2001年陕西省中考数学试卷含答案

合集下载

陕西省中考数学试卷含答案解析

陕西省中考数学试卷含答案解析

2018年陕西省中考数学试卷一、选择题:(本大题共10题,每题3分,满分30分)1.—的倒数是II7 A.117 11B. —C.11 711D.—7【答案】D【解析】【分析】根据乘积为1的两个数互为倒数进行求解即可得【详解】/ 7 \ / 11J=1,•••—的倒数是一一11 7故选D.【答案】C【解析】根据表面展开图中有两个三角形,三个长方形,由此即可判断出此几何体为三棱柱。

【详解】观察可知图中有一对全等的三角形,有三个长方形,所以此几何体为三棱柱,故选C【点睛】本题考查了几何体的展开图,熟记常见立体图形的展开图特点是解决此类问题的关键.3.如图,若1l// 12, 13// 14,则图中与/ 1互补的角有/ ——uA. 1个B. 2个C. 3个D. 4个 【答案】D【解析】【分析】如图根据平行线的性质可得/ 2=7 4, / 1 + Z 2=180°,再根据对顶角的性质即可得出与/1互补的角的个数•【详解】如图,I 11// 12 , |3// 14 ,•••/ 2= 7 4, 7 1 + 7 2=180° ,又•••/ 2= 7 3, 7 4= 7 5 ,•••与7 1互补的角有7 2、7 3、7 4、7 5共4个, 故选D./, £jr // /5/3/- {【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键A( — 2 , 0) , B(0 , 1).若正比例函数 y = kx 的图像经过点 C ,贝U k 的取值为【分析】根据已知可得点 C 的坐标为(-2 , 1),把点C 坐标代入正比例函数解析式即可求得 k.【详解】••• A( — 2 , 0) , B(0, 1),【解析】D. 2【答案】 A••• 0A=2 , OB=1 , •••四边形OACB是矩形,••• BC=OA=2 , AC=OB=1 ,•••点C在第二象限,• C点坐标为(-2, 1),•••正比例函数y = kx的图像经过点C,••• -2k=1 ,•. k=—,故选A.【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C的坐标是解题的关键•5. 下列计算正确的是A. a2 a2= 2a4B. (—a2)3=—a6C. 3a2—6a2= 3a2D. (a —2)2= a2—4【答案】B【解析】【分析】根据同底数幕乘法、幕的乘方、合并同类项法则、完全平方公式逐项进行计算即可得【详解】A. a2 a2= a4,故A选项错误;B. ( —a2)3= —a6,正确;C. 3a2 —6a2= -3a2,故 C 选项错误;D. (a —2)2= a2—4a+4,故 D 选项错误,故选B.【点睛】本题考查了同底数幕的乘法、幕的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.6. 如图,在△ABC中,AC = 8, / ABC = 60° / C= 45° AD丄BC,垂足为D, / ABC的平分线交AD于点【答案】C【解析】【分析】由已知可知 △ADC 是等腰直角三角形,根据斜边 AC=8可得AD=4 ,在Rt △ABD 中,由 ,再由BE 平分/ ABC ,可得/ EBD=30 ,从而可求得 DE 长,再根据AE=AD-DE 即可【详解】••• AD 丄BC ,•••△ ADC 是直角三角形,•••/ C=45 , •••/ DAC=45 , • AD=DC , •/ AC=8 ,•/ BE 平分/ ABC , EBD=30 , ••• DE=BD?ta n3 0 ='=',333••• AE=AD -DE=.」;二’二33故选C.【点睛】本题考查了解直角三角形的应用,熟练掌握直角三角形中边角之间的关系是解题的关键7.若直线11经过点(0, 4), 12经过(3, 2),且11与12关于x 轴对称,则11与12的交点坐标为A. ( — 2, 0)B. (2 , 0)C. ( — 6, 0)D. (6 , 0) 【答案】B【解析】【分析】根据11与12关于x 轴对称,可知12必经过(0, -4), 11必经过点(3, -2),然后根据待定系数 法分别求出11、12的解析式后,再联立解方程组即可得•【详解】由题意可知11经过点(3, -2), ( 0, 4),设11的解析式为y=kx+b ,则有{亠,解得:;,所以11的解析式为y=-2x+4 ,由题意可知由题意可知12经过点(3, 2), ( 0, -4),设11的解析式为y=mx+n ,则有 黑二;, 解得;;==,所以12的解析式为y=2x-4 ,AD =tan6(T3/ B=60,可得 BD=在 Rt △ABD 中,/ B=60° ,联立H 弋/,解得:,I y = 2\ 4ty = 0所以交点坐标为(2, 0), 故选B.【点睛】本题考查了两直线相交或平行问题,关于 x 轴对称的点的坐标特征,待定系数法等,熟练应用相关知识解题是关键 •8.如图,在菱形 ABCD 中,点E 、F 、G 、H 分别是边 AB 、BC 、CD 和DA 的中点,连接 EF 、FG 、GH 和HE •若EH = 2EF ,则下列结论正确的是A. AB = EFB. AB = 2EFC. AB ^3 EFD. AB =§ EF【答案】D【解析】【分析】连接 AC 、BD 交于点0,由菱形的性质可得 0A= AC , OB= BD , AC 丄BD ,由中位线定HhU M[壬理可得EH= BD , EF= AC ,根据EH=2EF ,可得0A=EF , 0B=2EF ,在Rt △AOB 中,根据勾股定理即可求 得AB= EF ,由此即可得到答案.【详解】连接 AC 、BD 交于点0,•/ E 、F 、G 、H 分别是边 AB 、BC 、CD 和DA 的中点,1 1 ••• EH= BD , EF= AC , 22•/ EH=2EF ,••• OA=EF , OB=2OA=2EF , 在 Rt MOB 中,AB=心才 + EF ,故选D.•••四边形ABCD 是菱形,BD , AC 丄 BD ,n 4 C【点睛】本题考查了菱形的性质、三角形中位线定理、勾股定理等,正确添加辅助线是解决问题的关键•9•如图,△ABC是O O的内接三角形,AB = AC, / BCA = 65。

2001年陕西省中考数学试卷

2001年陕西省中考数学试卷

2003年陕西省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)陕西省元月份某一天的天气预报中,延安市的最低气温为﹣6℃,西安市的最低气温为2℃,这一天延安市的最低气温比西安市的最低气温低()A.8℃B.﹣8℃C.6℃D.2℃2.(3分)如果两圆半径分别为3和7,圆心距为4,那么这两圆的位置关系是()A.内含B.内切C.相交D.外切3.(3分)地球上的陆地面积约为149 000 000千米2,用科学记数法表示为()A.149×106千米2B.14.9×107千米2C.1.49×108千米2D.0.149×109千米24.(3分)方程(x+1)2=9的解是()A.x=2B.x=﹣4C.x1=2,x2=﹣4D.x1=﹣2,x2=﹣4>的解集表示在数轴上,正确的是()5.(3分)把不等式组:A.B.C.D.6.(3分)香港于1997年7月1日成为中华人民共和国的一个特别行政区,它的区徽图案(紫荆花)如图,这个图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形7.(3分)为了保护生态环境,我县积极响应国家退耕还林号召,将某地方一部分耕地改为林地改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各为多少平方千米,设耕地面积x平方千米,林地面积为y 平方千米,根据题意列出如下四个方程组,其中正确的是()A.B.C.D.8.(3分)将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①②两部分,将①展开后得到的平面图形是()A.矩形B.三角形C.梯形D.菱形9.(3分)要做甲乙两个形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为:50cm、60cm、80cm,三角形框架乙的一边长为20cm,那么符合条件的三角形框架一共有()A.1种B.2种C.3种D.4种10.(3分)晚饭后,郑大爷出去散步,如图描述了他散步过程中离家的距离s(米)与散步所用时间t(分)之间的关系,依据图象,下面的描述符合郑大爷散步情景的是()A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了B.从家出发,到了一个公共阅报栏,看了一会儿报,继续向前一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,就找朋友去了,13分后才开始返回二、填空题(共6小题,满分24分)11.(3分)计算:﹣1+(3.14)0+2﹣1=.12.(3分)在△ABC中,∠C=90°,若tan A,则sin A=.13.(3分)如图,AB是⊙O的直径,C、D、E是⊙O上的点,则∠1+∠2=度.14.(9分)某鞋厂为了了解初中学生穿鞋的鞋号情况,对某中学九(1)班的20名男生所穿鞋号统计如下:那么这20名男生鞋号数据的平均数是,中位数是,在平均数、中位数和众数中,鞋厂最感兴趣的是.15.(3分)计算2003的算术平方根时,现有如下三个方案,请你只选择其中一个方案填空:方案一:用双行显示科学记算器求:先按动键ON/C,再依次按键(或或按开平方键)、.方案二:用单行显示科学记算器求:先按动键,再依次按键(或或按开平方键).方案三:查算表(数学用表)计算:下表是平方根表的一部分,依据下表,得**(填多个空的,只要一个正确,给满分)..16.(3分)如图梯子AB靠在墙上,梯子的底端A到墙根C的距离为2米,梯子的顶端B 到地面的距离为7米,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根C 的距离等于3米,同时梯子的顶端B下降至B′,那么BB′①等于1米②大于1米③小于1米.其中正确结论序号是.三、解答题(共9小题,满分66分)17.(5分)先化简,再求值,其中.18.(6分)解方程:8=0.19.(7分)设x1、x2是关于x的方程x2﹣(m﹣1)x﹣m=0(m≠0)的两个根,且满足,求m的值.20.(7分)如图,在梯形ABCD中,已知AD∥BC,BC=BD,AD=AB=4cm,∠A=120°,求梯形ABCD的面积.21.(7分)已知反比例函数的图象经过点A(﹣2,3).(1)求出这个反比例函数的解析式;(2)经过点A的正比例函数y=k′x的图象与反比例函数的图象还有其它交点吗?若有,求出交点坐标;若没有,说明理由.22.(7分)为了学生的身体健康,学校课桌、凳的高度都是按照一定的关系科学设计的,小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身长调节高度,于是,他测量了一套课桌、凳上对应四档的高度,得到如下数据见下表:(1)小明经过对数据探究,发现桌高y是凳高x的一次函数,请你写出这个一次函数的关系式(不要求写出x的取值范围);(2)小明回家后测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套,并说明理由.23.(8分)如图,正方形ABCD是⊙O的内接正方形,延长BA到E,使AE=AB,连接ED.(1)求证:直线ED是⊙O的切线;(2)连接EO交AD于点F,求证:EF=2FO.24.(9分)如图,在直角坐标系中,以点A(,0)为圆心,以为半径的圆与x轴交于B、C两点,与y轴交于D、E两点.(1)求D点坐标.(2)若B、C、D三点在抛物线y=ax2+bx+c上,求这个抛物线的解析式.(3)若⊙A的切线交x轴正半轴于点M,交y轴负半轴于点N,切点为P,∠OMN=30°,试判断直线MN是否经过所求抛物线的顶点?说明理由.25.(10分)在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)请根据下列图形,填写表中空格:(2)如图,如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形;(3)正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.2003年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)陕西省元月份某一天的天气预报中,延安市的最低气温为﹣6℃,西安市的最低气温为2℃,这一天延安市的最低气温比西安市的最低气温低()A.8℃B.﹣8℃C.6℃D.2℃【解答】解:因为求延安市的最低气温比西安市的最低气温低多少,可用西安市的最低气温﹣延安市的最低气温.即2﹣(﹣6)=2+6=8.故选:A.2.(3分)如果两圆半径分别为3和7,圆心距为4,那么这两圆的位置关系是()A.内含B.内切C.相交D.外切【解答】解:∵两圆半径分别为3和7,圆心距为4,7﹣3=4,∴两圆内切.故选B.3.(3分)地球上的陆地面积约为149 000 000千米2,用科学记数法表示为()A.149×106千米2B.14.9×107千米2C.1.49×108千米2D.0.149×109千米2【解答】解:149 000 000=1.49×108千米2.故选:C.4.(3分)方程(x+1)2=9的解是()A.x=2B.x=﹣4C.x1=2,x2=﹣4D.x1=﹣2,x2=﹣4【解答】解:∵x+1=±3,∴x1=2,x2=﹣4.故选C.>的解集表示在数轴上,正确的是()5.(3分)把不等式组:A.B.C.D.【解答】解:解不等式①,得x>﹣1,解不等式②,得x≤1,所以不等式组的解集是﹣1<x≤1.故选:B.6.(3分)香港于1997年7月1日成为中华人民共和国的一个特别行政区,它的区徽图案(紫荆花)如图,这个图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形【解答】解:区徽图案(紫荆花)是通过基本图案依次旋转72°得到的,所以既不是轴对称图形,也不是中心对称图形.故选D.7.(3分)为了保护生态环境,我县积极响应国家退耕还林号召,将某地方一部分耕地改为林地改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各为多少平方千米,设耕地面积x平方千米,林地面积为y 平方千米,根据题意列出如下四个方程组,其中正确的是()A.B.C.D.【解答】解:设耕地面积x平方千米,林地面积为y平方千米,根据题意列方程组故选:B.8.(3分)将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①②两部分,将①展开后得到的平面图形是()A.矩形B.三角形C.梯形D.菱形【解答】解:由折叠过程可得,该四边形的对角线互相垂直平分,则将①展开后得到的平面图形是菱形.故选:D.9.(3分)要做甲乙两个形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为:50cm、60cm、80cm,三角形框架乙的一边长为20cm,那么符合条件的三角形框架一共有()A.1种B.2种C.3种D.4种【解答】解:三角形相似,那么它们边长的比相同,均为5:6:8,乙那个20cm的边可以当最短边,最长边和中间大小的边.故选:C.10.(3分)晚饭后,郑大爷出去散步,如图描述了他散步过程中离家的距离s(米)与散步所用时间t(分)之间的关系,依据图象,下面的描述符合郑大爷散步情景的是()A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了B.从家出发,到了一个公共阅报栏,看了一会儿报,继续向前一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,就找朋友去了,13分后才开始返回【解答】解:从图中看,有一段时间内函数图象与x轴平行,说明时间在增加,而路程没有增加,C、D中没有停留,所以排除C、D.与x轴平行后的函数图象表现为随时间的增多路程又在增加,排除A.故选:B.二、填空题(共6小题,满分24分)11.(3分)计算:﹣1+(3.14)0+2﹣1=.【解答】解:原式=﹣1+1.故答案为.12.(3分)在△ABC中,∠C=90°,若tan A,则sin A=.【解答】解:在Rt△ABC中,∠C=90°,∵tan A,∴设a=x,则b=2x,则c x.∴sin A.13.(3分)如图,AB是⊙O的直径,C、D、E是⊙O上的点,则∠1+∠2=90度.【解答】解:连接AC,则∠ACB=90°,根据圆周角定理,得∠ACE=∠2,∴∠1+∠2=∠ACB=90°.故答案为:90.14.(9分)某鞋厂为了了解初中学生穿鞋的鞋号情况,对某中学九(1)班的20名男生所穿鞋号统计如下:那么这20名男生鞋号数据的平均数是24.55,中位数是24.5,在平均数、中位数和众数中,鞋厂最感兴趣的是众数.【解答】解:平均数24.55.观察图表可知:有7人的鞋号为25,人数最多,即众数是25;中位数是第10、11人的平均数,即24.5;鞋厂最感兴趣的是使用的人数,即众数.故填24.55;24.5;众数.15.(3分)计算2003的算术平方根时,现有如下三个方案,请你只选择其中一个方案填空:方案一:用双行显示科学记算器求:先按动键ON/C,再依次按键(或或按开平方键)、.方案二:用单行显示科学记算器求:先按动键,再依次按键(或或按开平方键).方案三:查算表(数学用表)计算:下表是平方根表的一部分,依据下表,得**(填多个空的,只要一个正确,给满分).44.75.【解答】解:根据方案2利用计算器解得44.75.故本题答案为:44.7516.(3分)如图梯子AB靠在墙上,梯子的底端A到墙根C的距离为2米,梯子的顶端B 到地面的距离为7米,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根C 的距离等于3米,同时梯子的顶端B下降至B′,那么BB′①等于1米②大于1米③小于1米.其中正确结论序号是③.【解答】解:由勾股定理得:梯子AB,CB′.∴BB′=7<1,故选③.三、解答题(共9小题,满分66分)17.(5分)先化简,再求值,其中.【解答】解:;当x时,原式.18.(6分)解方程:8=0.【解答】解:令,得y2﹣2y﹣8=0,即(y﹣4)(y+2)=0,解得y1=4,y2=﹣2.当y1=4时,,解得x1;当y2=﹣2时,,解得x2.经检验x1,x2都是原方程的根.∴原方程的根是x1,x2.19.(7分)设x1、x2是关于x的方程x2﹣(m﹣1)x﹣m=0(m≠0)的两个根,且满足,求m的值.【解答】解:∵△=(m+1)2≥0,∴对于任意实数m,方程恒有两个实数根x1,x2.又∵x1+x2=m﹣1,x1x2=﹣m,且m≠0,∴,∴,∴,∴3m﹣3=2m20.(7分)如图,在梯形ABCD中,已知AD∥BC,BC=BD,AD=AB=4cm,∠A=120°,求梯形ABCD的面积.【解答】解:如图,作AE⊥BC于E,作DF⊥BC于F,∴AE∥DF又∵AD∥BC,且∠A=120°,∴∠ABC=60°,AE=DF,∵AB=AD=4,∴∠ABD=∠ADB=∠DBC=30°在Rt△ABE中,得AE=AB•cos30°=42,在Rt△BDF中,BD=2DF=2AE=4∴BC=BD=4∴S梯形ABCD(AD+BC)•AE=(12+4)cm2.21.(7分)已知反比例函数的图象经过点A(﹣2,3).(1)求出这个反比例函数的解析式;(2)经过点A的正比例函数y=k′x的图象与反比例函数的图象还有其它交点吗?若有,求出交点坐标;若没有,说明理由.【解答】解:(1)∵点A(﹣2,3)在y的图象上,∴3,∴k=﹣6;∴反比例函数的解析式为y;∵正、反比例函数的图象均关于原点对称,且点A在它们的图象上,∴A(﹣2,3)关于原点的对称点B(2,﹣3)也在它们的图象上,∴它们相交的另一个交点坐标为(2,3).22.(7分)为了学生的身体健康,学校课桌、凳的高度都是按照一定的关系科学设计的,小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身长调节高度,于是,他测量了一套课桌、凳上对应四档的高度,得到如下数据见下表:(1)小明经过对数据探究,发现桌高y是凳高x的一次函数,请你写出这个一次函数的关系式(不要求写出x的取值范围);(2)小明回家后测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套,并说明理由.【解答】解:(1)设桌高y与凳高x的关系为y=kx+b(k≠0),依题意得.解得k=1.6,b=10.8∴桌高y与凳高x的关系式为y=1.6x+10.8(2)不配套.理由如下:当x=43.5时,y=1.6×43.5+10.8=80.4∵80.4≠77∴该写字台与凳子不配套.23.(8分)如图,正方形ABCD是⊙O的内接正方形,延长BA到E,使AE=AB,连接ED.(1)求证:直线ED是⊙O的切线;(2)连接EO交AD于点F,求证:EF=2FO.【解答】证明:(1)连接OD.∵四边形ABCD为正方形,AE=AB.∴AE=AB=AD,∠EAD=∠DAB=90°,∴∠EDA=45°,∠ODA=45°,∴∠ODE=∠ADE+∠ODA=90°,∴直线ED是⊙O的切线.(2)作OM⊥AB于M,∵O为正方形的中心,∴M为AB中点,∴AE=AB=2AM,AF∥OM,∴2,∴EF=2FO.24.(9分)如图,在直角坐标系中,以点A(,0)为圆心,以为半径的圆与x轴交于B、C两点,与y轴交于D、E两点.(1)求D点坐标.(2)若B、C、D三点在抛物线y=ax2+bx+c上,求这个抛物线的解析式.(3)若⊙A的切线交x轴正半轴于点M,交y轴负半轴于点N,切点为P,∠OMN=30°,试判断直线MN是否经过所求抛物线的顶点?说明理由.【解答】解:(1)连接AD,得OA,AD=2∴OD3∴D(0,﹣3).(2)由B(,0),C(3,0),D(0,﹣3)三点在抛物线y=ax2+bx+c上,得,解得∴抛物线为.(3)连接AP,在Rt△APM中,∠PMA=30°,AP=2∴AM=4∴M(5,0)∵°∴N(0,﹣5)设直线MN的解析式为y=kx+b,由于点M(5,0)和N(0,﹣5)在直线MN上,则,解得∴直线MN的解析式为∵抛物线的顶点坐标为(,﹣4),当x时,y∴点(,﹣4)在直线上,即直线MN经过抛物线的顶点.25.(10分)在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)请根据下列图形,填写表中空格:(2)如图,如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形;(3)正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.【解答】解:(1)由正n边形的内角的性质可分别求得正三角形、正方形、正五边形、正六边形…正n边形的每一个内角为:60°,90°,108°,120°,…(n﹣2)•180°÷n;(2)如限于用一种正多边形镶嵌,则由一顶点的周围角的和等于360°得正三角形、正四边形(或正方形)、正六边形都能镶嵌成一个平面图形;(3)如:正方形和正八边形(如图),设在一个顶点周围有m个正方形的角,n个正八边形的角,那么m,n应是方程m•90°+n•135°=360°的正整数解.即2m+3n=8的正整数解,只有m=1,n=2一组,∴符合条件的图形只有一种.。

2001年中考数学试题精选

2001年中考数学试题精选

2001年中考数学试题精选数与式呼和浩特市14.若分式mx x +-212不论x 取何实数总有意义,则m 的取值范围是( ). (A )1≥m (B )1>m (C )1≤m (D )1<m广西17.a 为实数,且a ≠0,那么下列各式中一定成立的是( ). (A )112>+a (B )012<-a (C )111>+a (D )111>-a南昌市8、一个正数x 的两个平方根分别是a +l 和a -3,则a = ,x = .甘肃省18.如果二次三项式k x x 2432+-在实数范围内总能分解成两个一次因式的乘积,则k 的取值范围是 .江西12.下面由火柴棒拼出的一列图形中,第n 个图形由n 个正方形组成, 通过观察可以发现:(1)第4个图形中火柴棒的根数是 ; (2)第n 个图形中火柴棒的根数是 .广西12.观察下列各正方形图案,每条边上有n ( n ≥2)个圆点,每个图案中圆点的总数是S .n =2 n =3 n =4 S =4 S =8 S =12按此规律推断出S 与n 的关系式为 .福州市11.观察下列各式:21112⨯=+,32222⨯=+, 43332⨯=+,…………请你将猜想到的规律用自然数n (n >l )表示出来 . 武汉市14.观察下列各式()()1112-=+-x x x ;()()11132-=++-x x x x ;…n=1n=2n=3n=4· · · ·· ······ ·· ··· ·· ·· ··· · · · · · ··()1-x ()11423-=+++x x x x,根据前面各式的规律可得()()=++++--111x x x x n n .方程(组)与不等式(组)南昌市12.要从一张长为40cm 、宽为20cm 的 矩形纸片(如图所示)中,剪出长为18cm 、 宽为12cm 的矩形纸片,则最多能剪出( ).(A )1张 (B )2张 (C )3张 (D )4张济南市13.某班在布置新年联欢会会场时,需要 将直角三角形彩纸裁成长度不等的矩形彩条.如图, 在Rt △ABC 中,∠C =90°,AC =30cm ,AB =50cm , 依次裁下宽为1cm 的矩形纸条1a 、2a 、3a …,若使 裁得的矩形纸条的长都不小于5cm ,则每张直角三角形彩纸能裁成的矩形纸条的总数是( ). (A )24 (B )25 (C )26 (D )27河北省10.在一次“人与自然”知识竞赛中,竞赛试题共有25道题.每道题都给出4个答案,其中只有一个答案正确.要求学生把正确答案选出来.每道题选对得4分,不选或选错倒扣2分.如果一个学生在本次竞赛中的得分不低于60分;那么,他至少选对了 道题.函数及其图象苏州市21.如图,甲l 、乙l 分别是甲、乙两弹簧的长y (cm )与所挂物体质量x (kg )之间的函数关系的图像. 设甲弹簧每挂1kg 物体伸长的长度为甲k cm ,乙弹簧每挂1kg 物体伸长的长度为乙k c m ,则甲k 与乙k 的大小关系( ).(A )甲k >乙k (B )甲k =乙k (C )甲k <乙k (D )不能确定重庆市9.如图,某产品的生产流水线每小时可生产100件产品.生产前没有产品积压.生产3小时后安排工人装箱,若每小时装产品150件,未装箱的产品数量(y )是时间(t )的函数,那么,这个函数的大致图像只能是( ).(A ) (B ) (C ) (D ) 陕西20.某涵洞是抛物线形,它的截面如图所示.1a 2a 3a A CB(cm)(km)tx现测得水面宽AB =1.6m ,涵洞顶点O 到水面的距离 为2.4m .在图中直角坐标系内,涵洞所在抛物线的 函数解析式是 .黄冈市19.(9分)已知:如图,△ABC 中,AB =AC =10,BC =12,F 为BC 的中点,D 是FC 上的一点,过点D 作BC 的垂线交AC 于点G ,交BA 的延长线于点E ,如果设 DC =x ,则(l )图中哪些线段(如线段BD 可记作BD y )可以看成是x 的函数〔如()6012<<-=x x y BD , ()606<<-=x x y FD 〕.请再写出其中的四 个函数关系式:① ;②;③ ;④ .(2)图中哪些图形的面积(如△CDG 的面积可记作CDG S ∆)可再看成是x 的函数〔如()60322<<=∆x x S CDG 〕.请再写出其中的两个函数关系式:① ;② .黄冈市21.(10分)南方A 市欲将一批容易变质的水果运往B 市销售,共有飞机、火车、汽车三种运输方式,现只可选择其中的一种,这三种运输方式的主要参考数据如下表所示: 若这批水果在运输(包括装卸)过程中的损耗为200元/小时,记A ,B 两市间的距离为x 千米.(l )如果用321,,W W W 分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求出321,,W W W 与x 间的函数关系式.(2)应采用哪种运输方式,才使运输时的总支出费用最小? 黑龙江省24.(6分)如图,在□ABCD 中,AB =4cm , BC =1cm ,E 是CD 边上一动点,AE 、BC 的延长线交于点 F .设DE =x (cm ),DF =y (cm ).(1)y (cm )与x (cm )之间的函数关系式,并写出自 变量x 的取值范围; (2)画出此函数图像.深圳市18.(8分)已知:如图,正方形ABCD ,AB =2,P 是BC 边上与B 、C 不重合的任意一点,DQ ⊥AP 于Q .(l )求证:△DAQ ∽△APB ;·ABCDF EGABCD EFA BDCPQ(2)当点P 在BC 上变动时,线段DQ 也随之变化,设P A =x ,DQ =y ,求 y 与x 之间函数关系式,并指出x 的取值范围.河北省28.(13分)如图,在菱形ABCD 中, AB =10,∠BAD =60°.点M 从点A 以每秒1个 单位长的速度沿着AD 边向点D 移动;设点M 移 动的时间为t 秒(100≤≤t ).(l )点N 为BC 边上任意一点.在点M 移动过程中,线段MN 是否一定可以将菱形分割成面积相等的两部分?并说明理由;(2)点N 从点B (与点M 出发的时刻相同)以每秒2个单位长的速度沿着BC 边向点C 移动,在什么时刻,梯形ABNM 的面积最大?并求出面积的最大值;(3)点N 从点B (与点M 出发的时刻相同)以每秒a (a >2)个单位长的速度沿着射线BC 方向(可以超越C 点)移动,过点M 作MP//AB ,交BC 于点P .当△MPN ≌△ABC 时,设△MPN 与菱形ABCD 重叠部分的面积为S ,求出用t 表示S 的关系式,并求当S =0时a 的值.三角形安徽9.如图,已知AC =BD ,要使得△ABC ≌ △DCB ,只需增加的一个条件是 .广西6.如图,∠l =∠2,要使△ABE ≌△ACE ,还需添加个条件(只需添加一个条件) .黑龙江省5.如图,AD 、D A ''分别是锐角△ABC 和C B A '''∆中BC 、C B ''边上的高,且AB =B A '',D A AD ''=,若使△ABC ≌C B A '''∆,请你补充条件 . (只需填写一个你认为适当的条件)厦门市8.如图,己知△ABC ,P 是AB 上一点,连 结CP ,要使△ACP ∽△ABC ,只需添加条件 (只要写出一种合适的条件)福州市29.如图,已知:△ABC 中,AB =5, BC =3,AC =4,PQ//AB ,P 点在AC 上(与点 A 、C 不重合),Q 点在BC 上.(l )当△PQC 的面积与四边形P ABQ 的面积相等时,求CP 的长;(2)当△PQC 的周长与四边形P ABQ 的周长相等时,求CP 的长;(3)试问:在AB 上是否存在点M ,使得△PQM 为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出PQ 的长.ABCDMPNAB E C12A 'B 'C ''C BAABCDOABCPABCPQ解直角三角形青岛市22.(6分)我人民解放军在进行“解放一号”军事演习时,于海拔高度为600米的某海岛顶端A 处设立了一个观察点(如图).上午九时,观察员发现“红方C 舰”和“蓝方D 舰”与该岛恰好在一条直线上,并测得“红方C 舰”的俯角为30°,测得“蓝方D 舰”的俯角为8°,请求出这时两舰之间的距离.(参考数据:12.7ctg ,14.08tg 73.13==︒=,)圆济南市14.如图,直线AB 经过⊙O 的圆心, 与⊙O 相交于A 、B 两点,点C 在⊙O 上,且 ∠AOC =30°.点E 是直线AB 上的一个动点 (与点O 不重合),直线EC 交⊙O 于D ,则 使DE =DO 的点E 共有( ).(A )l 个 (B )2个 (C )3个 (D )4个 吉林省13.如图,⊙O 的直径为10弦AB =8, P 是弦AB 上的一个动点,那么OP 长的取值范围 是 .长沙市10.如图,P A 、PB 是⊙O 的两条 切线,A 、B 为切点,直线OP 交⊙O 于点D 、E ,交AB 于C .图中互相垂直的线段有 ⊥ (只要写出一对线段).安徽10.⊙1O 、⊙2O 和⊙3O 是三个半径为1的等圆,且圆心在同一条直线上.若⊙2O 分别与⊙1O 、⊙3O 相交,⊙1O 与⊙3O 不相交,则⊙1O 与⊙3O 的圆心距d 的取值范围是 .BOA CEDABOPDABC O E。

2001年陕西省中考数学试卷(含解析)

2001年陕西省中考数学试卷(含解析)

2001年陕西省中考数学试卷一、选择题1、36的算术平方根是()A.6B.±6C.D.±2、一次函数y=x+1的图象在()A.第一、二、三象限B.第一、三、四象限C.第一、二、四象限D.第二、三、四象限3、(-x2)3的结果应为()A.-x5B.x5C.-x6D.x64、不等式的解集是()A.无解B.x<1C.x>-2D.-2<x<1 5、下列图形中,既是轴对称图形又是中心对称图形的是()A.矩形B.平行四边形C.等腰梯形D.等腰三角形6、如果一个角的补角是150°,那么这个角的余角的度数是()A.30°B.60°C.90°D.120°7、如果2(x+3)的值与3(1-x)的值互为相反数,那么x等于()A.9B.8C.-9D.-88、如图,在等腰梯形ABCD中,AB=DC,AC,BD交于点O,则图中全等三角形共有()A.2对B.3对C.4对D.5对9、如果数据1,2,3,x的平均数为4,那么x的值为()A.10B.9C.8D.710、给出下列命题:①任意三角形一定有一个外接圆,并且只有一个外接圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形,并且只有一个外切三角形,其中正确命题共有()A.1个B.2个C.3个D.4个11、用配方法将函数y=x2-x-2写成y=a(x-h)2+k的形式是()A.B.C.D.12、已知等腰三角形的一边等于3,一边等于6,则它的周长等于()A.12B.15C.12或15D.15或1813、若数轴上表示数x的点在原点的左边,则化简|3x+|的结果是()A.-4x B.4x C.-2x D.2x14、如图,D、E分别是△ABC的边AB、AC上的点,DE∥BC,=2,那么△ADE与四边形DBCE的面积的比是()A.B.C.D.15、如图,平行四边形ABCD中,F是BC延长线上一点,AF交BD于O,与DC 交于点E,则图中相似三角形共有()对(全等除外).A.3B.4C.5D.6二、填空题16、如果点M(a+b,ab)在第二象限,那么点N(a,b)在第__________象限.17、化简的结果是__________.18、在△ABC中,∠C为直角,若3AC=BC,则∠A的度数是__________度,cosB 的值是__________.19、如图,梯形ABCD中,AD∥BC,中位线EF分别与BD、AC交于点G、H.若AD=6,BC=10,则GH=__________.20、某涵洞是抛物线形,它的截面如图所示,现测得水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在抛物线的函数表达式是__________ .21、已知一个直角三角形的面积为12cm2,周长为cm,那么这个直角三角形外接圆的半径是__________cm.三、解答题22、解方程:.23、先化简,再求值:,其中.24、已知△ABC内接⊙O.(1)当点O与AB有怎样的位置关系时,∠ACB是直角;(2)在满足(1)的条件下,过点C作直线交AB于D,当CD与AB有什么样的关系时,△ABC∽△CBD∽△ACD(3)画出符合(1)(2)题意的两种图形,使图形中的CD=2cm.25、已知关于x的方程x2-4x+2t=0有两个实数根.(1)求t的取值范围;(2)设方程的两个根的倒数和为S,求S与t之间的函数关系式;(3)在直角坐标系内直接画出(2)中所得到的函数的图象.26、如图⊙O1、⊙O2点外切于点A,外公切线BC与⊙O1切于点B,与⊙O2切于点C,与O2O1的延长线交于点P,已知∠P=30度.(1)求⊙O1与⊙O2半径的比;(2)若⊙O1半径为2m,求弧AB、弧AC及外公切线BC所围成的图形(阴影部分)的面积.27、如图,点I是△ABC的内心,AI的延长线交边BC于点D,交△ABC外接圆于点E.(1)求证:IE=BE;(2)若IE=4,AE=8,求DE的长.28、某城市的一种出租车起步价为10元(即行驶5千米以内都需付款10元车费),达到或超过5千米后,每增加1千米加价1.2元(不足1千米按1千米计算),现某人乘这种出租车由甲地到乙地,支付车费17.2元.求甲、乙两地的路程.29、如图,在直角坐标系xoy中,一次函数的图象与x轴交于点A,与y轴交于点B.(1)已知OC⊥AB于C,求C点坐标;(2)在x轴上是否存在点P,使△PAB为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2001年陕西省中考数学试卷的答案和解析一、选择题1、答案:A试题分析:算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,利用定义即可求出结果.试题解析:∵6的平方为36,∴36算术平方根为6.故选A.2、答案:A试题分析:在函数y=x+1中k=1>0,由此可以确定图象经过第一三象限,而b=1>0,图象过第二象限,所以可以确定直线y=x+1经过的象限.试题解析:∵k=1>0,∴图象过一三象限,∴b=1>0,图象过第二象限,∴直线y=x+1经过第一、二、三象限.故选A.3、答案:C试题分析:根据幂的乘方,底数不变指数相乘,计算后直接选取答案.试题解析:(-x2)3=-x6.故选C.4、答案:D试题分析:先分别求出各不等式的解集,再求其公共解集即可.试题解析:由(1)得x<1,由(2)得x>-2,∴不等式组的解集为-2<x<1.故选D.5、答案:A试题分析:根据轴对称图形与中心对称图形的概念结合矩形、平行四边形、等腰梯形、等腰三角形的性质求解.试题解析:A、是轴对称图形,也是中心对称图形.故正确;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选A.6、答案:B试题分析:本题根据互余和互补的概念计算即可.试题解析:180°-150°=30°,那么这个角的余角的度数是90°-30°=60°.故选B.7、答案:A试题分析:互为相反数的两个数的和等于0,根据题意可列出方程.试题解析:根据题意得:2(x+3)+3(1-x)=0,解得,x=9.那么x等于9.故选A.8、答案:B试题分析:根据题目给出的条件,要观察图中有哪些相等的边和角,然后根据全等三角形的判定来判断哪些三角形全等.试题解析:∵在等腰梯形ABCD中,AB=DC,BC=CB∴∠ABC=∠DCB∴△ABC≌△DCB(SAS)∴∠ACB=∠DBC∴∠ABD=∠DCA∵∠AOB=∠DOC,AB=CD∴△AOB≌△DOC(AAS)∵∠BAD=∠ADC,AB=CD,AD=AD∴△ABD≌△DCA(SAS)∴共有3对,故选B.9、答案:A试题分析:根据平均数的概念,先将各数加起来,再除以个数即可求得x的值.试题解析:∵数据1,2,3,x的平均数为4,∴(1+2+3+x)=4,∴x=16-1-2-3=10;故本题选A.10、答案:B试题分析:根据外心与内心的概念,分别分析即可判断对错.三角形的外接圆是三条垂直平分线的交点,有且只有一个交点,所以任意三角形一定有一个外接圆,并且只有一个外接圆;反过来说圆的内接三角形可以无数多个;三角形的内切圆的圆心是三个内角平分线的交点,有且只有一个交点,所以任意一个三角形一定有一个内切圆,并且只有一个内切圆;反过来说圆的外切三角形可以有无数多个.故正确的命题有2个.试题解析:三角形的外接圆是三条垂直平分线的交点,有且只有一个交点,所以任意三角形一定有一个外接圆,并且只有一个外接圆,①是对的;反过来说圆的内接三角形可以无数多个,所以②是错的;三角形的内切圆的圆心是三个内角平分线的交点,有且只有一个交点,所以任意一个三角形一定有一个内切圆,并且只有一个内切圆,③是对的;反过来说圆的外切三角形可以有无数多个,④是错误的.所以正确的命题有2个.故选B.11、答案:A试题分析:此题计算利用配方法把y=x2-x-2化成y=a(x-h)2+k的形式.试题解析:y=x2-x-2=(x2-2x-4),=[(x2-2x+1)-5],=(x-1)2-.故选A.12、答案:B试题分析:从已知结合等腰三角形的性质进行思考,分腰为3,腰为6两种情况分析,舍去不能构成三角形的情况.试题解析:分两种情况讨论,当三边为3,3,6时不能构成三角形,舍去;当三边为3,6,6时,周长为15.故选B.13、答案:C试题分析:利用实数与数轴的关系判断x的符号,再利用二次根式的性质,绝对值的性质解题.试题解析:∵数轴上表示数x的点在原点的左边,∴x<0,∴|3x+|=|3x-x|=|2x|=-2x.故选C.14、答案:C试题分析:根据已知可得到△ADE∽△ABC,从而可得到其相似比与面积比,从而不难求得△ADE与四边形DBCE的面积的比.试题解析:∵=2∴=又∵DE∥BC∴△ADE∽△ABC,相似比是2:3,面积的比是4:9设△ADE的面积是4a,则△ABC的面积是9a,四边形DBCE的面积是5a∴△ADE与四边形DBCE的面积的比是.15、答案:C试题分析:根据平行四边形的性质及相似三角形的判定方法进行分析即可.∵ABCD是平行四边形∴AD∥BC,AB∥DC∵△ADO∽△FBO,△ABO∽△EDO,△ADE∽△FCE,△FCE∽△FBA,△ADE∽△FBA五对才对.∴共5对.故选C.二、填空题16、答案:试题分析:先根据点M(a+b,ab)在第二象限确定出a+b<0,ab>0,再进一步确定a,b的符号即可求出答案.试题解析:∵点M(a+b,ab)在第二象限,∴a+b<0,ab>0;∵ab>0可知ab同号,又∵a+b<0可知a,b同是负数.∴a<0 b<0,即点N在第三象限.故答案填:三.17、答案:试题分析:先找分子分母的公因式,约分,再化简.试题解析:原式===-.18、答案:试题分析:根据特殊角的三角函数值计算.试题解析:△ABC中,∠C为直角.∵3AC=BC,∴AC=BC.∴tanA===,∴∠A=60°,∠B=90°-60°=30°.∴cosB=cos30°=.19、答案:试题分析:根据梯形中位线的性质,计算出EF的长,再根据三角形中位线的性质,求出EG和HF的长,从而计算出GH的长.试题解析:∵EF是梯形ABCD的中位线,∴E、GH、F分别为AB、BD、AC、DC的中点,又∵AD=6,BC=10,∴EF=(6+10)÷2=8,EG=HF=6÷2=3,∴GH=EF-EG-HF=8-3-3=2.20、答案:试题分析:根据此抛物线经过原点,可设函数关系式为y=ax2.根据AB=1.6,涵洞顶点O到水面的距离为2.4m,那么A点坐标应该是(-0.8,-2.4),利用待定系数法即可求解.试题解析:设函数关系式为y=ax2,A点坐标应该是(-0.8,-2.4),那么-2.4=0.8×0.8×a,即a=-,即y=-x2.21、答案:试题分析:如果设这个直角三角形的直角边是a,b,斜边是c,那么由题意得ab=12×2=24,a+b=12-c;根据勾股定理a2+b2=c2,可解得c=5.直角三角形外接圆其实就是以斜边的中点为圆心,斜边长的一半为半径的圆,因此它的半径是cm.试题解析:如果设这个直角三角形的直角边是a,b,斜边是c,那么由题意得:S△=ab=12,a+b+c=12,∴ab=24,a+b=12-c,根据勾股定理得a2+b2=c2,(a+b)2-2ab=c2,(12-c)2-48=c2,解得c=5,所以半径是cm.三、解答题22、答案:试题分析:本题的最简公分母是(x+1)(x-1),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.试题解析:方程两边都乘(x+1)(x-1),得:(x-1)+2(x+1)=4.解得:x=1.经检验:x=1是增根.∴原方程无解.23、答案:试题分析:把分式化简,然后把x的值代入化简后的式子求值就可以了.试题解析:原式=×+=,当x=+1时,原式==.24、答案:试题分析:(1)要保证∠ACB是直角,根据直径所对的圆周角是直角,则AB应是直径,即点O在AB上;(2)若要这三个三角形相似,则需要∠ABC=∠ACD,则可以得到CD应垂直于AB;(3)根据射影定理,则CD=2,得AD•BD=4,所以可以让AD=4,BD=1.试题解析:(1)若要使∠ACB=90°,则根据90°的圆周角所对的弦是直径,可得AB应是直径,即点O应在AB上;(2)若要△ABC∽△CBD∽△ACD,则∠ABC=∠ACD.又∠ACD+∠BCD=90°,∴∠B+∠BCD=90°.则CD⊥AB.(3)根据上述结论,可以让AD=4,BD=1或AD=1,BD=4(如图1和2).25、答案:试题分析:(1)根据根的判别式△≥0计算;(2)把两根倒数和s整理为根与系数的关系+=,代入即可.(3)根据函数关系式画出图即可.注意自变量的取值.试题解析:(1)∵△=16-4×2t≥0,解得t≤2;(2)∵x1+x2=4,x1•x2=2t,∴s=+===(t≤2).(3)如图所示26、答案:试题分析:(1)求⊙O1与⊙O2半径的比,就要让两半径建立联系,连接O1B,O2C,可在Rt△PBO1,Rt△PCO2中利用直角三角形中的边与边的关系求出半径的比.题中∠P=30°,可知O1B=2r,O2C=2R,由此可知3r=R,即可得出两圆的半径比.(2)求出弧所对的圆心角,利用弧长公式计算即可.阴影部分的面积=梯形的面积-两个扇形的面积.试题解析:(1)连接O1B,O2C,∠P=30°,∴PO1=2r,PO2=2R,∴2R=2r+r+RR=3r∴3r=R,∴r:R=1:3;(2)∠P=30°,∴∠AO1B=120°,∴弧AB==,弧AC==2π;利用勾股定理可知:BP==2,PC==6,∴BC=4;S阴影=S梯形O1O2CB-S扇形O1AB-S扇形O2AC=(2+6)×4÷2--6π=16-.27、答案:试题分析:(1)连接IB,只需证明∠IBE=∠BIE.根据三角形的外角的性质、三角形的内心是三角形的角平分线的交点以及圆周角定理的推论即可证明;(2)IE的长,即是BE的长,则可以把要求的线段和已知的线段构造到两个相似三角形中,进行求解.试题解析:(1)证明:连接IB.∵点I是△ABC的内心,∴∠BAD=∠CAD,∠ABI=∠IBD.又∵∠BIE=∠BAD+∠ABI=∠CAD+∠IBD=∠IBD+∠DBE=∠IBE,∴BE=IE.(2)在△BED和△AEB中,∠EBD=∠CAD=∠BAD,∠BED=∠AEB.∴△BED∽△AEB,∴,∵IE=4,AE=8,∴BE=4,即DE==2.28、答案:试题分析:设甲乙两地的路程为x千米,依题意得10+1.2(x-5)≤17.2,解不等式即可.注意考虑到不足1千米也按1千米收费.试题解析:设甲乙两地的路程为x千米,依题意得10+1.2(x-5)≤17.2,解得x≤11,又因为不足1千米也按1千米收费,所以10<x≤11.29、答案:试题分析:(1)因为一次函数的图象与x轴交于点A,与y轴交于点B,所以分别令x=0,y=0,可求得B、A的坐标,从而求出OA=,OB=2,AB=4,因为OC⊥AB于C,利用射影定理可得AO2=AC•AB,所以,要求C点坐标,需作CD⊥x轴于D,证明△ACD∽△ABO,利用相似三角形对应边的比等于相似比即可得到,代入相关数据即可求出,AD=,而,从而求出C点坐标为(,);(2)要在x轴上寻找点P,使△PAB为等腰三角形,需分情况讨论:若PB=AB=4,则P和A关于y轴对称,所以有,0);若PA=PB,设P(x,0),利用两点间的距离公式可得(x+2)2=x2+(0-2)2,解之可得,0);因为A(-2,0),若PA=PB=4,则,0),,0).试题解析:(1),令x=0,得y=2,令y=0,得,∴A点坐标是(,0),B点坐标是(0,2),∴OA=,OB=2,AB=4,在△AOB中,∵∠AOB=90°,OC⊥AB于C,∴AO2=AC•AB,∴,作CD⊥x轴于D,则∠ADC=∠AOB=90°,又∠CAD=∠BAO,∴△ACD∽△ABO,∴,∴,∴,AD=,∴,∴C点坐标为(,);(2)存在满足条件的点P,,0),,0),,0),,0).。

历年陕西省中考数学试卷(含答案)

历年陕西省中考数学试卷(含答案)

2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(﹣)2﹣1=()A.﹣ B.﹣ C.﹣ D.02.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A.B.C.D.3.(3分)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m 的值为()A.2 B.8 C.﹣2 D.﹣84.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°5.(3分)化简:﹣,结果正确的是()A.1 B.C. D.x2+y26.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3 B.6 C.3 D.7.(3分)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<28.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.9.(3分)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.C.5 D.510.(3分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)在实数﹣5,﹣,0,π,中,最大的一个数是.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.B.tan38°15′≈.(结果精确到0.01)13.(3分)已知A,B两点分别在反比例函数y=(m≠0)和y=(m≠)的图象上,若点A与点B关于x轴对称,则m的值为.14.(3分)如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为.三、解答题(本大题共11小题,共78分)15.(5分)计算:(﹣)×+|﹣2|﹣()﹣1.16.(5分)解方程:﹣=1.17.(5分)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)18.(5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)19.(7分)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.20.(7分)某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)21.(7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:品种产量(斤/每棚)销售价(元/每斤)成本(元/每棚)项目香瓜2000128000甜瓜450035000现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.22.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.23.(8分)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.24.(10分)在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n 关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB 为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.25.(12分)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D 作DE⊥AB交于点E,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)2017年陕西省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•陕西)计算:(﹣)2﹣1=()A.﹣ B.﹣ C.﹣ D.0【分析】原式先计算乘方运算,再计算加减运算即可得到结果.【解答】解:原式=﹣1=﹣,故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(3分)(2017•陕西)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看下边是一个较大的矩形,上边是一个较小的矩形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(3分)(2017•陕西)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2 B.8 C.﹣2 D.﹣8【分析】运用待定系数法求得正比例函数解析式,把点B的坐标代入所得的函数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选:A.【点评】本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.(3分)(2017•陕西)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°【分析】由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【解答】解:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°.故选:C.【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.5.(3分)(2017•陕西)化简:﹣,结果正确的是()A.1 B.C. D.x2+y2【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式==.故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)(2017•陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3 B.6 C.3 D.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB==3,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=3,∴∠CAB′=90°,∴B′C==3,故选:A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(3分)(2017•陕西)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2【分析】首先根据直线l2与x轴的交点为A(﹣2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可.【解答】解:∵直线l2与x轴的交点为A(﹣2,0),∴﹣2k+b=0,∴解得∵直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)的交点在第一象限,∴解得0<k<2.故选:D.【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.8.(3分)(2017•陕西)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD 的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.【分析】根据S△ABE =S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,∵S△ABE =S矩形ABCD=3=•AE•BF,∴BF=.故选B.【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.9.(3分)(2017•陕西)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.C.5 D.5【分析】连接OA、OB、OP,根据圆周角定理求得∠APB=∠C=30°,进而求得∠PAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB⊥AP,AD=PD,∠OBP=∠OBA=60°,即可求得△AOB是等边三角形,从而求得PB=OA=5,解直角三角形求得PD,即可求得PA.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=5,故选D.【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键.10.(3分)(2017•陕西)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M(2,﹣8).故选C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)(2017•陕西)在实数﹣5,﹣,0,π,中,最大的一个数是π.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:根据实数比较大小的方法,可得π>>0>>﹣5,故实数﹣5,,0,π,其中最大的数是π.故答案为:π.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)(2017•陕西)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为64°.B.tan38°15′≈ 2.03.(结果精确到0.01)【分析】A:由三角形内角和得∠ABC+∠ACB=180°﹣∠A=128°,根据角平分线定义得∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB);B:利用科学计算器计算可得.【解答】解:A、∵∠A=52°,∴∠ABC+∠ACB=180°﹣∠A=128°,∵BD平分∠ABC、CE平分∠ACB,∴∠1=∠ABC、∠2=∠ACB,则∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB)=64°,故答案为:64°;B、tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.13.(3分)(2017•陕西)已知A,B两点分别在反比例函数y=(m≠0)和y=(m≠)的图象上,若点A与点B关于x轴对称,则m的值为1.【分析】设A(a,b),则B(a,﹣b),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m的值.【解答】解:设A(a,b),则B(a,﹣b),依题意得:,所以=0,即5m﹣5=0,解得m=1.故答案是:1.【点评】本题考查了反比例函数图象上点的坐标特征,关于x轴,y轴对称的点的坐标.根据题意得=0,即5m﹣5=0是解题的难点.14.(3分)(2017•陕西)如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为18.【分析】作辅助线;证明△ABM≌△ADN,得到AM=AN,△ABM与△ADN的面积相等;求出正方形AMCN的面积即可解决问题.【解答】解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.【点评】本题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.三、解答题(本大题共11小题,共78分)15.(5分)(2017•陕西)计算:(﹣)×+|﹣2|﹣()﹣1.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣+2﹣﹣2=﹣2﹣=﹣3【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(5分)(2017•陕西)解方程:﹣=1.【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.【点评】此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程.17.(5分)(2017•陕西)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【分析】根据题意可知,作∠BDC的平分线交BC于点P即可.【解答】解:如图,点P即为所求.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.18.(5分)(2017•陕西)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在C区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【分析】(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)(2017•陕西)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【分析】根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD是正方形,∴∠ADF=CDE=90°,AD=CD.∵AE=CF,∴DE=DF,在△ADF和△CDE中,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE,在△AGE和△CGF中,,∴△AGE≌△CGF(AAS),∴AG=CG.【点评】本题考查了正方形的性质,利用全等三角形的判定与性质是解题关键,又利用了正方形的性质.20.(7分)(2017•陕西)某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【分析】作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x 米,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=,解得x≈34(米).答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.21.(7分)(2017•陕西)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:产量(斤/每棚)销售价(元/每斤)成本(元/每棚)品种项目香瓜2000128000甜瓜450035000现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【分析】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.【解答】解:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000,(2)由题意得,7500x+6800≥100000,∴x≥4,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.【点评】此题是一次函数的应用,主要考查了一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据数量关系,列出函数关系式;(2)根据题意建立不等式,是一道基础题目.22.(7分)(2017•陕西)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:=,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是;(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:.【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.23.(8分)(2017•陕西)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.【分析】(1)连接OA,由于PA是⊙O的切线,从而可求出∠AOD=60°,由垂径定理可知:AD=DC,由锐角三角函数即可求出AC的长度.(2)由于∠AOP=60°,所以∠BOA=120°,从而由圆周角定理即可求出∠BCA=60°,从而可证明BC∥PA【解答】解:(1)连接OA,∵PA是⊙O的切线,∴∠PAO=90°∵∠P=30°,∴∠AOD=60°,∵AC⊥PB,PB过圆心O,∴AD=DC在Rt△ODA中,AD=OA•sin60°=∴AC=2AD=5(2)∵AC⊥PB,∠P=30°,∴∠PAC=60°,∵∠AOP=60°∴∠BOA=120°,∴∠BCA=60°,∴∠PAC=∠BCA∴BC∥PA【点评】本题考查圆的综合问题,涉及切线的性质,解直角三角形,平行线的判定等知识,综合程度较高,属于中等题型.24.(10分)(2017•陕西)在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B 的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB 为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.【分析】(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P 点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.【解答】解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=﹣3,∴C1的对称轴为x=1,∴C2的对称轴为x=﹣1,∴m=2,∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);(3)存在.∵AB的中点为(﹣1,0),且点P在抛物线C1上,点Q在抛物线C2上,∴AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由(2)可知AB=1﹣(﹣3)=4,∴PQ=4,设P(t,t2﹣2t﹣3),则Q(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(2,﹣3),Q(﹣2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(2,﹣3),Q(﹣2,﹣3).【点评】本题为二次函数的综合应用,涉及待定系数法、对称的性质、函数图象与坐标轴的交点、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中由对称性质求得a、n的值是解题的关键,在(2)中注意函数图象与坐标轴的交点的求法即可,在(3)中确定出PQ的长度,设P点坐标表示出Q点的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.(12分)(2017•陕西)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为4;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D。

历年陕西中考数学试题及答案3(word版)

历年陕西中考数学试题及答案3(word版)

陕西省中考数学试题及答案、选择题(共10小题,每小题,3分,计30分,每小题只有一个选项符合题意的。

)1、4的算术平方根是()C 、-丄D -2 22、下图是一个正方体被截取一个直三棱柱得到的几何体,则该几何体的左视图为()-x的图像上,则m的值()(2题图)A B D1 1A1 B 、- C4 44、小军旅行箱的密码是一个六位数,、-1由于他忘记密码的末位数字,则小军能一次打开该旅行箱的概率是A丄B 、105、把不等式组:{19x+2 >1的解集表示在数轴上,正确的是(3 - x > 0-1 0-1- 2 3- -1 0- 1- 2 3-D0- 1- 2 3-0- 1- 2 3-A -2 B9、如图,在平行四边形 ABCD 中,AB 5,对角线AC 6,若过点A作AE BC ,垂足为E,则AE 的长( A 4B 12、5 C 24D、5510、二次函数y 是() A c ?-1 C 2a b 02ax bx c(aB b?0 、9a 2 0)的图象如图所示,则下列结论正确的c 3b6、某区10名学生参加市级汉子听写大赛,他们得分情况如下表: 人数 3 4 2 1 分数80859095那么这10名学生所得分数的平均数和众数分别是多少?()A 、85 和 82.5 C 、85 和 857、如图 AB|| CD,/ A=45°,Z C=28° ,则/AEC 的大小为(&若x 2是关于x 的一元二次方程x 2 -ax a 2 0的一个根,则a 的2值是()A 、1 或 4B 、-1 或-4C 、-1 或 4D 、1 或-4、85.5 和 85 、85.5 和 80A 、17B 、 620C 630D 、730X第10题图第II 卷(非选择题90分)二、填空题(共6小题,每小题3分,计18分) 11、 计算(I )2。

3--------12、 _________________________________________ 因式分解: m (x y ) n(x y ) ___________________________________________ 。

陕西中考数学试题及标准答案.doc

陕西中考数学试题及标准答案.doc

2016 年陕西中考一、选择1、计算: (1) 2 ( )2A -1B 1C 4D -42、如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()3、下列计算正确的是( )A x 2 3x 2 4x 4B x 2 y 2 x 3 2x 6 yC (6x 3 y 2 ) (3x)2 x 2D ( 3x)2 9x 24、如图, AB ∥ CD ,AE 平分∠ CAB 交 CD 于点 E 。

若∠ C = 50°,则∠ AED =( )A 65° B 115 ° C 125 ° D 130 °5、设点 A ( a , b )是正比例函数y3x 图像上的任意一点,则下列2等式一定成立的是()A 2a 3b 0B 2a 3b 0C 3a 2b 0D 3a 2b6、如图,在△ ABC 中, ∠ ABC = 90°,AB = 8,BC = 6,若 DE 是△ ABC 的中位线,延长 DE 交 ABC 的外角∠ ACM 的平分线于点 F ,则线段 DF 的长为( )A 7B 8C 9D 107、已知一次函数y kx 5 和 y k' x 7 。

假设 k >0 且 k ’< 0,则这两个一次函数图像的交点在()A 第一象限B第二象限 C第三象限 D 第四象限8、如图,在正方形 ABCD 中,连接 BD ,点 O 是 BD 的中点,若 M 、N 是边 AD 上 的两点,连接 MO 、NO ,并分别延长交边 BC 于两点 M ’、 N ’,则图中的全等三 角形共有()A 2 对B 3对 C 4 对 D 5 对9、如图,⊙ O 的半径为 4,△ ABC 是⊙ O 的内接三角形,连接 OB 、OC ,若∠BAC 与∠ BOC 互补,则弦 BC 的长为( )A 3 3B 4 3C 5 3D 6 310、已知抛物线 yx 22 x3 与 x A B两点, 将这条抛物线的顶点轴交于 、 记为 C ,连接 AC 、 BC ,则 tan ∠ CAB 的值为( )1B 5C2 5D 2A5 52二、填空11 、不等式1x 3 0 的解集是_________ 212 、二选一A 一个正多边形的一个外角为45°,则这个正多边形的边数是 ______B 运用科学计算器计算: 3 17 sin 73 52' ______(结果精确到)13 、已知一次函数 y 2x 4 的图像分别交x轴、y轴于点A、B,若这个一次函数的图像与一个反比例函数的图像在第一象限交于点C,且 AB= 2BC,则这个反比例函数的表达式为_____________。

2013-2020年陕西省中考数学试题汇编(含参考答案与解析)

2013-2020年陕西省中考数学试题汇编(含参考答案与解析)

【中考数学真题精析汇编】2013—2020年陕西省中考数学试题汇编(含参考答案与解析)1、2013年陕西省中考数学试题及参考答案与解析 (2)2、2014年陕西省中考数学试题及参考答案与解析 (23)3、2015年陕西省中考数学试题及参考答案与解析 (47)4、2016年陕西省中考数学试题及参考答案与解析 (68)5、2017年陕西省中考数学试题及参考答案与解析 (93)6、2018年陕西省中考数学试题及参考答案与解析 (117)7、2019年陕西省中考数学试题及参考答案与解析 (140)8、2020年陕西省中考数学试题及参考答案与解析 (162)2013年陕西省中考数学试题及参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分) 1.下列四个数中最小的数是( ) A .﹣2 B .0C .13- D .52.如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )A .B .C .D .3.如图,AB ∥CD ,∠CED=90°,∠AEC=35°,则∠D 的大小为( )A .65°B .55°C .45°D .35°4.不等式组12123x x ⎧-⎪⎨⎪-⎩><的解集为( ) A .x >12B .x <﹣1C .﹣1<x <12 D .x >12- 5.我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是( ) A .71.8 B .77C .82D .95.76.如果一个正比例函数的图象经过不同象限的两点A (2,m ),B (n ,3),那么一定有( ) A .m >0,n >0 B .m >0,n <0 C .m <0,n >0 D .m <0,n <07.如图,在四边形ABCD 中,AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有( )A.1对B.2对C.3对D.4对8.根据表中一次函数的自变量x与函数y的对应值,可得p的值为()x ﹣2 0 1y 3 p 0A.1 B.﹣1 C.3 D.﹣39.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则AMMD等于()A.38B.23C.35D.4510.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>﹣5 B.x0>﹣1 C.﹣5<x0<﹣1 D.﹣2<x0<3二、填空题(本大题共6小题,每小题3分,共18分)11.计算:(﹣2)3+1)0=.12.一元二次方程x2﹣3x=0的根是.13.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A、在平面直角坐标系中,线段AB的两个端点的坐标分别为A(﹣2,1)、B(1,3),将线段AB 通过平移后得到线段A′B′,若点A的对应点为A′(3,2),则点B的对应点B′的坐标是.B、比较大小:“>”,“=”或“<”)14.如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD的面积为.(结果保留根号)15.如果一个正比例函数的图象与反比例函数6y x=的图象交于A (x 1,y 1),B (x 2,y 2)两点,那么(x 2﹣x 1)(y 2﹣y 1)的值为 .16.如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB=30°,点E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于G 、H 两点.若⊙O 的半径为7,则GE+FH 的最大值为 .三、解答题(本大题共9小题,共72分) 17.(5分)解分式方程:22142xx x +=--. 18.(6分)如图,∠AOB=90°,OA=OB ,直线l 经过点O ,分别过A 、B 两点作AC ⊥l 交l 于点C ,BD ⊥l 交l 于点D . 求证:AC=OD .19.(7分)我省教育厅下发了《在全省中小学幼儿园广泛开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.某市教育局督导组为了调查学生对“节约教育”内容的了解程度(程度分为:“A ﹣﹣了解很多”、“B ﹣﹣了解较多”,“C ﹣﹣了解较少”,“D ﹣﹣不了解”),对本市一所中学的学生进行了抽样调查.我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题: (1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该中学共有1800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?20.(8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯CD的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).21.(8分)“五一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y (千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式;(3)他们出发2小时时,离目的地还有多少千米?22.(8分)甲、乙两人用手指玩游戏,规则如下:①每次游戏时,两人同时随机地各伸出一根手指;②两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指、小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,(1)求甲伸出小拇指取胜的概率;(2)求乙取胜的概率.23.(8分)如图,直线l与⊙O相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A是⊙O 上一点,连接AE、AF,并分别延长交直线l于B、C两点.(1)求证:∠ABC+∠ACB=90°;(2)当⊙O的半径R=5,BD=12时,求tan∠ACB的值.24.(10分)在平面直角坐标系中,一个二次函数的图象经过点A(1,0)、B(3,0)两点.(1)写出这个二次函数图象的对称轴;(2)设这个二次函数图象的顶点为D,与y轴交于点C,它的对称轴与x轴交于点E,连接AC、DE和DB,当△AOC与△DEB相似时,求这个二次函数的表达式.[提示:如果一个二次函数的图象与x轴的交点为A(x1,0)、B(x2,0),那么它的表达式可表示为y=a(x﹣x1)(x﹣x2)].25.(12分)问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列四个数中最小的数是()A.﹣2 B.0 C.13-D.5【知识考点】有理数大小比较.【思路分析】根据有理数的大小比较方法,找出最小的数即可.【解题过程】解:∵﹣2<13-<0<5,∴四个数中最小的数是﹣2;故选A.【总结归纳】此题考查了有理数的大小比较,用到的知识点是负数<0<正数,两个负数,绝对值大的反而小,是一道基础题.2.如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是()A. B. C. D.【知识考点】简单组合体的三视图.【思路分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解题过程】解:从上面看所得到的图形是一个长方形,中间有一个没有圆心的圆,与长方形的两边相切.故选:D.【总结归纳】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.如图,AB∥CD,∠CED=90°,∠AEC=35°,则∠D的大小为()A.65°B.55°C.45°D.35°【知识考点】平行线的性质.【思路分析】根据平角等于180°求出∠BED,再根据两直线平行,内错角相等解答.【解题过程】解:∵∠CED=90°,∠AEC=35°,∴∠BED=180°﹣∠CED﹣∠AEC=180°﹣90°﹣35°=55°,∵AB∥CD,∴∠D=∠BED=55°.故选B.【总结归纳】本题考查了平行线的性质,平角的定义,是基础题,熟记性质是解题的关键.4.不等式组12123xx⎧-⎪⎨⎪-⎩><的解集为()A.x>12B.x<﹣1 C.﹣1<x<12D.x>12-【知识考点】解一元一次不等式组.【思路分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可.【解题过程】解:12123xx⎧-⎪⎨⎪-⎩>①<②,由①得:x>12,由②得:x>﹣1,不等式组的解集为:x>12,故选:A.【总结归纳】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.5.我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是()A.71.8 B.77 C.82 D.95.7【知识考点】算术平均数.【思路分析】根据平均数的计算公式列出算式,再进行计算即可.【解题过程】解:根据题意得:(111+96+47+68+70+77+105)÷7=82;故选C.【总结归纳】此题考查了算术平均数,用到的知识点是平均数的计算公式,关键是根据公式列出算式.6.如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<0【知识考点】正比例函数的性质.【思路分析】根据正比例函数图象所在象限,可判断出m、n的正负.【解题过程】解:A、m>0,n>0,A、B两点在同一象限,故A错误;B、m>0,n<0,A、B两点不在同一个正比例函数,故B错误;C、m<0,n>0,A、B两点不在同一个正比例函数,故C错误;D、m<0,n<0,A、B两点在同一个正比例函数的不同象限,故D正确.故选:D.【总结归纳】此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.7.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对【知识考点】全等三角形的判定.【思路分析】首先证明△ABC≌△ADC,根据全等三角形的性质可得∠BAC=∠DAC,∠BCA=∠DCA,再证明△ABO≌△ADO,△BOC≌△DOC.【解题过程】解:∵在△ABC和△ADC中,AB AD BC DC AC AC=⎧⎪=⎨⎪=⎩,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∠BCA=∠DCA,∵在△ABO和△ADO中,AB ADBAO DAO AO AO=⎧⎪∠=∠⎨⎪=⎩,∴△ABO≌△ADO(SAS),∵在△BOC和△DOC中,BC DCBCO DCO CO CO=⎧⎪∠=∠⎨⎪=⎩,∴△BOC≌△DOC(SAS),故选:C.【总结归纳】考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.根据表中一次函数的自变量x与函数y的对应值,可得p的值为()x ﹣2 0 1y 3 p 0A.1 B.﹣1 C.3 D.﹣3【知识考点】一次函数图象上点的坐标特征.【思路分析】设一次函数的解析式为y=kx+b(k≠0),再把x=﹣2,y=3;x=1时,y=0代入即可得出k、b的值,故可得出一次函数的解析式,再把x=0代入即可求出p的值.【解题过程】解:一次函数的解析式为y=kx+b(k≠0),∵x=﹣2时y=3;x=1时y=0,∴23k bk b-+=⎧⎨+=⎩,解得11kb=-⎧⎨=⎩,∴一次函数的解析式为y=﹣x+1,∴当x=0时,y=1,即p=1.故选A.【总结归纳】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.9.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则AMMD等于()A.38B.23C.35D.45【知识考点】勾股定理;菱形的性质;矩形的性质.【思路分析】首先由菱形的四条边都相等与矩形的四个角是直角,即可得到直角△ABM中三边的关系.【解题过程】解:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=x ,AM=y ,则MB=2x ﹣y ,(x 、y 均为正数). 在Rt △ABM 中,AB 2+AM 2=BM 2,即x 2+y 2=(2x ﹣y )2, 解得43x y =, ∴MD=MB=2x ﹣y=53y , ∴3553AM y MD y ==, 故选:C .【总结归纳】此题考查了菱形与矩形的性质,以及直角三角形中的勾股定理.解此题的关键是注意数形结合思想与方程思想的应用.10.已知两点A (﹣5,y 1),B (3,y 2)均在抛物线y=ax 2+bx+c (a≠0)上,点C (x 0,y 0)是该抛物线的顶点.若y 1>y 2≥y 0,则x 0的取值范围是( ) A .x 0>﹣5 B .x 0>﹣1C .﹣5<x 0<﹣1D .﹣2<x 0<3【知识考点】二次函数图象上点的坐标特征.【思路分析】先判断出抛物线开口方向上,进而求出对称轴即可求解. 【解题过程】解:∵点C (x 0,y 0)是抛物线的顶点,y 1>y 2≥y 0, ∴抛物线有最小值,函数图象开口向上, ∴a >0;∴25a ﹣5b+c >9a+3b+c ,∴2ba <1, ∴2b a->﹣1,∴x 0>﹣1∴x 0的取值范围是x 0>﹣1. 故选:B .【总结归纳】本题考查了二次函数图象上点坐标特征,主要利用了二次函数的增减性与对称性,根据顶点的纵坐标最小确定出抛物线开口方向上是解题的关键. 二、填空题(本大题共6小题,每小题3分,共18分) 11.计算:(﹣2)3+1)0= . 【知识考点】实数的运算;零指数幂.【思路分析】先分别根据有理数乘方的法则及0指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可.【解题过程】解:原式=﹣8+1=﹣7. 故答案为:﹣7.【总结归纳】本题考查的是实数的运算,熟知有理数乘方的法则及0指数幂的计算法则是解答此题的关键.12.一元二次方程x2﹣3x=0的根是.【知识考点】解一元二次方程-因式分解法.【思路分析】首先利用提取公因式法分解因式,由此即可求出方程的解.【解题过程】解:x2﹣3x=0,x(x﹣3)=0,∴x1=0,x2=3.故答案为:x1=0,x2=3.【总结归纳】此题主要考查了因式分解法解一元二次方程,解题的关键会进行因式分解.13.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A、在平面直角坐标系中,线段AB的两个端点的坐标分别为A(﹣2,1)、B(1,3),将线段AB 通过平移后得到线段A′B′,若点A的对应点为A′(3,2),则点B的对应点B′的坐标是.B、比较大小:“>”,“=”或“<”)【知识考点】坐标与图形变化-平移;实数大小比较.【思路分析】(1)比较A(﹣2,1)与A′(3,2)的横坐标、纵坐标,可知平移后横坐标加5,纵坐标加1,由于点A、B平移规律相同,坐标变化也相同,即可得B′的坐标;(2)8cos31°很接近【解题过程】解:(1)由于图形平移过程中,对应点的平移规律相同,由点A到点A′可知,点的横坐标加5,纵坐标加1,故点B′的坐标为(1+5,3+1),即(6,4);(2)∵8cos31°≈∴故答案为:(6,4);>.【总结归纳】本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.比较对应点的坐标变化,寻找变化规律,并把变化规律运用到其它对应点上,同时考查了实数的大小比较.14.如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD的面积为.(结果保留根号)【知识考点】解直角三角形.【思路分析】如图,过点A 作AE ⊥BD 于点E ,过点C 作CF ⊥BD 于点F .则通过解直角△AEO和直角△CFO 求得ABCD 的面积. 【解题过程】解:如图,过点A 作AE ⊥BD 于点E ,过点C 作CF ⊥BD 于点F .∵BD 平分AC ,AC=6, ∴AO=CO=3. ∵∠BOC=120°, ∴∠AOE=60°,∴AE=AO•sin60°=2.同理求得∴S 四边形ABCD =S △ABD +S △CBD =12BD ×AE+12BD ×CF=1282⨯=,故答案是:【总结归纳】本题考查了解直角三角形,三角形的面积的计算.求图中相关线段的长度时,也可以根据勾股定理进行解答.15.如果一个正比例函数的图象与反比例函数6y x=的图象交于A (x 1,y 1),B (x 2,y 2)两点,那么(x 2﹣x 1)(y 2﹣y 1)的值为 . 【知识考点】反比例函数与一次函数的交点问题. 【思路分析】正比例函数与反比例函数6y x=的两交点坐标关于原点对称,依此可得x 1=﹣x 2,y 1=﹣y 2,将(x 2﹣x 1)(y 2﹣y 1)展开,依此关系即可求解. 【解题过程】解:∵正比例函数的图象与反比例函数6y x=的图象交于A (x 1,y 1),B (x 2,y 2)两点,关于原点对称,依此可得x 1=﹣x 2,y 1=﹣y 2,∴(x 2﹣x 1)(y 2﹣y 1)=x 2y 2﹣x 2y 1﹣x 1y 2+x 1y 1=x 2y 2+x 2y 2+x 1y 1+x 1y 1=6×4=24. 故答案为:24.【总结归纳】考查了反比例函数与正比例函数的交点问题,正比例函数与反比例函数的两交点坐标关于原点对称.16.如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB=30°,点E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于G 、H 两点.若⊙O 的半径为7,则GE+FH 的最大值为 .【知识考点】圆周角定理;三角形中位线定理.【思路分析】由点E 、F 分别是AC 、BC 的中点,根据三角形中位线定理得出EF=12AB=3.5为定值,则GE+FH=GH ﹣EF=GH ﹣3.5,所以当GH 取最大值时,GE+FH 有最大值.而直径是圆中最长的弦,故当GH 为⊙O 的直径时,GE+FH 有最大值14﹣3.5=10.5. 【解题过程】解:当GH 为⊙O 的直径时,GE+FH 有最大值. 当GH 为直径时,E 点与O 点重合, ∴AC 也是直径,AC=14. ∵∠ABC 是直径上的圆周角, ∴∠ABC=90°, ∵∠C=30°, ∴AB=12AC=7. ∵点E 、F 分别为AC 、BC 的中点, ∴EF=12AB=3.5, ∴GE+FH=GH ﹣EF=14﹣3.5=10.5. 故答案为:10.5.【总结归纳】本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度.确定GH 的位置是解题的关键.三、解答题(本大题共9小题,共72分) 17.(5分)解分式方程:22142xx x +=--. 【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解题过程】解:去分母得:2+x (x+2)=x 2﹣4, 解得:x=﹣3,经检验x=﹣3是分式方程的解.【总结归纳】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.(6分)如图,∠AOB=90°,OA=OB ,直线l 经过点O ,分别过A 、B 两点作AC ⊥l 交l 于点C ,BD ⊥l 交l 于点D . 求证:AC=OD .【知识考点】全等三角形的判定与性质.【思路分析】根据同角的余角相等求出∠A=∠BOD ,然后利用“角角边”证明△AOC 和△OBD 全等,根据全等三角形对应边相等证明即可. 【解题过程】证明:∵∠AOB=90°, ∴∠AOC+∠BOD=90°, ∵AC ⊥l ,BD ⊥l , ∴∠ACO=∠BDO=90°, ∴∠A+∠AOC=90°, ∴∠A=∠BOD ,在△AOC 和△OBD 中,90A BODACO BDO OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△AOC ≌△OBD (AAS ), ∴AC=OD .【总结归纳】本题考查了全等三角形的判定与性质,同角的余角相等的性质,利用三角形全等证明边相等是常用的方法之一,要熟练掌握并灵活运用.19.(7分)我省教育厅下发了《在全省中小学幼儿园广泛开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.某市教育局督导组为了调查学生对“节约教育”内容的了解程度(程度分为:“A ﹣﹣了解很多”、“B ﹣﹣了解较多”,“C ﹣﹣了解较少”,“D ﹣﹣不了解”),对本市一所中学的学生进行了抽样调查.我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该中学共有1800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?【知识考点】条形统计图;用样本估计总体;扇形统计图.【思路分析】(1)由等级A的人数除以所占的百分比,即可求出调查的学生人数;(2)根据总人数减去A、C、D等级的人数求出等级B的人数,补全条形统计图;由C的人数除以总人数求出C的百分比,进而求出D的百分比,补全扇形统计图即可;(3)由1800乘以B的百分比,即可求出对“节约教育”内容“了解较多”的人数.【解题过程】解:(1)抽样调查的学生人数为36÷30%=120(名);(2)B的人数为120×45%=54(名),C的百分比为24120×100%=20%,D的百分比为6120×100%=5%;补全统计图,如图所示:(3)对“节约教育”内容“了解较多”的有1800×45%=810(名).【总结归纳】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.20.(8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯CD的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).【知识考点】相似三角形的应用.【思路分析】根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.【解题过程】解:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA∴MA∥CD∥BN∴EC=CD=x∴△ABN∽△ACD,∴BN ABCD AC=,即1.75 1.251.75x x=-,解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米.【总结归纳】本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.21.(8分)“五一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y (千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式;(3)他们出发2小时时,离目的地还有多少千米?【知识考点】一次函数的应用.【思路分析】(1)先运用待定系数法求出OA的解析式,再将x=0.5代入,求出y的值即可;(2)设AB段图象的函数表达式为y=k′x+b,将A、B两点的坐标代入,运用待定系数法即可求解;(3)先将x=2代入AB段图象的函数表达式,求出对应的y值,再用170减去y即可求解.【解题过程】解:(1)设OA段图象的函数表达式为y=kx.∵当x=1.5时,y=90,∴1.5k=90,∴k=60.∴y=60x(0≤x≤1.5),∴当x=0.5时,y=60×0.5=30.故他们出发半小时时,离家30千米;(2)设AB段图象的函数表达式为y=k′x+b.∵A(1.5,90),B(2.5,170)在AB上,∴1.5902.5170k bk b'+=⎧⎨'+=⎩,解得8030 kb'=⎧⎨=-⎩,∴y=80x﹣30(1.5≤x≤2.5);(3)∵当x=2时,y=80×2﹣30=130,∴170﹣130=40.故他们出发2小时,离目的地还有40千米.【总结归纳】本题考查了一次函数的应用及一次函数解析式的确定,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,本题较简单.22.(8分)甲、乙两人用手指玩游戏,规则如下:①每次游戏时,两人同时随机地各伸出一根手指;②两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指、小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,(1)求甲伸出小拇指取胜的概率;(2)求乙取胜的概率.【知识考点】列表法与树状图法.【思路分析】(1)直接求出甲伸出小拇指取胜的概率;(2)首先根据题意画出表格,由表格求得所有等可能的结果,即可得出乙取胜的概率;【解题过程】解;(1)甲伸出小拇指的可能一共有5种,甲伸出小拇指取胜只有一种可能,故P(甲伸出小拇指获胜)=15;(2)设A,B,C,D,E分别表示大拇指、食指、中指、无名指、小拇指,列表如下:甲乙A B C D EA AA AB AC AD AEB BA BB BC BD BEC CA CB CC CD CED DA DB DC DD DEE EA EB EC ED EE由表格可知,共有25种等可能的结果,乙取胜有5种可能,故P(乙获胜)51 255 ==.【总结归纳】此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.23.(8分)如图,直线l与⊙O相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A是⊙O 上一点,连接AE、AF,并分别延长交直线l于B、C两点.(1)求证:∠ABC+∠ACB=90°;(2)当⊙O的半径R=5,BD=12时,求tan∠ACB的值.【知识考点】切线的性质;正方形的判定与性质;圆周角定理;解直角三角形.【思路分析】(1)由题意可知EF是圆的直径,所以∠EAF=90°,即∠ABC+∠ACB=90°;(2)连接OD,则OD⊥BD,过E作EH⊥BC于H,则四边形EODH是正方形,易求tan∠BEH=75 BHEH=,再证明∠ACB=∠BEH即可.【解题过程】(1)证明:∵EF是圆的直径,∴∠EAF=90°,∴∠ABC+∠ACB=90°;(2)解:连接OD,则OD⊥BD,过E作EH⊥BC于H,∴EH∥OD,又∵EO∥HD,∴四边形OEHD是矩形,又∵OE=OD,∴四边形EODH是正方形,∴EH=HD=OD=5,又∵BD=12,∴BH=7,在Rt△BEH中,tan∠BEH=75 BHEH,∵∠ABC+∠BEH=90°,∠ABC+∠ACB=90°,∴∠ACB=∠BEH,∴tan∠ACB=75.【总结归纳】本题考查了圆周角定理、正方形的判定和性质、切线的性质以及锐角三角函数值,题目的综合性很强,难度中等.24.(10分)在平面直角坐标系中,一个二次函数的图象经过点A(1,0)、B(3,0)两点.(1)写出这个二次函数图象的对称轴;(2)设这个二次函数图象的顶点为D,与y轴交于点C,它的对称轴与x轴交于点E,连接AC、DE和DB,当△AOC与△DEB相似时,求这个二次函数的表达式.[提示:如果一个二次函数的图象与x轴的交点为A(x1,0)、B(x2,0),那么它的表达式可表示为y=a(x﹣x1)(x﹣x2)].【知识考点】二次函数综合题.【思路分析】(1)根据二次函数对称性得出对称轴即可;(2)首先求出C ,D 点坐标,进而得出CO 的长,利用当△AOC 与△DEB 相似时,根据①假设∠OCA=∠EBD ,②假设∠OCA=∠EDB ,分别求出即可.【解题过程】解;(1)∵二次函数的图象经过点A (1,0)、B (3,0)两点, ∴二次函数图象的对称轴为直线x=2;(2)设二次函数的表达式为:y=a (x ﹣1)(x ﹣3)(a≠0), 当x=0时,y=3a ,当x=2时,y=﹣a ,∴点C 坐标为:(0,3a ),顶点D 坐标为:(2,﹣a ), ∴OC=|3a|,又∵A (1,0),E (2,0), ∴AO=1,EB=1,DE=|﹣a|=|a|, 当△AOC 与△DEB 相似时, ①假设∠OCA=∠EBD , 可得AO OCDE EB=,即1|3|||1a a =,∴a =a =,②假设∠OCA=∠EDB ,可得AO OCBE ED=, ∴1|3|1||a a =,此方程无解,综上所述,所得二次函数的表达式为:2y x x =+2y x x =+【总结归纳】此题主要考查了二次函数的综合应用以及相似三角形的判定与性质等知识,注意分类讨论思想的应用是解题关键. 25.(12分)问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M )使它们将正方形ABCD 的面积四等分,并说明理由. 问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.【知识考点】四边形综合题.【思路分析】(1)画出互相垂直的两直径即可;(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,则直线EF、OM将正方形的面积四等份,根据三角形的面积公式和正方形的性质求出即可;(3)当BQ=CD=b时,PQ将四边形ABCD的面积二等份,连接BP并延长交CD的延长线于点E,证△ABP≌△DEP求出BP=EP,连接CP,求出S△BPC=S△EPC,作PF⊥CD,PG⊥BC,由BC=AB+CD=DE+CD=CE,求出S△BPC﹣S△CQP+S△ABP=S△CPE﹣S△DEP+S△CQP,即可得出S四边形ABQP=S四即可.边形CDPQ【解题过程】解:(1)如图1所示,(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,则直线EF、OM将正方形的面积四等份,理由是:∵点O是正方形ABCD的对称中心,∴AP=CQ,EB=DF,在△AOP和△EOB中∵∠AOP=90°﹣∠AOE,∠BOE=90°﹣∠AOE,∴∠AOP=∠BOE,∵OA=OB,∠OAP=∠EBO=45°,∴△AOP≌△EOB,∴AP=BE=DF=CQ,设O到正方形ABCD一边的距离是d,则12(AP+AE )d=12(BE+BQ )d=12(CQ+CF )d=12(PD+DF )d , ∴S 四边形AEOP =S 四边形BEOQ =S 四边形CQOF =S 四边形DPOF , 直线EF 、OM 将正方形ABCD 面积四等份;(3)存在,当BQ=CD=b 时,PQ 将四边形ABCD 的面积二等份, 理由是:如图③,连接BP 并延长交CD 的延长线于点E , ∵AB ∥CD , ∴∠A=∠EDP ,∵在△ABP 和△DEP 中,A EDP AP DPAPB DPE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABP ≌△DEP (ASA ), ∴BP=EP , 连接CP ,∵△BPC 的边BP 和△EPC 的边EP 上的高相等, 又∵BP=EP , ∴S △BPC =S △EPC ,作PF ⊥CD ,PG ⊥BC ,则BC=AB+CD=DE+CD=CE , 由三角形面积公式得:PF=PG ,在CB 上截取CQ=DE=AB=a ,则S △CQP =S △DEP =S △ABP ∴S △BPC ﹣S △CQP +S △ABP =S △CPE ﹣S △DEP +S △CQP 即:S 四边形ABQP =S 四边形CDPQ , ∵BC=AB+CD=a+b , ∴BQ=b ,∴当BQ=b 时,直线PQ 将四边形ABCD 的面积分成相等的两部分.【总结归纳】本题考查了正方形性质,菱形性质,三角形的面积等知识点的应用,主要考查学生综合运用性质进行推理的能力,注意:等底等高的三角形的面积相等.2014年陕西省中考数学试题及参考答案一、选择题(本大题共10小题,每小题3分,共30分) 1.4的算术平方根是( )A .﹣2B .2C .12- D .12。

陕西省中考数学真题试题含扫描答案

陕西省中考数学真题试题含扫描答案

陕西省初中毕业学业考试试题数学第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的) 1.计算:=-032)(( ) A.1 B.23-C.0D.322.如图是一个螺母的示意图,它的俯视图是( )3.下列计算正确的是( )A.632a a a =• B.2224)2(b a ab =- C.532)(a a = D.ab b a b a 332223=÷4.如图,AB//CD,直线EF 分别交直线AB 、CD 于点E 、F,若∠1=46°30′,则∠2的度数为( )A.43°30′B.53°30′C.133°30′D.153°30′5.设正比例函数mx y =的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则=m ( )A.2B.-2C.4D.-4 6.如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE=BC ,连接DE,则图中等腰三角形共有( ) A.2个 B.3个 C.4个 D.5个7.不等式组⎪⎩⎪⎨⎧---≥+0)3(23121>x x x 的最大整数解为( )A.8B.6C.5D.48.在平面直角坐标系中,将直线22:1--=x y l 平移后,得到直线42:2+-=x y l ,则下列平移作法正确的是( )A.将1l 向右平移3个单位长度B.将1l 向右平移6个单位长度C.将1l 向上平移2个单位长度D. 将1l 向上平移4个单位长度9.在□ABCD 中,AB=10,BC=14,E 、F 分别为边BC 、AD 上的点,若四边形AECF 为正方形,则AE 的长为( )A.7B.4或10C.5或9D.6或810.下列关于二次函数)>1(122a ax ax y +-=的图象与x 轴交点的判断,正确的是( ) A.没有交点 B.只有一个交点,且它位于y 轴右侧 C.有两个交点,且它们均位于y 轴左侧 D.有两个交点,且它们均位于y 轴右侧 二、填空题(共4小题,每小题3分,计12分)11.将实数605-,,,π由小到大用“<” 号连起来,可表示为_________________。

【优质】201X陕西中考答案-实用word文档 (15页)

【优质】201X陕西中考答案-实用word文档 (15页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==201X陕西中考答案篇一:陕西省201X年中考数学试卷(解析版)201X年陕西省中考数学试卷一、选择题(共10小题,每小题3分,共30分) 1.(3分)(201X?陕西)4的算术平方根是() A.﹣2考点:算术平方根.分析:根据算术平方根的定义进行解答即可.解答:解:∵22=4,∴4的算术平方根是2.故选B.点评:本题考查了算术平方根的定义,熟记定义是解题的关键.2.(3分)(201X?陕西)如图是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是()2 B.±2 C.16 D.A.考点:简单几何体的三视图;截一个几何体.分析:根据三视图的特点,知道左视图从图形的左边向右边看,看到一个正方形的面,在面上有一条实线,得到结果.解答:解:左视图从图形的左边向右边看,看到一个正方形的面,在面上有一条实线,故选:A.点评:本题考查空间图形的三视图,本题是一个基础题,正确把握三视图观察角度是解题关B.C.D.键.3.(3分)(201X?陕西)若点A(﹣2,m)在正比例函数y=﹣x的图象上,则m的值是() A.考点:一次函数图象上点的坐标特征.分析:利用待定系数法代入正比例函数y=﹣x可得m的值.解答:解:∵点A(﹣2,m)在正比例函数y=﹣x的图象上,∴m=﹣×(﹣2)=1,故选:C.点评:此题主要考查了一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足解析式.4.(3分)(201X?陕西)小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是() A.考点:概率公式.分析:由一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求得答案.解答:解:∵一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,∴小军能一次打开该旅行箱的概率是:故选A.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.5.(3分)(201X?陕西)把不等式组的解集表示在数轴上,正确的是().B.C.D.B.﹣1 C.D.﹣1A.B.C. D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可解答:解:故选:D.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.(3分)(201X?陕西)某区10名学生参加市级汉字听写大赛,他们得分情况如下表:人数分数3 804 852 901 95解得,那么这10名学生所得分数的平均数和众数分别是() A.85和82.5考点:众数;中位数.分析:根据众数及平均数的定义,即可得出答案.解答:解:这组数据中85出现的次数最多,故众数是85;平均数=故选B.点评:本题考查了众数及平均数的知识,掌握各部分的概念是解题关键.7.(3分)(201X?陕西)如图,AB∥CD,∠A=45°,∠C=28°,则∠AEC的大小为()(80×3+085×4+90×2+95×1)=85. B. 85.5和85C. 85和85D. 85.5和8017° A.考点:平行线的性质.分析:首先根据两直线平行,内错角相等可得∠ABC=∠C=28°,再根据三角形内角与外角的性质可得∠AEC=∠A+∠ABC.解答:解:∵AB∥CD,∴∠ABC=∠C=28°,∵∠A=45°,∴∠AEC=∠A+∠ABC=28°+45°=73°,故选:D.。

陕西中考数学真题含答案

陕西中考数学真题含答案

2012年陕西省中考数学试卷参考答案与试题解析一、选择题(共10个小题,共计30分,每小题只有一个选项是符合题意的)1.如果零上5℃记作+5℃,那么零下7℃可记作( )A . ﹣7℃B . +7℃C . +12℃D .﹣12℃考点:正数和负数。

分析: 在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 解答: 解:∵“正”和“负”相对, ∴零上5℃记作+5℃,则零下7℃可记作﹣7℃. 故选A .点评: 此题考查了正数与负数的定义.解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )考点:简单组合体的三视图。

分析: 细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形 A . B . C . D .判定则可.解答: 解:从左边看竖直叠放2个正方形. 故选C .点评: 考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.3.计算(﹣5a 3)2的结果是( )A . ﹣10a 5B . 10a 6C . ﹣25a 5D . 25a 6 考点: 幂的乘方与积的乘方。

分析: 利用积的乘方与幂的乘方的性质求解即可求得答案. 解解:(﹣5a 3)2=25a 6.答:故选D .点评: 此题考查了积的乘方与幂的乘方的性质.注意幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.4.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是( )分数(分)89 92 95 96 97 评委(位)1 22 1 1 A . 92分 B . 93分 C . 94分 D . 95分考点:加权平均数。

分析:先去掉一个最低分去掉一个最高分,再根据平均数等于所有数据的和除以数据的个数列出算式进行计算即可. 解答: 解:由题意知,最高分和最低分为97,89,则余下的数的平均数=(92×2+95×2+96)÷5=94.故选C .点评:本题考查了加权平均数,关键是根据平均数等于所有数据的和除以数据的个数列出算式.5.如图,△ABC 中,AD 、BE 是两条中线,则S △EDC :S △ABC =( ) A 1:2 B 2:3 C 1:3 D 1:4. . . . 考点: 相似三角形的判定与性质;三角形中位线定理。

陕西省中考数学试题及答案

陕西省中考数学试题及答案

2005年陕西省中考试题及参考答案数 学第Ⅰ卷(选择题 共30分)A 卷一、 选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.A 为数轴上表示-1的点,将点A 沿数轴向右平移3个单位到点B ,则点B 所表示的实数为 (B ) A.3 B.2 C.-4 D.2或-42.如图,P 为正三角形ABC 外接圆上一点,则∠APB = ( D )A.150° B.135° C.115° D.120°3.化简22142x x x ---的结果是( A ) A. 12x + B. 12x - C. 2324x x -- D. 2324x x +-4.一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,售价为240元,设这件商品 的成本价为x 元,根据题意,下面所列的方程正确的是 ( B ) A.x ·40%×80%=240 B. x (1+40%)×80%=240 C. 240×40%×80%=x D. x ·40%=240×80% 5.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是 ( B ) A.3:4 B.5:8 C.9:16 D.1:2 6.若双曲线6y x=-经过点A (m ,-2m ),则 m 的值为( C )A.B.3C. D.3±7.⊙O 和⊙O ’的半径分别为R 和R ’,圆心距OO ’=5,R =3,当0<R ’<2时,⊙O 和⊙O ’的位置关系是( D ) A.内含 B.外切 C.相交 D.外离8.已知圆锥的底面周长为58cm ,母线长为30cm ,求得圆锥的侧面积为( A ) A.870cm 2 B.908 cm 2 C.1125 cm 2 D.1740 cm 29.应中共中央总书记胡锦涛同志的邀请,中国国民党主席连战先生、亲民党主席宋楚瑜先生分别从台湾来大陆参观访问,先后来到西安,都参观了新建成的“大唐芙蓉园”。

陕西中考数学真题(含答案)

陕西中考数学真题(含答案)

2012年陕西省中考数学试卷参考答案与试卷解读一、选择题(共10个小题,共计30分,每小题只有一个选项是符合题意的) 1.如果零上5℃记作+5℃,那么零下7℃可记作( )2.如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )3.计算(﹣5a 3)2的结果是( ) 4.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是( ).B .C .D .5.如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=()解:∵△ABC中,AD、BE是两条中线,∴DE是△ABC的中位线,∴DE∥AB,DE=AB,∴△EDC∽△ABC,∴S△EDC:S△ABC=()2=.故选D.6.在下列四组点中,可以在同一个正比例函数图象上的一组点是()解:A、∵=,∴两点在同一个正比例函数图象上;B、∵≠,∴两点不在同一个正比例函数图象上;C、∵≠,∴两点不在同一个正比例函数图象上;D、∵≠,两点不在同一个正比例函数图象上;故选A.7.如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()解:在菱形ABCD中,∠ADC=130°,∴∠BAD=180°﹣130°=50°,∴∠BAO=∠BAD=×50°=25°,∵OE⊥AB,∴∠AOE=90°﹣∠BAO=90°﹣25°=65°.故选B.8.在同一平面直角坐标系中,若一次函数y=﹣x+3与y=3x﹣5的图象交于点M,则点M的坐标为():联立,解得,所以,点M的坐标为(2,1).故选D.9.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为().3D.4解:作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,由垂径定理、勾股定理得:OM==3,∵弦AB、CD互相垂直,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∴OP=3故选C.10.在平面直角坐标系中,将抛物线y=x2﹣x﹣6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则|m|的最小值为()二、填空题(共6小题,每小题3分共18分)11.计算2cos45°﹣3+(1﹣)0=﹣5+1.解答:解:原式=2×﹣3×2+1=﹣5+1.故答案为:﹣5+1.12.分解因式:x3y﹣2x2y2+xy3=xy(x﹣y)2.13.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A、在平面中,将长度为4的线段AB绕它的中点M,按逆时针方向旋转30°,则线段AB扫过的面积为π.B、用科学记算器计算:sin69°≈2.47(精确到0.01).解:A、由题意可得,AM=MB=AB=2,线段AB扫过的面积为扇形MCB和扇形MAB的面积和,故线段AB扫过的面积=+=.B、sin69°≈2.47.故答案为:、2.47.14.小宏准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小红最多能买3瓶甲饮料.解:设小红能买x瓶甲饮料,则可以买(10﹣x)瓶乙饮料,由题意得:7x+4(10﹣x)≤50,解得:x≤,∵x为整数,∴x,0,1,2,3,则小红最多能买3瓶甲饮料.故答案为:3.15.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数y=﹣2x+6的图象无公共点,则这个反比例函数的表达式是y=(只写出符合条件的一个即可).解答:解:设反比例函数的解读式为:y=,∵一次函数y=﹣2x+6与反比例函数y=图象无公共点,则,∴﹣2x2﹣6x﹣k=0,即△=(﹣6)2﹣8k<0解得k>,则这个反比例函数的表达式是y=;故答案为:y=.16.如图,从点A(0,2)发出一束光,经x轴反射,过点B(4,3),则这束光从点A到点B所经过的路径的长为.解答:解:如图,过点B作BD⊥x轴于D,∵A(0,2),B(4,3),∴OA=2,BD=3,OD=4,根据题意得:∠ACO=∠BCD,∵∠AOC=∠BDC=90°,∴△AOC∽△BDC,∴OA:BD=OC:DC=AC:BC=2:3,∴OC=OD=×4=,∴AC==,∴BC=,∴AC+BC=.即这束光从点A到点B所经过的路径的长为:.故答案为:.三、解答题(共9小题,计72分,解答应写出过程)17.(5分)化简:.解:原式=•====.18.(6分)如图,在▱ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=3,BC=5时,求的值.分析:(1)由在▱ABCD中,AD∥BC,利用平行线的性质,可求得∠2=∠3,又由BF是∠ABC的平分线,易证得∠1=∠3,利用等角对等边的知识,即可证得AB=AF;(2)易证得△AEF∽△CEB,利用相似三角形的对应边成比例,即可求得的值.)如图,在▱ABCD中,AD∥BC.解答:∴∠2=∠3,∵BF是∠ABC的平分线,∴∠1=∠2,∴∠1=∠3,∴AB=AF;(2)∵∠AEF=∠CEB,∠2=∠3,∴△AEF∽△CEB,∴==,∴=.19.(7分)某校为了满足学生借阅图书的需求,计划购买一批新书.为此,该校图书经管员对一周内本校学生从图书馆借出各类图书的数量进行了统计.结果如下图:请你根据统计图中的信息,解答下列问题:(1)补全条形统计图和扇形统计图;(2)该校学生最喜欢借阅哪类图书?(3)该校计划购买新书共600本,若按扇形统计图中的百分比来相应的确定漫画、科普、文学、其它这四类图书的购买量,求应购买这四类图书各多少本?解答:解:(1)借出图书的总本数为:40÷10%=400本,其它类:400×15%=60本,漫画类:400﹣140﹣40﹣60=160本,科普类所占百分比:×100%=35%,漫画类所占百分比:×100%=40%,补全图形如图所示;(2分)(2)该校学生最喜欢借阅漫画类图书.(3分)(3)漫画类:600×40%=240(本),科普类:600×35%=210(本),文学类:600×10%=60(本),其它类:600×15%=90(本).…(7分)20.(8分)如图,小明想用所学的知识来测量湖心岛上的迎宾槐与湖岸上凉亭间的距离,他先在湖岸上的凉亭A处测得湖心岛上的迎宾槐C处位于北偏东65°方向,然后,他从凉亭A处沿湖岸向东方向走了100M到B 处,测得湖心岛上的迎宾槐C处位于北偏东45°方向(点A、B、C在同一平面上),请你利用小明测得的相关数据,求湖心岛上的迎宾槐C处与湖岸上的凉亭A处之间的距离(结果精确到1M).(参考数据sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663,sin65°≈0.5563,cos65°≈0.4226,tan65°≈2.1445)解答:解:如图作CD⊥AB交AB的延长线于点D,则∠BCD=45°,∠ACD=65°,在Rt△ACD和Rt△BCD中,设AC=x,则AD=xsin65°,BD=CD=xcos65°,∴100+xcos65°=xsin65°.∴x=≈207(M),∴湖心岛上迎宾槐C处与凉亭A处之间的距离约为207M.21.(8分)科学研究发现,空气含氧量y(克/立方M)与海拔高度x(M)之间近似地满足一次函数关系.经测量,在海拔高度为0M的地方,空气含氧量约为299克/立方M;在海拔高度为2000M的地方,空气含氧量约为235克/立方M.(1)求出y与x的函数关系式;(2)已知某山的海拔高度为1200M,请你求出该山山顶处的空气含氧量约为多少?解:(1)设y=kx+b,则有:,解之得,∴y=﹣;(2)当x=1200时,y=﹣×1200+299=260.6(克/立方M).答:该山山顶处的空气含氧量约为260.6克/立方M.22.(8分)小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局.依据上述规则,解答下列问题:(1)随机掷两枚骰子一次,用列表法求点数和为2的概率;(2)小峰先随机掷两枚骰子一次,点数和为7,求小轩随机掷两枚骰子一次,胜小峰的概率.(骰子:六个面分别刻有1、2、3、4、5、6个小圆点的小立方块,点数和:两枚骰子朝上的点数之和)解:(1)随机掷骰子一次,所有可能出现的结果如表:骰子1/骰子2 1 2 3 4 5 61 2 3 4 5 6 72 3 4 5 6 7 83 4 5 6 7 8 94 5 6 7 8 9 105 6 7 8 9 10 116 7 8 9 10 11 12∵表中共有36种可能结果,其中点数和为2的结果只有一种.…..(3分)∴P(点数和为2)=.…(5分)(2)由表可以看出,点数和大于7的结果有15种.∴P(小轩胜小峰)==.…(8分)23.(8分)(2012•陕西)如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.(1)求证:OM=AN;(2)若⊙O的半径R=3,PA=9,求OM的长.24.(10分)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是等腰三角形;(2)若抛物线y=﹣x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=﹣x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.解:(1)如图;根据抛物线的对称性,抛物线的顶点A必在O、B的垂直平分线上,所以OA=AB,即:“抛物线三角形”必为等腰三角形.故填:等腰.(2)∵抛物线y=﹣x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,∴该抛物线的顶点(,)满足=(b>0).∴b=2.(3)存在.如图,作△OCD与△OAB关于原点O中心对称,则四边形ABCD为平行四边形.当OA=OB 时,平行四边形ABCD是矩形,又∵AO=AB,∴△OAB为等边三角形.作AE⊥OB,垂足为E,∴AE=.∴=•(b′>0).∴b′=2.∴A(,3),B(2,0).∴C(﹣),D(﹣2,0).设过点O、C、D的抛物线为y=mx2+nx,则,解得.故所求抛物线的表达式为y=x2+2x.25.(12分)如图,正三角形ABC的边长为3+.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.列方程求得正方形E′F′P′N′的边长;(3)设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),求得面积和的表达式为:S=+(m﹣n)2,可见S的大小只与m、n的差有关:①当m=n时,S取得最小值;②当m最大而n最小时,S取得最大值.m最大n最小的情形见第(1)(2)问.解答:解:(1)如图①,正方形E′F′P′N′即为所求.(2)设正方形E′F′P′N′的边长为x,∵△ABC为正三角形,∴AE′=BF′=x.∵E′F′+AE′+BF′=AB,∴x+x+x=3+,∴x=,即x=3﹣3,(没有分母有理化也对,x≈2.20也正确)(3)如图②,连接NE、EP、PN,则∠NEP=90°.设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),它们的面积和为S,则NE=,PE=n.∴PN2=NE2+PE2=2m2+2n2=2(m2+n2).∴S=m2+n2=PN2,延长PH交ND于点G,则PG⊥ND.在Rt△PGN中,PN2=PG2+GN2=(m+n)2+(m﹣n)2.∵AD+DE+EF+BF=AB,即m+m+n+n=+3,化简得m+n=3.∴S=[32+(m﹣n)2]=+(m﹣n)2①当(m﹣n)2=0时,即m=n时,S最小.∴S最小=;②当(m﹣n)2最大时,S最大.即当m最大且n最小时,S最大.∵m+n=3,由(2)知,m最大=3﹣3.∴S最大=[9+(m最大﹣n最小)2]=[9+(3﹣3﹣6+3)2]=99﹣54….(S最大≈5.47也正确)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陕西省2001年初中毕业升学考试数学试题一、选择题(共15小题,满分35分)1、(2009•哈尔滨)36的算术平方根是()A、6B、±6C、D、±2、(2005•武汉)一次函数y=x+1的图象在()A、第一、二、三象限B、第一、三、四象限C、第一、二、四象限D、第二、三、四象限3、(2001•陕西)(﹣x2)3的结果应为()A、﹣x5B、x5C、﹣x6D、x64、(2001•陕西)不等式的解集是()A、无解B、x<1C、x>﹣2D、﹣2<x<15、(2001•陕西)下列图形中,既是轴对称图形又是中心对称图形的是()A、矩形B、平行四边形C、等腰梯形D、等腰三角形6、(2001•陕西)如果一个角的补角是150°,那么这个角的余角的度数是()A、30°B、60°C、90°D、120°7、(2001•陕西)如果2(x+3)的值与3(1﹣x)的值互为相反数,那么x等于()A、9B、8C、﹣9D、﹣88、(2009•钦州)如图,在等腰梯形ABCD中,AB=DC,AC,BD交于点O,则图中全等三角形共有()A、2对B、3对C、4对D、5对9、(2001•陕西)如果数据1,2,3,x的平均数为4,那么x的值为()A、10B、9C、8D、710、(2001•陕西)给出下列命题:①任意三角形一定有一个外接圆,并且只有一个外接圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形,并且只有一个外切三角形,其中正确命题共有()A、1个B、2个C、3个D、4个11、(2001•陕西)用配方法将函数y=x2﹣x﹣2写成y=a(x﹣h)2+k的形式是()A、B、C、D、12、(2001•陕西)已知等腰三角形的一边等于3,一边等于6,则它的周长等于()A、12B、15C、12或15D、15或1813、(2004•杭州)若数轴上表示数x的点在原点的左边,则化简|3x+|的结果是()A、﹣4xB、4xC、﹣2xD、2x14、(2002•四川)如图,D、E分别是△ABC的边AB、AC上的点,DE∥BC,=2,那么△ADE与四边形DBCE的面积的比是()A、B、C、D、15、(2009•沈阳)如图,平行四边形ABCD中,F是BC延长线上一点,AF交BD于O,与DC交于点E,则图中相似三角形共有()对(全等除外).A、3B、4C、5D、6二、填空题(共6小题,每小题4分,满分24分)16、(2001•陕西)如果点M(a+b,ab)在第二象限,那么点N(a,b)在第_________象限.17、(2001•陕西)化简的结果是_________.18、(2001•陕西)在△ABC中,∠C为直角,若3AC=BC,则∠A的度数是_________度,cosB的值是_________.19、(2002•哈尔滨)如图,梯形ABCD中,AD∥BC,中位线EF分别与BD、AC交于点G、H.若AD=6,BC=10,则GH=_________.20、(2001•陕西)某涵洞是抛物线形,它的截面如图所示,现测得水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在抛物线的函数表达式是_________.21、(2001•陕西)已知一个直角三角形的面积为12cm2,周长为cm,那么这个直角三角形外接圆的半径是_________cm.三、解答题(共8小题,满分60分)22、(2001•陕西)解方程:.23、(2001•陕西)先化简,再求值:,其中.24、(2001•陕西)已知△ABC内接⊙O.(1)当点O与AB有怎样的位置关系时,∠ACB是直角;(2)在满足(1)的条件下,过点C作直线交AB于D,当CD与AB有什么样的关系时,△ABC∽△CBD∽△ACD (3)画出符合(1)(2)题意的两种图形,使图形中的CD=2cm.25、(2001•陕西)已知关于x的方程x2﹣4x+2t=0有两个实数根.(1)求t的取值范围;(2)设方程的两个根的倒数和为S,求S与t之间的函数关系式;(3)在直角坐标系内直接画出(2)中所得到的函数的图象.26、(2001•陕西)如图⊙O1、⊙O2点外切于点A,外公切线BC与⊙O1切于点B,与⊙O2切于点C,与O2O1的延长线交于点P,已知∠P=30度.(1)求⊙O1与⊙O2半径的比;(2)若⊙O1半径为2m,求弧AB、弧AC及外公切线BC所围成的图形(阴影部分)的面积.27、(2001•陕西)如图,点I是△ABC的内心,AI的延长线交边BC于点D,交△ABC外接圆于点C.(1)求证:IE=BE;(2)若IE=4,AE=8,求DE的长.28、(2001•陕西)某城市的一种出租车起步价为10元(即行驶5千米以内都需付款10元车费),达到或超过5千米后,每增加1千米加价1.2元(不足1千米按1千米计算),现某人乘这种出租车有甲地到乙地,支付车费17.2元.求甲、乙两地的路程.29、(2001•陕西)如图,在直角坐标系xoy中,一次函数的图象与x轴交于点A,与y轴©2010 箐优网交于点B.(1)已知OC⊥AB于C,求C点坐标;(2)在x轴上是否存在点P,使△PAB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.答案与评分标准一、选择题(共15小题,满分35分)1、(2009•哈尔滨)36的算术平方根是()A、6B、±6C 、D、±考点:算术平方根。

分析:算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,利用定义即可求出结果.解答:解:∵6的平方为36,∴36算术平方根为6.故选A.点评:此题主要考查了算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.2、(2005•武汉)一次函数y=x+1的图象在()A、第一、二、三象限B、第一、三、四象限C、第一、二、四象限D、第二、三、四象限考点:一次函数的性质。

分析:在函数y=x+1中k=1>0,由此可以确定图象经过第一三象限,而b=1>0,图象过第二象限,所以可以确定直线y=x+1经过的象限.解答:解:∵k=1>0,∴图象过一三象限,∴b=1>0,图象过第二象限,∴直线y=x+1经过第一、二、三象限.故选A.点评:本题考查一次函数的图象性质,主要考查直线经过的象限和k、b符号的关系.3、(2001•陕西)(﹣x2)3的结果应为()A、﹣x5B、x5C、﹣x6D、x6考点:幂的乘方与积的乘方。

分析:根据幂的乘方,底数不变指数相乘,计算后直接选取答案.解答:解:(﹣x2)3=﹣x6.故选C.点评:本题考查幂的乘方的性质,熟练掌握性质是解题的关键.4、(2001•陕西)不等式的解集是()A、无解B、x<1C、x>﹣2D、﹣2<x<1考点:解一元一次不等式组。

分析:先分别求出各不等式的解集,再求其公共解集即可.解答:解:由(1)得x<1,由(2)得x>﹣2,∴不等式组的解集为﹣2<x<1.故选D.点评:求不等式组的解集应遵循“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.5、(2001•陕西)下列图形中,既是轴对称图形又是中心对称图形的是()A、矩形B、平行四边形C、等腰梯形D、等腰三角形考点:轴对称图形;中心对称图形。

分析:根据轴对称图形与中心对称图形的概念结合矩形、平行四边形、等腰梯形、等腰三角形的性质求解.解答:解:A、是轴对称图形,也是中心对称图形.故正确;©2010 箐优网B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选A.点评:考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.6、(2001•陕西)如果一个角的补角是150°,那么这个角的余角的度数是()A、30°B、60°C、90°D、120°考点:余角和补角。

专题:计算题。

分析:本题根据互余和互补的概念计算即可.解答:解:180°﹣150°=30°,那么这个角的余角的度数是90°﹣30°=60°.故选B.点评:本题考查互余和互补的概念,和为90度的两个角互为余角,和为180度的两个角互为补角.7、(2001•陕西)如果2(x+3)的值与3(1﹣x)的值互为相反数,那么x等于()A、9B、8C、﹣9D、﹣8考点:一元一次方程的应用。

专题:数字问题。

分析:互为相反数的两个数的和等于0,根据题意可列出方程.解答:解:根据题意得:2(x+3)+3(1﹣x)=0,解得,x=9.那么x等于9.故选A.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.8、(2009•钦州)如图,在等腰梯形ABCD中,AB=DC,AC,BD交于点O,则图中全等三角形共有()A、2对B、3对C、4对D、5对考点:等腰梯形的性质;全等三角形的判定。

分析:根据题目给出的条件,要观察图中有哪些相等的边和角,然后根据全等三角形的判定来判断哪些三角形全等.解答:解:∵在等腰梯形ABCD中,AB=DC,BC=CB∴∠ABC=∠DCB∴△ABC≌△DCB(SAS)∴∠ACB=∠DBC∴∠ABD=∠DCA∵∠AOB=∠DOC,AB=CD∴△AOB≌△DOC(AAS)∵∠BAD=∠ADC,AB=CD,AD=AD∴△ABD≌△DCA(SAS)∴共有3对,故选B.点评:此题主要考查等腰梯形的性质及全等三角形的判定的理解及运用.9、(2001•陕西)如果数据1,2,3,x的平均数为4,那么x的值为()A、10B、9C、8D、7考点:算术平均数。

专题:计算题。

分析:根据平均数的概念,先将各数加起来,再除以个数即可求得x的值.解答:解:∵数据1,2,3,x的平均数为4,∴(1+2+3+x)=4,∴x=16﹣1﹣2﹣3=10;故本题选A.点评:本题考查了利用平均数的定义建立方程的解题方法.10、(2001•陕西)给出下列命题:①任意三角形一定有一个外接圆,并且只有一个外接圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形,并且只有一个外切三角形,其中正确命题共有()A、1个B、2个C、3个D、4个考点:三角形的外接圆与外心;三角形的内切圆与内心。

相关文档
最新文档