人教版高中数学必修五第二章单元测试(二)及参考答案
最新人教A版高中数学必修5第二章测评试卷及答案
第二章测评(时间:120分钟满分:150分)一、选择题(每小题5分,共60分)1.已知数列{a n}是等差数列,a1=2,其公差d≠0.若a5是a3和a8的等比中项,则S18=()A.398B.388C.189D.199a52=a3·a8,公差d≠0,a1=2,∴(a1+4d)2=(a1+2d)·(a1+7d),代入数据可得d=189.故选C.(2+4d)2=(2+2d)·(2+7d),解得d=1,∴S18=18a1+18×1722.已知数列{b n}是等比数列,b9是1和3的等差中项,则b2b16=()A.16B.8C.4D.2b9是1和3的等差中项,所以2b9=1+3,即b9=2.由等比数列{b n}的性质可得b2b16=b92=4.3.已知在递减的等差数列{a n}中,a3=-1,a1,a4,-a6成等比数列,若S n为数列{a n}的前n项和,则S7的值为() A.-14 B.-9C.-5D.-1{a n}的公差为d,由已知得a3=a1+2d=-1,a42=a1·(-a6),即(a1+3d)2=a1·(-a1-5d),且{a n}为递减d=7-21=-14.数列,则d=-1,a1=1.故S7=7a1+7×624.等差数列{a n}中,S16>0,S17<0,当其前n项和取得最大值时,n=()A.8B.9C.16D.17,S16>0,即a1+a16=a8+a9>0,S17<0,即a1+a17=2a9<0,所以a9<0,a8>0,所以等差数列{a n}为递减数列,且前8项为正数,从第9项以后为负数,所以当其前n项和取得最大值时,n=8.故选A.5.(2020·全国Ⅱ高考,文6)记S n为等比数列{a n}的前n项和.若a5-a3=12,a6-a4=24,则S n=()a nA.2n-1B.2-21-nC.2-2n-1D.21-n-1{a n}的公比为q.∵a5-a3=12,a6-a4=24,∴a6-a4=q=2.a5-a3又a 5-a 3=a 1q 4-a 1q 2=12a 1=12,∴a 1=1.∴a n =a 1·q n-1=2n-1,S n =a 1(1-q n )1-q =1×(1-2n )1-2=2n-1. ∴S na n=2n -12n -1=2-12n -1=2-21-n.故选B .6.已知数列{a n }满足a n +a n+1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( ) A.5 B.72C.92D.132a n +a n+1=12,a 2=2,∴a n ={-32,n 为奇数,2,n 为偶数.∴S 21=11×(-32)+10×2=72.故选B .7.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?”根据上面的已知条件,可求得该女子第4天所织布的尺数为( ) A .815B .1615C .2031D .4031n 天织的布为a n 尺,且数列{a n }为公比q=2的等比数列,由题意可得a 1(1-25)1-2=5,解得a 1=531.所以该女子第4天所织布的尺数为a 4=a 1q 3=4031. 故选D .8.在各项都为正数且不相等的等比数列{a n }中,S n 为其前n 项和,若a m ·a 2m+2=a 72=642(m ∈N *),且a m =8,则S 2m =( ) A.127 B.255 C.511D.1 023{a n }的公比为q ,则a 1q m-1·a 1q 2m+1=(a 1q 6)2.因为等比数列{a n }的各项都为正数且不相等,所以m-1+2m+1=12,解得m=4,故a 4=8.又因为a 72=642,所以a 7=64,q 3=a7a 4=8,解得q=2,所以a 1=a 423=1.故S 2m =S 8=1-281-2=255.9.已知在各项均为正数的数列{a n }中,a 1=1,a 2=2,2a n 2=a n -12+a n+12(n ≥2),b n =1a n +an+1,记数列{b n }的前n 项和为S n ,若S n =3,则n 的值是( ) A.99B.33C.48D.92a n 2=a n -12+a n+12(n ≥2),∴数列{a n 2}是首项为1,公差为22-1=3的等差数列,∴a n 2=1+3(n-1)=3n-2.又a n >0,∴a n =√3n -2,∴b n =1an +a n+1=√3n -2+√3n+1=13·(√3n +1−√3n -2), 故数列{b n }的前n 项和S n =13[(√4−√1)+(√7−√4)+…+(√3n +1−√3n -2)]=13·(√3n +1-1).由S n =13(√3n +1-1)=3,解得n=33.故选B 10.已知数列{a n }满足a 1+3a 2+32a 3+…+3n-1a n =n3(n ∈N *),则a n =( ) A.13n B.13n -1C.13nD.13n+1a 1+3a 2+32a 3+…+3n-1a n =n 3,①a 1+3a 2+32a 3+…+3n-2a n-1=n -13(n ≥2),② ①-②,得3n-1a n =n3−n -13=13(n ≥2),∴a n =13n (n ≥2).由①得a 1=13,经验证也满足上式,∴a n =13n (n ∈N *).故选C .11.对于正项数列{a n },定义:G n =a 1+2a 2+3a 3+…+na nn为数列{a n }的“匀称值”.已知数列{a n }的“匀称值”为G n =n+2,则该数列中的a 10等于( ) A .83B .125C .94D .2110G n=a1+2a2+3a3+…+na n,G n=n+2,∴n·G n=n·(n+2)=a1+2a2+3a3+…+na n,∴n.故10×(10+2)=a1+2a2+3a3+…+10a10;9×(9+2)=a1+2a2+3a3+…+9a9,两式相减得10·a10=21,∴a10=2110选D.12.在数列{a n}中,a1=1,a2=2,且a n+2-a n=1+(-1)n(n∈N*),则S100=()A.0B.1 300C.2 600D.2 602a n+2-a n=1+(-1)n(n∈N*),当n=1时,得a3-a1=0,即a3=a1;当n=2时,得a4-a2=2.由此可得,当n为+a2=n.奇数时,a n=a1;当n为偶数时,a n=2×n-22所以S100=a1+a2+…+a100=(a1+a3+…+a99)+(a2+a4+…+a100)=50a1+(2+4+ (100)=2 600.=50+50×(100+2)2二、填空题(每小题5分,共20分)13.若数列{a n}的前n项和S n=n2-8n,n=1,2,3,…,则满足a n>0的n的最小值为.,当n=1时,a1=S1=-7,当n≥2时,a n=S n-S n-1=2n-9.而a1=2×1-9=-7.综上,a n=2n-9.,又因为n∈N*.由2n-9>0,得n>92故满足a n>0的n的最小值为5.14.已知在公差不为零的正项等差数列{a n}中,S n为其前n项和,lg a1,lg a2,lg a4也成等差数列.若a5=10,则S5=.{a n}的公差为d,则d>0.由lg a1,lg a2,lg a4成等差数列,得2lg a2=lg a1+lg a4,则a22=a1a4,即(a1+d)2=a1(a1+3d),d2=a1d.因为d>0,所以d=a1,a5=5a1=10,解得d=a1=2.故S5=5a1+5×4×d=30.215.若等差数列{a n}的前n项和为S n,且a2=0,S5=10,数列{b n}满足b1=0,且b n+1=a n+1+b n,则数列{b n}的通项公式为.{a n }的公差为d ,则{a 1+d =0,5a 1+10d =10,解得{a 1=-2,d =2.于是a n =-2+2(n-1)=2n-4.因此a n+1=2n-2.于是b n+1-b n =2n-2,b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n-1)=0+0+2+…+(2n-4)=n 2-3n+2,故数列{b n }的通项公式为b n =n 2-3n+2.n =n 2-3n+216.(2020·全国Ⅰ高考,文16)数列{a n }满足a n+2+(-1)n a n =3n-1,前16项和为540,则a 1= .n 为偶数时,有a n+2+a n =3n-1,则(a 2+a 4)+(a 6+a 8)+(a 10+a 12)+(a 14+a 16)=5+17+29+41=92, 因为前16项和为540,所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448.当n 为奇数时,有a n+2-a n =3n-1,由累加法得a n+2-a 1=3(1+3+5+…+n )-1+n2=34n 2+n+14,所以a n+2=34n 2+n+14+a 1,所以a 1+34×12+1+14+a 1+34×32+3+14+a 1+34×52+5+14+a 1+34×72+7+14+a 1+34×92+9+14+a 1+34×112+11+14+a 1+34×132+13+14+a 1=448,解得a 1=7.三、解答题(共6小题,共70分)17.(本小题满分10分)已知数列{a n }是等差数列,前n 项和为S n ,且满足a 2+a 7=23,S 7=10a 3. (1)求数列{a n }的通项公式;(2)若a 2,a k ,a k+5(k ∈N *)构成等比数列,求k 的值.设等差数列{a n }的公差是d.根据题意有{a 1+d +a 1+6d =23,7a 1+7×62d =10(a 1+2d ), 解得{a 1=1,d =3.所以数列{a n }的通项公式为a n =3n-2. (2)由(1)得a 2=4,a k =3k-2,a k+5=3(k+5)-2, 由于a 2,a k ,a k+5(k ∈N *)构成等比数列, 所以(3k-2)2=4[3(k+5)-2],整理得3k 2-8k-16=0,解得k=4(舍去k =-43). 故k=4.18.(本小题满分12分)已知各项均为正数的等比数列{a n }的前n 项和为S n ,且2a 2=S 2+12,a 3=2. (1)求数列{a n }的通项公式;(2)若b n =log 2a n +3,数列1b n b n+1的前n 项和为T n ,求满足T n >13的正整数n 的最小值.由题意知,2a 2=S 2+12,∴2a 2=a 1+a 2+12,得a 2=a 1+12.设等比数列{a n }的公比为q ,∵a 3=2,∴2q =2q 2+12,化简得q 2-4q+4=0,解得q=2, ∴a n =a 3·q n-3=2·2n-3=2n-2.(2)由(1)知,b n =log 2a n +3=log 22n-2+3=n-2+3=n+1,∴1b n b n+1=1(n+1)(n+2)=1n+1−1n+2, ∴T n =1b1b 2+1b 2b 3+…+1b n b n+1=12−13+13−14+…+1n+1−1n+2=12−1n+2=n2(n+2). 令T n >13,得n2(n+2)>13,解得n>4,∴满足T n >13的正整数n 的最小值是5.19.(本小题满分12分)已知数列{a n }满足2a n+1=1a n+1a n+2(n ∈N *),且a 3=15,a 2=3a 5.(1)求{a n }的通项公式;(2)若b n =3a n a n+1(n ∈N *),求数列{b n }的前n 项和S n .由2a n+1=1a n+1a n+2(n ∈N *)可知数列{1a n}为等差数列.由已知得1a 3=5,1a 2=13·1a 5, 设其公差为d ,则1a 1+2d=5,1a 1+d=13(1a 1+4d),解得1a 1=1,d=2,于是1a n=1+2(n-1)=2n-1,整理得a n =12n -1.(2)由(1)得b n =3a n a n+1=3(2n -1)(2n+1)=32(12n -1-12n+1), 所以S n =32(1-13+13−15+…+12n -1−12n+1)=3n2n+1. 20.(本小题满分12分)已知数列{a n }的前n 项和S n =2a n -2n . (1)求a 1,a 2.(2)设c n =a n+1-2a n ,证明数列{c n }是等比数列.(3)求数列{n+12c n}的前n 项和T n .a 1=S 1,2a 1=S 1+2,∴a 1=S 1=2.由2a n =S n +2n ,知2a n+1=S n+1+2n+1=a n+1+S n +2n+1,∴a n+1=S n +2n+1,①∴a 2=S 1+22=2+22=6.①式知a n+1-2a n =(S n +2n+1)-(S n +2n )=2n+1-2n =2n ,即c n =2n ,∴cn+1c n=2(常数). ∵c 1=21=2,∴{c n }是首项为2,公比为2的等比数列.c n =2n ,∴n+12c n=n+12n+1.∴数列{n+12c n}的前n 项和T n =222+323+424+…+n+12n+1,12T n =223+324+…+n 2n+1+n+12n+2,两式相减,得12T n =222+123+124+125+…+12n+1−n+12n+2=12+123×(1-12n -1)1-12−n+12n+2=34−12n+1−n+12n+2=34−n+32n+2.∴T n =32−n+32n+1. 21.(本小题满分12分)已知数列{a n }的前n 项和S n =a n +12n 2+32n-2(n ∈N *). (1)求数列{a n }的通项公式; (2)若b n ={1(a n -1)(a n +1),n 为奇数,4·(12)a n,n 为偶数,且数列{b n }的前n 项和为T n ,求T 2n .由于S n =a n +12n 2+32n-2,所以当n ≥2时,S n-1=a n-1+12(n-1)2+32(n-1)-2,两式相减得a n =a n -a n-1+n+1,于是a n-1=n+1,所以a n =n+2. (2)由(1)得b n ={1(n+1)(n+3),n 为奇数,(12)n ,n 为偶数,所以T 2n =b 1+b 2+b 3+…+b 2n =(b 1+b 3+…+b 2n-1)+(b 2+b 4+…+b 2n ).因为b 1+b 3+…+b 2n-1=12×4+14×6+16×8+…+12n×(2n+2)=14[11×2+12×3+…+1n×(n+1)]=14(1-12+12-13+…+1n -1n+1)=n 4(n+1),b 2+b 4+…+b 2n =(12)2+(14)4+…+(12)2n =14[1-(14)n ]1-14=13[1-(14)n],于是T 2n =n4(n+1)+13[1-(14)n].22.(本小题满分12分)已知数列{a n }满足3(n+1)a n =na n+1(n ∈N *),且a 1=3. (1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和; (3)若a nb n=2n+3n+1,求证:56≤1b 1+1b 2+…+1b n<1.3(n+1)a n =na n+1,所以an+1a n=3(n+1)n(n ∈N *), 则a2a 1=3×21,a 3a 2=3×32,a 4a 3=3×43,……a n a n -1=3×n n -1,累乘可得an a 1=3n-1×n. 又因为a 1=3,所以a n =n×3n (n ∈N *).{a n }的前n 项和为S n ,则S n =1×3+2×32+3×33+…+(n-1)×3n-1+n×3n ,①3S n =1×32+2×33+3×34+…+(n-1)×3n +n×3n+1,② ①-②,可得-2S n =3+32+33+…+3n -n×3n+1=3(1-3n )1-3-n×3n+1=32(3n -1)-n×3n+1 =(12-n)×3n+1-32. 所以S n =(n 2-14)×3n+1+34.因为an b n=2n+3n+1, 所以1b n=2n+3n+1×1n×3n =2n+3n (n+1)×13n=3(n+1)-nn (n+1)×13n =(3n -1n+1)×13n =1n ×13n -1−1n+1×13n , 则1b 1+1b 2+…+1b n=(1×13-12×131)+(12×131-13×132)+…+(1n×13n -1-1n+1×13n )=1-1n+1×13n .因为n ∈N *,所以0<1n+1×13n≤16,即56≤1-1n+1×13n <1, 于是56≤1b 1+1b 2+…+1b n <1.。
人教版高中数学必修5测试题及答案全套(20200731141056).pdf
16.在△ ABC中, a, b, c 分别是角 A,B, C的对边,且 cosB cosC
(1) 求角 B 的值;
b
.
2a c
(2) 若 b= 13 ,a+ c= 4,求△ ABC的面积 .
第二章 数列
测试三 数列
Ⅰ 学习目标
1.了解数列的概念和几种简单的表示方法 ( 列表、图象、通项公式 ) ,了解数列是一种特殊的函数 .
7.在等差数列 { an} 中,已知 a1+a2= 5, a3+ a4= 9,那么 a5+ a6= ________.
8.设等差数列 { an} 的前 n 项和是 Sn,若 S17= 102,则 a9=________. 9.如果一个数列的前 n 项和 Sn= 3n2+ 2n,那么它的第 n 项 an=________. 10.在数列 { an} 中,若 a1= 1, a2= 2, an+ 2-an= 1+ ( -1) n( n∈ N*) ,设 { an} 的前 n 项和是 Sn,则 S10= ________.
三、解答题
11.已知数列 { an} 是等差数列,其前 n 项和为 Sn, a3=7, S4= 24.求数列 { an} 的通项公式 .
12.等差数列 { an} 的前 n 项和为 Sn,已知 a10=30, a20= 50. (1) 求通项 an; (2) 若 Sn= 242,求 n.
13.数列 { an} 是等差数列,且 a1=50, d=-. (1) 从第几项开始 an< 0; (2) 写出数列的前 n 项和公式 Sn,并求 Sn 的最大值 .
②cos( A+ B) = cos C ③ sin A
B
C cos
2
2
数学必修5第二章测试题及答案
第二章:数列 [基础训练A 组]一、选择题1.在数列55,34,21,,8,5,3,2,1,1x 中,x 等于( )A .11B .12C .13D .142.等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于( )A .66B .99C .144D .2973.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( )A .81B .120C .168D .1924.12+与12-,两数的等比中项是( )A .1B .1-C .1±D .215.已知一等比数列的前三项依次为33,22,++x x x ,那么2113-是此数列的第()项A .2B .4C .6D .86.在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为( )A .513B .512C .510D .8225二、填空题1.等差数列{}n a 中, ,33,952==a a 则{}n a 的公差为______________。
2.数列{n a }是等差数列,47a =,则7s =_________3.两个等差数列{}{},,n n b a ,327......2121++=++++++n n b b b a a a n n 则55b a =___________. 4.在等比数列{}n a 中, 若,75,393==a a 则10a =___________.5.在等比数列{}n a 中, 若101,a a 是方程06232=--x x 的两根,则47a a ⋅=___________.三、解答题1. 成等差数列的四个数的和为26,第二数与第三数之积为40,求这四个数。
2. 在等差数列{}n a 中, ,1.3,3.0125==a a 求2221201918a a a a a ++++的值。
高中数学必修5第二章课后习题解答新版
新课程标准数学必修5第二章课后习题解答第二章 数列2.1数列的概念与简单表示法 练习(P31) 1、2、前5项分别是:1,0,1,0,1--.3、例1(1)1(2,)1(21,)n n m m N n a n m m N n⎧-=∈⎪⎪=⎨⎪=-∈⎪⎩**; (2)2(2,)0(21,)n n m m N a n m m N ⎧=∈⎪=⎨=-∈⎪⎩**说明:此题是通项公式不唯一的题目,鼓励学生说出各种可能的表达形式,并举出其他可能的通项公式表达形式不唯一的例子.4、(1)1()21n a n Z n +=∈-; (2)(1)()2n n a n Z n +-=∈; (3)121()2n n a n Z +-=∈ 习题2.1 A 组(P33) 1、(1)2,3,5,7,11,13,17,19;(2) (3)1,1.7,1.73,1.732,…1.732050; 2,1.8,1.74,1.733,…,1.732051.2、(1)11111,,,,491625; (2)2,5,10,17,26--.3、(1)(1),4-,9,(16-),25,(36-),49; 12(1)n n a n +=-; (2)1,(,2;n a =.4、(1)1,3,13,53,2132; (2)141,5,,,5454--.5、对应的答案分别是:(1)16,21;54n a n =-;(2)10,13;32n a n =-;(3)24,35;22n a n n =+.6、15,21,28; 1n n a a n -=+. 习题2.1 B 组(P34)1、前5项是1,9,73,585,4681.该数列的递推公式是:1118,1n n a a a +=+=.通项公式是:817n n a -=.2、110(10.72)10.072a =⨯+=﹪; 2210(10.72)10.144518a =⨯+=﹪; 3310(10.72)10.217559a =⨯+=﹪; 10(10.72n n a =⨯+﹪.3、(1)1,2,3,5,8; (2)358132,,,,2358.2.2等差数列 练习(P39)1、表格第一行依次应填:0.5,15.5,3.75;表格第二行依次应填:15,11-,24-.2、152(1)213n a n n =+-=+,1033a =.3、4n c n =4、(1)是,首项是11m a a md +=+,公差不变,仍为d ;(2)是,首项是1a ,公差2d ;(3)仍然是等差数列;首项是716a a d =+;公差为7d . 5、(1)因为5375a a a a -=-,所以5372a a a =+. 同理有5192a a a =+也成立; (2)112(1)n n n a a a n -+=+>成立;2(0)n n k n k a a a n k -+=+>>也成立. 习题2.2 A 组(P40)1、(1)29n a =; (2)10n =; (3)3d =; (4)110a =.2、略.3、60︒.4、2℃;11-℃;37-℃.5、(1)9.8s t =; (2)588 cm ,5 s. 习题2.2 B 组(P40)1、(1)从表中的数据看,基本上是一个等差数列,公差约为2000,52010200280.2610a a d =+=⨯ 再加上原有的沙化面积5910⨯,答案为59.2610⨯;(2)2021年底,沙化面积开始小于52810 hm ⨯. 2、略. 2.3等差数列的前n 项和 练习(P45) 1、(1)88-; (2)604.5.2、59,11265,112n n a n n ⎧=⎪⎪=⎨+⎪>⎪⎩ 3、元素个数是30,元素和为900.习题2.3 A 组(P46)1、(1)(1)n n +; (2)2n ; (3)180个,和为98550; (4)900个,和为494550.2、(1)将120,54,999n n a a S ===代入1()2n n n a a S +=,并解得27n =; 将120,54,27n a a n ===代入1(1)n a a n d =+-,并解得1713d =.(2)将1,37,6293n d n S ===代入1(1)n a a n d =+-,1()2n n n a a S +=,得111237()6292n n a a a a =+⎧⎪⎨+=⎪⎩;解这个方程组,得111,23n a a ==.(3)将151,,566n a d S ==-=-代入1(1)2n n n S na d -=+,并解得15n =;将151,,1566a d n ==-=代入1(1)n a a n d =+-,得32n a =-.(4)将2,15,10n d n a ===-代入1(1)n a a n d =+-,并解得138a =-;将138,10,15n a a n =-=-=代入1()2n n n a a S +=,得360n S =-. 3、44.5510⨯m. 4、4.5、这些数的通项公式:7(1)2n -+,项数是14,和为665.6、1472.习题2.3 B 组(P46)1、每个月的维修费实际上是呈等差数列的. 代入等差数列前n 项和公式,求出5年内的总共的维修费,即再加上购买费,除以天数即可. 答案:292元.2、本题的解法有很多,可以直接代入公式化简,但是这种比较繁琐. 现提供2个证明方法供参考. (1)由 61615S a d =+,1211266S a d =+,18118153S a d =+ 可得61812126()2()S S S S S +-=-.(2)1261212126()()S S a a a a a a -=+++-+++7812a a a =+++ 126(6)(6)(6)a d a d a d =++++++ 126()36a a a d =++++636S d =+同样可得:1812672S S S d -=+,因此61812126()2()S S S S S +-=-.3、(1)首先求出最后一辆车出发的时间4时20分;所以到下午6时,最后一辆车行驶了1小时40分.(2)先求出15辆车总共的行驶时间,第一辆车共行驶4小时,以后车辆行驶时间依次递减,最后一辆行驶1小时40分. 各辆车的行驶时间呈等差数列分布,代入前n 项和公式,这个车队所有车的行驶时间为2418531522S +=⨯= h. 乘以车速60 km/h ,得行驶总路程为2550 km.4、数列1(1)n n ⎧⎫⎨⎬+⎩⎭的通项公式为111(1)1na n n n n ==-++ 所以111111111()()()()1122334111n nS n n n n =-+-+-++-=-=+++ 类似地,我们可以求出通项公式为1111()()n a n n k k n n k==-++的数列的前n 项和.2.4等比数列练习(P52) 1、2、由题意可知,每一轮被感染的计算机台数构成一个首项为180a =,公比为20q =的等比数列,则第5轮被感染的计算机台数5a 为 447518020 1.2810a a q ==⨯=⨯.3、(1)将数列{}n a 中的前k 项去掉,剩余的数列为12,,k k a a ++ . 令,1,2,k i b a i +== ,则数列12,,k k a a ++ 可视为12,,b b .因为11(1)i k i i k ib a q i b a ++++==≥,所以,{}n b 是等比数列,即12,,k k a a ++ 是等比数列. (2){}n a 中的所有奇数列是135,,,a a a ,则235211321(1)k k a a aq k a a a +-===== ≥. 所以,数列135,,,a a a 是以1a 为首项,2q 为公比的等比数列. (3){}n a 中每隔10项取出一项组成的数列是11223,,,a a a , 则1112231111121110(1)k k a a aq k a a a +-===== ≥ 所以,数列11223,,,a a a 是以1a 为首项,11q 为公比的等比数列.猜想:在数列{}n a 中每隔m (m 是一个正整数)取出一项,组成一个新的数列,这个数列是以1a 为首项,1m q +为公比的等比数列.4、(1)设{}n a 的公比为q ,则24228511()a a q a q ==,而262837111a a a q a q a q ⋅=⋅=所以2537a a a =⋅,同理2519a a a =⋅ (2)用上面的方法不难证明211(1)nn n a a a n -+=⋅>. 由此得出,n a 是1n a -和1n a +的等比中项. 同理:可证明,2(0)nn k n k a a a n k -+=⋅>>. 由此得出,n a 是n k a -和n k a +的等比中项(0)n k >>. 5、(1)设n 年后这辆车的价值为n a ,则13.5(110)n n a =-﹪. (2)4413.5(110)88573a =-≈﹪(元). 用满4年后卖掉这辆车,能得到约88573元.习题2.4 A 组(P53)1、(1)可由341a a q =,得11a =-,6671(1)(3)729a a q ==-⨯-=-. 也可由671a a q =,341a a q =,得337427(3)729a a q ==⨯-=-(2)由131188a q a q =⎧⎪⎨=⎪⎩,解得12723a q =⎧⎪⎨=⎪⎩,或12723a q =-⎧⎪⎨=-⎪⎩(3)由416146a q a q ⎧=⎪⎨=⎪⎩,解得232q =,862291173692a a q a q q a q ==⋅==⨯= 还可由579,,a a a 也成等比数列,即2759a a a =,得22795694a a a ===.(4)由411311156a q a a q a q ⎧-=⎪⎨-=⎪⎩ ①②①的两边分别除以②的两边,得2152q q +=,由此解得12q =或2q =. 当12q =时,116a =-. 此时2314a a q ==-. 当2q =时,11a =. 此时2314a a q ==. 2、设n 年后,需退耕n a ,则{}n a 是一个等比数列,其中18(110),0.1a q =+=﹪. 那么2005年需退耕5551(1)8(110)13a a q =+=+≈﹪(万公顷) 3、若{}n a 是各项均为正数的等比数列,则首项1a 和公比q 都是正数. 由11n n a a q-=11(1)22)n n q --=.那么数列{}n a12q 为公比的等比数列.4、这张报纸的厚度为0.05 mm ,对折一次后厚度为0.05×2 mm ,再对折后厚度为0.05×22 mm ,再对折后厚度为0.05×32 mm. 设00.05a =,对折n 次后报纸的厚度为n a ,则{}n a 是一个等比数列,公比2q =. 对折50次后,报纸的厚度为50505013100.052 5.6310 m m 5.6310 m a a q ==⨯≈⨯=⨯ 这时报纸的厚度已经超出了地球和月球的平均距离(约83.8410 m ⨯),所以能够在地球和月球之间建一座桥.5、设年平均增长率为1,105q a =,n 年后空气质量为良的天数为n a ,则{}n a 是一个等比数列.由3240a =,得2231(1)105(1)240a a q q =+=+=,解得10.51q =≈ 6、由已知条件知,,2a bA G +==,且02a b A G +-=- 所以有A G ≥,等号成立的条件是a b =. 而,a b 是互异正数,所以一定有A G >.7、(1)2±; (2)22()ab a b ±+. 8、(1)27,81; (2)80,40,20,10. 习题2.4 B 组(P54)1、证明:由等比数列通项公式,得11m m a a q -=,11n n a a q -=,其中1,0a q ≠所以 1111m m n m n n a a q q a a q---== 2、(1)设生物体死亡时,体内每克组织中的碳14的原子核数为1个单位,年衰变率为q ,n 年后的残留量为n a ,则{}n a 是一个等比数列. 由碳14的半衰期为5730则 57305730112n a a qq===,解得157301()0.9998792q =≈ (2)设动物约在距今n 年前死亡,由0.6n a =,得10.9998790.6n n a a q ===. 解得 4221n ≈,所以动物约在距今42213、在等差数列1,2,3,…中,有7108917a a a a +==+,1040203050a a a a +==+ 由此可以猜想,在等差数列{}n a 中若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a +=+. 从等差数列与函数之间的联系的角度来分析这个问题:由等差数列{}n a 的图象,可以看出k p a k a p =,s q a sa q=根据等式的性质,有k s p q a a k sa a p q++=++,所以k s p q a a a a +=+. 猜想对于等比数列{}n a ,类似的性质为:若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a ⋅=⋅. 2.5等比数列的前n 项和 练习(P58) 1、(1)6616(1)3(12)189112a q S q --===--. (2)1112.7()9190311451()3n n a a qS q----===----. 2、设这个等比数列的公比为q(第3题)所以 101256710()()S a a a a a a =+++++++ 555S q S =+55(1)q S =+50= 同理 1015105S S q S =+.因为 510S =,所以由①得 5101051416S q q S =-=⇒= 代入②,得1015105501610210S S q S =+=+⨯=.3、该市近10年每年的国内生产总值构成一个等比数列,首项12000a =,公比 1.1q =设近10年的国内生产总值是10S ,则10102000(1 1.1)31874.81 1.1S -=≈-(亿元) 习题2.5 A 组(P61) 1、(1)由34164641a q a ===--,解得4q =-,所以144164(4)5111(4)a a q S q ---⨯-===---. (2)因为2131233(1)S a a a a q q --=++=++,所以2113q q --++=,即2210q q --=解这个方程,得1q =或12q =-. 当1q =时,132a =;当12q =-时,16a =.2、这5年的产值是一个以1138 1.1151.8a =⨯=为首项, 1.1q =为公比的等比数列所以5515(1)151.8(1 1.1)926.75411 1.1a q S q -⨯-==≈--(万元) 3、(1)第1个正方形的面积为42cm ,第2个正方形的面积为22cm ,…,这是一个以14a =为首项,12q =为公比的等比数列所以第10个正方形的面积为99710114()22a a q -==⨯=(2cm )(2)这10个正方形的面积和为77110101422821112a a qS q---⨯-===---(2cm )4、(1)当1a =时,2(1)(1)(2)()12(1)2n n na a a n n --+-++-=-----=-当1a ≠时,22(1)(2)()()(12)n n a a a n a a a n -+-++-=+++-+++(1)(1)12n a a n n a -+=--(2)1212(235)(435)(35)2(12)3(555)n n n n -------⨯+-⨯+-⨯=+++-+++11(1)5(15)323(1)(15)2154n nn n n n ----+-⨯-⨯=+--- (3)设21123n n S x x nx -=++++ ……①则 212(1)n n n xS x x n x nx -=+++-+ ……②①-②得,21(1)1n n n x S x x x nx --=++++- ……③当1x =时,(1)1232n n n S n +=++++= ;当1x ≠时,由③得,21(1)1n n n x nx S x x -=--- 5、(1)第10次着地时,经过的路程为91002(50251002)-++++⨯1291911002100(222)2(12)100200299.61 (m)12------=+⨯+++-=+⨯≈- (2)设第n 次着地时,经过的路程为293.75 m ,则1(1)12(1)12(12)1002100(222)100200293.7512n n ---------+⨯+++=+⨯=- 所以130********.75n --⨯=,解得120.03125n -=,所以15n -=-,则6n =6、证明:因为396,,S S S 成等差数列,所以公比1q ≠,且9362S S S =+即,936111(1)(1)(1)2111a q a q a q q q q---⨯=+--- 于是,9362q q q =+,即6321q q =+ 上式两边同乘以1a q ,得741112a q a q a q =+ 即,8252a a a =+,故285,,a a a 成等差数列 习题2.5 B 组(P62)1、证明:11111()(1())1n n n n n n n n n bb b a b a a a b b a a b a a a b a+++---+++=+++==-- 2、证明:因为7714789141277()S S a a a q a a a q S -=+++=+++=141421141516211277()S S a a a q a a a q S -=+++=+++=所以71472114,,S S S --成等比数列3、(1)环保部门每年对废旧物资的回收量构成一个等比数列,首项为1100a =,公比为 1.2q =. 所以,2010年能回收的废旧物资为89100 1.2430a =⨯≈(t )(2)从2002年到2010年底,能回收的废旧物资为9919(1)100(1 1.2)208011 1.2a q S q --==≈--(t )可节约的土地为165048320⨯=(2m ) 4、(1)依教育储蓄的方式,应按照整存争取定期储蓄存款利率计息,免征利息税,且若每月固定存入a 元,连续存n 个月,计算利息的公式为()2a na n+⨯月利率.因为整存整取定期储蓄存款年利率为2.52﹪,月利率为0.21﹪故到期3年时一次可支取本息共(505036)360.2118001869.932+⨯⨯⨯+=﹪(元)若连续存6年,应按五年期整存整取定期储蓄存款利率计息,具体计算略. (2)略.(3)每月存50元,连续存3年按照“零存整取”的方式,年利率为1.89﹪,且需支付20﹪的利息税所以到期3年时一次可支取本息共1841.96元,比教育储蓄的方式少收益27.97元.(4)设每月应存入x 元,由教育储蓄的计算公式得36(36)0.2136100002x x x +⨯+=﹪解得267.39x ≈(元),即每月应存入267.39(元) (5)(6)(7)(8)略 5、设每年应存入x 万元,则2004年初存入的钱到2010年底利和为7(12)x +﹪,2005年初存入的钱到2010年底利和为6(12)x +﹪,……,2010年初存入的钱到2010年底利和为(12)x +﹪. 根据题意,76(12)(12)(12)40x x x ++++++= ﹪﹪﹪根据等比数列前n 项和公式,得7(12)(1 1.02)401 1.02x +-=-﹪,解得52498x ≈(元) 故,每年大约应存入52498元第二章 复习参考题A 组(P67)1、(1)B ; (2)B ; (3)B ; (4)A .2、(1)212n n n a -=; (2)12(1)(21)1(2)n n n a n +--=+;(3)7(101)9n n a =-; (4)n a =n a3、4、如果,,a b c 成等差数列,则5b =;如果,,a b c 成等比数列,则1b =,或1-.5、n a 按顺序输出的值为:12,36,108,324,972. 86093436sum =.6、81381.9(10.13)1396.3⨯+≈﹪(万) 7、从12月20日到次年的1月1日,共13天. 每天领取的奖品价值呈等差数列分布.110,100d a ==. 由1(1)2n n n S a n d -=+得:1313121001310208020002S ⨯=⨯+⨯=>. 所以第二种领奖方式获奖者受益更多.8、因为28374652a a a a a a a +=+=+=所以34567285450()2a a a a a a a +++++==+,则28180a a +=.9、容易得到101010,1012002n n na n S +==⨯=,得15n =.10、212212()()()n n n n S a a a a nd a nd a nd ++=+++=++++++2121()n a a a n nd S n d =++++⨯=+32122312(2)(2)(2)n n n nS a a a a n d a n d a n d ++=+++=++++++ 2121()22n a a a n n d S n d =++++⨯=+ 容易验证2132S S S =+. 所以,123,,S S S 也是等差数列,公差为2n d . 11、221(1)(1)4(1)221a f x x x x x =+=+-++=-- 223(1)(1)4(1)267a f x x x x x =-=---+=-+ 因为{}n a 是等差数列,所以123,,a a a 也是等差数列. 所以,2132a a a =+. 即,20286x x =-+. 解得1x =或3x =. 当1x =时,1232,0,2a a a =-==. 由此可求出24n a n =-. 当3x =时,1232,0,2a a a ===-. 由此可求出42n a n =-.第二章 复习参考题B 组(P68)1、(1)B ; (2)D .2、(1)不成等差数列. 可以从图象上解释. ,,a b c 成等差,则通项公式为y pn q =+的形式,且,,a b c 位于同一直线上,而111,,a b c 的通项公式却是1y pn q =+的形式,111,,a b c不可能在同一直线上,因此肯定不是等差数列.(2)成等比数列. 因为,,a b c 成等比,有2b ac =. 又由于,,a b c 非零,两边同时取倒数,则有21111b ac a c==⨯. 所以,111,,a b c也成等比数列.3、体积分数:60.033(125)0.126⨯+≈﹪,质量分数:60.05(125)0.191⨯+≈﹪.4、设工作时间为n ,三种付费方式的前n 项和分别为,,n n n A B C . 第一种付费方式为常数列;第二种付费方式为首项是4,公差也为4的等差数列;第三种付费方式为首项是0.4,公比为2的等比数列. 则38n A n =,2(1)44222n n n B n n n -=+⨯=+, 0.4(12)0.4(21)12n n n C -==--. 下面考察,,n n n A B C 看出10n <时,380.4(21)n n >-.因此,当工作时间小于10天时,选用第一种付费方式.10n ≥时,,n n n n A C B C ≤≤因此,当工作时间大于10天时,选用第三种付费方式.5、第一星期选择A 种菜的人数为n ,即1a n =,选择B 种菜的人数为500a -.所以有以下关系式:2118030a a b =⨯+⨯﹪﹪3228030a a b =⨯+⨯﹪﹪……118030n n b a a b --=⨯+⨯﹪﹪500n n a b += 所以111502n n a a -=+,115003502n n n b a a -=-=- 如果1300a =,则2300a =,3300a =,…,10300a =6、解:由1223n n n a a a --=+得 1123()n n n n a a a a ---+=+以及1123(3)n n n n a a a a ----=--所以221213()37n n n n a a a a ---+=+=⨯,221213(1)(3)(1)13n n n n a a a a ----=--=-⨯.由以上两式得,11437(1)13n n n a --=⨯+-⨯ 所以,数列的通项公式是11137(1)134n n n a --⎡⎤=⨯+-⨯⎣⎦ 7、设这家牛奶厂每年应扣除x 万元消费基金2002年底剩余资金是1000(150)x +-﹪2003年底剩余资金是2[1000(150)](150)1000(150)(150)x x x x +-+-=+-+-﹪﹪﹪﹪ ……5年后达到资金 54321000(150)(150)(150)(150)(150)2000x x x x +-+-+-+-+=﹪﹪﹪﹪﹪ 解得 459x ≈(万元)。
最新人教版高中数学必修5第二章单元测试
《数列》测评SHULIECEPING(时间:90分钟,满分:100分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3为…( ) A .4 B.32 C.169D .22(2009湖南高考,文3)设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( )A .13B .35C .49D .633在等差数列{a n }中,设公差为d ,若前n 项和为S n =-n 2,则通项和公差分别为( ) A .a n =2n -1,d =-2 B .a n =2n -1,d =2 C .a n =-2n +1,d =-2 D .a n =-2n +1,d =24已知等比数列{a n }中,a n >0,a 1,a 99是方程x 2-10x +16=0的两根,则a 20a 50a 80的值为( )A .32B .64C .256D .±645等差数列{a n }的前n 项和为S n ,若S 2=2,S 4=10,则S 6等于( ) A .12 B .18 C .24 D .426数列{a n }是由实数构成的等比数列,S n =a 1+a 2+…+a n ,则数列{S n }中( ) A .任一项均不为0 B .必有一项不为0C .至多有有限项为0D .或无一项为0,或有无穷多项为07计算机的成本不断降低,若每隔5年计算机价格降低13,现在的价格是8 100元,则15年后,价格降低为( )A .2 200元B .900元C .2 400元D .3 600元8数列{a n }中,对任意自然数n ,a 1+a 2+…+a n =2n -1,则a 21+a 22+…+a 2n 等于( )A .(2n -1)2 B.13(2n -1)2C .4n -1 D.13(4n -1)9已知数列{a n }中,a 1=1,a 2=3,a n =a n -1+1a n -2(n ≥3),则a 5的值为( )A.5512B.133C .4D .5 10(2009重庆高考,文5)设{a n }是公差不为0的等差数列,a 1=2且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n 等于( )A.n 24+7n 4B.n 23+5n 3C.n 22+3n4 D .n 2+n二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中的横线上) 11已知数列的通项a n =-5n +2,则其前n 项和S n =________.12若等比数列{a n }的前n 项和为S n ,a 2=6,S 3=21,则公比q =__________. 13已知等差数列{a n }的前n 项和为S n ,若S 12=21,则a 2+a 5+a 8+a 11=________. 14已知-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则a 2-a 1b 2的值是__________.15将全体正整数排成一个三角形数阵:1 2 34 5 6 7 8 9 10 11 12 13 14 15……根据以上排列规律,数阵中第n (n ≥3)行的第3个数(从左向右数)是__________.三、解答题(本大题共4小题,共40分.解答时应写出文字说明、证明过程或演算步骤) 16(本小题满分10分)(2009辽宁高考,文17)等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列.(1)求{a n }的公比q ; (2)若a 1-a 3=3,求S n .17(本小题满分10分)设{a n }是一个公差为d (d ≠0)的等差数列,它的前10项和S 10=110,且a 1,a 2,a 4成等比数列.求{a n }的通项公式.18(本小题满分10分)设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=21,S 15=-75,T n 为数列{S nn}的前n 项和,求T n 的最大值.19(本小题满分10分)数列{a n }满足a 1=1,a n =a n +1(1+2a n )(n ∈N +). (1)求证:数列{1a n}是等差数列;(2)若a 1a 2+a 2a 3+…+a n a n +1>1633,求n 的取值范围.参考答案1解析:等比数列{a n }中,a 3,a 6,a 9成等比数列,a 26 = a 3 ·a 9 ,∴a 3=4.2解析:S 7=7(a 1+a 7)2=7(a 2+a 6)2=49.答案:C3解析:a n =S n -S n -1=-n 2+(n -1)2=-2n +1,或者将n =1,2,3,4代入前n 项和,我们也可以得到通项和公差.答案:C4解析:由韦达定理,得a 1·a 99=16. 而a 1·a 99=a 20·a 80=a 250=16,且a n >0. ∴a 50=4,a 20·a 80=16. ∴a 20·a 50·a 80=4×16=64. 答案:B5解析:∵等差数列{a n }的前n 项和为S n ,∴有S 2,S 4-S 2,S 6-S 4成等差数列,∴2(S 4-S 2)=S 2+(S 6-S 4),整理得S 6=3S 4-3S 2=3×10-3×2=24.答案:C6解析:如在数列2,-2,2,-2…中,S 1=2,S 2=0,S 3=2,S 4=0,…,如果有一项为0,那么就会有无限多项为0.答案:D7解析:15年后价格降低了3次,则8 100×(1-13)3=2 400.答案:C8解析: n ≥2时,a 1+a 2+…+a n =2n -1①,a 1+a 2+…+a n -1=2n -1-1②,①-②得a n =2n -1,当n =1时,a 1=1.∴a n =2n -1(n ∈N +).∴a 2n =(2n -1)2= 4n -1, 即{ a 2n }是以a 21= 1为首项,4为公比的等比数列.∴S n =1-4n 1-4=13(4n-1).答案:D9解析:由题意,得a 3=a 2+1a 1=4,a 4=a 3+1a 2=4+13=133,a 5=a 4+1a 3=133+14=5512.10解析:设其公差为d ,∵a 1,a 3,a 6成等比数列, ∴a 23=a 1·a 6,即(a 1+2d )2=a 1(a 1+5d ). 又∵d ≠0,∴d =12.∴S n =na 1+n (n -1)d 2=2n +n (n -1)2·12=n 24+7n 4.答案:A11解析:∵a n =-5n +2,∴{a n }为等差数列,且公差d =-5,首项a 1=-3, ∴S n =n (-3-5n +2)2=-n (5n +1)2.答案:-n (5n +1)212解析:本题是等比数列问题,常用方法是以a 1和q 为未知数建立方程,解出a 1和q ,由题意得,⎩⎪⎨⎪⎧a 1q =6,a 1+a 1q 2=15,解之得q =2或12. 答案:2或1213解析:∵S 12=21,∴12(a 1+a 12)2=21,解得a 1+a 12=72,∴a 2+a 5+a 8+a 11=2(a 1+a 12)=2×72=7.答案:714解析:由题意,得a 2-a 1=d =-4-(-1)3=-1,b 22=(-1)×(-4)=4且b 2应与-1,-4的符号一致,故b 2=-2,∴a 2-a 1b 2=-1-2=12. 答案:1215解析:该数阵的第1行有1个数,第2行有2个数,…,第n 行有n 个数,则第n -1(n ≥3)行的最后一个数为(n -1)(1+n -1)2=n 22-n 2,则第n 行的第3个数为n 22-n3+3(n ≥3).答案:n 22-n2+316分析:将S n 表示成a 1和q 的表达式,从而求解.解:(1)依题意有a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2), 由于a 1≠0,故2q 2+q =0. 又q ≠0,从而q =-12.(2)由已知可得a 1-a 1(-12)2=3,故a 1=4.从而S n =4[1-(-12)n ]1-(-12)=83[1-(-12)n ].17分析:首项a 1和公差d 是解决等差数列问题的基本量,通常列出它们的方程或方程组解之.解:因为a 1,a 2,a 4成等比数列,所以a 22=a 1a 4.而{a n }为等差数列,有(a 1+d )2=a 1(a 1+3d ),即a 21+2a 1d +d 2=a 21+3a 1d .因为d ≠0,故可化简得a 1=d .由S 10=110和S 10=10a 1+10×92d ,得10a 1+45d =110,将a 1=d 代入上式,得55d =110,故d =2. 故a n =a 1+(n -1)d =2n .所以数列{a n }的通项公式为a n =2n .18分析:列方程组可求得S n ,继而求得T n ,把T n 看成关于自变量n 的函数来求最大值即可.解:设等差数列{a n }公差为d ,则S n =na 1+12n (n -1)d .∵S 7=21,S 15=-75,∴⎩⎪⎨⎪⎧ 7a 1+21d =21,15a 1+105d =-75,即⎩⎪⎨⎪⎧a 1+3d =3,a 1+7d =-5,解得a 1=9,d =-2.∴S n =na 1+n (n -1)2d =9n -(n 2-n )=10n -n 2.则S nn =10-n . ∵S n +1n +1-S nn=-1, ∴数列{S nn }是以9为首项,公差为-1的等差数列.则T n =n ·[9+(10-n )]2=-12n 2+192n=-12(n -192)2+3618.∵n ∈N +,∴当n =9或n =10时,T n 有最大值45. 19(1)证明:∵a n =a n +1(1+2a n ), ∴1a n +1=1a n +2. ∴数列{1a n }是首项为1a 1=1,公差d =2的等差数列.(2)解:由(1)知1a n =1a 1+(n -1)d =2n -1,∴a n =12n -1.∵a n a n +1=1(2n -1)(2n +1)=12(12n -1-12n +1),∴a 1a 2+a 2a 3+…+a n a n +1=12(11-13+13-15+…+12n -1-12n +1) =12(1-12n +1)=n 2n +1. 由n 2n +1>1633,得n >16. ∴n 的取值范围是{n |n >16,n ∈N +).。
人教新课标版数学高二必修五练习单元质量评估 第二章 数列(含答案解析)
单元质量评估(二)第二章 数列 (120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 2011是等差数列:1,4,7,10,…的第几项( ) (A )669 (B )670 (C )671 (D )6722.数列{a n }满足a n =4a n-1+3,a 1=0,则此数列的第5项是( ) (A )15 (B )255 (C )20 (D )83.等比数列{a n }中,如果a 6=6,a 9=9,那么a 3为( ) (A )4 (B )23 (C )916(D )2 4.在等差数列{a n }中,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20=( ) (A )-1 (B )1 (C )3 (D )75.在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6=( ) (A )40 (B )42 (C )43 (D )456.记等差数列的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d=( )(A)2 (B)3 (C)6 (D)77.等差数列{a n }的公差不为零,首项a 1=1,a 2是a 1和a 5的等比中项,则数列的前10项之和是( )(A )90 (B )100 (C )145 (D )190 8.在数列{a n }中,a 1=2,2a n+1-2a n =1,则a 101的值为( ) (A )49 (B )50 (C )51 (D )529.计算机是将信息转化成二进制数进行处理的,二进制即“逢二进一”,如(1101)2表示二进制的数,将它转化成十进制的形式是1×23+1×22+0×21+1×20=13,那么将二进制数16111 位转换成十进制数的形式是( )(A )217-2 (B )216-1 (C )216-2 (D )215-110.在等差数列{a n }中,若a 1+a 2+a 3=32,a 11+a 12+a 13=118,则a 4+a 10=( ) (A )45 (B )50 (C )75 (D )6011.(2011·江西高考)已知数列{a n }的前n 项和S n 满足:S n +S m =S n+m ,且a 1=1,那么a 10=( )(A )1 (B )9 (C )10 (D )5512.等比数列{a n }满足a n >0,n=1,2,…,且a 5·a 2n-5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n-1=( ) (A )n(2n-1) (B )(n+1)2 (C )n 2 (D )(n-1)2二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填在题中的横线上)13.等差数列{a n }前m 项的和为30,前2m 项的和为100,则它的前3m项的和 为______.14.(2011·广东高考)已知{a n }是递增等比数列,a 2=2,a 4-a 3=4,则此数列的公比q=______. 15.两个等差数列{a n }, {b n },12n 12n a a a 7n 2b b b n 3++⋯++=++⋯++,则55a b =______.16.设数列{a n }中,a 1=2,a n+1=a n +n+1,则通项a n =_____.三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知数列{a n }是等差数列,a 2=3,a 5=6,求数列{a n }的通项公式与前n 项的和M n .18.(12分)等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列. (1)求{a n }的公比q ; (2)若a 1-a 3=3,求S n .19.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n-1(n ≥2),若a n +S n =n ,c n =a n -1. (1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.20.(12分)如果有穷数列a 1,a 2,a 3,…,a m (m 为正整数)满足条件a 1=a m , a 2=a m-1,…,a m =a 1,即a i =a m-i+1(i=1,2,…,m),我们称其为“对称数列”.例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.(1)设{b n }是7项的“对称数列”,其中b 1,b 2,b 3,b 4是等差数列,且b 1=2,b 4=11.依次写出{b n }的每一项;(2)设{c n }是49项的“对称数列”,其中c 25,c 26,…,c 49是首项为1,公比为2的等比数列,求{c n }各项的和S.[] 21.(12分)已知数列{a n }的前n 项和为()nn n 1S ,S 312=-(*n N ∈),等差数列{b n }中,b n >0(*n N ∈),且b 1+b 2+b 3=15,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列.(1)求数列{a n },{b n }的通项公式; (2)求数列{a n +b n }的前n 项和T n .22.(12分)某商店为了促进商品销售,特定优惠方式,即购买某种家用电器有两种付款方式可供顾客选择,家用电器价格为2 150元.第一种付款方式:购买当天先付150元,以后每月这一天都交付200元,并加付欠款利息,每月利息按复利计算,月利率为1%;第二种付款方式:购买当天先付150元,以后每个月付款一次,10个月付清,每月付款金额相同,每月利息按复利计算,月利率1%.试比较两种付款方法,计算每月所付金额及购买这件家用电器总共所付金额.答案解析1.【解析】选C.∵2011=1+(n-1)×(4-1),∴n=671.2.【解析】选B.由a n =4a n-1+3,a 1=0,依次求得a 2=3,a 3=15,a 4=63,a 5=255.3.【解析】选A.等比数列{a n }中,a 3,a 6,a 9也成等比数列,∴a 62=a 3a 9,∴a 3=4.4.【解析】选B.a 1+a 3+a 5=105,∴a 3=35,同理a 4=33, ∴d=-2,a 1=39,∴a 20=a 1+19d=1.5.【解析】选B.设公差为d,由a 1=2,a 2+a 3=13,得d=3,则a 4+a 5+a 6= (a 1+3d)+(a 2+3d)+(a 3+3d) =(a 1+a 2+a 3)+9d=15+27=42.6.【解析】选B.S 4-S 2=a 3+a 4=20-4=16,∴a 3+a 4-S 2=(a 3-a 1)+(a 4-a 2)=4d=16-4=12,∴d=3.7.【解析】选B.设公差为d,∴(1+d)2=1×(1+4d), ∵d ≠0,∴d=2,从而S 10=100.[] 8.【解题提示】利用等差数列的定义. 【解析】选D.∵2a n+1-2a n =1,∴n 1n 1a a 2+-=, ∴数列{a n }是首项a 1=2,公差1d 2=的等差数列, ∴()1011a 21011522=+-=.9.【解析】选B.形式为:1×215+1×214+1×213+…+1×21+1×20=216-1.10.【解析】选B.由已知a 1+a 2+a 3+a 11+a 12+a 13=150,∴3(a 1+a 13)=150,∴a 1+a 13=50,∴a 4+a 10=a 1+a 13=50.11.【解题提示】结合S n +S m =S n+m ,对m,n 赋值,令n=9,m=1,即得S 9+S 1=S 10,即得a 10=1.【解析】选A.∵S n +S m =S n+m ,∴令n=9,m=1,即得S 9+S 1=S 10,即S 1=S 10-S 9=a 10, 又∵S 1=a 1,∴a 10=1.12.【解题提示】由已知可先求得通项公式,再由对数的性质进行运算.【解析】选C.a 5·a 2n-5=22n (n ≥3), ∴a n 2=22n ,a n >0,∴a n =2n ,log 2a 1+log 2a 3+…+log 2a 2n-1 =1+3+…+(2n-1)=n 2.13.【解题提示】利用等差数列前n 项和的性质【解析】由题意可知S m ,S 2m -S m ,S 3m -S 2m 成等差数列,2(S 2m -S m )=S m +S 3m -S 2m∴S 3m =3(S 2m -S m )=3×(100-30)=210. 答案:21014.【解题提示】由等比数列的通项公式,可得关于公比q 的方程,从而求出q.【解析】由a 4-a 3=4得a 2q 2-a 2q=4,即2q 2-2q=4,解得q=2或q=-1(由数列是递增数列,舍去). 答案:215.【解题提示】利用等差数列的前n 项和的有关性质进行运算. 【解析】设两个等差数列{a n },{b n }的前n 项和分别为A n ,B n .则()()195919599a a a A 7926529b b b B 93122+⨯+====++.答案:651216.【解析】∵a 1=2,a n+1=a n +(n+1), ∴a n =a n-1+n,a n-1=a n-2+(n-1),a n-2=a n-3+(n-2),…,a 3=a 2+3,a 2=a 1+2,a 1=2=1+1将以上各式相加得:()()2n n n 1n na [n n 121]111222+=+-+⋯+++=+=++. 答案:2n n122++17.【解析】设{a n }的公差为d, ∵a 2=3,a 5=6,∴11a d 3a 4d 6+=⎧⎨+=⎩,∴a 1=2,d=1, ∴a n =2+(n-1)=n+1.()2n 1n n 1n 3nM na d .22-+=+=18.【解析】(1)依题意有a 1+(a 1+a 1q)=2(a 1+a 1q+a 1q 2)由于a 1≠0,故2q 2+q=0,又q ≠0,从而1q 2=-.(2)由已知得a 1-a 1(12-)2=3,故a 1=4从而n n n 141()812S 113212--==----[][()](). 19.【解析】(1)∵a 1=S 1,a n +S n =n,① ∴a 1+S 1=1,得11a 2=.又a n+1+S n+1=n+1 ②①②两式相减得2(a n+1-1)=a n -1, 即n 1n a 11a 12+-=-,也即n 1n c 1c 2+=, 故数列{c n }是等比数列. (2)∵111c a 12=-=-, ∴n n n n n11c ,a c 1122=-=+=-, n 1n 11a 12--=-.故当n ≥2时,n n n 1n 1n n111b a a 222--=-=-=. 又111b a 2==,即n n 1b 2=. 20.【解题提示】利用等比数列的前n 项和公式进行计算.【解析】(1)设数列{b n }的公差为d ,则b 4=b 1+3d=2+3d=11,解得d=3,∴数列{b n }为2,5,8,11,8,5,2. (2)S=c 1+c 2+…+c 49 =2(c 25+c 26+…+c 49)-c 25 =2(1+2+22+…+224)-1 =2(225-1)-1=226-3.21.【解析】(1)a 1=1,a n =S n -S n-1=3n-1,n>1,∴a n =3n-1(*n N ∈),∴数列{a n }是以1为首项,3为公比的等比数列, ∴a 1=1,a 2=3,a 3=9,在等差数列{b n }中, ∵b 1+b 2+b 3=15,∴b 2=5.又因a 1+b 1,a 2+b 2,a 3+b 3成等比数列,设等差数列{b n }的公差为d,∴(1+5-d )(9+5+d)=64,解得d=-10或d=2, ∵b n >0(*n N ∈),∴舍去d=-10,取d=2,∴b 1=3. ∴b n =2n+1(*n N ∈). (2)由(1)知∴T n =a 1+b 1+a 2+b 2+…+a n +b n =(a 1+a 2+…+a n )+(b 1+b 2+…+b n )()n n 32n 113132++-=+- n 231n 2n 22=++-. 22.【解题提示】第一种付款方式是等差数列模型,第二种付款方式是等比数列模型,分别计算出实际共付金额,再比较得出结论. 【解析】第一种方式:购买时先付150元,欠2 000元,按要求知10次付清,则第1次付款金额为a 1=200+2 000×0.01=220(元); 第2次付款金额为a 2=200+(2 000-200)×0.01=218(元) ……第n 次付款金额为a n =200+[2 000-(n-1)×200]×0.01=220-(n-1)×2(元).不难看出每次所付款金额顺次构成以220为首项,-2为公差的等差数列,所以10次付款总金额为()10109S 102202 2 1102⨯=⨯+⨯-= (元),实际共付2 260元.第二种方式:购买时先付150元,欠2 000元,则10个月后增值为2000×(1+0.01)10=2 000×(1.01)10(元).设每月付款x 元,则各月所付的款额连同最后一次付款时生成的利息之和分别是(1.01)9x,(1.01)8x,…,x,其构成等比数列,和为()101011.01S x 11.01-=-·. 应有()1010S 2 0001.01=⨯,所以x ≈211.2,每月应付211.2元,10次付款总金额为2 112元,实际共付2 262元,所以第一种方式更省钱. 【方法技巧】分清类型解数列应用题解数列应用题要明确问题是属于哪一种类型,即明确是等差数列问题还是等比数列问题,是求a n 还是求S n ,特别要弄清项数为多少,试题中常见的数列类型有:(1)构造等差、等比数列模型,然后再应用数列的通项公式及求和公式求解;(2)先求出连续的几项,再归纳出a n ,然后用数列知识求解.。
人教版新课标A版高中数学必修5:第二章数列单元同步测试(含解析).doc
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第二章测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.S n 是数列{a n }的前n 项和,log 2S n =n (n =1,2,3,…),那么数列{a n }( )A .是公比为2的等比数列B .是公差为2的等差数列C .是公比为12的等比数列 D .既非等差数列也非等比数列解析 由log 2S n =n ,得S n =2n ,a 1=S 1=2,a 2=S 2-S 1=22-2=2,a 3=S 3-S 2=23-22=4,…由此可知,数列{a n }既不是等差数列,也不是等比数列. 答案 D2.一个数列{a n },其中a 1=3,a 2=6,a n +2=a n +1-a n ,则a 5=( ) A .6 B .-3 C .-12D .-6解析 a 3=a 2-a 1=6-3=3, a 4=a 3-a 2=3-6=-3, a 5=a 4-a 3=-3-3=-6. 答案 D3.首项为a 的数列{a n }既是等差数列,又是等比数列,则这个数列前n 项和为( )A .a n -1B .naC .a nD .(n -1)a解析 由题意,知a n =a (a ≠0),∴S n =na . 答案 B4.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }的前7项和为( )A .63B .64C .127D .128解析 a 5=a 1q 4=q 4=16,∴q =2. ∴S 7=1-271-2=128-1=127.答案 C5.已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)的值等于( )A .-8B .8C .-98D.98解析 a 2-a 1=-1-(-9)3=83, b 22=(-1)×(-9)=9,∴b 2=-3, ∴b 2(a 2-a 1)=-3×83=-8. 答案 A6.在-12和8之间插入n 个数,使这n +2个数组成和为-10的等差数列,则n 的值为( )A .2B .3C .4D .5解析 依题意,得-10=-12+82(n +2), ∴n =3. 答案 B7.已知{a n }是等差数列,a 4=15,S 5=55,则过点P (3,a 3),Q (4,a 4)的直线的斜率为( )A .4 B.14 C .-4D .-14解析由a 4=15,S 5=55,得⎩⎪⎨⎪⎧a 1+3d =15,5a 1+5×42d =55.解得⎩⎨⎧a 1=3,d =4.∴a 3=a 4-d =11.∴P (3,11),Q (4,15).k PQ =15-114-3=4.答案 A8.等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19=( ) A .55 B .95 C .100D .190解析 S 19=a 1+a 192×19=a 3+a 172×19=102×19=95. 答案 B9.S n 是等差数列{a n }的前n 项和,若a 2+a 4+a 15是一个确定的常数,则在数列{S n }中也是确定常数的项是( )A .S 7B .S 4C .S 13D .S 16解析 a 2+a 4+a 15=a 1+d +a 1+3d +a 1+14d =3a 1+18d =3(a 1+6d )=3a 7,∴a 7为常数.∴S 13=a 1+a 132×13=13a 7为常数. 答案 C10.等比数列{a n }中,a 1+a 2+a 3+a 4+a 5=31,a 2+a 3+a 4+a 5+a 6=62,则通项是( )A .2n -1B .2nC .2n +1D .2n +2解析 ∵a 2+a 3+a 4+a 5+a 6=q (a 1+a 2+a 3+a 4+a 5), ∴62=q ×31,∴q =2.∴S 5=a 1(1-25)1-2=31.∴a 1=1,∴a n =2n -1. 答案 A11.已知等差数列{a n }中,|a 3|=|a 9|,公差d <0,则使其前n 项和S n 取得最大值的自然数n 是( )A .4或5B .5或6C .6或7D .不存在解析 由d <0知,{a n }是递减数列, ∵|a 3|=|a 9|,∴a 3=-a 9,即a 3+a 9=0. 又2a 6=a 3+a 9=0,∴a 6=0. ∴S 5=S 6且最大. 答案 B12.若a ,b ,c 成等比数列,则方程ax 2+bx +c =0( ) A .有两个不等实根 B .有两相等的实根 C .无实数根 D .无法确定解析 a ,b ,c 成等比数列,∴b 2=ac >0. 而Δ=b 2-4ac =ac -4ac =-3ac <0. ∴方程ax 2+bx +c =0无实数根. 答案 C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.2,x ,y ,z,18成等比数列,则x =________.解析 设公比为q ,则由2,x ,y ,z,18成等比数列.得18=2q 4,∴q =±3.∴x =2q =±2 3.答案 ±2 314.若数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n ,0≤a n ≤1,a n -1,a n >1,且a 1=67,则a 2013=________.解析 由题意,得a 1=67,a 2=127,a 3=57,a 4=107,a 5=37,a 6=67,a 7=127,…,∴a 2013=a 3=57.答案 5715.一个数列的前n 项和为S n =1-2+3-4+…+(-1)n +1n ,则S 17+S 33+S 50=____________.解析 S 17=-8+17=9,S 33=-16+33=17,S 50=-25,∴S 17+S 33+S 50=1.答案 116.设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=________.解析 S 4a 4=a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫124⎝⎛⎭⎪⎫1-12a 1⎝ ⎛⎭⎪⎫123=15. 答案 15三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)设S n 为数列{a n }的前n 项和,已知a 1≠0,2a n -a 1=S 1·S n ,n ∈N *.(1)求a 1,a 2,并求数列{a n }的通项公式; (2)求数列{na n }的前n 项和.解 (1)令n =1,得2a 1-a 1=a 21,即a 1=a 21,∵a 1≠0,∴a 1=1,令n =2,得2a 2-1=S 2=1+a 2,解得a 2=2.当n ≥2时,由2a n -1=S n,2a n -1=S n -1 两式相减得2a n -2a n -1=a n ,即a n =2a n -1, 于是数列{a n }是首项为1,公比为2的等比数列, 即a n =2n -1.∴数列{a n }的通项公式为a n =2n -1. (2)由(1)知,na n =n ·2n -1.记数列{n ·2n -1}的前n 项和为B n ,于是 B n =1+2×2+3×22+…+n ×2n -1,① 2B n =1×2+2×22+3×23+…+n ×2n .② ①-②得-B n =1+2+22+…+2n -1-n ·2n =2n -1-n ·2n . 从而B n =1+(n -1)·2n .18.(12分)已知等比数列{a n },首项为81,数列{b n }满足b n =log 3a n ,其前n 项和为S n .(1)证明{b n }为等差数列;(2)若S 11≠S 12,且S 11最大,求{b n }的公差d 的范围. 解 (1)证明:设{a n }的公比为q , 则a 1=81,a n +1a n=q ,由a n >0,可知q >0,∵b n +1-b n =log 3a n +1-log 3a n =log 3a n +1a n=log 3q (为常数),∴{b n }是公差为log 3q 的等差数列. (2)由(1)知,b 1=log 3a 1=log 381=4, ∵S 11≠S 12,且S 11最大,∴⎩⎨⎧b 11≥0,b 12<0,即⎩⎨⎧b 1+10d ≥0,b 1+11d <0.⎩⎪⎨⎪⎧d ≥-b 110=-25,d <-b111=-411.∴-25≤d <-411.19.(12分)等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ;(2)证明:1S 1+1S 2+…+1S n<34.解 (1)设{a n }的公差为d ,{b n }的公比为q ,则d >0,q ≠0,a n=3+(n -1)d ,b n =q n -1,依题意有⎩⎨⎧b 2S 2=(6+d )q =64,b 3S 3=(9+3d )q 2=960.解得⎩⎨⎧d =2,q =8,或⎩⎪⎨⎪⎧d =-65,q =403,(舍去).故a n =2n +1,b n =8n -1.(2)证明:由(1)知S n =3+2n +12×n =n (n +2),1S n =1n (n +2)=12⎝ ⎛⎭⎪⎪⎫1n -1n +2, ∴1S 1+1S 2+…+1S n =11×3+12×4+13×5+…+1n (n +2)=12⎝ ⎛⎭⎪⎪⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝ ⎛⎭⎪⎪⎫1+12-1n +1-1n +2 =34-2n +32(n +1)(n +2)∵2n +32(n +1)(n +2)>0 ∴1S 1+1S 2+…+1S n<34. 20.(12分)等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解 (1)设{a n }的公比为q ,由已知,得16=2q 3,解得 q =2,∴a n =a 1q n -1=2n .(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32.设{b n }的公差为d ,则有⎩⎨⎧b 1+2d =8,b 1+4d =32,解得⎩⎨⎧b 1=-16,d =12.从而b n =-16+12(n -1)=12n -28. 所以数列{b n }的前n 项和S n =n (-16+12n -28)2=6n 2-22n . 21.(12分)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *.(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n .解 (1)由S n =2n 2+n ,得当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=4n -1.∴a n =4n -1(n ∈N *). 由a n =4log 2b n +3=4n -1,得b n =2n -1(n ∈N *). (2)由(1)知a n ·b n =(4n -1)·2n -1,n ∈N *, ∴T n =3+7×2+11×22+…+(4n -1)×2n -1, 2T n =3×2+7×22+…+(4n -5)×2n -1+(4n -1)×2n .∴2T n -T n =(4n -1)×2n -[3+4(2+22+…+2n -1]=(4n -5)2n +5.故T n =(4n -5)2n +5.22.(12分)已知数列{a n }满足a 1=1,a n -2a n -1-2n -1=0(n ∈N *,n ≥2).(1)求证:数列{a n2n }是等差数列; (2)若数列{a n }的前n 项和为S n ,求S n .解 (1)∵a n -2a n -1-2n -1=0,∴a n 2n -a n -12n -1=12,∴{a n 2n }是以12为首项,12为公差的等差数列. (2)由(1),得a n 2n =12+(n -1)×12, ∴a n =n ·2n -1,∴S n =1·20+2·21+3·22+…+n ·2n -1① 则2S n =1·21+2·22+3·23+…+n ·2n ② ①-②,得-S n =1+21+22+…+2n -1-n ·2n =1·(1-2n )1-2-n ·2n =2n -1-n ·2n ,∴S n =(n -1)·2n +1.高中数学知识点三角函数 1、 以角的顶点为坐标原点,始边为 x 轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点 P 到原点的距离记为,则 sin= , cos = , tg = , ctg = , sec = , csc = 。
高中数学必修五第二章《数列》单元测试卷及答案
高中数学必修五第二章《数列》单元测试卷及答案(2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 的公差为( ) A .1B .2C .3D .42.在等比数列{}n a 中,4a 、12a 是方程2310x x +=+的两根,则8a 等于( ) A .1B .1-C .1±D .不能确定3.已知数列{}n a 的通项公式是31,22,n n n a n n +⎧=⎨-⎩为奇数为偶数,则23a a 等于( )A .70B .28C .20D .84.已知0a b c <<<,且a ,b ,c 为成等比数列的整数,n 为大于1的整数,则log a n ,log b n ,log c n 成( )A .等差数列B .等比数列C .各项倒数成等差数列D .以上都不对5.在等比数列{}n a 中,1n n a a +<,且2116a a =,495a a +=,则611a a 等于( ) A .6B .23C .16D .326.在等比数列{}n a 中,11a =,则其前3项的和3S 的取值范围是( ) A .(],1-∞- B .(),01),(-∞∞+C .3,4⎡⎫+∞⎪⎢⎣⎭D .[)3,+∞7.正项等比数列{}n a 满足241a a =,313S =,3log n n b a =,则数列{}n b 的前10项和是( ) A .65B .65-C .25D .25-8.等差数列{}n a 中,若81335a a =,且10a >,n S 为前n 项和,则n S 中最大的是( ) A .21SB .20SC .11SD .10S9.已知等比数列{}n a 的前n 项和为n S ,1316n n S x -⋅=-,则x 的值为( ) A .13B .13-C .12D .12-10.等差数列{}n a 中,n S 是{}n a 前n 项和,已知62S =,95S =,则15S =( )A .15B .30C .45D .6011.一个卷筒纸,其内圆直径为4 cm ,外圆直径为12 cm ,一共卷60层,若把各层都视为一个同心圆, 3.14π=,则这个卷筒纸的长度为(精确到个位) ( ) A .14 mB .15 mC .16 mD .17 m12.数列{}n a 的首项为3,{}n b 为等差数列且1()n n n b a a n ++-∈=N .若32b =-,1012b =,则8a =( ) A .0B .3C .8D .11二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知n S 是等比数列{}n a 的前n 项和,52a =-,816a =,则6S 等于________. 14.设S n 为等差数列{}n a 的前n 项和,若33S =,624S =,则9a =__________. 15.在等差数列{}n a 中,n S 为它的前n 项和,若10a >,160S >,170S <则当n =________时,n S 最大.16.数列{}n x 满足1lg 1lg ()n n x x x *++∈=N ,且12100100x x x +++=,则101102200()lg x x x +++=________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知数列{}n a 是首项为1的等差数列,且公差不为零.而等比数列{}n b 的前三项分别是1a ,2a ,6a .(1)求数列{}n a 的通项公式n a ; (2)若1285k b b b +++=,求正整数k 的值.18.(12分)等差数列{}n a 中,24a =,4715a a +=. (1)求数列{}n a 的通项公式; (2)设22n n b a n =-+,求12310b b b b ++++的值.19.(12分)已知公差大于零的等差数列{}n a 的前n 项和为n S ,且满足:34117a a ⋅=,2522a a +=.(1)求数列{}n a 的通项公式n a ; (2)若数列{}n b 是等差数列,且nn b S n c=+,求非零常数c .20.(12分)数列{}n a 的前n 项和为n S ,且11a =,113n n a S +=,1n ≥,n +∈N ,求:(1)数列{}n a 的通项公式; (2)2462n a a a a ++++的值.21.(12分)已知{}n a 是各项均为正数的等比数列,{}n b 是等差数列,且111a b ==,2332a b b +=,2537a b -=;求:(1){}n a 和{}n b 的通项公式;(2)设n n n c a b =,n *∈N ,求数列{}n c 的前n 项和.22.(12分)如图所示,某市2009年新建住房400万平方米,其中250万平方米是中低价房,预计今年后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积比上一年增加50万平方米,那么到哪一年底,(1)该市历年所建中低价房的累计面积(以2009年累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?答 案一、选择题 1.【答案】B【解析】设公差为d ,由题意得11141037a a d a d ++=⎧⎨+=⎩,解得2d =.故选B .2.【答案】B【解析】由题意得,41230a a +=-<,41210a a ⋅=>, ∴40a <,120a <.∴80a <,又∵812421a a a ⋅==,∴81a =-.故选B . 3.【答案】C【解析】由通项公式可得22=a ,30=1a ,∴2320=a a .故选C . 4.【答案】C【解析】∵a ,b ,c 成等比数列,∴2b ac =. 又∵()log log log 2log log log log 112n n c b n n a a c ac b n n n==+=+=,∴log log g 1l 12o c b a n n n=+.故选C . 5.【答案】B【解析】∵492116a a a a ==⋅,又∵495a a +=,且1n n a a <+,∴42a =,93a =,∴45932a a q ==, 又6151123a q a ==.故选B . 6.【答案】C【解析】设等比数列的公比为q ,则22313124S q q q ⎛⎫++++ ⎪⎝⎭==.∴3S 的取值范围是3,4⎡⎫+∞⎪⎢⎣⎭.故选C .7.【答案】D【解析】∵{}n a 为正项等比数列,241a a =, ∴31a =,又∵313S =,∴公比1q ≠. 又∵()3311131a q S q-==-,231aa q =,解得13q =. ∴3333133n n n n a a q--⎛⎫= ⎪⎝⎭==-,∴3log 3n n b a n ==-.∴12b =,107b =-.∴()()11010101052522S b b +⨯-===-.故选D .8.【答案】B【解析】设数列{}n a 的公差为d ,因为81335a a =,所以12390a d +=,即1400a a +=, 所以20210a a +=,又10a >,0d <,故200a >,210a <, 所以n S 中最大的是20S .故选B . 9.【答案】C 【解析】1116a S x ==-, 221113266a S S x x x --+===-,3321136669a S S x x x --+===-, ∵{}n a 为等比数列,∴2213a a a =,∴21466x x x ⎛⎫=- ⎪⎝⎭,解得12x =.故选C .10.【答案】A【解析】解法一:由等差数列的求和公式及6925S S =⎧⎨=⎩知,116562259829a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=⎪⎩,∴1427127a d =-⎧⎪⎪⎨⎪=⎪⎩,∴115151415152S a d ⨯=+=.故选A .解法二:由等差数列性质知,n S n ⎧⎫⎨⎬⎩⎭成等差数列,设其公差为D ,则96522396969S S D -==-=,∴227D =, ∴15952661159927S S D =+=+⨯=,∴1515S =.故选A . 11.【答案】B【解析】纸的厚度相同,且各层同心圆直径成等差数列, 则()126041260480 3.141507.2152l d d d cm m +=ππ+ππ⨯=+⨯6=≈+=,故选B . 12.【答案】B【解析】本题主要考查等差数列的性质及累加法求通项, 由32b =-,1012b =,∴2d =,16b =-,∴28n b n =-, ∵1n n n b a a =-+.∴8877665544332211()()()()()()()a a a a a a a a a a a a a a a a =-+-+-+-+-+-++- ()7654321176278332b b b b b b b a -+⨯-++++++=+=+=.故选B .二、填空题 13.【答案】218【解析】∵{}n a 为等比数列,∴385a a q =, ∴31682q ==--,∴2q =-. 又451a a q =,∴121168a -==-, ∴()()666111212181128S a q q⎡⎤----⎣⎦===-+.14.【答案】15【解析】设等差数列公差为d ,则3113233233S a a d d ⨯=+=+=,11a d +=,① 又161656615242d d S a a ⨯=+=+=,即1258a d +=.② 联立①②两式得11a =-,2d =, 故91818215a a d =-+⨯==+. 15.【答案】8【解析】∵()()()116168911717916802171702a a S a a a a S a ⎧+==+>⎪⎪⎨+⎪==<⎪⎩,∴80a >而10a >,∴数列{}n a 是一个前8项均为正,从第9项起为负值的等差数列,从而n =8时,S n 最大. 16.【答案】102【解析】由题意得110n n x x +=,即数列{}n x 是公比为10的等比数列, 所以100102101102200121001010()x x x x x x ++=++=++⋅,故101102200l (g )102x x x ++=+.三、解答题17.(10分)已知数列{}n a 是首项为1的等差数列,且公差不为零.而等比数列{}n b 的前三项分别是1a ,2a ,6a .(1)求数列{}n a 的通项公式n a ; (2)若1285k b b b +++=,求正整数k 的值.【答案】(1)32n a n =-;(2)4. 【解析】(1)设数列{}n a 的公差为d , ∵1a ,2a ,6a 成等比数列,∴1226a a a =⋅, ∴211()(1)5d d +⨯=+,∴23d d =, ∵0d ≠,∴3d =, ∴11()332n a n n +-⨯=-=. (2)数列{}n b 的首项为1,公比为214a q a ==. ∵121441143k k k b b b -==-+-++, ∴41853k -=,∴4256k =,∴4k =,∴正整数k 的值为4.18.(12分)等差数列{}n a 中,24a =,4715a a +=. (1)求数列{}n a 的通项公式; (2)设22n n b a n =-+,求12310b b b b ++++的值.【答案】(1)2n a n =+;(2)2101. 【解析】(1)设等差数列{}n a 的公差为d . 由已知得11143615a d a d a d +=⎧⎨+++=⎩,解得131a d =⎧⎨=⎩.所以1)2(1n a a n d n -=++=. (2)由(1)可得2n n b n =+. ∴231012310212()()(223210)()b b b b +++=++++⋯+++++ 231022221210((3))=+++++++++()()1021210110122-⨯+=+-()111122552532101===-++.19.(12分)已知公差大于零的等差数列{}n a 的前n 项和为n S ,且满足:34117a a ⋅=,2522a a +=.(1)求数列{}n a 的通项公式n a ; (2)若数列{}n b 是等差数列,且nn b S n c=+,求非零常数c . 【答案】(1)43n a n =-;(2)12-.【解析】(1){}n a 为等差数列, ∵342522a a a a +=+=, 又34117a a ⋅=,∴3a ,4a 是方程2221170x x +=-的两个根. 又公差0d >,∴34a a <,∴39a =,413a =. ∴1129313a d a d +=⎧⎨+=⎩,∴114a d =⎧⎨=⎩,∴43n a n =-.(2)由(1)知,()211422n n n S n n n -⋅+⨯=-=,∴22n n S n c n cn nb ==-++, ∴111b c =+,262b c =+,3153b c=+, ∵{}n b 是等差数列,∴2132b b b =+, ∴220c c +=,∴12c =-(0c =舍去).20.(12分)数列{}n a 的前n 项和为n S ,且11a =,113n n a S +=,1n ≥,n +∈N ,求:(1)数列{}n a 的通项公式; (2)2462n a a a a ++++的值.【答案】(1)21,114,233n n n n a -=⎧⎪=⎨⎛⎫⋅≥⎪ ⎪⎝⎭⎩;(2)316179n ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【解析】(1)∵11()3n n a S n ++=∈N ,∴11()32,n n a S n n +≥∈=N -,∴两式相减,得113n n n a a a +-=.即()1423n n a a n +=≥.11111333a S ==,211433a a =≠.∴数列{}n a 是从第2项起公比为43的等比数列, ∴21,114,233n n n n a -=⎧⎪=⎨⎛⎫⋅≥⎪ ⎪⎝⎭⎩.(2)由(1)知,数列2a ,4a ,6a ,…,2n a 是首项为13,公比为169的等比数列,∴24621161393161167919nnn a a a a ⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦+++==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-+.21.(12分)已知{}n a 是各项均为正数的等比数列,{}n b 是等差数列,且111a b ==,2332a b b +=,2537a b -=;求:(1){}n a 和{}n b 的通项公式;(2)设n n n c a b =,n *∈N ,求数列{}n c 的前n 项和.【答案】(1)12n n a -=,*n ∈N ,21n b n =-,*n ∈N ;(2)233(2)n n S n -=+,*n ∈N . 【解析】(1)设{}n a 的公比为q ,{}n b 的公差为d .由题意0q >,由已知,有24232310q d q d ⎧-=⎪⎨-=⎪⎩,消去d ,得42280q q --=. 又因为0q >,解得2q =,2d =. 所以{}n a 的通项公式为12n n a -=,*n ∈N ,{}n b 的通项公式为21n b n =-,*n ∈N .(2)由(1)有1)1(22n n c n =--, 设{}n c 的前n 项和为n S , 则0121123252(212)n n S n -=+⨯⨯⨯+-⨯++, 123(212325222)1n n S n ⨯⨯⨯+=-++⨯+,两式相减,得23()()12222122323n n n n S n n -++-⨯-⨯=++---=.所以233(2)n n S n -=+,*n ∈N .22.(12分)如图所示,某市2009年新建住房400万平方米,其中250万平方米是中低价房,预计今年后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积比上一年增加50万平方米,那么到哪一年底,(1)该市历年所建中低价房的累计面积(以2009年累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%? 【答案】(1)2018年底;(2)2014年底. 【解析】(1)设中低价房面积构成数列{}n a , 由题意知:{}n a 是等差数列,其中1250a =,50d =, ∴()2125050252252n n n S n n n -+⨯+==,令2252254750n n +≥, 即291900n n -≥+, 解得19n ≤-或10n ≥, ∴10n ≥.故到2018年底,该市历年所建中低价房累计面积首次不少于4750万m 2. (2)设新建住房面积构成等比数列{}n b .由题意知{}n b 为等比数列,1400b =, 1.08q =.∴1400 1.08()n n b -⨯=, 令0.85n n a b >,即1250150400 1.0()()80.85n n -+-⨯>⨯⨯, ∴满足不等式的最小正整数6n =.故到2014年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.单元测试题二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在数列{}n a 中,12=a ,1=221n n a a ++,则101a 的值为( ) A .49B .50C .51D .522.已知等差数列{}n a 中,7916a a +=,41a =,则12a 的值是( ) A .15B .30C .31D .643.等比数列{}n a 中,29a =,5243a =,则{}n a 的前4项和为( ) A .81B .120C .168D .1924.等差数列{}n a 中,12324a a a ++=-,18192078a a a ++=,则此数列前20项和等于( ) A .160B .180C .200D .2205.数列{}n a 中,37 ()n a n n +=∈N -,数列{}n b 满足113b =,1(72)2n n b b n n +≥=∈N -且,若log n k n a b +为常数,则满足条件的k 值( ) A .唯一存在,且为13B .唯一存在,且为3C .存在且不唯一D .不一定存在6.等比数列{}n a 中,2a ,6a 是方程234640x x +=-的两根,则4a 等于( )A .8B .8-C .8±D .以上都不对7.若{}n a 是等比数列,其公比是q ,且5a -,4a ,6a 成等差数列,则q 等于( ) A .1或2B .1或2-C .1-或2D .1-或2-8.设等比数列{}n a 的前n 项和为n S ,若105:1:2S S =,则155:S S 等于( ) A .3:4B .2:3C .1:2D .1:39.已知等差数列{}n a 的公差0d ≠且1a ,3a ,9a 成等比数列,则1392410a a a a a a ++++等于( )A .1514B .1213C .1316D .151610.已知{}n a 为等差数列,135105a a a ++=,24699a a a ++=,以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是( ) A .21B .20C .19D .1811.设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是( ) A .2X Z Y += B .()()Y Y X Z Z X =-- C .2Y XZ =D .()()Y Y X X Z X =--12.已知数列1,12,21,13,22,31,14,23,32,41,…,则56是数列中的( ) A .第48项 B .第49项 C .第50项 D .第51项二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 1311的等比中项是________.14.已知在等差数列{}n a 中,首项为23,公差是整数,从第七项开始为负项, 则公差为______.15.“嫦娥奔月,举国欢庆”,据科学计算,运载“神六”的“长征二号”系列火箭,在点火第一秒钟通过的路程为2 km ,以后每秒钟通过的路程都增加2 km ,在达到离地面240 km 的高度时,火箭与飞船分离,则这一过程大约需要的时间是______秒.16.等比数列{}n a 的公比为q ,其前n 项的积为n T ,并且满足条件11a >,9910010a a ->,99100101a a -<-.给出下列结论:①01q <<;②9910110a a -<;③100T 的值是n T 中最大的;④使1n T >成立的最大自然数n 等于198.其中正确的结论是________.(填写所有正确的序号)三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知{}n a 为等差数列,且36a =-,60a =. (1)求{}n a 的通项公式;(2)若等比数列{}n b 满足18b =-,2123b a a a =++,求{}n b 的前n 项和公式.18.(12分)已知等差数列{}n a 中,3716a a =-,460a a +=,求{}n a 的前n 项和S n .19.(12分)已知数列{}2log 1()() n a n *∈N -为等差数列,且13a =,39a =. (1)求数列{}n a 的通项公式; (2)证明:213211111n na a a a a a ++++<---.20.(12分)在数列{}n a 中,11a =,122n n n a a =++. (1)设12n n n a b -=.证明:数列{}n b 是等差数列;(2)求数列{}n a 的前n 项和.21.(12分)已知数列{}n a 的前n 项和为n S ,且11a =,11,2,1(,)23n n a S n +==.(1)求数列{}n a 的通项公式; (2)当()132log 3n n b a =+时,求证:数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和1n T nn =+.22.(12分)已知数列{}n a 的各项均为正数,对任意n *∈N ,它的前n 项和n S 满足1()()612n n n S a a =++,并且2a ,4a ,9a 成等比数列.(1)求数列{}n a 的通项公式;(2)设11()1n n n n b a a ++=-,n T 为数列{}n b 的前n 项和,求2n T .答 案一、选择题 1.【答案】D【解析】由1=221n n a a ++得11=2n n a a -+,∴{}n a 是等差数列首项12=a ,公差1=2d ,∴13212)2(n n a n =++-=,∴1011013522a +==.故选D .2.【答案】A【解析】在等差数列{}n a 中,79412a a a a +=+, ∴1216115a =-=.故选A . 3.【答案】B【解析】由352a a q =得3q =.∴213a a q==,44411133120113q S a q --=⨯=--=.故选B . 4.【答案】B【解析】∵123181920120219318()()()()()a a a a a a a a a a a a +++++=+++++ 120()3247854a a +=+=-=,∴12018a a +=.∴12020201802S a a +==.故选B . 5.【答案】B【解析】依题意,133213111127333n n n n b b ---⎛⎫⎛⎫⎛⎫=⋅=⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴32log 37log 11()3373l g 32o n n k n k ka b n n n -⎛⎫+== ⎪⎭+⎝-+-- 1133log 372log 3k k n ⎛⎫--=+ ⎪⎝⎭, ∵log n k n a b +是常数,∴133log 03k +=,即log 31k =,∴3k =.故选B . 6.【答案】A【解析】∵2634a a +=,2664a a ⋅=,∴2464a =, ∵a 2>0,a 6>0,∴a 4=a 2q 2>0,∴a 4=8.故选A . 7.【答案】C【解析】依题意有4652a a a =-,即24442a a q a q =-,而40a ≠, ∴220q q --=,1)20()(q q +=-.∴1q =-或2q =.故选C . 8.【答案】A【解析】显然等比数列{}n a 的公比1q ≠,则由105510551111221S q q q S q -==+=⇒=--, 故3155315555111132141112S q q S q q ⋅⎛⎫-- ⎪--⎝⎭====⎛⎫---- ⎪⎝⎭.故选A . 9.【答案】C【解析】因为1239a a a =⋅,所以2111()()28a d a a d +=⋅+.所以1a d =. 所以1391241013101331316a a a a d a a a a d +++==+++.故选C .10.【答案】B【解析】∵214365(())3)(a a a a a a d -+-+-=, ∴991053d -=.∴2d =-.又∵135136105a a a a d ++=+=,∴139a =. ∴()()221140204002n n n d n n na n S -=+=-+=--+.∴当20n =时,n S 有最大值.故选B . 11.【答案】D【解析】由题意知n S X =,2n S Y =,3n S Z =. 又∵{}n a 是等比数列,∴n S ,2n n S S -,32n n S S -为等比数列, 即X ,Y X -,Z Y -为等比数列, ∴2()()Y X X Z Y ⋅=--, 即222Y XY X ZX XY +-=-, ∴22=Y XY ZX X --,即()()Y Y X X Z X =--.故选D . 12.【答案】C【解析】将数列分为第1组一个,第2组二个,…,第n 组n 个, 即11⎛⎫ ⎪⎝⎭,12,21⎛⎫ ⎪⎝⎭,123,,321⎛⎫ ⎪⎝⎭,…,12,,,11n n n ⎛⎫⎪-⎝⎭,则第n 组中每个数分子分母的和为1n +,则56为第10组中的第5个, 其项数为1239)550(++++=+.故选C .二、填空题 13.【答案】1±【解析】11的等比中项为a ,由等比中项的性质可知,)2111a ==,∴1a =±.14.【答案】4-【解析】由6723502360a d a d =+≥⎧⎨=+<⎩,解得232356d -≤<-,∵d ∈Z ,∴4d =-. 15.【答案】15【解析】设每一秒钟通过的路程依次为1a ,2a ,3a ,…,n a , 则数列{}n a 是首项12a =,公差2d =的等差数列,由求和公式得()112402n na n d -=+,即(12)240n n n +-=,解得15n =. 16.【答案】①②④【解析】①中,()()9910099100111011a a a a a ⎧--<⎪>⎨⎪>⎩⇒99100101a a >⎧⎨<<⎩100990,1()q a a =∈⇒,∴①正确.②中,29910110010099101011a a a a a a ⎧=⎪⇒⎨<<⎪⎩<,∴②正确. ③中,100991001010090901T T a a T T =⎧⇒⎨<<<⎩,∴③错误. ④中,()()()()99198121981198219799100991001T a a a a a a a a a a a =>==,()()199121981991199991011001T a a a a a a a a a ⋅<==,∴④正确.三、解答题17.【答案】(1)212n a n =-;(2)()413n n S =-. 【解析】(1)设等差数列{}n a 的公差为d . ∵36a =-,60a =,∴112650a d a d +=-⎧⎨+=⎩,解得110a =-,2d =.∴101()2212n a n n =-⨯=-=-. (2)设等比数列{}n b 的公比为q .∵212324b a a a =++=-,18b =-,∴824q -=-,3q =. ∴数列{}n b 的前n 项和公式为()111413n n nS q b q-==--. 18.【答案】()9n S n n =-或(9)n S n n -=-. 【解析】设{}n a 的公差为d ,则()()11112616350a d a d a d a d ++=-⎧⎪⎨+++=⎪⎩,即22111812164a da d a d ⎧++=-⎪⎨=-⎪⎩, 解得182a d =-⎧⎨=⎩,或182a d =⎧⎨=-⎩.因此8()19()n S n n n n n +-=-=-,或81()9()n S n n n n n ==----. 19.【答案】(1)21n n a =+;(2)见解析.【解析】(1)解设等差数列{}2(og )l 1 n a -的公差为d . 由13a =,39a =,得22log 91log 32()(1)d --=+,则1d =. 所以2log 1111()()n a n n +-=⨯-=,即21n n a =+. (2)证明因为11111222n n nn n a a ++==--, ∴12321321111111111112221112222212n n n n n a a a a a a +-⨯+++=++++==-<----. 20.【答案】(1)见解析;(2)1()21n n S n -⋅=+. 【解析】(1)证明由已知122nn n a a =++,得1111122222nn n nn n n nn a b a b a +-++===+=+.∴11n n b b -=+,又111b a ==.∴{}n b 是首项为1,公差为1的等差数列. (2)解由(1)知,n b n =,12n n n n a b -==.∴12n n a n ⋅=-.∴121122322n n S n +⋅⋅+=⋅++-,两边乘以2得:()11221222122n n n S n n =++⋅+-⋅+⋅⋅-,两式相减得:12112222(21?221)1n n n n n n S n n n ++-=-=-++⋅----=,∴1()21n n S n -⋅=+.21.【答案】(1)21,1132,22n n a n n -⎛⎫≥ =⎧⎪=⨯⎪⎝⎨⎭⎪⎩;(2)见解析.【解析】(1)解由已知()1112,212n nn n a S a Sn +-⎧=⎪⎪⎨⎪=⎪⎩≥,得()1322n n a a n +≥=. ∴数列{}n a 是以2a 为首项,以32为公比的等比数列. 又121111222a S a ===,∴()22322n n a a n -⎛⎫≥ ⎪⎝⎭=⨯.∴21,1132,22n n a n n -⎛⎫≥ =⎧⎪=⨯⎪⎝⎨⎭⎪⎩. (2)证明()11log 3lo 3333=2222g n n n n b a -⎡⎤⎛⎫=⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+.∴()1111111n n b b n n n n +==-++. ∴12233411111111111111122334n n n T b b b b n b b b b n +⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-+-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=-+ 1111nn n=-=++. 22.【答案】(1)32,n a n n *=-∈N ;(2)22186n T n n -=-. 【解析】(1)∵对任意n *∈N ,有1()()612n n n S a a =++,①∴当1n =时,有1111112()()6S a a a ==++,解得11a =或2.当2n ≥时,有1111())62(1n n n S a a ---=++.②①-②并整理得113()()0n n n n a a a a --+--=. 而数列{}n a 的各项均为正数,∴13n n a a --=. 当11a =时,(1313)2n a n n +-=-=, 此时2249=a a a 成立;当12=a 时,23=(3=11)n a n n +--,此时2249=a a a 不成立,舍去. ∴32,n a n n *=-∈N . (2)212212233445221n n n n T b b b a a a a a a a a a a =++=-+-++-+ 21343522121()()()n n n a a a a a a a a a =-+-++--+242666n a a a --=--242(6)n a a a ++=-+246261862n nn n +-=-⨯-=-。
高中数学人教A版必修5第二章 数列本章复习与测试(有答案)
10. 已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99.以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是( )A.21B.20C.19D. 18 11. 已知数列{}n a 的前n 项和n S 满足1,1==++a S S S m n m n ,那么=10a ( )A.1B.9C.10D.55 12. 已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)n n a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=( )A. (21)n n -B. 2(1)n +C. 2nD. 2(1)n - 二、填空题13. 设等差数列{}n a 的前n 项和为n S .若972S =,则249a a a ++=_______________. 14. 在等比数列{}n a 中,若公比q=4,且前3项之和等于21,则该数列的通项公式=n a _____________.15. 设数列{}n a 中,1211++==+n a a a n n ,,则通项=n a _____________.16. 设{}n a 为公比1>q 的等比数列,若ɑ2019和ɑ2020是方程03842=+-x x 的两根,则 ɑ2020+ɑ2021 =_____________. 三、解答题17. 已知{}n a 为等比数列,320,2423=+=a a a ,求{}n a 的通项公式.18. 已知{}n a 为等差数列,且36a =-,60a =. (Ⅰ)求{}n a 的通项公式;(Ⅰ)若等比数列{}n b 满足18b =-,2123b a a a =++,求{}n b 的前n 项和公式.19. 已知等差数列{}n a 满足3577,26a a a =+=,{}n a 的前n 项和为n S .(Ⅰ)求na 及n S ;(Ⅰ)求q 的值;(Ⅱ)若1a 与5a 的等差中项为18,n b 满足n n b a 2log 2=,求数列{}n b 的前n 项和.21. 成等差数列的三个正数之和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 中的543,,b b b .(Ⅰ)求数列{}n b 的通项公式;(Ⅰ)数列{}n b 的前n 项和为n S ,求证:数列⎭⎬⎫⎩⎨⎧+45n S 是等比数列.参考答案:二、填空题13. ___24____. 14. )(4*1N n n ∈-. 15. )(22*2N n n n ∈++. 16.______18______.三、解答题17.解:设等比数列{}n a 的公比为q ,则.2,23432q q a a qq a a ====.32022,32042=+∴=+q q a a 即.3131+=+q q解之得3=q 或.31=q当3=q 时,)(32*333N n q a a n n n ∈⨯==--;当31=q 时,)(32)31(2*3333N n q a a n n n n ∈=⨯==---. 18.解:(Ⅰ)设等差数列{}n a 的公差d .因为366,0a a =-=,所以.102,2,633136-=-===-=d a a d a a d 从而所以10(1)2212n a n n =-+-⋅=-.(Ⅱ)设等比数列{}n b 的公比为q .因为24,832121-=++=-=a a a b b ,所以824q -=-.即q =3.所以{}n b 的前n 项和公式为1(1)4(13)1n n n b q S q-==--. 19. 解:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d..13,2626756=∴=+=a a a a由⎩⎨⎧=+==+=135721613d a a d a a 解得.231==d a ,12)1(1+=-+=∴n d n a a n ,.22)(21n n a a n S n n +=+=(Ⅱ)12+=n a n ,)1(412+=-∴n n a n ,⎪⎭⎫⎝⎛+-=+=11141)1(41n n n n b n .n n b b b T +++=∴ 21=)1113121211(41+-++-+-n n =)111(41+-n =4(1)nn +.所以数列{}n b 的前n 项和n T =4(1)nn + .20. 解:(Ⅰ)q p S a +-==211,23)2()44(122-=+--+-=-=p q p q p S S a , 25)44()69(233-=+--+-=-=p q p q p S S a ,由3122a a a +=得,25246-++-=-p q p p.0=∴q(Ⅱ)根据题意,5132a a a +=所以1a 与5a 的等差中项为183=a .由(Ⅰ)知.4,1825=∴=-p p 从而.8,10,221===d a a.68)1(1-=-+=∴n d n a a n.34log ,68log 222-=-==∴n b n b a n n n故.16216812)2(213434---⨯=⨯=⋅==n n n n n b因此,数列}{n b 是等比数列,首项21=b ,公比.16=q所以数列{}n b 的前n 项和qq b T n n --=1)1(121. 解:(Ⅰ)设成等差数列的三个正数分别为,,a d a a d -+, 依题意,得15, 5.a d a a d a -+++==解得 所以{}n b 中的345,,b b b 依次为7,10,18.d d -+依题意,有(7)(18)100,213d d d d -+===-解得或(舍去) 故{}n b 的10,5743==-=b d b ,公比2=q . 由22311152,52,.4b b b b =⋅=⋅=即解得所以{}n b 是以54为首项,2为以比的等比数列,其通项公式为1352524n n n b --=⋅=⋅. (Ⅱ)数列{}n b 的前n 项和25(12)5452124n n n S --==⋅--,即22545-⋅=+n n S所以1112555524, 2.542524n n n n S S S -+-+⋅+===⋅+因此55{}42n S +是以为首项,公比为2的等比数列.22.解: (Ⅰ)因为对任意的n N +∈,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图象上.所以得n n S b r =+,11a S b r ==+,b b r b r b S S a -=+-+=-=22122)()(,2323233)()(b b r b r b S S a -=+-+=-=,{}n a 为等比数列,3122a a a =∴.从而).1()()1(222-⋅+=-b b r b b b.1,10r b b b b +=-∴≠>且又 解得1r =-.(Ⅱ)当2=b 时,由(Ⅰ)知,12-=n n S .当2≥n 时,.22)12(22)12()12(11111-----=-=-=---=-=n n n n n n n n n S S a111=-=b a 满足上式,所以其通项公式为)(2*1N n a n n ∈=-.所以111114422n n n n n n n b a -++++===⨯ 234123412222n n n T ++=++++,………………(1) 3451212341222222n n n n n T +++=+++++……(2) )()(21-,得: 23451212111112222222n n n n T +++=+++++- 31211(1)112212212n n n -+⨯-+=+--12311422n n n +++=--. 所以113113322222n n n n n n T ++++=--=-.。
人教A版高一必修5数学第二章数列单元测试及答案(练习检测试题卷).doc
班姓座A . a” =2“_1B . a n =(-ir (2n-l) c. a n =(-ir (l-2n) 2、 等比数列2, 4, 8, 16,…的前nA . 2n+1-l B. 2n -23、等比数列{%}中,已知a x a” =27, q = 3,则”为( A . B. 4 4、 等比数列{a”}中,a 6 = 6, a 9 = 9 ,则a 等于( A.5、 若数列{%}中,Q 广43-3n,则»最大血 A. 13 B. 14 6、 成等比数列,那么d 等于A.3 C. -2 D. ±27、 等差数列仏}燈皿聖的和是30, A. 130 亠 170 前加项的和是100,则它的前3加项的和是(C. 210D.2608、 敎刻仏}贏项公式是血二--------- n (M + l )(心),若前刀项的和为罟,则项数0为() A. 12 B.11C. 10D. 91、 1°、{a”}为等差数列,01 + 04 + ^7 = 39, 弘+弘+ ^产込弘+。
6 +。
9二浙江省瓯海中学高一数学必修5第二章《数列》单元测试一、选择题(每小题6分)数列1, ~3, 5, -7, 9,…的一个通项公式为( 二、填空题(每小题6分)9、等差数列{爲}中,S 广40, Q] =13,11、在等差数列{a* }中,1 = 20 ,则 Q] + Q]3 =色=(_ig+i ) D . C. InC. 5D. 6 D. 14 或 15 C. 16 ,如果 Q]、等差数列{a”}的首项a. =1(2)+ a :的和(3)在(2)的条件(1)当a = l 时,求{a”}的通项公式14、(本题18分)已知数列{a ”}的前%项和S” =12>在数列{a”}中,fl] =1,且对于任意自然数”,都有a n+1 = a n + n ,贝ija 100 = __________三、解答题13、(本题10分)求数列耳吗斗4护•的前刀项和。
人教版高中数学必修五单元质量评估(二) Word版含答案
温馨提示:
此套题为版,请按住,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭文档返回原板块。
单元质量评估(二)
(第二章)
(分钟分)
一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的)
.在数列,,,,,…中,是这个数列的第( )
项项项项
【解析】选.因为,,,,,…,所以.令,得.
.(·海口高二检测)由,确定的等差数列{},当时,序号等于( )
【解析】选.由题意得,
×,解得.
.(·长沙高一检测)不可以作为数列:,,,,…,的通项公式的是( )
()
【解析】选.经检验选项不可以作为数列:
,,,…的通项公式,而是数列,,,,…的一个通项公式.
.已知等差数列,,,…的前项和为,则使得最大的序号的值为
( )
或或
【解析】选.等差数列,,,…的首项为,公差为,所以通项公式×
,
所以当≤<时,>;当时,;
当≥时,<,
所以当或时最大.
【延伸探究】记本题数列为{},求数列的前项和.
【解析】×
,
当≤≤时,
.
当≥时,
.
综上知,
.(·武威高二检测)若,,,则等于( )
【解析】选.由题意得,
,
,
,。
(好题)高中数学必修五第二章《解三角形》测试卷(答案解析)(2)
一、选择题1.在ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知14b c a -=,2sin 3sin B C =,ABC 的面积为315,则a =( ) A .2B .3C .4D .52.在锐角ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若22212a b c =+,则tan A 的取值范围是( ) A .)3,⎡+∞⎣B .()3,+∞C .()2,+∞D .[)2,+∞3.在ABC 中,π6A =,1,2a b ==,则B =( ) A .4π B .34π C .4π或34πD .6π或56π4.一艘游轮航行到A 处时看灯塔B 在A 的北偏东75︒,距离为126海里,灯塔C 在A 的北偏西30,距离为123海里,该游轮由A 沿正北方向继续航行到D 处时再看灯塔B 在其南偏东60︒方向,则此时灯塔C 位于游轮的( ) A .正西方向 B .南偏西75︒方向 C .南偏西60︒方向D .南偏西45︒方向5.在ABC 中,,,a b c 分别是角,,A B C 的对边,以下四个结论中,正确的是( )A .若a b c >>,则sin sin sin ABC >> B .若A B C >>,则sin sin sin A B C << C .cos cos sin a B b A c C +=D .若222a b c +<,则ABC 是锐角三角形6.如图所示,隔河可以看到对岸两目标A ,B ,但不能到达,现在岸边取相距4km 的C ,D 两点,测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),则两目标A ,B 间的距离为( )km.A 85B 415C 215D .57.在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若3b =60B =︒,若ABC 仅有一个解,则a 的取值范围是( )A .({}0,32⎤⋃⎦B .30,2C .{}30,22⎛⎤⋃ ⎥⎝⎦D .28.设ABC 的内角A ,B ,C 的对边分别是a ,b ,c .已知2cos 0b a C -=,()sin 3sin A A C =+,则2bca =( ) A .7 B .14 C .23D .6 9.在ABC 中,内角A ,B ,C 的对边是a ,b ,c ,若sin 3sin CA=,223b a ac -=,则cos C 等于( )A .12B .13C .14D .1510.已知ABC ∆中,2a =,3b =,60B =,那么角A 等于( )A .135B .45C .135或45D .9011.在ABC 中,2C A π-=,1sin 3B =,3AC =,则ABC 的面积为( ) A .322B .32C .22D .33212.已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,2b =,45B =︒,若三角形有两解,则a 的取值范围是( ) A .2a >B .02a <<C .222a <<D .223a <<二、填空题13.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,()226b a c =+-,23B π=,则ABC 的面积是______________. 14.某小区拟将如图的一直角三角形ABC 区域进行改建:在三边上各选一点连成等边三角形DEF ,在其内建造文化景观.已知207m AB =,107m AC =,则DEF 区域面积(单位:2m )的最小值大约为______2m .(保留到整数,参考数据:7 2.65≈;3 1.73≈)15.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且πsin cos 6b A a B ⎛⎫=- ⎪⎝⎭,则角B =______.16.在ABC 中,内角A 、B 、C 所对应的边分别是a ,b ,c .若()224c a b =-+,23C π=,则ABC 的面积是________. 17.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中23a c ==,,且满足(2)cos cos a c B b C -⋅=⋅,则AB BC ⋅=______.18.在锐角ABC ∆中,2AC =,22AB =,D 在BC 边上,并且2BD DC =,6π∠=CAD ,则ABC ∆的面积为__________.19.ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin 22sin sin b C c B a B C +=,2226b c a +-=,则ABC 的面积为_______.20.如图,在ABC 中,点D 是边BC 上的一点,1DC =,2AC =,3BD =,120BAD ∠=︒,则AB 的长为________.三、解答题21.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A 为锐角,22sin cos 2c a B C ab--=. (1)求A ;(2)若3b =,且BC 边上的高为3ABC 的面积. 22.在三角形ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若2b cos B =a cos C +c cos A (1)求角B 的大小;(2)若线段BC 上存在一点D ,使得AD =2,且AC 6=CD 3=1,求S △ABC .23.已知ABC 中,51tan 43A π⎫⎛-=⎪⎝⎭. (1)求2sin cos2A A +的值;(2)若ABC 的面积为4,4AB =,求BC 的值.24.已知角α,β(0α<,βπ<)的顶点与原点O 重合,始边与x 轴的非负半轴重合,点132A ⎛ ⎝⎭,26,26B 分别在角α,β的终边上.(Ⅰ)设函数()()2sin 2f x x α=-,3, 82x ππ⎛⎫∈⎪⎝⎭,求()f x 的最大值; (Ⅱ)若点C 在角β的终边上,且线段AC 的长度为6,求AOC △的面积. 25.如图所示,在地面上共线的三点A ,B ,C 处测得一建筑物的仰角分别为30,45,60,且60AB BC m ==,求建筑物的高度.26.在ABC 中,1cos 8C =-,再从条件①、条件②这两个条件中选择一个作为已知,求: (1)sin B 的值; (2)ABC 的面积.条件①:4a =,6c =;条件②:4a =,ABC 为等腰三角形.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】首先利用正弦定理表示为23b c =,再结合余弦定理求cos A 和sin A ,并利用1315sin 2ABCSbc A ==求a的值. 【详解】2sin 3sin B C =,由正弦定理可知23b c =, 14b c a -=,可得13,24c a b a ==,∴2221cos 24b c a A bc +-==-,215sin 1cos A A =-=,1131sin 224244ABCSbc A a a ==⨯⨯⨯=,解得:4a =. 故选:C2.B解析:B 【分析】根据题中条件,由三角形的余弦定理、正弦定理和两角和的正弦公式,化简可得tan 3tan A B =,再由两角和的正切公式,以及锐角三角形的定义,可得tan 0A >,tan 0C >,解不等式可得所求范围.【详解】因为22212a b c =+,由余弦定理可得,2222cos a b c bc A =+-,则222212cos 2b c b c bc A +=+-,可得4cos c b A =,由正弦定理可得:sin 4sin cos C B A =,可得sin()sin cos sin cos 4sin cos A B A B B A B A +=+=, 化为3sin cos sin cos B A A B =, 在锐角ABC 中,cos 0A ≠,cos 0B ≠, 则tan 3tan A B =,又21tan tan tan tan 3tan tan()11tan tan 1tan 3A AA B C A B A B A ++=-+=-=---,由tan 0A >,tan 0C >,可得211tan 03A -<,解得tan A >, 故选:B . 【点睛】本题考查三角形的正弦定理和余弦定理的运用,以及两角和的三角函数公式,考查方程思想和化简运算能力,属于中档题.3.C解析:C 【分析】由正弦定理解三角即可求出B . 【详解】 在ABC 中,π6A =,1,a b ==, 所以sin sin a b A B=,即12 1sin 2B=,解得2sin B=,故4Bπ=或34π,故选:C【点睛】本题主要考查了正弦定理在解三角中的应用,考查了运算能力,属于中档题.4.C解析:C【分析】根据题设中的方位角画出,ABD ACD∆∆,在ABD∆中利用正弦定理可求出AD的长,在ACD∆中利用余弦定理求出CD的长,利用正弦定理求CDA∠的大小(即灯塔C的方位角).【详解】如图,在ABD∆中,45B=︒,由正弦定理有126242sin45sin603AD AB===︒︒,24AD=.在ACD∆中,余弦定理有2222cos30CD AC AD AC AD=+-⨯⨯︒,因3AC=,24AD=,12CD=,由正弦定理有sin30sinCD ACCDA=︒∠,3sin CDA∠=60CDA∠=︒或者120CDA∠=︒.因AD CD>,故CDA∠为锐角,所以60CDA∠=︒,故选C.【点睛】与解三角形相关的实际问题中,我们常常碰到方位角、俯角、仰角等,注意它们的差别.另外,把实际问题抽象为解三角形问题时,注意分析三角形的哪些量是已知的,要求的哪些量,这样才能确定用什么定理去解决.5.A解析:A 【分析】由正弦定理2sin sin sin a b cR A B C===,可判定A 正确;由大边对大角定理和正弦定理可判定B 错误;由正弦定理,可判定C 错误;根据余弦定理,可判定D 错误. 【详解】对于A 中,由于a b c >>,由正弦定理2sin sin sin a b cR A B C===, 可得sin sin sin A B C >>,故A 正确;对于B 中,A B C >>,由大边对大角定理可知,则a b c >>,由正弦定理2sin sin sin a b cR A B C===,可得sin sin sin A B C >>,故B 错误; 对于C 中,由正弦定理可得cos cos 2(sin cos sin cos )a B b A R A B B A +=+2sin()2sin()2sin R A B R C R C c π=+=-==,故C 错误;对于D 中,由222a b c +<,根据余弦定理可得222cos 02a b c C ab+-=<,因为(0,)C π∈,可得C 是钝角,故D 错误.故选:A. 【点睛】本题主要考查了以解三角形为背景的命题真假判定问题,其中解答中熟记解三角形的正弦定理、余弦定理,合理推算是解答的关键,着重考查推理与运算能力,属于基础题.6.B解析:B 【分析】由已知可求30CAD ∠=︒,120ACD ∠=︒,由正弦定理可求AD 的值,在BCD ∆中,60CBD ∠=︒,由正弦定理可求BD 的值,进而由余弦定理可求AB 的值. 【详解】由已知,ACD ∆中,30CAD ∠=︒,120ACD ∠=︒,由正弦定理,sin sin CD ADCAD ACD =∠∠,所以·sin 4?sin120sin sin30CD ACD AD CAD ∠︒===∠︒在BCD ∆中,60CBD ∠=︒,由正弦定理,sin sin CD BDCBD BCD =∠∠,所以·sin 4sin45sin sin60CD BCD BD CBD ∠︒===∠︒在ABD ∆中,由余弦定理,222802?·3AB AD BD AD BD ADB =+-∠=,解得:4153AB =. 所以A 与B 的距离4153AB =. 故选B 【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于中档题.7.A解析:A 【分析】 根据3b =,60B =︒,由正弦定理得到sin 2sin sin b Aa A B==,然后作出函数2sin =y A 的图象,将问题转化为y a =与2sin =y A 的图象只有一个交点求解. 【详解】 因为3b =,60B =︒,由正弦定理得sin sin a b A B=, 所以sin 2sin sin b Aa A B==, 因为()0,120∈︒A ,2sin =y A 的图象如图所示:因为ABC 仅有一个解,所以y a =与2sin =y A 的图象只有一个交点, 所以03a <≤2a =,故选:A【点睛】本题主要考查正弦定理的应用以及三角函数的图象的应用,还考查了数形结合的思想方法,属于中档题.8.D解析:D 【分析】根据正弦定理把角化边,可得3a b =,进一步得到2cos 3C =,然后根据余弦定理,可得c =,最后可得结果.【详解】 在ABC ∆中,sin sin a b A B=,由()sin 3sin()3sin 3sin A A C B B π=+=-=,所以3a b =①,又2cos 0b a C -=②,由①②可知:2cos 3C =,又2222cos 23a b c C ab +-==③,把①代入③化简可得:c =,则()2293bc b a b ==, 故选:D. 【点睛】本题考查正弦定理、余弦定理的综合应用,难点在于将c 用b 表示,当没有具体数据时,可以联想到使用一个参数表示另外两个参数,属于中档题.9.A解析:A 【分析】由已知利用正弦定理可得c =,结合已知22b a -=,可求得2b a =,进而根据余弦定理可求cos C 的值. 【详解】sinsin CA=∴由正弦定理可得:ca=c =,又22b a -=,2223b a a ∴-=,可得2b a =,222222431cos 2222a b c a a a C ab a a +-+-∴===⨯,故选:A . 【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.10.B解析:B 【分析】先由正弦定理求出sin A ,进而得出角A ,再根据大角对大边,大边对大角确定角A . 【详解】由正弦定理得:sin sin sin sin a b A B A B =⇒=,sin 2A B ==, ∴45A =或135,∵a b <,∴A B <,∴45A =,故选B. 【点睛】本题主要考查正弦定理的应用以及大边对大角,大角对大边的三角形边角关系的应用.11.A解析:A 【分析】先利用已知条件得到22B A π=-,再利用诱导公式和二倍角公式得到21sin 3A =,又0A π<<,可得sin A =;已知AC =BC 的长度,再根据三角形的面积公式in 12s S ab C =,即可得出结果. 【详解】由题意得:A B C π++=,()B A C π∴=-+,又22C A C A ππ-=⇒=+,()2222B A C A A ππππ⎛⎫∴=-+=-+=- ⎪⎝⎭,21sin sin 2cos 212sin 23B A A A π⎛⎫∴=-==-= ⎪⎝⎭,21sin 3A ∴=,0A π<<,sin A ∴=由正弦定理得,sin sin BC ACA B=,即3BC =, 2C A π=+,A ∴为锐角,cos A ==,sin sin cos 2C A A π⎛⎫∴=+== ⎪⎝⎭,11sin 32232ABC S BC AC C ∴=⋅=⨯=. 故选:A.【点睛】本题主要考查了解三角形的相关内容,主要包括诱导公式,二倍角公式以及正弦定理和三角形的面积公式.属于中档题.12.C解析:C【分析】 直接利用正弦定理计算得到答案.【详解】根据正弦定理:sin sin a b A B ==sin A =,三角形有两解,故sin 12A <=<,解得2a << 故选:C.【点睛】本题考查了利用正弦定理解三角形,意在考查学生的计算能力和转化能力.二、填空题13.【分析】利用余弦定理求出的值再利用三角形的面积公式可求得的面积【详解】由余弦定理可得可得则解得因此的面积是故答案为:【点睛】方法点睛:在解三角形的问题中若已知条件同时含有边和角但不能直接使用正弦定理 解析:2【分析】利用余弦定理求出ac 的值,再利用三角形的面积公式可求得ABC 的面积.【详解】由余弦定理可得222222cos b a c ac B a c ac =+-=++,222a c b ac ∴+-=-, ()2222626b a c a c ac =+-=++-,可得222260a c b ac +-+-=,则260ac ac --=,解得6ac =,因此,ABC的面积是11sin 62222ABC S ac B ==⨯⨯=△.故答案为:2. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;(4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理. 14.【分析】设那么在中利用正弦定理求出关于的函数并求出其最大值即可求解【详解】在中可得所以设那么在中由正弦定理可得其中所以当时取到最小值最小值为故面积的最小值故答案为:【点睛】本题考解三角形的实际应用考 解析:130【分析】设CED θ∠=,m DE x =,那么6BFE πθ∠=+,cos CE x θ=,在BEF 中,利用正弦定理,求出x 关于θ的函数,并求出其最大值,即可求解.【详解】在Rt ABC △中,AB =,AC =,可得CB =. 所以6ABC π∠=设CED θ∠=,m DE x =,那么6BFE πθ∠=+,cos CE x θ=.在BFE △中,由正弦定理,可得sin sin 66xπθ=+ ⎪⎝⎭,12(cos )cos 2cos )22x x x θθθθθ++=+=,sin()x θα===+,其中tan α=,所以当sin()1θα+=时,x取到最小值,最小值为故DEF面积的最小值21sin 75 1.73129.7513023S x π=⨯=≈⨯=≈. 故答案为:130【点睛】本题考解三角形的实际应用,考查正弦定理,三角恒等变换,以及三角函数的性质,属于中档题.本题解题的关键在于设CED θ∠=,m DE x =,进而在BFE △中,得cos sin sin 66xx θππθ=⎛⎫+ ⎪⎝⎭,进而将问题转化为求边x 的最小值问题. 15.【分析】由正弦定理及可得结合两角差余弦公式可得进而可得到值【详解】由正弦定理及可得:在中∴即∴又B 为三角形内角∴=故答案为:【点睛】本题考查三角形中求角的问题涉及到正弦定理两角差余弦公式考查计算能力 解析:π3B =【分析】 由正弦定理及πsin cos 6b A a B ⎛⎫=-⎪⎝⎭可得πsin sin sin cos 6B A A B ⎛⎫=- ⎪⎝⎭,结合两角差余弦公式可得tanB =B 值.【详解】 由正弦定理及πsin cos 6b A a B ⎛⎫=- ⎪⎝⎭ 可得:πsin sin sin cos 6B A A B ⎛⎫=-⎪⎝⎭,在ABC 中,sin 0A ≠, ∴πsin cos 6B B ⎛⎫=-⎪⎝⎭,即ππsin cos cos sin sin 66B B B =+∴tanB =B 为三角形内角, ∴B =3π 故答案为:3π. 【点睛】本题考查三角形中求角的问题,涉及到正弦定理,两角差余弦公式,考查计算能力,属于基础题.16.【分析】利用余弦定理结合求出利用即可求出三角形的面积【详解】由可得:在中由余弦定理得:即所以即所以故答案为:【点睛】本题主要考查了余弦定理面积公式的应用属于中档题解析:3【分析】 利用余弦定理,结合()224c a b =-+,23C π=求出43ab =,利用1sin 2ABC S ab C =,即可求出三角形的面积.【详解】由()224c a b =-+可得:22224c a b ab =+-+,在ABC 中,由余弦定理得:2222cos c a b ab C =+-,即222c a b ab =++,所以24ab ab -+=, 即43ab =,所以114sin 223ABC S ab C ==⨯=,故答案为:3【点睛】 本题主要考查了余弦定理,面积公式的应用,属于中档题.17.【分析】由题意利用正弦定理边化角求得∠B 的值然后结合数量积的定义求解的值即可【详解】根据正弦定理得:故答案为【点睛】本题主要考查正弦定理余弦定理的应用等知识意在考查学生的转化能力和计算求解能力 解析:3-【分析】由题意利用正弦定理边化角,求得∠B 的值,然后结合数量积的定义求解AB BC ⋅的值即可.【详解】()2a c cosB bcosC -=根据正弦定理得:()2sinA sinC cosB sinBcosC -=2sinAcosB sinBcosC sinCcosB =+()2sinAcosB sin B C =+2sinAcosB sinA =12cosB ∴=, 60B ∴=1||2332AB BC AB BC cosB ⎛⎫∴⋅=-⋅=-⨯⨯=-⎪⎝⎭ 故答案为3- 【点睛】本题主要考查正弦定理、余弦定理的应用等知识,意在考查学生的转化能力和计算求解能力.18.【分析】在中由正弦定理可得到在中由正弦定理可得到由是锐角可知结合三角形的面积公式可得到答案【详解】在中由正弦定理得:则在中由正弦定理得:则因为所以由于三角形是锐角三角形故则故的面积为【点睛】本题考查 1 【分析】在ADC ∆中,由正弦定理sin sin DC AC CAD ADC =∠∠,可得到1sin ADC DC ∠=,在ADB ∆中,由正弦定理sin sin DB AB BAD ADB=∠∠,可得到12sin sin DC DB ADB DC BAD AB ∠∠===,由BAD ∠是锐角,可知4BAD π∠=,46BAC ππ∠=+,结合三角形的面积公式可得到答案.【详解】 在ADC ∆中,由正弦定理得:sin sin DC AC CAD ADC =∠∠,则11sin 2sin 6ADC DC DCπ∠=⨯⨯=, 在ADB ∆中,由正弦定理得:sin sin DB AB BAD ADB =∠∠,则sin sin DB ADB BAD AB ∠∠=,因为1sin sin ADB ADC DC∠=∠=,2BD DC =,所以12sin 2DCDC BAD ∠==,由于三角形是锐角三角形,故4BAD π∠=,则sin sin 464BAC ππ⎛⎫∠=+=⎪⎝⎭,故ABC ∆的面积为1212⨯⨯=.【点睛】本题考查了正弦定理在解三角形中的应用,考查了三角形的面积公式,属于中档题. 19.【分析】由正弦定理得由平方关系和余弦定理可得再利用面积公式即可得解【详解】由已知条件及正弦定理可得易知所以又所以所以所以即所以的面积故答案为:【点睛】本题考查了正弦定理余弦定理和三角形面积公式的应用 解析:32【分析】 由正弦定理得2sin 2A =322bc =,再利用面积公式1sin 2S bc A =即可得解. 【详解】 由已知条件及正弦定理可得2sin sin 22sin sin B C A B C =,易知sin sin 0B C ≠,所以2sin 2A =, 又2226b c a +-=,所以2223cos 2b c a A bc bc+-==, 所以cos 0A >,所以22cos 1sin A A =-322bc =,32bc =, 所以ABC 的面积1123sin 32222S bc A ==⨯=. 故答案为:32. 【点睛】本题考查了正弦定理、余弦定理和三角形面积公式的应用,属于中档题. 20.【分析】在两个三角形中利用余弦定理建立等量关系式整理得出结合题中所给的条件利用余弦定理建立等量关系式求得结果【详解】因为所以可得在△中所以整理得出所以所以故答案为:【点睛】该题考查的是有关解三角形的 解析:77【分析】在两个三角形中,利用余弦定理,建立等量关系式,整理得出2AB AD =,结合题中所给的条件,利用余弦定理建立等量关系式,求得结果.【详解】因为cos cos ADB ADC ∠=-∠, 所以2229142321AD AB AD AD AD+-+-=-⨯⨯⨯⨯,可得2AB AD =, 在△ABD 中,2222cos BD AD AB AD AB BAD =+-⨯⨯∠, 所以22192()422AB AB AB AB =+-⨯⨯⨯-,整理得出2794AB =,所以2367AB =,所以AB =,. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理解三角形,属于简单题目.三、解答题21.(1)6π;(2) 【分析】(1)先用余弦定理化余弦为边,再用正弦定理化边为角从而求得A ;(2)由余弦定理用c 表示a ,然后把三角形的面积用两种方法表示求得c ,从而可计算出面积.【详解】 (1)由22sin cos 2c a B C ab--=得222sin 2cos ab B ab C c a -=-, 由余弦定理得222222sin ab B c a b c a +--=-,所以2sin a B b =,由正弦定理得2sin sin sin A B B =,B 是三角形内角,sin 0B ≠, 所以1sin 2A =,又A 为锐角,所以6A π=.(2)由(1)2222232cos 2cos 166a b c bc A c c c π=+-=+-⋅⋅2716c =,4a c =,所以11sin 22ABC S bc A a ==⨯△211124224c ⨯⨯=⨯⨯c =b ==111sin 222ABC S bc A ===△ 【点睛】思路点睛:本题考查正弦定理、余弦定理、三角形面积公式.利用正弦定理和余弦定理进行边角互化是解题关键.三角形的面积采取了二次计算,通过不同的计算方法得出等式,从而求解.这是一种解题技巧.22.(1)3π;(2. 【分析】(1)由2b cos B =a cos C +c cos A ,利用正弦定理与两角和的正弦公式算出2sin B cos B =sin (A +C ),再根据诱导公式化简可得cos B 12=,结合B ∈(0,π)可得角B 的大小. (2)由余弦定理求得cos C 的值,可得C 的值,利用三角形内角和公式求得A 的值,再利用正弦定理求得AB 的值,从而求得S △ABC 12=⋅AB ⋅AC ⋅sin A 的值. 【详解】(1)∵2b cos B =a cos C +c cos A ,∴根据正弦定理,可得2sin B cos B =sin A cos C +sin C cos A ,即2sin B cos B =sin (A +C ).又∵△ABC 中,sin (A +C )=sin (180°﹣B )=sin B >0∴2sin B cos B =sin B ,两边约去sin B 得2cos B =1,即cos B 12=, ∵B ∈(0,π),∴B 3π=.(2)∵在△ACD 中,AD =2,且AC =CD =1, ∴由余弦定理可得:cos C2==, ∴C 4π=,∴A =π﹣B ﹣C 512π=, 由sin sin AC AB B C =,可得sin sin 34AB ππ=, ∴AB =2,∴S △ABC 12= ⋅AB ⋅AC ⋅sin A 12= ⋅2⋅⋅sin (46ππ+)=⋅(sin4πcos 6π+cos 4πsin 6π)=⋅(44+)32+=. 【点睛】 解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.23.(1)45;(2)2. 【分析】(1)首先利用两角差的正切公式求出tan A ,再根据同角三角函数的基本关系及二倍角公式计算可得;(2)由(1)可知,1tan 2A =,即可求出sin A ,cos A ,再利用余弦定理及面积公式计算可得;【详解】解:(1)5tan tan 44A A ππ⎫⎫⎛⎛-=-⎪ ⎪⎝⎝⎭⎭1tan 11tan 3A A -==+,解得1tan 2A =, 故2222cos sin cos2sin cos A A A A A +=+214tan 15A ==+. (2)由(1)可知,sin 1tan cos 2A A A ==①,且22sin cos 1A A +=②;联立①②,解得sin A =,cos A =.又1sin 42S bc A ==,4c =,可得b = 2222cos 4a b c bc A =+-=,则2a =.即2BC =.24.(Ⅰ)2;(Ⅱ)312±. 【分析】(Ⅰ)由α终边上的点求出α三角函数,求出α,根据正弦函数的值域求函数()f x 的最值即可;(Ⅱ)由β过点B求其正余弦值,求出cos AOC ∠后利用正弦或余弦定理求解即可.【详解】(Ⅰ)由α过点12A ⎛ ⎝⎭知1cos 2α=,sin α=,∴3πα=,()2sin 23f x x π⎛⎫=- ⎪⎝⎭. ∵3,82x ππ⎛⎫∈ ⎪⎝⎭∴522,3123x πππ⎛⎫-∈ ⎪⎝⎭ ∴()f x ∈.∴()max 2f x =(Ⅱ)由β过点B 知sin β=cos β=,cos()cos cos sin sin βααβαβ-=+=,即cos AOC ∠=. <方法一>由余弦定理知2222cos AC OC OA OA OC AOC =+-⋅⋅∠,∴2213OC =+,∴OC =,∴AOC S ==△. <方法二>由正弦定理知sin sin OA AC ACO AOC=∠∠,∴sin ACO ∠==, 1cos 2ACO ∠=±,()1sin sin 22CAO ACO AOC ⎫∠=∠+∠=±=⎪⎪⎝⎭∴12||||sin 2AOC AOM S S OA AC OAC ==⋅⋅∠==△△ 【点睛】关键点点睛:利用角的终边上的点,根据三角函数的定义求出α,β的正余弦函数值,再由βα-AOC =∠,求出cos 2AOC ∠=是解题的关键,再由正弦定理或余弦定理求解,属于中档题. 25.【分析】设建筑物的高度为h ,可求出,,PA PB PC ,在PBA △和PBC 中,分别由余弦定理,再利用180PBA PBC ∠+∠=余弦互补即可求解.【详解】设点P 在平面中的射影为点D ,设建筑物的高度为h ,则PD h =,2PA h =,2PB h =,23PC =, 所以在PBA △和PBC 中,分别由余弦定理, 得222cos 2602PBA h∠=⨯⨯① 22246023cos 2602h h PBC h+-∠=⨯⨯② ∵180PBA PBC ∠+∠=,∴cos cos 0PBA PBC ∠+∠=.③由①②③,解得6h =306h =-(舍去), 即建筑物的高度为306.【点睛】关键点点睛:本题解题的关键点是熟练运用余弦定理,利用两角互补余弦值互为相反数列方程.26.(1)74;(2)37 【分析】先选条件,再分别解答:选择条件①:4a =,6c =,先用正弦定理求出sin cos A A ,,利用()sin =sin B A C +求出sin B ,直接套面积公式1sin 2ABC S ac B =△求面积; 选择条件②:4a =,ABC 为等腰三角形;先分析C 为钝角,只能只能A =B ,用余弦定理求出6c =,再用正弦定理求出sin cos A A ,,利用()sin =sin B A C +求出sin B ,直接套面积公式1sin 2ABC S ac B =△求面积; 【详解】选择条件①:4a =,6c =;在ABC 中,1cos 8C =-,4a =,6c =;(1)∵1πcos ,π,sin 82C C C ⎛⎫=-∴∈== ⎪⎝⎭,,由正弦定理得:sin sin a c A C =,即4sin 8A =,解得π3sin 0cos 24A A A ⎛⎫=∈∴=== ⎪⎝⎭,所以()13sin =sin sin cos cos sin 84B A C A C A C ⎛⎫+=+=-+= ⎪⎝⎭即sin =4B(2)11sin 4622ABC S ac B ==⨯⨯=△即ABC 的面积为选择条件②:4a =,ABC 为等腰三角形;(1)∵1cos sin 88C C =-∴==,,且C 为钝角. ∴只能A =B ,∴4a b ==由余弦定理2222cos c a b ab C =+-得:2221442448c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭解得:6c =由正弦定理得:sin sin a c A C =,即4sin 8A =,解得3sin cos 4A A =∴===所以()13sin =sin sin cos cos sin 84B A C A C A C ⎛⎫+=+=-+= ⎪⎝⎭即sin =4B(2)11sin 46224ABC S ac B ==⨯⨯⨯=△即ABC 的面积为【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考:(1)从题目给出的条件,边角关系来选择;(2)从式子结构来选择.。
人教A版高中数学必修五第二章单元测试题.docx
高中数学必修5第二章单元测试题班级: 姓名: 得分:一、 选择题(共8小题,每题5分,共40分,四个选项中只有一个符合要求 )1.数列{}n a 为等差数列,123,,a a a 为等比数列,51a =,则10a =( )A .5B .1-C .0D .12.已知等差数列}{n a 中,897,,16a a a 则=+的值是 ( )A.16B.7C.8D.43.在数列1,1,2,3,5,8,x ,21,34,55,…中,x 等于( )A .11B .12C .13D .144.已知{}n a 是等比数列,前n 项和为n S ,41252==a a ,,则5S = ( ) A.132 B.314 C.334 D.10185.在各项都为正数的等比数列{}n a 中,13a =,前三项的和为21,则345a a a ++=( )A.33B.72C.84D.1896.在等比数列{}n a 中,若3578a a a =,则28a a =( )A .4B .4-C .2D .2-7.数列{}n a 的前n 项和为221n S n =+,则a n =( )A .a n =4n-2B .a n =2n-1C .⎪⎩⎪⎨⎧≥-==)2(24)1(3n n n a n D .⎪⎩⎪⎨⎧≥-==)2(24)1(2n n n a n 8.设n S 是等差数列{}n a 的前n 项和,若439,15a S ==,则数列{}n a 的通项公式为( )A . n a =2n -3B . n a =2n -1C . n a =2n +1D . n a =2n +9二、 填空题(共4小题,每题5分,共20分,把答案填在题中横线上)9.设n S 是等差数列{}n a 的前n 项和,且3613S S =,则912S S = . 10.等比数列{a n }中,已知a 2=1,a 5=8,则公比=q11.若数列{a n }的前n 项和S n =n 2+3n ,则a 6+a 7+a 8=________.12.若等比数列{}n a 满足243520,40a a a a +=+=,则前n 项n S =___ _. 三、解答题(共3小题,13题12分,14、15题每题14分,共40分)13. 设数列{}n a 的前n 项和122n n S +=-,数列{}n b 满足21(1)log n nb n a =+. (1)求数列{}n a 的通项公式;(2)求数列{}n b 的前n 项和n T . 14.已知等比数列{}n a 中,12a =,318a =,等差数列{}n b 中,12b =,且123123420a a a b b b b ++=+++>. ⑴求数列{}n a 的通项公式n a ; ⑵求数列{}n b 的前n 项和n S .15. 已知数列}{n a 的前n 项和为n S ,数列}1{+n S 是公比为2的等比数列,2a 是1a 和3a 的等比中项.(1)求数列}{n a 的通项公式;(2)求数列{}n na 的前n 项和n T . 答案 1.D 2.C 3.C4.B5.C6.A7.C8.C9. 3510.2 11.48 12. 122n +- 13.(1)2n n a =;(2)n 1n T n =+.14.(1) n a =132-•n ;(2)n n S n 21232+=. 15.(1)12-=n n a ;(2)12)1(+-=n n n T .。
高中人教B数学必修5:高中同步测试卷(二) 含答案
高中同步测试卷(二)单元检测 余弦定理及其应用 (时间:100分钟,满分:120分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC 中,a =2,b =5,c =6,则cos B 等于( ) A.58 B.6524 C.5760D .-7202.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =π3,a =3,b =1,则c 等于( )A .1B .2 C.3-1 D. 3 3.在△ABC 中,已知a 2=b 2+bc +c 2,则A =( ) A.π6B.π3C.2π3D.π3或2π34.在△ABC 中,三边长分别为5,6,8,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .非钝角三角形 5.在△ABC 中,AB =3,BC =13,AC =4,则边AC 上的高为( ) A.322 B.323 C.32 D .3 36.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(2b -c )cos A =a cos C ,则A 的度数是( )A .30°B .45°C .60°D .120°7.△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为( ) A .19 B .14 C .-18D .-198.△ABC 的三内角A ,B ,C 所对的边分别为a ,b ,c ,设向量p =(a +c ,b ),q =(b -a ,c-a ),若p ∥q ,则C 的大小为( )A.π6B.π3C.π2D.2π39.△ABC 是不等边三角形,a ,b ,c 分别是内角A ,B ,C 的对边,a 是最大的边,若a 2<b 2+c 2,则角A 的取值范围是( )A.⎝⎛⎭⎫π2,π B.⎝⎛⎭⎫π4,π2C.⎝⎛⎭⎫π3,π2D.⎝⎛⎭⎫0,π2 10.△ABC 的三边长是三个连续整数,且最大角是最小角的2倍,则此三角形的三边长为( )A .5,6,7B .4,5,6C .3,4,5D .2,3,4题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)11.若△ABC 的三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角的度数为________. 12.在△ABC 中,若b =1,c =3,A =π6,则a =________,sin B =________. 13.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C=________. 14.如图,在△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC =45°,则AD 的长度等于________.三、解答题(本大题共6小题,共60分.解答应写出文字说明,证明过程或演算步骤) 15.(本小题满分10分)在△ABC 中, (1)若b =3,c =1,A =60°,试求a ; (2)若a =3,b =1,c =2,试求A .16.(本小题满分10分)在△ABC中,边a,b的长是方程x2-5x+2=0的两个根,C=60°,求边c的长.17.(本小题满分10分)在△ABC中,角A、B、C的对边分别为a、b、c,且a2-(b-c)2=(2-3)bc,sin A sin B=cos2C2,BC边上的中线AM的长为7.求角A和角B的大小.18.(本小题满分10分)已知△ABC的内角A、B、C的对边分别为a、b、c,且满足sin(2A+B)sin A=2+2cos(A+B).(1)证明:b=2a;(2)若c=7a,求角C的大小.附加题19.(本小题满分10分)在△ABC 中,AB =2,cos C =277,D 是AC 上一点,AD =2DC 且cos ∠DBC =5714.求: (1)∠BDA 的大小; (2)AD →·CB →.20.(本小题满分10分)在△ABC 中,AC =2,BC =1,cos C =34.(1)求AB 的值; (2)求sin(2A +C )的值.参考答案与解析1.[导学号99450020] 【解析】选A.由余弦定理得cos B =22+62-522×2×6=1524=58.2.[导学号99450021] 【解析】选B.由余弦定理得3=1+c 2-2×c ×1×cos π3, 即c 2-c -2=0,解得c =2或c =-1(舍去), 故c =2.3.[导学号99450022] 【解析】选C.由a 2=b 2+bc +c 2得, b 2+c 2-a 2=-bc =2bc cos A ,解得cos A =-12,A =2π3.4.[导学号99450023] 【解析】选C.设边长为8的边所对的角为θ, 则cos θ=52+62-822×5×6=-120<0,所以π2<θ<π,所以△ABC 是钝角三角形. 5.[导学号99450024] 【解析】选B.由余弦定理可得 cos A =AC 2+AB 2-BC 22AC ·AB =42+32-(13)22×3×4=12.∴sin A =32,则AC 边上的高h =AB ·sin A =3×32=323. 6.[导学号99450025] 【解析】选C.由余弦定理得, (2b -c )·b 2+c 2-a 22bc =a ·a 2+b 2-c 22ab ,化简得b 2+c 2-a 2-bc =0, 即b 2+c 2-a 22bc =12,∴cos A =12.又0<A <180°,∴A =60°.7.[导学号99450026] 【解析】选D.由余弦定理得cos B =AB 2+BC 2-CA 22AB ·BC =72+52-622×7×5=1935,∴AB →·BC →=-BA →·BC →=-|BA →||BC →|cos B =-7×5×1935=-19.8.[导学号99450027] 【解析】选B.∵p =(a +c ,b ),q =(b -a ,c -a ), 又p ∥q ,∴(a +c )(c -a )=b (b -a ), 即a 2+b 2-c 2=ab .由余弦定理,可得cos C =a 2+b 2-c 22ab =ab 2ab =12.又∵0<C <π,∴C =π3. 9.[导学号99450028] 【解析】选C.由A >B 且A >C ,A +B +C =π得,3A >π,A >π3.又cos A =b 2+c 2-a 22bc >0,故A <π2,即角A 的取值范围是⎝⎛⎭⎫π3,π2.10.[导学号99450029] 【解析】选B.依题意,设该三角形的三边长分别为k -1,k ,k +1,有k ∈N *,且这三边所对的角分别为A ,B ,C ,则有C =2A ,sin C =sin 2A =2sin A cos A ,则c =2a cos A .∴k +1=2(k -1)·k 2+(k +1)2-(k -1)22·k ·(k +1)解得k =5,则此三角形三边长分别为4,5,6.11.[导学号99450030] 【解析】由题设,可得a 2+b 2-c 2=-3ab , ∴cos C =a 2+b 2-c 22ab =-32,∴C =150°,∴三角形的最大内角为150°.【答案】150°12.[导学号99450031]【解析】由余弦定理得a2=b2+c2-2bc cos A=12+(3)2-2×1×3cos π6=1,所以a=1,所以a=b.所以A=B=π6,所以sin B=12.【答案】11213.[导学号99450032]【解析】由余弦定理,得a2=b2+c2-2bc cos A,即49=b2+25+5b,解得b=3或b=-8(舍去),所以sin Bsin C=bc=35.【答案】3514.[导学号99450033]【解析】∵AB=AC=2,BC=23,∴由余弦定理得,cos C=AC2+BC2-AB22AC·BC=22+(23)2-222×2×23=32.又∵C∈(0°,180°),∴C=30°.在△ADC中,由正弦定理得ACsin∠ADC=ADsin C,即AD=AC·sin Csin∠ADC=2×sin 30°sin 45°=2×1222= 2.【答案】 215.[导学号99450034]【解】(1)由余弦定理,得a2=b2+c2-2bc cos A=32+12-2×3×1×cos 60°=7,所以a=7.(2)由余弦定理的推论,得cos A=b2+c2-a22bc=12+22-(3)22×1×2=12.又0°<A<180°,所以A=60°.16.[导学号99450035]【解】由题意,得a+b=5,ab=2,∴a2+b2=(a+b)2-2ab=25-4=21.∴c2=a2+b2-2ab cos C=a2+b2-ab=21-2=19.∴c=19,∴边c的长为19.17.[导学号99450036]【解】由a2-(b-c)2=(2-3)bc,得a2-b2-c2=-3bc,∴cos A=b2+c2-a22bc=32.又0<A<π,∴A=π6.由sin A sin B=cos2C2,得12sin B=1+cos C2,即sin B =1+cos C , 则cos C <0,即C 为钝角, ∴B 为锐角,且B +C =5π6, 则sin(5π6-C )=1+cos C ,化简得cos(C +π3)=-1, 解得C =2π3,∴B =π6. 18.[导学号99450037] 【解】(1)证明:由已知得, sin(2A +B )=2sin A +2cos(A +B )sin A , 即sin(A +π-C )=2sin A -2sin A cos C , sin(C -A )=2sin A -2sin A cos C , sin C cos A +cos C sin A =2sin A , sin(A +C )=2sin A ,sin B =2sin A , 由正弦定理知b =2a .(2)由余弦定理知cos C =a 2+b 2-c 22ab =a 2+4a 2-7a 22a ·2a=-12,所以C =120°.19.[导学号99450038] 【解】(1)∵cos ∠DBC =5714,cos C =277, ∴sin ∠DBC =2114,sin C =217,∴cos ∠BDA =cos(∠DBC +C ) =5714×277-2114×217=12,∴∠BDA =π3. (2)设DC =x ,则AD =2x ,AC =3x . 又设BC =a ,则在△DBC 中, 由正弦定理得x sin ∠DBC =asin ∠BDC,∴a =7x .在△ABC 中,由余弦定理得, 4=(3x )2+(7x )2-2×3x ×7x ×277,∴x =1,∴|AD →|=2,|BC →|=7,∴AD →·CB →=|AD →||CB →|cos(π-C )=2×7×⎝⎛⎭⎫-277=-4. 20.[导学号99450039] 【解】(1)由条件可以直接利用余弦定理求出AB 的值,即AB 2=AC 2+BC 2-2AC ·BC cos C =4+1-2×2×1×34=2,∴AB = 2.(2)由cos C =34,且0<C <π,得sin C =1-cos 2C =74.由正弦定理得AB sin C =BC sin A ,解得sin A =BC sin C AB =148,所以cos A =528. 由倍角公式得sin 2A =2sin A ·cos A =5716,且cos 2A =1-2sin 2A =916,故sin(2A +C )=sin37 2A cos C+cos 2A sin C=8.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年必修五第二章训练卷数列(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 的公差为( ) A.1B.2C.3D.42.在等比数列{}n a 中,4a 、12a 是方程2310x x +=+的两根,则8a 等于( ) A.1B.1-C.1±D.不能确定3.已知数列{}n a 的通项公式是31,22,n n n a n n +⎧=⎨-⎩为奇数为偶数,则23a a 等于( )A.70B.28C.20D.84.已知0a b c <<<,且a ,b ,c 为成等比数列的整数,n 为大于1的整数,则log a n ,log b n ,log c n 成( )A.等差数列B.等比数列C.各项倒数成等差数列 D .以上都不对5.在等比数列{}n a 中,1n n a a +<,且2116a a =,495a a +=,则611aa 等于( )A.6B.23C.16D.326.在等比数列{}n a 中,11a =,则其前3项的和3S 的取值范围是( ) A.(],1-∞- B.(),01),(-∞∞+C.3,4⎡⎫+∞⎪⎢⎣⎭D.[)3,+∞7.正项等比数列{}n a 满足241a a =,313S =,3log n n b a =,则数列{}n b 的前10项和是( ) A.65B.65-C.25D.25-8.等差数列{}n a 中,若81335a a =,且10a >,n S 为前n 项和,则n S 中最大的是( ) A.21SB.20SC.11SD.10S9.已知等比数列{}n a 的前n 项和为n S ,1316n n S x -⋅=-,则x 的值为( ) A.13B.13-C.12 D.12-10.等差数列{}n a 中,n S 是{}n a 前n 项和,已知62S =,95S =,则15S =( ) A.15B.30C.45D.6011.一个卷筒纸,其内圆直径为4 cm,外圆直径为12 cm,一共卷60层,若把各层都视为一个同心圆, 3.14π=,则这个卷筒纸的长度为(精确到个位) ( ) A.14 mB.15 mC.16 mD.17 m12.数列{}n a 的首项为3,{}n b 为等差数列且1()n n n b a a n ++-∈=N .若32b =-,1012b =,则8a =( ) A.0 B.3 C.8 D.11二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知n S 是等比数列{}n a 的前n 项和,52a =-,816a =,则6S 等于________. 14.设S n 为等差数列{}n a 的前n 项和,若33S =,624S =,则9a =__________. 15.在等差数列{}n a 中,n S 为它的前n 项和,若10a >,160S >,170S <则当n =________时,n S 最大.16.数列{}n x 满足1lg 1lg ()n n x x x *++∈=N ,且12100100x x x +++=,则101102200()lg x x x +++=________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知数列{}n a 是首项为1的等差数列,且公差不为零.而等比数列{}n b 的前此卷只装订不密封班级 姓名 准考证号 考场号 座位号三项分别是1a ,2a ,6a .(1)求数列{}n a 的通项公式n a ; (2)若1285k b b b +++=,求正整数k 的值.18.(12分)等差数列{}n a 中,24a =,4715a a +=. (1)求数列{}n a 的通项公式; (2)设22n n b a n =-+,求12310b b b b ++++的值.19.(12分)已知公差大于零的等差数列{}n a 的前n 项和为n S ,且满足:34117a a ⋅=,2522a a +=.(1)求数列{}n a 的通项公式n a ;(2)若数列{}n b 是等差数列,且nn b S n c=+,求非零常数c .20.(12分)数列{}n a 的前n 项和为n S ,且11a =,113n n a S +=,1n ≥,n +∈N ,求:(1)数列{}n a 的通项公式; (2)2462n a a a a ++++的值.21.(12分)已知{}n a 是各项均为正数的等比数列,{}n b 是等差数列,且111a b ==,2332a b b +=,2537a b -=;求:(1){}n a 和{}n b 的通项公式;(2)设n n n c a b =,n *∈N ,求数列{}n c 的前n 项和.22.(12分)如图所示,某市2009年新建住房400万平方米,其中250万平方米是中低价房,预计今年后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积比上一年增加50万平方米,那么到哪一年底, (1)该市历年所建中低价房的累计面积(以2009年累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?2018-2019学年必修五第二章训练卷数列(二)答 案一、选择题 1.【答案】B【解析】设公差为d ,由题意得11141037a a d a d ++=⎧⎨+=⎩,解得2d =.故选B.2.【答案】B【解析】由题意得,41230a a +=-<,41210a a ⋅=>, ∴40a <,120a <.∴80a <,又∵812421a a a ⋅==,∴81a =-.故选B. 3.【答案】C【解析】由通项公式可得22=a ,30=1a ,∴2320=a a .故选C. 4.【答案】C【解析】∵a ,b ,c 成等比数列,∴2b ac =.又∵()log log log 2log log log log 112n n c b n n a a c ac b n n n==+=+=, ∴log log g 1l 12o c b a n n n=+.故选C. 5.【答案】B【解析】∵492116a a a a ==⋅,又∵495a a +=,且1n n a a <+,∴42a =,93a =,∴45932a a q ==, 又6151123a q a ==.故选B. 6.【答案】C【解析】设等比数列的公比为q ,则22313124S q q q ⎛⎫++++ ⎪⎝⎭==.∴3S 的取值范围是3,4⎡⎫+∞⎪⎢⎣⎭.故选C.7.【答案】D【解析】∵{}n a 为正项等比数列,241a a =, ∴31a =,又∵313S =,∴公比1q ≠. 又∵()3311131a q S q-==-,231aa q =,解得13q =.∴3333133n n n n a a q--⎛⎫= ⎪⎝⎭==-,∴3log 3n n b a n ==-. ∴12b =,107b =-.∴()()11010101052522S b b +⨯-===-.故选D.8.【答案】B【解析】设数列{}n a 的公差为d ,因为81335a a =,所以12390a d +=,即1400a a +=, 所以20210a a +=,又10a >,0d <,故200a >,210a <, 所以n S 中最大的是20S .故选B. 9.【答案】C 【解析】1116a S x ==-, 221113266a S S x x x --+===-,3321136669a S S x x x --+===-,∵{}n a 为等比数列,∴2213a a a =,∴21466x x x ⎛⎫=- ⎪⎝⎭,解得12x =.故选C.10.【答案】A【解析】解法一:由等差数列的求和公式及6925S S =⎧⎨=⎩知,116562259829a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=⎪⎩,∴1427127a d =-⎧⎪⎪⎨⎪=⎪⎩,∴115151415152S a d ⨯=+=.故选A.解法二:由等差数列性质知,n S n ⎧⎫⎨⎬⎩⎭成等差数列,设其公差为D ,则96522396969S S D -==-=,∴227D =, ∴15952661159927S S D =+=+⨯=,∴1515S =.故选A.11.【答案】B【解析】纸的厚度相同,且各层同心圆直径成等差数列, 则()126041260480 3.141507.2152l d d d cm m +=ππ+ππ⨯=+⨯6=≈+=,故选B. 12.【答案】B【解析】本题主要考查等差数列的性质及累加法求通项, 由32b =-,1012b =,∴2d =,16b =-,∴28n b n =-, ∵1n n n b a a =-+.∴8877665544332211()()()()()()()a a a a a a a a a a a a a a a a =-+-+-+-+-+-++- ()7654321176278332b b b b b b b a -+⨯-++++++=+=+=.故选B.二、填空题 13.【答案】218【解析】∵{}n a 为等比数列,∴385a a q =, ∴31682q ==--,∴2q =-.又451a a q =,∴121168a -==-, ∴()()666111212181128S a q q⎡⎤----⎣⎦===-+.14.【答案】15【解析】设等差数列公差为d ,则3113233233S a a d d ⨯=+=+=,11a d +=,① 又161656615242d d S a a ⨯=+=+=,即1258a d +=.② 联立①②两式得11a =-,2d =, 故91818215a a d =-+⨯==+. 15.【答案】8【解析】∵()()()116168911717916802171702a a S a a a a S a ⎧+==+>⎪⎪⎨+⎪==<⎪⎩,∴80a >而10a >, ∴数列{}n a 是一个前8项均为正,从第9项起为负值的等差数列,从而n =8时,S n 最大.16.【答案】102【解析】由题意得110n n x x +=,即数列{}n x 是公比为10的等比数列, 所以100102101102200121001010()x x x x x x ++=++=++⋅,故101102200l (g )102x x x ++=+.三、解答题17.(10分)已知数列{}n a 是首项为1的等差数列,且公差不为零.而等比数列{}n b 的前三项分别是1a ,2a ,6a .(1)求数列{}n a 的通项公式n a ; (2)若1285k b b b +++=,求正整数k 的值.【答案】(1)32n a n =-;(2)4. 【解析】(1)设数列{}n a 的公差为d , ∵1a ,2a ,6a 成等比数列,∴1226a a a =⋅, ∴211()(1)5d d +⨯=+,∴23d d =, ∵0d ≠,∴3d =,∴11()332n a n n +-⨯=-=. (2)数列{}n b 的首项为1,公比为214a q a ==. ∵121441143k k k b b b -==-+-++,∴41853k -=,∴4256k =,∴4k =, ∴正整数k 的值为4.18.(12分)等差数列{}n a 中,24a =,4715a a +=.(1)求数列{}n a 的通项公式; (2)设22n n b a n =-+,求12310b b b b ++++的值.【答案】(1)2n a n =+;(2)2101. 【解析】(1)设等差数列{}n a 的公差为d . 由已知得11143615a d a d a d +=⎧⎨+++=⎩,解得131a d =⎧⎨=⎩.所以1)2(1n a a n d n -=++=. (2)由(1)可得2n n b n =+. ∴231012310212()()(223210)()b b b b +++=++++⋯+++++ 231022221210((3))=+++++++++()()1021210110122-⨯+=+-()111122552532101===-++.19.(12分)已知公差大于零的等差数列{}n a 的前n 项和为n S ,且满足:34117a a ⋅=,2522a a +=.(1)求数列{}n a 的通项公式n a ; (2)若数列{}n b 是等差数列,且nn b S n c=+,求非零常数c . 【答案】(1)43n a n =-;(2)12-.【解析】(1){}n a 为等差数列, ∵342522a a a a +=+=, 又34117a a ⋅=,∴3a ,4a 是方程2221170x x +=-的两个根. 又公差0d >,∴34a a <,∴39a =,413a =. ∴1129313a d a d +=⎧⎨+=⎩,∴114a d =⎧⎨=⎩,∴43n a n =-.(2)由(1)知,()211422n n n S n n n -⋅+⨯=-=,∴22n n S n c n cn nb ==-++, ∴111bc =+,262b c =+,3153b c=+, ∵{}n b 是等差数列,∴2132b b b =+, ∴220c c +=,∴12c =-(0c =舍去).20.(12分)数列{}n a 的前n 项和为n S ,且11a =,113n n a S +=,1n ≥,n +∈N ,求:(1)数列{}n a 的通项公式; (2)2462n a a a a ++++的值.【答案】(1)21,114,233n n n n a -=⎧⎪=⎨⎛⎫⋅≥⎪ ⎪⎝⎭⎩;(2)316179n ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【解析】(1)∵11()3n n a S n ++=∈N ,∴11()32,n n a S n n +≥∈=N -,∴两式相减,得113n n n a a a +-=.即()1423n n a a n +=≥.11111333a S ==,211433aa =≠. ∴数列{}n a 是从第2项起公比为43的等比数列, ∴21,114,233n n n n a -=⎧⎪=⎨⎛⎫⋅≥⎪ ⎪⎝⎭⎩.(2)由(1)知,数列2a ,4a ,6a ,…,2n a 是首项为13,公比为169的等比数列,∴24621161393161167919nnn a a a a ⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦+++==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-+.21.(12分)已知{}n a 是各项均为正数的等比数列,{}n b 是等差数列,且111a b ==,2332a b b +=,2537a b -=;求:(1){}n a 和{}n b 的通项公式;(2)设n n n c a b =,n *∈N ,求数列{}n c 的前n 项和.【答案】(1)12n n a -=,*n ∈N ,21n b n =-,*n ∈N ;(2)233(2)n n S n -=+,*n ∈N . 【解析】(1)设{}n a 的公比为q ,{}n b 的公差为d .由题意0q >,由已知,有24232310q d q d ⎧-=⎪⎨-=⎪⎩,消去d ,得42280q q --=. 又因为0q >,解得2q =,2d =.所以{}n a 的通项公式为12n n a -=,*n ∈N ,{}n b 的通项公式为21n b n =-,*n ∈N .(2)由(1)有1)1(22n n c n =--, 设{}n c 的前n 项和为n S , 则0121123252(212)n n S n -=+⨯⨯⨯+-⨯++, 123(212325222)1n n S n ⨯⨯⨯+=-++⨯+,两式相减,得23()()12222122323n n n n S n n -++-⨯-⨯=++---=.所以233(2)n n S n -=+,*n ∈N .22.(12分)如图所示,某市2009年新建住房400万平方米,其中250万平方米是中低价房,预计今年后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积比上一年增加50万平方米,那么到哪一年底,(1)该市历年所建中低价房的累计面积(以2009年累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?【答案】(1)2018年底;(2)2014年底. 【解析】(1)设中低价房面积构成数列{}n a , 由题意知:{}n a 是等差数列,其中1250a =,50d =, ∴()2125050252252n n n S n n n -+⨯+==,令2252254750n n +≥, 即291900n n -≥+, 解得19n ≤-或10n ≥, ∴10n ≥.故到2018年底,该市历年所建中低价房累计面积首次不少于4750万m 2. (2)设新建住房面积构成等比数列{}n b .由题意知{}n b 为等比数列,1400b =, 1.08q =.∴1400 1.08()n n b -⨯=, 令0.85n n a b >,即1250150400 1.0()()80.85n n -+-⨯>⨯⨯,∴满足不等式的最小正整数6n =.故到2014年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.。