列一元一次方程解应用题的几种常见题型及其特点
一元一次方程常见应用题型及解法
一元一次方程常见应用题:
一、行程问题:路程=速度×时间
1:相遇问题:甲路程+乙路程=总路程
2:追及问题:a、不同时同地出发:快者(追者)走的路程=慢者(前者)走的路程
b、同时不同地出发:慢者走的路程+两者距离=快者走的路程
3、水流问题:顺水行的路程=逆水行的路程
提前写出:顺水速度=静水速度+水流速度
逆水速度=静水速度-水流速度
二、工程问题:工作总量=工作效率×工作时间工作效率与单独工作的时间互为倒数
各部分工作量之和=1
三、利润率、销售问题:
商品利润=商品售价-商品进价=商品进价×商品利润率
商品利润率=商品利润/商品进价×100%
售价=进价×(1+利润率)
注:进价
售价=实际销售价格
标价=定价=原价=预计售价=原销售价
四、数字问题:
设一个两位数的十位上的数字和个位上的数字分别为a、b,则这个两位数表示为10a+b 五、按比例分配问题:
甲:乙:丙=a:b:c 全部数量=各种成分的数量之和(设一份为χ)
六、配套问题
“加工的两种物品成比例”
七、分配问题
“总量不变”
八、积分问题
比赛总场数=胜场总数+平场总数+负场总数
比赛总积分=胜场总积分+平场总积分+负场总积分九、规律问题
●3个规律数字:设中间的数为χ
●月历中的问题
月历中每一行上相邻的两数,右边的数比左边的数大1;
月历中的每一列上相邻的两数,下边的数比上边的数大7 十、方案决策问题
选择最优的方案就要把每种方案的结果算出来,进行比较。
初一一元一次方程解应用题全部类型
1、和、差、倍、分问题;这类问题主要应搞清各量之间的关系,注意关键词语。
(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:通过关键词语“多少、和、差、不足、剩余……”来体现。
例1、某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?分析:相等关系是:今年捐款=去年捐款×2+1000。
解:设去年为灾区捐款x元,由题意得,2x+1000=250002x=24000∴ x=12000答:去年该单位为灾区捐款12000元。
例2、旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?分析:等量关系为:油箱中剩余汽油+1=用去的汽油。
解:设油箱里原有汽油x公斤,由题意得,x(1-25%)(1-40%)+1=25%x+(1-25%)x×40%去分母整理得,9x+20=5x+6x∴ 2x=20∴ x=10答:油箱里原有汽油10公斤。
2、等积变形问题:“等积变形”是以形状改变而体积不变为前提。
常用等量关系为:原料体积=成品体积。
例3、现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?分析:等量关系为:机轴的体积和=钢坯的体积。
解:设可足够锻造x根机轴,由题意得,π()2×3x=π()2×30解这个方程得x=x=×10×==40答:可足够锻造直径为0.4米,长为3米的圆柱形机轴40根。
3、劳力调配问题:这类问题要搞清人数的变化,常见题型有(1)既有调入又有调出。
(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。
例4、有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数的,应从乙队调多少人到甲队?分析:此问题中对乙队来说有调出,对甲队来说有调入。
列一元一次方程解应用题的几种常见类型
列一元一次方程解应用题的几种常见类型一.和、差、倍、分问题
例:男、女生有若干人,男生与女生人数之比为4:3,后来走了12名女生,这时男生人数恰好是女生人数的2倍,求原来的男生人数和女生人数。
练习1:一个三角形3条边的长度比是2:4:5,最长的一条边比最短的一条边长6cm,求这个三角形的周长。
练习2:甲、乙、丙三种货物共167t,甲种货物是乙种货物的2倍少5t,丙种货物是甲种货物的1/5多3t,问甲、乙、丙三种货物各多少吨?
二、等积变形
例:用直径为90mm的圆柱形玻璃杯(已装满水)向一个底面积为15625平方毫米、内高为81mm的长方体铁盒倒水,当铁盒装满水时,玻璃杯中的水的高度下降多少毫米?(结果保留整数,π取3.14)
练习题1:有一个底面直径为0.2m的圆柱形水桶中有一个重936g的钢球(球形),钢球全部浸没在水中,如果取出钢球,那么液面下降多少厘米?(1立方厘米钢质量为7.8g,π取3.14,精确到0.1cm)
练习2:某工厂要把一个长、宽、高分别为8cm、7cm、6cm的长方体铁块和一个棱长为5cm的正方体铁块,熔炼成一个直径为0.2m的圆柱形零件,试求出这个零件的高度.(精确到0.01cm,π取3.14)。
列一元一次方程解应用题的几种常见题型及其特点
列一元一次方程解应用题的几种常见题型及其特点作者:刘书文来源:《试题与研究·教学论坛》2016年第34期列一元一次方程解应用题既是七年级数学教学中的一大重点,又是学生从小学升入中学后第一次接触用代数的方法处理应用题。
列方程解应用题的关键是仔细审题,找出能正确表达整个题数量关系的一个相等关系,再设未知数,并将这个相等关系用含未知数的式子表示出来。
因此,认真学好这一知识对于今后学习整个中学阶段的列方程(组)解应用题大有帮助。
因此,将列一元一次方程解应用题的几种常见题型及其特点归纳下来,如下:一、和、差、倍、分问题此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等词语体现等量关系。
审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。
例题:汶川大地震发生后,各地人民纷纷捐款捐物支援灾区。
我市某企业向灾区捐助价值94万元的A,B两种帐篷共600顶。
已知A种帐篷每顶1700元,B种帐篷每顶1300元,问A,B两种帐篷各多少顶?解:设A帐篷有x顶,那么B帐篷有(600-x)顶,则答:A帐篷有400顶,那么B帐篷有200顶。
二、等积变形问题此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。
“等积变形”是以形状改变而体积不变为前提。
常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积。
三、调配问题从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。
这类问题要搞清人数的变化,常见题型有:①既有调入又有调出;②只有调入没有调出,调入部分变化,其余不变;③只有调出没有调入,调出部分变化,其余不变。
例题:A城有化肥200吨,B城有化肥300吨,现要把化肥运往C,D两农村,如果从A 城运往C,D两地运费分别是20元/吨与25元/吨,从B城运往C,D两地运费分别是15元/吨与22元/吨,现已知C地需要220吨,D地需要280吨。
列一元一次方程解应用题题型归纳 詹洪
一元一次方程解应用题题型归纳共乐初中詹洪列一元一次方程解应用题是初一年级数学教学中的一大重点,又是学生从小学升入初中后第一次接触到用代数的方法处理应用题,所以也是一大难点。
认真学好这一知识,对于今后学习整个中学阶段的列方程(组)解应用题、列不等式(组)解应用题及函数应用题大有帮助。
因此将列一元一次方程解应用题的步骤、几种常见题型及其特点归纳如下:一、列方程解应用题的步骤:(1)读懂题意,正确理解.(2)弄清数量关系:准确把握题目条件中的已知量和未知量,必要时可用图表辅助分析. (3)找出:正确找出等量关系。
(4)列方程:设出未知数,将题设条件中的语句都“翻译”成含有“字母”的代数式,根据等量关系列出方程。
(5)解方程并检验:检验所求的未知数的值是否是所列方程的解,受否符合题意;(6)答:根据题意写出答案.二、常见题型及其特点:A.和差倍分问题和差倍分在列方程时,即可表示运算关系,又可表示相等关系。
在解决这类问题时,要特别注意关键词的含义,如:多、少、快、慢、提前、推迟、提高x%(几倍)、降低x%(几份之几)、提高到x%等。
用和、差、几倍、几分之几……它可以指导我们正确地列代数式或列方程。
例: 有一根铁丝,第一次用去了它的一半少1m,第二次用去了剩下的一半多1m,结果还剩2.5m,这根铁丝原来有多长?1、一个机床厂今年第一季度生产机床180台,比去年同期的二倍多36台,去年一季度产量多少台?2、某通信公司今年员工人均收入比去年提高20%,且今年人均收入比去年的1.5倍少了1200元,求去年人均收入?3.“希望工程”委员会将2000元奖金发给全校25名三好学生,其中市级三好学生每人得奖金200元,校级三好学生每人得奖金50元,问全校市级三好学生、校级三好学生各有多少人?4. 一群老人去赶集,集上买了一堆梨,一人1个多一个,一人2个少2个,几位老人几个梨?5. 某学校组织10名优秀学生春游,预计费用若干元,后来又来了2名同学,原来的费用不变,这样每人可以少摊3元,则原来每人需要付费多少元?6. 七年级二班有45人报名参加了文学社或书画社,已知参加文学社的人数比参加书画社的人数多5人,两个社都参加的有20人,问参加书画社的有多少人?7 .某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)8. 本市中学生足球赛中,某队共参加了8场比赛,保持不败的记录,积18分.记分规则是:胜一场得3分,平一场得1分,负一场得0分。
七年级一元一次方程应用题8种类型归类
七年级一元一次方程应用题8种类型归类第一类:简单的线性方程的应用题这类题目基本上是直接套用一元一次方程的定义,根据题目中的条件列出方程,然后解方程得到答案。
这类问题比较简单,适合入门阶段的学生练习。
第二类:带有关系的线性方程应用题这类题目常常要求学生根据题意建立两个或多个物体之间的量的关系,然后通过建立方程解决问题。
这类问题往往需要学生较高的抽象思维能力来解决。
第三类:工作时间线性方程应用题这类题目要求学生根据不同情况下人员的工作效率和时间推导出方程,然后解决问题。
这类问题对学生的逻辑思维和数学应用能力有一定要求。
第四类:比例关系与一元一次方程的整合这类题目旨在让学生熟练掌握用比例关系建立一元一次方程,进一步拓展了一元一次方程的应用范围,对学生的推导能力和计算能力提出了更高的要求。
第五类:几何问题与线性方程的结合这类题目结合了几何图形中的关系与线性方程的解法,通过建立图形中的几何关系,以方程的形式呈现并求解,培养了学生的几何直观和数学抽象能力。
第六类:消耗量的线性方程应用题这类问题常常涉及到消耗量与产出量之间的关系,学生需要根据不同情况下物质的消耗速度和产出速度建立方程,解决问题。
第七类:时间速度距离的线性方程题型这类题目涉及了时间、速度和距离之间的关系,要求学生根据不同的情景情况建立方程,解决问题。
这类题目较为灵活,需要学生综合考虑多个变量间的关系。
第八类:经济问题的线性方程应用题这类题目常常涉及到金钱的支出与收入之间的关系,学生需要根据题目中的条件建立方程,解决经济问题。
这类题目旨在培养学生的实际应用能力和经济思维。
以上就是七年级一元一次方程应用题的8种典型类型,不同类型的题目反映了一元一次方程在现实生活中的广泛应用,通过解决这些问题,学生不仅可以提高解决实际问题的能力,还能深入理解一元一次方程的运用和意义。
希望同学们在学习过程中能够灵活应用这些方法,提高自己的数学水平。
一元一次方程应用题8种类型怎么解答
1.
简单应用题通常是直接给出方程,要求解出方程的未知数值。解答方法是根据方程式的形式,运用逆运算将未知数解出。
2.
找规律题是给出一组数据,要求根据数据中的规律建立方程,然后解出方程。解答方法是观察数据规律,建立方程,再解出未知数。
3.
比例应用题中通常涉及比例关系,要求解出满足比例条件的未知数。解答方法是建立比例方程,根据比例关系求解未知数。
4.
速度、距离、时间应用题中涉及到物体间的速度、距离和时间的关系,要求解出某个物体的速度、距离或时间。解答方法是根据速度=距离/时间的关系建立方程,解出未知数。
7.
人头问题应用题中涉及到多个人或物体的数量和总数的关系,要求解出每个人或物体的数量。解答方法是根据每个人或物体的数量加起来等于总数的关系建立方程,解出未知数。
8.
每天坚持做题应用题中涉及到每天坚持做某事的天数问题,要求解出天数。解答方法是根据天数乘以每天的坚持量等于总量的关系建立方程,解出未知数。
通过以上8种类型的一元一次方程应用题的解答方法,希望能帮助学生更好地理解方程的实际意义,提高解决实际问题的能力。让数学不再枯燥,而是充满乐趣和实用性。
5.
工作能力题中涉及到多个人或物体一起工作完成某项任务的时间问题,要求解出每个人或物体的工作能力。解答方法是根据工作能力=工作量/时间的关系建立方程,解出未知数。
6.
价格问题应用题中涉及到商品的价格、数量和总价的关系,要求解出商品的价格或数量。解答方法是根据价格*数量=总价的关系建立方程,解出未知数。
复习必看 - 一元一次方程9大题型解析!
复习必看 | 一元一次方程9大题型解析!一、列一元一次方程解应用题的一般步骤(1)审题:弄清题意(2)找出等量关系:找出能够表示本题含义的相等关系(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(4)解方程:解所列的方程,求出未知数的值(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案二、一元一次方程解决应用题的分类1.市场经济、打折销售问题(一)知识点(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润/商品成品价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.(二)例题解析1.某高校共有5个大餐厅和2个小餐厅。
经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐。
(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐。
(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由。
解:(1)设1个小餐厅可供y名学生就餐,则1个大餐厅可供(1680-2y)名学生就餐,根据题意得:2(1680-2y)+y=2280解得:y=360(名)所以1680-2y=960(名)(2)因为960×5+360×2=5520>5300 ,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐。
2.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等。
该工艺品每件的进价、标价分别是多少元?解:设该工艺品每件的进价是元,标价是(45+x)元。
依题意,得:8(45+x)×0.85-8x=(45+x-35)×12-12x解得:x=155(元)所以45+x=200(元)3.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦则超过部分按基本电价的70%收费。
应用题的十六种常见题型
列一元一次方程解应用题得常见题型(设未知数,找等量关系列方程)一. 与差倍分得问题问题得特点:已知两个量之间存在合倍差关系,可以求这两个量得多少、基本方法:以与倍差中得一种关系设未知数并表示其她量,选用余下得关系列出方程、1. 一个数得 2 倍与10 得与等于 18, 则这个数就是_______。
一个数得二分之一与 3 得差等于2,则这个数就是_______、一个数得 3 倍比 10 大 2,则这个数就是_______。
2.一个机床厂今年第一季度生产机床180台,比去年同期得二倍多36台,去年一季度产量多少台?3.有一批课外书分给学生,若每人分6本,最后缺2本;若每人分5本,最后余3本,问有多少学生?ﻫ 4。
某学校组织10名优秀学生春游,预计费用若干元,后来又来了2名同学,原来得费用不变,这样每人可以少摊3元,则原来每人需要付费多少元?5。
七年级二班有45人报名参加了文学社或书画社,已知参加文学社得人数比参加书画社得人数多5人,两个社都参加得有20人,问参加书画社得有多少人?二.等积变形问题此类问题得关键在“等积”上,就是等量关系得所在,必须掌握常见几何图形得面积、体积公式、“等积变形”就是以形状改变而体积不变为前提。
1. 把内径为200mm,高为500mm得圆柱形铁桶,装满水后慢慢地向内径为 160mm,高为 400mm 得空木桶装满水后,铁桶内水位下降了多少?2、要锻造一个直径为8cm,高为4cm得圆柱形毛坯,至少应截取直径为4cm得圆钢多少cm。
三。
相遇问题(相向而行):这类问题得相等关系就是:各人走路之与等于总路程或同时走时两人所走得时间相等为等量关系。
对应公式:路程=速度×时间快者路程+慢者路程=总路程 (慢者速度+快者速度)×相遇时间=相遇路程1、甲、乙两车从相距 264 千米得A、B 两地同时出发相向而行,甲速就是乙速得1、2 倍,4 小时相遇,求乙速?2。
甲、乙两站相距600千米,慢车从甲地出发,每小时行40千米,快车从乙地出发,每小时行60千米,若慢车先行50分钟,快车再开出,又行一段时间后遇到慢车,求快车开出多少小时两车相遇?3. A、B 两地相距 75 千米,一辆汽车以50 千米/时得速度从 A 地出发,另一辆汽车以40 千米/时速度从 B 地出发,两车同时出发,相向而行,经过几小时两车相距 30 千米?四. 追及问题(同向而行):这类问题得等量关系就是:两人得路程差等于追及得路程或以追及时间为等量关系。
一元一次方程的13种常见题型
列一元一次方程解应用题的13种常见题型一、配套问题例:某服装厂要做一批某种型号的学生服,已知某种布料每3米长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用600米长的这种布料做学生服,应分别用多少米布料做上衣和裤子,才能恰好配套?二、销售问题例:某商品的进价是2000元,标价是3000元,商店打折促销后仍可获利5%,则售货员最低可以打几折出售此商品?三、借贷问题例:某公司申请了甲、乙两种不同利率的借贷共300万元,每年需付32万元的利息。
已知甲种贷款的年利率为10%,乙种贷款的年利率为12%,求该公司这两中贷款各申请多少万元?四、等积变形问题例:用直径为4cm的圆钢,铸造3个直径为2cm、高为16cm的圆柱型零件,问需要截取多长的圆钢?例:一项工作,甲单独做要8天完成,乙单独做要12天完成,丙单独做要24天完成,现甲、乙合作3天后,甲因事离去,由乙、丙合作,则乙、丙还要几天才能完成这项工作?六、和、差、倍、分问题例:某所中学现有学生4200人,计划一年后初中在校生增加8%,高中在校生增加11%,这样全校在校生将增加10%,问这所学校现在的初中在校生和高中在校生人数分别为多少人?七、数字问题例:一个四位整数,其个位数字为2,若把末位数字移到首位,所得新数比原数小108,求这个四位数?八、比例分配问题例:某种中药含有甲、乙、丙、丁四种草药成分,其质量比是0.7:1:2:4.7,现要配制这种中药2100克,四种草药分别需要多少克?例:在一本挂历上,圈住四个数,这四个数恰好构成一个正方形,且它们的和为48,则这四个数分别为多少?十、行程问题例:一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速度每小时快30千米,但轿车行驶一小时后突然出现故障,修理15分钟后,又追这辆卡车,但速度减小了三分之一,结果又用两小时才追上这辆卡车,求这辆卡车的速度?十一、方案决策问题例:张明为书房买灯,现在有两种方法可供选择,其中一种是9瓦(即0.009千瓦)的节能灯,售价为49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价为18元/盏。
(完整)初中数学一元一次方程应用题九大类型
七年级方程应用题九大类型一、列一元一次方程解应用题的一般步骤二、一元一次方程解决应用题的分类1、市场经济、打折销售问题2、方案选择问题3、储蓄、储蓄利息问题4、工程问题5、行程问题6、环行跑道与时钟问题7、若干应用问题等量关系的规律8、数字问题9、日历问题一、列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.一.市场经济、打折销售问题(一)知识点:(1)商品利润=商品售价-商品成本价×100%(2)商品利润率=商品利润商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.(二)例题解析1、某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.解:(1)设1个小餐厅可供y名学生就餐,则1个大餐厅可供(1680-2y)名学生就餐,根据题意得:2(1680-2y)+y=2280解得:y=360(名)所以1680-2y=960(名)⨯+⨯=>,(2)因为9605360255205300所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.练习题2、工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元?3、某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?•应交电费是多少元?4、某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为60元,八折出售后,商家所获利润率为40%。
七年级一元一次方程应用题题型有哪些
七年级一元一次方程应用题题型有哪些
一、相遇问题
在这类题型中,通常会给出两个物体相遇的条件,例如两辆车从不同地方同时
出发相向而行,求它们相遇的时间。
利用一元一次方程可以很容易地解决这类问题。
二、零用钱问题
这类题型通常会描述一个人手中有一定数量的钱,先进行一系列购物后剩余的钱。
通过列方程的方式可以求解这些问题,帮助学生掌握方程在日常生活中的应用。
三、装订书籍问题
题目描述学校要为班级的学生装订几本数学书,每册装订费用若干元,需要求
解装订一定数量书籍需要的总费用。
这种类型的问题也可以用一元一次方程进行求解。
四、水果购买问题
问题描述某种水果的单价以及购买的重量,需要计算购买这些水果总共需要多
少钱。
同样,通过列方程可以快速解决这类问题。
五、人数问题
给定几组人员的总数及各组人数的关系,例如某场活动男女参与人数的比例等,需要通过方程求解各组的人数。
六、时间问题
描述物体的速度、时间和距离之间的关系,例如某物体以一定速度行驶一段距
离所需的时间等。
通过方程可以方便地解决这类实际问题。
结语
这些是七年级一元一次方程应用题常见的题型,通过解答这些问题,学生不仅
可以提升对方程的理解和运用能力,也能体会到数学在日常生活中的实际应用。
希望同学们多加练习,熟练掌握这些题型的解题方法。
一元一次方程应用题8种类型解法及典型例题
一、概述1. 介绍一元一次方程的定义和基本形式2. 引出本文将要讨论的内容二、一元一次方程的八种类型1. 类型一:简单应用题1)例题:小明买了一些苹果,一共花了20元,每个苹果2元,问他买了多少个苹果?2)解法:设苹果的数量为x,根据题意可列出方程2x=20,解得x=10。
2. 类型二:两个未知数的应用题1)例题:甲乙两地相距180公里,相对而行,甲地的时速是每小时30公里,问几小时能相遇?2)解法:设相遇时间为t小时,甲地行驶的距离为30t,乙地行驶的距离为180-30t,根据题意可列出方程30t+30t=180,解得t=3。
3. 类型三:含有括号的应用题1)例题:一个数比8大,乘以3再减去2的结果是20,问这个数是多少?2)解法:设这个数为x,根据题意可列出方程3(x-8)-2=20,解得x=18。
4. 类型四:含有分数的应用题1)例题:某数的1/3等于它的2/5减去3,问这个数是多少?2)解法:设这个数为x,根据题意可列出方程1/3=2/5-3,解得x=-9。
5. 类型五:含有小数的应用题1)例题:一块钢铁的重量是另一块的3/5,如果重量相差5.2公斤,问两块钢铁的重量各是多少?2)解法:设较重的钢铁重量为x,根据题意可列出方程x-x*3/5=5.2,解得x=13。
6. 类型六:含有分母的应用题1)例题:一个数加上15的4/5等于这个数的3/4,问这个数是多少?2)解法:设这个数为x,根据题意可列出方程x+15=3x/4,解得x=60。
7. 类型七:字母表示未知数的应用题1)例题:甲乙两个数的和是50,甲是乙的2倍,问甲乙两个数各是多少?2)解法:设甲的数为x,乙的数为y,根据题意可列出方程x+y=50和x=2y,解得x=40,y=10。
8. 类型八:几何问题转化为一元一次方程1)例题:一个三角形的底边长度是两腿长度的和的2倍,底边长8米,腿长是多少?2)解法:设腿长为x,根据题意可列出方程2x+x=8,解得x=4。
(完整)一元一次方程应用题9大类型解析
一元一次方程应用题类型目录:一、列一元一次方程解应用题的一般步骤二、一元一次方程解决应用题的分类1、市场经济、打折销售问题2、方案选择问题3、储蓄、储蓄利息问题4、工程问题5、行程问题6、环行跑道与时钟问题7、若干应用问题等量关系的规律8、数字问题9、日历问题一、列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.二、一元一次方程解决应用题的分类1、市场经济、打折销售问题(一)知识点:(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润×100%商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.(二)例题解析1、某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.解:(1)设1个小餐厅可供y名学生就餐,则1个大餐厅可供(1680-2y)名学生就餐,根据题意得:2(1680-2y)+y=2280解得:y=360(名)所以1680-2y=960(名)(2)因为9605360255205300⨯+⨯=>,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.2、工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元?解:设该工艺品每件的进价是x 元,标价是(45+x )元。
列一元一次方程解应用题的几种常见题型及特点20141213
列一元一次方程解应用题的几种常见题型及特点类型题中涉及的数量及公式等量关系注意事项:1、和、差问题由题意可知弄清“倍数”关系及“多、少”关系等2、等积变形问题各体的体积公式变形后的体积公式分清半径、直径3、行程问题相遇问题路程二速度X时间时间二路程—速度速度二路程♦时间快者+慢者二原来的距离相向而行注意始发时间和地点追及问题快者-慢者二原来的距离同向而行注意始发时间和地点4、调配问题从调配后的数量关系中找等量关系调配对象流动的方向和数量5、比例分配问题全部数量二各种成分的数量之和把一份设为x6、工程问题工作量二工作效率X工作时间7、工作效率二工作量+工作时间工作时间二工作量+工作效率两个或多个工作效率不同的对象所完成的工作量的和等于总工作量一般情况下把总工作量设为 18、利润率问题商品的利润率二商品的利润/进价商品的利润二商品售价-商品进价找出利润或利润率之间的关系打几折就是按原售价的十分之几出售9、数字问题设a,b分别为一个两位数的个位上与十位上的数字,则这个两位数可表示为10b+a10、行船问题顺流船行实际速度二船在静水中的速度+水流的速度逆流船行实际速度=船在静水中的速度-水流的速度一元一次方程应用题专题训练一、和差倍分问题(年龄问题、比例问题、日历问题)【只列方程】1、姐姐4年前的年龄是妹妹的2倍,今年年龄是妹妹的1.5倍, 求姐姐今年的年龄。
解:设今年妹妹的年龄为X,根据题意得:方法一:1.5 X - X= 2(X -4 )-(x -4 )(年龄差不变)方法二:1.5 X= 2 (X -4)+4 (姐姐的年龄)2、1992年,妈妈52岁,儿子25岁,哪一年妈妈的年龄是儿子的4 倍。
解:设儿子X岁那年妈妈的年龄是儿子的4倍,根据题意得:4 X - X = 52-25 (母子年龄差不变)3、爸爸和女儿两人岁数加起来是91岁,当爸爸岁数是女儿现在岁数两倍的时候,女儿岁数是爸爸现在岁数的三分之一,那么爸爸现在的年龄是多少岁,女儿现在年龄是多少岁。
列一元一次方程解应用题的几种常见题型及其特点
列一元一次方程解应用题的几种常见题型及其特点列一元一次方程解应用题是七年级数学教学中的一大重点,而列一元一次方程解应用题又是学生从小学升入中学后第一次接触到用代数的方法处理应用题。
因此,认真学好这一知识,对于今后学习整个中学阶段的列方程(组)解应用题大有帮助。
因此将列一元一次方程解应用题的几种常见题型及其特点归纳下来,如下:(1)和、差、倍、分问题。
此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。
审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。
(2)等积变形问题。
此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。
“等积变形”是以形状改变而体积不变为前提。
常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积。
(3)调配问题。
从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。
这类问题要搞清人数的变化,常见题型有:①既有调入又有调出;②只有调入没有调出,调入部分变化,其余不变;③只有调出没有调入,调出部分变化,其余不变。
(4)行程问题。
要掌握行程中的基本关系:路程=速度×时间。
相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。
甲走的路程+乙走的路程=全路程追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。
①同时不同地:甲的时间=乙的时间甲走的路程-乙走的路程=原来甲、乙相距的路程②同地不同时;甲的时间=乙的时间-时间差甲的路程=乙的路程环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。
船(飞机)航行问题:相对运动的合速度关系是:顺水(风)速度=静水(无风)中速度+水(风)流速度;逆水(风)速度=静水(无风)中速度-水(风)流速度。
七年级上册数学解一元一次方程应用题的十六种常见题型
列一元一次方程解应用题(设未知数,找等量关系列方程)一.利润率问题:利润=进价(成本价)×利润率利润=售价-进价利润率=(利润÷进价)×100%进价(成本价)﹢利润=售价1. 某商品进价为 500 元,按标价的 9 折销售,利润率为 15.2%,求商品的标价为多少元?2. 工艺商场按标价销售某种工艺品时,每件可获利 45 元;按标价的八五折销售该工艺品 8 件与将标价降低 35 元销售该工艺品 12 件所获利润相等.该工艺品每件的进价、标价分别是多少元?3. 一家商店将某种服装按进价提高 40%后标价,又以 8 折优惠卖出,结果每件仍获利 15 元,这种服装每件的进价是多少?4. 某商品的进价是 2000 元,标价为 3000 元,商店要求以利润不低于 5%的售价打折出售,售货员最低可以打几折出售此商品?5、某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?6、某商店在同一时间内以每件60元的价格卖出2件衣服,其中一件盈利25%,另一件亏损25%,则卖这2件衣服是盈利还是亏损了,还是不盈不亏?二. 储蓄问题:利息=本金×利率×期数本息和=本金+利息利息税=利息×税率年利率=月利率×12=日利率×3651. 某同学把 250 元钱存入银行,整存整取,存期为半年。
半年后共得本息和 252.7 元,求银行半年期的年利率是多少?(不计利息税)2.某储蓄所去年储户存款为4600万元,今年与去年相比,定期存款增加20%,而活期存款减少25%,但总存款增加15%,问今年定期,活期存款各是多少?三. 相遇问题(相向而行):这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。
对应公式:路程=速度×时间快者路程+慢者路程=总路程(慢者速度+快者速度)×相遇时间=相遇路程1. 甲、乙两车从相距 264 千米的 A、B 两地同时出发相向而行,甲速是乙速的 1.2 倍,4 小时相遇,求乙速?2. 甲、乙两站相距 600 千米,慢车从甲地出发,每小时行 40 千米,快车从乙地出发,每小时行60 千米,若慢车先行 50 分钟,快车再开出,又行一段时间后遇到慢车,求快车开出多少小时两车相遇?3. A、B 两地相距 75 千米,一辆汽车以 50 千米/时的速度从 A 地出发,另一辆汽车以 40 千米/时速度从 B 地出发,两车同时出发,相向而行,经过几小时两车相距 30 千米?四. 追及问题(同向而行):这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。
一元一次方程的11种题型和动点旋转问题
一元一次方程的11种题型和动点旋转问题一元一次方程是初中阶段数学学习的重要内容之一,也是数学实际运用中常见的问题求解方法。
在数学学习中,学生往往会遇到各种不同类型的一元一次方程,针对这些题型的解题方法和技巧是非常重要的。
另外,动点旋转问题也是数学中常见的实际问题,需要通过方程的建立和求解来解决。
本文将对一元一次方程的11种题型和动点旋转问题进行详细介绍和解析。
一元一次方程的11种题型:1. 单一方程求解:这是最基本的一元一次方程题型,例如2x+3=5。
2. 两个方程求解:实际问题中往往会出现两个未知数的方程,需要通过联立方程求解。
3. 三个及以上方程求解:在一些复杂的实际问题中会出现多个未知数的方程,需要通过消元法等方法求解。
4. 带分数方程求解:方程中含有分数项,需要通过通分等方法解决。
5. 带参数方程求解:方程中含有参数,需要通过参数的取值范围求解。
6. 有根式的方程求解:方程中含有根式,需要通过化简和整理解决。
7. 绝对值方程求解:方程中含有绝对值,需要通过拆分绝对值的取值范围求解。
8. 含有分式方程求解:方程中含有分式项,需要通过通分等方法解决。
9. 复合方程求解:方程中含有两个或多个未知量,需要通过分步骤求解。
10. 问题应用方程求解:通过实际问题建立方程,再求解方程得出问题的答案。
11. 考点串讲方程求解:综合考点进行一元一次方程求解。
通过以上11种题型的讲解和解题方法的介绍,可以帮助学生掌握一元一次方程的解题技巧,提高数学解题的能力。
动点旋转问题:动点旋转问题是几何中的一个重要问题类型,通常涉及到几何图形的旋转、对称、坐标变换等内容。
通过建立方程和求解方程,可以解决动点旋转问题。
具体来说,动点旋转问题主要包括以下几个方面:1. 点绕另一点旋转问题:一个点绕另一个点旋转,求旋转后点的坐标。
2. 直线绕定点旋转问题:一条直线绕一个定点旋转,求旋转后直线的方程。
3. 图形绕定点旋转问题:一个图形绕一个定点旋转,求旋转后图形的位置和形状。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列一元一次方程解应用题的几种常见题型及其特点列一元一次方程解应用题是七年级数学教学中的一大重点,而列一元一次方程解应用题又是学生从小学升入中学后第一次接触到用代数的方法处理应用题。
因此,认真学好这一知识,对于今后学习整个中学阶段的列方程(组)解应用题大有帮助。
因此将列一元一次方程解应用题的几种常见题型及其特点归纳下来,如下:(1)和、差、倍、分问题。
此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。
审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。
(2)等积变形问题。
此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。
“等积变形”是以形状改变而体积不变为前提。
常用等量关系为:
①形状面积变了,周长没变;②原料体积=成品体积。
(3)调配问题。
从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。
这类问题要搞清人数的变化,常见题型有:
①既有调入又有调出;
②只有调入没有调出,调入部分变化,其余不变;③只有调出没有调入,调出部分变化,其余不变。
(4)行程问题。
要掌握行程中的基本关系:路程=速度×时间。
相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。
甲走的路程+乙走的路程=全路程
追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。
①同时不同地:甲的时间=乙的时间甲走的路程-乙走的路程=原来甲、乙相距的路程
②同地不同时;甲的时间=乙的时间-时间差甲的路程=乙的路程
环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。
船(飞机)航行问题:相对运动的合速度关系是:
顺水(风)速度=静水(无风)中速度+水(风)流速度;逆水(风)速度=静水(无风)中速度-水(风)流速度。
车上(离)桥问题:
①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长。
②车离桥指车头离开桥到车尾离开桥的一段路程。
所走的路程为一个成长
③车过桥指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长
④车在桥上指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长
行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。
(5)工程问题。
其基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。
当工作总量未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。
(6)溶液配制问题。
其基本数量关系是:溶液质量=溶质质量+溶剂质量;溶质质量=溶液中所含溶质的质量分数。
这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。
(7)利润率问题。
其数量关系是:商品的利润=商品售价-商品的进价;商品利润率=商品利润/商品进价×100%,注意打几折销售就是按原价的百分之几出售。
商品售价=商品标价×折扣率
(8)银行储蓄问题。
其数量关系是:利息=本金×利率×存期;本息=本金+利息,利息税=利息×利息税率。
注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。
(9)数字问题。
要正确区分“数”与“数字”两个概念,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系。
列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和。
(10)年龄问题其基本数量关系:大小两个年龄差不会变。
这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等。
(11)比例分配问题:
这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。
常用等量关系:各部分之和=总量。
一元一次方程应用题步骤解题技巧
列方程(组)解应用题
一概述
列方程(组)解应用题是中学数学联系实际的一个重要方面。
其具体步骤是:
⑴审题。
理解题意。
弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。
①直接未知数②间接未知数(往往二者兼用)。
一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。
一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答题。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。
在这个过程中,列方程起着承前启后的作用。
因此,列方程是解应用题的关键。
1、解应用题的一般思维表述方式
解应用题的关键是:找等量关系,才能设出未知数,列出方程,剩余的解题任务相应的就比较轻松。
2、应用题的类型及思维策略
(1)应用题分类
在小学,学生对应用题学得较久,而且教师或某些资料分得太细,学生要记忆的东西太多,一旦记不住则无法理解。
怎样引导学生由记忆性思维转化为理解性思维,而且不需要记忆太多的东西。
1、行程问题(包括小学的追击问题,相遇问题,顺风逆风问题等
2、工作问题
3、浓度问题(包括稀释问题,加浓问题,混合问题等)
4、杂题(包括比值问题,利润问题,增长下降问题,数字问题等)
(2)分类原因
因为前面三类都是我们在小学多年的学习中非常熟悉的,而且他们的等量关系是类似的。
如:路程=时间*速度,工作总量=工作时间*工作效率,溶质=浓度*溶液质量。
而杂题在题目中都有明显的表述等量关系的字词或隐藏着公认的规律。
(3)思维品质
一、杂题。
一般来说,都有明显的表述等量关系的字词,对学生而言比较容易。
二、行程问题。
行程问题是学生最熟悉的问题。
但是要找出其中的等量关系,学生感到非常困难,原因是不知道从哪方面入手找等量关系。
我引导学生这样想:a找哪两个事物之间发生关系;b分别找出这两个事物关于路程、时间、速度的等量关系。
若无则略;c设未知数,列方程。
三、工作问题。
因工作问题涉及的三个量的关系与行程问题类似,因此可以用相同的思维策略解决工作问题。
四、浓度问题
因浓度问题涉及的三个量:溶质、溶液、浓度的关系与行程问题类似,因此也可以用相同的思维策略来解决。
五、拓展
利用上述策略,还可以解决不等式、不等式组、函数等应用问题。