12).25.双十一期间,某百货商场打算对某商品进行一次促销活动,该商品的进价为每件20元.在之前的销售过程中发现,当每件售价定为30元时,每月销售量为500件,若售价每提高1元,每月的销售量将减少10件.(1)设该商品售价提高x元时,每月获得的利润为y元,求y关于x的函数解析式;(2)如果商场想要获得的月利润为8000元,则该商品的销售单价应定为每件多少元?(3)若有关物价部门规定,该商品的销售单价不得高于其进价的两倍,则此时商场获得的最大月利润是多少?【分析】(1)根据销售问题的数量关系单件利润乘以销售量等于月利润即可求解;(2)根据(1)中求得的函数解析式,代入8000,利用一元二次方程即可求解;(3)根据销售单价不得高于其进价的两倍确定自变量的取值进而求得最大值.【解答】解:(1)根据题意,得y=(30﹣20+x)(500﹣10x)=﹣10x2+400x+5000.答:y关于x的函数解析式为y=﹣10x2+400x+5000.(2)当y=8000时,8000=﹣10x2+400x+5000.解得x1=10,x2=30.则30+x=40或60.答:该商品的销售单价应定为每件40元或60元.(3)y=﹣10x2+400x+5000.=﹣10(x﹣20)2+9000,因为商品的销售单价不得高于其进价的两倍,所以当x=10,即售价为40元时,月利润最大,最大月利润为8000元.答:最大月利润为8000元.26.已知二次函数y=ax2+bx+c(a≠0)自变量x的值和它对应的函数值y如表所示:x…01234…y…30﹣10m…(1)请写出该二次函数图象的开口方向、对称轴、顶点坐标和m的值;(2)设该二次函数图象与x轴的左交点为B,它的顶点为A,该图象上点C的横坐标为4,求△ABC的面积.【分析】(1)根据表格中的数据和二次函数的性质,可以得到该二次函数图象的开口方向、对称轴、顶点坐标和m的值;(2)根据表格中的数据和题意,可以写出点B、点A和点C的坐标,再求出直线AC和x轴的交点,即可得到△ABC的面积.【解答】解:(1)由表格可知,该函数有最小值,当x=2时,y=﹣1,当x=4和x=0时的函数值相等,则m=3,即该二次函数图象的开口方向向上,对称轴是直线x=2,顶点坐标为(2,﹣1),m的值是3;(2)由题意可得,点B的坐标为(1,0),点A的坐标为(2,﹣1),点C的坐标为(4,3),设直线AC的函数解析式为y=kx+b,,得,所以直线AC的函数解析式为y=2x﹣5,当y=0时,0=2x﹣5,得x=2.5,则直线AC与x轴的交点为(2.5,0),故△ABC的面积是:=3.。

北师大版九年级数学下册第二章《二次函数》练习题(含答案)

北师大版九年级数学下册第二章《二次函数》练习题(含答案)

北师大版九年级数学下册第二章《二次函数》练习题(含答案)(满分:100分 时间:100分钟)一、选择题(本大题共10小题;每小题3分;共30分) 1.下列函数中;不是二次函数的是( )A .y =1-2x 2B .y =2(x -1)2+4C .12(x -1)(x +4) D .y =(x -2)2-x 2答案:D2.抛物线y =x 2+3与y 轴的交点坐标为( )A .(3;0)B .(0;3)C .(0;3)D .(3;0)答案:B3.把二次函数y =-14x 2-x +3用配方法化成y =a (x -h )2+k 的形式( )A .y =-14(x -2)2+2B .y =14(x -2)2+4C .y =-14(x +2)2+4D .y =21122x ⎛⎫- ⎪⎝⎭+3答案:C4.将抛物线y =3x 2向左平移2个单位;再向下平移1个单位;所得抛物线为( ) A .y =3(x -2)2-1 B .y =3(x -2)2+1 C .y =3(x +2)2-1 D .y =3(x +2)2+1 答案:C5.对抛物线y =-x 2+2x -3而言;下列结论正确的是( ) A .与x 轴有两个交点 B .开口向上C .与y 轴的交点坐标是(0,3)D .顶点坐标是(1;-2) 答案:D6.二次函数y =2x 2+mx +8的图象如图所示;则m 的值是( ) A .-8 B .8 C .±8 D .6 答案:B6题图 8题图 9题图7.点P 1(﹣1;y 1);P 2(3;y 2);P 3(5;y 3)均在二次函数y =﹣x 2+2x +c 的图象上;则y 1;y 2;y 3的大小关系是( )A .y 1=y 2>y 3B .y 1>y 2>y 3C .y 3>y 2>y 1D .y 3>y 1=y 2答案:A8.已知二次函数y =ax 2+bx +c (a <0)的图象如图所示;当-5≤x ≤0时;下列说法正确的是( )A .有最小值-5、最大值0B .有最小值-3、最大值6C .有最小值0、最大值6D .有最小值2、最大值6 答案:B9.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示;下列结论正确的是( )A .a <0B .b 2-4ac <0C .当-1<x <3时;y >0D .-b2a=1答案:D10.在同一平面直角坐标系内;一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )A B C D答案:C二、填空题(本大题共8小题;每小题3分;共24分)11.若函数y =(m -3)2213m m x +-是二次函数;则m =______. 答案:-512.抛物线y =2x 2-bx +3的对称轴是直线x =1;则b 的值为________. 答案:413.如果抛物线y =(m +1)2x 2+x +m 2﹣1经过原点;那么m 的值等于 . 答案:114.已知抛物线y =x 2﹣6x +m 与x 轴仅有一个公共点;则m 的值为 . 答案:915.二次函数的部分图象如图所示;则使y >0的x 的取值范围是 . 答案:﹣1<x <315题图 16提图 17题图 18题图16.如图所示;已知二次函数y =ax 2+bx +c 的图象与x 轴交于A (1,0);B (3,0)两点;与y 轴交于点C (0,3);则二次函数的图象的顶点坐标是________.答案:(2;-1)17.如图;在平面直角坐标系中;抛物线y =﹣23(x ﹣3)2+k 经过坐标原点O ;与x 轴的另一个交点为A .过抛物线的顶点B 分别作BC ⊥x 轴于C 、BD ⊥y 轴于D ;则图中阴影部分图形的面积和为 . 答案:1818.如图;在正方形ABCD 中;E 为BC 边上的点;F 为CD 边上的点;且AE =AF ;AB =4;设EC =x ;△AEF 的面积为y ;则y 与x 之间的函数关系式是__________.答案:y =-12x 2+4x三、解答题(本大题共5小题;共46分)19.求经过A (1,4);B (-2,1)两点;对称轴为x =-1的抛物线的解析式. 解:∵对称轴为x =-1;∴设其解析式为y =a (x +1)2+k (a ≠0). ∵抛物线过A (1,4);B (-2,1);∴⎩⎪⎨⎪⎧4=a 1+12+k ;1=a -2+12+k.解得⎩⎪⎨⎪⎧a =1;k =0.∴y =(x +1)2=x 2+2x +1.20.已知;在同一平面直角坐标系中;反比例函数y =5x与二次函数y =-x 2+2x +c 的图象交于点A (-1;m ).(1)求m ;c 的值;(2)求二次函数图象的对称轴和顶点坐标.解:(1)∵点A 在函数y =5x的图象上;∴m =5-1=-5.∴点A 坐标为(-1;-5). ∵点A 在二次函数图象上; ∴-1-2+c =-5;即c =-2.(2)∵二次函数的解析式为y =-x 2+2x -2; ∴y =-x 2+2x -2=-(x -1)2-1.∴对称轴为直线x =1;顶点坐标为(1;-1).21.下图是一座拱桥的截面图;拱桥桥洞上沿是抛物线形状.抛物线两端点与水面的距离都是1m ;拱桥的跨度为10cm .桥洞与水面的最大距离是5m .桥洞两侧壁上各有一盏距离水面4m 的景观灯.现把拱桥的截面图放在平面直角坐标系中; (1)求抛物线的解析式;(2)求两盏景观灯之间的水平距离.解:(1)抛物线的顶点坐标为(5;5);与y 轴交点坐标是(0;1); 设抛物线的解析式是y =a (x ﹣5)2+5; 把(0;1)代入y =a (x ﹣5)2+5;得a =﹣425; ∴y =﹣425(x ﹣5)2+5(0≤x ≤10);(2)由已知得两景观灯的纵坐标都是4;∴4=﹣425(x﹣5)2+5;∴425(x﹣5)2=1;∴x1=152;x2=52;∴两景观灯间的距离为152﹣52=5(米).22.元旦期间;某宾馆有50个房间供游客居住;当每个房间每天的定价为180元时;房间会全部住满;当每个房间每天的定价每增加10元时;就会有一个房间空闲.如果游客居住房间;宾馆需对每个房间每天支出20元的各种费用.(1)若房价定为200元时;求宾馆每天的利润;(2)房价定为多少时;宾馆每天的利润最大?最大利润是多少?解:(1)若房价定为200元时;宾馆每天的利润为:(200﹣20)×(50﹣2)=8640(元);答:宾馆每天的利润为8640;(2)设总利润为y元;则y=(50﹣18010x)(x﹣20)=﹣110x2+70x+1360=﹣110(x﹣350)2+10890故房价定为350时;宾馆每天的利润最大;最大利润是10890元.23.如图;已知二次函数y=﹣x2+bx+3的图象与x轴交于A、C两点(点A在点C的左侧);与y轴交于点B;且OA=OB.(1)求线段AC的长度:(2)若点P在抛物线上;点P位于第二象限;过P作PQ⊥AB;垂足为Q.已知PQ=;求点P的坐标.解:(1)∵二次函数y=﹣x2+bx+3的图象与y轴交于点B;且OA=OB;∴点B的坐标为(0;3);∴OB=OA=3;∴点A的坐标为(﹣3;0);∴0=﹣(﹣3)2+b×(﹣3)+3;解得;b=﹣2;∴y=﹣x2﹣2x+3=﹣(x+3)(x﹣1);∴当y=0时;x1=﹣3;x2=1;∴点C的坐标为(1;0);∴AC=1﹣(﹣3)=4;即线段AC的长是4;(2)∵点A(﹣3;0);点B(3;0);∴直线AB的函数解析式为y=x+3;过点P作PD∥y轴交直线AB于点D;设点P的坐标为(m;﹣m2﹣2m+3);则点D的坐标为(m;m+3);∴PD=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m;∵PD∥y轴;∠ABO=45°;∴∠PDQ=∠ABO=45°;又∵PQ⊥AB;PQ=2;∴△PDQ是等腰直角三角形;∴PD=2sin4522PQ=︒=2;∴﹣m2﹣3m=2;解得;m1=﹣1;m2=﹣2;当m=﹣1时;﹣m2﹣2m+3=4;当m=﹣2时;﹣m2﹣2m+3=3;∴点P的坐标为(﹣2;3)或(﹣1;4).24.如图;在平面直角坐标系中;顶点为M的抛物线C1:y=ax2+bx(a<0)经过点A 和x轴上的点B;AO=OB=2;∠AOB=120°.(1)求该抛物线的表达式;(2)联结AM;求S△AOM;(3)将抛物线C1向上平移得到抛物线C2;抛物线C2与x轴分别交于点E、F(点E在点F 的左侧);如果△MBF与△AOM相似;求所有符合条件的抛物线C2的表达式.解:(1)∵抛物线C1:y=ax2+bx(a<0)经过点A和x轴上的点B;AO=OB=2;∠AOB =120°;∴点B (2;0);点A (﹣1;﹣);∴220223(1)(1)a b a b ⎧=⨯+⨯⎪⎨-=⨯-+⨯-⎪⎩;得333a b ⎧=⎪⎪⎨⎪=⎪⎩;∴该抛物线的解析式为y =2232333(1)3333x x x -+=--+; (2)连接MO ;AM ;AM 与y 轴交于点D ; ∵y =22323331)3333x x x -+=--+; ∴点M 的坐标为(1;33); 设过点A (﹣13;M (1;33)的直线解析式为y =mx +n ;333m n m n ⎧-+=-⎪⎨+=⎪⎩;得2333m n ⎧=⎪⎪⎨⎪=-⎪⎩;∴直线AM 的函数解析式为y 23x 3当x =0时;y 3∴点D 的坐标为(0;﹣33);∴OD =33; ∴S △AOM =S △AOD +S △MOD =33;(3)①当△AOM ∽△FBM 时;OM OABM BF=; ∵OA =2;点O (0;0);点M (13;点B (2;0); ∴OM =233;BM =233;∴OM =BM ;解得;BF =OA =2;∴点F 的坐标为(4;0); 设抛物线C 2的函数解析式为:y =23(1)3x --+c ; ∵点F (4;0)在抛物线C 2上;∴c =33 ∴抛物线C 2的函数解析式为:y =23(1)333x --+; ②当△AOM ∽△MBF 时;OM OABF BM=; ∵OA =2;点O (0;0);点M (1;33);点B (2;0); ∴OM =233;BM =233;∴BF =23; ∴点F 的坐标为(83;0); 设抛物线C 2的函数解析式为:y =23(1)3x --+d ; ∵点F (83;0)在抛物线C 2上;∴d 253;∴抛物线C 2的函数解析式为:y =231)x -253.。

北师大版九年级数学下册第二章《二次函数》单元练习题(含答案)

北师大版九年级数学下册第二章《二次函数》单元练习题(含答案)

北师大版九年级数学下册第二章《二次函数》单元练习题(含答案)1.在平面直角坐标系中,抛物线y=(x+5)(x-3)经变换后得到抛物线y=(x+3)(x-5),则这个变换可以是( )A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位2.抛物线y=2x2-5x+3与坐标轴的交点共有( )A.4个 B.3个 C.2个 D.1个3.若二次函数y=x2-6x+c的图象过A(-1,y1)、B(2,y2)、C(5,y3),则y1、y2、y3的大小关系是( )A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y24.若函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,则m的值为( )A.0 B.0或2 C.2或-2 D.0,2或-25.已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是( )A.b>1 B.b<1 C.b≥1 D.b≤16.设计师以y=2x2-4x+8的图形为灵感设计杯子如图所示.若AB=4,DE=3,则杯子的高CE 等于( )A.17 B.11 C.8 D.77.已知抛物线y=-x2-2x+3,当-2≤x≤2时,对应的函数值y的取值范围为 .8.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式y<0的解集是 .9. 二次函数y=-3x2-6x+5的图象的顶点坐标是 .10. 已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,且经过点(-1,y1),(2,y2),试比较y1和y2的大小:y1y2(填“>”“<”或“=”).11. 已知抛物线:y=ax2+bx+c(a>0)经过A(-1,1)、B(2,4)两点,顶点坐标(m,n),有下列结论:①b<1;②c<2;③0<m<12;④n≤1.则所有正确结论的序号是 .12. 如图所示,在平面直角坐标系中,二次函数y=ax2+bx+c的图象顶点为A(-2,-2),且过点B(0,2),则二次函数的表达式为 .13. 如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长14m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是 m2.14. 如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)在抛物线上是否存在点M,使△MOB的面积是△AOB面积的3倍?若存在,求出点M的坐标;若不存在,请说明理由.15. 某工厂制作A、B两种手工艺品,B每件获利比A多105元,获利30元的A与获利240元的B 数量相等.(1)制作一件A和一件B分别获利多少元?(2)工厂安排65人制作A、B两种手工艺品,每人每天制作2件A或1件B.现在在不增加工人的情况下,增加制作C.已知每人每天可制作1件C(每人每天只能制作一种手工艺品),要求每天制作A、C两种手工艺品的数量相等.设每天安排x人制作B,y人制作A,写出y与x之间的函数关系式;(3)在(1)(2)的条件下,每天制作B不少于5件.当每天制作5件时,每件获利不变.若每增加1件,则当天平均每件获利减少2元.已知C每件获利30元,求每天制作三种手工艺品可获得的总利润W(元)的最大值及相应x的值.参考答案:1-6 BBBDDB 7. -5≤y ≤4 8. x >5或x <-1 9. (-1,8) 10. >11. ① ② ④12. y =(x +2)2-2 13. 11214. 解:(1)设抛物线的解析式为y =a(x -2)2+1,把(0,0)代入得4a +1=0,解得a =-14.所以抛物线的解析式为y =-14(x -2)2+1,即y =-14x 2+x ;(2)存在.因为抛物线的对称轴为直线x =2,则B(4,0),设M(x ,-14x 2+x),根据题意得12×4×|-14x 2+x|=12×4×1×3,所以-14x 2+x =3(舍)或-14x 2+x =-3,解-14x 2+x =-3得x 1=-2,x 2=6,此时M 点的坐标为(-2,-3)或(6,-3).15. (1) 解:设制作一件A 获利x 元,则制作一件B 获利(105+x)元,由题意得:30x =240x +105,解得:x =15,经检验,x =15是原方程的根,当x =15时,x +105=120,答:制作一件A 获利15元,制作一件B 获利120元;(2) 解:设每天安排x 人制作B ,y 人制作A ,则2y 制作C ,于是有:y +x +2y =65,∴y =-13x+653,答:y 与x 之间的函数关系式为:y =-13x +653; (3) 解:由题意得:W =15×2×y +[120-2(x -5)]x +2y ×30=-2x 2+130x +90y ,又∵y =-13x+653, ∴W =-2x 2+130x +90y =-2x 2+130x +90(-13x +653)=-2x 2+100x +1950,∵W =-2x 2+100x +1950,对称轴为x =25,而x =25时,y 的值不是整数,根据抛物线的对称性可得:当x =26时,W 最大=-2×262+100×26+1950=3198元,此时制作A 产品的13人,B 产品的26人,C 产品的26人,获利最大,最大利润为3198元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.北师大版九年级数学下册二次函数及其应用(参考答案)包头市第四十三中学 刘军整编 2012.04.28一、填空题:1、抛物线 y =-x 2+1 的开口向 。

2、抛物线 y =2x 2的对称轴是 。

3、函数 y =2 (x -1)2图象的顶点坐标为 。

4、将抛物线 y =2x 2向下平移 2 个单位,所得的抛物线的解析式为 。

5、函数 y =x 2+bx +3 的图象经过点(-1, 0),则 b = 。

6、二次函数 y =(x -1)2+2,当 x = 时,y 有最小值。

7、函数 y =12 (x -1)2+3,当 x 时,函数值 y 随 x 的增大而增大。

8、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y = 。

9、若点 A ( 2, m) 在函数 y =x 2-1 的图像上,则 A 点的坐标是 。

图1 10、抛物线 y =2x 2+3x -4 与 y 轴的交点坐标是 。

11、请写出一个二次函数以(2, 3)为顶点,且开口向上。

12、已知二次函数 y =ax 2+bx +c 的图像如图1二、选择题: 1、在圆的面积公式 S =πr2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 2、已知函数 y =(m +2) 22mx 是二次函数,则 m 等于( )A 、±2B 、2C 、-2D 、±23、已知 y =ax 2+bx +c 的图像如图2所示,则 a 、b 、c 满足( )A 、a <0,b <0,c <0B 、a >0,b <0,c >0 图2C 、a <0,b >0,c >0D 、a <0,b <0,c >04、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D5、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点6、抛物线 y =x 2-4x +c 的顶点在 x 轴,则 c 的值是( )A 、0B 、4C 、-4D 、2三、解答题:1、如图3,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm ,那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式。

② 求当边长增加多少时,面积增加 8cm 2。

2、已知抛物线的顶点坐标是(-2,1),且过点(1,-2),求抛物线的解析式。

3、已知二次函数的图像经过(0,1),(2,1)和(3,4),求该二次函数的解析式。

4、用 6m 长的铝合金型材做一个形状如图4所示的矩形窗框,应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?5、某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年种蔬菜的销售价格进行了预测,预测情况如图,图5情况的哪些信息?(至少写出四条)tttt图3图4. 6、校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度 y (m) 与水平距离 x (m) 之间的函数关系式为 y=-112x2+23x+53,求小明这次试掷的成绩及铅球的出手时的高度。

7、(10分)某企业投资100万元引进一条农产品生产线,预计投产后每年可创收33万元,设生产线投产后,从第一年到第 x 年维修、保养费累计..为 y(万元),且 y=ax2+bx,若第一年的维修、保养费为 2 万元,第二年的为 4 万元。

求:y 的解析式。

六、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为 4m,跨度为 10m,如图所示,把它的图形放在直角坐标系中。

①求这条抛物线所对应的函数关系式。

②如图,在对称轴右边 1m 处,桥洞离水面的高是多少?8、商场销售一批衬衫,每天可售出 20 件,每件盈利 40 元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价 1 元,每天可多售出 2 件。

①设每件降价 x 元,每天盈利 y 元,列出 y 与 x 之间的函数关系式;②若商场每天要盈利 1200 元,每件应降价多少元?③每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?四、[与直线综合]1.已知二次函数图象顶点为C(1,0),直线 y=x+m 与该二次函数交于A,B两点,其中A点(3,4),B点在y轴上.(1)求m值及这个二次函数关系式;(2)P为线段AB上一动点(P不与A,B重合),过P做x轴垂线与二次函数交于点E,设线段PE长为h,点P横坐标为x,求h与x之间的函数关系式,并写出自变量x取值范围;图5.(3)D 为线段AB 与二次函数对称 轴的交点,在AB 上是否存在一点P ,使四边形DCEP 为平行四边形?若存在,请求出P 点坐标; 若不存在, 请说明理由。

2. 抛物线y=x ²+4x+3交x 轴于A 、B 两点,交y 轴于点C ,抛物线的对称轴交x 轴于点E .(1(2)在平面直角坐标系xoy 中是否存在点P ,与A 、B 、C 四边形?若存在,请写出点P (3)连结CA 与抛物线的对称轴交于点D 点M ,使得直线CM 把四边形DEOC 请求出直线CM 的解析式;若不存在,请说明理由.五、[与相似三角形综合]如图所示,已知抛物线y=x ²-1与x 轴交于A、B 两点,与y 轴交 于点C .(1)求A 、B 、C 三点的坐标.(2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积.(3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与PCA 相似.若存在, 请求出M 点的坐标;否则,请说明理由.六、[与圆综合]在平面直角坐标系 xoy 中,半径为1的圆的圆心O 在坐标原点, 且与两坐标轴分别交于 A 、B 、C 、D 四点.抛物线y=ax ²+bx+c 与y 轴交于 点D ,与直线 y=x 交于点M 、N ,且MA 、NC 分别与圆O 相切于点A 和点C . (1)求抛物线的解析式(2)抛物线的对称轴交x 轴于点E ,连结DE,并延长DE 交 圆O 于F ,求EF 的长.(3)过点B 作圆O 的切线交DC 的延长线于点P , 判断点P 是否在抛物线上,说明理由..答案一、1、下2、y 轴3、(1, 0) 4、y=2x2-2 5、4 6、1 7、>1 8、(x-1)2+29、(2, 3) 10、(0, -4) 11、y=(x-2)2+3 12、(x-1)2-1二、1、D 2、B 3、D 4、B 5、C 6、B三、1、① y=(4+x) (3+x)-12 =7x+x2②8=7x+x2x1=1,x2=-82、解:y=a (x+2)2+1 -2=a (1+2)2+1 a=-13∴y=-13(x+2)2+13、解:设 y=ax2+bx+c,则:1=c1=4a+2b+c4=9a+3b+c,解得a=1b=-2c=1∴y=x2-2x+14、解:设宽为 x、m,则长为 (3-32x) m S=3x-32x2=-32(x2-2x) =-32(x-1)2+32当x=1时,透光面积最大为32m2。

5、①2月份每千克3.5元②7月份每千克0.5克③7月份的售价最低④2~7月份售价下跌四、解:成绩10米,出手高度53米五、①解:2=a+b6=4a+2b解得a=1b=1∴y=x2+x六、解:①设y=a (x-5)2+4 0=a (-5)2+4 a=-425∴y=-425(x-5)2+4②当x=6时,y=-425+4=3.4(m)七、解:①y=(40-x) (20+2x) =-2x2+60x+800 ②1200=-2x2+60x+800x1=20,x2=10 ∵要扩大销售∴x取20元③y=-2 (x2-30x)+800 =-2 (x-15)2+1250 ∴当每件降价15元时,盈利最大为1250元四 .)因为A(3,4)是直线y=x+m上的点,所以4=3+m,解得m=1,进而求得B(0,1)设二次函数为y=ax^2+bx+c,把A、B、C三点坐标代入得:9a+3b+c=4 a+b+c=0 c=1 解得a=1,b=-2,c=1,所以二次函数的关系式为:y=x^2-2x+1(2)因为P为线段AB上,且横坐标为x,所以纵坐标是x+1,又因为E在二次函数的图像上,且横坐标是x,所以纵坐标是x^2-2x+1,于是h=(x+1)-(x^2-2x+1)=-x^2+3x (3)显然PE∥DC,因此若P点存在,那么必有PE=DC。

因为D为直线AB与这个二次函数图像对称轴的交点,所以D的横坐标为1,因而纵坐标为2,所以DC=2。

若PE=2,则有-x^2+3x=2,解得x=2或x=1 (跟C点重合,故舍去)。

所以这样的点P是存在的,它的坐标是(2,3)。

五解:(1)令y=0,得x2-1=0 解得x=±1,令x=0,得y=-1 ∴A(-1,0),B(1,0),C(0,-1);(2分)(2)∵OA=OB=OC=1,∴∠BAC=∠ACO=∠BCO=45°.∵AP∥CB,∴∠PAB=45°.过点P作PE⊥x轴于E,则△APE为等腰直角三角形,令OE=a,则PE=a+1,∴P(a,a+1).∵点P在抛物线y=x2-1上,∴a+1=a2-1.解得a1=2,a2=-1(不合题意,舍去).∴PE=3(4分).∴四边形ACBP的面积S= 12AB•OC+ 12AB•PE = 12×2×1+12×2×3=4;(6分)(3)假设存在∵∠PAB=∠BAC=45°,∴PA⊥AC ∵MG⊥x轴于点G,∴∠MGA=∠PAC=90°在Rt△AOC中,OA=OC=1,∴AC= 2 在Rt△PAE中,AE=PE=3,∴AP=3 2(7分)设M点的横坐标为m,则M(m,m2-1)①点M在y轴左侧时,则m<-1.(ⅰ)当△AMG∽△PCA时,有AGPA=MGCA.∵AG=-m-1,MG=m2-1.即-m-132=m2-12 解得m1=-1(舍去)m2= 23(舍去).(ⅱ)当△MAG∽△PCA时有AGCA=MGPA,即-m-12=m2-132.解得:m=-1(舍去)m2=-2.∴M(-2,3)(10分).②点M在y轴右侧时,则m>1 (ⅰ)当△AMG∽△PCA时有AGPA=MGCA∵AG=m+1,MG=m2-1 ∴ m+132=m2-12 解得m1=-1(舍去)m2= 43.∴M(43,79).(ⅱ)当△MAG∽△PCA时有AGCA=MGPA,即m+12=m2-132.解得:m1=-1(舍去)m2=4,∴M(4,15).∴存在点M,使以A、M、G三点为顶点的三角形与△PCA相似M点的坐标为(-2,3),(43,79),(4,15)六1),(2),(3)点P在抛物线上,设y DC=kx+b,将(0,1),(1,0),带入得k=-1,b=1,∴直线CD为y=-x+1,∵过点B作⊙O的切线BP与x轴平行,. ∴P点的纵坐标为-1,把y=-1带入y=-x+1得x=2,∴P(2,-1),将x=2带入,得 y=-1,∴点P在抛物线上。

相关文档
最新文档