专题2.1 利用正余弦定理解三角形中的几何量(长度角度面积周长等) 2019年高考数学(理科)备考题练
余弦定理和正弦定理的应用
余弦定理和正弦定理的应用余弦定理和正弦定理是初中数学中非常重要的定理,它们在解决三角形相关问题时起到了至关重要的作用。
在本文中,我将为大家详细介绍余弦定理和正弦定理的应用,并通过实例来说明它们的实用性和重要性。
一、余弦定理的应用余弦定理是用来求解三角形的边长或角度的定理。
它的数学表达式为:c² = a²+ b² - 2abcosC,其中a、b、c为三角形的边长,C为夹角。
1. 求解三角形的边长假设我们已知一个三角形的两边和它们之间的夹角,想要求解第三边的长度。
这时,我们可以利用余弦定理来解决这个问题。
例如,已知一个三角形的两边长分别为5cm和8cm,夹角为60°,我们可以利用余弦定理来计算第三边的长度。
根据余弦定理,我们可以得到c² = 5² + 8² - 2×5×8×cos60°,即c² = 25 + 64 -80cos60°。
进一步计算可得c² = 89 - 80cos60°,再开方可得c ≈ 2.92cm。
因此,这个三角形的第三边长约为2.92cm。
2. 求解三角形的角度除了求解边长外,余弦定理还可以用来求解三角形的角度。
例如,已知一个三角形的三边长分别为3cm、4cm和5cm,我们可以利用余弦定理来计算它的夹角。
根据余弦定理,我们可以得到cosC = (3² + 4² - 5²) / (2×3×4),即cosC = (9 + 16 - 25) / 24。
计算可得cosC = 0,因此C的值为90°。
通过以上两个例子,我们可以看到余弦定理在求解三角形边长和角度时的实用性和重要性。
它为我们解决各种三角形相关问题提供了有力的工具。
二、正弦定理的应用正弦定理是用来求解三角形的边长或角度的定理。
专题02 运用正余弦定理解决三角形问题(解析版)
专题02 运用正余弦定理解决三角形问题一、题型选讲题型一 正余弦定理在三角形中的运用正余弦定理主要就是研究三角形综合的边与角的问题,在三角形中要恰当的选择正余弦定理,但是许多题目中往往给出多边形,因此,要咋爱多边形中恰当的选择三角形,就要根据题目所给的条件,标出边和角,合理的选择三角形,尽量选择边和角都比较多的条件的三角形,然后运用正余弦定理解决。
例1、(2017徐州、连云港、宿迁三检)如图,在ABC △中,已知点D 在边AB 上,3AD DB =,4cos 5A =,5cos 13ACB ∠=,13BC =. (1)求cos B 的值; (2)求CD 的长.解析:(1)在ABC △中,4cos 5A =,(0,π)A ∈,所以3sin 5A =.同理可得,12sin 13ACB ∠=. 所以cos cos[π()]cos()B A ACB A ACB =-+∠=-+∠sin sin cos cos A ACB A ACB =∠-∠312451651351365=⨯-⨯=. (2)在ABC △中,由正弦定理得,1312sin 203sin 135BC AB ACB A=∠=⨯=.又3AD DB =,所以154BD AB ==. 在BCD △中,由余弦定理得,CD =AB D==例2、(2017年苏北四市模拟)如图,在四边形ABCD 中,已知AB =13,AC =10,AD =5,CD =65,AB →·AC →=50.(1) 求cos ∠BAC 的值; (2) 求sin ∠CAD 的值; (3) 求△BAD 的面积.解析: (1) 因为AB →·AC →=||A B →||A C →cos ∠BAC ,所以cos ∠BAC =AB →·AC→||A B →||A C →=5013×10=513. (2) 在△ADC 中,AC =10,AD =5,CD =65.由余弦定理,得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =102+52-(65)22×10×5=35.因为∠CAD ∈(0,π),所以sin ∠CAD =1-cos 2∠CAD =1-⎝⎛⎭⎫352=45.(3) 由(1)知,cos ∠BAC =513.因为∠BAC ∈(0,π),所以sin ∠BAC =1-cos 2∠BAC =1-⎝⎛⎭⎫5132=1213.从而sin ∠BAD =sin(∠BAC +∠CAD ) =sin ∠BAC cos ∠CAD +cos ∠BAC sin ∠CAD =1213×35+513×45=5665.所以S △BAD =12AB ·AD ·sin ∠BAD =12×13×5×5665=28.题型二 运用正余弦定理解决边角问题正余弦定理主要是解决三角形的边角问题,在解三角形时要分析三角形中的边角关系,要合理的使用正、余弦定理,要有意识的考虑是运用正弦定理还是余弦定理,就要抓住这两个定理的使用条件。
高中数学必修5:正弦定理与余弦定理 知识点及经典例题(含答案)
高中数学必修5:正弦定理与余弦定理知识点及经典例题(含答案)
正弦定理、余弦定理和射影定理可以帮助我们计算三角形的边长和角度。
其中,正弦定理表达了三角形边长和角度之间的关系,余弦定理则是通过两条边和它们之间的夹角计算第三条边的长度。
射影定理则是利用三角形中某个角的正弦值或余弦值来计算三角形中某条边的长度。
二、面积公式可以用来计算三角形的面积,其中a、b、c 分别为三角形的三条边,而对应的角度则可以通过正弦定理或余弦定理来计算。
三、在解题时,需要根据题目给出的条件选择合适的定理进行计算。
同时,需要注意计算过程中的精度和单位。
学前诊断】
1.在△ABC中,若C=90,a=6,B=30,则c-b等于1.
2.在△ABC中,若b=2asinB,则A等于30或60.
3.在△ABC中,c-a=b-ba,且∠C=90.
经典例题】
例1.在△ABC中,若∠A=45°,a=2,c=6,则∠B=45°,b=4.
例2.已知△ABC满足条件acosA=bcosB,可以判断
△ABC是等腰三角形。
例3.在△ABC中,已知b+c=6,求a的值。
根据余弦定理可得a²=(b+c)²-4bc,代入数据得a=2.
本课总结】
本课介绍了三角形中的正弦定理、余弦定理、射影定理和面积公式,这些定理可以帮助我们计算三角形的边长、角度和面积。
在解题时,需要根据题目给出的条件选择合适的定理进行计算。
正余弦定理的应用
利用正余弦定理,可以求出三角形的 角度,特别是当已知两边及其夹角时。
在三角形边长问题中的应用
计算边长
已知三角形的两边及夹角,正余弦定理可以用来计算第三边的长度。
验证边长条件
在解决三角形问题时,可以使用正余弦定理验证给定的边长是否满足三角形的性质。
在三角函数问题中的应用
计算三角函数值
利用正余弦定理,可以求出三角函数值 ,例如sin、cos或tan。
VS
验证三角函数关系
在解决三角函数问题时,可以使用正余弦 定理验证给定的三角函数关系是否成立。
04
CHAPTER
实际应用举例
பைடு நூலகம்
测量问题中的应用
确定不可达物体的高度
通过测量物体在太阳下形成的阴影长度,结 合正弦定理,可以计算出物体的高度。
正余弦定理的应用
目录
CONTENTS
• 正弦定理的应用 • 余弦定理的应用 • 正余弦定理的综合应用 • 实际应用举例
01
CHAPTER
正弦定理的应用
在三角形边长问题中的应用
确定已知两边及一边对角时,利用正弦定理求第 三边。
已知三角形的两边及其中一边的对角,可以使用 正弦定理求出第三边。
在三角形中已知两边及夹角,可以使用正弦定理 求出第三边。
解决三角函数方程
通过余弦定理,我们可以解决一些三角函数方程,例如求解sin(x) = 1/2在[0,2π]内的 解。
03
CHAPTER
正余弦定理的综合应用
在解三角形问题中的应用
确定三角形形状
通过正余弦定理,可以判断三角形的 形状,例如是否为直角三角形、等腰 三角形或等边三角形。
正余弦定理的应用举例教案
正余弦定理的应用举例教案第一章:正弦定理的应用1.1 概述介绍正弦定理的概念和基本公式解释正弦定理在几何图形中的应用1.2 三角形内角和定理证明三角形内角和定理运用正弦定理计算三角形的内角和1.3 三角形面积计算介绍三角形面积计算公式运用正弦定理计算三角形的面积第二章:余弦定理的应用2.1 概述介绍余弦定理的概念和基本公式解释余弦定理在几何图形中的应用2.2 三角形边长计算运用余弦定理计算三角形的边长举例说明余弦定理在实际问题中的应用2.3 三角形角度计算运用余弦定理计算三角形的角度举例说明余弦定理在实际问题中的应用第三章:正弦定理与余弦定理的综合应用3.1 概述介绍正弦定理与余弦定理的综合应用解释正弦定理与余弦定理在几何图形中的应用3.2 三角形全等的证明运用正弦定理与余弦定理证明三角形全等举例说明正弦定理与余弦定理在三角形全等问题中的应用3.3 三角形相似的证明运用正弦定理与余弦定理证明三角形相似举例说明正弦定理与余弦定理在三角形相似问题中的应用第四章:正弦定理与余弦定理在实际问题中的应用4.1 概述介绍正弦定理与余弦定理在实际问题中的应用解释正弦定理与余弦定理在实际问题中的重要性4.2 测量问题中的应用运用正弦定理与余弦定理解决测量问题举例说明正弦定理与余弦定理在测量问题中的应用4.3 几何问题中的应用运用正弦定理与余弦定理解决几何问题举例说明正弦定理与余弦定理在几何问题中的应用第五章:正弦定理与余弦定理的拓展与应用5.1 概述介绍正弦定理与余弦定理的拓展与应用解释正弦定理与余弦定理在其他领域中的应用5.2 在物理学中的应用介绍正弦定理与余弦定理在物理学中的应用举例说明正弦定理与余弦定理在振动、波动等问题中的应用5.3 在工程学中的应用介绍正弦定理与余弦定理在工程学中的应用举例说明正弦定理与余弦定理在建筑、航空航天等领域中的应用第六章:正弦定理与余弦定理在三角形中的应用举例6.1 概述回顾正弦定理与余弦定理的基本概念和公式。
余弦定理和正弦定理的应用
余弦定理和正弦定理的应用余弦定理和正弦定理是解决三角形问题中常用的数学定理。
它们可以帮助我们求解三角形的边长、角度和面积等。
本文将分别介绍余弦定理和正弦定理的应用,并通过实例来说明它们的具体使用方法。
一、余弦定理的应用余弦定理是一个用来描述三角形边长和夹角之间关系的定理。
在任意三角形ABC中,假设边长分别为a、b、c,而对应的夹角为A、B、C,则余弦定理可以表示为:c² = a² + b² - 2ab·cosC1. 求解三角形边长假设我们已知一个三角形的两个边长a和b,以及它们夹角C的大小。
我们可以通过余弦定理来求解第三个边长c。
例如,已知三角形ABC中,边AB的长度为5,边AC的长度为8,而夹角B的大小为60度。
按照余弦定理,我们可以用下式来计算边BC的长度:BC² = AB² + AC² - 2·AB·AC·cosB代入具体数值,即可求得:BC² = 5² + 8² - 2·5·8·cos60°BC² = 25 + 64 - 80·0.5BC² = 89 - 40BC² = 49BC = √49 = 7因此,边BC的长度为7。
2. 求解三角形夹角在某些情况下,我们已知三角形的三个边长,但需要求解其中一个夹角的大小。
余弦定理同样可以解决这个问题。
例如,已知三角形ABC的边长分别为a=4、b=7、c=9。
我们想要求解夹角C的大小。
根据余弦定理,我们可以得到:c² = a² + b² - 2ab·cosC代入具体数值,我们可以得到:9² = 4² + 7² - 2·4·7·cosC81 = 16 + 49 - 56·cosC16 + 49 - 81 = 56·cosC-16 = 56·cosCcosC = -16 / 56 = -0.2857由于余弦函数的定义域为[-1, 1],该结果无解,即无法构成三角形。
用正、余弦定理解三角形
灵活应用正、余弦定理解三角形利用正余弦定理解三角形在近几年的高考中出现的频率比较频繁,因此,掌握好正、余弦定理在各种题型中的应用就显得尤其重要。
下面就正、余弦定理的几种应用作一个归纳,希望能帮助同学们更好地掌握。
一、直接利用定理求边和角。
例1:在△ABC 中,0060,30,366==+=+B A b a ,求边c 的长。
解:∵ )(1800B A c +-==090 由正弦定理:Cc B b A a sin sin sin ==及等比定理得 0060sin 30sin 366sin sin sin ++=++=B A b a C c ∴12)31(21)31(62321366=++=++=c 二、配凑公式求边和角。
例2:若a ,b ,c 分别表示△ABC 的顶点A 、B 、C 所对的边长,且(a +b+c )(a +b -c )=3a b ,求cos (A+B )。
解: 由(a +b+c )(a +b -c )=3a b ,得ab c b a 3)(22=-+整理得:ab c b a =-+222, 故cos (A+B )=-cosC =-2122222-=-=-+ab ab ab c b a 三、利用定理求边和角的求值范围。
例3:①在锐角△ABC 中,a =1,b=2则c 的取值范围是多少?②设a ,a +1, a +2为钝角三角形的三边,则a 的取值范围是__________.解:①由余弦定理得: =2c C C ab b a cos 45cos 222-=-+由0<cosC<1 得512<<c 即 51<<c②由余弦定理得: 0)1(2)2()1(cos 222<++-++=a a a a a C 30310322<<⇔<<-⇔<--⇔a a a a四、利用定理判断三角形的形状。
例4:在△ABC ,已知)sin()()sin()(2222B A b a B A b a +-=-+,判断△ABC 的形状。
正弦定理与余弦定理在解三角形中的运用
正弦定理与余弦定理在解三角形中的运用正弦定理和余弦定理是解三角形中非常常用的定理。
它们可以帮助我们在已知一些边长或角度的情况下,求解出其他未知边长或角度。
在本文中,我们将详细介绍正弦定理和余弦定理的概念,并阐述它们在解三角形中的运用。
一、正弦定理正弦定理是解三角形中最为基础和常用的定理之一、它可以用来求解三角形的任意一个角度或边长。
正弦定理的表达形式如下:a / sinA =b / sinB =c / sinC其中,a,b,c表示三角形的三条边,A,B,C表示三个对应的角度。
在应用正弦定理求解问题时,需要注意以下几个方面:1.已知两边和它们对应的夹角,求第三边:根据正弦定理,我们可以将等式重写为 a = b * sinA / sinB 或 a = c * sinA / sinC。
2.已知两边和它们对应的夹角,求第三个角度:根据正弦定理,我们可以将等式重写为 sinA = a * sinC / c 或 sinA = b * sinC / c,然后通过求反函数 sin^-1 求解出 A 的值。
3.已知两个角度和一个对边,求第三边:根据正弦定理,我们可以将等式重写为 b = a * sinB / sinA 或 b = c * sinB / sinC。
4.已知两个角度和一个对边,求第三个角度:根据正弦定理,我们可以将等式重写为 sinB = b * sinA / a 或 sinB = b * sinC / c,然后通过求反函数 sin^-1 求解出 B 的值。
由于正弦定理可以用来求解任意一个角度或边长,因此它非常灵活和实用。
二、余弦定理余弦定理是解三角形中另一个重要的定理。
它可以用来求解三角形的边长或角度。
余弦定理的表达形式如下:a^2 = b^2 + c^2 - 2bc * cosAb^2 = c^2 + a^2 - 2ac * cosBc^2 = a^2 + b^2 - 2ab * cosC其中,a,b,c表示三角形的三条边,A,B,C表示三个对应的角度。
专题2.1+利用正余弦定理解三角形中的几何量(长度角度面积周长等)-高考数学备考之百强校大题狂练
高考数学大题狂练第二篇 三角函数与三角形 专题01利用正余弦定理解三角形中的几何量(长度,角度,面积,周长等) 1.在ABC ∆中,内角A , B , C 的对边分别为a , b , c ,且sin cos 0a B b A +=. (1)求角A 的大小; (2)若2a =, 1b =,求ABC ∆的面积.【答案】(1) 34A π=;(2) 314-.()sin sin cos 0B A A ∴+=, sin 0B ≠Qsin cos 0A A ∴+=, ()0,A π∈Q 34A π∴=. (2)由2a =, 1b =, 34A π=及余弦定理,得2210c c +-=, 得62c -=, 131sin 2ABC S bc A ∆-∴==. 2.如图, ABC V 是等边三角形,点D 在边BC 的延长线上,且2,7BC CD AD ==(Ⅰ)求sin sin CADD∠∠的值;(Ⅱ)求CD 的长.【答案】(Ⅰ)sin 1sin 2CAD D ∠=∠;(Ⅱ)1CD =.(Ⅱ)设CD x =,则2,3,BC x BD x == 因为ABD V 中, 7,2,,3AD AB x B π==∠=由余弦定理可得:2222cos AD AB BD AB BD B =+-⋅⋅∠即2274923,x x x x =+-⨯解得: 1,1x CD ==3.如图, ,,a b c 分别为ABC ∆中角,,A B C 的对边, 1,cos 37ABC ADC π∠=∠=, 8,2c CD ==.(1)求a 的值;(2)求ADC ∆的外接圆的半径R . 【答案】(1) 5a =;(2)324. 【解析】试题分析:(1)根据条件求得sin BAD ∠,在ABD ∆中,由正弦定理得sin sin c BADBD ADB⋅∠=∠即可得解;(2)在ABC ∆中,由余弦定理解得b ,在ADC ∆中, 12sin bR ADC=⋅∠即可得解. 试题解析: (1)∵1cos 7ADC ∠=,∴43sin sin ADC ADB ∠=∠=∴()4311333sin sin 727214BAD ADC ABC ∠=∠-∠=⨯-⨯=, 在ABD ∆中,由正弦定理得sin 3sin c BADBD ADB⋅∠==∠,∴325a =+=.(2)在ABC ∆中, 222cos 7b a c ac ABC =+-∠=. 在ADC ∆中, 14932sin 24b R ADC =⋅=∠. 4.ABC V 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC V 的面积为315,2,b c -= 1cos .4A =- (1)求a 的值;(2)求()sin A B +的值.【答案】(1)8;(2)158因为2222cos ,a b c bc A =+-可得8.a = (2)因为在三角形中,所以()sin sin .A B C +=由正弦定理得:,sin sin a cA C=解得15sin .8C =所以()sin A B +的值为15.8 5.如图,在ABC V 中, D 为AB 边上一点,且DA DC =,已知4B π=, 1BC =.(1)若ABC V 是锐角三角形, 6DC =,求角A 的大小; (2)若BCD V 的面积为16,求AB 的长. 【答案】(1)3A π=.(2)523+. 【试题分析】(1)在BCD ∆中,利用正弦定理可求得3sin BDC ∠=,得到π3BDC ∠=,利用等腰的性质可知π3A =.(2)利用三角形的面积公式可求得BD ,利用余弦定理可求得CD ,由此求得AB 的长. 【试题解析】因为ABC V 是锐角三角形,所以23BDC π∠=. 又DA DC =,所以3A π=.(2)由题意可得11sin 246BCD S BC BD π=⋅⋅⋅=V ,解得2BD =, 由余弦定理得2222cos4CD BC BD BC BD π=+-⋅⋅= 22251219329+-⨯⨯=,解得5CD =, 则52AB AD BD CD BD +=+=+=. 所以AB 52+6.在ABC ∆中,内角A , B , C 所对的边分别为a , b , c ,且cos cos 2b A a B c -=. (1)证明: tan 3tan B A =-;(2)若2223b c a bc +=,且ABC ∆3a .【答案】(1)见解析(2) 2a =形为等腰三角形,于是可得a c =,由12sin23S ac π= 21332==2a =. 试题解析:(1)根据正弦定理,由已知得: sin cos cos sin B A B A - ()2sin 2sin C A B ==+, 展开得: sin cos cos sin B A B A - ()2sin cos cos sin B A B A =+, 整理得: sin cos 3cos sin B A B A =-,所以, tan 3tan B A =-.(2)由已知得: 2223b c a bc +-=,∴222cos 2b c a A bc+-= 3322bc bc ==, 由0A π<<,得: 6A π=, 3tan A =tan 3B =- 由0B π<<,得: 23B π=,所以6C π=, a c =, 由12sin23S ac π= 21332== 2a =.。
正弦定理余弦定理解三角形技巧
正弦定理余弦定理解三角形技巧正弦定理和余弦定理是解三角形问题中常用的两个重要定理。
它们通过三角形的边长和角度之间的关系,帮助我们求解未知的角度和边长。
下面将介绍正弦定理和余弦定理的定义、推导过程和应用技巧。
一、正弦定理的定义和推导:1.定义:对于任意三角形ABC,它的三边长度分别为a、b、c,而对应的角度分别为A、B、C,则正弦定理的表达式为:a/sinA = b/sinB = c/sinC2.推导:设三角形ABC的高为h,其与底边a的夹角为α,边a与边c的夹角为β,则由三角形的定义可知:sinα = h/c, sinβ = h/a根据正弦定理,我们可以得到以下的关系:a/sinA = c/sinC,即a/sinA = c/sinαb/sinB = c/sinC, 即b/sinB = c/sinβ由此推导出正弦定理的表达式。
二、正弦定理的应用技巧:正弦定理可以用来求解三角形的未知边长和角度,常用的技巧有以下几种:1.已知两边和夹角,求第三边:根据正弦定理的表达式,我们可以将已知信息代入其中,解方程求得未知边长。
2.已知两边和一个对角的正弦值,求第三边:将已知信息代入正弦定理的表达式,解方程求得未知边长。
3.已知两角和一边,求第三边:将已知信息代入正弦定理的表达式,解方程求得未知边长。
4. 已知三边,求三角形内部的角度:根据正弦定理,我们可以得到以下关系:sinA = a/c,sinB = b/c,sinC = c/a。
通过反正弦函数,我们可以求得每个角度的值。
三、余弦定理的定义和推导:1.定义:对于任意三角形ABC,它的三边长度分别为a、b、c,而对应的角度分别为A、B、C,则余弦定理的表达式为:a² = b² + c² - 2bc*cosAb² = a² + c² - 2ac*cosBc² = a² + b² - 2ab*cosC2.推导:设三角形ABC的高为h,其与底边a的夹角为α,边a与边c的夹角为β,则由三角形的定义可知:cosα = h/c, cosβ = h/a根据余弦定理,我们可以得到以下关系:a² = b² + c² - 2bc*cosA,即a² = b² + c² - 2bc*cosαb² = a² + c² - 2ac*cosB,即b² = a² + c² - 2ac*cosβ由此推导出余弦定理的表达式。
正弦定理与余弦定理的应用
正弦定理与余弦定理的应用三角学是数学中的一个重要分支,广泛应用于各个领域,尤其是测量学中。
而正弦定理和余弦定理作为三角学中的基本定理,具有重要的实际应用价值。
本文将探讨正弦定理和余弦定理在实际问题中的应用。
1. 正弦定理的应用正弦定理是指在任意三角形ABC中,三边长度a、b、c与其对应的角度A、B、C之间的关系:a/sinA = b/sinB = c/sinC。
根据这个定理,我们可以得到以下几个实际问题中的应用。
1.1 测量高度正弦定理常用于测量无法直接得到的高度。
例如,在测量一棵树的高度时,我们可以站在树的底部和树的顶部,分别测量出与水平线的夹角,然后利用正弦定理可以求得树的高度。
这种方法在工程测量、地理测量等领域也得到广泛应用。
1.2 三角形的边长比较正弦定理可以用于比较三角形的边长。
例如,在一个三角形中,已知两个角的大小和一个边的长度,我们可以利用正弦定理求得另外两个边的长度。
这对于解决实际问题中的边长比较非常有帮助。
1.3 解决航空、航海等问题正弦定理在航空、航海、导弹制导等领域也有着广泛的应用。
通过测量角度、距离等信息,可以利用正弦定理计算出目标的位置、飞行轨迹等重要参数,从而更好地实现对目标的监控和控制。
2. 余弦定理的应用余弦定理是指在任意三角形ABC中,三边长度a、b、c与其对应的角度A、B、C之间的关系:c^2 = a^2 + b^2 - 2ab * cosC。
以下是余弦定理的一些实际应用。
2.1 测量距离余弦定理可以用于测量两点之间的距离。
例如,在航海中,通过测量其中一个角度、两点间的距离和另一个角度,可以利用余弦定理求得两个点之间的距离。
这对于制定航线、航行安全等都起着重要的作用。
2.2 三角形的面积计算余弦定理可以用于计算三角形的面积。
已知三角形的三边长度a、b、c,以及两个角的大小A、C,可以利用余弦定理计算出三角形的面积。
这在建筑、地理等领域中都有重要的应用。
2.3 解决物理问题余弦定理在物理学中也有广泛的应用。
专项训练1 利用正余弦定理解三角形(长度角度面积周长等) -2019年高考理科数学备考解答题专项训练含答案
专项训练1 利用正余弦定理解三角形中的几何量(长度角度面积周长等)-2019年高考理科数学备考解答题专项训练含答案一、解答题1.设的内角,,的对边分别为,,,已知.(1)求角;(2)若,,求的面积.【答案】(1);(2)1【解析】分析:(1)先由正弦定理将边化为角:,然后结合三角形内角和可得,化简可求得A;(2)根据正弦定理将角化边,再结合cosA的余弦定理即可求得c,再根据面积公式即可.(2)因为,所以由正弦定理可得,因为,,可得,所以,所以.点睛:考查正弦定理的边角互化、余弦定理、面积公式,灵活结合公式求解是关键,属于基础题.2.已知,,分别是的内角,,所对的边,且,.(1)求角的大小;(2)若,求边的长.【答案】(1);(2)试题解析:(1)因为,所以,所以,所以,又为三角形内角,所以.(2)因为,所以,所以.由正弦定理得,所以.3.在中,,,分别为角,,所对的边长,已知的周长为,,且的面积为.(Ⅰ)求边的长;(Ⅱ)求角的余弦值.【答案】(Ⅰ)1;(Ⅱ).【解析】分析:(Ⅰ)由三角形周长得到三边之和,已知等式利用正弦定理化简得到关系式,两式联立求出AB的长即可;(Ⅱ)利用三角形面积公式列出关系式,把已知面积代入求出,,利用余弦定理表示出.点睛:考查了正弦定理、余弦定理以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.4.在中,内角,,所对的边分别为,,,且.(Ⅰ)求;(Ⅱ)若,点,是线段的两个三等分点,,,求的值.【答案】(1);(2).【解析】【分析】(1)先根据正弦定理将边角关系化为边的关系,再根据余弦定理得结果,(2)先根据余弦定理解得,再根据余弦定理解得.【详解】(Ⅰ)∵,则由正弦定理得:,∴,∴,又,∴;(Ⅱ)由题意得,是线段的两个三等分点,设,则,,又,,在中,由余弦定理得,解得(负值舍去),则,又在中,.或解:在中,由正弦定理得:,∴,又,,∴,∴为锐角,∴,∴,又,∴,∴,∴,,∴在中,.【点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.5.己知分别为三个内角A,B,C的对边,且.(I)求角A的大小;(II)若b+c=5,且的面积为,求a的值.【答案】(Ⅰ);(Ⅱ).【解析】【详解】(Ⅰ)由正弦定理得,,∵,∴,即.∵∴,∴∴.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.6.在中,内角所对的边分别为,已知,且.(1)求角的大小;(2)求的最大值.【答案】(1) .(2) .【解析】【分析】(1)由余弦定理可得:cosA===,即可得出.(2)由正弦定理可得:可得b=,可得bsinC=2sinBsin=+,根据B∈即可得出.【详解】(1)由已知,得.详解答案即.【点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.。
正弦定理余弦定理解三角形技巧
正弦定理余弦定理解三角形技巧以正弦定理和余弦定理为基础的三角形解题技巧在解决三角形相关问题时,正弦定理和余弦定理是非常有用的工具。
它们可以帮助我们计算三角形的各个角度和边长,从而解决一系列问题,比如求解未知边长、未知角度、判断三角形类型等。
下面我将介绍一些使用正弦定理和余弦定理解决三角形问题的技巧。
一、正弦定理正弦定理是指在一个三角形中,三条边的长度与对应的角的正弦值之间的关系。
具体表达式如下:a/sinA = b/sinB = c/sinC其中a、b、c分别代表三角形的三条边的长度,A、B、C分别代表三角形的三个角度。
通过正弦定理,我们可以解决以下几类问题:1. 已知两个角和一个边的长度,求解其他未知边和角。
2. 已知两个边和一个角的大小,求解其他未知边和角。
3. 已知一个边和两个角的大小,求解其他未知边和角。
以一个具体的例子来说明,假设有一个三角形ABC,已知边长a=5,边长b=7,角C的大小为30度,我们可以利用正弦定理求解其他未知边和角。
根据正弦定理,我们可以得到以下等式:5/sinA = 7/sinB = c/sin30通过计算可得sinA ≈ 0.866,sinB ≈ 0.5。
将这些结果代入等式中,可以求解出c ≈ 8.66,A ≈ 60度,B ≈ 30度。
二、余弦定理余弦定理是指在一个三角形中,三条边的长度与对应的角的余弦值之间的关系。
具体表达式如下:c² = a² + b² - 2abcosC其中a、b、c分别代表三角形的三条边的长度,C代表三角形的一个角的大小。
通过余弦定理,我们可以解决以下几类问题:1. 已知三个边的长度,求解三个角的大小。
2. 已知两个边和对应的夹角,求解第三边的长度。
3. 已知两个边和一个角的大小,求解其他未知边和角。
以一个具体的例子来说明,假设有一个三角形ABC,已知边长a=5,边长b=7,角C的大小为30度,我们可以利用余弦定理求解其他未知边和角。
(通用版)高考数学复习 专题三 三角函数 3.2 解三角形基础题练习 理-人教版高三全册数学试题
3.2 解三角形基础题命题角度1利用正弦、余弦定理解三角形高考真题体验·对方向1.(2019全国Ⅰ·11)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知a sin A-b sin B=4c sin C ,cosA=-14,则bb =()A.6B.5C.4D.3,得a 2-b 2=4c 2,由余弦定理的推论,得-14=cos A=b 2+b 2-b 22bb, ∴b 2-4b 22bb =-14,∴-3b 2b =-14,∴b b =32×4=6,故选A .2.(2018全国Ⅱ·6)在△ABC 中,cos b2=√55,BC=1,AC=5,则AB=()A.4√2B.√30C.√29D.2√5cos C=2cos 2b 2-1=-35,∴AB 2=BC 2+AC 2-2BC ·AC cos C=1+25+2×1×5×35=32.∴AB=4√2.3.(2018全国Ⅲ·9)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若△ABC 的面积为b 2+b 2-b 24,则C=()A.π2B.π3C.π4D.π6S=b2+b2-b24=12ab sin C,得c2=a2+b2-2ab sin C.又由余弦定理c2=a2+b2-2ab cos C,∴sin C=cos C,即C=π4.4.(2017某某·9)在△ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sin B(1+2cos C)=2sin A cos C+cos A sin C,则下列等式成立的是()A.a=2bB.b=2aC.A=2BD.B=2Asin B(1+2cos C)=2sin A cos C+cos A sin C,∴sin B+2sin B cos C=(sin A cos C+cos A sin C)+sin A cos C,∴sin B+2sin B cos C=sin B+sin A cos C, ∴2sin B cos C=sin A cos C,又△ABC为锐角三角形,∴2sin B=sin A,由正弦定理,得a=2b.故选A.5.(2019全国Ⅱ·15)△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a=2c,B=π3,则△ABC的面积为.√3b2=a2+c2-2ac cos B,∴(2c)2+c2-2×2c×c×12=62,即3c 2=36,解得c=2√3或c=-2√3(舍去).∴a=2c=4√3.∴S △ABC =12ac sin B=12×4√3×2√3×√32=6√3.典题演练提能·刷高分1.在△ABC 中,若原点到直线x sin A+y sin B+sin C=0的距离为1,则此三角形为()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定解析由已知可得√22=1,∴sin 2C=sin 2A+sin 2B ,∴c 2=a 2+b 2,故三角形为直角三角形.选A .2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos C+c=2a ,且b=√13,c=3,则a=() A.1 B.√6C.2√2D.42b cos C+c=2a ,由正弦定理可得2sin B cos C+sin C=2sin A=2sin(B+C )=2sin B cos C+2cos B sin C ,∴sin C=2cos B sin C ,∵sin C ≠0,∴cos B=12.由余弦定理可得b 2=a 2+c 2-2ac cos B ,又知b=√13,c=3,解得a=4.故选D .3.(2019某某某某高三质检)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,若a sin B=2b sinC ,b=3,cos B=14,则△ABC 的面积为()A.9√15B.9√1516C.3√1516D.916a sin B=2b sin C ,结合正弦定理可得ab=2bc ,则a=2c.由余弦定理b 2=a 2+c 2-2ac cos B ,可得9=(2c )2+c 2-2×2c ×c ×14,解得c=32,则a=3.又sin B=√1-cos 2b =√154,所以S △ABC =12ac sin B=12×3×32×√154=9√1516.故选B .4.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,若2cos 2b +b2-cos 2C=1,4sin B=3sin A ,a-b=1,则c 的值为()A.√13B.√7C.√37D.6解析∵2cos2b +b2=2cos 2π-b 2=2cos 2π2−b 2=2sin 2b2=1-cos C ,∴1-cos C-cos2C=1.∴cos2C=-cos C.∴2cos 2C+cos C-1=0,解得cos C=12.因为{b -b =1,4b =3b ,故得到{b =3,b =4.根据余弦定理得到12=b 2+b 2-b 22bb,解得c 的值为√13.5.△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,若a=5,B=π3,cos A=1114,则△ABC 的面积S=()A.10√33B.10C.10√3D.20√3cos A=1114,所以sin A=5√314,由正弦定理得到bsin b=bsin b,解得b=7,由正弦定理得到sin C=sin(A+B )=4√37,△ABC 的面积S=12×5×7×4√37=10√3.6.(2019某某某某高三二调)在△ABC 中,角A ,B ,C 成等差数列,且对边分别为a ,b ,c ,若bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =20,b=7,则△ABC 的内切圆的半径为()A.√3B.7√33C.2D.3角A ,B ,C 成等差数列,∴2B=A+C=π-B ,即B=π3,∴bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =ca cos π3=20,即ca=40,由余弦定理b 2=c 2+a 2-2ca cos B ,可得49=a 2+c 2-ac=(a+c )2-3ac=(a+c )2-120,解得a+c=13.故a=5,c=8.设△ABC 的内切圆的半径为r ,则12(a+b+c )r=12ac sin B ,可得12(5+8+7)r=12×5×8×√32,可得△ABC 的内切圆的半径r=√3.故选A .7.如图,平面四边形ABCD 中,AC 与BD 交于点P ,若3bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AB=AD=√3BC ,∠CAD+∠ACB=56π,则bbbb=() A.√213B.√214C.2√63D.√62BC=1,则AB=AD=√3,延长BC 到E ,使BE=3BC ,所以CE=2,依题意3bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +(bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ −bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=2bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以AC ∥DE ,所以bb bb=bb bb=12,由正弦定理得{bb sin b =bbsin b ,bb sin b=bb sin b,两式相除得2sin b=√3sin b, 所以2sin5π6-α=√3sin α,所以α=π2,β=π3.在△ABC 中,由余弦定理得3=1+AC 2-2AC cos π3,AC=2,在Rt △ACD 中CD=√3+4=√7,故bbbb =√7√3=√213,选A .8.在△ABC 中,AB=2,AC=√7,∠ABC=2π3,则BC=.,根据余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B ,即BC 2+2BC-3=0,解得BC=1,或BC=-3(舍去负值).9.在△ABC 中,a=1,b=√7,且△ABC 的面积为√32,则c=.或2√3△ABC =12ab sin C=12×1×√7×sin C=√32,则sin C=√217,cos C=±2√77, 当cos C=2√77时,c 2=1+7-2×1×√7×2√77=4,c=2;当cos C=-2√77时,c 2=1+7+2×1×√7×2√77=12,c=2√3.10.我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里有一个题目:“问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何.”这道题讲的是有一个三角形沙田,三边长分别为13里,14里,15里,假设1里按500米计算,则该三角形沙田外接圆的半径为米..5由题意画出图象,如图所示,且AB=13里=6500米,BC=14里=7000米,AC=15里=7500米.在△ABC 中,由余弦定理有cos B=bb 2+bb 2-bb 22bb ·bb=132+142-1522×13×14=513,B 为锐角,sin B=√1-cos 2b =1213.设△ABC 外接圆半径为R ,则由正弦定理有bsin b =2R ,R=b2sin b =75002×1213=4062.5(米).命题角度2与三角形有关的最值和X 围问题高考真题体验·对方向1.(2015全国Ⅰ·16)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值X 围是.√6−√2,√6+√2).作CE ∥AD 交AB 于E ,则∠CEB=75°,∠ECB=30°.在△CBE中,由正弦定理得,EB=√6−√2.延长CD交BA的延长线于F,则∠F=30°.在△BCF中,由正弦定理得,BF=√6+√2,所以AB的取值X围为(√6−√2,√6+√2).2.(2014全国Ⅰ·16)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sin A-sinB)=(c-b)sin C,则△ABC面积的最大值为.√3,可得(2+b)(a-b)=(c-b)·c.∵a=2,∴a2-b2=c2-bc,即b2+c2-a2=bc.由余弦定理,得cos A=b2+b2-b22bb =12.∴sin A=√32.由b2+c2-bc=4,得b2+c2=4+bc.∵b2+c2≥2bc,即4+bc≥2bc,∴bc≤4.∴S△ABC=12bc·sin A≤√3,即(S△ABC)max=√3.典题演练提能·刷高分1.(2019某某某某高三一模)在△ABC中,AB=2,C=π6,则AC+√3BC的最大值为() A.4√7 B.3√7C.2√7D.√7ABC 中,AB=2,C=π6,则2R=bbsin b =4,则AC+√3BC=4sin B+4√3sin A=4sin 5π6-A +4√3sin A=2cos A+6√3sin A=4√7sin(A+θ),其中sin θ=√714,cos θ=3√2114,由于0<A<5π6,0<θ<π2,所以0<A+θ<4π3,所以最大值为4√7.故选A .2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若A=π3,a=2√2,则△ABC 面积的最大值为()A.√2B.2√3C.√6D.√3ABC 中,由余弦定理知a 2=b 2+c 2-2bc cos A ,即8=b 2+c 2-2bc cos π3=b 2+c 2-bc ≥2bc-bc=bc ,即bc ≤8,当且仅当b=c 时,等号成立,所以△ABC 面积的最大值为S=12bc sin A=12×8sin π3=2√3,故选B .3.已知锐角△ABC 中的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=a (a+c ),则sin 2bsin(b -b )的取值X 围是()A.(0,√22)B.(12,√32) C.(12,√22) D.(0,√32)b 2=a (a+c ),由余弦定理,得a 2+c 2-2ac cos B=a (a+c ), 化简得c-a=2a cos B.由正弦定理,得sin C-sin A=2sin A cos B ,∵C=π-(A+B ),∴sin(A+B )-sin A=2sin A cos B ,化简得sin(B-A )=sin A.∵△ABC 是锐角三角形,∴B-A=A ,即B=2A ,∵{0<b <π2,π2<b +b <π,即{0<2b <π2,π2<3b <π,∴π6<A<π4,∴sin 2bsin(b -b )=sin A ∈(12,√22).4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为√3,且cos(b +b )cos b=b2b +b ,则c 的最小值是()A.2B.2√2C.2√3D.4∵cos(b +b )cos b=b 2b +b ,∴-cos b cos b =b2b +b ,∴根据正弦定理可得-cos bcos b =sin b2sin b +sin b ,即-2sin A cos C=sin A.∵sin A ≠0,∴cos C=-12.∵C ∈(0,π),∴C=2π3.∵△ABC 的面积为√3,∴S △ABC =12ab sin C=√3,即ab=4.∵cos C=b 2+b 2-b 22bb=-12, ∴c 2=a 2+b 2+ab ≥2ab+ab=3ab=12,当且仅当a=b 时取等号. ∴c min =2√3,故选C .5.在△ABC 中,已知a 2+b 2-c 2=4S (S 为△ABC 的面积),若c=√2,则a-√22b 的取值X 围是()A.0,√2B.-1,0C.-1,√2D.-√2,√2a 2+b 2-c 2=4S ,∴a 2+b 2-c 2=4×12ab sin C=2ab sin C.∴b 2+b 2-b 22bb =sin C ,∴cos C=sin C.∴C=π4. ∵bsin b =bsin b =bsin b =√2√22=2,∴a=2sin A ,b=2sin B ,又a-√22b=2sin A-√22×2sin B=2sin A-√2sin B=2sin A-√2sin3π4-A=sin A-cos A=√2sin A-π4,∵0<A<3π4,∴-π4<A-π4<π2, ∴-1<√2sin A-π4<√2,∴-1<a-√22b<√2,故选C .6.已知平面四边形ABCD 中,AB=AD=2,BC=CD ,∠BCD=90°,则四边形ABCD 面积的最大值为()A.6B.2+2√3C.2+2√2D.4,设∠DAB=θ,BC=CD=x ,则BD=√2x.在△ABD 中,由余弦定理得BD 2=AB 2+AD 2-2AB ·AD ·cos θ,即(√2x )2=4+4-8cos θ=8-8cos θ,∴x 2=4-4cos θ.∴四边形ABCD 的面积为S=12×22×sin θ+12x 2=2sin θ+(2-2cos θ)=2√2sin θ-π4+2.∵0<θ<π,∴-π4<θ-π4<3π4,∴当θ-π4=π2,即θ=3π4时,S 有最大值,且S max =2√2+2.选C .7.已知点O 是△ABC 的内心,∠BAC=60°,BC=1,则△BOC 面积的最大值为.BOC=180°-180°-60°2=120°,在△OBC 中,BC 2=OB 2+OC 2-2OB ·OC ·cos120°,即1=OB 2+OC 2+OB ·OC ≥3OB ·OC ,即OB ·OC ≤13,所以S △OBC =12OB ·OC sin120°≤√312,当OB=OC 时取得最大值.8.在△ABC 中,AB=AC ,D 为AC 的中点,BD=1,则△ABC 面积的最大值为.ABD 中,设AB=AC=b ,由余弦定理得cos A=b 2+b 24-12b ·b 2=54−1b 2,则sin A=√1-(54-1b 2) 2,所以△ABC 的面积为S=12b 2sin A=12b 2·√1-(54-1b2)2=18√-9(b 2-209)2+2569≤23,所以△ABC 的面积的最大值为23.9.在△ABC 中,角A ,B ,C 所对边的边长分别为a ,b ,c ,若|bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ −bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=3,bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =6,则△ABC 面积的最大值为.|bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ −bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=3,∴|AB|=3.∵bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =6,∴ab cos C=6.∴cos C=6bb .由余弦定理得9=a 2+b 2-2ab cos C=a 2+b 2-12≥2ab-12,∴ab ≤212.∴S=12ab sin C=12ab √1-cos 2b=12ab √1-36b 2b 2=12√b 2b 2(1-36b 2b 2 =12√b 2b 2-36≤12√(212) 2-36=3√334.。
解三角形在现实生活中的应用——正,余弦定理
解三角形正,余弦定理在现实生活中的应用解三角形的正弦定理和余弦定理在现实生活中有广泛的应用。
例如,测量距离、测量高度、航海模型、物理问题等都与这些定理有关。
以下是一些例子:
1. 测量距离
利用正弦定理和余弦定理可以测量出无法直接测量的距离。
假设你想知道两个建筑物之间的距离,但你不能直接测量它们之间的直线距离。
你可以站在其中一个建筑物旁边,用一个工具测量你与另一个建筑物之间的角度和高度差,然后使用正弦定理或余弦定理计算出两个建筑物之间的直线距离。
2. 测量高度
同样可以利用正弦定理和余弦定理测量出无法直接测量的高度。
假设你想知道一个树的高度,但你只能在地面附近测量树的影子长度。
你可以使用正弦定理或余弦定理计算出树的高度。
3. 航海模型
在航海中,可以利用正弦定理和余弦定理计算船只的位置。
假设你知道船只在某个时间点的位置和朝向,以及它的速度和方向,你可以使用正弦定理和余弦定理计算出船只在任何其他时间点的位置和朝向。
这对于导航非常重要。
4. 物理问题
在物理学中,正弦定理和余弦定理也有很多应用,例如在振
动、波动等问题中。
例如,当一个弹簧上放置一个小球时,小球会以一定的频率来回摆动。
通过测量小球的振幅、周期等参数,可以使用正弦定理和余弦定理计算出小球的运动轨迹和速度。
利用正余弦定理求三角形面积
利用正余弦定理求三角形面积三角形,听起来是不是很简单?它里面的奥秘可不少哦!尤其是要计算面积的时候,正余弦定理可是个好帮手呢。
想象一下,你在阳光明媚的日子里,跟朋友们去爬山,看到那座漂亮的三角形山丘,心里就冒出一个念头:这个山丘的面积到底有多大?这时候,正余弦定理就像超能力一样,帮你解开这个谜团。
咱们得明白,正余弦定理和三角形的关系。
简单来说,正余弦定理告诉我们,在一个三角形中,两边和夹角的关系,就像是一场舞会,舞者之间要配合得当,才能跳得好看。
我们知道,三角形的面积可以用底和高来算,但底和高并不好找。
这时候,就可以借助正余弦定理了。
想象一下,A、B、C三点形成一个三角形,如果我们知道两条边的长度和夹角,那就能轻松求出面积。
具体怎么操作呢?我们用公式,面积等于一半乘以两边乘以夹角的正弦值。
听起来复杂,其实很简单。
就像做菜,步骤清晰,调料到位,味道自然好。
记住这个公式,A、B两边分别为a和b,夹角为C,面积就是 ( frac{1{2ab sin C )。
是不是很直白?你只需要把数值代入进去,剩下的就交给计算器吧。
再来聊聊实际应用。
想象一下,咱们在野外露营,突然发现一个三角形的湖泊,想要计算湖的面积。
你可以用量尺量量湖的两条边,再测量夹角。
这时候,正余弦定理就能派上用场,帮你算出一个大致的面积。
这样,你就能告诉朋友们,这个湖泊有多大,是不是很酷呢?大家都感叹你的数学能力!正余弦定理不仅仅是计算面积,它在实际生活中也有很多用途。
比如说,建筑师设计房子的时候,常常要计算不同角度和长度的关系。
用得好,能省去不少麻烦。
再比如,工程师在测量大型设备的角度和位置时,也是离不开它的。
就像你在生活中总会遇到一些“夹角”的时候,懂得这门学问,绝对会让你游刃有余。
学习这些知识的时候,难免会遇到一些困难。
别担心,这就像是爬山,开始的时候可能会觉得有点累,但一旦适应了,风景就会大好。
你只需要多练习,熟悉公式,慢慢就会变得得心应手。
利用余弦定理计算三角形面积的方法
利用余弦定理计算三角形面积的方法余弦定理是解决三角形问题的一种重要数学定理,它可以用于计算三角形的边长、角度以及面积等。
在计算三角形的面积时,我们可以利用余弦定理推导出一个简便的公式。
本文将介绍利用余弦定理计算三角形面积的方法。
一、余弦定理的表述与推导余弦定理可以表述为:在任意三角形ABC中,设边长分别为a、b、c,对应的角度为A、B、C,则有:c² = a² + b² - 2ab*cosC这个定理可以通过向量的内积概念推导得出。
这里我们不再详述推导过程,而是直接使用这一公式来计算三角形的面积。
二、首先,我们需要知道三角形的三个边长a、b、c以及其中一个角度C。
假设我们已知了这些参数,接下来可以按照以下步骤计算三角形的面积。
步骤一:计算角A和角B由于我们已知了角C,可以利用三角形内角和为180°的性质求解出角A和角B。
角A = 180° - 角B - 角C角B = 180° - 角A - 角C步骤二:计算角A和角B对应的边长利用正弦定理,我们可以计算出角A和角B对应的边长。
sinA = (a * sinC) / csinB = (b * sinC) / c根据上面的公式,我们可以得到边长a'和b':a' = (c * sinA) / sinCb' = (c * sinB) / sinC步骤三:应用海伦公式计算三角形面积有了边长a'和b',我们可以利用海伦公式计算三角形的面积了。
s = (a' + b' + c) / 2面积S = √(s * (s - a') * (s - b') * (s - c))通过上述步骤,我们就可以利用余弦定理计算三角形的面积了。
三、例题演示为了更好地理解利用余弦定理计算三角形面积的方法,我们举一个例题进行演示。
假设已知一个三角形的边长分别为a = 5 cm,b = 4 cm,c = 6 cm,其中角C = 60°。
利用余弦定理解决三角形问题
利用余弦定理解决三角形问题三角形问题是数学中常见的一个类型,其中一个常用的求解方法是利用余弦定理。
余弦定理可以帮助我们计算三角形的边长或角度,因此在解决各种与三角形相关的问题时,它是非常有用的工具。
本文将详细介绍余弦定理的原理和应用,并通过实例来展示如何利用余弦定理解决三角形问题。
余弦定理是三角形中非常重要的一个定理,它描述了三角形的边长和角度之间的关系。
根据余弦定理,对于一个三角形,任意一条边的平方等于其它两条边平方之和减去这两条边的乘积与这两条边乘以对应角的余弦值的积。
其数学表达式如下:c² = a² + b² - 2ab * cos(C)其中,a、b、c代表三角形的三条边长,C代表夹角C的角度。
通过这个公式,我们可以推导出三角形的边长或角度。
接下来,我们将通过一个实例来演示如何利用余弦定理解决三角形问题。
【实例】给定一个三角形,已知两边长a=5cm、b=7cm,夹角C为60°,求第三条边c的长度。
根据余弦定理,我们可以利用公式计算c的值。
c² = 5² + 7² - 2 * 5 * 7 * cos(60°)= 25 + 49 - 70 * 0.5= 25 + 49 - 35= 39因此,第三条边c的长度为根号39,约等于6.24。
通过这个实例,我们可以看到,利用余弦定理可以方便地计算出三角形的边长。
除了求解三角形的边长,余弦定理还可以用来求解三角形的角度。
例如:【实例】已知一个三角形的三边长分别为a=3cm、b=4cm、c=5cm,求角A的大小。
根据余弦定理,我们可以利用公式计算角A。
cos(A) = (4² + 5² - 3²)/(2 * 4 * 5)= (16 + 25 - 9)/ 40= 32 / 40= 0.8根据余弦值求角度的函数关系,我们可以计算出角A的值为cos⁻¹(0.8),约等于36.87°。
2019年高考数学(理)热点题型和提分秘籍专题17正弦定理和余弦定理及解三角形(教学案)含解析
1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题2.本部分是高考中的重点考查内容,主要考查利用正、余弦定理解三角形、判断三角形的形状,求三角形的面积等3.命题形式多种多样,解答题以综合题为主,常与三角恒等变换、平面向量相结合热点题型一 应用正弦、余弦定理解三角形例1、(2018年浙江卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =,b =2,A =60°,则sin B =___________,c =___________.【答案】 (1).(2). 3【变式探究】【2017山东,理9】在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c .若C ∆AB 为锐角三角形,且满足,则下列等式成立的是(A )2a b = (B )2b a = (C )2A =B (D )2B =A 【答案】A 【解析】 所以,选A.【变式探究】 (1)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b 。
若2a sin B =3b ,则角A 等于( ) A.π3 B.π4 C.π6(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 。
若a =1,c =42,B =45°,则sin C =________。
【答案】 (1)A (2)45【提分秘籍】解三角形的方法技巧已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断。
【举一反三】在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A =( ) A .30° B .60° C .120° D .150° 【答案】A【解析】∵sin C =23sin B ,由正弦定理, 得c =23b ,∴cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,又A 为三角形的内角,∴A =30°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、解答题
1.设的内角,,的对边分别为,,,已知.
(1)求角;
(2)若,,求的面积.
【答案】(1);(2)1
【解析】分析:(1)先由正弦定理将边化为角:,然后结合三角形内角和可得,化简可求得A;(2)根据正弦定理将角化边,再结合cosA的余弦定理即可求得c,再根据面积公式即可.
(2)因为,所以由正弦定理可得,
因为,,可得,
所以,
所以.
点睛:考查正弦定理的边角互化、余弦定理、面积公式,灵活结合公式求解是关键,属于基础题.
2.已知,,分别是的内角,,所对的边,且,.(1)求角的大小;
(2)若,求边的长.
【答案】(1);(2)
试题解析:(1)因为,
所以,
所以,
所以,又为三角形内角,所以.
(2)因为,所以,
所以
.
由正弦定理得,所以.
3.在中,,,分别为角,,所对的边长,已知的周长为,
,且的面积为.
(Ⅰ)求边的长;
(Ⅱ)求角的余弦值.
【答案】(Ⅰ)1;(Ⅱ).
【解析】分析:(Ⅰ)由三角形周长得到三边之和,已知等式利用正弦定理化简得到关系式,两式联立求出AB的长即可;
(Ⅱ)利用三角形面积公式列出关系式,把已知面积代入求出,,利用余弦定理表示出.
点睛:考查了正弦定理、余弦定理以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.
4.在中,内角,,所对的边分别为,,,且.(Ⅰ)求;
(Ⅱ)若,点,是线段的两个三等分点,,,求的值.
【答案】(1);(2).
【解析】
【分析】
(1)先根据正弦定理将边角关系化为边的关系,再根据余弦定理得结果,(2)先根据余弦定理解得,再根据余弦定理解得.
【详解】
(Ⅰ)∵,则由正弦定理得:,
∴,∴,又,∴;
(Ⅱ)由题意得,是线段的两个三等分点,设,则,,
又,,在中,由余弦定理得,解得
(负值舍去),则,又在中,.
或解:在中,由正弦定理得:,∴,又,
,∴,∴为锐角,∴,∴,又,∴,∴,∴,,∴在中,
.
【点睛】
解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:
第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.
第三步:求结果.
5.己知分别为三个内角A,B,C的对边,且.
(I)求角A的大小;
(II)若b+c=5,且的面积为,求a的值.
【答案】(Ⅰ);(Ⅱ).
【解析】
【详解】
(Ⅰ)由正弦定理得,,
∵,
∴,即.
∵∴,
∴∴.
【点睛】
在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.
6.在中,内角所对的边分别为,已知,且.
(1)求角的大小;
(2)求的最大值.
【答案】(1) .(2) .
【解析】
【分析】
(1)由余弦定理可得:cosA===,即可得出.
(2)由正弦定理可得:可得b=,可得bsinC=2sinBsin=+,
根据B∈即可得出.
【详解】
(1)由已知,得.
详解答案。