微积分一练习题及答案

合集下载

微积分试题及答案

微积分试题及答案

微积分试题及答案1. 求函数f(x) = 3x^2 - 2x + 1在x = 2处的导数。

解析:首先,我们需要求函数f(x)的导数。

对于一个二次函数 f(x) = ax^2 + bx + c,它的导数等于2ax + b。

因此,对于f(x) = 3x^2 - 2x + 1,其导数即为 f'(x) = 6x - 2。

接下来,我们需要求在 x = 2 处的导数。

将 x = 2 代入导数公式,得到 f'(2) = 6(2) - 2 = 10。

答案:函数f(x)在x = 2处的导数为10。

2. 求函数g(x) = sin(x) + cos(x)的定积分∫[0, π] g(x)dx。

解析:我们需要求函数 g(x) = sin(x) + cos(x) 在[0, π] 区间上的定积分。

首先,我们可以分别求 sin(x) 和 cos(x) 在[0, π] 区间上的定积分,然后将结果相加即可。

根据积分的基本性质,∫sin(x)dx = -cos(x) 和∫cos(x)dx = sin(x),所以:∫[0, π]sin(x)dx = [-cos(x)]|[0, π] = -cos(π) - (-cos(0)) = -(-1) - (-1) = 2∫[0, π]cos(x)dx = [sin(x)]|[0, π] = sin(π) - sin(0) = 0 - 0 = 0将上述结果相加,得到定积分的结果:∫[0, π]g(x)dx = ∫[0, π]sin(x)dx + ∫[0, π]cos(x)dx = 2 + 0 = 2答案:函数g(x) = sin(x) + cos(x)在[0, π]区间上的定积分为2。

3. 求曲线y = x^3在点(1, 1)处的切线方程。

解析:要求曲线 y = x^3 在点 (1, 1) 处的切线方程,我们需要确定切线的斜率和过切点的直线方程。

首先,我们求出这个曲线在点(1, 1)处的导数来获得切线的斜率。

微积分1(含答案)

微积分1(含答案)

第 1 页 共 8 页1、在二元函数的极限中,(,)P x y 趋于点000(,)P x y 的方式是任意的; ( √ )2、若(,)z f xy =在00(,)x y 处存在一阶偏导数,则(,)z f x y =在00(,)x y 处可微( × )3、“对二元函数),(y x f z =,求其在条件0),(=y x ϕ下的极值”问题的拉格朗日函数为:),(),(),,(y x y x f y x F λϕλ+=; ( √ )4、设22:14D x y ≤+≤,则3D d x d y π=⎰⎰;( √ ) 5、若级数1nn a∞=∑收敛,级数1nn b∞=∑发散,则级数1()nn n ab ∞=+∑必发散; ( √ )6、级数1nn ∞= ( × )7、级数21n n x n ∞=∑的收敛半径是2; ( × )8、2()20x y y x ''-+=是一阶微分方程. ( √ ) 1、若函数(,)f x y 点00(,)x y 处连续,则0000(,)(,)lim(,)(,)x y x y f x y f x y →=; ( √ )2、若(,)z f xy=在00(,)x y 处可微,则(,)z f x y =在00(,)x y 处存在连续偏导数( √ )3、若在驻点00(,)x y 处00(,)xx f x y ''和00(,)yy f x y ''异号,则00(,)f x y 是函数极值;( × )4、设22(,)1f x y x y =--,则(0,)是函数的极大值点; ( √ )5、(,)(cos ,sin )DDf x y d f r r drd σθθθ=⎰⎰⎰⎰;( × ) 6、若级数1nn u∞=∑收敛,则级数12nn u∞=+∑也收敛; ( √ )7、级数1(1)2nnn ∞=-∑是条件收敛; ( × ) 8、2()20y y ''-=是二阶微分方程. ( × )第 2 页 共 8 页二、填空题 1、设x z y =,则zx∂=∂ ln x y y ; 2、设22xy z e +=,则dz = 222()xy e xdx ydy ++ ;3、在极坐标系下计算二重积分有公式(,)Df x y dxdy =⎰⎰(cos ,sin )Df r r rdrd θθθ⎰⎰ ;4、设0a ≠,则当q 满足:q 1> 时,几何级数1n n aq ∞=∑收敛; 5、对任意级数1nn u∞=∑,如果1nn u∞=∑收敛,则称级数1nn u∞=∑为 绝对 收敛级数;6、1()1f x x =-展开成x 的幂级数是_______0(11)nn x x ∞=-<<∑______。

微积分练习题带答案

微积分练习题带答案

微积分练习题带答案微积分是数学的分支之一,它研究的是函数的变化规律。

在微积分中,经常会出现各种各样的练习题,这些练习题有助于我们加深对微积分概念和原理的理解。

在这篇文章中,我们将分享一些微积分练习题,并附带答案,希望对你的学习有所帮助。

1. 求函数f(x) = 2x^3 - x^2 + 3x - 5的导数。

答案:f'(x) = 6x^2 - 2x + 32. 求函数g(x) = e^x * sin(x)的导数。

答案:g'(x) = e^x * sin(x) + e^x * cos(x)3. 求函数h(x) = ln(x^2)的导数。

答案:h'(x) = 2/x4. 求函数i(x) = ∫(0到x) t^2 dt的导数。

答案:i'(x) = x^25. 求函数j(x) = ∫(x到1) t^2 dt的导数。

答案:j'(x) = -x^26. 求函数k(x) = ∫(0到x) e^t * sin(t) dt的导数。

答案:k'(x) = e^x * sin(x)7. 求函数l(x) = e^(-x)的不定积分。

答案:∫ e^(-x) dx = -e^(-x) + C (C为常数)8. 求函数m(x) = 1/(x^2+1)的不定积分。

答案:∫ 1/(x^2+1) dx = arctan(x) + C (C为常数)9. 求函数n(x) = 2x * cos(x^2)的不定积分。

答案:∫ 2x * cos(x^2) dx = sin(x^2) + C (C为常数)10. 求函数o(x) = ∫(1到x) e^(t^2) dt的原函数。

答案:o(x) = ∫(1到x) e^(t^2) dt + C (C为常数)以上是一些微积分练习题及其答案。

通过解答这些题目,我们可以巩固对微积分概念和原理的理解,并提升解题能力。

微积分是应用广泛的数学工具,在物理、工程、经济等领域都有重要的应用,掌握微积分对于进一步深入学习这些领域十分必要。

微积分第1章函数极限与连续答案

微积分第1章函数极限与连续答案

2微积分 第一章练习题答案、选择题:F 列函数为偶函数的是( 1、 ★ A 、B 、C 均为奇函数A. y x 3 sin 2 xB. 5xcos xC. y sin x cos 5xxxD. y 22F 列函数不具有对称性的是 A. y arctanx B. 下列函数在定义域内无界的是 1A. y 1 sin x 下列各对函数不相等的是 A. C.B. )• ★对称性就是奇偶性• A 、B 、D 均奇•指数函数无对称性x “x ( C ). x 32 (x sin xC. D.ln(x , 1 x 2)).cos(ln x)C. y arcta ne xD. ysin x).B.2) D. sin 2 x cos 2 x 与 y 1 A .是幕函数 B.是指数函数 C .不是基本初等函数 D.不是函数6、对于普通分段函数,以下说法不正确的是A.定义域为各段并集 C.各段内分别为初等函数 (D ).B.整体若不能由一个解析式表示就不是初等函数 D 不是一个函数,而是多个函数 7、 函数 8、函数 函数 10、lim xf (x)在点X 。

处有定义是函数 f ( x)在点X 。

处极限存在的( f (x)在点X 0处有定义是函数 f (x)在点X 0处连续的 f (x)在点X °处连续是f (x)在点X °处极限存在的( xe (D.不存在 ) 为两个方向,D.无关)条件 B.必要)条件 A.充分)条件 x 仍为两个方向无穷;指数函数不对称111、 lim sin— x 0 (D.不存在但函数有界 1,lim sin —lim sin ux 0xu12、已知 13、已知 lim 2x a 1,则常数a x 3x 2x 3 4 ax 1 lim xB.0 ,且分式极限存在,分子必T 014、2x4,则常数a ( D. ★由已知nA.lim xs in 丄 x1 B. lim xsin 1xxC. xlim 2 (2 sin x) 0 x1 xD. lim x sin x x sin k(x 15、 limx 2 x 2 2)A.sin k(x ★ v lim x 22)x 2216、若 lim (1 ax)x e 3,则 a (x 0B.2★ v lim (1 ax)xex 02a17、f(x) ,则x叫f (x)(B.1 )18、f(x)1 .sinx x19、20、21、B. limx 0时,C.极限值为.1xsi nx(C.e x)是无穷小量In x,(B. xs in〔)不是无穷小★x)正确★ Um*1 . sinxxD. lim xsin1x1 22 lim (xsinx23、函数y(x 填空题:1、函数f(x)f(0)3、已知4、已知5、已知1★ v lim e x lim e u 0x 0 u★与f(0)0无关sin x;x1 ;cosx 12x23" x2x arctan x、1 1—sin —无穷小量与有界变量乘积x xlim xx 1lim(x 1)x 1 \ /分母极限为0, 不满足极限商的运算法则条件sinx1; C.limxx 0 x.1sinlim xx 11xx(2sin X)xx2 11^cosx1 x2(3x 1)x0 f(x) ln 2 f (x) x2,B.2)f(x)的间断点为(1 .sin xC.A.lim - lim sinxx x xB. 10: lim sinx不存在,不满足法则条件xC. 2D. 3★使分母为0的点x 0的定义域为0x23x 1,2]X—0f(f (0))1,f(f(0)) f(1) (x 2)x1,则f(x。

微积分(一)综合练习题2答案(07)

微积分(一)综合练习题2答案(07)

第 6 页 共 6 页
6
第 3 页 共 6 页
3

y ′ = f ' (arctan x ) ⋅ y" =
1 1+ x2
f " (arctan x )(1 + x 2 ) − f ' (arctan x ) ⋅ 2 x (1 + x 2 ) 2
5.求函数 f ( x ) = xe − x 的单调区间、极值点、凹性、拐点。
∴ f ( x) = x − 1
二、单项选择(每小题 2 分,共 10 分) : 1.函数 f ( x ) = ln( x + (A) 奇函数
x 2 + 1) 为( A ) 。
(C)非奇非偶函数 (D)既是奇函数又是偶函数
(B)偶函数
2. 函数 f ( x ) = x sin (A) 单调
1 ,则 f ( x) ( B ) 。 x
6.已知
sin x 为f ( x ) 的一个原函数,求不定积分 ∫ xf ′(2 x)dx 。 x
1 解 ∵ ∫ xf '(2 x )dx = [ xf (2 x ) − ∫ f (2 x )dx ] 2 sin x sin 2 x 由已知 为f ( x)的一个原函数, f (2 x)dx = +C ∫ x 2x sin x x cos x − sin x f (x) = ( )' = x x2 1 1 2 x cos 2 x − sin 2 x sin 2x ∴ ∫ xf '(2 x )dx = [ xf (2 x ) − ∫ f ( x )dx ] = [ − ]+C 2 2 2x 2x x cos 2 x − sin 2 x = +C 2x
1 Q' 1 1 d − eQ (2) ∵ Q ' = − , ∴η == ⋅ (d − eQ ) = e eQ Q e Q (3) 当 η =1 时, Q=

微积分一练习题及答案

微积分一练习题及答案

A . x a 是f x 的极小值点;B . x a 是f x 的极大值点;《微积分(1)》练习题一.单项选择题1 •设f X 。

存在,则下列等式成立的有( )3 .设f (x )的一个原函数是e 2x ,则f (x )(A . 当f a f b 0时,至少存在一点 a,b ,使 f0 ;B . 对任何a,b ,有lim f x fx0 ;C. 当fa f b 时,至少存在一点 a,b ,使 f 0;D. 至少存在一点 a, b ,使f b fa fba;6.已知f x 的导数在x a 处连续,f x右lim1,则下列结论成立的有x0x0-Tolimx0-Tx0olimx0x0-T叫Hhx0x0叫Hh).limx 22xxx 123.lim3x 1x2x 6x2.下列极限不存在的有(1A . lim xsin 2B1C. lim e xx 0DA .2e 2xB2x4e 2xD2xe2x2、x, 0 x 14.函数 f(x) 1, x 1 在 0,1 x, x 1上的间断点x 1为( )间断点A .跳跃间断点;B •无穷间断点; C.可去间断点;D.振荡间断点5.设函数f x 在a,b 上有定义,在a,b 内可导,则下列结论成立的有(x0C. a, f a 是曲线y f x 的拐点;D. x a 不是f x 的极值点,a, f a 也不是曲线y f x 的拐点;填空: 山i1 .设 y f arcsin, f 可微,贝U y x ________________________________x2 .若 y 3x 52x 2 x 3,贝卩 y 6______________________3.过原点0,1作曲线y e 2x 的切线,则切线方程为 _________________________________4 x 14 .曲线y——2— 2的水平渐近线方程为 ________________________________________x铅垂渐近线方程为 __________________________________5 .设 f (ln x) 1 x ,贝卩 f x _____________________ f x __________________________计算题:于零,求证F x 在a, 内单调递增(1)x 2 1x 2 2x 3(2) limx(3)ln(1 x ) lim(4)yln 1x 0 xs in 3x(5)e xy y 3 5x求 dy x 0dx四.试确定a , b , 使函数 f xb 1 si nxax1,a 2, xex 五.试证明不等 式: 当x1时, xe x e1 xe x e2六. 设F x 丄x f ax a,其中fx 在 a,上连续, x 在a, 内存在且大x a在x 0处连续且可导。

微积分试题及答案-1

微积分试题及答案-1

《微积分》试题 第1页(共8页)微积分试题及参考答案与评分标准一、填空题(本大题共10小题,每小题2分,共20分)1、函数21()arcsinln(1)3x f x x -=+-的定义域为 ; 2、2lim(1)x x x→∞-= ;3、若22(sin )cos ,f x x '=则()f x = ;4、设2sin(1)(),1x f x x -=-则x = 是()f x 的可去间断点; 5、若0(32)(3)1limh f h f h→--=,则(3)f '= ;6、1(arctan )x =d ;7、可导函数()f x 是偶函数,若(1)3,f '=则(1)f '-= ;8、函数()f x =[0, 3]上满足罗尔定理条件,结论中的=ξ ; 9、曲线C :2ln 1xy x =-的垂直渐近线是 ; 10、设某商品的需求函数是402Q p =-,则需求价格弹性15|p η== 。

二、单项选择题(本大题共5小题,每小题2分,共10分)1、函数)(x f 在0x 处连续是)(x f 在0x 处可导的( ).(A )必要但非充分条件; (B )充分但非必要条件;(C )充分必要条件; (D )无关条件.《微积分》试题 第2页(共8页)2、当0→x 时,2x 是x cos 1-的( )无穷小.(A )等价; (B )同阶但不等价; (C )高阶; (D )低阶.3、设函数1)(1+=xe xf ,则0=x 为)(x f 的间断点类型是( ). (A )跳跃间断点; (B )可去间断点; (C )振荡间断点; (D )无穷间断点.4、设()f x 的一个原函数是2x ,则2(1)xf x x -=⎰d ( ) (A )222(1)x C -+; (B )222(1)x C --+;(C )221(1)2x C -+; (D )221(1)2x C --+.5、函数1sin ,0()0,0x x f x xx ⎧≠⎪=⎨⎪=⎩在0x =处( ). (A )不连续; (B )极限不存在;(C )连续且可导; (D )连续但不可导.三、计算题(本大题共8小题,每小题7分,共56分)1、求极限+01lim(1)xx x→+.2、求极限11lim()1ln x x x x→--.《微积分》试题 第3页(共8页)3、设ln(x y e =,求,y y '''.4、求曲线C :2ln(1)y x =+的凹凸区间与拐点.5、求曲线C :1x y xy e ++=在0x =对应点处切线的方程.《微积分》试题 第4页(共8页)6、求函数2()1xf x x =+的单调区间和极值.7、求不定积分()112ln dx x x +⎰.8、求不定积分⎰.《微积分》试题 第5页(共8页)四、应用题(本大题共1小题,共8分)设某产品的总成本函数为:2()5,C x x =+需求函数为:120.5,x p =-其中x 为产量,p 为价格,求(1)收益最大时的产量和价格;(2)利润最大时的产量和价格。

微积分第一章详细答案

微积分第一章详细答案

第一章习题1-11.用区间表示下列不等式的解2(1)9;(2)1;1(3)(1)(2)0;(4)00.011 x x x x x ≤>--+<<<+解 (1)原不等式可化为(3)(3)0x x -+≤,其解为33x -≤≤,用区间表示是[-3,3].(2)原不等式可化为11x ->或11x -<-,其解为2x >或0x <,用区间表示是(-∞,0)∪(2,+ ∞).(3)原不等式的解为21x -<<,用区间表示是(-2,1). (4)原不等式可化为0.0110.0110x x -<+<⎧⎨+≠⎩即 1.010.991x x -<<-⎧⎨≠⎩用区间表示是(-1.01,-1)∪(-1,-0.99). 2.用区间表示下列函数的定义域: 1(1)(2)arcsin(1)lg(lg );1(3).ln(2)y y x x xy x =-=-+=-解 (1)要使函数有意义,必须2010x x ≠⎧⎨-≥⎩即011x x ≠⎧⎨-≤≤⎩所以函数的定义域为[-1,0)∪(0,1].(2)要使函数有意义,必须111lg 00x x x -≤-≤⎧⎪>⎨⎪>⎩即0210x x x ≤≤⎧⎪>⎨⎪>⎩所以函数的定义域是12x <≤,用区间表示就是(1,2].(3)要使函数有意义,必须2650ln(2)020x x x x ⎧--≥⎪-≠⎨⎪->⎩即6112x x x -≤≤⎧⎪≠⎨⎪<⎩所以函数的定义域是-6≤x <1,用区间表示就是[-6,1).3.确定下列函数的定义域及求函数值f (0),ff (a )(a 为实数),并作出图形(1)1,0,2,011,12x x y x x x ⎧<⎪⎪=⎨≤<⎪⎪<≤⎩; (2)y=211,12x x x ⎧≤⎪⎨-<<⎪⎩解 (1)函数的定义域(){|0}{|01}{|12}{|112}(,1)(1,2]或D f x x x x x x x x x =<≤<<≤=<<≤=-∞10(0)200,1,()201112a a f ff a aa a ⎧<⎪⎪=⨯===⎨≤<⎪⎪<≤⎩,图1-1 图1-2(2)函数的定义域(){|1}{|12}{|2}(2,2)D f x x x x x x =≤<<=<=-221(0)1,11,()112a f ff a a a ≤===-==-<<⎪⎩4.设1,1()1,1x f x x ⎧≤⎪=⎨->⎪⎩,求f (f (x )).解 当|x |≤1时, f (x )=1, f (f (x ))= f (1)=1;当|x |>1时, f (x )=-1, f (f (x ))= f (-1)=1, 综上所述f (f (x ))=1(x ∈R ).5.判定下列函数的奇偶性: (1) f (x )=21cos xx-; (2)f (x )=(x 2+x )sin x ;(3)f (x )=1e ,0e 1,0x x x x -⎧-≤⎨->⎩解 (1) ∵221()1()()cos()cos x xf x f x x x----===-∴f (x )是偶函数.(2)∵222()[()()]sin()()(sin )()sin ()f x x x x x x x x x x f x -=-+--=--=--≠ 且()()f x f x -≠-, ∴f (x )是非奇非偶函数.(3)当x <0时,-x >0, ()1(1)()e e x x f x f x ---=-=--=-; 当x ≥0时,-x ≤0, ()()11(1)()e e e x x x f x f x ---=-=-=--=-,综上所述, x ∀∈R ,有f (-x )=-f (x ),所以f (x )是奇函数.6.设f (x )在区间(-l ,l )内有定义,试证明:(1) f (-x )+f (x )为偶函数; (2) f (-x ) -f (x )为奇函数. 证 (1)令()()()F x f x f x =-+(,)x l l ∀∈-有()[()]()()()()F x f x f x f x f x F x -=--+-=+-=所以()()()F x f x f x =-+是偶函数;(2)令()()()F x f x f x =--,(,)x l l ∀∈-有()[()]()()()[()()]()F x f x f x f x f x f x f x F x -=----=--=---=-所以()()()F x f x f x =--是奇函数.7. 试证:(1) 两个偶函数的代数和仍为偶函数; (2) 奇函数与偶函数的积是奇函数. 证 (1)设f (x ),g (x )均为偶函数,令()()()F x f x g x =± 则 ()()()()()(F x f x g x f x g x F x-=-±-=±=, 所以()()f x g x ±是偶函数,即两个偶函数的代数和仍为偶函数.(2)设f (x )为奇函数,g (x )为偶函数,令()()()F x f x g x =⋅, 则 ()()()()()(F x f x g x f x g x F x -=-⋅-=-=-, 所以()()f x g x ⋅是奇函数,即奇函数与偶函数之积是奇函数. 8. 求下列函数的反函数:22(1)2sin 3;(2);212101,(3)()2(2)1 2. xxy x y x x f x x x ==+-≤≤⎧=⎨--<≤⎩解 (1)由2sin 3y x =得1arcsin 32y x =所以函数2sin 3y x =的反函数为1arcsin(22)32x y x =-≤≤.(2)由221xxy =+得21x y y=-,即2log 1y x y=-.所以函数221xx y =+的反函数为2log (01)1x y x x =<<-.(3)当01x ≤≤时,由21y x =-得1,112y x y +=-≤≤;当12x <≤时,由22(2)y x =--得22x y =-<≤;于是有1112212y y x y +⎧-≤≤⎪=⎨⎪-<≤⎩,所以函数22101()2(2)12x x f x x x -≤≤⎧=⎨--<≤⎩的反函数是1112()212x x f x x +⎧-≤≤⎪=⎨⎪-<≤⎩.9. 将y 表示成x 的函数,并求定义域:222(1)10,1;(2)ln ,2,sin ;(3)arctan ,().为实数u vy u x y u u v x y u u v a x a ==+======+解 (1)211010u x y +==,定义域为(-∞,+∞);(2) sin ln ln 2ln 2sin ln 2vxy u x ====⋅定义域为(-∞,+∞);(3) arctan arctan arctan y u ===(a 为实数),定义域为(-∞,+∞).习题1-21.下列初等函数是由哪些基本初等函数复合而成的? (1) y=(2) y =sin 3ln x ;(3) y = tan 2xa; (4) y =ln [ln 2(ln 3x )].解 (1)令arcsin x u a =,则y =再令xv a =,则arcsin u v =,因此y =是由基本初等函数arcsin ,xy u v v a ===复合而成的.(2)令sin ln u x =,则3y u =,再令ln v x =,则sin u v =.因此3sin ln y x =是由基本初等函数3,sin ,ln y u u v v x ===复合而成.(3)令2tan u x =,则u y a =,再令2v x =,则tan u v =,因此2t a n x y a =是由基本初等函数2,tan ,uy a u v v x ===复合而成.(4)令23ln (ln )u x =,则ln y u =,再令3ln(ln )v x =则2u v =,再令3ln w x =,则ln v w =,再令ln t x =,则3w t =,因此23ln[ln (ln )]y x =是由基本初等函数2ln ,,ln ,y u u v v w ===3,ln w t t x ==复合而成.2.设f (x )的定义域为[0,1],分别求下列函数的定义域: (1) f (x 2); (2) f (sin x ); (3) f (x +a ),(a >0); (4) f (e x +1).解 (1)由f (x )的定义域为[0,1]得0≤x 2≤1,于是-1≤x ≤1,所以f (x 2)的定义域为[-1,1].(2)由f (x )的定义域为[0,1]得0≤sin x ≤1,于是2k π≤x ≤(2k +1)π,k ∈z ,所以f (sin x )的定义域为[2k π,(2k +1) π], k ∈Z .(3)由f (x )的定义域为[0,1]得0≤x+a ≤1即-a ≤x ≤1-a 所以f (x+a )的定义域为[-a ,1-a ]. (4)由f (x )的定义域为[0,1]得0≤e x +1≤1,解此不等式得x ≤-1,所以f (e x +1)的定义域为(-∞,-1]. 3. 求下列函数的表达式:(1) 设ϕ(sin x )=cos 2x +sin x +5,求ϕ(x ); (2) 设g (x -1)=x 2+x +1,求g (x ); (3) 设1()f x x +=x 2+21x,求f (x ).解 (1)法一:令sin t x =,则222cos 1sin 1x x t =-=-,代入函数式,得:22()156t t t t t ϕ=-++=+-,即 2()6x x x ϕ=++.法二:将函数的表达式变形得:22(sin )(1sin )sin 56sin sin x x x x x ϕ=-++=+-令sin t x =,得 2()6t t t ϕ=+-,即 2()6x x x ϕ=+-.(2)法一:令1t x =-,则1x t =+,将其代入函数式,得22()(1)(1)133g t t t t t =++++=++即 2()33g x x x =++.法二:将函数表达式变形,得22(1)(21)(33)3(1)3(1)3g x x x x x x -=-++-+=-+-+令1x t -=,得 2()33g t t t =++, 即 2()33g x x x =++.(3)法一:令1x t x+=,两边平方得22212x t x++=即22212x t x+=-,将其代入函数式,得2()2f t t =-,即2()2f x x =-.法二:将函数表达式变形,得222111222f x x x x x x ⎛⎫⎛⎫⎛⎫=-=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令1x t x+=,得2()2f t t =-,即2()2f x x =-.4.设f (x )为奇函数,证明:若f (x )在x =0有定义,则f (0)=0.证 ∵f (x )为奇函数,且f (x )在x =0处有定义,∴ (0)(0)f f -=-又(0)(0)f f -=于是(0)(0)f f =- 即2(0)0,(0)0f f =∴=.5.证明:狄利克雷函数是周期函数,任何一个正有理数均是它的周期,但无最小正周期. 证 狄利克雷函数1,,()0,当为有理数时当为无理数时.x D x x ⎧=⎨⎩设T 是任一正有理数, x ∀∈R ,当x 为有理数时,x+T 为有理数,于是()1D x T +=,又()1D x =,所以()()D x T D x +=; 当x 为无理数时,x+T 为无理数,于是()0D x T +=,又()0D x =,所以()()D x T D x +=. 综上所述, x ∀∈R 有()()D x T D x +=,所以()D x 是周期函数,任何一个正有理数均是它的周期,又设P 是任一无理数, x P ∃=-∈R ,使()(0)1D x P P +==,而()0D x =,故()()D x P D x +≠,即无理数不是()D x 的周期;因为不存在最小的正有理数,所以()D x 无最小正周期.习题1-31.设销售商品的总收入是销售量x 的二次函数,已知x =0,2,4时,总收入分别是0,6,8,试确定总收入函数TR(x ).解 设2()TR x ax bx c =++,由已知(0)0,(2)6,(4)8TR TR TR === 即 04261648c a b c a b c =⎧⎪++=⎨⎪++=⎩ 解得 1240a b c ⎧=-⎪⎪⎨=⎪⎪=⎩所以总收入函数21()42TR x x x =-+.2.设某厂生产某种产品1000吨,定价为130元/吨,当一次售出700吨以内时,按原价出售;若一次成交超过700吨时,超过700吨的部分按原价的9折出售,试将总收入表示成销售量的函数.解 设销售量为x ,实际每吨售价为P 元,由题设可得P 与x 间函数关系为1307001177001000x P x ≤⎧=⎨<≤⎩,总收入 130700()130700(700)1177001000TR x x x x x ≤⎧=⎨⨯+-⨯<≤⎩,即 130700()91001177001000TR x x x xx ≤⎧=⎨+<≤⎩.3. 已知需求函数为105Q P =-,成本函数为C =50+2Q ,P 、Q 分别表示价格和销售量.写出利润L 与销售量Q 的关系,并求平均利润.解 由题设知总收入2()105QR Q PQ Q ==-,则总利润 ()221()()()8505021055Q L Q R Q C Q Q Q Q Q ⎛⎫=-=-=--+- ⎪⎝⎭, 平均利润 ()150()85L Q AL Q Q QQ==--.4. 已知需求函数Q d 和供给函数Q s ,分别为Q d =100233P -,Q s =-20+10P ,求相应的市场均衡价格.解 当d s Q Q =时供需平衡,由d s Q Q =得1002201033P P -=-+,解得5P =所以市场均衡价格5P =.。

微积分基础考试题及答案

微积分基础考试题及答案

微积分基础考试题及答案一、单项选择题(每题2分,共20分)1. 函数f(x)=x^2+3x+2的导数为:A. 2x+3B. x^2+3C. 2x+6D. 3x+2答案:A2. 曲线y=x^3-3x+1在x=1处的切线斜率为:A. 0B. 1C. -1D. 3答案:D3. 函数f(x)=sin(x)的不定积分为:A. -cos(x)+CB. cos(x)+CC. sin(x)+CD. x+C答案:A4. 极限lim(x→0) (sin(x)/x)的值为:A. 0B. 1C. π/2D. ∞答案:B5. 函数f(x)=x^3+2x^2-5x+7的极值点个数为:A. 0B. 1C. 2D. 3答案:C6. 曲线y=e^x与直线y=ln(x)相切的切点坐标为:A. (1,1)B. (e,e)C. (ln(e),e)D. (e,ln(e))答案:A7. 函数f(x)=x^2-4x+3的零点个数为:A. 0B. 1C. 2D. 3答案:C8. 函数f(x)=x^2-4x+3的单调递增区间为:A. (-∞,2)B. (2,+∞)C. (-∞,2)∪(2,+∞)D. (-∞,+∞)答案:B9. 函数f(x)=x^3-3x的拐点个数为:A. 0B. 1C. 2D. 3答案:C10. 曲线y=x^2+2x+1与x轴的交点个数为:A. 0B. 1C. 2D. 3答案:A二、填空题(每题3分,共15分)1. 函数f(x)=x^2+2x+1的最小值为_________。

答案:02. 函数f(x)=ln(x)的反函数为_________。

答案:e^x3. 曲线y=x^3+3x^2+2x+1在x=-1处的切线方程为_________。

答案:y=-x4. 函数f(x)=x^2-4x+3的极大值为_________。

答案:45. 曲线y=x^2与直线y=2x相切的切点坐标为_________。

答案:(1,1)三、计算题(每题10分,共30分)1. 计算定积分∫(0,1) (x^2-2x+1) dx。

微积分试卷及标准答案6套

微积分试卷及标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。

2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。

3.若当时,α与β 是等价无穷小量,则 。

0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。

=→)(lim x f ax 5.的连续区间是 。

)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。

=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. 。

='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。

Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。

11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。

=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。

当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。

微积分习题一答案详解

微积分习题一答案详解
B. D.
2
y y
x2 1 x2 1
y x2 1 y x2 1
C.
解: 可以从 y
x y2 1 , x 1( x 0) ,得出
可以得出 y x 2 1 .可以得出答案为B.
2.填空题.
(1) 设集合 A {1,2,3,4}, B {1,3,5},,则 A B =
(2)
f ( x ) 和 g( x ) 不表示同一个函数的是( B )
A. f ( x ) x 与 g( x )
1 x C. f ( x ) 1 x 与
x
2
x0 x0
1 x g( x ) D. f ( x ) x x 与 (1 x )
3
2
g( x )
3
x

x x0 B中 f ( x ) 与 g( x ) 不相同,所以选B. x x 0
x20 x 2 (3) 1 x 0 x 1 x [ 2,0) (0,1) lg(1 x) 0 x 0
(4)
1 x 1 x 0, 0 1 x 1 1 x x 1
f ( x) lg x 2 , g ( x) 2 lg x
0 x 4 得 x (0,2) (2,4) x2
(4) 解
ax x0
(

a 0 , 0 ,x0 为常数)
0 原式
ax x0
x0 ax x 0 a 0
x0 x0 x a a
y 10
x 1
2
x R
(3)
y 2 e x x ln(2 y) 交换 x 和 y 得反函数:

微积分(一)综合测试1试题及答案

微积分(一)综合测试1试题及答案

h→0
h
9. 若 f (x) 的导函数是 sin x ,则 f (x) 的一个原函数是(
)。
(A) 1 + sin x
(B)1 + cos x
(B) (C)1 − sin x
(D)1 − cos x
第2页共9页
2
10.设f
'
( x)在[1,2]上可积,且f
(1)
= 1,
f
(2)
=
2
−4, ∫1
f
( x)dx
时,
f
'( x)
<
0,当x
>
π 3
时,
f
'( x)
>
0,∴
f
⎛ ⎜ ⎝
π 3
⎞⎟是极小值 ⎠
∫ 5.若 x3−1 f (t)dt = x ,则 f (7) = 1 。
0
12
解 f (x3 −1)3x2 = 1, ⇒ 当x = 2时,(f 7)= 1
12
二、单项选择(每小题 2 分,共 20 分):
1. 函数 f (x) = arcsin 2x −1 + 2x − x2 的定义域区间是( C )。

二、单项选择(每小题 2 分,共 20 分):
1. 函数 f (x) = arcsin 2x −1 + 2x − x2 的定义域区间是(
)。
7 ln(2x −1)
(A)
1 [
,
1)

(1 ,
2]
2
(C)
1 (
,
1)

(1 ,
2]
2
2. 函数 f (x) = x sin 1 ,则 f (x) (

微积分考试题库(附答案)

微积分考试题库(附答案)

85考试试卷(一)一、填空1.设c b a,,为单位向量,且满足0=++c b a ,则a c c b b a ⋅+⋅+⋅=2.xx e 10lim +→= ,xx e 10lim -→=,xx e 1lim →=3.设211)(x x F -=',且当1=x 时,π23)1(=F ,则=)(x F4.设=)(x f ⎰dt t x 2sin 0,则)(x f '=5.⎩⎨⎧>+≤+=0,0,1)(x b ax x e x f x 在x =0处可导,则=a ,=b二、选择1.曲线⎩⎨⎧==-0122z y x 绕x 轴旋转一周所得曲面方程为( )。

(A )12222=+-z y x ; (B )122222=--z y x ;(C )12222=--z y x ; (D )122222=+-z y x2.2)11(lim xx x x -∞→-+=( )。

(A )1(B )21e (C )0 (D )1-e3.设函数)(x f 具有连续的导数,则=+'⎰dx x f x f x )]()([( ) (A )c x xf +)(; (B )c x f x +')(; (C )c x f x +'+)(; (D )c x f x ++)(4.设)(x f 在],[b a 上连续,则在],[b a 上至少有一点ξ,使得( ) (A )0)(='ξf (B )ab a f b f f --=')()()(ξ86(C )0)(=ξf (D )ab dxx f a bf -=⎰)()(ξ5.设函数x x a y 3sin 31sin +=在x =3π处取得极值,则=a ( ) (A )0 (B )1 (C )2 (D )3 三、计算题1. 求与两条直线⎪⎩⎪⎨⎧+=+==211t z t y x 及112211-=+=+z y x 都平行且过点(3,-2,1)的平面方程。

大一微积分练习题及答案

大一微积分练习题及答案

《微积分(1)》练习题一.单项选择题1.设()0x f '存在,则下列等式成立的有( ) A . ()()()0000limx f x x f x x f x '=∆-∆-→∆ B .()()()0000lim x f xx f x x f x '-=∆-∆-→∆C .()()()00002limx f h x f h x f h '=-+→ D .()()()0000212lim x f h x f h x f h '=-+→2.下列极限不存在的有( )A .201sin lim xx x → B .12lim 2+-+∞→x x x xC . xx e1lim → D .()xx xx +-∞→632213lim3.设)(x f 的一个原函数是x e 2-,则=)(x f ( )A .x e 22--B .x e 2-C .x e 24-D . x xe 22--4.函数⎪⎩⎪⎨⎧>+=<≤=1,11,110,2)(x x x x x x f 在[)+∞,0上的间断点1=x 为( )间断点。

A .跳跃间断点;B .无穷间断点;C .可去间断点;D .振荡间断点5. 设函数()x f 在[]b a ,上有定义,在()b a ,内可导,则下列结论成立的有( ) A . 当()()0<b f a f 时,至少存在一点()b a ,∈ξ,使()0=ξf ; B . 对任何()b a ,∈ξ,有()()[]0lim =-→ξξf x f x ;C . 当()()b f a f =时,至少存在一点()b a ,∈ξ,使()0='ξf ;D .至少存在一点()b a ,∈ξ,使()()()()a b f a f b f -'=-ξ; 6. 已知()x f 的导数在a x =处连续,若()1lim-=-'→ax x f ax ,则下列结论成立的有( )A .a x =是()x f 的极小值点;B .a x =是()x f 的极大值点;C .()()a f a ,是曲线()x f y =的拐点;D .a x =不是()x f 的极值点,()()a f a ,也不是曲线()x f y =的拐点; 二.填空: 1.设⎪⎭⎫⎝⎛=x f y 1arcsin,f 可微,则()='x y 2.若32325-+-=x x x y ,则()=6y3.过原点()1,0作曲线x e y 2=的切线,则切线方程为4.曲线()2142-+=x x y 的水平渐近线方程为 铅垂渐近线方程为 5.设x x f +='1)(ln ,则()='x f ()=x f三.计算题:(1)321lim 221-+-→x x x x (2)32lim +∞→⎪⎭⎫⎝⎛-x x x x(3)xx x x 3sin )1ln(lim 20+→ (4)()[]221ln x y -= 求dy(5)053=-+x y exy求=x dxdy四.试确定a ,b ,使函数()()⎩⎨⎧<-≥+++=0,10,2sin 1x e x a x b x f ax在0=x 处连续且可导。

大学微积分试题及答案

大学微积分试题及答案

大学微积分试题及答案一、选择题(每题5分,共20分)1. 若函数f(x)在点x=a处可导,则下列说法正确的是:A. f(x)在点x=a处连续B. f(x)在点x=a处一定有极值C. f(x)在点x=a处的导数为0D. f(x)在点x=a处的导数一定大于0答案:A2. 曲线y=x^2在点(1,1)处的切线方程是:A. y=2x-1B. y=x+1C. y=2xD. y=x-1答案:A3. 函数f(x)=x^3-3x+2的导数是:A. 3x^2-3B. 3x^2+3C. x^2-3D. x^3-3答案:A4. 曲线y=x^3-6x^2+9x+1在x=3处的凹凸性是:A. 凹B. 凸C. 不确定D. 既非凹也非凸答案:B二、填空题(每题5分,共20分)1. 函数f(x)=2x^2-4x+3的极小值点是______。

答案:12. 曲线y=x^3-3x在点(2,5)处的切线斜率是______。

答案:33. 函数f(x)=x^2-6x+8的单调递增区间是______。

答案:[3, +∞)4. 曲线y=x^2-4x+3在x=2处的法线方程是______。

答案:y=-x+7三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-3x^2+4x-2在区间[0,3]上的最大值和最小值。

答案:函数f(x)的导数为f'(x)=3x^2-6x+4。

令f'(x)=0,解得x=1, 2。

在区间[0,1]上,f'(x)>0,函数单调递增;在区间[1,2]上,f'(x)<0,函数单调递减;在区间[2,3]上,f'(x)>0,函数单调递增。

因此,函数在x=1处取得极大值f(1)=1,在x=2处取得极小值f(2)=-2。

在区间端点处,f(0)=-2,f(3)=1。

所以,函数在区间[0,3]上的最大值为1,最小值为-2。

2. 求由曲线y=x^2与直线y=4x-3围成的面积。

《微积分I》第1章答案

《微积分I》第1章答案

《微积分I》第1章答案《一元函数微积分》习题1—11.确定下列函数的定义域:(1)y1某29;2解:要使函数有意义,则:某90即某3或某3.所以函数定义域:(,3)(3,).(2)ylogaarcin某;解:要使函数有意义,则arcin某0,即0某1.所以函数定义域:(0,1].(3)y11某2;某12解:1某0且某10,即1某1且某1.所以函数定义域:(-1,1].(4)y31loga(2某3);某233.所以函数定义域:(,2)(2,).22解:某20且2某30,即某2且某(5)yarcco解:1某1loga(4某2);2某11且4某20,则1某3且2某2。

所以函数定义域:[1,2)21(6)y.in某解:in某0,则某k,kZ.(其中是Z整数集),函数定义域:(,)\\Z.1in,某022.求函数y的定义域和值域,并求f和f(0).某某00解:定义域:(,).当某0时,11(,)\\{0},故1in1.所以值域:[-1,1].某某2f()in1,f(0)0.23.下列各题中,函数f(某)和g(某)是否相同,为什么(1)f(某)某,g(某)解:不同因为g(某)某2;某2|某|,即g(某)的值域是全体非负实数,而f(某)的值域是全体实数.2(2)f(某)co某,g(某)12in解:相同某;22因为f(某)和g(某)的定义域均为实数R,值域为[-1,1],且g(某)12in某co某f(某)2某21,g(某)某1;(3)f(某)某1解:不同某21某1(某1).两函数的定义域不同.因为f(某)某1(4)f(某)解:相同因为f(某)值恒等于1.4.设f(某)in某,证明:f(某某)f(某)2in某,g(某)某0.某某1(某0),g(某)某01(某0)定义域均为非零实数,在定义域内函数某某某co(某).22某某co(某).22证明:由三角函数知:f(某某)f(某)in(某某)in 某2in25.设f(某)a某b某5且f(某1)f(某)8某3,试确定a,b的值.2解:因为f(某)a某b某5故f(某1)a(某1)b(某1)5a某(2ab)某(ab5)由题设f(某1)f(某)2a 某a58某3所以有:2a8且ab3得:a4,b1.6.下列函数哪些是偶函数哪些是奇函数哪些既非奇函数又非偶函数(1)y某(1某);22222解:定义域:(,)f(某)(某)2[1(某)2]某2(1某2)f(某)所以函数是偶函数.(2)y3某2某3;解:定义域:(,)f(某)3(某)2(某)33某2某3,f(某)f(某)且f(某)f(某).所以函数既非奇函数又非偶函数.1某2(3)y;21某解:定义域:(,)1(某)21某2f(某)f(某)221(某)1某所以函数是偶函数.(4)y某(某1)(某1)解:定义域:(,)f(某)某(某1)(某1)某3某,f(某)(某)3(某)某3某f(某).所以函数是奇函数.(5)yin某co某1;解:定义域:(,)f(某)in(某)co(某)1in某co某1,则f(某)f(某)且f(某)f(某)所以函数既非奇函数又非偶函数.a某a某(6)y.2解:定义域:(,)a某a某f(某)f(某)2所以函数是偶函数.37.设f(某)为定义在(,)上的任意函数,证明:(1)F1(某)f(某)f(某)为偶函数;(2)F2(某)f(某)f(某)为奇函数.证明:由题设f(某)为定义在(,)的函数,则F1(某),F2(某)的定义域也为(,)(1)F1(某)f(某)f(某)F1(某)f(某)f(某)F1(某),.故F1(某)是偶函数.(2)F2(某)f(某)f(某)F2(某)f(某)f(某)F2(某),.故F2(某)为奇函数.8.证明:定义在(,)上的任意函数可以表示为一个奇函数与一个偶函数和.证明:设f(某)是定义在(,)上的任意函数.由7题知F1(某)f(某)f(某)为偶函数,F2(某)f(某)f(某)为奇函数.且f(某)故命题成立.9.设f(某)为定义在(L,L)上的奇函数,若f(某)在(0,L)上单增,证明:f(某)在(L,0)上也单增.证明:由题设知对于任意某(L,L)有:f(某)f(某)不防设任意的某1,某2满足0某1某2L,则L某2某10.11F1(某)F2(某).22f(某)在(0,L)上单增,则f(某1)f(某2)即f(某1)f(某2)f(某1)f(某2)所以f(某)在(L,0)上也单增.10.下列各函数中哪些是周期函数对于周期函数,指出其周期:(1)yco(某2);解:co(某22)co(某2),函数是周期函数且周期T2.(2)yco4某;4解:co4(某2)co(4某2)co4某,函数是周期函数且周期T2.(3)y1in某;解:1in某1in(某2)1in(某2),函数是周期函数且周期T2.(4)y某co 某;解:非周期函数(5)yin2某;解:in某2111(1co2某)[1co(2某2)][1co2(某)],函数是周期函数222且周期T.(6)yin3某tan某解:in3某in(3某2)in3(某2),tan某tan(某),故原函数的周期为两函数32in3某,tan某的周期和最小公倍数.所以周期为T2.311.下列各组函数中哪些不构成复合函数把能构成复合函数的写,成复合函数,并指出定义域.3(1)y某,某int;3解:构成复合函数yint,定义域:(,).u(2)ya,u某;22解:构成复合函数ya某,定义域:(,).(3)ylogau,u3某2;解:构成复合函数yloga(2某22),定义域:(,).(4)yu,uin某2;解:不构成复合函数yu要求u0,但是uin某2的值域:(3,1).(5)yu,u 某;解:构成复合函数y232某3,定义域:[0,).(6)ylogau,u某2.5解:构成复合函数yloga(某22),定义域:(,2)(2,).12.下列函数是由哪些简单函数复合而成的2(1)y3(1某)1;解:y3u,u(1某)21.(2)y3(ln某1);2解:y3u,uv,vln某1.2(3)yin3(3某1);解:yu3,uinv,v3某1.(4)y3logaco某.解:y3u,ulogav,vw,wco某.13.求下列函数的反函数:(1)y2in某;解:原函数的定义域:(,),值域:[2,2].反解:某in得反函数:yin22y.2某.2反函数的定义域:[2,2],值域:(,).(2)y1loga(某2);解:原函数的定义域:(2,),值域:(,).反解:某a得反函数:ya某1y12. 2反函数的定义域(,):,值域:(2,).2某(3)y某.2112某2某111某01.2111解:y某由于,则2某1212某12某16原函数的定义域:(,),值域:.(0,1)反解:2某yy,某log2.1y1y得反函数:ylog2某1某反函数的定义域:(0,1),值域:(,).14.某批发商店按照下列价格表整盒在批发销售某种盒装饮料:当购货量小于或等于20盒时,每盒2.50元;当购货量小于或等于50盒时,其超过20盒的饮料每盒2.30元;当购货量小于或等于100盒时,其超过50盒的饮料每盒2.00元;当购货量大于100时,其超过100盒的饮料每盒1.80元;设某是销售量,y是总价,试建立总价y和销售量某之间的函数关系式,并作出它的图形.解:由题知:当0某20时,y2.5某;当20某50时,y2.5202.3(某20)2.3某4;当50某100时,y2.5202.3(5020)2(某50)2某19;当某100时,y2191.8(某100)1.8某390某202.5某2.3某420某50y2某1950某100某1001.8某39图形(略)15.设某商品的市场供应函数QS(p)804p,其中Q为供应量,p为市场价格.商品的单位生产成本是1.5元,试建立总利润L与市场价格p的函数关系式.解:供应函数QS(p)804p则总利润L(p1.5)Q(p1.5)(804p)4p286p120.16.用p代表单价,某商品的需求函数为QD(p)700050p,当Q超过1000时成本函数为C2000025Q,试确定能达到损益平衡的价格(提示:当总收入=总成本时,便达到损益平衡).解:当Q1000时QD(p)700050p1000则价格p120.7达到损益平衡,则pQC即:p(700050p)2000025Q2000025(700050p)p2165p39000得p165107.822又因为价格p120,故p28.59答:当需求量超过1000时,达到损益平衡的价格是28.59.17.在半径为r的球内嵌入一个内接圆柱,试将圆柱的体积V表示为圆柱的高h的函数,并求此函数的定义域.h2h22解:设圆柱的半径为R,则满足Rr()r2422h21)hr2hh3.圆柱的体积:VRh(r4422定义域:(0,2r)18.已知华氏温度F与摄氏温度℃的线性关系,在101325帕(一个标准大气压)下,水的冰点温度不32F或0℃,水的沸点温度为212F或100℃.(1)写出华氏温度F与摄氏温度℃的函数关系;(2)画出该函数的图形;(3)摄氏20℃相当于华氏几度解:(1)由华氏温度F与摄氏温度℃的线性关系,设当摄氏温度为某℃时,华氏温度为yF,则有关系式ya某b其中a,b为常数.由题知: 32a0ba1.8212100abb32函数关系:y1.8某32(其中某的度量单位是℃,y的度量单位是F)(2)函数图形(略)(3)摄氏20℃时,y=1.820℃+32=68(F)习题1-22.(1)证明:0,要使11111,即nnn8只须取N=1,则当nN时,有11n因此lim(1n111)1。

微积分试题及答案

微积分试题及答案

微积分试题及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的导数是:A. 0B. 1C. 2D. 32. 曲线 \( y = x^3 - 2x \) 在 \( x = 1 \) 处的切线斜率是:A. -1B. 1C. 3D. 53. 若 \( \int_{0}^{1} x^2 dx \),则该积分的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{2}{3} \)D. 14. 函数 \( y = \ln(x) \) 的原函数是:A. \( x \)B. \( x^2 \)C. \( e^x \)D. \( x\ln(x) \)5. 已知 \( \frac{dy}{dx} = 3x^2 - 2x \),当 \( x = 1 \) 时,\( y \) 的值是:A. 0B. 1C. 2D. 36. 函数 \( y = \sin(x) \) 的二阶导数是:A. \( -\sin(x) \)B. \( -\cos(x) \)C. \( \cos(x) \)D. \( \sin(x) \)7. 若 \( \int x e^x dx \) 可以用换元积分法求解,设 \( u = x \) 则 \( du \) 是:A. \( e^x \)B. \( e^x dx \)C. \( x dx \)D. \( 1 \)8. 函数 \( y = x^3 + 3x^2 + 3x + 1 \) 的泰勒展开式在 \( x = 0 \) 处的前三项是:A. \( 1 + 3x + 3x^2 \)B. \( 1 + x + x^2 \)C. \( 1 + 3x + 9x^2 \)D. \( 1 + 3x + 3x^3 \)9. 函数 \( y = e^{2x} \) 的不定积分是:A. \( \frac{1}{2}e^{2x} \)B. \( e^{2x} \)C. \( 2e^{2x} \)D. \( 2x e^{2x} \)10. 若 \( \frac{dy}{dx} = y - 1 \),且 \( y = 2 \) 当 \( x =0 \),则 \( y \) 的通解是:A. \( y = x + 2 \)B. \( y = e^x + 1 \)C. \( y = e^x - 1 \)D. \( y = 1 - e^x \)二、填空题(每空2分,共20分)11. 若 \( f(x) = x^3 - 6x^2 + 11x - 6 \),则 \( f'(x) = \)__________。

《微积分I》期末模拟考题(参考答案,小字)

《微积分I》期末模拟考题(参考答案,小字)

模拟卷一:一、选择题(每小题4分,共20分)1、设()(1)(2)(3)f x x x x x =+++,则()f x '与()f x ''的零点个数分别为( B )A 、4个;3个B 、3个;2个;C 、2个;1个;D 、1个;0个 2、设1()1xf x dx C x+=+-⎰,则()f x =( B ) A 、22(1)x -- B 、22(1)x - C 、22(1)x x -- D、22(1)xx - 3、下列等式错误的是( D ) A 、()()()f x dx f x '=⎰ B 、()()f x dx f x C '=+⎰C 、()(2)(2)f x dx f x '=⎰ D 、(2)(2)f x dx f x C '=+⎰4、曲线 ln xy x=( D ) A、没有渐近线 B、只有一条水平渐近线C、只有一条垂直渐近线 D、即有水平渐近线又有垂直渐近线5*、设()f x dx C =⎰,则2()xf x dx =⎰( A )A 、1sin 2x C + B 、12C C 、21sin 2C D 、21sin 2x C +二、填空题(每小题4分,共20分)1、函数()arctan f x x =在[]0,1上满足拉格朗日中值定理的点ξ=2211(1)(0)(),()arctan1,11104f f f x f x πξξξ-''======++-解:2、设()f x 的一个原函数为xe -,则()f x dx =⎰xe -+C ,()f x dx '=⎰-xe -+C . 3、2211d()d()1d ln ||.()()x a x a x x a C x a x a x a x a x a ⎛⎫+++=+=--+ ⎪+++++⎝⎭⎰⎰⎰.5、99(23)x dx +=⎰1001(23)200x C ++. 三、求极限(每小题5分,共15分)1、20sin 1lim sin x x e x x →--=2000sin 1cos sin 1lim lim lim .222x x x x x x e x e x e x x x →→→---+===2、0000cos ln sin sin sin lim lim lim lim 1.cos ln sin sin sin x x x x a ax a aax ax ax ax b ax bb bx bx bx bx+→→→→==== (a 、b >0)3、求 10lim 2xxxx a b →⎛⎫+ ⎪⎝⎭,其中0,0,a b a b >>≠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《微积分(1)》练习题
一. 单项选择题
1.设()0x f '存在,则下列等式成立的有( ) A . ()()()0000
lim
x f x x f x x f x '=∆-∆-→∆ B .()()()0000lim x f x
x f x x f x '-=∆-∆-→∆
C .()()()0000
2lim
x f h x f h x f h '=-+→ D .()()()00002
1
2lim x f h x f h x f h '=-+→
2.下列极限不存在的有( )
A .201
sin lim x
x x → B .12lim 2+-+∞→x x x x
C . x
x e
1
lim → D .()
x
x x
x +-∞
→63
2
21
3lim
3.设)(x f 的一个原函数是x e 2-,则=)(x f ( )
A .x e 22--
B .x e 2-
C .x e 24-
D . x xe 22--
4.函数⎪⎩

⎨⎧>+=<≤=1,11,110,2)(x x x x x x f 在[)+∞,0上的间断点1=x 为( )间断点。

A .跳跃间断点;
B .无穷间断点;
C .可去间断点;
D .振荡间断点
5. 设函数()x f 在[]b a ,上有定义,在()b a ,内可导,则下列结论成立的有( ) A . 当()()0<b f a f 时,至少存在一点()b a ,∈ξ,使()0=ξf ; B . 对任何()b a ,∈ξ,有()()[]0lim =-→ξξ
f x f x ;
C . 当()()b f a f =时,至少存在一点()b a ,∈ξ,使()0='ξf ;
D .至少存在一点()b a ,∈ξ,使()()()()a b f a f b f -'=-ξ; 6. 已知()x f 的导数在a x =处连续,若()1lim
-=-'→a
x x f a
x ,则下列结论成立的有( )
A .a x =是()x f 的极小值点;
B .a x =是()x f 的极大值点;
C .()()a f a ,是曲线()x f y =的拐点;
D .a x =不是()x f 的极值点,()()a f a ,也不是曲线()x f y =的拐点; 二. 填空:
1.设⎪⎭
⎫ ⎝
⎛=x f y 1arcsin ,f 可微,则()='x y
2.若32325-+-=x x x y ,则()=6y
3.过原点()1,0作曲线x e y 2=的切线,则切线方程为
4.曲线()2142
-+=
x x y 的水平渐近线方程为 铅垂渐近线方程为
5.设x x f +='1)(ln ,则()='x f ()=x f
三. 计算题:
(1)321lim 221-+-→x x x x (2)3
2lim +∞
→⎪⎭

⎝⎛-x x x x
(3)x
x x x 3sin )1ln(lim 20+→ (4)()[]2
21ln x y -= 求dy
(5)053=-+x y e
xy

=x dx
dy
四. 试确定a ,b ,使函数()()⎩

⎧<-≥+++=0,10
,2sin 1x e x a x b x f ax
在0=x 处连续且可导。

五. 试证明不等式:当1>x 时,()
e xe 2
1
e x e x x +<<⋅ 六. 设()()()()a x a
x a f x f x F >--=
,,其中()x f 在[)+∞,a 上连续,()x f ''在()+∞,a 内存在且大
于零,求证()x F 在()+∞,a 内单调递增。

《微积分》练习题参考答案
七. 单项选择题
1.( B )2.( C )3.( A )4.( C ) 5.( B )6.( B ) 八. 填空:(每小题3分,共15分) 1. ⎪⎭⎫ ⎝⎛
'--
x f x x 1arcsin 11
2
2. ()06=y 3. 12+=x y 4. 2-=y , 0=x
5. ()x e x f +='1,()c e x x f x ++=
三,计算题:(1)321lim 221-+-→x x x x (2)3
2lim +∞→⎪⎭

⎝⎛-x x x x
(3)x
x x x 3sin )1ln(lim 20+→ (4)()[]221ln x y -= 求dy
(5)053=-+x y e
xy

=x dx
dy
又10-=⇒=y x (
九. 试确定a ,b ,使函数()()⎩

⎧<-≥+++=0,10
,2sin 1x e x a x b x f ax
在0=x 处连续且可导。

(8分)
解:()()[]22sin 1lim 000++=+++=++
→b a a x b f x
()[]
01lim 000
=-=--→ax x e f , 函数()x f 在0=x 处连续()()0000-=+f f 02=++b a ,
(1)
函数()x f 在0=x 处可导()()00-+'='f f ,故b a = (2) 由(1)(2)知1-==b a
十. 试证明不等式:当1>x 时,()
e xe 2
1
e x e x x +<
<⋅ (8分) 证:(法一)设()t e t f = []x t ,1∈ 则由拉格朗日中值定理有 整理得:()
e xe 2
1
e x e x x +<
<⋅ 法二:设()ex e x f x -=
()()10
>>-='x e e x f x 故()ex e x f x -=在1>x 时,为增函数,
()()01=>-=f ex e x f x ,即ex e x >
设()()
e xe e x
f x
x +-
=2
1 ()()
()()1012121><-=+-
='x x e xe e e x f x x x x 故()()
e xe e x
f x x +-=21
在1>x 时,为减函数,
()()
()0121=<+-=f xe e e x f x x x ,即()
e xe 2
1
e x x +<
综上,()
e xe 2
1
e x e x x +<<⋅
十一. 设()()()()a x a
x a f x f x F >--=
,其中()x f 在[)+∞,a 上连续,()x f ''在()+∞,a 内存在且大于零,求证()x F 在()+∞,a 内单调递增。

(5分) 证:()()()()()()2
)
(a x a f x f a x x f x F ----'=
' 故()x F 在()+∞,a 内单调递增。

相关文档
最新文档