2020届全国高考高三信息卷(全国Ⅱ卷) 文科数学(五)
2020年高考全国II卷文科数学试题(含解析)
2020年全国统一高考数学试卷(文科)(全国新课标II )一、选择题1.已知集合{||3,}A x x x Z =<∈,{||1,}B x x x Z =>∈,则A B ⋂= ( )A.∅B.{3,2,2,3}--C.{2,0,2}-D.{2,2}-【答案】D【解析】{|1||3,}{2,2}A B x x x Z ⋂=<<∈=-,故选D . 2.4(1)i -= ( )A.4-B.4C.4i -D.4i【答案】A【解析】42(1)(2)4i i -=-=-,故选A .3.如图,将钢琴上的12个键依次记为1212,,...,a a a ,设112i j k ≤<<≤.若3k j -=且4j i -=,则称,,i j k a a a 为原位大三和弦;若4k j -=且3j i -=,则称,,i j k a a a 为原位小三和弦,用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为 ( )A. 5B. 8C.10D. 15【答案】C【解析】原位大三和弦:1i =,5j =,8k =;2i =,6j =,9k =;3i =,7j =,10k =;4i =,8j =,11k =;5i =,9j =,12k =共5个;原位小三和弦:1i =,4j =,8k =;2i =,5j =,9k =;3i =,6j =,10k =;4i =,7j =,11k =;5i =,8j =,12k =共5个;总计10个.4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 ( )A.10名B.18名C.24名D.32名【答案】B【解析】积压500份订单未配货,次日产生新订单超过1600份的概率为0.05,其中1200份不需要志愿者配货,志愿者只需负责400份配货,也就是需要志愿者配货的为900份,故需要18名志愿者.5.已知单位向量a ,b 的夹角为60︒,则在下列向量中, 与b 垂直的是 ( )A.2a b +B.2a b +C.2a b -D.2a b -【答案】D【解析】21(2)2211102a b b a b b -⋅=⋅-=⨯⨯⨯-=,故选D . 6.记n S 为等比数列{}n a 的前n 项和.若5312a a -=,6424a a -=,则nnS a = ( )A.21n- B.122n--C.122n -- D.121n--【答案】 B 【解析】设等比数列{}n a 的通项公式为11n n a a q -=,根据5312a a -=,6424a a -=.解得11a =,2q =,故12n n a -=,122112nn n S -==--,可得122n n n S a -=- ,故选B .7.执行右面的程序框图,若输入0k =,0a =,则输出的k 为 ( )A.2B.3C.4D.5【答案】C【解析】当0k =,0a =运行后:1a =,1k =,再次运行后: 3a =,2k =,再次运行后: 7a =,3k =,再次运行后:15a =,4k =,此时达到输出条件,所以输出4k =,故选C .8.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为 ( )A.5B.5C.5D.5【答案】B【解析】依题意,因为点(2,1)在直线230x y --=上,结合题意可设圆心坐标为(,)a a ,则222(2)(1)a a a -+-=,即2650a a -+=,所以1a =,或5a =,所以圆心坐标为(1,1)或(5,5),当圆心坐标为(1,1)时,其到直线230x y --==标为(5,5)时,其到直线230x y --==,综上,可知B 正确. 9.设O 为坐标原点,直线x a =与双曲线22221(0,0)x ya b a b-=>>的两边渐近线分别交于D ,E 两点.若ODE ∆的面积为8,则C 的焦距的最小值为( )A.4B.8C.16D.32【答案】B【解析】双曲线2222:1x y C a b -=(0,0)a b >>的两条渐近线分别为b y x a =±,则容易得到||2DE b =,则8ODE S ab ∆==,222216c a b ab =+≥=,当且仅当a b ==立,所以min 4c =,焦距min (2)8c =. 10.设函数331()f x x x=-,则()f x ( )A.是奇函数,且在(0,)+∞单调递增B.是奇函数,且在(0,)+∞单调递减C.是偶函数,且在(0,)+∞单调递增D.是偶函数,且在(0,)+∞单调递减【答案】A【解析】因为331()f x x x=-,所以()333311()()()0f x f x x x x x +-=-+--=-,所以函数()f x 是奇函数.又因为331()f x x x =-由函数31y x =(为(0,)+∞增函数)加上函数231y x =-(为(0,)+∞增函数)得到,所以函数331()f x x x =-为(0,)+∞增函数,故选A . 判断单调性时也可以这样处理:因为当(0,)x ∈+∞,243()30f x x x '=+>,所以()f x 在(0,)+∞上是单调递增的.11.已知ABC ∆的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为 ( )B.32C.1【答案】C【解析】2ABC S AB ∆==3AB =.设球O 的半径为R ,则2416R ππ=,解得2R =.设O 在ABC ∆内的射影为'O ,'O 是ABC ∆的重心,故2'3O A ==O 到平面ABC 的距离1h ==,故选C .12. 若2233x y x y ---<-,则( )A.ln(1)0y x -+>B.ln(1)0y x -+<C.ln ||0x y ->D.ln ||0x y -<【答案】A【解析】11223323232233xyxy x x y y x y x y -----<-⇒-<-⇒-<-.设1()23xx f x =-,已知()f x 是定义在R 上的增函数,故由112233xyx y -<-可得x y <,所以011y x y x ->⇒-+>,从而ln(1)0y x -+>,故选A .二、填空题 13.若2sin 3x =-,则cos2x = . 【答案】19【解析】22281cos 212sin 12()1399x x =-=--=-=. 14.记n S 为等差数列{}n a 的前n 项和,若12a =-,262a a +=,则10S =______. 【答案】25【解析】由262a a +=,可得1152a d a d +++=,因为12a =-,可求出1d =,由数列的前n 项和公式得1010(101)21012045252S ⨯-=-⨯+⨯=-+=. 15.若x ,y 满足约束条件1121x y x y x y +≥-⎧⎪-≥-⎨⎪-≤⎩,则2z x y =+的最大值是_______.【答案】8【解析】方法一:如图当2x =,3y =时,max 8z =.方法二:联立11x y x y +=-⎧⎨-=-⎩,得(1,0)-,联立121x y x y +=-⎧⎨-=⎩,得(0,1)-,联立121x y x y -=-⎧⎨-=⎩,得(2,3),代入验证可得当2x =,3y =时,max 8z =. 16.设有下列四个命题:1:p 两两相交且不过同一点的三条直线必在同一平面内.2:p 过空间中任意三点有且仅有一个平面. 3:p 若空间两条直线不相交,则这两条直线平行. 4:p 若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.则下列命题中所有真命题的序号是 . ①14p p ∧ ②21p p ∧ ③23p p ⌝∨ ④34p p ⌝∨⌝ 【答案】①③④【解析】对于1:p 可设1l 与2l 相交,所得平面为α.若3l 与1l 相交,则交点A 必在α内,同理,3l 与2l 交点B 也在α内,故AB 直线在α内,即3l 在α内,故1p 为真命题. 对于2:p 过空间中任意三点,若三点共线,可形成无数多平面,故2p 为假命题. 对于3:p 空间中两条直线的位置关系有相交、平行、异面,故3p 为假命题. 对于4:p 若m ⊥平面α,则m 垂直于平面α内的所有直线,故m l ⊥,故4p 为真命题.综上可知:14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题,故正确的有:①③④.三、解答题17.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=. (1)求A ;(2)3b c a -=,证明:ABC ∆是直角三角形. 【解析】(1)由25cos ()cos 24A A π++=可得:25sin cos 4A A +=,2214cos 4cos 10(2cos 1)0cos 2A A A A -+=⇒-=⇒=,∵(0,)A π∈,∴3A π=.(2)解法1:由b c -=可得)a b c =-,又2221cos 22b c a A bc +-==,即222b c a bc +-=,∴2223()b c b c bc +--=,(2)(2)0b c b c ⇒--=,∴2b c =或2c b=(舍),∴a =,即222a c b +=,故三角形为直角三角形.解法2:因为b c -=,由正弦定理得1sin sin 2B C A -==,由于A B C π++=,于是1sin()sin 32C C π+-=,又因为1sin()sin sin sin 32C C C C C π+-=+-1sin sin()23C C C π=-=-,又因为(,)333C πππ-∈-,于是36C ππ-=,6C π=,所以()2B AC ππ=-+=,故三角形为直角三角形.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据,1,2(,...,0)2)(i i x y i =,其中i x 和i y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160ii x==∑,2011200i i y ==∑,2021()80ii x x =-=∑,2021()9000i i y y =-=∑,201()()800i i i x x y y =--=∑,(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本,1,2(,...,0)2)(i i x y i =的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数:()()niix x y y r --=∑1.414≈【解析】(1) 由题意可知,1个样区这种野生动物数量的平均数12006020==,故这种野生动物数量的估计值6020012000=⨯=;(2)由参考公式得()()0.94niix x yy r --===≈∑;(3)由题意可知,各地块间植物覆盖面积差异很大,因此在调查时,先确定该地区各地块间植物覆盖面积大小并且由小到大排序,每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计.19.已知椭圆22122:1(0)x y C a b a b+=>>的右焦点F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合,过F 且与x 轴垂直的直线交1C 于A ,B 两点,交2C 于C 、D 两点,且4||||3CD AB =. (1)求1C 的离心率;(2)若1C 的四个顶点到2C 的准线距离之和为12,求1C 与2C 的标准方程.【解析】(1)由题意知:222242232b p a p c a b c ⎧=⋅⎪⎪⎪=⎨⎪=+⎪⎪⎩,∴ 24243b c a =⋅,∴ 2232()ac a c =-,即222320c ac a +-=,∴22320e e +-=,∴12e =或2e =-,∵01e <<,即1C 的离心率为12. (2)设1C 的四个顶点到2C 的准线距离为1d ,2d ,3d ,4d ,则:∵123422d a c d a c p d c p d c =-⎧⎪=+⎪⎪⎨==⎪⎪==⎪⎩,又∵ 123412d d d d +++=∴122a c a c c c pc -++++=⎧⎪⎨=⎪⎩ ∴6a c += ∵12c a = ∴26c c +=∴216a =,24c =,24p c == ∴212b =∴221:11612x y C +=,22:8C y x =.20.如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F (1)证明:1//AA MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为111A B C ∆的中心,若6AO AB ==,//AO 平面11EB C F ,且3MPN π∠=,求四棱锥11B EB C F -的体积.【解析】(1)证明∵M ,N 分别为BC ,11B C 的中点,底面为正三角形,∴1B N BM =,四边形1BB NM 为矩形,∴1//BB MN ,而11//AA BB ,∴1//AA MN ,可得1,,,A A M N 共面,由四边形1BB NM 为矩形,得11MN B C ⊥,由11B N NC =,得111A N B C ⊥,又1MN A N N ⋂=,得11B C ⊥面1A AMN ,11B C ⊂面11EB C F ∴面1A AMN ⊥面11EB C F ;(2)因为//AO 平面11EB C F ,AO ⊂平面1A NMA ,平面1A NMA平面11EB C F NP =,所以//AO NP ,又因为//NO AP ,所以四边形AONP 为平行四边形,6AO NP ==,ON AP ==M 做MH 垂直于NP ,垂足为H ,因为平面11EB C F ⊥平面1A AMN ,平面11EB C F平面1A AMN NP =,MH ⊂平面1A AMN ,所以MH⊥平面11EB C F,由PM =,6AO =,MN =,得PM MNMH PN⋅==11111()242EB C FS B C EF NP =+⋅=,由//BC 平面11EB C F,所以11111113B EB F M EBC FB C C E F V V S MH --==⋅⋅= 21.已知函数()2ln 1f x x =+,(1)若()2f x x c ≤+,求c 的取值范围; (2)设0a >,讨论函数()()()f x f a g x x a-=-的单调性.【解析】(1)()2f x x c ≤+等价于2ln 21x x c -≤-,设()2ln 2h x x x =-,22(1)'()2x h x x x-=-=, 当01x <<时,()0h x '>,所以()h x 在(0,1)上递增, 当1x >时,()0h x '<,所以()h x 在(1,)+∞递减,故max ()(1)2h x h ==-,所以12c -≥-.即1c ≥-,所以c 的取值范围是[1,)-+∞; (2)2(ln ln )()(0,,0)x a g x x x a a x a-=>≠>-,所以2222()2ln 2ln 2ln 2ln 2'()()()a x a x a x a x x g x x a x a --+--++==--,令2()2ln 2ln 2(0)a w x x a x x =--++>,则22222()'()a a x w x x x x -=-=, 令'()0w x >得0x a <<,'()0w x <得x a >,所以()w x 在(0,)a 上单调递增,在(,)a +∞上单调递减,所以,()()0w x w a ≤=,即'()0g x <,所以,()g x 在(0,)a 和(,)a +∞上单调递减.四、选做题22.已知1C ,2C 的参数方程分别为2124cos :4sin x C y θθ⎧=⎨=⎩,(θ为参数),21:1x t t C y t t ⎧=+⎪⎪⎨⎪=-⎪⎩,(t 为参数)(1)将1C ,2C 的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设1C ,2C 的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【解析】(1)由题:1C 的普通方程为:40x y +-=,(0,0)x y ≥≥; 因为222222212:12x t t C y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,故2C 的普通方程为:224x y -=;联立1C ,2C ,22404x y x y +-=⎧⎨-=⎩解得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,所以点P 坐标为:53(,)22P ,设以设所求圆圆心为(,0)Q a ,半径为a ,故圆心(,0)Q a 到53(,)22P 的距离a =,得1710a =,所以圆Q 的圆心为17(,0)10Q ,半径为1710,圆Q 的直角坐标方程为:2221717()1010()x y -+=,即221705x y x +-=,所以所求圆的极坐标方程为:17cos 5ρθ=.23.已知函数2()|||21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【解析】当2a =时,()|4||3|f x x x =-+-,即 ()27,31,3427,4x x f x x x x -+<⎧⎪=≤≤⎨⎪->⎩所以()4f x ≥的解集为32x ≤或112x ≥. (2)222()|||21||(21)||(1)|f x x a x a x a x a a =-+-+≥---+=-,又()4f x ≥,所以2|(1)|4a -≥,则3a ≥或1a ≤-.。
2020年高考全国二卷文科数学试卷
2020年普通高等学校招生全国统一考试(II 卷)文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符 合题目要求的。
1. 已知集合},3||{Z ∈<=x x x A ,},1||{Z ∈>=x x x B ,则=B AA. ∅B. }3,2,2,3{--C. }2,0,2{-D. }2,2{-2. =-4)i 1(A. -4B. 4C. -4iD. 4i3. 如图,将钢琴上的12个键依次记为1221,,,a a a ,设121≤<<≤k j i ,若3=-j k 且4=-i j ,则称k j i a a a ,,为原位大三和弦;若4=-j k 且3=-i j ,则称k j i a a a ,,为原位小三和弦。
用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为 A. 5 B. 8 C. 10 D. 154. 在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订 单量大幅增加,导致订单积压。
为解决困难,许多志愿者踊跃报名参加配货工作。
已知该超市某 日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05。
志愿者每人每天能 完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少 需要志愿者A. 10名B. 18名C. 24名D. 32名 5. 已知单位向量a 、b 的夹角为︒60,则在下列向量中,与b 垂直的是A. a + 2bB. 2a + bC. a - 2bD. 2a - b 6. 记n S 为等比数列}{n a 的前n 项和。
若1235=-a a ,2446=-a a ,则=nna S A. 12-n B. n --122 C. 122--n D. 121--n 7. 执行右面的程序框图,若输入的k = 0,a = 0,则输出的k 为A. 2B. 3C. 4D. 5 8. 若过点)1,2(的圆与两坐标轴都相切,则圆心到直线032=--y x 的距离为A.55B.552 C.553 D.5549. 设O 为坐标原点,直线a x =与双曲线)0,0(1:2222>>=-b a by a x C 的两条渐近线分别交于D 、E 两点。
2020年普通高等学校招生全国统一考试 文科数学(全国 Ⅱ卷)解析版
2020年普通高等学校招生全国统一考试(全国 Ⅱ卷) 文科数学一、选择题1.已知集合{||3,}A x x x Z =<∈,{||1,}B x x x Z =>∈,则A B ⋂=( ) A .∅ B .{3,2,2,3}-- C .{2,0,2}- D .{2,2}- 答案: D 解析:{|1||3,}{2,2}A B x x x Z ⋂=<<∈=-,故选D . 2.4(1)i -=( ) A .4- B .4 C .4i - D .4i 答案: A 解析:42(1)(2)4i i -=-=-,故选A .3.如图,将钢琴上的12个键依次记为1212,,...,a a a ,设112i j k ≤<<≤.若3k j -=且4j i -=,则称,,i j k a a a 为原位大三和弦;若4k j -=且3j i -=,则称,,i j k a a a 为原位小三和弦,用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( )A . 5B . 8C . 10D . 15 答案: C 解析:原位大三和弦:1i =,5j =,8k =;2i =,6j =,9k =;3i =,7j =,10k =;4i =,8j =,11k =;5i =,9j =,12k =共5个;原位小三和弦:1i =,4j =,8k =;2i =,5j =,9k =;3i =,6j =,10k =;4i =,7j =,11k =;5i =,8j =,12k =共5个;总计10个.4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A .10名 B .18名 C .24名 D .32名答案: B 解析:积压500份订单未配货,次日产生新订单超过1600份的概率为0.05,其中1200份不需要志愿者配货,志愿者只需负责400份配货,也就是需要志愿者配货的为900份,故需要18名志愿者.5.已知单位向量a ,b 的夹角为60︒,则在下列向量中, 与b 垂直的是( ) A .2a b + B .2a b + C .2a b - D .2a b - 答案: D 解析:21(2)2211102a b b a b b -⋅=⋅-=⨯⨯⨯-=,故选D .6.记n S 为等比数列{}n a 的前n 项和.若5312a a -=,6424a a -=,则nnS a =( )A . 21n -B . 122n --C . 122n --D . 121n -- 答案: B 解析:设等比数列{}n a 的通项公式为11n n a a q -=,根据5312a a -=,6424a a -=.解得11a =,2q =,故12n n a -=,122112nn n S -==--,可得122n n n S a -=- ,故选B .7.执行右面的程序框图,若输入0k =,0a =,则输出的k 为( )A .2B .3C .4D .5 答案: C 解析:当0k =,0a =运行后:1a =,1k =,再次运行后: 3a =,2k =,再次运行后: 7a =,3k =,再次运行后:15a =,4k =,此时达到输出条件,所以输出4k =,故选C .8.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( ) A 5BCD 答案: B 解析:依题意,因为点(2,1)在直线230x y --=上,结合题意可设圆心坐标为(,)a a ,则222(2)(1)a a a -+-=,即2650a a -+=,所以1a =,或5a =,所以圆心坐标为(1,1)或(5,5),当圆心坐标为(1,1)时,其到直线230x y --=的距离为=;当圆心坐标为(5,5)时,其到直线230x y --=的距离为=,综上,可知B 正确. 9.设O 为坐标原点,直线x a =与双曲线22221(0,0)x ya b a b-=>>的两边渐近线分别交于D ,E 两点.若ODE ∆的面积为8,则C 的焦距的最小值为( ) A . 4 B . 8 C . 16 D . 32 答案: B 解析:双曲线2222:1x y C a b-=(0,0)a b >>的两条渐近线分别为b y x a =±,则容易得到||2DE b =,则8ODE S ab ∆==,222216c a b ab =+≥=,当且仅当a b ==时,等号成立,所以min 4c =,焦距min (2)8c =.10.设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,)+∞单调递增 B .是奇函数,且在(0,)+∞单调递减 C .是偶函数,且在(0,)+∞单调递增 D .是偶函数,且在(0,)+∞单调递减 答案: A 解析:因为331()f x x x =-,所以()333311()()()0f x f x x x x x +-=-+--=-,所以函数()f x 是奇函数.又因为331()f x x x=-由函数31y x =(为(0,)+∞增函数)加上函数231y x =-(为(0,)+∞增函数)得到,所以函数331()f x x x=-为(0,)+∞增函数,故选A .判断单调性时也可以这样处理:因为当(0,)x ∈+∞,243()30f x x x'=+>,所以()f x 在(0,)+∞上是单调递增的. 11.已知ABC ∆的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为( ) AB .32C .1 D答案: C 解析:2ABC S AB ∆==,所以3AB =.设球O 的半径为R ,则2416R ππ=,解得2R =.设O 在ABC ∆内的射影为'O ,'O 是ABC ∆的重心,故2'3O A ==.从而O 到平面ABC 的距离1h ==,故选C .12. 若2233x y x y ---<-,则( )A . ln(1)0y x -+>B . ln(1)0y x -+<C . ln ||0x y ->D . ln ||0x y -< 答案: A 解析:11223323232233x y x y x x y y x y x y -----<-⇒-<-⇒-<-.设1()23xx f x =-,已知()f x 是定义在R 上的增函数,故由112233x yx y -<-可得x y <,所以011y x y x ->⇒-+>,从而ln(1)0y x -+>,故选A . 二、填空题13.若2sin 3x =-,则cos 2x = .答案:19解析:22281cos 212sin 12()1399x x =-=--=-=.14.记n S 为等差数列{}n a 的前n 项和,若12a =-,262a a +=,则10S =______. 答案:25 解析:由262a a +=,可得1152a d a d +++=,因为12a =-,可求出1d =,由数列的前n 项和公式得1010(101)21012045252S ⨯-=-⨯+⨯=-+=. 15.若x ,y 满足约束条件1121x y x y x y +≥-⎧⎪-≥-⎨⎪-≤⎩,则2z x y =+的最大值是_______.答案: 8 解析: 方法一:如图当2x =,3y =时,max 8z =.方法二:联立11x y x y +=-⎧⎨-=-⎩,得(1,0)-,联立121x y x y +=-⎧⎨-=⎩,得(0,1)-,联立121x y x y -=-⎧⎨-=⎩,得(2,3),代入验证可得当2x =,3y =时,max 8z =. 16.设有下列四个命题:1:p 两两相交且不过同一点的三条直线必在同一平面内. 2:p 过空间中任意三点有且仅有一个平面. 3:p 若空间两条直线不相交,则这两条直线平行.4:p 若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥. 则下列命题中所有真命题的序号是 . ①14p p ∧ ②21p p ∧ ③23p p ⌝∨ ④34p p ⌝∨⌝ 答案: ①③④ 解析:对于1:p 可设1l 与2l 相交,所得平面为α.若3l 与1l 相交,则交点A 必在α内,同理,3l 与2l 交点B 也在α内,故AB 直线在α内,即3l 在α内,故1p 为真命题. 对于2:p 过空间中任意三点,若三点共线,可形成无数多平面,故2p 为假命题. 对于3:p 空间中两条直线的位置关系有相交、平行、异面,故3p 为假命题. 对于4:p 若m ⊥平面α,则m 垂直于平面α内的所有直线,故m l ⊥,故4p 为真命题.综上可知:14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题,故正确的有:①③④. 三、解答题17.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ;(2)b c -=,证明:ABC ∆是直角三角形. 答案: (1)3π;(2)证明过程见解析.解析:(1)由25cos ()cos 24A A π++=可得:25sin cos 4A A +=,2214cos 4cos 10(2cos 1)0cos 2A A A A -+=⇒-=⇒=,∵(0,)A π∈,∴3A π=.(2)解法1:由b c -=可得)a b c =-,又2221cos 22b c a A bc +-==,即222b c a bc +-=,∴2223()b c b c bc +--=,(2)(2)0b c b c ⇒--=,∴2b c =或2c b =(舍),∴a =,即222a c b +=,故三角形为直角三角形.解法2:因为b c -=,由正弦定理得1sin sin 2B C A -==,由于A B C π++=,于是1sin()sin 32C C π+-=,又因为1sin()sin sin sin 32C C C C C π+-=+-1sin sin()23C C C π=-=-,又因为(,)333C πππ-∈-,于是36C ππ-=,6C π=,所以()2B AC ππ=-+=,故三角形为直角三角形.18. 某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据,1,2(,...,0)2)(i i x y i =,其中i x 和i y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021()80i i x x =-=∑,2021()9000ii yy =-=∑,201()()800i i i x x y y =--=∑,(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本,1,2(,...,0)2)(i i x y i =的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数:nx y r =1.414≈答案: (1)12000; (2)0.94; (3)见解析 解析:(1) 由题意可知,1个样区这种野生动物数量的平均数12006020==,故这种野生动物数量的估计值6020012000=⨯=;(2)由参考公式得0.94nx y r ===≈;(3)由题意可知,各地块间植物覆盖面积差异很大,因此在调查时,先确定该地区各地块间植物覆盖面积大小并且由小到大排序,每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计.19.已知椭圆22122:1(0)x y C a b a b +=>>的右焦点F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合,过F 且与x 轴垂直的直线交1C 于A ,B 两点,交2C 于C 、D 两点,且4||||3CD AB =. (1)求1C 的离心率;(2)若1C 的四个顶点到2C 的准线距离之和为12,求1C 与2C 的标准方程. 答案: (1)12e =(2)221:11612x y C +=;22:8C y x =解析:(1)由题意知:222242232b p a p c a b c ⎧=⋅⎪⎪⎪=⎨⎪=+⎪⎪⎩,∴ 24243b c a =⋅,∴ 2232()ac a c =-,即222320c ac a +-=,∴22320e e +-=,∴12e =或2e =-,∵01e <<,即1C 的离心率为12.(2)设1C 的四个顶点到2C 的准线距离为1d ,2d ,3d ,4d ,则:∵123422d a c d a c pd c p d c =-⎧⎪=+⎪⎪⎨==⎪⎪==⎪⎩,又∵ 123412d d d d +++=∴122a c a c c c pc -++++=⎧⎪⎨=⎪⎩ ∴6a c += ∵12c a = ∴26c c +=∴216a =,24c =,24p c == ∴212b =∴221:11612x y C +=,22:8C y x =.20.如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F(1)证明:1//AA MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为111A B C ∆的中心,若6AO AB ==,//AO 平面11EB C F ,且3MPN π∠=,求四棱锥11B EB C F -的体积.答案: 见解析 解析:(1)证明∵M ,N 分别为BC ,11B C 的中点,底面为正三角形,∴1B N BM =,四边形1BB NM 为矩形,∴1//BB MN ,而11//AA BB ,∴1//AA MN ,可得1,,,A A M N共面,由四边形1BB NM 为矩形,得11MN B C ⊥,由11B N NC =,得111A NBC ⊥,又1MN A N N ⋂=,得11B C ⊥面1A AMN ,11B C ⊂面11EB C F ∴面1A AMN ⊥面11EB C F ;(2)因为//AO 平面11EB C F ,AO ⊂平面1A NMA ,平面1A NMA 平面11EB C F NP =,所以//AO NP ,又因为//NO AP ,所以四边形AONP 为平行四边形,6AO NP ==,3ON AP ==,过M 做MH 垂直于NP ,垂足为H ,因为平面11EB C F ⊥平面1A AMN ,平面11EB C F平面1A AMN NP =,MH ⊂平面1A AMN ,所以MH ⊥平面11EB C F ,由23PM =,6AO =,26MN =,得PM MN MH PN ⋅==11111()242EB C F S B C EF NP =+⋅=,由//BC 平面11EB C F ,所以11111113B EB F M EBC FB C C E F V V S MH --==⋅⋅= 21.已知函数()2ln 1f x x =+,(1)若()2f x x c ≤+,求c 的取值范围; (2)设0a >,讨论函数()()()f x f a g x x a-=-的单调性.答案:(1)[1,)-+∞; (2)见解析 解析:(1)()2f x x c ≤+等价于2ln 21x x c -≤-,设()2ln 2h x x x =-,22(1)'()2x h x x x-=-=, 当01x <<时,()0h x '>,所以()h x 在(0,1)上递增, 当1x >时,()0h x '<,所以()h x 在(1,)+∞递减,故max ()(1)2h x h ==-,所以12c -≥-.即1c ≥-,所以c 的取值范围是[1,)-+∞;(2)2(ln ln )()(0,,0)x a g x x x a a x a-=>≠>-,所以2222()2ln 2ln 2ln 2ln 2'()()()a x a x a x a x x g x x a x a --+--++==--, 令2()2ln 2ln 2(0)a w x x a x x =--++>,则22222()'()a a x w x x x x -=-=,令'()0w x >得0x a <<,'()0w x <得x a >,所以()w x 在(0,)a 上单调递增,在(,)a +∞上单调递减,所以,()()0w x w a ≤=,即'()0g x <,所以,()g x 在(0,)a 和(,)a +∞上单调递减. 四、选做题(2选1)22.已知1C ,2C 的参数方程分别为2124cos :4sin x C y θθ⎧=⎨=⎩,(θ为参数),21:1x t t C y t t ⎧=+⎪⎪⎨⎪=-⎪⎩,(t 为参数)(1)将1C ,2C 的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设1C ,2C 的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程. 答案: 见解析 解析:(1)由题:1C 的普通方程为:40x y +-=,(0,0)x y ≥≥;因为222222212:12x t tC y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,故2C 的普通方程为:224x y -=;联立1C ,2C ,22404x y x y +-=⎧⎨-=⎩解得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,所以点P 坐标为:53(,)22P ,设以设所求圆圆心为(,0)Q a ,半径为a ,故圆心(,0)Q a 到53(,)22P 的距离a =,得1710a =,所以圆Q 的圆心为17(,0)10Q ,半径为1710,圆Q 的直角坐标方程为:2221717()1010()x y -+=,即221705x y x +-=,所以所求圆的极坐标方程为:17cos 5ρθ=. 23.已知函数2()|||21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x ≥的解集; (2)若()4f x ≥,求a 的取值范围.答案: (1)解集为32x ≤或112x ≥;(2)3a ≥或1a ≤-. 解析:(1)当2a =时,()|4||3|f x x x =-+-,即()27,31,3427,4x x f x x x x -+<⎧⎪=≤≤⎨⎪->⎩所以()4f x ≥的解集为32x ≤或112x ≥.(2)222()|||21||(21)||(1)|f x x a x a x a x a a =-+-+≥---+=-,又()4f x ≥,所以2|(1)|4a -≥,则3a ≥或1a ≤-.。
2020年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学文科
绝密★启用前2020年普通高等学校招生全国统一考试(新课标Ⅱ卷)文科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名、准考证号填写在答题卡上。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。
(1)已知集合M={x|-3<X<1},N={-3,-2,-1,0,1},则M∩N= (A){-2,-1,0,1}(B){-3,-2,-1,0}(C){-2,-1,0} (D){-3,-2,-1 }(2)||=(A)2(B)2 (C)(D)1(3)设x,y满足约束条件,则z=2x-3y的最小值是(A)(B)-6 (C)(D)-(4)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为(A)2+2 (B)(C)2(D)-1(5)设椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30。
,则C的离心率为(A)(B)(C)(D)(6)已知sin2α=,则cos2(α+)=(A)(B)(C)(D)(7)执行右面的程序框图,如果输入的N=4,那么输出的S=(A)1(B)1+(C)1++++(D)1++++(8)设a=log32,b=log52,c=log23,则(A)a>c>b (B)b>c>a (C)c>b>a (D)c>a>b (9)一个四面体的顶点在点间直角坐系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可为(A)(B)(C)(D)( 10)设抛物线C:y2=4x的焦点为F,直线L过F且与C交于A, B两点.若|AF|=3|BF|,则L的方程为(A)y=x-1或y=-x+1 (B)y=(X-1)或y=-(x-1)(C)y=(x-1)或y=-(x-1)(D)y=(x-1)或y=-(x-1)(11)已知函数f(x)=x3+ax2+bx+c ,下列结论中错误的是(A)(B)函数y=f(x)的图像是中心对称图形(C)若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减(D)若x0是f(x)的极值点,则f’(x0)=0(12)若存在正数x使2x(x-a)<1成立,则a 的取值范围是(A)(-∞,+∞)(B)(-2, +∞) (C)(0, +∞) (D)(-1,+∞)第Ⅱ卷本卷包括必考题和选考题两部分。
2020高考全国2卷文科数学带答案
2020高考全国2卷文科数学带答案2020年普通高等学校招生全国统一考试文科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
1.A2A B=A{}3,534,则A52020高考全国2卷文科数学带答案 精心整理A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>A.y = B.y = C.y x = D.y = 7.在ABC △中,cos 2C =1BC =,5AC =,则AB = A.BCD. 8199100++-图,则在空白框中应填入 A B C D 9A 10A 1160︒,A 12(50)f +AB .0 二、填空题:本题共4小题,每小题精心整理13.曲线2ln y x =在点(1,0)处的切线方程为__________.14.若,x y 满足约束条件250,230,50,x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤则z x y =+的最大值为__________.15.已知51tan 45πα⎛⎫-= ⎪⎝⎭,则tan α=__________.16.已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB△21题17.18.2,,7)2020高考全国2卷文科数学带答案精心整理19.(12分)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C到平面20.两点,||AB =21.22.精心整理程为1cos ,2sin ,x t αy t α=+⎧⎨=+⎩(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. 23.[选修4-5:不等式选讲](10分)绝密17172020高考全国2卷文科数学带答案所以当n=4时,S n取得最小值,最小值为–16.18.解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为y=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.19.解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=23.精心整理精心整理连结OB.因为AB=BC,所以△ABC为等腰直角三角形,且OB⊥AC,OB=12AC=2.由222OP OB PB+=知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.20(3)x-,即y=2020高考全国2卷文科数学带答案精心整理因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.21.解:(1)当a =3时,f (x )=3213333x x x ---,f ′(x )=263x x --.令f ′(x )=0解得x=3-x=3+g(x 以(1f +22精心整理当cos 0α=时,l 的直角坐标方程为1x =.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程22(13cos )4(2cos sin )80t t ααα+++-=.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为1t ,2t ,则120t t +=.2=-. 23[2,)+∞.。
2020年全国统一高考数学试卷2卷(文科)
2020年普通高等学校招生全国统一考试(2卷)文科一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A. ∅B. {–3,–2,2,3)C. {–2,0,2}D. {–2,2}2.(1–i )4=( ) A. –4 B. 4 C. –4iD. 4i3.如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k –j =3且j –i =4,则称a i ,a j ,a k 为原位大三和弦;若k –j =4且j –i =3,则称a i ,a j ,a k 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( )A. 5B. 8C. 10D. 154.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A. 10名B. 18名C. 24名D. 32名5.已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A. 2a b +B. 2a b +C. 2a b -D. 2a b -6.记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则nnS a =( )A. 2n –1B. 2–21–nC. 2–2n –1D. 21–n –17.执行右面的程序框图,若输入的k =0,a =0,则输出的k 为( )A. 2B. 3C. 4D. 58.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( ) 5 2535D.4559.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A. 4B. 8C. 16D. 3210.设函数331()f x x x=-,则()f x ( ) A. 是奇函数,且在(0,+∞)单调递增 B. 是奇函数,且在(0,+∞)单调递减 C. 是偶函数,且在(0,+∞)单调递增 D. 是偶函数,且在(0,+∞)单调递减11.已知△ABC 93且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) 3B. 32C. 1 312.若2233x y x y ---<-,则( ) A. ln(1)0y x -+>B. ln(1)0y x -+<C. ln ||0x y ->D. ln ||0x y -<二、填空题:本题共4小题,每小题5分,共20分.13.若2sin 3x =-,则cos2x =__________.14.记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S =__________.15.若x ,y 满足约束条件1121,x y x y x y +≥-⎧⎪-≥-⎨⎪-≤⎩,,则2z x y=+的最大值是__________.16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是__________. ①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ; (2)若b c -=,证明:△ABC 是直角三角形. 18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021)80i ix x =-=∑(,2021)9000i i y y =-=∑(,201))800i i i x y x y =--=∑((. (1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni iiiin ni i x y x x y y y x ===----∑∑∑((((,≈1.414.19.已知椭圆C 1:22221x y a b +=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.20.如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积.21.已知函数f (x )=2ln x +1.(1)若f (x )≤2x +c ,求c 的取值范围; (2)设a >0时,讨论函数g (x )=()()f x f a x a--的单调性.[选修4—4:坐标系与参数方程]22.已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y θθ⎧=⎨=⎩,(θ为参数),C 2:1,1x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程. [选修4—5:不等式选讲]23.已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围.。
2020届全国高考高三信息卷(全国Ⅱ卷)-文科数学(五)
绝密★启用前2020年高三最新信息卷文科数学(五)学校:___________姓名:___________班级:___________考号:___________注意事项:1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|23}A x x x =-≥,{|04}B x x =<<,则A B =()A .(1,4)-B .(0,3]C .[3,4)D .(3,4)2.设复数z 满足(1i)12i z -=+,其中i 是虚数单位,则||z =()A .1B C D 3.已知向量(3,4)=-a ,||2=b ,若5⋅=-a b ,则向量a 与b 的夹角为() A .π6B .π4C .π3D .2π34.袋子中有大小、形状完全相同的四个小球,分别写有“和”、“谐”、“校”、“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率,利用电脑随机产生1到4之间取整数值的随机数,分别用1,2,3,4代表“和”、“谐、“校”、“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数:343432341342234142243331112 342241244431233214344142134由此可以估计,恰好第三次就停止摸球的概率为() A .16B .29C .518D .195.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用,若这三人中仅有一人说法错误,则下列结论正确的是() A .丙被录用了 B .乙被录用了 C .甲被录用了D .无法确定谁被录用了6.设12log 3a =,0.21()3b =,132c =,则()A .a b c >>B .c b a >>C .c a b >>D .b a c >>7.若l ,m 是两条不同的直线,m 垂直于平面α,则“l m ⊥”是“l α∥”的() A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件8.函数2()cos cos 1f x x x x =+-,则下列表述正确的是() A .()f x 在ππ(,)36--单调递减 B .()f x 在ππ(,)63单调递增 C .()f x 在π(,0)6-单调递减 D .()f x 在π(0,)6单调递增9.抛物线2:(0)C y ax a =>的焦点F 是双曲线22221y x -=的一个焦点,过F 且倾斜角为60︒的直线l 交C 于A ,B ,则||AB =() A2+ B.2+C .163D .1610.已知函数()f x 是定义在R 上的奇函数,当(,0]x ∈-∞时,2()2f x x ax =+,若曲线()y f x =在点(1,(1))f 处的切线过点(2,0),则a =() A .34-B .1C .2D .3411.若π4sin(2)25α+=-,π(,π)2α∈,则πtan()4α+等于() A .2-B .12-C .2D .1212.过双曲线2222:1(0,0)x y a b a bΩ-=>>左焦点F 的直线l 交Ω的左支于A ,B 两点,直线AO(O 是坐标原点)交Ω的右支于点D ,若DF AB ⊥,且||||BF DF =,则Ω的离心率是() AB .2 CD第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.一组样本数据10,23,12,5,9,a ,21,b ,22的平均数为16,中位数为21,则a b -=. 14.实数满足204040x y x x y -+≥⎧⎪-≤⎨⎪+-≥⎩,则2z x y =-的最小值是.15.已知ABC △的三个内角,,A B C 的对应边分别为,,a b c ,且2ABC S =△,则使得22sin sin sin sin B C m B C +=成立的实数m 的取值范围是.16.体积为3的三棱锥A BCD -中,3BC AC BD AD ====,CD =AB <则该三棱锥外接球的表面积为.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)已知数列{}n a 的前n 项和n S1(2,)n n =≥∈N ,且11a =.(1)求数列的通项公式n a ; (2)记11n n n b a a +=⋅,n T 为{}n b 前n 项和,求使2n T n≥成立的n 的最小值.18.(12分)某健身馆为响应十九届四中全会提出的“聚焦增强人民体质,健全促进全民健身制度性举措”,提高广大市民对全民健身运动的参与程度,推出了让健身馆会员参与的健身促销活动. (1)为了解会员对促销活动的兴趣程度,现从某周六参加该健身馆健身活动的会员中随机采访男性会员和女性会员各50人,他们对于此次健身馆健身促销活动感兴趣的程度如下表所示:?(参考公式22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)(2们对此次健身促销活动满意度的分数(满分10分),如图所示,若将此茎叶图中满意度分为“很满意”(分数不低于9.5分)、“满意”(分数不低于平均分且低于9.5分)、“基本满意”(分数低于平均分)三个级别.先从“满意”和“很满意”的会员中随机抽取两人参加回访馈赠活动,求这两人中至少有一人是“很满意”会员的概率.19.(12分)如图,在几何体BACDEF 中,四边形CDEF 是菱形,AB CD ∥,平面ADF ⊥平面CDEF ,AD AF =. (1)求证:AC DF ⊥;(2)若2FA FC FD ===,1AB =,求三棱锥A CDF -和三棱锥E BDF -的体积.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>,左、右顶点分别为1A ,2A ,上、下顶点分别为1B ,2B ,且1(0,1)B ,112A B B △是等边三角形,过点(1,0)的直线与椭圆C 在y 轴右侧的部分交于M ,N 两点,O 为坐标原点. (1)求椭圆的标准方程; (2)若221||MN =,求直线MN 的方程.21.(12分)已知函数()ln f x x a x =-,1()()ag x a x+=-∈R . (1)若1a =,求函数()f x 的极值;(2)若在[1,]e 上存在一点0x ,使得00()()f x g x <成立,求a 的取值范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,曲线13cos :1sin x t C y t αα=+⎧⎨=+⎩(t 为参数),其中[0,π)α∈,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4sin C ρθ=.(1)求1C 的普通方程和2C 的直角坐标方程;(2)若1C 与2C 相交于点A ,B 两点,点(3,1)P ,求||||PA PB ⋅. 23.(10分)【选修4-5:不等式选讲】 设函数()|21||1|f x x x =++-. (1)求不等式()2f x ≥的解集; (2)若x ∈R ,7()4f x ax ≥+恒成立,求a 的取值范围.绝密★启用前2020年高三最新信息卷文科数学(五)答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:C由223x x -≥变形,得(1)(3)0x x +-≥,解得3x ≥或1x ≤-, ∴{|3A x x =≥或1}x ≤-, 又∵{|04}B x x =<<,∴A B =[3,4).2.答案:C∵12i 13i 1i 22z +==-+-,∴||z == 3.答案:D 由题可知:51cos ==||||102θ⋅-=-a b a b ,所以向量a 与b 的夹角为2π3. 4.答案:B随机模拟产生了以下18组随机数:343432341342234142243331112342241244431233214344142134其中三次就停止摸球的随机数有142,112,241,142,共4个, 由此可以估计,恰好第三次就停止摸球的概率为42189p ==. 5.答案:C若甲被录用了,则甲的说法错误,乙、丙的说法正确,满足题意; 若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意; 若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意, 综上可得,甲被录用了. 6.答案:B因为1122log 3log 10a =<=,0.20110()()133b <=<=,13221c =>=,所以c b a >>.7.答案:B若l m ⊥,因为m 垂直于平面α,则l α∥或l α⊂; 若l α∥,又m 垂直于平面α,则l m ⊥, 所以“l m ⊥”是“l α∥”的必要不充分条件. 8.答案:D由已知,1cos 2π1()21sin(2)2262x f x x x +=+-=+-, 当ππ(,)36x ∈--时,πππ2(,)626x +∈--,()f x 在此区间单调递增,故A 错误; 当ππ(,)63x ∈时,ππ5π2(,)626x +∈,()f x 在此区间单调递减,故B 错误; 当π(,0)6x ∈-时,πππ2(,)666x +∈-,()f x 在此区间单调递增,故C 错误; 当π(0,)6x ∈时,πππ2(,)662x +∈,()f x 在此区间单调递增,故D 正确. 9.答案:D由抛物线2:(0)C y ax a =>可知焦点1(0,)4F a, 由双曲线22221y x -=的上焦点坐标为(0,1), 且抛物线的焦点1(0,)4F a是双曲线22221y x -=的一个焦点, 可得114a=,得14a =,得抛物线方程为214y x =,由题意得直线l的方程为1y =+,设11(,)A x y ,22(,)B x y ,联立2141y x y ⎧=⎪⎨⎪=+⎩消y化简得240x --=,则有12x x +=124x x =-,所以弦长||16AB ===. 10.答案:D设0x ≥,则0x -≤,当(,0]x ∈-∞时,2()2f x x ax =+,所以2()2f x x ax -=-,又()()f x f x -=-,所以2()2f x x ax -=-,即2()2f x x ax =-+,所以(1)12f a =-+,又()22f x x a '=-+,所以(1)22f a '=-+, 所以1202212a k a -+-==-+-,解得34a =.11.答案:B ∵π4sin(2)25α+=-,所以4cos 25α=-, ∵π(,π)2α∈,1cos 210cos 2αα+=-=-, ∴310sin α=,∴tan 3α=-,∴πtan 11tan()41tan 2ααα++==--. 12.答案:D 如图,设双曲线的右焦点为2F ,连接2DF 并延长交右支于C ,连接FC , 因为2FO OF =,AO OD =,故四边形2FAF D 为平行四边形, 又DF AB ⊥,故平行四边形2FAF D 为矩形,故2FD DF ⊥, 又双曲线为中心对称图形,故2F C BF =,设2DF x =,则2DF x a =+,故22F C x a =+,故4FC x a =+,因为FDC △为直角三角形,故222(4)(22)(2)x a x a x a +=+++,解得x a =,在2FDF Rt △中,有22249c a a =+,所以5102c e a ===. 第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.答案:0∵数据的平均数为16,∴102312592122169144a b ++++++++=⨯=,∴42a b +=, ∵591012212223<<<<<<,且数据的中位数为21,∴21a ≥,21b ≥,∴21a b ==,∴0a b -=. 14.答案:8- 如图,画出可行域,令0z =,作出初始目标函数12y x =, 由1122y x z =-知,当直线1122y x z =-在y 轴上的截距最大时,2z x y =-取得最小值, 由图像可知,当直线过点C 时,目标函数取得最小值,联立204x y x -+=⎧⎨=⎩,解得4x =,6y =,即(4,6)C ,即min 4268z =-⨯=-.15.答案:[2,4]由三角形的面积公式可得213sin 212ABC S bc A a ==△,即223sin a bc A =, 由余弦定理可得2222cos a b c bc A =+-,∴2223sin 2cos bc A b c bc A =+-, ∴22π2(3cos )4sin()6b c bc A A bc A +=+=+,∵22sin sin sin sin B C m B C +=,由正弦定理可得22b c mbc +=, ∴π4sin()6bc A mbc +=,∴π4sin()6m A =+, ∵0πA <<,∴ππ7π666A <+<,∴1πsin()126A -<+≤,∴24m -<≤, ∵222b c bc +≥,当且仅当b c =时取等号, ∴2mbc bc ≥,∴2m ≥, 综上所述m 的取值范围为[2,4]. 16.答案:61π3取AB 的中点E ,连接CE ,DE , 由3BC AC BD AD ====,设AE BE x ==,∴22239CE DE x x ==-=-, 取CD 的中点F ,连接EF ,则2222954EF xx =--=-,∴11121523333A BCD CDE CDE CDE V S AE S BE S x -=⋅+⋅=⋅=△△△, 即11215232CD EF x ⋅⋅⋅⋅=211215254232x x ⇒⋅⋅⋅-⋅=, 解得3x =或1x =,又22AB <,∴1x =,即2AB =,∴3EF =,利用对称性可知外接球的球心O 在EF 上或EF 的延长线上, 若球心O 在EF 上,设OF a =,∴222OD OE AE =+,即222(5)1(3)a a +=+-,此时a 无解, 即球心O 在EF 的延长线上,∴222(5)1(3)a a +=++,解得3a =, 即球的半径261512R a =+=, ∴三棱锥外接球的表面积为2614ππ3S R ==.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.答案:(1)21n a n =-;(2)5. (111n n S S -=,∴数列{}n S 211S a =11a =,n S n =,即2n S n =,当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,又11a =也满足上式, ∴21n a n =-.(2)由(1)知,1111()(21)(21)22121n b n n n n ==--+-+, ∴11111111(1)(1)2335212122121n n T n n n n =-+-++-=-=-+++, 由2n T n≥,有242n n ≥+,有2(2)6n -≥,所以5n ≥, ∴n 的最小值为5. 18.答案:(1)没有95%的把握认为;(2)35. (1)由列联表可得:22()()()()()n ad bc K a b c d a c b d -=++++2100(26203024)0.649 3.84150505644⨯⨯-⨯=≈<⨯⨯⨯, 所以没有95%的把握认为“对健身促销活动感兴趣”与“性别”有关.(2)由茎叶图可知,这10个数据的平均数为:1(7.67.98.28.58.99.19.29.39.59.8)8.810+++++++++=, 依题意这10人中“满意”的有4人,记为,,,a b c d ;“很满意”的有2人,记为1,2,从这6人中任取2人,所有的基本事件有(,)a b 、(,)a c 、(,)a d 、(,1)a 、(,2)a 、(,)b c 、(,)b d 、(,1)b 、(,2)b 、(,)c d 、(,1)c 、(,2)c 、(,1)d 、(,2)d 、(1,2),共15个基本事件,记A 为从“满意”和“很满意”的会员中随机抽取两人至少有一人很满意,则A 中包含的基本事件有(,1)a 、(,2)a 、(,1)b 、(,2)b 、(,1)c 、(,2)c 、(,1)d 、(,2)d 、(1,2),共9个基本事件,所以93()155P A ==. 19.答案:(1)证明见解析;(2)1A CDF V -=,1E BDF V -=.(1)证明:如图,连接CE ,与DF 交于点O ,则O 为DF 的中点,连接AO ,由四边形CDEF 是菱形,可得CE DF ⊥,因为AD AF =,所以AO DF ⊥,因为CEAO O =,所以DF ⊥平面AOC ,因为AC ⊂平面AOC ,所以AC DF ⊥.(2)因为平面ADF ⊥平面CDEF ,平面ADF 平面CDEF FD =,且AO DF ⊥, 所以AO ⊥平面CDEF ,即AO 为三棱锥A CDF -的高,由2FA FC FD ===,四边形CDEF 是菱形,且AD AF =,可得ADF △与CDF △都是边长为2的等边三角形,所以2sin 60AO =⨯︒= 因为CDF △的面积224CDF S ==△故11133A CDF CDF V S AO -=⋅==△, 因为AB CD ∥,CD ⊂平面CDEF ,AB ⊄平面CDEF ,所以AB ∥平面CDEF , 故点B 到平面CDEF的距离也为AO =由四边形CDEF 是菱形得EDF CDF S S =△△,因此11133E BDF B DEF EDF V V S AO --==⋅==△. 20.答案:(1)2213x y +=;(2)1)y x =-. (1)因为1(0,1)B ,所以1b =,因为112A B B △是等边三角形,所以a =,所以a = 所以椭圆的标准方程为2213x y +=. (2)当直线MN的斜率不存在时,可得(1,3M -,(1,3N ,所以||MN =≠,所以直线MN 的斜率存在, 设直线MN 的斜率为k ,则直线MN 的方程为(1)y k x =-,设11(,)M x y ,22(,)N x y ,联立2213(1)x y y k x ⎧+=⎪⎨⎪=-⎩,化简得2222(31)6330k x k x k +-+-=, 所以2122631k x x k +=+,21223331k x x k -=+,所以12|||MN x x =-=== 因为10x >,20x >,21223331k x x k -=+,所以||1k >,所以解得23k =或2613k =-(舍去),所以直线MN 的方程为1)y x =-.21.答案:(1)见解析;(2)21(,2)(,)1e e +-∞-+∞-. (1)()f x 的定义域为(0,)+∞, 当1a =时,()ln f x x x =-,1()x f x x-'=, 所以()f x 在(0,1)上单调递减,在(1,)+∞上单调递增, 故()f x 在1x =取得极小值1,无极大值.(2)令1()()()ln a h x f x g x x a x x+=-=+-, 若0[1,]x e ∃∈,使0()0h x <成立,则对于[1,]x e ∈,min ()0h x <即可,而221(1)[(1)]()1a a x x a h x x x x ++-+'=--=, ①当1a e +≥,即1a e ≥-时,()h x 在[1,]e 上单调递减, 则min 1()()+a h x h e e a e +==-, 由min ()0h x <,解得211e a e +>-, 而2111e e e +>--,所以211e a e +>-, ②当11a +≤,即0a ≤时,()h x 在[1,]e 上单调递增, 则min ()(1)11h x h a ==++,由min ()0h x <,解得2a <-,③当11a e <+<,即01a e <<-时,()h x 在[1,1]a +上单调递减,()h x 在[1,]a e +上单调递增, 所以min ()(1)2ln(1)h x h a a a a =+=+-+,而0ln(1)1a <+<,∴0ln(1)a a a <+<,故(1)2h a +>,即()0h x <不成立,综上,21(,2)(,)1e a e +∈-∞-+∞-. 22.答案:(1)见解析;(2)6.(1)由曲线13cos :1sin x t C y t αα=+⎧⎨=+⎩(t 为参数), 可得3cos 1sin x t y t αα-=⎧⎨-=⎩(t 为参数), 两式相除,可得1sin tan 3cos y x ααα-==-, 整理得曲线1C 的普通方程πtan 3tan 10()2x y ααα--+=≠或π3()2x α==; 由曲线2:4sin C ρθ=,两边同乘ρ,可得24sin ρρθ=,又因为cos x ρθ=,sin y ρθ=,代入可得224x y y +=,即22(2)4x y +-=, 所以曲线2C 的直角坐标方程为22(2)4x y +-=. (2)将曲线13cos :1sin x t C y t αα=+⎧⎨=+⎩代入222:(2)4C x y +-=, 得22(3cos )(1sin 2)4t t αα+++-=, 整理得2(6cos 2sin )60t t αα+-+=, 设A ,B 两点对应的参数为1t ,2t ,则1212||||||||||6PA PB t t t t ⋅=⋅==,∴||||6PA PB ⋅=.23.答案:(1)2(,][0,)3-∞-+∞;(2)1524a ≤≤. (1)由题意13,21()2,123,1x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩, 不等式()2f x ≥等价于1232x x ⎧<-⎪⎨⎪-≥⎩或11222x x ⎧-≤<⎪⎨⎪+≥⎩或132x x ≥⎧⎨≥⎩, 所以23x ≤-或01x ≤<或1x ≥, 故原不等式的解集为2(,][0,)3-∞-+∞.(2)做出()y f x =的图像如图所示:且13(,)22A-,(1,3)B,直线74y ax=+,过定点7(0,)4P,因为12APk=,54BPk=,所以1524a≤≤.。
2020年普通高等学校招生全国统一考试文科数学试卷(全国Ⅱ卷)(含解析)
绝密★启用前 2020年普通高等学校招生全国统一考试 文科数学(全国Ⅱ卷)(含解析)1.答卷前,考生务必将自己的姓名,准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,在选涂其他答案标号。
回答选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={}3,x x x Z <∈,B={}1,x x x Z >∈,则A B =A. ∅B. {}3,2,2,3--C. {}2,0,2-D. {}2,2-2. 41i =-()A.-4B.4C.-4iD.4i 3.如图,将钢琴上的12个键依次记为1a ,2a ,…,12a .设112i j k ≤<<≤.若3k j -=且4j i -=,则称i a ,j a ,k a 为原位大三和弦;若4k j -=且3j i -=,则称i a ,j a ,k a 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为A.5B.8C.10D.154. 在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作,已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05。
志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名5.已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是A.2+a bB.2+a bC.2-a bD.2-a b6.记n S 为等比数列{n a }的前n 项和. 若5a -3a =12, 6a -4a =24,则n nS a = A .2n -1 B . 2-2t n - C. 2-n-12 D .t-n 2-17. 执行右面的程序框图,若输入的k=0,a=0,则输出的k 为:A. 2B. 3C. 4D. 58. 若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为A .5 B. 25 C. 35 D. 45 9.设O 为坐标原点,直线x a =与双曲线C :2222x 1y a b-=(a>0,b>0)的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为A.4B.8C.16D.3210.设函数331()f x x x=-,则()f x A.是奇函数,且在(0,+∞)单调递增 B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减11.已知△ABC 是面积为93的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为A.3B.32C.1D.32 12. 若2233x y x y ---<-,则A. ln(1)0y x -+>B. ln(1)0y x -+<C. ln ||0x y ->D. ln ||0x y -<二、填空题:本题共4小题,每小题5分,共20分。
2020年全国普通高等学校招生统一考试文科数学试卷 全国Ⅱ卷(含答案)
2020年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A=,B=,则= A.B. C. D.2. A.-4 B.4 C.-4i D.4i3.如图,将钢琴上的12个键依次记为,,…,.设.若且,则称,,为原位大三和弦;若且,则称,,为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为 A.5 B.8 C.10 D.154. 在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊{}3,x x x Z <∈{}1,x x x Z >∈A B ∅{}3,2,2,3--{}2,0,2-{}2,2-41i =-()1a 2a 12a 112i j k ≤<<≤3k j -=4j i -=i a j a k a 4k j -=3j i -=i a j a k a跃报名参加配货工作,已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05。
志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 A. 10名 B. 18名 C. 24名 D. 32名5.已知单位向量,的夹角为60°,则在下列向量中,与垂直的是 A. B. C. D.6.记为等比数列{}的前项和. 若-=12, - =24,则= A .-1 B . 2- C. 2- D .-17. 执行右面的程序框图,若输入的k=0,a=0,则输出的k 为: A. 2 B. 3 C. 4 D. 5a b b 2a b +2a b +2a b -2a b -n S n a n 5a 3a 6a 4a nnS a 2n 2t n -n-12t-n 28. 若过点(2,1)的圆与两坐标轴都相切,则圆心到直线的距离为A . B. C. D.9.设O 为坐标原点,直线与双曲线C :(a>0,b>0)的两条渐近线分别交于D ,E 两点,若的面积为8,则C 的焦距的最小值为 A .4 B .8 C .16 D .3210.设函数,则 A.是奇函数,且在(0,+)单调递增 B.是奇函数,且在(0,+)单调递减 C.是偶函数,且在(0,+)单调递增 D.是偶函数,且在(0,+)单调递减230x y --=5253545x a =2222x 1y a b-=ODE ∆331()f x x x =-()f x ∞∞∞∞11.已知△ABC的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为 AB .C .1D12. 若,则 A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。
2020年高考文科数学全国卷2-答案
2020年普通高等学校招生全国统一考试·全国Ⅱ卷文科数学答案解析一、选择题1.【答案】D【解析】解绝对值不等式化简集合A B ,的表示,再根据集合交集的定义进行求解即可. 因为{}{}321012A x x x Z =<∈=--,,,,,,{}{}111B x x x Z x x x x Z =>∈=><-∈,或,, 所以{}22A B =-,.故选:D .【考点】绝对值不等式的解法,集合交集的定义2.【答案】A【解析】根据指数幂的运算性质,结合复数的乘方运算性质进行求解即可.()()()()2422221i [1i ]12i i 2i 4-=-=-+=-=- 故选:A .【考点】复数的乘方运算性质3.【答案】C【解析】根据原位大三和弦满足34k j j i -=-=,,原位小三和弦满足43k j j i -=-=,,从1i =开始,利用列举法即可解出.根据题意可知,原位大三和弦满足:34k j j i -=-=,.∴158i j k ===,,;269i j k ===,,;3710i j k ===,,;4811i j k ===,,;5912i j k ===,,.原位小三和弦满足:43k j j i -=-=,.∴148i j k ===,,;259i j k ===,,;3610i j k ===,,;4711i j k ===,,;5812i j k ===,,.故个数之和为10.故选:C .【考点】列举法的应用4.【答案】B【解析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.由题意,第二天新增订单数为50016001200900+-=, 故需要志愿者9001850=名. 故选:B【考点】函数模型的简单应用5.【答案】D【解析】根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可. 由已知可得:11cos601122a b a b ︒==⨯⨯=. A :因为215(2)221022a b b a b b +=+=+⨯=≠,所以本选项不符合题意; B :因为21(2)221202a b b a b b +=+=⨯+=≠,所以本选项不符合题意; C :因213(2)221022a b b a b b -=-=-⨯=-≠,所以本选项不符合题意; D :因为21(2)22102a b b a b b -=-=⨯-=,所以本选项符合题意. 故选:D .【考点】平面向量数量积的定义和运算性质,两平面向量数量积为零则这两个平面向量互相垂直6.【答案】B【解析】根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前n 项和公式进行求解即可.设等比数列的公比为q ,由53641224a a a a -=-=,可得:421153111122124a q a q q a a q a q ⎧-==⎧⎪⇒⎨⎨=-=⎪⎩⎩, 所以1111(1)12221112n nn n n n n a q a a q S q ----=====---,, 因此1121222n n n n n S a ---==-. 故选:B .【考点】等比数列的通项公式的基本量计算,等比数列前n 项和公式的应用7.【答案】C【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值,模拟程序的运行过程,分析循环中各变量值的变化情况,即可求得答案.由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值.模拟程序的运行过程0,0k a ==第1次循环,2011011a k =⨯+==+=,,210>为否第2次循环,2113112a k =⨯+==+=,,310>为否第3次循环,2317213a k =⨯+==+=,,710>为否第4次循环,27115314a k =⨯+==+=,,1510>为是退出循环输出4k =.故选:C .【考点】求循环框图的输出值8.【答案】B【解析】由题意可知圆心在第一象限,设圆心的坐标为()0a a a >,,,可得圆的半径为a ,写出圆的标准方程,利用点()21,在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y --=的距离.由于圆上的点()21,在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为()a a ,,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()11,或()55,,圆心到直线230x y --=的距离均为d ==;所以,圆心到直线230x y --=.故选:B .【考点】圆心到直线距离的计算9.【答案】B 【解析】因为2222:1(00)x y C a b a b-=>,>,可得双曲线的渐近线方程是b y x a =±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE △的面积为8,可得ab 值,根据2c =结合均值不等式,即可求得答案.2222:1(00)x y C a b a b-=>,> ∴双曲线的渐近线方程是b y x a=± 直线x a =与双曲线()2222:100x y C a b a b-=>>,的两条渐近线分别交于D ,E 两点 不妨设D 为在第一象限,E 在第四象限 联立x a b y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故()D a b , 联立x a b y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故()E a b -,∴||2ED b =∴ODE △面积为:1282ODE S a b ab =⨯==△ 双曲线()2222:100x y C a b a b-=>>, ∴其焦距为28c ==当且仅当a b ==∴C 的焦距的最小值:8故选:B .【考点】求双曲线焦距的最值问题10.【答案】A 【解析】根据函数的解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数, 再根据函数的单调性法则,即可解出.因为函数()331f x x x=-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数.又因为函数3y x =在()0+∞,上单调递增,在()0-∞,上单调递增, 而331y x x-==在()0+∞,上单调递减,在()0-∞,上单调递减, 所以函数()331f x x x =-在()0+∞,上单调递增,在()0-∞,上单调递增. 故选:A .【考点】利用函数的解析式研究函数的性质11.【答案】C【解析】根据球O 的表面积和ABC △的面积可求得球O 的半径R 和ABC △外接圆半径r ,由球的性质可知所求距离d =.设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC △外接圆半径为r ,边长为a ,ABC △的等边三角形,212a ∴,解得:3a =,2233r ∴=∴球心O 到平面ABC 的距离1d ===.故选:C .【考点】球的相关问题的求解12.【答案】A【解析】将不等式变为2323x x y y ----<,根据()23t t f t -=-的单调性知x y <,以此去判断各个选项中真数与1的大小关系,进而得到结果.由2233x y x y ----<得:2323x x y y ----<,令()23t t f t -=-,2x y =为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误; x y -与1的大小不确定,故CD 无法确定.故选:A .【考点】对数式的大小的判断问题二、填空题 13.【答案】19【解析】直接利用余弦的二倍角公式进行运算求解即可.22281cos212sin 12()1399x x =-=-⨯-=-=. 故答案为:19. 【考点】余弦的二倍角公式的应用14.【答案】25【解析】因为{}n a 是等差数列,根据已知条件262a a +=,求出公差,根据等差数列前n 项和,即可求得答案.{}n a 是等差数列,且12a =-,262a a +=设{}n a 等差数列的公差d根据等差数列通项公式:()11n a a n d +-=可得1152a d a d +++=即:()2252d d -++-+=整理可得:66d =解得:1d = 根据等差数列前n 项和公式:*1(1)2n n n S na d n N -=+∈, 可得:()1010(101)1022045252S ⨯-=-+=-+= ∴1025S =.故答案为:25.【考点】求等差数列的前n 项和15.【答案】8【解析】在平面直角坐标系内画出不等式组表示的平面区域,然后平移直线12y x =-,在平面区域内找到一点使得直线1122y x z =-+在纵轴上的截距最大,求出点的坐标代入目标函数中即可. 不等式组表示的平面区域为下图所示:平移直线12y x =-,当直线经过点A 时,直线1122y x z =-+在纵轴上的截距最大, 此时点A 的坐标是方程组121x y x y -=-⎧⎨-=⎩的解,解得:23x y =⎧⎨=⎩, 因此2z x y =+的最大值为:2238+⨯=.故答案为:8.【考点】线性规划的应用,数形结合思想16.【答案】①③④【解析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【考点】空间中线面关系有关命题真假的判断三、解答题17.【答案】(1)3A π=(2)因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①,又b c -②,将②代入①得,()2223b c b c bc +--=, 即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC △是直角三角形.【解析】(1)根据诱导公式和同角三角函数平方关系,25cos cos 24A A π⎛⎫++= ⎪⎝⎭可化为251cos cos 4A A -+=,即可解出; 因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=, 解得1cos 2A =,又0A π<<, 所以3A π=;(2)根据余弦定理可得222b c a bc +-=,将b c -=代入可找到a b c ,,关系, 再根据勾股定理或正弦定理即可证出. 因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①,又b c -②,将②代入①得,()2223b c b c bc +--=, 即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC △是直角三角形.【考点】诱导公式和平方关系的应用18.【答案】(1)12000(2)0.94(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【解析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可; 样区野生动物平均数为201111200602020i i y ==⨯=∑, 地块数为200,该地区这种野生动物的估计值为2006012000⨯=;(2)利用公式20()()i i x x y y r --=∑ 样本()i i x y ,的相关系数为20()()0.943i i x x y y r --===≈∑ (3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样. 由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样 先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【考点】平均数的估计值、相关系数的计算,抽样方法的选取19.【答案】(1)12(2)1C :2211612x y +=,2C :28y x =.【解析】(1)根据题意求出2C 的方程,结合椭圆和抛物线的对称性不妨设A C ,在第一象限,运用代入法求出A B C D ,,,点的纵坐标,根据4||||3CD AB =,结合椭圆离心率的公式进行求解即可; 解:(1)因为椭圆1C 的右焦点坐标为:()c 0F ,,所以抛物线2C 的方程为24y cx =,其中c = 不妨设A C ,在第一象限,因为椭圆1C 的方程为:22221x y a b+=, 所以当x c =时,有222221c y b y a b a +=⇒=±,因此A B ,的纵坐标分别为2b a ,2b a-; 又因为抛物线2C 的方程为24y cx =,所以当x c =时,有242y c c y c =⇒=±,所以C D ,的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =. 由4||||3CD AB =得2843b c a =,即2322c c a a ⎛⎫=- ⎪⎝⎭,解得2c a =-(舍去),12c a =.所以1C 的离心率为12. (2)由(1)可以得到椭圆的标准方程,确定椭圆的四个顶点坐标,再确定抛物线的准线方程,最后结合已知进行求解即可;由(1)知2a c =,b =,故22122:143x y C c c+=,所以1C 的四个顶点坐标分别为ABC △,(20)c -,,(0),(0),,2C 的准线为x c =-.由已知得312c c c c +++=,即2c =.所以1C 的标准方程为2211612x y +=,2C 的标准方程为28y x =. 【考点】椭圆的离心率,椭圆和抛物线的标准方程,椭圆的四个顶点的坐标,抛物线的准线方程 20.【答案】(1),M N 分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB1//MN AA ∴在等边ABC △中,M 为BC 中点,则BC AM ⊥ 又侧面11BB C C 为矩形,1BC BB ∴⊥1//MN BBMN BC ⊥由MN AM M =,MN AM ⊂,平面1A AMN∴BC ⊥平面1A AMN 又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC 又11B C ⊂平面11EB C F ,且平面11EB C F 平面ABC EF =11//B C EF ∴//EF BC ∴又BC ⊥平面1A AMN∴EF ⊥平面1A AMNEF ⊂平面11EB C F∴平面11EB C F ⊥平面1A AMN(2)24【解析】(1)由M N ,分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1//MN AA ,要证平面11EB C F ⊥平面1A AMN ,只需证明EF ⊥平面1A AMN 即可;M N ,分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB1//MN AA ∴在等边ABC △中,M 为BC 中点,则BC AM ⊥ 又侧面11BB C C 为矩形,1BC BB ∴⊥1//MN BBMN BC ⊥由MN AM M =,MN AM ⊂,平面1A AMN∴BC ⊥平面1A AMN 又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC 又11B C ⊂平面11EB C F ,且平面11EB C F 平面ABC EF =11//B C EF ∴//EF BC ∴又BC ⊥平面1A AMN∴EF ⊥平面1A AMNEF ⊂平面11EB C F∴平面11EB C F ⊥平面1A AMN(2)根据已知条件求得11EB C F S 四边形和M 到PN 的距离,根据椎体体积公式,即可求得11B EB C F V -. 过M 作PN 垂线,交点为H ,画出图形,如图//AO 平面11EB C FAO ⊂平面1A AMN ,平面1A AMN平面11EB C F NP = //AO NP ∴ 又//NO AP∴6AO NP ==O 为111A B C △的中心. ∴1111sin606sin60333ON AC ==⨯⨯=故:ON AP ==3AM AP ==平面11EB C F ⊥平面1A AMN ,平面11EB C F 平面1A AMN NP =,MH ⊂平面1A AMN∴MH ⊥平面11EB C F 又在等边ABC △中EF AP BC AM = 即323AP BC EF AM ⨯=== 由(1)知,四边形11EB C F 为梯形∴四边形11EB C F 的面积为:111126=62422EB C F EF B C S NP ++=⨯=四边形 111113B EBC F EB C F V S h -∴=四边形,h 为M 到PN 的距离sin 603MH ==,∴1243243V =⨯⨯=.【考点】证明线线平行和面面垂直,求四棱锥的体积21.【答案】(1)1c -≥;(2)()g x 在区间()0a ,和()a +∞,上单调递减,没有递增区间 【解析】(1)不等式()2f x x c +≤转化为()20f x x c --≤,构造新函数,利用导数求出新函数的最大值,进而进行求解即可;函数()f x 的定义域为:()0+∞,()()()2202ln 120f x x c f x x c x x c +⇒--⇒+--*≤≤≤,设()()2ln 120h x x x c x =+-->,则有()()2122x h x x x-'=-=, 当1x >时,()()0h x x h '<,单调递减,当01x <<时,()()0h x h x '>,单调递增, 所以当1x =时,函数()h x 有最大值,即()()max 12ln11211h c x h c ==+-⨯-=--,要想不等式()*在()0+∞,上恒成立, 只需()max 0101h x c c ⇒--⇒-≤≤≥;(2)对函数()g x 求导,把导函数()g x '分子构成一个新函数()m x ,再求导得到()m x ',根据()m x '的正负,判断()m x 的单调性,进而确定()g x '的正负性,最后求出函数()g x 的单调性.()()()()2ln 12ln 12ln ln 0x a x a g x x a x ax x a +---==≠-->且 因此()()()22ln ln x a x x x a g x a x x --+'=-,设()()2ln ln m x x a x x x a =--+,则有()()2ln ln m x a x '=-,当x a >时,ln ln x a >,所以()0m x '<,()m x 单调递减,因此有()()0m x m a =<,即()0g x '<,所以()g x 单调递减;当0x a <<时,ln ln x a <,所以()0m x '>,()m x 单调递增,因此有()()0m x m a =<,即()0g x '<,所以()g x 单调递减,所以函数()g x 在区间()0a ,和()a +∞,上单调递减,没有递增区间. 【考点】利用导数研究不等式恒成立问题,利用导数判断含参函数的单调性22.【答案】(1)14C x y +=:;2224C x y -=:;(2)17cos 5ρθ=. 的【解析】(1)分别消去参数θ和t 即可得到所求普通方程;由22cos sin 1θθ+=得1C 的普通方程为:4x y +=; 由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=. (2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即5322P ⎛⎫ ⎪⎝⎭,; 设所求圆圆心的直角坐标为()0a ,,其中0a >, 则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =, ∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=, ∴所求圆的极坐标方程为17cos 5ρθ=. 【考点】极坐标与参数方程的综合应用问题23.【答案】(1)31122x x x ⎧⎫⎨⎬⎩⎭≤或≥ (2)(][),13,-∞-+∞【解析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤; 当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为31122x x x ⎧⎫⎨⎬⎩⎭≤或≥. (2)利用绝对值三角不等式可得到()()21f x a -≥,由此构造不等式求得结果.()()()()22222121211f x x a x a x a x a a a a =-+-+---+=-+-=-≥(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a -≤或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.【考点】绝对值不等式的求解,利用绝对值三角不等式求解最值的问题。
2020年全国统一高考数学试卷2卷(文科)
2020年全国统一高考数学试卷2卷(文科) 2020年普通高等学校招生全国统一考试文科2卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x||x|1,x∈Z},则A∩B=()A。
∅B。
{–3,–2,2,3}C。
{–2.2}D。
{–2,2}2.(1–i)^4=()A。
–4B。
4C。
–4iD。
4i3.如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k–j=3且j–i=4,则称ai,aj,ak为原位大三和弦;若k–j=4且j–i=3,则称ai,aj,ak为原位小三和弦。
用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A。
5B。
8C。
10D。
154.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压。
为解决困难,许多志愿者踊跃报名参加配货工作。
已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A。
10名B。
18名C。
24名D。
32名5.已知单位向量a,b的夹角为60°,则在下列向量中,与b垂直的是()A。
a+2bB。
2a+b___–2bD。
2a–b6.记Sn为等比数列{an}的前n项和。
若a5–a3=12,a6–a4=24,则an=()A。
2n–1B。
2–21–nC。
2–2n–1D。
21–n–17.执行右面的程序框图,若输入的k=0,a=0,则输出的k 为()1 -A。
2B。
3C。
4D。
58.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x–y–3=0的距离为()A。
5/√5B。
25/√5C。
35/√5D。
45/√59.设O为坐标原点,直线x=a与双曲线C: x^2/a^2–y^2/b^2=1(a>0,b>0)的两条渐近线分别交于D、E两点,若ODE的面积为8,则C的焦距的最小值为()A。
2020年全国统一高考文数考试卷(全国卷Ⅱ)文科数学(附答案解析)
2020年全国统一高考文数考试卷(全国卷Ⅱ)文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号框涂黑。
如需改动,用橡皮擦干净后,在选涂其它答案标号框。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=( )AB {–3,–2,2,3)C {–2,0,2}D {–2,2}2.(1–i)4= ( )A.–4B.4C.–4iD.4i3.如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k–j=3且j–i=4,则称ai,aj,ak为原位大三和弦;若k–j=4且j–i=3,则称ai,aj,ak为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( )A. 5B . 8C. 10D. 154.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )A.10名B.18名C.24名D.32名5.已知单位向量a,b的夹角为60°,则在下列向量中,与b垂直的是( )A.a+2bB.2a+bC.a–2bD.2a–b6.记Sn为等比数列{an}的前n项和.若a5–a3=12,a6–a4=24,则=( )A.2n–1B.2–21–nC.2–2n–1D.21–n–17.执行右面的程序框图,若输入的k=0,a=0,则输出的k为( )A.2B.3C.4D.58.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x-y-3=0的距离为( )A.BCD9.设O为坐标原点,直线x=a与双曲线C:=l(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为10.设函数f(x)=x3-,则f(x)(0,+∞)单调递增(0,+∞)单调递减(0,+∞)单调递增(0,+∞)单调递减11.已知△ABC是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为ABD∣x-y∣>0∣x-y∣<013.二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
2020年高三最新信息卷 文科数学(五)
学校:___________姓名:___________班级:___________考号:___________ 注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在
答题卡上
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合2
{|23}A x x x =-≥,{|04}B x x =<<,则A B =I ()
A .(1,4)-
B .(0,3]
C .[3,4)
D .(3,4)
2.设复数z 满足(1i)12i z -=+,其中i 是虚数单位,则||z =()
A .1
B .
2
C .
2
D
3.已知向量(3,4)=-a ,||2=b ,若5⋅=-a b ,则向量a 与b 的夹角为() A .
π6
B .
π4
C .
π3
D .
2π3
4.袋子中有大小、形状完全相同的四个小球,分别写有“和”、“谐”、“校”、“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率,利用电脑随机产生1到4之间取整数值的随机数,分别用1,2,3,4代表“和”、“谐、“校”、“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数:
343432341342234142243331112 342241244431233214344142134
由此可以估计,恰好第三次就停止摸球的概率为() A .
1
6
B .
29
C .
518
D .
19
5.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用,若这三人中仅有一人说法错误,则下列结论正确的是() A .丙被录用了 B .乙被录用了 C .甲被录用了
D .无法确定谁被录用了
6.设12
log 3a =,0.21
()3b =,1
32c =,则()
A .a b c >>
B .c b a >>
C .c a b >>
D .b a c >>
7.若l ,m 是两条不同的直线,m 垂直于平面α,则“l m ⊥”是“l α∥”的() A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件
D .既不充分也不必要条件
8
.函数2()cos cos 1f x x x x =+-,则下列表述正确的是() A .()f x 在ππ
(,)36--单调递减 B .()f x 在ππ
(,
)63单调递增 C .()f x 在π
(,0)6
-
单调递减 D .()f x 在π(0,)6
单调递增
9.抛物线2
:(0)C y ax a =>的焦点F 是双曲线2
2
221y x -=的一个焦点,过F 且倾斜角为60︒的直线l 交
C 于A ,B ,则||AB =()
A
2 B
.2
C .
163
D .16
10.已知函数()f x 是定义在R 上的奇函数,当(,0]x ∈-∞时,2
()2f x x ax =+,若曲线()y f x =在点
(1,(1))f 处的切线过点(2,0),则a =()
A .34
-
B .1
C .2
D .
34
11.若π4sin(2)25α+=-,π(,π)2α∈,则π
tan()4
α+等于() A .2-
B .1
2
-
C .2
D .
12
12.过双曲线22
22:1(0,0)x y a b a b
Ω-=>>左焦点F 的直线l 交Ω的左支于A ,B 两点,直线AO (O 是
坐标原点)交Ω的右支于点D ,若DF AB ⊥,且||||BF DF =,则Ω的离心率是() A
.
2
B .2 C
D
.
2
第Ⅱ卷
二、填空题:本大题共4小题,每小题5分.
13.一组样本数据10,23,12,5,9,a ,21,b ,22的平均数为16,
中位数为21,则a b -= . 14.实数满足20
4040x y x x y -+≥⎧⎪
-≤⎨⎪+-≥⎩
,则2z x y =-的最小值是 .
15.已知ABC △的三个内角,,A B C 的对应边分别为,,a b c ,
且2
12
ABC S =
△,则使得
22sin sin sin sin B C m B C +=成立的实数m 的取值范围是 .
16
A BCD -中,3BC AC BD AD ====
,CD =
AB <,则该三棱锥外接球的表面积为 .
三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)已知数列{}n a 的前n 项和n S
1(2,)n n =≥∈N ,且11a =.
(1)求数列的通项公式n a ; (2)记11n n n b a a +=
⋅,n T 为{}n b 前n 项和,求使2
n T n
≥成立的n 的最小值.
18.(12分)某健身馆为响应十九届四中全会提出的“聚焦增强人民体质,健全促进全民健身制度性举措”,提高广大市民对全民健身运动的参与程度,推出了让健身馆会员参与的健身促销活动.
(1)为了解会员对促销活动的兴趣程度,现从某周六参加该健身馆健身活动的会员中随机采访男性会员和女性会员各50人,他们对于此次健身馆健身促销活动感兴趣的程度如下表所示:
根据以上数据能否有(参考公式2
2
()()()()()
n ad bc K a b c d a c b d -=+++
+,其中n a b c d =+++)
(2)健身促销活动满意度的分数(满分10分),如图所示,若将此茎叶图中满意度分为“很满意”(分数不低于9.5分)、“满意”(分数不低于平均分且低于9.5分)、“基本满意”(分数低于平均分)三个级别.先从“满意”和“很满意”的会员中随机抽取两人参加回访馈赠活动,求这两人中至少有一人是“很满意”会员的概率.
19.(12分)如图,在几何体BACDEF 中,四边形CDEF 是菱形,AB CD ∥,平面ADF ⊥平面CDEF ,
AD AF =.
(1)求证:AC DF ⊥;
(2)若2FA FC FD ===,1AB =,求三棱锥A CDF -和三棱锥E BDF -的体积.
20.(12分)已知椭圆22
22:1(0)x y C a b a b
+=>>,左、右顶点分别为1A ,2A ,上、下顶点分别为1B ,2B ,
且1(0,1)B ,112A B B △是等边三角形,过点(1,0)的直线与椭圆C 在y 轴右侧的部分交于M ,N 两点,O 为坐标原点.
(1)求椭圆的标准方程;
(2)若||5
MN =
,求直线MN 的方程.
21.(12分)已知函数()ln f x x a x =-,1()()a
g x a x
+=-∈R . (1)若1a =,求函数()f x 的极值;
(2)若在[1,]e 上存在一点0x ,使得00()()f x g x <成立,求a 的取值范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】 在直角坐标系xOy 中,曲线13cos :1sin x t C y t α
α
=+⎧⎨
=+⎩(t 为参数),其中[0,π)α∈,在以O 为极点,
x 轴正半轴为极轴的极坐标系中,曲线2:4sin C ρθ=.
(1)求1C 的普通方程和2C 的直角坐标方程;
(2)若1C 与2C 相交于点A ,B 两点,点(3,1)P ,求||||PA PB ⋅. 23.(10分)【选修4-5:不等式选讲】 设函数()|21||1|f x x x =++-. (1)求不等式()2f x ≥的解集;
(2)若x ∈R ,7
()4
f x ax ≥+
恒成立,求a 的取值范围.
绝密★启用前
2020年高三最新信息卷
文科数学(五)答案
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:C 2.答案:C 3.答案:D 4.答案:B 5.答案:C 6.答案:B 7.答案:B 8.答案:D 9.答案:D 10.答案:D 11.答案:B 12.答案:D
第Ⅱ卷
二、填空题:本大题共4小题,每小题5分. 13.答案:0 14.答案:8- 15.答案:[2,4] 16.答案:
61π3
三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.答案:(1)21n a n =-;(2)5.
(11=,
∴数列1=1=,。