【浙大名师精品课件】微积分必考公式集锦

合集下载

微积分课件-复习必备

微积分课件-复习必备

经济应用
总结词
微积分在经济领域也有着广泛的应用,包括金融、生产 和市场分析等领域。
详细描述
金融学中,微积分用于研究资产价格、投资组合和风险 管理等,例如期权定价、资本资产定价模型和风险中性 定价等。生产领域中,微积分用于研究生产成本、生产 效率和生产优化等,例如生产函数、成本函数和利润函 数等。市场分析中,微积分用于研究市场需求、市场结 构和市场预测等,例如需求函数、供给函数和弹性分析 等。
极限概念
01
02
03
极限定义
极限是描述函数在某一点 的变化趋势的数学工具, 定义为“lim x→x0 f(x) = L”。
单侧极限
函数在某一点的左侧或右 侧的变化趋势,分别称为 左极限和右极限。
极限的性质
包括唯一性、有界性、局 部保号性等,这些性质在 研究函数的单调性、极值 等特性时非常重要。
导数概念
合运算问题。
洛必达法则
洛必达法则是求极限的重要方 法之一,通过求导数来简化极
限的计算。
极限题型
01
02
03
04
极限定义
极限是微积分中的基本概念, 通过理解极限的定义和性质,
可以解决各种极限题型。
无穷小与无穷大
掌握无穷小与无穷大的概念和 性质,有助于解决极限问题中 的无穷比值和无穷增量问题。
极限的四则运算
不定积分与定积分的性质
不定积分的线性性质
$int (u + v) dx = int u dx + int v dx$
定积分的线性性质
$int (u + v) dx = int u dx + int v dx$
积分的区间可加性
比较定理

高数微积分基本公式大全

高数微积分基本公式大全



1 ⑼∫ = csc2 xdx = − cot x + c sin 2 x ∫

x 1 ⑽∫ dx = arctan x + c 1 + x2
∫ cos
1
2
dx = ∫ sec 2 xdx = tan x + c

1 1 − x2
dx = arcsin x + c
六、补充积分公式
∫ tan xdx = − ln cos x + c ∫ sec xdx = ln sec x + tan x + c
2.二倍角公式
cos( A − B ) = cos A cos B + sin A sin B
tan( A − B ) = tan A − tan B 1 + tan A tan B cot A ⋅ cot B + 1 cot( A − B ) = cot B − cot A
sin 2 A = 2sin A cos A tan 2 A = 2 tan A 1 − tan 2 A
2
u = cos x
xdx = ∫ f ( tan x )d ( tan x ) xdx = ∫ f ( cot x )d ( cot x )
1
2
u = tan x u = cot x
2
∫ f ( arctan x ) ⋅ 1 + x
dx = ∫ f ( arc ta n x )d ( arc ta n x )
tan
cot
4.和差化积公式
sin a + sin b = 2sin
a+b a−b ⋅ cos 2 2 a+b a −b cos a + cos b = 2 cos ⋅ cos 2 2

浙江大学微积分一公式合集

浙江大学微积分一公式合集

λ lambda Τ
τ
tau
Δ
δ delta Μ
μ
mu
Υ
υ upsilon
欢迎阅读
Ε
ε epsilon Ν
Ζ
ζ zeta
Ξ
Η
η
eta
Ο
Θ
θ theta Π
ν
nu
Φ
ξ
xi
Χ
ο omicron Ψ
π
pi
Ω
φ
phi
χ
khi
ψ
psi
ω omega
倒数关系:sinθ cscθ =1;tanθ cotθ =1;cosθ secθ =1
欢迎阅读
Dxsinh-1(
x a
)=
1 a2 x2
cosh-1( x )= 1
a
x2 a2
tanh-1(
x a
)=
a a2 x2
coth-1( x )= a
sinh-1xdx=xsinh-1x- 1 x2 +C
cosh-1xdx=xcosh-1x- x2 1 +C tanh-1xdx=xtanh-1x+?ln|1-x2|+C coth-1xdx=xcoth-1x-?ln|1-x2|+C sech-1xdx=xsech-1x-sin-1x+C csch-1xdx=xcsch-1x+sinh-1x+C
i 1
6
n
i3 =[?n(n+1)]2
i 1
Γ
(x)=

t
x-1e-tdt=2

t
2x-1
e
t2
dt=

微积分公式大全

微积分公式大全

微积分公式大全1.极限与连续1.1 极限的定义:对于函数$f(x)$,当$x$趋向于$a$时,如果对于任意给定的$\epsilon > 0$,总存在与$a$不相等的$x$使得当$0 < ,x-a,< \delta$时,$,f(x) - L, < \epsilon$,我们就说函数$f(x)$在$x=a$处的极限为$L$,记作$\lim_{x \to a}f(x)=L$。

1.2基本极限公式:a) $\lim_{x \to a}c = c$,其中$c$为常数;b) $\lim_{x \to a}x = a$;c) $\lim_{x \to a}x^n = a^n$,其中$n$为正整数;d) $\lim_{x \to a} \sin x = \sin a$;e) $\lim_{x \to a} \cos x = \cos a$;f) $\lim_{x \to a} \tan x = \tan a$,其中$a \neq\frac{\pi}{2} + \pi k$,$k$为整数;g) $\lim_{x \to a} \ln x = \ln a$,其中$a > 0$。

1.3极限的运算法则:a) $\lim_{x \to a}[f(x) \pm g(x)] = \lim_{x \to a}f(x) \pm \lim_{x \to a}g(x)$;b) $\lim_{x \to a} kf(x) = k \lim_{x \to a}f(x)$,其中$k$为常数;c) $\lim_{x \to a} f(x)g(x) = \lim_{x \to a}f(x) \cdot\lim_{x \to a}g(x)$;d) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a}f(x)}{\lim_{x \to a}g(x)}$,其中$\lim_{x \to a}g(x) \neq 0$;e) $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a}f(x)]^n$,其中$n$为正整数。

高数概率用微积分公式大全

高数概率用微积分公式大全

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑼()x xee'=⑽()ln xxa a a '= ⑾()1ln x x'= ⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x=六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dxx c x=+⎰ ⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰⑾arcsin x c =+九、下列常用凑微分公式十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx = 形如ln n x xdx ⎰,令ln u x =,ndv x dx = 【特殊角的三角函数值】(1)sin00= (2)1sin62π=(3)sin 3π= (4)sin 12π=) (5)sin 0π=(1)cos01= (2)cos6π=(3)1cos 32π= (4)cos 02π=) (5)cos 1π=-(1)tan 00= (2)tan6π=(3)tan 3π=(4)tan 2π不存在 (5)tan 0π=(1)cot 0不存在 (2)cot 6π= (3)cot33π=(4)cot 02π=(5)cot π不存在 十二、重要公式(2)()10lim 1xx x e →+= (9)lim 0xx e →-∞= (10)lim xx e →+∞=∞。

导数微积分公式大全

导数微积分公式大全

导数、微分、积分公式总结【导数】(1)(u ± v)′=u′±v′(2)(u v)′=u′v+ u v′(记忆方法:u v + u v ,分别在“u”上、“v”上加′)(3)(c u)′= c u′(把常数提前)╭u╮′u′v- u v′(4)│——│=———————( v ≠ 0 )╰v╯v²【关于微分】左边:d打头右边:dx置后再去掉导数符号′即可【微分】设函数u=u(x),v=v(x)皆可微,则有:(1)d(u ± v)= du ± dv(2)d(u v)= du·v + u·dv╭u╮du·v - u·dv(3)d│——│=———————( v ≠ 0 )╰v╯v²(5)复合函数(由外至里的“链式法则”)dy——=f′(u)·φ′(x)dx其中y =f(u),u =φ′(x)(6)反函数的导数:1[ fˉ¹(y)]′=—————f′(x)其中,f′(x)≠ 0【导数】注:【】里面是次方的意思(1)常数的导数:(c)′=0(2)x的α次幂:╭【α】╮′【α -1】│x│=αx╰╯(3)指数类:╭【x】╮′【x】│a│=alna(其中a >0 ,a ≠ 1)╰╯╭【x】╮′【x】│e│=e╰╯(4)对数类:╭╮′1 1│logx│=——log e=———(其中a >0 ,a ≠ 1)╰a╯x a xlna1(lnx)′=——x(5)正弦余弦类:(sinx)′=cosx(cosx)′=-sinx【微分】注:【】里面是次方的意思(1)常数的微分:dC =0(2)x的α次幂:【α】【α -1】dx=αxdx(3)指数类:【x】【x】da=alnadx(其中a >0 ,a ≠ 1)【x】【x】de=edx(4)对数类:1 1dlogx=——log e=———dx(其中a >0 ,a ≠ 1)a x a xlna1dlnx =——dxx(5)正弦余弦类:dsinx =cosxdxdcosx =-sinxdx【导数】(6)其他三角函数:1(tanx)′=————=sec²xcos²x1(cotx)′=-————=-csc²xsin²x(secx)′=secx·tanx(cscx)′=-cscx·cotx(7)反三角函数:1(arcsinx)′=———————(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1(arccosx)′=-———————(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1(arctanx)′=—————1+x²1(arccotx)′=-—————1+x²【微分】(6)其他三角函数:1dtanx =————=sec²xdxcos²x1dcotx =-————=-csc²xdxsin²xdsecx =secx·tanxdxdcscx =-cscx·cotx dx(7)反三角函数:1darcsinx =———————dx(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1darccosx =-———————dx(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1darctanx =—————dx1+x²1darccotx =-—————dx1+x²导数的应用(一)——中值定理特殊形式【拉格朗日中值定理】—————→【罗尔定理】【拉格朗日中值定理】如果函数y =f(x)满足:(1)在闭区间〔a ,b〕上连续;(2)在开区间(a ,b)上可导。

浙大微积分1-D2_1导数的概念

浙大微积分1-D2_1导数的概念

1 d x d x
d y
证: 在 x 处给增量 x 0 , 由反函数的单调性知
y f ( x x) f ( x) 0 ,
y x
1
x y
且由反函数的连续性知 x 0 时必有y 0 , 因此
f ( x) lim y x
x 0
lim
机动 目录 上页 下页 返回 结束
例3.
(1) y
1 2 x
x 2 tan x,
2 tan x
x
x
解: y
x 2 ln 2 tan x x 2 sec x
x 2
ห้องสมุดไป่ตู้
x

(2) f ( x) x sin x 1 cos x ,
解: f ( x)

(sin x x cos x)(1 cos x) x sin x( sin x) (1 cos x)
1
x y
y 0

1
[f
1
( y )]
目录 上页 下页 返回 结束
机动
例4. 求反三角函数及对数函数的导数. 解: 1) 设
cos y 0 , 则
(sin y )


1 cos y

y (
1

2
,

2
),
1 sin y
2
机动
目录
上页
下页
返回
结束
第二章 导数与微分
微积分学的创始人:
导数思想最早由法国 数学家 Ferma 在研究 极值问题中提出.
英国数学家 Newton
德国数学家 Leibniz 微分学

常用微积分公式大全

常用微积分公式大全

常用微积分公式大全1. 导数公式1.1 基本导数公式•常数规则: 如果c是一个实数, 那么导数f(x)=c相对于x是f′(x)= 0。

•幂函数规则: 如果f(x)=x n, 其中n是常数, 那么导数f′(x)=nx n−1。

•指数函数规则: 如果f(x)=e x, 那么导数f′(x)=e x。

•对数函数规则: 如果 $f(x) = \\log_a(x)$, 那么导数 $f'(x) = \\frac{1}{x\\ln(a)}$。

•乘法法则: 如果f(x)=g(x)ℎ(x), 那么导数f′(x)=g′(x)ℎ(x)+g(x)ℎ′(x)。

•除法法则: 如果 $f(x) = \\frac{{g(x)}}{{h(x)}}$, 那么导数 $f'(x) =\\frac{{g'(x)h(x) - g(x)h'(x)}}{{(h(x))^2}}$。

1.2 常见函数导数表•常数函数: f(x)=c, 导数f′(x)=0。

•幂函数: f(x)=x n, 导数f′(x)=nx n−1。

•指数函数: f(x)=e x, 导数f′(x)=e x。

•对数函数: $f(x) = \\log_a(x)$, 导数 $f'(x) = \\frac{1}{x \\ln(a)}$。

•三角函数:–正弦函数: $f(x) = \\sin(x)$, 导数 $f'(x) = \\cos(x)$。

–余弦函数: $f(x) = \\cos(x)$, 导数 $f'(x) = -\\sin(x)$。

–正切函数: $f(x) = \\tan(x)$, 导数 $f'(x) = \\sec^2(x)$。

2. 积分公式2.1 基本积分公式•幂函数积分: 如果f(x)=x n, 其中n不等于−1, 那么积分 $\\intf(x)\\,dx = \\frac{1}{n+1}x^{n+1} + C$。

•指数函数积分: 如果f(x)=e x, 那么积分 $\\int f(x)\\,dx = e^x + C$。

微积分必背公式大全

微积分必背公式大全

微积分必背公式大全微积分是数学中重要的分支,涉及到许多重要的公式。

以下是一些微积分中常用的公式大全:1. 导数公式:常数函数的导数,(k)' = 0。

幂函数的导数,(x^n)' = nx^(n-1)。

指数函数的导数,(e^x)' = e^x.对数函数的导数,(ln(x))' = 1/x.三角函数的导数,(sin(x))' = cos(x), (cos(x))' = -sin(x), (tan(x))' = sec^2(x)。

2. 积分公式:幂函数的不定积分,∫x^n dx = (1/(n+1))x^(n+1) + C,其中C为积分常数。

指数函数的不定积分,∫e^x dx = e^x + C.对数函数的不定积分,∫1/x dx = ln|x| + C.三角函数的不定积分,∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C.3. 微分与积分的基本关系:牛顿-莱布尼茨公式,如果F(x)是f(x)的一个原函数,那么∫f(x) dx = F(b) F(a),其中a和b是积分区间的端点。

4. 微分方程的基本公式:一阶线性微分方程的通解,dy/dx + P(x)y = Q(x)的通解为y = e^(-∫P(x)dx) (∫Q(x)e^(∫P(x)dx)dx + C),其中C为积分常数。

以上是微积分中一些重要的公式,掌握这些公式对于理解微积分的基本原理和解题非常重要。

当然,微积分领域的公式远不止这些,还有一些特殊函数的导数和积分公式,以及微分方程的高阶解等。

希望这些公式对你有所帮助。

微积分公式大全(高数)

微积分公式大全(高数)

公式,所有一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()xxe e '= ⑽()ln xxa aa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arc cot 1x x '=-+⒄()1x '=⒅'=二、四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x=-+ 六、微分运算法⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x =+⎰⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221sec tan cos dx xdx x c x ==+⎰⎰⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan x dx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsin xc a =+ln x c =+十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,ax dv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。

浙江大学微积分一公式大全

浙江大学微积分一公式大全
-1
csch ( sinh x dx = cosh x + C cosh x dx = sinh x + C tanh x dx = ln | cosh x |+ C coth x dx = ln | sinh x | + C sech x dx = -2tan-1 (e-x) + C csch x dx = 2 ln |


x
m 1 mn
0
(1 x )
dx
小寫
讀音
Ω Ϊ Ϋ ά έ ή ί ΰ
α β γ δ ε ζ η θ
rho ι κ, ς sigma tau λ upsilon μ phi ν khi ξ psi ο omega ω
倒數關係: sinΰcscΰ=1; tanΰcotΰ=1; cosΰsecΰ=1 商數關係: tanΰ=
-1
)=ln( +
x
1 x x
2
2
duv = udv + vdu duv = uv = udv + vdu → udv = uv - vdu cos2ΰ-sin2ΰ=cos2ΰ cos2ΰ+ sin2ΰ=1 cosh2ΰ-sinh2ΰ=1 cosh2ΰ+sinh2ΰ=cosh2ΰ sin 3ΰ=3sinΰ-4sin3ΰ cos3ΰ=4cos3ΰ-3cosΰ →sin3ΰ= ¼ (3sinΰ-sin3ΰ) →cos3ΰ=¼(3cosΰ+cos3ΰ)
2
3
+
x
5
3
x
7
4
+…+
( n 1 )!
n 2 n 1
+… +…

(完整版)微积分公式大全

(完整版)微积分公式大全

(完整版)微积分公式大全1. 极限极限是微积分的基本概念之一,用于描述函数在某一点处的趋近情况。

常见的极限公式包括:- $\lim\limits_{x \to a} f(x) = L$:函数 $f(x)$ 在点 $a$ 处的极限为 $L$。

- $\lim\limits_{x \to \infty} f(x) = L$:函数 $f(x)$ 在正无穷远处的极限为 $L$。

- $\lim\limits_{x \to a^+} f(x) = L$:函数 $f(x)$ 在点 $a$ 的右侧极限为 $L$。

- $\lim\limits_{x \to a^-} f(x) = L$:函数 $f(x)$ 在点 $a$ 的左侧极限为 $L$。

2. 导数导数用于描述函数在某一点处的斜率,常见的导数公式有:- $\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}f(x) +\frac{d}{dx}g(x)$:和的导数等于各个函数导数之和。

- $\frac{d}{dx}(k \cdot f(x)) = k \cdot \frac{d}{dx}f(x)$:常数倍的函数导数等于常数与函数导数的乘积。

- $\frac{d}{dx}(f(x) \cdot g(x)) = f(x) \cdot \frac{d}{dx}g(x) + g(x) \cdot \frac{d}{dx}f(x)$:乘积的导数等于第一个函数乘以第二个函数的导数再加上第二个函数乘以第一个函数的导数。

- $\frac{d}{dx}(f(g(x))) = \frac{df}{dg} \cdot \frac{dg}{dx}$:复合函数的导数等于外函数对内函数的导数乘以内函数对自变量的导数。

3. 积分积分是导数的逆运算,用于计算曲线与坐标轴之间的面积或曲线的长度。

常见的积分公式有:- $\int f(x) dx$:函数 $f(x)$ 的不定积分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在区间 a,b 上的增量.
为了方便,通常把
F b F a 表示为
F x
b a
例4 计算 1e xdx 0
解 由于 ex 在 0,1 上连续 且是 ex 的一个原函数,
所以
1e xdx
0

e x
ห้องสมุดไป่ตู้
1
0

e
1
例5 计算
3 dx 1 1 x2

由于
arctan
一、引例
设物体从某定点开始作直线运动,在t时刻所经过的
路程为S(t),速度为vv(t)S(t),(v(t)0),则在时间间隔
T1,T2 内物体所经过的路程S可表示为
S T2 S T1

T2 v t dt,
T1

T2 T1
v
t
dt

S
T2


S
T1
a
x
a
x
应用积分中值定理,有 x f x, 在x与xx之间,
当 x 0 时, x. 于是
x lim lim f lim f f x.
x x0
x 0
x
若xa,取x>0,可证 a f a; 若xb,取x<0,同理可证 b f b.
而路程函数S(t)是速度函数v(t)的原函数,故 T2 v t dt T1
的值可由被积函数v(t)的原函数S(t) 在 t T2 处的值 与在
t T1 处的值 之差得到.
对更一般的情形,我们是否可以猜想有
x
a
f
xdx

F b F a
记作
F
x
b a
成立,其中F (x)是被积函数f(x)的原函数.

d dx
2 x 1 x
f
t dt ,其中
1 t
与 2
t
均可导.

d 2 x f t dt d c f t dt d 2x f t dt
dx 1 x
dx 1 x
dx c
d 1x f t dt d 2x f t dt
当 x b 时,有F b b C F a,所以

b

F
b

F
a ,即
b
a
f

x dx

F
b

F
a
该公式揭示了定积分与被积函数的原函数的联系.
并且表明:当被积函数的原函数可以求出时, f x
在 a,b上的定积分值 等于它的任一个原函数 F x
2t
2
x sin(t 2 )dt
例2 求极限 lim 0 x0
x3
解 这是一个零比零型未定式,由洛必达法则,有
x sin
t2
dt
lim 0
x0
x3
lim x0
x
sin
t2
dt

0
x3
sin x2
lim
1
x0 3x2
3
例3
dx
c
dx c
=f 2 x 2 x f 1 x 1 x
三、牛顿莱布尼茨公式
定理3(微积分基本公式)如果函数F x 是连续函数
f x 在区间 a,b 上的一个原函数,则
b
a
f

x dx

F
b

F
a
此公式称为牛顿莱布尼茨公式,也称为微积分 基本公式.
x

1 1 x2
的一个原函数,所以
3 dx
1 1 x2
定理2的重要意义:一方面肯定了连续函数原函数是存在的 (回答了上一章第一节的问题),另一方面初步揭示了积分学中 的定积分与原函数之间的联系.
例1 设 F x et2 dt,(x 0),求 F x, F0 0 2t
解 Fx et2 , F0 1
事实上是成立的,这就是牛顿——莱布尼兹公式.
在证明牛顿——莱布尼兹公式之前, 首先证明 原函数存在定理.
二、积分上限函数及其导数
设函数 f(x) 在区间a,b 上连续,并且设x为 a,b 上
的一点,我们把函数 f(x) 在部分区间 a, x 上的定积分
x
a
f

x dx
称为积分上限的函数,也称为变上限定积分.
(ax<b).
证明:对x(a,b),取 x 使得 x x a, b,
x
x x x
xx f t dt x f t dt
a
a
x f t dt xx f t dt x f t dt xx f t dt
它是区间a,b 上的函数,记为


x

x
a
f
t dt,
a xb
相应可以定义积分下限函数(或变下限定积分).
定理1
如果函数f(x)在区间
a, b上连续,则函数

x

x
a
f
xdx
在 a, b上具有导数,并且它的导数为
x

d dx
x
a
f
t dt

f
x,
高等数学多媒体课件
§5.2微积分基本公式
广东石油化工学院理学院数学系
5.2 微积分基本公式
在第一节中我们已给出了定积分的定义,但通 过定义来计算定积分是十分困难的.
本节我们将探讨原函数与定积分的内在联系, 进而揭示微分与积分的关系。
给出了计算定积分简便而有效的方法:牛顿 莱布尼茨公式或称微积分的基本公式.
定理1告诉我们,积分上限的函数


x


x
a
f t dt
是连续
函数 f(x) 在区间 a, b 上的一个原函数,这就肯定了连续函数
原函数的存在性. 因此,我们有,
定理2
设函数f(x)在区间
a, b上连续,则函数

x

x
a
f

x dx
是 f (x) 在 a, b 上的一个原函数.
b
a
f

x dx

F
b

F
a

证明 已知函数 F x 是连续函数 f x 的一个原函数,
又根据定理2,积分上限函数


x

x
a
f
t dt
也是
f x
的一个原函数.于是有一常数C,使
F x x C a x b.
当 x a 时,有 F a a C, 而 a 0, 所以 C F a;
相关文档
最新文档