解析几何中的最值问题题

合集下载

高中数学高考17第一部分 板块二 专题五 解析几何 第3讲 圆锥曲线中的最值、范围、证明问题(大题)

高中数学高考17第一部分 板块二 专题五 解析几何 第3讲 圆锥曲线中的最值、范围、证明问题(大题)

设M(x1,y1),M′(x2,y2), 设 MF1 的方程为 x=my- 3,
x=my- 3,
由x42+y2=1
得(m2+4)y2-2 3my-1=0,
故yy11+y2=y2=-mm2 221++3m44.,
设F1M与F2N的距离为d,四边形F1F2NM的面积为S,
则 S=12(|F1M|+|F2N|)d=12(|F1M′|+|F1M|)d=12|MM′|d= S△MF2M′,
2
PART TWO
真题体验 押题预测
真题体验 (2018·全国Ⅰ,文,20)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与 C交于M,N两点. (1)当l与x轴垂直时,求直线BM的方程;
解 当l与x轴垂直时,l的方程为x=2, 可得点M的坐标为(2,2)或(2,-2). 所以直线 BM 的方程为 y=12x+1 或 y=-12x-1. 即x-2y+2=0或x+2y+2=0.
所以 y1+y2=2k,y1y2=-4.
直线 BM,BN 的斜率之和 kBM+kBN=x1y+1 2+x2y+2 2=x2y1+x1x+1y22+x22+y12+ y2.

将 x1=yk1+2,x2=yk2+2 及 y1+y2,y1y2 的表达式代入①式分子,
可得 x2y1+x1y2+2(y1+y2)=2y1y2+4kky1+y2=-8k+8=0.
当且仅当 t2=92,即 t=±322时取等号.
故△BPQ
的面积的最大值为
2 2.
热点二 范围问题
圆锥曲线的范围问题的常见解法 (1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形 性质来解决; (2)代数法:若题目中的条件和结论能体现一种明确的函数关系或不等关系或已知 参数与新参数之间的等量关系等,则可利用这些关系去求参数的范围.

《解析几何》第5讲 圆的最值与轨迹问题

《解析几何》第5讲 圆的最值与轨迹问题
第八章
平面解析几何
第4课时 圆的最值与轨迹问题
第八章
平面解析几何
2 2 例题1.实数x,y满足x +y -4x+1=0.
(1) 求y-x的最值.
(2) 求y/x的最值.
(3)求x2+y2的最值.
栏目 导引
第八章
平面解析几何
y -b (1) 形如 u= 型的最值问题, x-a 可转化为过点(a, b)和点(x, y)的直线的斜率. (2) 形如 t=ax+by 型的最值问题, 可转化为动直线的截距. (3) 形如(x-a) +(y-b) 型的最值问题, 可转化为动点到定点的距离平方.
栏目 导引
第八章
平面解析几何
解析:圆 x2+ y2+ 2x-4y+ 1= 0 的圆心为(-1, 2),半径 r = 2. 因为直线被截得的弦长为 4,则圆心在直线 2ax- by+ 2= 0 上,所以- 2a-2b+ 2= 0,即 a+ b= 1. a+b 2 1 1 所以 ab≤ ( ) = ,当且仅当 a= b= 时取等号. 2 4 2 1 故 (ab)max= . 4
栏目 导引
2
2
第八章
平面解析几何
例题2.已知点A(2,0)在圆x2+y2=4上, B(1,1)在圆内,P,Q为圆上的动点. (1)求线段AP中点的轨迹方程; (2)若PQ 经过点B,求线段PQ中点 的轨迹方程. (3)若∠PBQ=90°,求线段PQ中点 的轨迹方程.
栏目 导引
第八章
平面解析几何
求与圆有关的轨迹常采用以下方法: (1)直接法:直接根据题目提供的条件列出方程. (2)定义法:根据圆、直线等定义列方程. (3)几何法:利用圆的几何性质列方程. (4)代入法:找到要求点与已知点的关系,代入已知点满足的 关系式等.

解析几何中最值问题的求法

解析几何中最值问题的求法

=T t _A - X 3 + X 2 c s0 了 ) 当 0 - I 即(- ) 2 / 一 一 / 。 / 2 / o (+, f - x y \ 1 、

解 :设 与直 线 3- 3 1 = x 2, 6 O斜 率 相 同 且 与 椭 圆 7Z4 : 8 _ x+  ̄ 2
三 、 用 不 等 式 。 其 是 均 值 不 等 式 求最 值 利 尤
J  ̄AAMB的 面 积 的 最 小值 是 0 -  ̄ 4

≥ , 当x0 l = , P 普。 o・ = 时,AJ 即J J 一 . . P A
所 以 距 点 A 最 近 的 点 P的 坐 标 为 ( , )即最 短 距 离 为 。 00,
二、 利用 三 角 函数 , 其 是 正 、 弦 函数 的 有 界 性 。 最 值 尤 余 求
相切的直线z 的方程为3-y£ , x2 : 则由{ +o 7 x
得 l 6+ x
j 2 t 一 y+ =U
例3 知椭圆c 筝+ 1 曰 椭圆中 已 : 孚= , 是过 A 心的 任意弦, f
是 线 段 A 的 垂 直 平 分 线 . 是 与椭 圆 的 交 点 .求 △AMB 的 面 积 的最 小 值 解 : 设 线 段 AB所 在 直 线 的 斜 率 存 在 且 不 为 零 . A 所 假 设 B 在 的 直线 方 程 为 y k ( ≠0 , x ,A , =xk ) A( ^ ) Y
6 £ 2= , 缸十2 8 0 由判 别 式 △= 624 1 ( — 8 = . f± , 直线 3 t x 6t 2 )0 得 = 8 故 - 2 的方 程 为 3 一 忙 8 0 又 - 直 线 3 - y 6 0与 直 线 Z3 - ’ 2 =。 , - x 2 一1 - - :x 2, 一

高中数学专题---最值或取值范围问题

高中数学专题---最值或取值范围问题

高中数学专题--- 最值或取值范围问题基本方法:最值或取值范围问题解题策略一般有以下几种:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质求解.(2)代数法:在利用代数法解决范围问题时常从以下五个方面考虑: ①利用判别式来构造不等关系,从而确定参数(自变量)的取值范围;②利用已知参数(自变量)的范围,求新参数(新自变量)的范围,解这类问题的核心是在两个参数(自变量)之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数(自变量)的取值范围; ④利用基本不等式求出参数(自变量)的取值范围;⑤利用函数的值域的求法,如导数法等,确定参数(自变量)的取值范围. 最值或取值范围问题,是解析几何中的一类常见问题,解决这类问题的关键是构造含参数(自变量)的不等式,通过解不等式求出其范围,韦达定理、曲线与方程的关系等在构造不等式中起着重要作用.一、典型例题1. 已知抛物线2y x =和C :()2211x y ++=,过抛物线上的一点()()000,1P x y y ≥,作C 的两条切线,与y 轴分别相交于A ,B 两点.求ABP ∆面积的最小值.2. 已知椭圆:C 2214y x +=,过点()0,3M 的直线l 与椭圆C 相交于不同的两点A ,B . 设P 为椭圆上一点,且OA OB OP λ+=(O 为坐标原点).求当AB <λ的取值x范围.二、课堂练习1. 已知椭圆C :2214x y +=,过点()4,0M 的直线l 交椭圆于A ,B 两个不同的点,且MA MB λ=⋅,求λ的取值范围.2. 已知A ,B 为椭圆Γ:22142x y +=的左,右顶点,若点()()000,0P x y y ≠为直线4x =上的任意一点,PA ,PB 交椭圆Γ于C ,D 两点,求四边形ACBD 面积的最大值.三、课后作业1. 已知椭圆22:143x y C +=,过点1,02⎛⎫ ⎪⎝⎭作直线l 与椭圆C 交于点,E F (异于椭圆C 的左、右顶点),线段EF 的中点为M .点A 是椭圆C 的右顶点.求直线MA 的斜率k 的取值范围.2. 已知抛物线2:4C y x =的焦点为F ,准线为l ,过焦点F 的直线交C 于()11,A x y ,()22,B x y 两点,点B 在准线l 上的投影为E ,D 是C 上一点,且AD EF ⊥,求ABD 面积的最小值及此时直线AD 的方程.x3. 已知F 为椭圆2214x y +=的一个焦点,过点F 且不与坐标轴垂直的直线交椭圆于,A B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.。

高中数学解析几何中求最值的方法

高中数学解析几何中求最值的方法

一、利用圆锥曲线的定义圆锥曲线的定义,是曲线上的动点本质属性的反映。

研究圆锥曲线的最值,利用圆锥曲线的定义,可使问题简化。

例1、若使双曲线上一点M到定点A(7,)的距离与M到右焦点F的距离之半的和有最小值,求M点的坐标。

解析:如图所示,由双曲线定义2可知,,所以|MF|=2|MP|。

令,即。

此问题转化为折线AMP的最短问题。

显然当A、M、P同在一条与x轴平行的直线上时,折线AMP最短,故M点的纵坐标为,代入双曲线方程得M(,)。

二、利用几何图形的对称性对称思想是研究数学问题常用的思想方法,利用几何图形的对称性去分析思考最值问题。

例2、已知点A(2,1),在直线和上分别求B点和C 点,使△ABC的周长最小。

分析:轴对称的几何性质以及两点间的距离以直线段为最短。

解析:先找A(2,1)关于直线、的对称点分别记为和,如图所示,若在、上分别任取点和,则△ABC周长=周长。

故当且仅当、、、四点共线时取等号,直线方程为:,与、的交点分别为B(,)、C(,0)。

三、利用参数的几何意义利用参数的几何意义,把它转化为几何图形中某些确定的几何量(如角度、长度、斜率)的最大值、最小值问题。

例3、椭圆内有两点A(4,0),B(2,2),M是椭圆上一动点,求|MA|+|MB|的最大值与最小值。

分析:若直接利用两点的距离公式,难度较大,通过椭圆定义转化后,利用几何性质可解决问题。

解析:|MA|+|MB|=2a-|MC|+|MB|=10+|MB|-|MC|,根据平面几何性质:||MB|-|MC||,当且仅当M、B、C共线时取等号,故|MA|+|MB|的最大值是,最小值是。

四、利用代数性质将问题里某些变化的几何量(长度、点的坐标、斜率、公比)设为自变量,并将问题里的约束条件和目标表示为自变量的解析式,然后利用代数性质(如配方法、不等式法、判别式法等)进行解决,可使问题简单化。

例4、过抛物线的焦点作两条互相垂直的弦AC、BD,求四边形ABCD面积的最小值。

浅谈高考解析几何中的最值问题

浅谈高考解析几何中的最值问题
轴 AB 匕一 点 , 到 直 线 AP M

图4
转化 为 l A I l F I +4的 P + P 最 小 值 ,再 由 图 2 可 知 l 十 l A I 最 小 值 就 PF 1 的 P
是点 A 到右 焦点 的距离 .
图2
的 距 离 等 于 I B 1 求 椭 圆 上 点 到 点 M 的 距 离 的 最 . M
l Fl P 的最小值 转化 为 I Q l l P 1 + 的最 小 值 , 由 P P 再 图 1知 I PQI I 的最小 值是 点 Q到 准线 的距离 . + I PP
析 由抛物 线定 义知 I Fl 于 点 P 到 准线 的距 P 等 离 I ,P + I FI l QI I P l PP l 1 QI — + ≥3 P P P

/ 】 6 - 战


√2


图 1
1 6 时 ; 一 ,) ) 一 , 一 A 譬; 当 d (
2 )当 6 一 时 , 一 一 d ; A( ,一 ) .
义 l — I P l 把 I + I , l PF P PQ
M F J B5

1 AI P 的最小值 为 多少 ?
思 维 导 引 根 据 双 曲 线

A /
的定 义 I l l +4 PF — PF l ,
把 1 + f 的 最 小 值 PF l PA l
为椭 圆 上 , 于 z轴 的上 方 , 位 且 P A上 P 若 M 为 椭 圆长 F,
P( y , z,) 则 一 ( + 6 y z , ),i 一 ( z一4 ,
), APIF _ P,所 以( z+6 ( -4 + 一d ) - ) .

理科解析几何求最值问题一1

理科解析几何求最值问题一1

理科解析几何求最值问题(一)11.(本小题满分13分)已知椭圆C 的中心在原点,一个焦点(0,2)F ,且长轴长与短轴长的比是2:1. (Ⅰ)求椭圆C 的方程;(Ⅱ)若椭圆C 在第一象限的一点P 的横坐标为1,过点P 作倾斜角互补的两条不同的直线PA ,PB 分别交椭圆C 于另外两点A ,B ,求证:直线AB 的斜率为定值; (Ⅲ)求PAB ∆面积的最大值.2.(本小题共14分)已知椭圆的中心在坐标原点O ,焦点在x 轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F 与x 轴不垂直的直线l 交椭圆于P ,Q 两点. (Ⅰ)求椭圆的方程;(Ⅱ)当直线l 的斜率为1时,求POQ ∆的面积;(Ⅲ)在线段OF 上是否存在点(,0)M m ,使得以,MP MQ 为邻边的平行四边形是菱形?若存在,求出m 的取值范围;若不存在,请说明理由.3.(本小题共14分)已知直线l :1+=kx y 与圆C :1)3()2(22=-+-y x 相交于B A ,两点.(Ⅰ)求弦AB 的中点M 的轨迹方程;(Ⅱ)若O 为坐标原点,)(k S 表示OAB ∆的面积,13)]([)(22++=k k S k f ,求)(k f 的最大值.FMxyO PQ4.(本小题共14分)已知抛物线24y x =,点(1,0)M 关于y 轴的对称点为N ,直线l 过点M 交抛物线于,A B 两点. (Ⅰ)证明:直线,NA NB 的斜率互为相反数; (Ⅱ)求ANB ∆面积的最小值;(Ⅲ)当点M 的坐标为(,0)(0m m >,且1)m ≠.根据(Ⅰ)(Ⅱ)推测并回答下列问题(不必说明理由):① 直线,NA NB 的斜率是否互为相反数? ② ANB ∆面积的最小值是多少? 5.(本小题满分13分)已知椭圆2222:1x y C a b+=(0)a b >>的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线60x y -+=相切.(Ⅰ)求椭圆C 的方程;(Ⅱ)设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ;(Ⅲ)在(Ⅱ)的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ⋅的取值范围.6.(本题满分14分)已知椭圆)0(12222>>=+b a by a x 的离心率为36,长轴长为32,直线m kx y l +=:交椭圆于不同的两点A 、B 。

专题05 解析几何中的最值问题 (解析版)

专题05 解析几何中的最值问题 (解析版)

专题05 解析几何中的最值问题常见考点考点一 面积最值问题典例1.已知椭圆C ∶22221(0)x y a b a b+=>>经过点P32),O 为坐标原点,若直线l 与椭圆C交于A ,B 两点,线段AB 的中点为M ,直线l 与直线OM 的斜率乘积为-14. (1)求椭圆C 的标准方程;(2)若OM =AOB 面积的最大值.【答案】(1)221123x y +=(2)3 【解析】 【分析】(1)根据椭圆经过点P32),得到223914a b+=,再利用点差法,根据直线l 与直线OM 的斜率乘积为-14,得到 2214b a -=-求解;(2)当AB x ⊥轴时,易得12AOBSOM AB =⋅AB 与x 轴不垂直时,设直线AB 的方程为y kx t =+,联立221123x y y kx t ⎧+=⎪⎨⎪=+⎩,根据OM =k ,t 的关系,再求得AB 和点O 到直线AB 的距离为d ,由12AOB S AB d =⋅⋅求解.(1)解:因为椭圆经过点P32), 所以223914a b +=, 设()()1122,,,A x y B x y ,因为直线l 与椭圆C 交于A ,B 两点,所以22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得2121221212y y x x b x x a y y -+=-⋅-+,因为线段AB 的中点为M ,且直线l 与直线OM 的斜率乘积为-14,所以 2214b a -=-,解得223,12b a ==,所以椭圆方程为:221123x y +=;(2)当AB x ⊥轴时,点M 在x 轴上,且OM AB ⊥,由OM =3AB =,所以12AOBSOM AB =⋅ 当直线AB 与x 轴不垂直时,设直线AB 的方程为y kx t =+,由221123x y y kx t ⎧+=⎪⎨⎪=+⎩,消去y 得()2221484120k x ktx t +++-=, 则21212228412,1414kt t x x x x k k -+=-⋅=++,224,1414kt t M k k ⎛⎫- ⎪++⎝⎭,由OM =()2222314116k t k +=+,因为AB =点O 到直线AB 的距离为d =所以12AOBSAB d =⋅⋅=3≤=,当且仅当221214k k =+,即218k =时,等号成立,综上 AOB 面积的最大值是3.变式1-1.已知椭圆221221x y C a b+=:的焦距为2,且过点(P .若直线AB 为椭圆1C 与抛物线2C :22(0)y px p =>的公切线.其中点,A B 分别为1C ,2C 上的切点.(1)求椭圆1C 的标准方程:(2)求OAB 面积的最小值.【答案】(1)2212x y +=;(2)2. 【解析】 【分析】(1)根据给定条件,列出关于22,a b 的方程,求解作答.(2)设出直线AB 的方程,分别与抛物线2C ,椭圆1C 的方程联立,求出切点纵坐标,再求出面积的函数关系,借助均值不等式计算作答. (1)椭圆半焦距c ,依题意,1c =,221112a b+=,又2221a b c -==,解得22a =,21b =, 所以椭圆1C 的标准方程为:2212x y +=. (2)显然直线AB 不垂直于坐标轴,设直线AB 的方程为(0)x my t m =+≠,()11,A x y ,()22,B x y ,由22y px x my t⎧=⎨=+⎩消去x 并整理得:2220y pmy pt --=, 则22480p m pt ∆=+=,即22t p m =-,22ty pm m==-, 由2222x y x my t⎧+=⎨=+⎩ 消去x 并整理得:()2222220m y mty t +++-=, 则()()222244220m t m t '∆=-+-=,即222t m =+,1222mt mt my m t t --===-+,点O 到直线AB 的距离为d =∴1211222OABm tS AB d y y t t m =⋅=-=⋅-+221212414(||)2222||t m m m m m m m +=-+=-+=+≥=, 当且仅当4||||m m =,即2m =±时取“=”, 所以OAB 面积的最小值为2.变式1-2.已知曲线C 上任一点到点()3,0F 的距离等于该点到直线3x =-的距离.经过点()3,0F 的直线l 与曲线C 交于A 、B 两点. (1)求曲线C 的方程;(2)若曲线C 在点A 、B 处的切线交于点P ,求PAB △面积的最小值. 【答案】(1)212y x = (2)36 【解析】 【分析】(1)分析可知曲线C 是以点()3,0F 为焦点,以直线3x =-为准线的抛物线,由此可求得曲线C 的方程;(2)先证明结论:抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+,设直线l 的方程为3x ty =+,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线C 的方程联立,列出韦达定理,求出AB ,写出抛物线C 在A 、B 两点处的切线方程,求出点P 的坐标,进而求出点P 到直线l 的距离,利用三角形的面积公式结合二次函数的性质可求得PAB △面积的最小值. (1)解:由题意可知,曲线C 是以点()3,0F 为焦点,以直线3x =-为准线的抛物线,设抛物线C 的标准方程为()220y px p =>,则32p ,可得6p ,因此,曲线C 的方程为212y x =. (2)解:先证明结论:抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+, 由题意可得20012y x =,联立()002612y y x x y x⎧=+⎨=⎩,可得()200x x -=,解得0x x =,因此,抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+. 若直线l 与x 轴重合,则直线l 与抛物线C 只有一个交点,不合乎题意. 设直线l 的方程为3x ty =+,设点()11,A x y 、()22,B x y ,联立2312x ty y x=+⎧⎨=⎩,可得212360y ty --=,21441440t ∆=+>,由韦达定理可得1212y y t +=,1236y y =-,()2121AB t ==+,抛物线212y x =在点A 处的切线方程为()2111662y y y x x x =+=+,同理可知抛物线212y x =在点A 处的切线方程为22262y y y x =+,联立2112226262y y y x y y y x ⎧=+⎪⎪⎨⎪=+⎪⎩,解得121231262y y x y y y t ⎧==-⎪⎪⎨+⎪==⎪⎩,即点()3,6P t -, 点P 到直线l 的距离为261t d +==所以,()3221361362PABS AB d t =⋅=+≥△,当且仅当0=t 时,等号成立. 因此,PAB △面积的最小值为36. 【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.变式1-3.已知椭圆E :22221(0)x y a b a b +=>>,且过点⎛- ⎝⎭. (1)求E 的方程;(2)若()3,0M ,O 为坐标原点,点P 是E 上位于第一象限的一点,线段PM 的垂直平分线交y 轴于点N ,求四边形OPMN 面积的最小值.【答案】(1)22162x y +=(2)【解析】 【分析】(1)根据椭圆的离心率以及椭圆上的点,列出方程组,解得a.b ,可得答案.(2)设P 点坐标,表示出直线PM 的斜率,进而可得其中垂线方程,求得N 点坐标,从而表示出四边形OPMN 的面积,结合基本不等式,即可求得答案. (1)设E 的焦距为2c,则()222222211c a a b a b c ⎧=⎪⎪⎪⎪-⎪⎝⎭+=⎨⎪-=⎪⎪⎪⎪⎩,解得2a b c ⎧=⎪⎪=⎨⎪=⎪⎩所以E 的方程是22162x y +=.(2)由题意,设()(000,0P x y y <,线段MP 的中点为A ,则点A 的坐标为003,22x y+⎛⎫⎪⎝⎭,且直线MP 的斜率003PM y k x =-,故直线AN 的斜率为0031AN PM x k k y -=-=, 从而直线AN 的方程为00003322y x x y x y -+⎛⎫-=- ⎪⎝⎭, 又2200162x y +=,则220063x y =-, 令0x =,得2200092x y y y +-=,化简得200230,2y N y ⎛⎫-- ⎪⎝⎭,所以四边形OPMN 的面积2000231133222OPMN OMNOPMy S SSy y --=+=⨯⨯+⨯⨯200023322y y y ⎛⎫+=+ ⎪⎝⎭003332222y y ⎛⎫=+≥⨯= ⎪⎝⎭当且仅当0y =所以四边形OPMN面积的最小值为考点二 其他最值问题典例2.如图,已知椭圆C :22212x y a +=的左、右焦点为1F 、2F ,左、右顶点分别为1A 、2A ,离心率e =M 为椭圆C 上动点,直线1A M 交y 轴正半轴于点A ,直线2A M 交y 轴正半轴于点B (当M 为椭圆短轴上端点时,A ,B ,M 重合).(1)求椭圆C 的方程;(2)若3OA OB =,求直线MA 的方程;(3)设直线2MA 、2AA 的斜率分别为1k 、2k ,求12k k +的最大值.【答案】(1)22142x y +=(2)y =(3)【解析】 【分析】(1)根据离心率可求a ,从而可得椭圆方程.(2)设()00,M x y ,则可以用M 的坐标表示,A B ,再根据3OA OB =可求0x ,从而可求M 的坐标,故可求直线MA 的方程.(3)结合(2)可得12k k +,利用M 在椭圆上可化简前者,利用其纵坐标的范围可求最大值. (1)因为椭圆的离心率为e =c a =即22212a a -=,故24a =,所以椭圆的方程为:22142x y +=.设()00,M x y ,因为直线1A M 交y 轴正半轴于点A ,则02x ≠±,00y >,又()00:22y AM y x x =++,故0020,2y A x ⎛⎫⎪+⎝⎭,()00:22y MM y x x =--,故0020,2y B x ⎛⎫- ⎪-⎝⎭, 因为3OA OB =,故000022322yyx x =-⨯+-,所以01x =-,所以0y =故()2:212AM y x x =+=-+y =. (3)由(2)可得0102y k x =-,而0020202022y x y k x -+==--+, 故00002200000124422242y y y y k y k x x x y =-==-=--+-+,因为00y <2y -≤12k k +的最大值为 变式2-1.已知曲线C 上任意一点(),P x y2=,(1)求曲线C 的方程;(2)若直线l 与曲线C 在y 轴左、右两侧的交点分别是,Q P ,且0OP OQ ⋅=,求22||OP OQ +的最小值.【答案】(1)2212y x -=(2)8 【解析】 【分析】(1)根据双曲线的定义即可得出答案;(2)可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx⎧-=⎪⎨⎪=⎩,求得2OP ,同理求得2OQ ,从而可求得2211||||OP OQ +的值,再结合基本不等式即可得出答案. (1)解:设())12,F F ,2=,等价于12122PF PF F F -=<,∴曲线C 为以12,F F 为焦点的双曲线,且实轴长为2,焦距为故曲线C 的方程为:2212y x -=;(2)解:由题意可得直线OP 的斜率存在且不为0,可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx ⎧-=⎪⎨⎪=⎩,得222222222x k k y k ⎧=⎪⎪-⎨⎪=⎪-⎩, 所以()2222221||2k OP x y k+=+=-,同理可得,()2222212121||1212k k OQ k k⎛⎫+ ⎪+⎝⎭==--, 所以()()()22222222211111||||22121k k k OP OQ k k -+-++===++,()()22222222112222228||||OQ OP OP OQ OP OQOP OQ OP OQ ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+=++=++≥+= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 当且仅当2OP OQ ==时取等号,所以当2OP OQ ==时,22||OP OQ +取得最小值8.变式2-2.已知椭圆2222:1(0)x y C a b a b +=>>过点(0,1)P,椭圆上的任意一点到焦点距离的最小值为2(1)求椭圆C 的方程;(2)设不过点P 的直线l 与椭圆相交于,A B 两点,若直线PA 与直线PB 斜率之和为1-,求点P 到直线l 距离的最大值.【答案】(1)2214x y +=(2)【解析】【分析】(1)根据题意可得21b =且2a c -=a ,b ,c 之间的关系,解得a ,c ,b ,即可得出答案. (2)当直线l 垂直于y 轴时,直线PA 与直线PB 的斜率和为0,不符合题意,设直线l 的方程为x my n =+,则111PA y k x -=,221PB y k x -=,联立直线l 与椭圆C 的方程,可得244181()10n m y y m n x m n x---+⋅+=++,PA k ,PB k 是该二次方程的两根,利用韦达定理结合条件可得到21PA PB k k n m+=-=--,即可得出答案. (1)因为椭圆过点(0,1)P,椭圆上的任意一点到焦点距离的最小值为2, 所以21b =且2a c -= 又22221a b c c =+=+, 解得2a =,c =所以椭圆的方程为2214x y +=.(2)当直线l 垂直于y 轴时,直线PA 与直线PB 的斜率和为0,不符合题意, 故设直线l 的方程为x my n =+, 由于直线l 不过点(0,1)P ,故0m n +≠, 设1(A x ,1)y ,2(B x ,2)y ,10x ≠,20x ≠, 则111PA y k x -=,221PB y k x -=, 直线l 的方程可改写为(1)1x m y m n m n--=++, 椭圆C 的方程可改写为224(1)8(1)0x y y +-+-=, 两者联立,可得22(1)4(1)8(1)[]0x m y x y y m n m n-+-+-⋅-=++, 0x ≠时,整理可得244181()10n m y y m n x m n x---+⋅+=++①, 若n m =,则直线l 与椭圆C 的一个交点为(0,1)-, 此时直线PA 的斜率不存在,不符合题意, 故n m ≠,且PA k ,PB k 是以上二次方程①的两根, 由韦达定理有21PA PB k k n m+=-=--,于是2n m =+,直线l 的方程为2x my m =++,所以直线l 经过定点(2,1)-,则当点P 与该定点的连线与l 垂直时,点P 到直线l 距离的最大,最大值.. 【点睛】本题考查椭圆的方程,直线与椭圆的相交问题,解答时要注意便是德技巧,解题中需要一定的计算能力,属于较难题.变式2-3.已知点()0,2R -,()0,2Q ,双曲线C 上除顶点外任一点(),M x y 满足直线RM 与QM 的斜率之积为4. (1)求C 的方程;(2)若直线l 过C 上的一点P ,且与C 的渐近线相交于A ,B 两点,点A ,B 分别位于第一、第二象限,2AP PB =,求AP PB ⋅的最小值.【答案】(1)2214y x -=(2)1 【解析】 【分析】 (1)由题意得224+-⋅=y y x x,化简可得答案, (2)求出渐近线方程,设点()00,P x y ,()11,2A x x ,()22,2B x x -,1>0x ,20x <,由2AP PB =可得12023x x x +=,120243-=x x y 代入双曲线方程化简可得1298⋅=-x x ,然后表示AP PB ,的坐标,再进行数量积运算,化简后利用基本不等式可得答案 (1)由题意得224+-⋅=y y x x ,即2244-=y x, 整理得2214y x -=,因为双曲线的顶点坐标满足上式,所以C 的方程为2214y x -=.(2)由(1)可知,曲线C 的渐近线方程为2y x =±, 设点()00,P x y ,()11,2A x x ,()22,2B x x -,1>0x ,20x <, 由2AP PB =,得()()01012020,22,2--=---x x y x x x x y , 整理得12023x x x +=,120243-=x x y ①,把①代入220014y x -=,整理得1298⋅=-x x ②, 因为()121201012244,2,33-+--⎛⎫=--=⎪⎝⎭x x x x AP x x y x , ()2121202022,2,33---⎛⎫=---= ⎪⎝⎭x x x x PB x x x y , 所以()22121211010129⋅=++⋅AP PB x x x x .由1298=-x x ,得1298=-x x , 则()22221212221199192710101210101210219988982⎡⎤⎛⎫⎛⎫⎢⎥⋅=++⋅=-+-⨯≥⨯⨯-= ⎪⎪⎝⎭⎢⎥⎝⎭⎣⎦AP PB x x x x x x ,当且仅当24x =-时等号成立,所以AP PB ⋅的最小值是1.巩固练习练习一 面积最值问题1.点P 与定点()1,0F 的距离和它到定直线:4l x =的距离之比为1:2. (1)求点P 的轨迹方程;(2)记点P 的轨迹为曲线C ,直线l 与x 轴的交点M ,直线PF 与曲线C 的另一个交点为Q .求四边形OPMQ 面积的最大值.(O 为坐标原点)【答案】(1)22143x y +=(2)6 【解析】 【分析】(1)设出点(),P x y ,直接法求出轨迹方程;(2)求出4OM =,设出直线方程,表达出四边形OPMQ 面积,使用换元及基本不等式求出面积最大值. (1)设点(),P x y ,则PF =P 到直线:4l x =的距离为4x -,12=,解得:22143x y +=.(2)由题意得:()4,0M ,则4OM =,设当直线l 斜率为0时,即0y =,此时四边形OPMQ 不存在,故舍去;设直线l 为1x ky =+,与22143x y +=联立得:()2234690k y ky ++-=,设()()1122,,,P x y Q x y ,则由韦达定理得:122634k y y k -+=+,122934y y k-=+,则12y y -==, 四边形OPMQ面积1211422S OM y y =⋅-=⨯=,t =()1t ≥,则221k t =-,224241313t S t t t==++,其中13y t t =+在[)1,t ∈+∞上单调递增,故当1t =时,13y t t=+取得最小值为4,此时面积S 取得最大值6 【点睛】求解轨迹方程通常方法有:直接法,定义法,相关点法,交轨法,本题中使用的是直接法.2.设椭圆E :22143x y +=的右焦点为F ,点A ,B ,P 在椭圆E 上,点M 是线段AB 的中点,点F是线段MP 中点(1)若M 为坐标原点,且△ABP 的面积为3,求直线AB 的方程; (2)求△ABP 面积的最大值. 【答案】(1)32y x =或32y x =- (2)【解析】 【分析】(1)分斜率存在和不存在讨论,当斜率存在时设直线方程与椭圆方程联立消元,利用弦长公式和点到直线的距离公式表示出面积,根据已知列方程可解;(2)分直线过原点和不过原点,当不过原点时设直线方程与椭圆方程联立消元,利用韦达定理表示出M 坐标,再由中点坐标公式得P 点坐标,代入椭圆方程可得k 和b 的关系,然后利用弦长公式和点到直线的距离公式表示出面积(注意2ABPABFS S=),然后用导数求最值.(1)在椭圆22143x y +=中,2,1a b c ===,此时点P 坐标为(2,0),当直线AB的斜率不存在时,易知AB =122ABPS=⨯=,不满足题意.故设直线方程为y kx =,代入椭圆方程得22234120x k x +-=,即22(43)120k x +-=,由弦长公式得AB =P 到直线AB 的距3=,解得32k =±,所以直线AB 的方程为32y x =或32y x =-.(2)由(1)知,当直线过原点且斜率存在时,ABPS==故此时面积最大值为ABP S =△当直线不过原点时,易知直线斜率一定存在,设方程为y kx m =+,代入椭圆方程整理可得()2224384120k x kmx m +++-=…①,记112200(,),(,),(,)A x y B x y M x y ,则21212228412,4343km m x x x x k k -+=-=++,002243,4343km mx y k k =-=++,00(2,)P x y -- 则22003(2)412x y -+=,将002243,4343km m x y k k =-=++代入上式得222243324124343km m k k ⎛⎫⎛⎫++= ⎪ ⎪++⎝⎭⎝⎭,整理得4m k =-,代入①得2222(43)3264120k x k x k +-+-=,又点F 到直线AB,则ABPSAB k ===+ABPS=2t k =,2(14)()(43)t t g t t -=+,则()()332843t g t t -=+',易知当3028t <<时,()0g t '>,函数单调递增,当328t >时,()0g t '<,函数单调递减,故当328t =时,max 31()()28192g t g ==,所以ABPS≤=又直线与椭圆有两个交点,所以422644(43)(6412)0k k k ∆=-+⨯->,解得214k <,故当2328k =,即k =ABP综上,△ABP 面积的最大值为【点睛】设而不求是圆锥曲线中最常用的方法之一,本题通过各点之间的关系,结合韦达定理表示出M 坐标,进而得到点P 坐标,借助P 点在椭圆上作为突破口进行求解,考察学生的转化能力和运算能力,属难题.3.设椭圆()2222:10x y E a b a b+=>>,点1F ,2F 为E 的左、右焦点,椭圆的离心率12e =,点31,2P ⎛⎫ ⎪⎝⎭在椭圆E 上.(1)求椭圆E 的方程;(2)M 是直线4x =上任意一点,过M 作椭圆E 的两条切线MA ,MB ,(A ,B 为切点). ①求证:2⊥MF AB ; ②求MAB △面积的最小值.【答案】(1)22143x y +=;(2)①证明见解析;②92. 【解析】【分析】(1)由题得222222123121c a a b a b c ⎧=⎪⎪⎪⎛⎫⎪⎪⎪⎝⎭+=⎨⎪=+⎪⎪⎪⎪⎩,即得;(2)由题可得在点(),A A A x y ,(),B B B x y 处的切线方程,进而可得直线AB 方程,再利用斜率关系即证,联立直线AB 方程,与椭圆方程,利用韦达定理可得(222291212MAB t S AB MF t +=⋅⋅=+△,再通过换元,利用函数的性质可求. (1)由题可得,222222123121c a a b a b c ⎧=⎪⎪⎪⎛⎫⎪⎪⎪⎝⎭+=⎨⎪=+⎪⎪⎪⎪⎩,解得224,3,a b ⎧=⎨=⎩ ∴椭圆E 的标准方程为22143x y +=.(2)①先求在椭圆上一点的切线方程,设椭圆上一点为()x y x y ≠≠0000,,0,0,切线方程为()00y y k x x -=-,联立方程组()0022143y y k x x x y ⎧-=-⎪⎨+=⎪⎩,可得()()()22200003484120k x k y kx x y kx ++-+--=,∴()()()222000084344120k y kx k y kx ⎡⎤⎡⎤∆=--⨯+--=⎣⎦⎣⎦,∴()()22200004230x k kx y y -++-=,即2220000432034y x k kx y ++=,∴034x k y =-, 故切线方程为()000034x y y x x y -=--,即00143x x y y +=, 设(),A A A x y ,(),B B B x y ,()4,M t . 椭圆E 在点(),A A A x y 的切线AM 的方程为:143A A x x y y+=, 在点(),B B B x y 处的切线BM 方程为:143B B x x y y +=. 又直线AM ,BM 过点()4,M t ,即41434143A A B B x ty x ty ⎧+=⎪⎪⎨⎪+=⎪⎩,即3333A A B B x ty x ty +=⎧⎨+=⎩,故点(),A A A x y ,(),B B B x y ,在直线33x ty +=上,故直线AB 方程为:33x ty +=, 当0=t ,即()4,0M 时,直线AB 方程为:1x =,则2⊥MF AB . 当0t ≠时,直线AB 方程为:33y x t t=-+.右焦点()21,0F ,则23MF t k =,所以2313MF AB t k k t ⎛⎫⋅=⋅-=- ⎪⎝⎭,即2⊥MF AB .②直线AB 方程为:33x ty +=与椭圆E 联立得;()22126270t y ty +--=,2612A B t y y t +=+,22712A By y t -=+,(222291212MABt S AB MF t +=⋅⋅==+△令m =3m ≥,则(23223292213123MABt m S t m m m +===+++△在[)3,m ∈+∞上单调递增,所以当3m =时,MAB S 取最小值92.4.已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 与抛物线C 交于,A B 两点. (1)证明:以AB 为直径的圆与直线1x =-相切;(2)设(1)中的切点为,P O 为坐标原点,直线OP 与C 的另一个交点为E ,求ABE △面积的最小值. 【答案】(1)证明见解析 (2)【解析】 【分析】(1)利用直线与圆相切等价于圆心到直线的距离等于半径来证明;(2)先设直线AB 的方程为1x my =+,以m 为参数表示出点P 以及点E 的坐标,进而求出E 点到直线的距离,即为ABE △的高,最后把ABE △的面积表示成m 的函数,求其最值. (1)证明:抛物线24y x =的焦点为()1,0F ,准线方程为1x =-. 设()()()()()11221212,,,,112A x y B x y AB AF BF x x x x =+=+++=++, 弦AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭, 则M 到准线1x =-的距离为()121211222AB x x x x++--=+=, 所以以AB 为直径的圆与直线1x =-相切. (2)解:由题可知直线l 的斜率不能为0,设直线l 的方程为1x my =+,由21,4x my y x=+⎧⎨=⎩整理得2440y my --=, 又()()1122,,,A x y B x y , 则12124,4y y m y y +==-,所以2AB =()()21212444x x m y y m ++=++=+.点P 的坐标为()1,2m -,于是直线OP 的方程为2y mx =-, 代入24y x =,整理得0x =或21x m =, 从而212,E mm ⎛⎫-⎪⎝⎭ 则点E 到直线AB211+=故()()32221442ABESm m =+=.[),1,t t ∈+∞,()()()()223222232,11t t t f t f t t t -=--'= 则()f t在⎡⎣上单调递减,在)+∞上单调递增,故min ()f t f ==练习二 其他最值问题5.已知抛物线()2:20E x py p =>的焦点为F ,直线4x =分别与x 轴交于点P ,与抛物线E 交于点Q ,且54QF PQ =.(1)求抛物线E 的方程;(2)如图,设点,,A B C 都在抛物线E 上,若ABC 是以AC 为斜边的等腰直角三角形,求AB AC ⋅的最小值.【答案】(1)24x y = (2)32 【解析】 【分析】(1)设()04,Q y ,列方程组000216524py p y y =⎧⎪⎨+=⎪⎩,求出2p =,即可得到抛物线E 的方程;(2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,利用ABC 是以AC 为斜边的等腰直角三角形,表示出()()32211k x k k --+,用坐标表示出AB AC =()()32221611k k k ++利用基本不等式求出AB AC 的最小值.(1)设点()04,Q y ,由已知000216524py p y y =⎧⎪⎨+=⎪⎩,则8102p p p +=,即24p =. 因为0p >,则2p =,所以抛物线E 的方程是24x y =. (2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,直线AB 的斜率为()0k k >,因为AB BC ⊥,则直线BC 的斜率为1k-. 因为AB BC =,则212232111x x k x x k -+=-+,得()2312x x k x x -=-,① 因为22121212444x x x x k x x -+==-,则124x x k +=,即124x k x =-,②因为223223231444x x x x k x x -+-==-,则234x x k +=-,即324x x k=--③将②③代入①,得()2242420x k k x k +--=,即()()322212120k k x k k k-+---=,则()()32211k x k k -=+, 所以()()()()22222122··cos 451421AB AC AB AC AB x x k k x k ︒===-+=-+ ()()()()()2332222411614111k k k k k k k k ⎡⎤-+⎢⎥=-+=++⎢⎥⎣⎦因为212k k +≥,则()22214k k +≥,又()22112k k ++≥,则()()3222121k k k +≥+,从而()()3222121k k k +≥+,当且仅当1k =时取等号,所以AB AC 的最小值为32.6.已知双曲线C :()222210,0x y a b a b-=>>的左右顶点分别为()1,0A -,()10B ,,两条准线之间的距离为1.(1)求双曲线C 的标准方程;(2)若点P 为右准线上一点,直线P A 与C 交于A ,M ,直线PB 与C 交于B ,N ,求点B 到直线MN 的距离的最大值.【答案】(1)2213y x -=(2)1【解析】【分析】(1)求得双曲线C 的的,a b ,即可求得双曲线C 的标准方程;(2)以设而不求的方法先判定直线MN 过定点,再去求点B 到直线MN 的距离的最大值.(1)由题意得1a =.设双曲线C 的焦距为2c ,则221a c⨯=,所以2c =.所以b所以双曲线C 的标准方程2213y x -=. (2) 设1,2P t ⎛⎫ ⎪⎝⎭,则直线P A 的方程为:()213t y x =+. 由()2213213y x t y x ⎧-=⎪⎪⎨⎪=+⎪⎩,得()222242784270t x t x t -+++=.因为直线P A 与C 交于A ,M ,所以24270t -≠,所以t ≠. 因为22427427A M M t x x x t +=-=-,所以22427427M t x t +=--, ()22222427361133427427M M t t t t y x t t ⎛⎫+-=+=-+= ⎪--⎝⎭, 所以22242736,427427t t M t t ⎛⎫+-- ⎪--⎝⎭. 因为直线PB 的方程为()21y t x =--,由()221321y x y t x ⎧-=⎪⎨⎪=--⎩,得()2222438430t x t x t --++=.因为直线PB 与C 交于B ,N ,所以2430t -≠,所以t ≠ 因为224343B N N t x x x t +==-,所以224343N t x t +=-, ()222431*********N N t t y t x t t t ⎛⎫+-=--=--= ⎪--⎝⎭,所以2224312,4343t t N t t ⎛⎫+- ⎪--⎝⎭. 所以当32t ≠±时,直线MN 的方程为222222222123612434342743427434343427t t t t t t y x t t t t t t -+⎛⎫+--+=- ⎪++--⎝⎭+--. 令0y =,得()()22422222222221243649610821236434274443431327438843427t t t t x t t t t t t t t t t t t ++-=⨯+==--+++--+-+---. 所以直线MN 过定点()2,0D . 当32t =±时,222242743242743t t t t ++-==--,所以直线MN 过定点()2,0D . 所以当BD MN ⊥时,点B 到直线MN 的距离取得最大值为1.7.如图,已知点()2,2P 是焦点为F 的抛物线()2:20C y px p =<上一点,A ,B 是抛物线C 上异于P 的两点,且直线P A ,PB 的倾斜角互补,若直线P A 的斜率为()1k k <.(1)求抛物线方程;(2)证明:直线AB 的斜率为定值并求出此定值;(3)令焦点F 到直线AB 的距离d ,求d d FA FB -的最大值.【答案】(1)22y x =(2)证明见解析,12-【解析】【分析】(1)待定系数法求解抛物线方程;(2)设出直线方程,联立后得到A 点纵坐标,同理得到B 点纵坐标,从而求出直线AB 的斜率;(3)在前两问基础上用斜率k表达出2454516k d d k FA FB k k --=⎛⎫-+ ⎪⎝⎭,换元后使用基本不等式求出最大值.(1)将点()2,2P 代入抛物线方程可得:1p =,抛物线2:2C y x =(2)设()():221-=->PA y k x k ,与抛物线方程联立可得:22440-+-=ky y k ,∴4422--=⇒=A P A k k y y y k k ,用k -代k 可得:22+=-B k y k因此,2221222A B A B AB A B A B A B y y y y k y y x x y y --===--+-=,即12AB k =-. (3) 由(1)可知,12AB k =-,()222122,⎛⎫-- ⎪ ⎪⎝⎭k k A k k ,()222122,⎛⎫+-+ ⎪ ⎪⎝⎭k k B k k 因此()22222122122:202⎛⎫----=--⇒+-= ⎪ ⎪⎝⎭k k k AB y x x y k k k 1,02F ⎛⎫ ⎪⎝⎭到直线AB的距离2==d . 11d d d FA FB FA FB ⎛⎫-=- ⎪ ⎪⎝⎭∵()342113211112524162422B A B A A B A B A B FB FA x x x x k FA FB FA FB k k x x x x x x ----====⋅-+⎛⎫⎛⎫++++⋅+ ⎪ ⎪⎝⎭⎝⎭∴()22342425432252416252416k k d d k FA FB k k k k --==-+-+22244551642524516--==⎛⎫-+-+ ⎪⎝⎭k k k k k k k k ,令45=-t k k,由1k >得1t >∴211616d d tFA FB t tt-=≤=++当且仅当4454=⇒-=⇒=t k kk.d dFA FB-【点睛】求解抛物线取值范围问题,把要求解的问题转化为单元问题,常使用的工具有换元,基本不等式,或导函数.8.已知抛物线()2:20C y px p=>的焦点为F,A,B是该抛物线上不重合的两个动点,O为坐标原点,当A点的横坐标为4时,3cos5OFA∠=-.(1)求抛物线C的方程;(2)以AB为直径的圆经过点()1,2P,点A,B都不与点P重合,求AF BF+的最小值.【答案】(1)24y x=;(2)11.【解析】【分析】(1)作出辅助线,利用焦半径与余弦值求出p的值,进而求出抛物线方程;(2)设出直线方程,与抛物线方程联立,根据PA PB⊥得到等量关系,求出25n m=+,从而表达出212124112AF BF x x m⎛⎫+=++=++⎪⎝⎭,求出最小值.(1)设()04,A y,因为3cos05OFA∠=-<,所以42p>,42pAF=+,过点A作AD⊥x轴于点D,则42pDF=-,432cos542pDFDFApAF-∠===+,解得:2p=,所以抛物线方程为24y x=.(2)设直线AB 为x my n =+,()()1122,,,A x y B x y ,由方程x my n =+与24y x =联立得:2440y my n --=,所以()24160m n ∆=-+>,即20m n +>,且124y y m +=,124y y n =-,所以()21212242x x m y y n m n +=++=+,222121216y y x x n ⋅==,因为以AB 为直径的圆经过点()1,2P ,所以PA PB ⊥,即()()11221,21,20PA PB x y x y ⋅=--⋅--=,即()()12121212250x x x x y y y y -++-++=,所以()22424850n m n n m -+--+=,所以()()22322n m -=+,所以25n m =+或21n m =-+, 当21n m =-+时,直线AB 为12x my m =+-过点P ,此时与题干条件A ,B 都不与点P 重合矛盾,不合题意,舍去;当25n m =+时,直线AB 为25x my m =++,满足要求,所以2212424410x x m n m m +=+=++,则22121244124112AF BF x x m m m ⎛⎫+=++=++=++ ⎪⎝⎭,所以当12m =-时,AF BF +最小,且最小值为11.。

高中数学专题-解析几何中的最值与范围问题以及定点、定值问题

高中数学专题-解析几何中的最值与范围问题以及定点、定值问题

高中专题-解析几何中的最值与范围问题解析几何中的定点、定值问题例1设圆C 与两圆2222(4,(4x y x y ++=-+=中的一个内切,另一个外切.(1)求C 的圆心轨迹L 的方程;(2)已知点)3545,,55M F ⎛⎫ ⎪ ⎪⎝⎭,且P 为L 上动点,求MP FP -的最大值及此时点P 的坐标.【解】(1)2214x y -=;(2)最大值为2,6525,55P ⎛⎫- ⎪ ⎪⎝⎭例2设椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->.(1)设E 是直线2y x =+与椭圆的一个公共点,求使得12EF EF +取最小值时椭圆的方程;(2)已知(0,1)N -,设斜率为(0)k k ≠的直线l 与条件(1)下的椭圆交于不同的两点,A B ,点Q 满足AQ QB = ,且0NQ AB ⋅= ,求直线l 在y 轴上截距的取值范围.【解】(1)最小值2213x y +=;(2)1,22⎛⎫ ⎪⎝⎭例3(1)椭圆224()4x y a +-=与抛物线22x y =有公共点,则a 的取值范围是.(2)椭圆2212516x y +=上的点到圆22(6)1x y +-=上的点的距离的最大值是().A.11B.C.D.9【解】(1)171,8⎡⎤-⎢⎥⎣⎦;(2)A例4在直角坐标系中,O 是原点,,A B 是第一象限内的点,并且A 在直线(tan )y x θ=上,其中42OA ππθ⎛⎫∈= ⎪⎝⎭,,,B 是双曲线22=1x y -上使OAB 面积最小的点,求:当θ在42ππ⎛⎫ ⎪⎝⎭,中取什么值时,OAB 的面积最大,最大值是多少?【解】2arccos 4θ=,最大值为66专题-解析几何中的定点、定值问题例1已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)求直线:l y kx m =+与椭圆C 相交于,A B 两点(,A B 不是左、右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.【解】(1)22143x y +=;(2)2,07⎛⎫ ⎪⎝⎭例2已知点(1,1)A 是椭圆22221(0)x y a b a b+=>>上一点,12,F F 是椭圆的两焦点,且满足124AF AF +=.(1)求椭圆的两焦点坐标;(2)设点B 是椭圆上任意一点,如果AB 最大时,求证:,A B 两点关于原点O 不对称;(3)设点,C D 是椭圆上两点,直线,AC AD 的倾斜角互补,试判断直线CD 的斜率是否为定值?若是定值,求出此定值;若不是定值,说明理由.【解】(1)2626,0,,033⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;(2)证明略;(3)13例3如图1所示,在平面直角坐标系xOy 中,过定点(0,)C p 作直线与抛物线22(0)x py p =>相交于,A B 两点.(1)若点N 是点C 关于坐标原点O 的对称点,求ANB 面积的最小值;(2)是否垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.【解】(1)2;(2)2py =例4已知椭圆方程为221169x y +=,过长轴顶点(40)A -,的两条斜率乘积为916-的直线交椭圆于另两点,B C ,问直线BC 是否过定点D ,若存在,求出D 的坐标,若不存在,说明理由.【解】直线12:98()0BC x k k y ++=过原点(0,0)例5如图3所示,设椭圆2221(2)4x y a a +=>的离心率为33,斜率为k 的直线l 过点(01)E ,,且与椭圆相交于,C D 两点.(1)求椭圆方程;(2)若直线l 与x 轴相交于点G ,且GC DE = ,求k 得值;(3)设A 为椭圆的下顶点,,AC AD k k 分别为直线,AC AD 的斜率,证明:对任意k ,恒有=-2AC AD k k ⋅【解】(1)22164x y+=;(2)63k=±;(3)证明略。

高考数学解析几何增分策略:最值与范围、证明问题

高考数学解析几何增分策略:最值与范围、证明问题

=1的左、右焦点分别是F1,F2,
椭圆上有不同的三点A,B,C,且BF2⊥Ox,|F2A|,|F2B|,
|F2C|成等差数列.
(1)求弦AC的中点M的横坐标;
(2)设弦AC的垂直平分线的方程为y=kx+m(k≠0),求m的
取值范围.
[思维流程]
[解] (1)由题意可得,F2(4,0),|F2B|=95. 设A(x1,y1),C(x2,y2), 由|F2A|=a-ex1,得|F2A|=5-45x1. 同理:|F2C|=5-45x2. 因为|F2A|,|F2B|,|F2C|成等差数列, 所以5-45x1+5-45x2=2×95, 由此有x1+x2=8, 所以弦AC的中点的横坐标x=4.
由2 3 6<t<2,得14<k2<12,∴|AB|=
1+k2·2
2· 1-2k2 1+2k2
=2 1+22k22+1+12k2-1. 令u=1+12k2,则u∈12,23,∴|AB|=2 2u2+u-1∈0,235.
∴|AB|的取值范围为0,23 5.
题型三 证明问题 圆锥曲线中的证明问题是高考的热点内容之一,常见的有 位置关系方面的,如证明相切、垂直、过定点等;数量关系方 面的,如存在定值、恒成立、值相等、角相等、三点共线 等.在熟悉圆锥曲线的定义和性质的前提下,要多采用直接法 证明,但有时也会用到反证法.
解:(1)依题意可设圆C方程为x2+y2=b2, ∵圆C与直线x-y+ 2=0相切,∴b= 12+| 2-| 12=1, ∴a2-c2=1,由ac= 22,解得a= 2, ∴椭圆C的方程为x22+y2=1.
(2)证明:依题意可知直线l斜率存在,设l方程为y=k(x-2),代 入x22+y2=1,整理得(1+2k2)x2-8k2x+8k2-2=0, ∵l与椭圆有两个交点,∴Δ>0,即2k2-1<0. 设A(x1,y1),B(x2,y2),直线AF,BF的斜率分别为k1,k2,则 x1+x2=1+8k22k2,x1x2=81k+2-2k22.

解析几何三角形面积最值问题-解析版

解析几何三角形面积最值问题-解析版

解析几何三角形面积最值问题未命名一、解答题1.(2019·黑龙江哈尔滨市·哈师大附中高三开学考试(文))已知(0,2)A -,椭圆2222:1(0)x y E a b a b +=>>的离心率2,F 是椭圆E 的右焦点,直线AF,O 为坐标原点.(1)求椭圆的方程;(2)设过点A 的动直线l 与椭圆E 相交于P ,Q 两点,当OPQ ∆的面积最大时,求直线l 的方程.【答案】(1)22182x y +=;(2)22y x =-或22y x =--【解析】试题分析:(1)由离心率与斜率可求得a,b,c.(2) 设:2l y kx =-,与椭圆组方程组,由弦长公式,点到距离公式,求得三角形面积. 试题解析:(1)设(),0F c,由条件知,2c c =⇒=又22c a b a =⇒==, 故椭圆E 的方程为22182x y +=;(2)当l x ⊥轴时,不合题意,故可设:2l y kx =-,()22222,1416801,82y kx k x kx x y =-⎧⎪⇒+-+=⎨+=⎪⎩, ()221164104k k ∆=->⇒>, 设()11,P x y ,()22,Q x y ,121222168,1414k x x x x k k +==++,241PQ k ==+又点O 到直线l 的距离d =∴△OPQ 的面积12OPQS PQ d ∆==,t =,则0t >, ∴2OPQ S t t∆==≤+,当且仅当2t t t =⇒=k =时等号成立,满足0∆>,∴当k =±时,△OPQ 的面积取得最大值2,此时直线l 的方程为2y x =-或2y x =-. 【点睛】弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B x y ,所以12AB x =-或12AB y =-2.(2020·江苏高二单元测试)已知椭圆C :22221(0)x y a b a b+=>>的离心率为12,以椭圆长、短轴四个端点为顶点为四边形的面积为(Ⅰ)求椭圆C 的方程;(Ⅱ)如图所示,记椭圆的左、右顶点分别为A 、B ,当动点M 在定直线4x =上运动时,直线AM BM 、分别交椭圆于两点P 、Q ,求四边形APBQ 面积的最大值.【答案】(Ⅰ)22143x y +=;(Ⅱ)6. 【分析】(Ⅰ)由离心率为12,以椭圆长、短轴四个端点为顶点为四边形的面积为222,ce a b c a==+,列方程组求得,a b 的值,即可求出椭圆C 的方程;(Ⅱ)点()4,M t ,直线AM 的方程()26t y x =+代入椭圆方程22143x y +=,得()222227441080t xt x t +++-=,利用韦达定理解出P 点坐标,同理可求得Q 点的坐标,利用三角形面积公式将四边形面积表示为t 的函数,利用换元法结合函数单调性求解即可. 【详解】(Ⅰ)由题设知,2,2a c ab ==又222a b c =+,解得2,1a b c ===,故椭圆C 的方程为22143x y +=.(Ⅱ)由于对称性,可令点()4,M t ,其中0t >.将直线AM 的方程()26t y x =+代入椭圆方程22143x y +=,得()222227441080t xt x t +++-=,由22410827A P t x x t -⋅=+,2A x =-得2225427Pt x t -=+,则21827P t y t =+. 再将直线BM 的方程()22t y x =-代入椭圆方程22143x y +=,得()2222344120t xt x t +---=,由224123B Q t x x t -⋅=+,2B x =得22263Q t x t-=+,则263Q t y t -=+. 故四边形APBQ 的面积为122P Q P Q S AB y y y y =⋅-=-= 221862273t t t t ⎛⎫+ ⎪++⎝⎭()()()()()22222222248948948912273912)9t t t t t t t tt t t t ++===+++++++.由于296t tλ+=≥,且12λλ+在[)6,+∞上单调递增,故128λλ+≥,从而,有48612S λλ=≤+. 当且仅当6λ=,即3t =,也就是点M 的坐标为()4,3时,四边形APBQ 的面积取最大值6.注:本题也可先证明”动直线PQ 恒过椭圆的右焦点()0,1F ”,再将直线PQ 的方程1x ty =+ (这里t R ∈)代入椭圆方程22143x y +=,整理得()2234690t y ty ++-=,然后给出面积表达式2P Q S y y =-==令211m t =+≥,则S =当且仅当6λ=即3t =时, max 6S =. 3.(2020·宁夏银川一中高二期中(理))已知椭圆()2222:10x y M a b a b+=>>的一个焦点与短轴的两端点组成一个正三角形的三个顶点,且椭圆经过点⎭.(1)求椭圆M 的标准方程;(2)直线l :x ky n =+与椭圆M 相交于A ,B 两点,且以线段AB 为直径的圆过椭圆的右顶点C ,求ABC 面积的最大值.【答案】(1)2214x y +=;(2)1625. 【分析】(1)首先根据题意得到2b a =,再根据椭圆经过点⎭,即可得到答案.(2)首先设直线l 的方程为x ky n =+,联立2214x y x ky n ⎧+=⎪⎨⎪=+⎩,得到()2224240ky kny n +++-=,根据0CA CB ⋅=得到所以直线l 恒过点6,05D ⎛⎫⎪⎝⎭,再计算ABC 面积的最大值即可. 【详解】(1)设椭圆的上下顶点为()10,B b ,()20,B b -,左焦点为()1,0F c -, 则12B B F △是正三角形,所以2b a ==,则椭圆方程为222214x y b b+=.将⎭代入椭圆方程,可得2221142b b +=, 解得2a =,1b =,故椭圆的方程为2214x y +=.(2)由题意,设直线l 的方程为x ky n =+,联立2214x y x ky n ⎧+=⎪⎨⎪=+⎩,消去x 得()2224240k y kny n +++-=. 设()11,A x y ,()22,B x y ,则有12224kn y y k -+=+,212244n y y k -=+,因为以线段AB 为直径的圆过椭圆的右顶点()2,0C ,所以0CA CB ⋅=, 由()112,CA x y =-,()222,CB x y =-,则()()1212220x x y y --+=, 将11x ky n =+,22x ky n =+代入上式,并整理得()()()()2212121220k y y k n y y n ++-++-=,则()()()()22222214222044kn k n n n k k +---++-=++, 化简得()()5620n n --=,解得65n =或2n =,因为直线x ky n =+不过点()2,0C , 所以2n ≠,故65n =.所以直线l 恒过点6,05D ⎛⎫ ⎪⎝⎭. 故121||||2ABC S DC y y =⋅-△16225⎛=⨯-= ⎝=, 设211044t t k ⎛⎫=<≤ ⎪+⎝⎭,则ABCS=10,4t ⎛⎤∈ ⎥⎝⎦上单调递增, 当14t=时,1625ABCS ==, 所以ABC 面积的最大值为1625. 【点睛】关键点点睛:本题主要考查直线与椭圆的位置关系,属于难题.本题中直线方程代入椭圆方程整理后应用韦达定理求出12y y +,12y y ⋅,然后利用0CA CB ⋅=得到直线l 恒过点6,05D ⎛⎫⎪⎝⎭为解题的关键,考查了学生的运算求解能力,逻辑推理能力. 4.(2021·安庆市第十中学高二期末(理))已知椭圆()2222:10x y C a b a b+=>>的短轴长为12e =. (1)求椭圆C 的标准方程;(2)若12F F 、分别是椭圆C 的左、右焦点,过2F 的直线l 与椭圆C 交于不同的两点A B 、,求1F AB 的面积的最大值. 【答案】(1)22143x y +=;(2)3.【分析】(1)由题意,列出方程组,求得2,a b ==,即可得到椭圆的标准方程; (2)设()()1122,,,A x y B x y ,设直线l 的方程为1x my =+,根据根与系数的关系,求得1212,y y y y +,结合三角形的面积公式,得到1121212F ABSF F y y =⋅-=,利用换元法,结合函数的单调性,即可求解. 【详解】(1)由题意, 椭圆()2222:10x y C a b a b+=>>的短轴长为12e =.可得222212b c a a b c ⎧=⎪⎪=⎨⎪=+⎪⎩,解得2,a b ==,故椭圆的标准方程为22143x y +=.(2)设()()1122,,,A x y B x y ,因为直线l 的斜率不为零,可设直线l 的方程为1x my =+,由221143x my x y =+⎧⎪⎨+=⎪⎩,得()2234690m y my ++-=,所以12122269,3434m y y y y m m --+==++, 又因直线l 与椭圆C 交于不同的两点,故0∆>,即()22(6)36340,m m m R ++>∈,则112121221234F ABSF F y y y y m =⋅-=-==+,令t =,则1t ≥,则12124113132F ABt St t t ===++.令13()f t t t=+,由函数的性质可知,函数()ft 在⎫+∞⎪⎪⎣⎭上是单调递增函数, 即当1t ≥时,()f t 在[1,)+∞上单调递增,因此有4()(1)3f t f ≥=,所以13F AB S ≤△,即当1,0t m ==时,1F ABS最大,故当直线l 的方程为1x =时,1F AB 面积的最大值为3. 【点睛】求解圆锥曲线的最值问题的解答策略:1、若题目中的条件和结论能明显体现几何特征和意义,则考虑利用圆、圆锥曲线的定义、图形,以及几何性质求解;2、当题目给出的条件和结论的几何特征不明显,则可以建立目标函数,再求这个目标函数的最值(或值域),常用方法:①配方法;②基本不等式;③单调性法;④三角换元法;⑤导数法等,要特别注意自变量的取值范围.5.(2021·全国高二课时练习)已知点A (0,-2),椭圆E :22221x y a b+= (a >b >0)的离心F 是椭圆E 的右焦点,直线AF ,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.【答案】(1)2214x y += (2)22y x =±-【解析】试题分析:设出F ,由直线AF c ,结合离心率求得a ,再由隐含条件求得b ,即可求椭圆方程;(2)点l x ⊥轴时,不合题意;当直线l 斜率存在时,设直线:2l y kx =-,联立直线方程和椭圆方程,由判别式大于零求得k 的范围,再由弦长公式求得PQ ,由点到直线的距离公式求得O 到l 的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出k 值,则直线方程可求.试题解析:(1)设(),0F c ,因为直线AF ,()0,2A -所以2c =c =又222c b a c a ==-解得2,1a b ==,所以椭圆E 的方程为2214x y +=.(2)解:设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立221{42,x y y kx +==-,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,即k <或k > 1212221612,1414k x x x x k k+==++. 所以PQ ==214k =+ 点O 到直线l 的距离d =所以12OPQS d PQ ∆==0t =>,则2243k t =+,244144OPQ t S t t t∆==≤=++, 当且仅当2t=2=,解得k =时取等号, 满足234k >所以OPQ ∆的面积最大时直线l 的方程为:2y x =-或2y x =-. 【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.6.(2020·黑龙江建三江分局第一中学高二期中(文))已知椭圆C :22221(0)x y a b a b+=>>倍,且经过点).(1)求C 的标准方程;(2)C 的右顶点为A ,过C 右焦点的直线l 与C 交于不同的两点M ,N ,求AMN ∆面积的最大值.【答案】(1)22142x y +=;(2)2- 【分析】(1)利用已知条件,结合椭圆方程求出,a b ,即可得到椭圆方程.(2)设出直线方程,联立椭圆与直线方程,利用韦达定理,弦长公式,列出三角形的面积,再利用基本不等式转化求解即可. 【详解】(1)解:由题意22,211,a a b⎧=⎪⎨+=⎪⎩解得2a =,b = 所以椭圆的标准方程为22142x y +=.(2)点(2,0)A,右焦点)F,由题意知直线l 的斜率不为0,故设l的方程为x my =+()11,M x y ,()22,N x y ,联立方程得22142x y x my ⎧+=⎪⎨⎪=+⎩,消去x,整理得22(2)20m y ++-=,∴216(1)0m ∆=+>,12y y +=,12222y y m =-+,()()()21212122222222)224281m y y y y y y m m m ⎛⎫∴--=+ ⎪ ⎪+=+=++⎝+⎭16(1222y y m ∴-=+(12122AMNS y y ∆∴=⨯⨯-(22=(()122221=-,当且仅当0m =时等号成立,此时l :x = 所以AMN 面积的最大值为2- 【点睛】本题考查椭圆的性质和方程的求法,考查联立直线方程和椭圆方程消去未知数,运用韦达定理化简整理和运算能力,属于中档题.7.(2021·浙江高三专题练习)平面直角坐标系xOy 中,过椭圆M :22221x y a b+=(0a b >>)右焦点的直线0x y +=交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求椭圆M 的方程;(Ⅱ)C ,D 为M 上的两点,若四边形ABCD 的对角线CD AB ⊥,求四边形ABCD 面积的最大值.【答案】(Ι) 22163x y +=(Ⅱ)12AB CD ⋅=【分析】(1)把右焦点()c,0代入直线方程可求出c ,设()11,,A x y ()22,B x y ,线段AB 的中点()00,P x y ,利用“点差法”即可得出a,b 的关系式,再与222a b c =+联立即可求出a,b ,进而可得椭圆方程;(2)由CDAB ⊥,可设直线CD 方程为y x m =+,与椭圆方程联立可得根与系数关系,即可得到弦长CD ,把直线0x y AB +=与椭圆的方程联立得到根与系数关系,即可得到弦长,利用ABCD 1S 2AB CD =⋅四边形即可得到关于m 的表达式,利用二次函数的单调性即可求出其最大值. 【详解】(Ι)设()11,,A x y ()22,,B x y 则()22112211x y a b +=,()22222212x y a b+=,(1)-(2)得:()()()()12121212220x x x x y y y y ab-+-++=,因为12121y y x x -=--,设()00,P x y ,因为P 为AB 的中点,且OP 的斜率为12,所以0012y x =,即()121212y y x x +=+,所以可以解得222a b =,即()2222a a c=-,即222ac =,又因为c =,所以26a =,所以M 的方程为22163x y +=.(Ⅱ)因为CD AB ⊥,直线AB 方程为0x y +=,所以设直线CD 方程为y x m =+,将0x y +=代入22163x y +=得:230x -=,即(A 、B ⎝⎭,所以可得AB =;将y x m =+代入22163x y +=得:2234260x mx m ++-=,设()33,,C x y ()44,,D x y 则CD =()221612260m m ∆=-->,即33m -<<,所以当0m =时,|CD|取得最大值4,所以四边形ACBD 面积的最大值为12AB CD ⋅= . 【点睛】本小题考查椭圆的方程的求解、直线与椭圆的位置关系,考查数学中的待定系数法、设而不求思想 ,考查同学们的计算能力以及分析问题、解决问题的能力.圆锥曲线是高考的热点问题,年年必考,熟练本部分的基础知识是解答好本类问题的关键.8.(2021·长春市第二十九中学高二期末(理))已知椭圆()2222:10x y C a b a b+=>>的左,右焦点分别为()1F,)2F,且经过点)M.(1)求椭圆C 的标准方程;(2)若斜率为2的直线与椭圆C 交于,A B 两点,求AOB 面积的最大值(O 为坐标原点).【答案】(1)22142x y +=;(2. 【分析】(1)根据椭圆的定义求得a ,由此求得b ,从而求得椭圆C 的标准方程;(2)设出直线AB 的方程2y x m =+,联立直线AB 的方程和椭圆方程,化简后写出根与系数关系,求出弦长AB ,表示出AOB 的面积,利用不等式求出最值即可. 【详解】(1)由椭圆的定义,可知12214a MF MF =+==.解得2a =.又2222b a =-=.所以椭圆C 的标准方程为22142x y +=.(2)设直线l 的方程为2y x m =+, 联立椭圆方程,得2298240x mx m ++-=,2264721440m m ∆=-+>,得m -<<设()11,A x y ,()22,B x y ,1289m x x ∴+=-,212249m x x -=,12AB x x ∴=-=== 点()0,0O 到直线:20l x y m -+=的距离d=11||22AOBS AB d ∴=⋅⋅=⋅△=≤=当2218m m-=即29m=,3m=±时取等;所以AOB.【点睛】方法点睛:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生逻辑思维能力和计算能力,直线y kx b=+上两点()()1122,,,A x yB x y间的距离公式为:1.12AB x x=-;2.12A yB y=-;3.若AB过焦点,也可以使用焦半径公式.9.(2019·广东中山市·中山纪念中学高三月考(文))已知椭圆C:22221(0)x ya ba b+=>>的左、右焦点分别为1F,2F1F的直线l与C交于A,B两点,2ABF的周长为()1求椭圆C的方程;()2当2ABF的面积最大时,求l的方程.【答案】(1)2212xy+=;(2)1x=-.【解析】试题分析:()1根据椭圆定义及2ABF∆的周长为得出a=cea=知1c ea==,求出21b=,进而得到椭圆C的方程;()2将三角形分割,以12F F为底,A B、两点的纵坐标差的绝对值为高表示三角形面积,运用基本不等式求得结果解析:(1)由椭圆的定义知4a=,a=由cea=知1c ea==2221b a c =-=所以椭圆C 的方程为2212x y +=(2)由(1)知()()121,0,1,0F F -,122F F = 设()()1122,,,A x y B x y ,:1l x my =-联立1x my =-与2212x y +=得到()222210m y my +--=,12y y -=2ABF S ==当211,0m m +==时,2ABF S ∆,:1l x =-点睛:在求过焦点的弦与另一个焦点构成的三角形面积时可以对其分割,转化为两点纵坐标差的绝对值,为简化计算,由于直线过横坐标上一定点,故设直线方程1x my =- 10.(2016·云南昆明市·高三一模(理))已知离心率为√22的椭圆E:x 2a2+y 2b 2=1 (a >b >0)经过点A(1,√22). (1)求椭圆E 的方程; (2)若不过点A 的直线l:y =√22x +m 交椭圆E 于B,C 两点,求ΔABC 面积的最大值.【答案】(1)x 22+y 2=1,(2)√22【解析】试题分析:(Ⅰ)由椭圆的离心率为√22,可得c a=√2,可设椭圆方程为x 22n 2+y 2n 2=1,再代入点A 的坐标得代入设出的椭圆的方程,即可得椭圆E 的方程(Ⅱ)先设点B ,C 的坐标分别为(x 1,y 1),(x 2,y 2),将直线方程与椭圆的方程联立:消去一个元,得到一个一元二次方程.再求解判别式:写出根与系数的关系.计算点A 到直线l 的距离,得到用m 表示ΔABC 的面积,利用基本不等式求出ΔABC 面积的最大值. 试题解析:(Ⅰ)因为ca =√2,所以设a =√2n ,c =n ,则b =n ,椭圆E 的方程为x 22n 2+y 2n 2=1. 代入点A 的坐标得12n 2+12n 2=1,n 2=1,所以椭圆E 的方程为x 22+y 2=1.(Ⅱ)设点B ,C 的坐标分别为(x 1,y 1),(x 2,y 2),由{y =√22x +m x 2+2y 2=2得x 2+2(12x 2+√2mx +m 2)=2,即x 2+√2mx +m 2−1=0, x 1+x 2=−√2m ,x 1⋅x 2=m 2−1 Δ=2m 2−4(m 2−1)>0,m 2<2.|BC|=√(1+k 2)[(x 1+x 2)2−4x 1x 2] =√32[2m 2−4(m 2−1)] =√32(4−2m 2),点A 到直线l 的距离d =√32,ΔABC 的面积S =12|BC|⋅d =12√32(4−2m 2)√32=√22√m 2(2−m 2)≤√22⋅m 2+2−m 22=√22,当且仅当m 2=2−m 2,即m 2=1时等号成立.所以当m =±1时,ΔABC 面积的最大值为√22.考点:(1)椭圆的方程;(2)直线与椭圆的综合问题.【方法点睛】解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.。

解析几何中的最值问题

解析几何中的最值问题
2 2
的最值。 求: S = x − 2y 的最值。
解:
Y
由 S = x −2y 得
y= 1x− 1S 2 2
O
− 1 s 为直线在 轴上的截距。 为直线在y轴上的截距 轴上的截距。 2 取最小时,S 取最大值。 当 − 1 s 取最小时 取最大值。 2
此时,直线与圆相切。 此时,直线与圆相切。 .
设右准线为 L , 则 L 的方程是 x =
又设 P 到 L 的距离为 PB ,则
4 3
L
B
PF =e PB
P
A
F
PF 2 即 PB = = PF e 3
B1 P1
2 ∴ PA + PF = PA + PB 3 当且仅当 A、P、B共线时, + PB 最小。 共线时, PA 最小。
X=
4 3
4 8 此 小 为 − = 最 值 4 3 3
小 结
代数方法讨论几何问题是解析几何的特点和手段 讨论几何问题是解析几何的特点和手段。 1 用代数方法讨论几何问题是解析几何的特点和手段。 对于解析几何中的极值问题的解决 首先应注意函数方法 参数法)的运用, 函数方法( 首先应注意函数方法(参数法)的运用, 将所求对象表示成某个变量的函数, 将所求对象表示成某个变量的函数, 利用代数方法来解决。 利用代数方法来解决。
X
圆心(1、-2)到直线的距离等于 5 圆心( 、 )
− 1s 2
1 + 2 − S 2 2 = 5 4
5

S最小值 = 0
S最大值 = 10
例4、已知:实数 x、y 满足 (x − 1) + (y + 2) = 5 。 、已知: 、

高中数学期末备考:解析几何03圆中最值问题含解析

高中数学期末备考:解析几何03圆中最值问题含解析

3.圆最值问题一.重要结论1.圆中与距离最值有关的常见的结论:结论1.圆外一点A 到圆上距离最近为AO r ,最远为AO r ;结论2.过圆内一点的弦最长为圆的直径,最短的弦为与过该点的直径垂直的弦;结论3.直线与圆相离,则圆上点到直线的最短距离为圆心到直线的距离d r ,最近为d r ;2.圆中与面积有关的最值结论:结论4.圆的内接三角形面积最大当且仅当其为等边三角形;结论5.过圆外一点P 向圆O 引两条切线,切点记为B A ,,则四边形ABPO 面积的最值等价于圆心到点P 的距离最值.3.圆中与角度有关的最值问题.结论6.圆上两点与圆外一点的连线的夹角(圆外一点为顶点)中,以这两条直线为切线时最大.结论7.圆上一点、圆心与圆外一点连线的夹角(圆外一点为顶点)中,以这条直线为切线时最大.结论8.圆上一点、圆外两点连线的夹角(圆外一点为顶点)中,以这条直线为切线时最大.结论9.圆内两点,圆上一点(圆上点为顶点)的最大夹角问题(米勒圆问题).4.其他与圆有关的最值问题结论10.两个动点分别在两条平行线上运动,这两个动点间的最短距离为两条平行线间的距离.二.强化练习1.已知圆P 的方程为22680x y x y ,过点 1,2M 的直线与圆P 交于A ,B 两点,则弦AB 的最小值为()A.B.10C.D.52.在圆22:230M x y x 中,过点 0,1E 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为()A.B.C.D.3.已知点(,)P x y 是圆2264120x y x y 上的动点,则x y 的最大值为()A.5B.5C.6D.54.已知方程22220x y kx y k 表示的圆中,当圆面积最小时,此时k ()A.-1B.0C.1D.25.直线 1210m x my m 与圆229x y 交于,M N 两点,则弦长MN 的最小值为()A.1B.26.设A 是圆22(1)9x y 上的动点,PA 是圆的切线,且4PA ,则点P 到点 5,8Q 距离的最小值为()A.4B.5C.6D.157.已知P 为抛物线24y x 上一个动点,Q 为圆 22241x y 上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是()A.6B.5C.4D.38.已知点M ,N 分别在圆 221:129C x y 与圆 222:2864C x y 上,则MN 的最大值为()11B.1711D.159.已知P 是半圆C x 上的点,Q 是直线10x y 上的一点,则PQ 的最小值为()1110.(2021新高考1卷).已知点P 在圆 225516x y 上,点 4,0A , 0,2B ,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当PBA 最小时,PBD.当PBA 最大时,PB 参考答案1.已知圆P 的方程为22680x y x y ,过点 1,2M 的直线与圆P 交于A ,B 两点,则弦AB 的最小值为()A.B.10C.D.5【答案】A2.在圆22:230M x y x 中,过点 0,1E 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为()A.B.C.D.【答案】B3.已知点(,)P x y 是圆2264120x y x y 上的动点,则x y 的最大值为()A.5B.5C.6D.5【答案】A4.已知方程22220x y kx y k 表示的圆中,当圆面积最小时,此时k ()A.-1B.0C.1D.2【答案】B5.直线 1210m x my m 与圆229x y 交于,M N 两点,则弦长MN 的最小值为()A.1B.2【答案】D6.设A 是圆22(1)9x y 上的动点,PA 是圆的切线,且4PA ,则点P 到点 5,8Q 距离的最小值为()A.4B.5C.6D.15【答案】B7.已知P 为抛物线24y x 上一个动点,Q 为圆 22241x y 上一个动点,那么点P到点Q 的距离与点P 到抛物线的准线距离之和的最小值是()A.6B.5C.4D.3【答案】C8.已知点M ,N 分别在圆 221:129C x y 与圆 222:2864C x y 上,则MN的最大值为()11 B.1711D.15【答案】C9.已知P 是半圆C x 上的点,Q 是直线10x y 上的一点,则PQ 的最小值为()2112D.22【答案】D 10.ACD解析:圆 225516x y 的圆心为 5,5M ,半径为4,直线AB 的方程为142x y,即240x y ,圆心M 到直线AB4 ,所以,点P 到直线AB 的距离的最小值为425 ,最大值为4105,A 选项正确,B 选项错误;如下图所示:当PBA 最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ,BM4MP ,由勾股定理可得BP CD 选项正确.故选:ACD.多圆最值问题研究一.基本原理1.将军饮马模型:如图,动点C 为直线l 上一点,B A ,为直线l 一侧的两个定点,那么CA CB 的最小值即为做点B 关于l 的对称点'B ,然后连接'BB 后其长度.2.三角不等式:任意两边之和大于等于第三边,任意两边之差小于等于第三边,取等条件当且仅当三点共线.如图动点P 为直线l 上一点,B A ,为直线l 一侧的两个定点,那么P A PB 的最大值当且仅当B A P ,,三点共线.倘若B A ,在l 两侧,则需先利用对称将其搬到一侧再寻找最大值!此时,P A PB 的最小值为0,即P 为AB 中垂线与l 的交点.总结:“和最小,化异侧,差最大,转同侧”二.典例分析1.距离和的最小值(公众号:凌晨讲数学)例1.已知圆221:430C x y y ,圆222:6260C x y x y ,M N ,分别为圆1C 和圆2C 上的动点,P 为直线:1l y x 上的动点,则||MP NP 的最小值为A.3 B.333解析:由圆 221:21C x y ,圆 222314C x y ,可知圆1C 圆心为 0,2 ,半径为1,如图,圆2C 圆心为 3,1 ,半径为2,圆1C 关于直线:1l y x 的对称圆为圆 221':311C x y ,连结12'C C ,交l 于P ,则P 为满足使PM PN 最小的点,此时M 点为1'PC 与圆1'C 的交点关于直线l 对称的点,N 为2PC 与圆2C 的交点,最小值为 12'21C C ,而12'C C ,PM PN 的最小值为3 ,故选A.2.距离差的最大值(公众号:凌晨讲数学)例2.已知圆 221:111C x y ,圆 222:459C x y ,点M 、N 分别是圆1C 、圆2C 上的动点,点P 为x 轴上的动点,则PN PM 的最大值是()A.4B.9C.7D.2解析:圆 221:111C x y 的圆心为 11,1C ,半径为1,圆 222:459C x y 的圆心为 24,5C ,半径为3.max min maxPN PM PN PM ∵,又2max 3PN PC ,1min1PMPC ,2121max314PN PMPC PC PC PC .点 24,5C 关于x 轴的对称点为24,5C ,2121125PC PC PC PC C C,所以,max549PN PM ,故选:B.3.逆用阿波罗尼斯圆1.阿氏圆定义:已知平面上两点B A ,,则所有满足1,|||| PB P A 的动点P 的轨迹是一个以定比为n m :内分和外分定线段AB 的两个分点的连线为直径的圆.若)0,(),0,(b B a A ,则圆的半径为|||1|2AB ,圆心为)0|,|11(22AB .(公众号:凌晨讲数学)2.结论:已知圆222)()(r b y a x 上任意一点P 和坐标轴上任意两点B A ,,求形如)(PB P A PB P A 的最值问题,可逆用阿氏圆转化为三点共线最值计算.例3.已知圆C 是以点 2,M 和点 6,N 为直径的圆,点P 为圆C 上的动点,若点2,0A ,点 1,1B ,则2PA PB 的最大值为()B.4C.8解析:由题设,知:(4,0)C 且||8MN ,即圆C 的半径为4,∴圆C :22(4)16x y ,如上图,坐标系中(4,0)D 则24OD AC CP OC ,∴12AC PC CP DC ,即△APC △PCD ,故12PA PD ,(亦可逆用阿氏圆,其实就是阿氏圆的几何推导).∴2||||PA PB PD PB ,在△PBD 中||||||PD PB BD ,∴要使||||PD PB 最大,,,P B D 共线且最大值为||BD 的长度.∴||BD 故选:A例4.在平面直角坐标系xOy 中,点P 在圆22:(8)16C x y -+=上运动,(6,0),(6,1),A B 则2PB PA 的最小值为()B.6C.D.2解析:P 为圆C 上任意一点,圆的圆心 8,0C ,半径4r ,如下图所示,4PC ∵,8OC ,2AC 12AC PC PC OC ,PAC OPC 12PA OP,即2OP PA ,2PB PA PB OP ,又PB OP OB (当且仅当P 为线段OB与圆C 的交点时取等号),2PB PA OB 2PB PA本题正确选项:A三.练习题(公众号:凌晨讲数学)1.已知,P Q 分别是直线:20l x y 和圆22:1C x y 上的动点,圆C 与x 轴正半轴交于点(1,0)A ,则PA PQ 的最小值为2B.251210122.已知P ,Q 分别是圆 22:48C x y ,圆 22:41D x y 上的动点,O 是坐标原点,则22PQ PO的最小值是______.3.平面直角坐标系中,点3,3A 、 3,3B 、23,0C ,动点P 在ABC 的内切圆上,则12PC PA 的最小值为_________.4.在平面直角坐标系xOy 中,若(0,1)A ,点B 是圆:C 22230x y x 上的动点,则2AB BO 的最小值为__________.。

解析几何中的一些最值问题

解析几何中的一些最值问题

OCCUPATION2011 7162解析几何中的一些最值问题文/王海滔最值问题遍及中学数学的代数、三角、立体几何及解析几何等学科内的各个分支,在生产实践当中广泛应用,解析几何中的最值问题也是历届各类考试的热点。

如何利用相关的数学方法,运用数形结合的思想解决这类问题,来提高学生分析问题和解决问题的能力,为进一步学好高等数学中的最值问题打下基础,是中学数学复习中不可忽视的问题。

下面,笔者结合具体的例子,对解析几何中的最值问题介绍几种解答方法。

一、利用对称性求最值(动点在直线上)动点在直线上求最值,解决的办法是把折线问题转化成直线问题,利用平面内两点间直线段最短的公理,或利用两点间距离公式求出线段长的最值。

【例1】已知点P 在x 轴上运动,A (-2,2),B (1,3)(1)则│P A │+│PB │的最小值为多少?分析:作出A 点关于x 轴的对称点A'(-2,2),那么│P A │+│PB │=│P A'│+│PB │,利用三角形两边之和大于第三边,可得:│P A'│+│PB │≥│A'B │,当且仅当A',P ,B 三点共线时取得最小值│A'B(2)则│PB │-│P A 分析:此题不用找对称点,利用三角形两边之差小于第三边,只要延长BA 交x 轴于P ,│PB │-│PA │此时得到的最大值为│BA小结:当动点在直线上时,(1)求线段长之和的最小值时,若定点是异侧,则两定点距离即为最小值。

若是同侧,作对称点即可解决。

(2)求线段长之差的最大值时,若定点是同侧,则两定点距离即为最大值。

若是异侧,就利用对称性,转化到同侧,也可解决。

二、利用圆锥曲线的定义求最值(动点在圆锥曲线上)动点在圆锥曲线上求最值,解决方法是先利用圆锥曲线定义对所求的问题进行转化,再利用平面内两点间直线段最短的公理,或利用点到直线的距离为垂线段最短,求出最值。

【例2】已知F 是抛物线y 2=4x 的焦点,A (4,2),点P 是该抛物线上的一个动点,试求│PF │+│P A │的最小值为______。

立体几何解析几何最值问题

立体几何解析几何最值问题

立体几何解析几何最值问题立体几何和解析几何都是数学中的分支领域,它们在研究物体的形状、位置和运动等方面有着不同的方法和应用。

在解析几何中,最值问题是其中一个重要的问题类型,它涉及到找到函数在特定区域内的最大值或最小值。

在立体几何中,我们研究的是空间中的物体,比如点、线、面、体等。

解析几何则是研究平面几何与坐标系统之间的关系,通常使用坐标点来表示点、线、曲线等。

解析几何中最值问题的解决方法通常是通过求导来进行。

我们可以将问题转化为一个函数,然后求该函数的导数,找到导数为0的点,再通过比较得出最大值或最小值。

这种方法在求解平面最值问题时非常有效。

而在立体几何中,最值问题通常涉及到体积、面积或长度等量的最大化或最小化。

解决这类问题可以利用几何性质和定理来进行推导和求解。

比如,要求一个几何体的体积的最大值,我们可以通过寻找几何体的特定形状的体积公式以及几何性质来得出最优解。

具体地说,在立体几何中,最值问题的解决方法可以归纳如下:1.求解体积最大问题:对于已知形状的几何体,我们可以通过推导体积公式,并利用一些方法来求解体积的最大值。

例如,求解一个长方体在给定表面积约束条件下的最大体积,我们可以设长方体的长、宽、高分别为x、y、z,然后利用约束条件和体积公式写出等式,最后通过求解方程组可得到最优解。

2.求解表面积最小问题:类似地,我们可以通过推导表面积公式,并利用一些方法来求解表面积的最小值。

例如,求解一个包含给定体积的圆柱体的表面积最小值,我们可以设圆柱体的底面半径为r、高度为h,然后通过体积公式将h表示为r的函数,并利用表面积公式得到表面积的表达式,最后求解表面积的最小值。

3.求解长度最短问题:有时候我们需要找到连接两个点的最短路径,可以利用几何性质和定理求解。

例如,求解从一个点到直线的最短距离,我们可以利用点到直线的距离公式,并通过求导的方法求解最短距离的点。

总而言之,立体几何和解析几何最值问题的求解方法有所不同,但都可以通过推导公式、利用几何性质和定理以及求导等方法来解决。

运用向量处理解析几何最值问题

运用向量处理解析几何最值问题
向量具 有 良好 的运 算性 质和 明 晰 的几 何 意义 ,利 用 向量 知识 来 处理 解析 几 何 中 的最
值 问题 . 将会 非 常简 捷 。下 面我们 略举数 例 , 以说 明向量 知识 在 探求 解析 几何 最 值 中的独
特作 用 。
例 1 已 知 定 点 ( 1 0 和 ( , )尸 圆 (一 ) (一 ) 4 一 动 点 , 求 M I l I I 一 ,) 10 ,是 3 y 4 上 + = 试 = + 的 最 大 值 和 最 小值 。
也相 同 ) 。于 是 , 结合s+ 4, = 8 即可求 得 当A, 两 点 的坐 标 分别 为 ( / , / ) 再 £ mn 1 , = B 、 一、 和
( 、 ,、 )或 ( 、 __ 、 ) - 、 ,3 / ) , 4 3 / 3 / , 一 / , / 和( 3 / 一 、 时 d r 。 一 I =

+ 1 f Y = 。 与 , o Y
b ‘
( f
b ‘

轴别交点 。 ( ) 向m丢 )( , 数积等 分相于P ,。芸 构量 (芸,詈y利 量不 ( )。 。 = , 咒 , 用 a 、, 2 = o )
式 ≥ : (+)(+) +≥ ‘等 ) l l 得Q丢 (= )芸] (詈 。= m m t ) ) +詈 I P [ (( 篑
l 葫 ≤I + ,3 ≤ , f . ≤I 葫 ・ . 7 从而有2 ≤“ 0 。故M 0 ≤10 的最大值为10 最小值为2 。 0, 0
点评 通 过距 离 联想 到 向量模 长 , 而构 造 向量 , 用 向量运 算 及模 长不 等式 一 ≤ 利
l b≤lll 求 出最值 。 a l a+ l + b

解析几何中的最值问题

解析几何中的最值问题
解: y 12 的几何意义
x6 是动点(x, y)与 定点(6,12)两点连 线的斜率
x y 36 (x 0)
2 2
y

P(6,12)
o
A(0,6)
x
解法小结:数形结合法
y 12 1 、 已知实数x, y满足 x 36 y 0, 则 3 x6 6 4 的最大值为 _______, 2 x y的最大值为 ________ 。
x
x y 例3.设实数x,y满足 1 16 9 12 2 , 则3x 4 y的最大值是 ______
12 2 . 最小值是 _______
2
2
y
O
x
解1 :换元法。 设x 4 cos , y 3 sin , 则
知识迁移
若将椭圆换成 双曲线、抛物线 又如何进行换元 呢?
3x 4 y 12(cos sin )
方法:数形结合法
Q1
| AF 1 | 16
7,
.
Y
.
F
O
. .
A
| QF | 。
X
F1
总结规律:延长线段AF1(F1为另一焦点)与 椭圆的交点Q就是所求的点。AQ过另一焦点F1!
Q
例3备
知识迁移
x2 y2 1的右焦点,P是其上一点,定点B(2,1). 变 F是 25 9 17 式 5 | PB | | PQ | 4 题 则 | PB | | PF | 的最小值 _______; 4 37 10 37 最大值 10 | PB | | PF | 的最小值 ________, _______
几何法、换元法
3 表示点P (cos , sin )与A( ,2)连线斜率的一半. 2 3 2 2 即圆x y 1上点与A( ,2)连线斜率的一半. 2 y A 3 设切线方程y 2 k ( x ), 2 圆心O(0,0)到切线的距离等于半径1 可解得 k 12 2 21 , k 12 2 21 O 5 5 x

湘教版高考总复习一轮数学精品课件 第九章 平面解析几何 解答题专项五 第2课时 最值与范围问题

湘教版高考总复习一轮数学精品课件 第九章 平面解析几何 解答题专项五 第2课时 最值与范围问题
=[
(2+1) 2 -1
2
|CD|

4 1
(6+1) 2 -3
2
] +[
(2+1) 1 -1
(2+1) 2 -1

(6+1) 1 -3 2
]=
(2+1) 1 -1
(8+4) 1 2 -4 2 -(8+4) 1 2 +4 1 2
+
[(2+1) 2 -1][(2+1) 1 -1]
20( 1 - 2 )2
2
+
2 2 -2 1
[(2+1) 2 -1][(2+1) 1 -1]
[(2+1)2 1 2 -(2+1ቤተ መጻሕፍቲ ባይዱ( 1 + 2 )+1]2
2
2
. .......................................................................11 分
11
2 + 12 2 = 12,
(2)由

得(12k2+1)x2+12kx-9=0.
-12
-9
x1+x2= 2 ,x1·x2= 2 , ........................................................................6
12 +1
而 yP=-b∈[-5,-3], ..........................................................................................11 分

解析几何最值问题

解析几何最值问题
空间图形的体积最值
对于旋转体等特殊图形,可利用相应公式和不等式求解; 对于一般图形,可通过变量替换和不等式等方法转化为更 易处理的问题。
条件面积(体积)最值
在给定条件下求平面图形或空间图形的面积(体积)最值, 常结合不等式和等式约束条件进行求解。
05
典型案例分析
平面曲线最值问题案例
案例一
01
求点到直线的最短距离
案例二
02
求两圆之间的最短距离
案例三
03
求椭圆上一点到直线的最大距离
空间曲线最值问题案例
案例一
求空间一点到直线的最短距离
案例二
求空间一点到平面的最短距离
案例三
求空间两异面直线之间的最短距离
曲面最值问题案例
案例一
求曲面上一点到平面的最短距离
案例二
求曲面上两点之间的最短距离
案例三
求曲面上的最值点坐标
06
总结与展望
研究成果总结
解析几何最值问题的基本理论和 方法的梳理和归纳,包括最值问 题的定义、性质、求解方法等。
针对不同类型的解析几何最值问 题,提出了相应的求解策略和方 法,如线性规划、二次规划、动
态规划等。
通过实例分析和数值计算,验证 了所提方法的有效性和实用性, 为解决实际问题提供了有力支持。
THANKS
感谢观看
04
解析几何在最值问题中的应用
曲线与曲面的最值问题
曲线上的最值点
通过求导找到曲线的极值点,比 较各极值点和端点的函数值来确
定最值。
曲面的最值点
对于二元函数表示的曲面,分别 求偏导数并令其为零,解方程组 得到可能的极值点,进一步判断
最值。
条件极值
在给定条件下求曲线或曲面的最 值,常用拉格朗日乘数法。

理科解析几何求最值问题一2

理科解析几何求最值问题一2

理科解析几何求最值问题(一)27.(本小题满分13分)已知动点M 到点F (1,0)的距离,等于它到直线1x =-的距离. (1)求点M 的轨迹C 的方程;(2)过点F 任意作互相垂直的两条直线12,l l 分别交曲线C 于点A ,B 和M ,N.设线段AB ,MN 的中点分别为P ,Q ,求证:直线PQ 恒过一个定点;(3)在(2)的条件下,求△FPQ 面积的最小值.8.(13分)已知抛物线24x y =的焦点为F ,过焦点F 且不平行于x 轴的动直线l 交抛物线于A ,B 两点,抛物线在A 、B 两点处的切线交于点M .(Ⅰ)求证:A ,M ,B 三点的横坐标成等差数列;(Ⅱ)设直线MF 交该抛物线于C ,D 两点,求四边形ACBD 面积的最小值. 9.(本小题满分13分)已知椭圆1C 和抛物线2C 有公共焦点F (1,0), 1C 的中心和2C 的顶点都在坐标原点,过点M (4,0)的直线l 与抛物线2C 分别相交于A ,B 两点. (Ⅰ)写出抛物线2C 的标准方程;(Ⅱ)若12AM MB =,求直线l 的方程;(Ⅲ)若坐标原点O 关于直线l 的对称点P 在抛物线2C 上,直线l 与椭圆1C 有公共点,求椭圆1C 的长轴长的最小值.A FMNyxl10.(本小题共14分)已知0>p ,动点M 到定点F ⎪⎭⎫⎝⎛0,2p 的距离比M 到定直线p x l -=:的距离小2p .(I )求动点M 的轨迹C 的方程;(Ⅱ)设B A ,是轨迹C 上异于原点O 的两个不同点,0=⋅OB OA ,求AOB ∆面积的最小值; (Ⅲ)在轨迹C 上是否存在两点Q P ,关于直线()02:≠⎪⎭⎫⎝⎛-=k p x k y m 对称?若存在,求出直线m 的方程,若不存在,说明理由.11.如图,椭圆22:13620x y C +=的左顶点、右焦点分别为,A F ,直线l 的方程为9x =,N 为l 上一点,且在x 轴的上方,AN 与椭圆交于M 点(1)若M 是AN 的中点,求证:MF MA ⊥.(2)过,,A F N 三点的圆与y 轴交于,P Q 两点,求||PQ 的范围.12.已知椭圆C 的中心在原点,焦点在x 轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形. (Ⅰ)求椭圆C 的方程;(Ⅱ)设()4,0P -,过点P 的直线l 与椭圆C 相交于,M N 两点,当线段MN 的中点落在正方形内(包括边界)时,求直线l 的斜率的取值范围.答案: 7.(本小题满分13分)解:(1)设动点M 的坐标为(x ,y ),由题意得,|1|)1(22+=+-x y x ,化简得.42x y =所以点M 的轨迹C 的方程为.42x y =………………4分 (2)设A 、B 两点坐标分别为),,(),,(2211y x y x 则点P 的坐标为).2,2(2121y y x x ++由题意可设直线l 1的方程为)0)(1(≠-=k x k y , 由.0)42(),1(,422222=++-⎩⎨⎧-==k x k x k x k y x y 得016164)42(2422>+=-+=∆k k k 因为直线1l 与曲线C 交于A 、B 两点,所以.4)2(,422121221k x x k y y kx x =-+=++=+ 所以点P 的坐标为).2,21(2kk +由题知,直线2l 的斜率为.1k -同理可得点Q 的坐标为).2,21(2k k -+当1±≠k 时,有222121k k +≠+,此时直线PQ 的斜率.1212122222k k k kkk k PQ -=--++=所以直线PQ 的方程为).21(1222k x kk k y ---=+整理得.0)3(2=--+y k x yk 于是,直线PQ 恒过定点E(3,0). 当1±=k 时,直线PQ 的方程为3=x ,也过点E(3,0).综上所述,直线PQ 恒过定点E (3,0).……………………………………10分 (3)因为.4|)|||1(2|)|2||2(||21S ,2||≥+=+=∆=k k k k FE FPQ FE 面积则 当且仅当1±=k 时,“=”成立,所以FPQ ∆面积的最小值为4.………13分 8.(13分)解:(Ⅰ)由已知,得(0,1)F ,显然直线AB 的斜率存在且不得0, 则可设直线AB 的方程为1y kx =+(0k ≠),11(,)A x y ,22(,)B x y ,由24,1x y y kx ⎧=⎨=+⎩消去y ,得2440x kx --=,显然216160k ∆=+>. 所以124x x k +=,124x x =-. ………………………………………………2分由24x y =,得214y x =,所以'12y x =,所以,直线AM 的斜率为112AM k x =, 所以,直线AM 的方程为1111()2y y x x x -=-,又2114x y =,所以,直线AM 的方程为 112()x x y y =+①。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当M、B、F三点共线时, MF ' MB取最大值, 此时MF MB 10 F ' B 10 2 10, MF MB的最小值是10 2 10.
例3、如图,点M 和F分别是椭圆上的动点和右焦点,定点B(2,2)
(1)求MF MB的最小值;
Байду номын сангаас
(2)求 5 MF MB的最小值
4
解:(2)过动点M作右准线x 25的垂线,垂足为H,
例3、如图,点M 和F分别是椭圆 x2 y2 1上的动点和右焦点,定点B(2,2) 25 9
(1)求MF MB的最小值;(2)求 5 MF MB的最小值. 4
y
解 : 椭圆右焦点F(4,0),左焦点F(4 ,0),
离心率e 4 ,准线方程x 25 .
5
4
(1)连MF
BM
F′ O
F
x
MF MB 10 MF ' MB 10 (MF ' MB)
热烈欢迎各位 莅临指导
解析几何中的最值问题
南通市通州区石港中学 高志军
一、达标小题自测
1、已知两点 A(3,0)、B(0,4),动点P(x ,y)在线段AB上运动,则xy的
最大值为 3 .
2、圆 x2 y2 2x 4y 3 0上的点到直线x y 3 0的距离的最大值是 3 2 .
变式训练3:定长为l(l
2b2 a
)的线段AB的端点在双曲线
x2 a2
y2 b2
1的右支上,
则AB中点M的横坐标的最小值为
.
y
解:如图,作出双曲线的右准线,过A、B作AA、BB垂直l,
A A’
垂足为A、B,过AB的中点M作MM 垂直l,垂足为M ,
M’
M
O
则求M点横坐标的最小值,实质上是求线段MM 的最小值。
课堂小结
通过本课我们收获了……
1、解决解析几何中的最值问题,通常有 (1)代数法:通过化归转化,建立所求变量的目标函数,运用函数思想求最值。 (2)几何法:根据所求变量的几何意义,利用平面几何知识求最值。
2、解决圆锥曲线中的最值问题,必须在熟练并准确地掌握圆锥曲线的定义、性 质的基础上,灵活运用函数与方程、转化与化归及数形结合等思想方法。要充 分认识和体验某些几何量的几何意义,重视“以形助数”和“以数究形”的简 化运算的功能。
B’
B
F
x
Q MM 1 (AA BB) ①
l
2
据双曲线的第二定义有
AF
e,BF
e,可得,AA 1 AF,BB 1 BF
AA BB
e
e
代入①,结合三角形两边之和大于第三边得,MM 1 (AF BF) 1 AB,
2e
2e
当且仅当A、F、B三点共线时,即AB过焦点F时,有AF BF AB,
y
A(0,1)
O
x
B
例2、直线x y 3 0和抛物线y2 4x交于A、B两点,在抛物线
AOB上求一点C,使ABC的面积最大.
y
A
O
x
C
B
变式训练1:求ABC的面积最大值. 变式训练2:直线x y 3 0和抛物线x2 4y交于A、B两点. 在抛物线上AOB求一点C,使VABC的面积最大.
即MM m in
1 2e
AB
l. 2e
此时x a2 l al ,故x a2 al a(l 2a) .
c 2e 2c
c 2c 2 a2 b2
反思:求解本题的关键是审题时对双曲线定义及平面几何知识的把握和应用。
提醒:一般的,与圆锥曲线焦半径有关的问题要注意圆锥曲线定义的运用, 包括焦半径公式。
则 MF MH
e
54 , MH
5 4
4 MF,
于是 5 MF MB MH MB HB 17
可见, 4 当且仅当B、M、H共线时,4
y
BM
O
F
H
x
5 MF MB取最小值17 .
4
4
反思:从椭圆的两个等价定义出发,再将问题转化为平面几何中的 问题;三角形两边之和大于第三边,两边之差的绝对值小于第三边, 这是解决此类问题的常见思路.
3、在抛物线 y2 2x上求一点P, 使P到焦点F与到点 A ( 3,2 )的距离之和
最小,则点P的坐标为 2, 2 .
4、平面内有一线段AB,其长为3 3 ,动点P满足PA-PB=3,O为AB的中点,
则OP的最小值为
3 2.
二、典型例题精析
例1、椭圆 x2 y2 1上过点A(0,1)引椭圆的任意一条弦AB,求:弦长AB的最大值. 4
1
4、已知x, y,满足 x y 1 (x y) 0,则(x 1)2 ( y 1)2的最小值是 2 .
课外作业: 巩固练习
【巩固练习】
1、过点(1,2)的直线l将圆(x 2)2 y2 4分成两段弧,当弧所对的圆心角最小时, 直线l的斜率k 2 .
2
2、已知AC, BD为圆e : x2 y2 4的两条相互垂直的弦,垂足为M (1, 2)则四边形ABCD 的面积的最大值为 5 .
3、已知点P是直线2x y 10 0上的一个动点,PA、PB是和圆x2 y2 4相切于A、 B两点,则四边形PAOB面积的最小值是 8 .
相关文档
最新文档