初二(下)数学竞赛辅导班讲义(勾股定理和平行四边形)
勾股定理—八年级培优班讲义
知识点扩充:A BCa b c弦股勾1、勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边2、满足a 2+b 2=c 2的三个正整数叫做___________.(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。
)*附:常见勾股数:____________________________________________________.3. 判断直角三角形的方法:4、直角三角形的其他性质:(1)直角三角形斜边上的中线等于_________________.(2)在直角三角形中,如果一个锐角等于30°,那么________________________.(3)在直角三角形中,如果一条直角边等于斜边的一半,那么________________________.5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。
(2)已知直角三角形的一边,求另两边的关系。
(3)用于证明线段平方关系的问题。
(4)利用勾股定理,作出长为n 的线段例题精讲类型一、三角形三边关系例题1、已知∆ABC 的三边a 、b 、c 满足0)()(22=-+-c b b a ,则∆ABC 为 ______三角形.例题2、在∆ABC 中,若a 2=(b+c )(b-c ),则∆ABC 是_____三角形,且∠ __= ︒90例题3、已知2512-++-y x x 与25102+-z z 互为相反数,试判断以x 、y 、z 为三边的三角形的形状。
变式:已知,0)10(8262=-+-+-c b a 则以a 、b 、c 为边的三角形是 ____________.勾股定理总复习讲义类型二、实际应用1. 梯子滑动问题:(1)一架长2.5m的梯子,斜立在一竖起的墙上,梯子底端距离墙底0.7m(如图1),如果梯子的顶端沿墙下滑0.4m,求梯子底端将向左滑动多少米?如图2,一个长为10米的梯子,斜靠在墙面上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么,梯子底端的滑动距离_____1米,(填“大于”,“等于”,或“小于”)(3)如图3,梯子AB斜靠在墙面上,AC⊥BC,AC=BC,当梯子的顶端A沿AC方向下滑x米时,梯足B沿CB方向滑动y米,则x与y的大小关系是()A.yx= B. yx> C. yx< D. 不能确定图1 图2 图3变式训练:小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面上还多1 m,当他把绳子的下端拉开5米后,发现绳子下端刚好触到地面,试问旗杆的高度为______米.2. 爬行距离最短问题:1、.如图4,一块砖宽AN=5㎝,长ND=10㎝,CD上的点F距地面的高FD=8㎝,地面上A处的一只蚂蚁到F处吃食,要爬行的最短路线是______ cm.2、如图5,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B 是这个台阶两相对的端点,A点有一只昆虫想到B点去吃可口的食物,则昆虫沿着台阶爬到B点的最短路程是________ 分米.3. 如图6,一只蚂蚁沿边长为a的正方体表面从点A爬到点B,则它走过的路程最短为()A. a3B. ()a21+ C. a3 D.a5BAQNMP图4 图5 图6特殊三角形三边关系训练1、小明和爸爸妈妈五一登香山,他们从地面开始,沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树离地面的高度是_______米。
初二数学复习讲义——-勾股定理
勾股定理的证明方法很多,常见的是拼图的方法
用拼图的方法验证勾股定理的思路是
①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变
②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理
常见方法如下:
方法一: , ,化简可证.
方法二:
四个直角三角形的面积与小正方形面积的和等于大正方形的面积.
常见图形:
题型一:直接考查勾股定理
例1.在 中, .
(1)已知 , .求 的长
(2)已知 , ,求 的长
题型二:应用勾股定理建立方程
例2.
1在 中, , , , 于 , =
2⑵已知直角三角形的两直角边长之比为 ,斜边长为 ,则这个三角形的面积为
3已知直角三角形的周长为 ,斜边长为 ,则这个三角形的面积为
四个直角三角形的面积与小正方形面积的和为
大正方形面积为
所以
方法三: , ,化简得证
3.勾股定理的适用范围
勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形
4.勾股定理的应用
例7.三边长为 , , 满足 , , 的三角形是什么形状?
题型五:勾股定理与勾股定理的逆定理综合应用
例8.已知 中, , , 边上的中线 ,求证:
证明:
①已知直角三角形的任意两边长,求第三边
在 中, ,则 , ,
②知道直角三角形一边,可得另外两边之间的数量关系
③可运用勾股定理解决一些实际问题
5.勾股定理的逆定理
如果三角形三边长 , , 满足 ,那么这个三角形是直角三角形,其中 为斜边
北师大版八年级下册寒假衔接专题讲义第6章 平行四边形(共两份打包 pdf 无答案)
第六章:平行四边形第1讲:平行四边形的性质与判定一.平行四边形的定义两组对边分别平行的四边形叫做平行四边形.平行四边形用“□”表示.如右图,平行四边形ABCD记作“□ABCD”.(字母顺序须按顺时针或逆时针的顺序书写)二.平行四边形的性质1.边的性质:对边平行且相等.如下图:AB//CD,AB=CD,AD//BC,AD=BC.2.角的性质:平行四边形的对角相等.如下图:∠ABC=∠ADC,∠BAD=∠BCD3.对角线的性质:平行四边形的对角线互相平分.如下图:OA=OC,OB=OD.三.平行四边形的判定1.与边有关的判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形.2.与角有关的判定:两组对角分别相等的四边形是平行四边形.3.与对角线有关的判定:对角线互相平分的四边形是平行四边形.4.对角线的性质:平行四边形的对角线互相平分.即:OA=OC,OB=OD.题模一:平行四边形的性质例1.1.1(1)在平面直角坐标系中,已知□ABCD的三个顶点坐标分别是A(m,n),B(2,-1),C(-m,-n),则点D的坐标是.(2)□ABCD的对角线AC,BD交于点O,点E是AD的中点,△BCD的周长为8cm,则△DEO 的周长是.(3)在□ABCD中,BC边上的高为4,AB=5,AC=25□ABCD的周长等于.例1.1.2如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于.例1.1.3如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.题模二:平行四边形的判定例1.2.1已知四边形ABCD的对角线AC,BD相交于点O,给出下列5个条件:①AB//CD;②AO=OC;③AB=CD;④∠BAD=∠DCB;⑤AD//BC(1)从以上5个条件中任意选出2个条件,能推出四边形ABCD是平行四边形的有(用序号来表示)例1.2.2如图,在△ABC中,AD平分∠BAC交BC于点D.点E、F分别在边AB、AC上,且BE=AF,FG//AB交线段AD于点G,连接BG、EF.求证:四边形BGFE是平行四边形.例1.2.3如图,平行四边形ABCD 的对角线相交于点O ,直线EF 经过点O ,分别与AB ,CD 的延长线交于点E ,F .求证:四边形AECF是平行四边形.随练1.1如图,□ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AD 、BC 分别相较于点E 、F ,若AB =4,BC =5,OE =1.5,那么四边形EFCD 的周长为()A .16B .14C .12C .10随练1.2如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是()AB C D EFA .23B .3 C.33+D .623+随练1.3四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有()A.1组B.2组C.3组D.4组随练1.4如图,在周长为20cm的平行四边形ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为.随练1.5如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是.随练1.6如图,平行四边形ABCD中,E为BC中点,过点E作AB的垂线交AB于点G,交DC的延长线于点H,连接DG.若BC=10,∠GDA=45°,DG=82,求CH的长及平行四边形ABCD的周长.随练1.7已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.随练1.8如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.1(成外直升)如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,联结EF、CF,那么下列结论中一定成立的是.1∠DCF=12∠BCD,②EF=CF,③S△BEC=2S△CEF,④∠DFE=3∠AEF.2(自编)在面积为15的平行四边形ABCD中,过点A作AE垂直直线BC于点E,作AF垂直直线CD于点F,若AB=5,BC=6,则CE+CF的值为.3(直升模拟)三角形ABC如图在空间直角坐标系所示,在坐标系中再找一点D,使ABCD为平行四边形,则D的坐标为.4(成外)如图平行四边行ABCD绕A点逆时针旋转30°,得到平行四边形A′B′C′D′,点B′与B是对应点,点C′与C是对应点,D′与D是对应点,B′恰好落在BC边上,则∠C=___.5(直升模拟)如图,已知三角形ABC中,M为AB边上的中点,D是MC延长线上一点,满足∠ACM=∠BDM.(1)求证AC=BD.的值.(2)若∠CMB=60°,求ABCD6(直升模拟)如图,正方形ABCD的变长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,连接BE.过点C作CF⊥BE,垂足为F,连接OF,则OF的长为.7(实外)如图正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结论:①△ABE≌△ADF,②CE=CF,③∠AEB=75°,④BE+DF=EF,⑤S△ABE+S△ADF=S△CEF,其中正确的是___(只填写序号).8(实外)如图,六边形ABCDEF中,AB∥DE,BC∥EF,CD∥AF,对边之差BC−EF=ED−AB=AF−CD>0,试判断该六边形的各角是否相等?若相等,请说明理由.9(成外直升)点P是平行四边形ABCD内一点,S△PAB=7,S△PAD=4,则S△PAC=.10(自编)如图,在平行四边形ABCD中,对角线AC、BD相交于O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①∠OBE=12∠ADO、②EG=EF、③GF平分∠AGE、④EF⊥GE.则正确的为.11(成外半期)如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)FCEF的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.作业1如图,过□ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的□AEMG的面积S1与□HCFM的面积S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.2S1=S2作业2下列四个命题:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.其中正确的命题个数有()A.4个B.3个C.2个D.1个作业3在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为.作业4在平面直角坐标系中,已知A(0,0),B(4,0),C(3,3),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标是.作业5如图,在平行四边形ABCD中,分别以AB、AD为边向外作等边三角形△ABE、△ADF,延长CB交AE于点G(点G在点A、E之间),连接CE、CF、EF,则以下四个结论中,正确的有.①△CDF≌△EBC;②∠CDF=∠EAF;③△CEF是等边三角形;④CG⊥AE作业6如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=D F;(2)求证:AF∥CE.作业8如图,△ABC是等腰直角三角形,∠ACB=90°,分别以AB、AC为直角边向外作等腰直角△ABD和等腰直角△ACE,点G为BD的中点,连接CG、BE、CD,BE与CD交于点F.(1)判断四边形ABGD的形状,并说明理由;(2)求证:BE=CD,BE⊥CD作业9如图1,在平行四边形ABCD中,AC、BD相交于点O,BM垂直直线AC于点M,DN垂直直线AC于点N.(1)线段OM、ON有什么样的数量关系?直接写出结论;(2)若直线AC绕点A旋转到图2的位置时,其它条件不变,线段OM、ON有什么样的数量关系?请给予证明。
新初二年级暑假衔接数学讲义
1 / 59225400 A225400B256112 C144400D第一讲 勾股定理[情景引入] 【知识要点】1、勾股定理是:直角三角形两直角边的平方和等于斜边的平方,即:222c b a =+2、勾股定理逆定理:如果三角形的三边长a 、b 、c 满足222a b c +=那么这个三角形是直角三角形。
【典型习题】例1、如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A. 2cm B. 3cm C. 4cm D. 5cm例2、求下列各图字母中所代表的正方形的面积。
=A S =B S =C S =D S例3、如图,一次“台风”过后,一根旗杆被台风从离地面8.2米处吹断,倒下的旗杆的顶端落在离旗杆底部6.9米处,那么这根旗杆被吹断裂前至少有多高?例4、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm ,则正方形A ,B ,C ,D 的面积之和为___________cm2.8米9.6米例5、在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。
例6、为丰富少年儿童的业余文化生活,某社区要在如图所示的AB 所在的直线上建一图书阅览室,该社区有两所学校,所在的位置分别在点C 和点D 处。
CA ⊥AB 于A ,DB ⊥AB 于B ,已知AB=25km ,CA=15km,DB=10km,试问:阅览室E 建在距A 点多远时,才能使它到C 、D 两所学校的距离相等?例 7、如图所示,MN 表示一条铁路,A 、B 是两个城市,它们到铁路的所在直线MN 的垂直距离分别AA1=20km,BB1=40km ,A1B1=80km.现要在铁路A1,B1=80km 。
现要在铁路A1,B1之间设一个中转站P ,使两个城市到中转站的距离之和最短。
初二(下)数学竞赛辅导班讲义(勾股定理和平行四边形)
1997D CB A P CB A DC B A初二(下)数学竞赛辅导班讲义(勾股定理和平行四边形)班级 姓名 学号一、练习:1、如图,已知AB=13,BC=14,AC=15,AD ⊥BC 于D ,则AD= .2、如果一个三角形的一条边是另一条边的2倍,并且有一个角是30°,那么这个三角形的形状是( )A .直角三角形B .钝角三角形C .锐角三角形D .不能确定3、如图,在△ABC 中,AB=5,AC=13,边BC 上的中线AD=6,则BC 的长为 .4、如图,设P 是等边△ABC 内的一点,PA=3,PB=4,PC=5,则∠APB 的度数是 .(第1题) (第3题) (第4题)5、如图,一个直角三角形的三边长均为正整数,已知它的一条直角边的长恰是1997,那么这个三角形的周长为 .6、在锐角△ABC 中,已知某两边a=1,b=3,那么第三边的变化范围是( )A .2<c<4B .2< c≤3C . 2< c <10 D.8< c <107、如图,用3个边长为l 的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为( )A .2B .25 C .45D . 16175(第5题) (第7题)FE D C B A O E D CB A 8、如图,以△ABC 的三边为边在BC 的同一侧分别作三个等边三角形,即△ABD 、△BCE 、△ACF .(1)四边形ADEF 是 ;(2)当△ABC 满足条件 时,四边形ADEF 为矩形;(3)当△ABC 满足条件 时,四边形ADEF 不存在.9、如图,矩形ABCD 的对角线相交于O ,AE 平分∠BAD 交BC 于E ,∠CAE=15°,则∠BOE= .二、例题讲解:【例1】如图,以等腰直角三角形ABC 的斜边AB 为边向内作等边△ABD ,连结DC ,以DC 为边作等边△DCE ,B 、E 在CD 的同侧,若AB=2,则BE= .【例2】 2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a ,较长直角边为b ,那么(a+b)2的值为( )A .13B .19C .25D .169【例3】 如图,P 为△ABC 边BC 上的一点,且PC =2PB , 已知∠ABC =45°,∠APC =60°,求∠ACB 的度数.【例4】如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,设AC =b ,BC =a ,AB=c ,CD=h .求证:(1)222111h b a =+;(2) h c b a +<+ ;(3) 以b a +、h 、h c +为边的三角形,是直角三角形.【例5】一个直角三角形的边长都是整数,它的面积和周长的数值相等,这样的直角三角形是否存在?若存在,确定它三边的长,若不存在,说明理由.【例6】 如图,在矩形ABCD 中,已知AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD 于E ,PF ⊥AC 于F ,那么PE+PF 的值为 .【例7】如图,在△ABC中,∠BAC=90°,AD⊥BC,BE、AF分别是∠ABC、∠DAC的平分线,BE和AD交于G,求证:GF∥AC.【例8】如图,设P为等腰直角三角形ACB斜边AB上任意一点,PE⊥AC于点E,PF⊥BC 于点F,PG⊥EF于G点,延长GP并在其延长线上取一点D,使得PD=PC,求证:BC⊥BD,且BC=BD.。
初二数学勾股定理及平行四边形
勾股定理及其逆定理一、知识要点1.掌握直角三角形的性质。
如图,直角ΔA BC的性质(1)勾股定理:∠C=90°,则有c2=a2+b2另外还有:(2)∠C=90°,则有∠A+∠B=90°,(3)∠C=90°,则有c>a, c>b。
(4)补充定理:在直角三角形中,如果有一个锐角等于30度,则这个角所对的直角边等于斜边的一半。
如图:∠C=90°且∠A=30°,则有BC=AB (或者AB=2BC)2.掌握勾股定理的逆定理:勾股定理是直角三角形的性质定理,而勾股定理的逆定理为直角三角形的判定定理。
即在ΔA BC中,若a2+b2=c2,则ΔABC为直角三角形。
其中c是三角形中最长的边。
3.注意事项:(1) 注意勾股定理只适用于直角三角形,一般的非直角三角形就不存在这种关系。
(2) 理解勾股定理的一些变式c2=a2+b2, a2=c2-b2,b2=c2-a2c2=(a+b)2-2ab, 2ab=(a+b+c)(a+b-c)(3) 在理解的基础上熟悉下列勾股数。
满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。
熟悉下列勾股数,对解题是会有帮助的:(3,4,5),(6,8,10),(5,12,13),(7,24,25),(8,15,17)……如果(a,b,c)是勾股数,当t>0时,以at,bt,ct为三角形的三边长,此三角形必为直角三角形。
例题:如图4,水池中离岸边D点1.5m的C处,直立长着一根芦苇,出水部分BC的长是0.5m,把芦苇拉到岸边,它的顶端B恰好在D点。
求:水的深度A C。
平行四边形和梯形一、几种特殊的平行四边形以上内容都能够通过图形自己观察出来,只要在研究时注重研究和记忆,就不至于混淆。
菱形的面积公式:S=(其中ab是菱形的两条对角线的长)(对角线将菱形分成的四个直角三角形,它们的面积和等于菱形的面积,由此很容易推出上面的公式。
八年级数学暑假竞赛培训讲义
第一讲:如何做几何证明题【知识梳理】1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。
几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2、掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
【例题精讲】【专题一】证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
【例1】已知:如图所示,∆ABC 中,∠=︒===C AC BC AD DB AE CF 90,,,。
求证:DE =DFFEDCBA【巩固】如图所示,已知∆ABC 为等边三角形,延长BC 到D ,延长BA 到E ,并且使AE =BD ,连结CE 、DE 。
求证:EC =ED【例2】已知:如图所示,AB =CD ,AD =BC ,AE =CF 。
求证:∠E =∠F【专题二】证明直线平行或垂直在两条直线的位置关系中,平行与垂直是两种特殊的位置。
初二下学期数学讲义第十八章平行四边形
平行四边形【学习目标】1.理解平行四边形的概念,掌握平行四边形的性质定理和判定定理;2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.3. 能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.4. 理解三角形的中位线的概念,掌握三角形的中位线定理.【要点梳理】要点一、平行四边形的定义平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.要点诠释:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.要点二、平行四边形的性质1.边的性质:平行四边形两组对边平行且相等;2.角的性质:平行四边形邻角互补,对角相等;3.对角线性质:平行四边形的对角线互相平分;4.平行四边形是中心对称图形,对角线的交点为对称中心.要点诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系.(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.要点三、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.两组对边分别相等的四边形是平行四边形;3.一组对边平行且相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据.要点四、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个小三角形的周长为原三角形周长的12,每个小三角形的面积为原三角形面积的14.(3)三角形的中位线不同于三角形的中线.要点五、平行线间的距离1.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值.(2)平行线间的距离处处相等任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度. 两条平行线间的任何两条平行线段都是相等的.2.平行四边形的面积:平行四边形的面积=底×高;等底等高的平行四边形面积相等.【典型例题】类型一、平行四边形的性质1、如图所示,已知四边形ABCD是平行四边形,若AF、BE分别为∠DAB、∠CBA的平分线.求证:DF=EC.【答案与解析】证明:∵在ABCD中,CD∥AB,∠DFA=∠FAB.又∵ AF是∠DAB的平分线,∴∠DAF=∠FAB,∴∠DAF=∠DFA,∴ AD=DF.同理可得EC=BC.∵在ABCD中,AD=BC,∴ DF=EC.【总结升华】利用平行四边形的性质可以得到对角相等,对边平行且相等,为证明线段相等提供了条件.类型二、平行四边形的判定2、如图所示,E、F分别为四边形ABCD的边AD、BC上的点,且四边形AECF和DEBF 都是平行四边形,AF和BE相交于点G,DF和CE相交于点H.求证:四边形EGFH为平行四边形.【思路点拨】欲证四边形EGFH为平行四边形,只需证明它的两组对边分别平行,即EG∥FH ,FG ∥HE 可用来证明四边形EGFH 为平行四边形.【答案与解析】证明:∵ 四边形AECF 为平行四边形,∴ AF ∥CE .∵ 四边形DEBF 为平行四边形,∴ BE ∥DF .∴ 四边形EGFH 为平行四边形.【总结升华】平行四边形的定义既包含平行四边形的性质,又可以用来判定一个四边形是平行四边形,即平行四边形的两组对边分别平行,两组对边分别平行的四边形是平行四边形. 类型三、平行四边形与面积有关的计算3、如图所示,在ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F .若∠EAF =60°,BE =2cm ,DF =3cm ,求AB ,BC 的长及ABCD 的面积.【思路点拨】在四边形AECF 中,由已知条件∠EAF =60°,可求出∠C =120°,进而求出∠B =60°.由于BE =2cm ,在Rt △ABE 中,可求出AB .同理,在Rt △AFD 中求出AD .要求ABCD 的面积,需求出AE 或AF 的长.【答案与解析】解:在四边形AECF 中,∵ ∠EAF =60°,AE ⊥BC ,AF ⊥CD ,∴ ∠C =360°-∠EAF -∠AEC -∠AFC =360°-60°-90°-90°=120°. 在ABCD 中,∵ AB ∥CD ,∴ ∠B +∠C =180°.∠C +∠D =180°,∴ ∠B =∠D =60°.在Rt △ABE 中,∠B =60°,BE =2cm ,∴ AB =4cm ,CD =AB =4cm .(平行四边形的对边相等)同理,在Rt △ADF 中,AD =6cm ,∴ BC =AD =6cm ,∴ 22226333AF AD DF =-=-=(cm ). ∴ ABCD S =CD ·AF =433⨯=123(2cm ).【总结升华】本题除了应用平行四边形的性质及勾股定理外,还应用了“直角三角形中,30°的锐角所对的直角边等于斜边的一半”这个直角三角形的性质.类型四、三角形的中位线4、如图,已知P 、R 分别是长方形ABCD 的边BC 、CD 上的点,E 、F 分别是PA 、PR 的中点,点P 在BC 上从B 向C 移动,点R 不动,那么下列结论成立的是( )A.线段EF的长逐渐增大B.线段EF的长逐渐变小C.线段EF的长不变D.无法确定【答案】C;【解析】连AR,由E、F分别为PA,PR的中点知EF为△PAR的中位线, 则12EF AR,而AR长不变,故EF大小不变.【总结升华】当条件中含有中点的时候,要将它与中位线联系起来,进行联想,必要时添加辅助线,构造中位线图形.矩形【学习目标】1. 理解矩形的概念.2. 掌握矩形的性质定理与判定定理.【要点梳理】要点一、矩形的定义有一个角是直角的平行四边形叫做矩形.要点诠释:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.要点二、矩形的性质矩形的性质包括四个方面:1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.要点诠释:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.(2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.要点三、矩形的判定矩形的判定有三种方法:1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.要点诠释:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.要点四、直角三角形斜边上的中线的性质直角三角形斜边上的中线等于斜边的一半.要点诠释:(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角三角形,对一般三角形不可使用.(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的直角边等于斜边的一半.(3)性质可以用来解决有关线段倍分的问题.【典型例题】类型一、矩形的性质1、如图所示,在矩形ABCD中,E、F分别是BC、AD上的点,且BE=DF.求证△ABE≌△CDF.【思路点拨】:由矩形的性质可得AB =CD ,∠B =∠D =90°,然后用它们作条件证明△ABE ≌△CDF .【答案与解析】证明:∵ 四边形ABCD 是矩形.∴ AB =CD ,∠B =∠D =90°在△ABE 和△CDF 中90AB CD B D BE DF =⎧⎪∠=∠=⎨⎪=⎩°∴ △ABE ≌△CDF(SAS)【总结升华】矩形的性质常用于求线段的长度与角的度数,在解题过程中应根据题目选择不同的性质来加以应用.类型二、矩形的判定2、已知:平行四边形ABCD 中,E 、F 分别是AB 、CD 的中点,连接AF 、CE.(1)求证:△BEC≌△DFA;(2)连接AC ,若CA =CB ,判断四边形AECF 是什么特殊四边形?并证明你的结论.【答案与解析】证明:(1)∵四边形ABCD 是平行四边形,∴AB=CD,∠B=∠D,BC =AD.∵E、F 分别是AB 、CD 的中点,∴BE=12AB ,DF =12CD. ∴BE=DF. ∴△BEC≌△DFA.(2)四边形AECF 是矩形.∵四边形ABCD 是平行四边形,∴AB∥CD,且AB =CD.∵E、F 分别是AB 、CD 的中点,∴BE=12AB ,DF =12CD. ∴AE∥CF 且AE =CF.∴四边形AECF 是平行四边形.∵CA=CB,E是AB的中点,∴CE⊥AB,即∠AEC=90°.∴四边形AECF是矩形.【总结升华】要证明△BEC和△DFA全等,主要运用判定定理(边角边);四边形AECF是矩形,先证明四边形AECF是平行四边形,再证这个平行四边形对角线相等或者有一个角是直角.3、如图所示,ABCD四个内角的角平分线分别交于点E、F、G、H.求证:四边形EFGH是矩形.【思路点拨】AE、BE分别为∠BAD、∠ABC的角平分线,由于在ABCD中,∠BAD+∠ABC=180°,易得∠BAE+∠ABE=90°,不难得到∠HEF=90°,同理可得∠H=∠F=90°.【答案与解析】证明:在ABCD中,AD∥BC,∴∠BAD+∠ABC=180°,∵ AE、BE分别平分∠BAD、∠ABC,∴∠BAE+∠ABE=12∠BAD+12∠ABC=90°.∴∠HEF=∠AEB=90°.同理:∠H=∠F=90°.∴四边形EFGH是矩形.【总结升华】 (1)利用角平分线、垂线得到90°的角,选择“有三个直角的四边形是矩形”来判定.(2)本题没有涉及对角线,所以不会选择利用对角线来判定矩形.类型三、直角三角形斜边上的中线的性质4、(2012•佳木斯)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.13【答案】C;【解析】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=12BC=4,∵点E为AC的中点,∴DE=CE=12AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.【总结升华】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.菱形【学习目标】1. 理解菱形的概念.2. 掌握菱形的性质定理及判定定理.【要点梳理】要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.要点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心.要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积由两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.要点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.【典型例题】类型一、菱形的性质1、如图所示,在菱形ABCD中,AC=8,BD=10.求:(1)AB的长.(2)菱形ABCD的面积.【答案与解析】解:(1)∵四边形ABCD是菱形.∴ AC⊥BD,AO=12AC,OB=12BD.又∵ AC =8,BD =10.∴ AO =12×8=4,OB =12×10=5. 在Rt △ABO 中,222AB OA OB =+∴ 2224541AB =+=,∴ 41AB =. (2)由菱形的性质可知:118104022S AC BD ==⨯⨯=菱形ABCD . 【总结升华】(1)由菱形的性质及勾股定理求出AB 的长.(2)根据“菱形的面积等于两条对角线乘积的一半”来计算.类型二、菱形的判定2、如图所示,在△ABC 中,CD 是∠ACB 的平分线,DE ∥AC ,DF ∥BC ,四边形DECF 是菱形吗?试说明理由.【思路点拨】由菱形的定义去判定图形,由DE ∥AC ,DF ∥BC 知四边形DECF 是平行四边形,再由∠1=∠2=∠3得到邻边相等即可.【答案与解析】解:四边形DECF 是菱形,理由如下:∵ DE ∥AC ,DF ∥BC∴ 四边形DECF 是平行四边形.∵ CD 平分∠ACB ,∴ ∠1=∠2∵ DF ∥BC ,∴ ∠2=∠3,∴ ∠1=∠3.∴ CF =DF ,∴ 四边形DECF 是菱形.【总结升华】在用菱形的定义判定一个四边形是菱形时,首先判定这个四边形是平行四边形,再由一对邻边相等来判定它是菱形.3、如图所示,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,CE 平分∠ACD ,交AD 于点G ,交AB 于点E ,EF ⊥BC 于点F . 求证:四边形AEFG 是菱形.【思路点拨】由角平分线性质易知AE =EF ,欲证四边形AEFG 是菱形,只要再证四边形AEFG是平行四边形或AG=GF=AE即可.【答案与解析】证明:方法一:∵ CE平分∠ACB,∠BAC=90°,EF⊥BC,∴ AE=EF,∠1+∠3=90°,∠4+∠2=90°.∵∠1=∠2,∴∠3=∠4.∵ EF⊥BC,AD⊥BC,∴ EF∥AD.∴∠4=∠5.∴∠3=∠5.∴ AE=AG.∴ EF AG.∴四边形AEFG是平行四边形.又∵ AE=AG,∴四边形AEFG是菱形.方法二:∵ CE平分∠ACB,∠BAC=90°,EF⊥BC,∴ AE=EF,∠1+∠3=90°,∠4+∠2=90°.∴∠3=∠4.∵ EF⊥BC,AD⊥BC,∴ EF∥AD.∴∠4=∠5.∴∠3=∠5.∴ AE=AG.在△AEG和△FEG中,AE=EF,∠3=∠4,EG=EG,∴△AEG≌△FEG.∴ AG=FG.∴ AE=EF=FG=AG.∴四边形AEFG是菱形.【总结升华】判定一个四边形是菱形,关键是把已知条件转化成判定方法所需要的条件.类型三、菱形的应用4、如图所示,是一种长0.3m,宽0.2m的矩形瓷砖,E、F、G、H分别为矩形四边BC、CD、DA、AB的中点,阴影部分为淡黄色花纹,中间部分为白色,现有一面长4.2 m,宽2.8m的墙壁准备贴如图所示规格的瓷砖.试问:(1)这面墙最少要贴这种瓷砖多少块?(2)全部贴满后,这面墙壁会出现多少个面积相同的菱形?【答案与解析】解:墙壁长4.2m,宽2.8m,矩形瓷砖长0.3m,宽0.2m,4.2÷0.3=14,2.8÷0.2=14,则可知矩形瓷砖横排14块,竖排14块可毫无空隙地贴满墙面.(1)则至少需要这种瓷砖14×14=196(块).(2)每块瓷砖中间有一个白色菱形,则共有196个白色的菱形,它的面积等于瓷砖面积的一半.另外在同一个顶点处的瓷砖能够拼成一个淡黄色花纹的菱形,它的面积也等于瓷砖面积的一半,有花纹的菱形横排有13个,竖排也有13个,则一共有淡黄色花纹菱形13×13=169个,面积相等的菱形一共有196+169=365(个).正方形【学习目标】1.理解正方形的概念,了解平行四边形、矩形及菱形与正方形的概念之间的从属关系;2.掌握正方形的性质及判定方法.【要点梳理】要点一、正方形的定义四条边都相等,四个角都是直角的四边形叫做正方形.要点诠释:既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方形是有一组邻边相等的矩形,还是有一个角是直角的菱形.要点二、正方形的性质正方形具有四边形、平行四边形、矩形、菱形的一切性质.1.边——四边相等、邻边垂直、对边平行;2.角——四个角都是直角;3.对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;4.是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.要点诠释:正方形具有平行四边形、矩形、菱形的一切性质,其对角线将正方形分为四个等腰直角三角形.要点三、正方形的判定正方形的判定除定义外,判定思路有两条:或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).要点四、特殊平行四边形之间的关系或者可表示为:要点五、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.要点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.【典型例题】类型一、正方形的性质1、如图,在一正方形ABCD中.E为对角线AC上一点,连接EB、ED,(1)求证:△B EC≌△DEC;(2)延长BE交AD于点F,若∠DEB=140°.求∠AFE的度数.【思路点拨】先由正方形的性质得出CD=CB,∠DCA=∠BCA,根据SAS证出△BEC≌△DEC,再由全等三角形的对应角相等得出∠DEC=∠BEC=70°,然后根据对顶角相等求出∠AEF,根据正方形的性质求出∠DAC,最后根据三角形的内角和定理即可求出∠AFE的度数.【答案与解析】(1)证明:∵四边形ABCD是正方形,∴CD=CB,∠DCA=∠BCA,∵CE=CE,∴△BEC≌△DEC.(2)解:∵∠DEB=140°,∵△BEC≌△DEC,∴∠DEC=∠BEC=70°,∴∠AEF=∠BEC=70°,∵∠DAB=90°,∴∠DAC=∠BAC=45°,∴∠AFE=180°-70°-45°=65°.答:∠AFE的度数是65°.【总结升华】本题主要考查对正方形的性质,全等三角形的性质和判定,三角形的内角和定理,对顶角等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.2、如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.(1)证明:△ABE≌△DAF;(2)若∠AGB=30°,求EF的长.【思路点拨】要证明△ABE≌△DAF,已知∠1=∠2,∠3=∠4,只要证一条边对应相等即可.要求EF的长,需要求出AF和AE的长.【答案与解析】(1)证明:∵四边形ABCD是正方形,∴AD=AB,∵∠1=∠2,∠3=∠4,∴△DAF≌△ABE.(2)解:∵四边形ABCD是正方形,∠AGB=30°,∴AD∥BC,∴∠1=∠AGB=30°,∵∠1+∠4=∠DAB=90°,∵∠3=∠4,∴∠1+∠3=90°,∴∠AFD=180°-(∠1+∠3)=90°,∴DF⊥AG,∴DF=11 2AD=∴A F=3∵△ABE≌△DAF,∴AE=DF=1,∴EF=31-【总结升华】通过证三角形全等得到边和角相等,是有关四边形中证边角相等的最常用的方法.而正方形的四条边相等,四个角都是直角为证明三角形全等提供了条件.类型二、正方形的判定3、如图所示,在Rt△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,且DE ⊥BC于点E,DF⊥AC于点F,那么四边形CEDF是正方形吗?请说明理由.【答案与解析】解:是正方形,理由如下:作DG⊥AB于点G.∵ AD平分∠BAC,DF⊥AC,DG⊥AB,∴ DF=DG.同理可得:DG=DE.∴ DF=DE.∵ DF⊥AC,DE⊥BC,∠C=90°,∴四边形CEDF是矩形.∵ DF=DE.∴四边形CEDF是正方形.【总结升华】(1)本题运用了“有一组邻边相等的矩形是正方形”来判定正方形.(2)证明正方形的方法还可以直接通过证四条边相等加一个直角或四个角都是直角来证明正方形.类型三、正方形综合应用4、如图,在平面直角坐标系xoy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB 的平分线上;【答案与解析】解:(1)当∠BAO=45°时,∠PAO=90°,在Rt△AOB中,OA=22AB=22a,在Rt△APB中,PA=22AB=22a.∴点P的坐标为22,22a a⎛⎫⎪ ⎪⎝⎭.(2)如图过点P分别作x轴、y轴的垂线垂足分别为M、N,则有∠PMA=∠PNB=∠NPM=∠BPA=90°,∵∠BPN+∠BPM=∠APM+∠BPM=90°∴∠APM=∠BPN,又PA=PB,∴△PAM≌△PBN,∴ PM=PN,又∵ PN⊥ON,PM⊥OM于是,点P在∠AOB的平分线上.【总结升华】根据题意作出辅助线,构造全等的直角三角形是解题关键.。
初二数学勾股定理讲义经典
第一章勾股定理【知识点归纳】考点一:勾股定理( 1)对于任意的直角三角形,若是它的两条直角边分别为a、b,斜边为c,那么必然有a 2 b 2c2勾股定理:直角三角形两直角边的平方和等于斜边的平方。
( 2)结论:①有一个角是 30°的直角三角形, 30°角所对的直角边等于斜边的一半。
②有一个角是 45°的直角三角形是等腰直角三角形。
③直角三角形斜边的中线等于斜边的一半。
(3)勾股定理的考据例题:例 1:已知直角三角形的两边,利用勾股定理求第三边。
(1)在 Rt △ABC中,∠ C=90°①若 a=5,b=12,则 c=___________;②若 a=15, c=25,则 b=___________;③若 c=61, b=60,则 a=__________;④若 a∶b=3∶4,c=10 则 Rt△ABC的面积是 =________。
( 2)若是直角三角形的两直角边长分别为n 21,(),那么它的斜边长是()2n n>1A 、 2n B、 n+1C、n2-1D、n21( 3)在 Rt △ABC中, a,b,c为三边长,则以下关系中正确的选项是()A. a2b2c2B.a2c2b2C. c2b2a2D.以上都有可能( 4)已知一个直角三角形的两边长分别为 3 和 4,则第三边长的平方是()A、25B、 14C、7D、7 或 25例2:已知直角三角形的一边以及别的两边的关系利用勾股定理求周长、面积等问题。
( 1)直角三角形两直角边长分别为 5 和 12,则它斜边上的高为 __________。
( 2)已知 Rt△ABC中,∠ C=90°,若 a+b=14cm, c=10cm,则 Rt△ABC的面积是()A 、 24 cm2、36cm 2C、48cm 2D、60cm 2B(3)已知 x、 y 为正数,且│ x2 -4 │+(y2-3 )2=0,若是以 x、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A、5B、 25C、7D、15例 3:研究勾股定理的证明有四个斜 c、两直角 a,b 的全等三角形,拼成如所示的五形,利用个形明勾股定理。
初二数学--勾股定理讲义(经典)
第一、二讲 勾股定理复习【知识点归纳】123456⎧⎪⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩1、已知直角三角形的两边,求第三边勾股定理2、求直角三角形周长、面积等问题3、验证勾股定理成立1、勾股数的应用勾股定理勾股定理的逆定理2、判断三角形的形状3、求最大、最小角的问题、面积问题、求长度问题、最短距离问题勾股定理的应用、航海问题、网格问题、图形问题 考点一:勾股定理(1)对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+ 勾股定理:直角三角形两直角边的平方和等于斜边的平方。
(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。
②有一个角是45°的直角三角形是等腰直角三角形。
③直角三角形斜边的中线等于斜边的一半。
(3)勾股定理的验证abcab cab cabcababa bba例题:例1:已知直角三角形的两边,利用勾股定理求第三边。
(1)在Rt △ABC 中,∠C=90°①若a=5,b=12,则c=___________; ②若a=15,c=25,则b=___________; ③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则Rt △ABC 的面积是=________。
(2)如果直角三角形的两直角边长分别为1n 2-,2n (n>1),那么它的斜边长是( ) A 、2nB 、n+1C 、n 2-1D 、1n 2+(3)在Rt △ABC 中,a,b,c 为三边长,则下列关系中正确的是( )A.222a b c +=B. 222a c b +=C. 222c b a +=D.以上都有可能(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A 、25B 、14C 、7D 、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。
初二数学培训讲义第6讲 勾股定理
第六讲 勾股定理一、主要知识点回顾1.如图1,如果直角三角形的两直角边长分别是____、____, 斜边长是____,那么三边满足______________的关系。
※勾股定理在直角三角形中,_____________的平方和等于______边的平方。
2.在计算中遇到的数组:3,4,5或 5,12,13或8,15,17等等这些满足勾股定理的一组数字叫做勾股数,它们的倍数也是勾股数。
如3,4,5的2倍是 , 3倍是_____________也是勾股数。
34.如图2,如果三角形的三边长分别是BC =9AC =12,,AB =15,那么三边满足____________________的关系。
则这个三角形是_________________,其中________90=︒。
5.(1)命题“两直线平行,内错角相等”的逆命题是____________________________, 这两个命题称为互逆命题,两个命题均为 命题(填“真”或“假”),因 此这两个互逆命题成为互逆________。
(2)而“对顶角相等”的逆命题是“相等的角是对顶角”它们也是互逆命题,但是前者为真命题,而后者是_____命题,因此这两个命题不能成为互逆定理。
※归纳:互逆命题_________是互逆定理;互逆定理_________是互逆命题。
(“一定”或“不一定”)二、感悟与实践例题1:在△ABC 中,∠C =90°,AB =c ,BC =a ,AC =b 。
. (1)已知724a b ==,,求c ; (2)若c ,4b =,求a 。
图1AB图2变式练习1-1:直角三角形有一直角边长是3,斜边长为5,则它的面积为( )。
A .12B .6C .15D .无法确定 变式练习1-2:已知a =3,b =4,若a ,b ,c 能组成直角三角形,则c 的值为( )。
A .5 BC .5D .5或6例题2:如图3,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13,求得四边形ABCD 的面积。
初二数学复习讲义——-勾股定理
③用含字母的代数为正整数)
( , 为正整数)
7.勾股定理的应用
勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.
①已知直角三角形的任意两边长,求第三边
在 中, ,则 , ,
②知道直角三角形一边,可得另外两边之间的数量关系
③可运用勾股定理解决一些实际问题
5.勾股定理的逆定理
如果三角形三边长 , , 满足 ,那么这个三角形是直角三角形,其中 为斜边
①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和 与较长边的平方 作比较,若它们相等时,以 , , 为三边的三角形是直角三角形;若 ,时,以 , , 为三边的三角形是钝角三角形;若 ,时,以 , , 为三边的三角形是锐角三角形;
②定理中 , , 及 只是一种表现形式,不可认为是唯一的,如若三角形三边长 , , 满足 ,那么以 , , 为三边的三角形是直角三角形,但是 为斜边
③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形
6.勾股数
①能够构成直角三角形的三边长的三个正整数称为勾股数,即 中, , , 为正整数时,称 , , 为一组勾股数
8..勾股定理逆定理的应用
勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.
第3课 勾股定理(1)
第3课勾股定理一、知识方法1、勾股定理:直角三角形两直角边的平方和等于斜边的平方.2、勾股定理的逆定理:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形.勾股定理是平面几何最重要的定理之一,在几何图形的计算和论证方面,有着重要的作用,它沟通了代数和几何,将几何证明转化为代数计算,是一种重要的数学方法.逆定理常用于证明三角形是直角三角形.利用勾股定理的逆定理,可以用来判断三角形的形状:△ABC中,AB=c,BC=a,AC=b,(1)若222c a b<+,则∠C是锐角;(2)若222c a b>+,则∠C是钝角.3、勾股数:满足方程222a b c+=的正整数a、b、c叫做勾股数.二、勾股定理的应用例1、如图,“十”字形纸片由5个大小相同的正方形构成,将它剪3刀,拼成一个正方形.例2、已知△ABC中,∠C=90°,CD⊥AB于D,设AC=b,BC=a,AB=c,CD=h,求证:(1)c+h>a+b;(2)试判断以c+h,a+b,h为边能否构成三角形?其形状如何?试说明理由.例3、(1)△ABC中,∠A=90°,AB=AC,D为BC边上一点,求证:BD2+DC2=2AD2;(2)△ABC中,AB=AC,D为BC边上一点,求证:AB2-AD2=DB·DC.BD例4、边长为整数的直角三角形称为整边直角三角形,说明在整边直角三角形中必有一条边的长度是3的倍数.例5、有人将《九章算术》中的一道古题编成诗歌形式:城外一扇矩形门,有人扛竿去量应.横着量之四尺余,立着量之两尺剩.对角又复比一比,斜竿恰好端抵尽.此门宽高各几何?还有竹竿有几尺?例6、设a、b为任意正数,a>b,求证:边长分别为2ab、a2-b2、a2+b2的三角形为直角三角形.例7、如图,已知AB=3,BC=AD=DCABC=90°,求∠DAB的度数.若把△ADC沿AC翻折得△AEC,则∠EAB等于多少度?D AC例8、设P是正三角形ABC内一点,且PA=5,PB=4,PC=3,求此正三角形的边长.例9、△ABC中,∠C=90°,D、E分别是BC、AC上的任意两点,求证:2222AD BE AB DE+=+.A E三、练习1、如图,已知每个小方格的边长为1,A ,B ,C 三点都在小方格的顶点上,则点C 到AB 所在直线的距离等于( ) (A) 810(B) 108 (C) 10 (D)82、在△ABC 中,AB=13,AC=15,高AD=12,则BC 的长是( ).(A )14 (B )4 (C )14或4 (D )以上都有可能3、下列各组数据,不能构成直角三角形的三边是 ( )A 、3,4 ,5B 、13,12,5C 、3,5,6D 、41,40 ,94、已知直角三角形的一直角边长是4,以这个直角三角形的三边为直径作三个半圆(如图所示),已知两个月牙形(带斜线的阴影图形)的面积之和是10,那么以下四个整数中,最接近图中两个弓形(带点的阴影图形)面积之和的是( )(A) 6 (B) 7 (C) 8 (D) 95、等腰三角形的周长为16,底边上的高是4,则这个三角形的三边长分别是____,____,____.6、已知一直角三角形的斜边长10,周长是24,则这个三角形的面积是________.7、在等腰△ABC 中,AB =1,∠A =900,点E 为腰AC 中点,点F 在底边BC 上,且FE ⊥BE ,求△CEF 的面积.8、ABC ∆中,AB=17,AC=10,BC=21,求ABC ∆的面积S.AB C E F A B C9、直角三角形的两条直角边长为3和4,三角形内有一点到各边距离相等,那么这个距离为多少?10、已知111,,,BB PP AA B A ∠=∠均垂直于20,16,17,11111===BB PP AA B A ,1211=B A ,则AP+PB是多少?11、将下图剪3刀,拼成一个大正方形(图中小方格均为正方形,三角形均为等腰直角三角形)12、如图,长方形ABCD 中,AB=3,AD=4,P 是AD 上任意一点,PE ⊥AC,PF ⊥BD,则PE+PF 是多少?。
八年级数学下册课后补习班辅导平行四边形讲学案苏科版
八年级数学下册课后补习班辅导平行四边形讲学案苏科版【本讲教育信息】一、教学内容:平行四边形[目标]1、以中心对称为主线,研究平行四边形及其性质2、探索四边形是平行四边形的条件的过程3、运用中心对称的性质得三角形全等二、重点、难点:1、探索四边形是平行四边形的条件,分两个层次:通过操作和合情推理发现结论;说明理由。
2、平行四边形的有关性质和四边形是平行四边形的条件的灵活运用。
三、知识要点:1、平行四边形的概念两组对边分别平行的四边形叫做平行四边形注意:①四边形必须具备有两组对边分别平行才是平行四边形,反过来,平行四边形就一定是有“两组对边分别平行”的一个四边形。
因此定义既是平行四边形的一个判定方法(定义判定法)又是平行四边形的一个性质②比较两种特殊的四边形③把点B 关于O点的对称点记为点D,就得到下图中四边形ABCD。
这个图形中的ΔCDA可以看成是ΔABC绕点O旋转180得到的。
因此,四边形ABCD是中心对称图形,对角线的交点O是它的对称中心2、平行四边形的表示:平行四边形用符号“”表示,如图就是平行四边形ABCD ,记作“ABCD3、平行四边形的性质①平行四边形对边相等。
因为平行四边形ABCD是平行四边形,所以AB=DC,AD=BC推论:夹在两条平行线间的平行线段相等注意:必须有两个平行,即夹两条平行线段的两条直线平行,被夹的两条线段平行,缺一不可,如下图中的几种情况都不可以推出EF=GH②平行四边形的对角相等。
因为平行四边形ABCD是平行四边形,所以∠ABC=∠ADC,∠BCD=∠BAD③平行四边形的对角线互相平分。
因为平行四边形ABCD是平行四边形,所以OA=OC,OB=OD总结:平行四边形的性质:①关于边的:对边平行;对边相等②关于角的:对角相等;邻角互补4、平行四边形的判定判定1:两组对边分别平行的四边形是平行四边形判定2:一组对边平行且相等的四边形是平行四边形判定3:两条对角线互相平分的四边形是平行四边形判定4:两组对边分别相等的四边形是平行四边形5、平行四边形相关应用(1)直接运用平行四边形的性质解决某些问题如:求有关角的度数、线段的长度、说明角相等或互补、说明线段相等等(2)判别四边形是平行四边形(3)综合运用平行四边形的性质和判别四边形是平行四边形的条件:①先判别四边形是平行四边形,再运用平行四边形的性质解决某些问题②先运用平行四边形的性质得出一些结论,再运用这些性质判别四边形是平行四边形注意:平行四边形的性质与判别四边形是平行四边形的条件这两者的区别,防止混淆。
八年级下册勾股定理专题讲义
八年级下册勾股定理专题讲义1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方.表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=.2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法.①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:cbaHG F EDCB A4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简得证:222a b c +=方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++,化简得证:222a b c +=方法三:a bcc baE D CBA1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证:222a b c +=3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形,当考察对象不是直角三角形时,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c =b =,a②可运用勾股定理解决一些实际问题5.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即:222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13等③用含字母的代数式表示:若a ,b ,c 为勾股数,则k a ,k b ,k c 也可构成直角三角形(k >0)题型一:直接考查勾股定理例1.在△ABC 中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长. ⑵已知17AB =,15AC =.求BC 的长.分析:直接应用勾股定理222a b c +=练习1.在Rt △ABC 中,已知两边长为5、12,则第三边的长为 .练习2.边长为a 的正三角形的面积为 .练习3.一长方体盒子长,宽,高分别是4米,3米,12米,盒内可放的棍子最长为 .练习4.一只蚂蚁从长为4 cm 、宽为3 cm ,高是5 cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是_________cm .中考链接:(2008昆明,14,3分)如图,有一个圆柱,高为16cm ,底面半径等于4cm ,在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处的食物,需要爬行的最短路程是_________cm .(π取3) A B(2012昆明,20,6分)如图,某同学在楼房的A 处测得荷塘的一端B 处的俯角为30︒,荷塘另一端D处与C 、B 在同一条直线上,已知32AC =米,16CD =米,求荷塘宽BD 为多少米?(结果保留根号)运算技巧总结:题型二:应用勾股定理建立方程例2.⑴在△ABC 中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = .⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 .⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为 .分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA分析:此题将勾股定理与全等三角形的知识结合起来中考链接:(2011昆明,9改编,3分)如图,在Rt △ABC 中,∠ACB=90°,BC=3,AC=15,AB 的垂直平分线ED 交BC 的延长线与D 点,垂足为E ,则AD=(2008昆明,9改编,3分)如图,在Rt △ABC 中,∠A = 900,A C = 6cm ,AB= 8cm ,把AB 边翻折,使AB 边落在BC 边上,点A 落在点E 处,折痕为BD ,则DB 的值为_________第9题图E D CBA题型三:实际问题中应用勾股定理例4.如图有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了m.AB CDE分析:根据题意建立数学模型,如图8AB=m,2CD=m,8BC=m,过点D作DE AB⊥,垂足为E,则6AE=m,8DE=m练习1.如图,已知一根长8m的竹杆在离地3m处断裂,竹杆顶部抵着地面,此时,顶部距底部有m.练习2.一艘小船早晨8:00出发,它以8海里/时的速度向东航行,1小时后,另一艘小船以12海里/时的速度向南航行,上午10:00,两小船相距海里.练习3.小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,旗杆的高度为米.练习4.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为________.A D E练习5.如图学校有一块长方形花园,有极少数人为了避开拐角而走“捷径”,在花园内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1m ),却踩伤了花草.练习6.如图,公路MN 和公路PQ 在点P 处交汇,且∠QPN =30°,点A 处有一所中学,AP =160m .假设拖拉机行驶时,周围100m 以内会受到噪音的影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?题型四:折叠类问题(解决折叠问题的关键是寻找图中相等的线段)例5.已知,如图,长方形ABCD 中,AB=3,AD=9,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A.6B.8C.10D.12练习1.如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,长BC 为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长?• A BE FD中考链接:(2012昆明,22改编,4分)如图,把矩形ABCD 沿直线MN 折叠,D 点与B 点重合,连接BM 、DN. 若AB=2,AD=6,求MD 的长.(2014昆明,14改编,3分)如图,将边长为6cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E处,折痕为FH ,点C 落在Q 处,EQ 与BC 交于点G ,则EF=cm .(2015昆明,22改编,4分)如图,AH 是圆的直径,点E 、F 分别在矩形ABCD 的边BC 和CD 上.若CD=10,EB=5,求圆的直径.第14题图Q H GFE DCBA6.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边.①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形.②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边.7.勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.8.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:D CB A ADB CDCAB题型五:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为直角三角形.① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c =练习1.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状?练习题型六:勾股定理与勾股定理的逆定理综合应用例7.已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =.D CBA练习1.如图,已知:∆ABC 中,CD ⊥AB 于D, AC=4, BC=3, BD=59 (1) 求CD 的长;(2) 求AD 的长;(3) 求AB 的长;(4) 求证:∆ABC 是直角三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1997
F
E
D
C
B
A O E
D
C
B
A D
C
B
A P
C
A
D
B A 初二(下)数学竞赛辅导班讲义(勾股定理和平行四边形)
班级 姓名 学号
一、练习:
1、如图,已知AB=13,BC=14,AC=15,AD ⊥BC 于D ,则AD= .
2、如果一个三角形的一条边是另一条边的2倍,并且有一个角是30°,那么这个三角形的形状是( ) A .直角三角形 B .钝角三角形 C .锐角三角形 D .不能确定
3、如图,在△ABC 中,AB=5,AC=13,边BC 上的中线AD=6,则BC 的长为 .
4、如图,设P 是等边△ABC 内的一点,PA=3,PB=4,PC=5,则∠APB 的度数是 .
(第1题) (第3题) (第4题)
5、如图,一个直角三角形的三边长均为正整数,已知它的一条直角边的长恰是1997,那么这个三角形的周长为 .
6、在锐角△ABC 中,已知某两边a=1,b=3,那么第三边的变化范围是( )
A .2<c<4
B .2< c≤3
C . 2< c <10 D.8< c <10
7、如图,用3个边长为l 的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为( )
A .2
B .2
5
C .45
D . 16175
(第5题) (第7题)
8、如图,以△ABC 的三边为边在BC 的同一侧分别作三个等边三角形,即△ABD 、△BCE 、△ACF . (1)四边形ADEF 是 ;
(2)当△ABC 满足条件 时,四边形ADEF 为矩形; (3)当△ABC 满足条件 时,四边形ADEF 不存在.
9、如图,矩形ABCD 的对角线相交于O ,AE 平分∠BAD 交BC 于
E
,
∠CAE=15°,
则
∠BOE= .
二、例题讲解:
【例1】如图,以等腰直角三角形ABC 的斜边AB 为边向内作等边△ABD ,连结DC ,以DC 为边作等边△DCE ,B 、E 在CD 的同侧,若AB=2,则BE= .
【例2】 2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a ,较长直角边为b ,那么(a+b)2的值为( ) A .13 B .19 C .25 D .169
【例3】 如图,P 为△ABC 边BC 上的一点,且PC =2PB , 已知∠ABC =45°,∠APC =60°,求∠ACB 的度数.
【例4】如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,设AC =b ,BC =a ,AB=c ,CD=h .
求证:(1)
2
2
2
111h b a =+;
(2) h c b a +<+ ;
(3) 以b a +、h 、h c +为边的三角形,是直角三角形.
【例5】一个直角三角形的边长都是整数,它的面积和周长的数值相等,这样的直角三角形是否存在?若存在,确定它三边的长,若不存在,说明理由.
【例6】 如图,在矩形ABCD 中,已知AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD 于E ,PF ⊥AC 于F ,那么PE+PF 的值为 .
【例7】如图,在△ABC 中,∠BAC=90°,AD ⊥BC ,BE 、AF 分别是∠ABC 、∠DAC 的平分线,BE 和AD 交于G ,求证:
GF∥AC.
【例8】如图,设P为等腰直角三角形ACB斜边AB上任意一点,PE⊥AC于点E,PF⊥BC于点F,PG⊥EF于G点,延长GP并在其延长线上取一点D,使得PD=PC,求证:BC⊥BD,且BC=BD.。