2021版高考数学(人教A版理科)一轮复习攻略核心素养测评 十五
人教A版高考总复习一轮数学精品课件 第七章 平面向量、复数 第一节 平面向量的概念及线性运算 (2)
第一节 平面向量的概念及线性运算
内
容
索
引
01
强基础 增分策略
02
增素能 精准突破
课标解读
衍生考点
核心素养
1.通过力和力的分析等实例,了解向量的实
际背景,理解平面向量和相等向量的含义,
1.平面向量
理解向量的几何表示.
的有关概念
2.通过实例,掌握向量的加、减运算,并理解 2.平面向量
其几何意义.
+
4
2
4
4
A.
=
1
1
+ 2
2
=
1
1
+ 4
2
3
1
+
,所以
4
4
=
3
4
=
1
+
2
1
− 4 ,故选
方法总结平面向量的线性运算的求解策略
对点训练 2(2021 广东梅州二模)设 P 是△ABC 所在平面内的一点, +
=2,则(
)
A. + =0
B. + =0
C. + =0
D. + + =0
答案 B
解析 + =2移项得 + -2=0, − + − = +
=0.故选 B.
考向2.向量加、减运算的几何意义
典例突破
例3.设非零向量a,b满足|a+b|=|a-b|,则(
满足=3 ,CD 与 AE 交于点 M.若=x +y ,则 x+y=(
5
A.2
2021版高考数学(人教A版理科)一轮复习攻略2021版高考数学(人教A版理科)一轮复习:核心素养测评 三十
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
核心素养测评三十不等式的性质及一元二次不等式(25分钟50分)一、选择题(每小题5分,共35分)1.不等式>0的解集为( )A.B.C.D.【解析】选A.不等式可化为<0,解得<x<,所以原不等式的解集为.【变式备选】一元二次不等式(x+2)(5-x)>0的解集为( )A.{x|x<-2或x>5}B.{x|x<-5或x>2}C.{x|-2<x<5}D.{x|-5<x<2}【解析】选C.由(x+2)(5-x)>0,得(x+2)(x-5)<0,所以-2<x<5,所以不等式的解集为{x|-2<x<5}.2.(2020·临沂模拟)已知集合A={x|x2<x+2},B={x|x<a},若A⊆B,则实数a的取值范围为 ( )A.(-∞,-1]B.(-∞,2]C.[2,+∞)D.[-1,+∞)【解析】选C.因为A={x|x2<x+2}={x|-1<x<2},B={x|x<a}且A⊆B,所以a≥2,即实数a的取值范围为[2,+∞).3.若关于x的不等式x2-3ax+2>0的解集为(-∞,1)∪(m,+∞),则a+m等于( )A.-1B.1C.2D.3【解析】选D.由题意知,1和m是方程x2-3ax+2=0的两个根,则由根与系数的关系,得,解得,所以a+m=3.4.在R上定义运算☉:a☉b=ab+2a+b,则满足x☉(x-2)<0的实数x的取值范围是( ) A.(0,2) B.(-2,1)C.(-∞,-2)∪(1,+∞)D.(-1,2)【解析】选B.由题意,得x☉(x-2)=x(x-2)+2x+x-2<0,即x2+x-2<0,得-2<x<1.5.若<<0,给出下列不等式:①<;②|a|+b>0;③a->b-;④ln a2>ln b2.其中正确的不等式是( )A.①④B.②③C.①③D.②④【解析】选C.方法一:因为<<0,故可取a=-1,b=-2.显然|a|+b=1-2=-1<0,所以②错误;因为ln a2=ln(-1)2=0,ln b2=ln(-2)2=ln 4>0,所以④错误.综上所述,可排除A,B,D.方法二:由<<0,可知b<a<0.①中,因为a+b<0,ab>0,所以<0,>0.故有<,即①正确;②中,因为b<a<0,所以-b>-a>0.故-b>|a|,即|a|+b<0,故②错误;③中,因为b<a<0,又<<0,则->->0,所以a->b-,故③正确;④中,因为b<a<0,根据y=x2在(-∞,0)上为减函数,可得b2>a2>0,而y=ln x在定义域(0,+∞)上为增函数,所以ln b2>ln a2,故④错误.由以上分析,知①③正确.6.(2019·厦门模拟)若关于x的不等式2x2-8x-4-a≥0在1≤x≤4内有解,则实数a的取值范围是( )A.a≤-4B.a≥-4C.a≤-12D.a≥-12【解析】选A.原不等式化为:a≤2x2-8x-4,设函数y=2x2-8x-4,其中1≤x≤4;则x=4时函数y=2x2-8x-4取得最大值-4,所以实数a的取值范围是a≤-4.7.若0<a<b,且a+b=1,则a,,2ab,a2+b2中最大的数为( )A.aB.C.2abD.a2+b2【解析】选D.因为0<a<b,且a+b=1,所以a<,a2+b2>=,2ab=2a(1-a)=-2+<,所以a,,2ab,a2+b2中最大的数为a2+b2.二、填空题(每小题5分,共15分)8.已知a1≤a2,b1≥b2,则a1b1+a2b2________a1b2+a2b1(用“>,<,≥,≤”填空). 【解析】a1b1+a2b2-a1b2-a2b1=a1(b1-b2)+a2(b2-b1)=(a1-a2)(b1-b2);因为a1≤a2,b1≥b2;所以a1-a2≤0,b1-b2≥0;所以(a1-a2)(b1-b2)≤0;所以a1b1+a2b2≤a1b2+a2b1.答案:≤9.如果a>b,给出下列不等式:①<;②a3>b3;③>;④2ac2>2bc2;⑤>1;⑥a2+b2+1>ab+a+b.其中一定成立的不等式的序号是________.【解析】①<,不一定成立,例如取a=2,b=-1;②利用函数y=x3在R上单调递增,可知a3>b3,成立;③>,不一定成立,例如a=1,b=-2;④2ac2>2bc2,不一定成立,例如取c=0时;⑤>1,不一定成立,例如取a=2,b=-1;⑥a2+b2+1>ab+a+b化为:(a-1)2+(b-1)2>(a-1)(b-1),所以+(b-1)2>0,因为b=1时,a>1,所以左边恒大于0,成立.其中一定成立的不等式的序号是②⑥.答案:②⑥10.对于实数a、b、c,有下列命题①若a>b,则ac<bc;②若ac2>bc2,则a>b;③若a<b<0,则a2>ab>b2;④若c>a>b>0,则>;⑤若a>b,>,则a>0,b<0.其中正确的是________.【解析】当c=0时,若a>b,则ac=bc,故①为假命题;若ac2>bc2,则c≠0,c2>0,故a>b,故②为真命题;若a<b<0,则a2>ab且ab>b2,即a2>ab>b2,故③为真命题;若c>a>b>0,则<,则<,则>,故④为真命题;若a>b,>,即>,故a·b<0,则a>0,b<0,故⑤为真命题.答案:②③④⑤(15分钟30分)1.(5分)若a,b,c∈R,a>b,则下列不等式成立的是( )A.<bB.a2>b2C.>D.a|c|>b|c|【解析】选C.取a=1,b=-1,排除选项A;取a=0,b=-1,排除选项B;取c=0,排除选项D;显然>0,则不等式a>b的两边同时乘,所得不等式仍成立.2.(5分)(2020·温州模拟)设0<b<1+a,若关于x的不等式(x-b)2>(ax)2的解集中的整数解恰有3个,则a的取值范围是( )A.(-1,0)B.(0,1)C.(1,3)D.(3,5)【解析】选C.关于x 的不等式(x-b)2>(ax)2 ,等价于(a2-1)x2+2bx-b2<0,转化为[(a+1)x-b]·[(a-1)x+b]<0,不等式的解集中的整数恰有3个,所以a>1,又0<b<1+a所以不等式的解集为<x<<1,所以解集里的整数是-2,-1,0 三个,所以-3≤-<-2,所以2<≤3,即2a-2<b≤3a-3;又因为b<1+a,所以2a-2<1+a,解得a<3,综上,a的取值范围是(1,3).3.(5分)已知p>0,q>0,且p≠q,记A=(1+p)(1+q),B=,C=2+pq,则A、B、C的大小关系为________.(用“<”连接)【解析】因为p>0,q>0,且p≠q,所以A-C=1+p+q+pq-(2+pq)=(1-)2+q>0,所以A>C,又B-A=1+p+q+-(1+p+q+pq)=>0,所以B>A,综上可得C<A<B.答案:C<A<B4.(5分)若a∈R,且a2-a<0,则a,a2,-a,-a2从小到大的排列顺序是________. 【解析】因为a2-a<0,所以0<a<1,-a2-(-a)=-(a2-a)>0,所以-a2>-a,所以-a<-a2<0<a2<a.答案:-a<-a2<a2<a5.(10分)若关于x的不等式x2+mx+2>0在区间[1,2]上有解,求实数m的取值范围.【解析】x∈[1,2]时,不等式可化为m>-x-,设f(x)=-x-,x∈[1,2],则f(x)在[1,2]内的最小值为f(1)=f(2)=-3,所以关于x的不等式x2+mx+2>0在区间[1,2]上有解,实数m的取值范围是m>-3.关闭Word文档返回原板块。
2021版新高考数学一轮复习高考大题专项(一)导数的综合应用新人教A版
e
10
........................ 优质文档..........................
........................ 优质文档..........................
(1)若 a=1,证明:当 x≥0 时,f(x)≥1; (2)略.
3.已知函数 f(x)=(x-k)ex. (1)求 f(x)的单调区间; (2)略.
2
........................ 优质文档..........................
........................ 优质文档..........................
高考大题专项(一) 导数的综合应用
突破 1 导数与函数的单调性 1.已知函数 f(x)=1x3-a(x2+x+1).
3
(1)若 a=3,求 f(x)的单调区间; (2)略.
2.已知函数 f(x)=ex-ax2. 1
........................ 优质文档..........................
(1)当 a=-1 时,求 f(x)的最大值; (2)若 f(x)在区间(0,e]上的最大值为-3,求 a 的值.
9
........................ 优质文档..........................
突破 4 导数与函数的零点 1.已知函数 f(x)=1x2-mln x.若 m≥1,令 F(x)=f(x)-x2+(m+1)x,试讨论函数 F(x)的零点个数.
高考数学一轮复习考点规范练55几何概型含解析新人教A版
考点规范练55 几何概型基础巩固1.(2021全国Ⅰ,文7)在区间(0,12)随机取1个数,则取到的数小于13的概率为( ) A.34 B.23 C.13 D.16答案:B解析:所求事件的概率P=13-012-0=23.2.若将一个质点随机地投入到如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( )A.π2 B.π4C.π6D.π8答案:B 解析:所求概率为S 半圆S 长方形=12π·122×1=π4,故选B .3.“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”其意思是:有一个正方形的池塘,池塘的边长为一丈,有一棵芦苇生长在池塘的正中央,露出水面一尺,若把它引向岸边,正好与岸边齐(如图所示),问水有多深?芦苇有多长?其中一丈为十尺.若从该芦苇上随机取一点,则该点取自水上的概率为( )A.1213 B.113C.314D.213答案:B解析:设水深为x 尺,根据勾股定理可得(x+1)2=x 2+52,解得x=12,则水深12尺,芦苇长13尺.根据几何概型概率公式可得,从该芦苇上随机取一点,该点取自水上的概率为P=113,故选B.4.某人从甲地去乙地共走了500 m,途经一条宽为x m的河流,该人不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品未掉在河里,则能找到,已知该物品能被找到的概率为45,则河宽大约为()A.80 mB.50 mC.40 mD.100 m答案:D解析:由长度型的几何概型公式结合题意可知,河宽大约为500×(1-45)=100(m).5.已知在△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一点D,则使△ABD为钝角三角形的概率为()A.16B.13C.12D.23答案:C解析:如图,当BE=1时,∠AEB为直角,则点D在线段BE(不包含B,E点)上时,△ABD为钝角三角形;当BF=4时,∠BAF为直角,则点D在线段CF(不包含C,F点)上时,△ABD为钝角三角形.故△ABD为钝角三角形的概率为1+26=12.6.有一个长、宽分别为50 m,30 m的游泳池,一名工作人员在池边巡视,某时刻出现在池边任一位置的可能性相同.一人在池中心(对角线的交点)处呼唤工作人员,其声音可传出15√2 m,则工作人员能及时听到呼唤(出现在声音可传到区域)的概率是()A.34B.38C.3π16D.12+3π32答案:B解析:如图,工作人员在池边巡视的长度为160,工作人员能及时听到呼唤的长度为30+30=60,故所求的概率为60160=38.7.若在区间[-1,1]上随机取一个数x ,则sin πS 4的值介于-12与√22之间的概率为( )A.14 B.13C.23D.56答案:D解析:∵-1≤x ≤1,∴-π4≤πS 4≤π4.由-12≤sinπS 4≤√22, 得-π6≤πS 4≤π4,则-23≤x ≤1.故所求事件的概率为1-(-23)1-(-1)=56.8.记函数f (x )=√6+S -S 2的定义域为D.在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是 . 答案:59解析:由6+x-x 2≥0,即x 2-x-6≤0得-2≤x ≤3,所以D=[-2,3]⊆[-4,5].由几何概型的概率公式得x ∈D 的概率P=3-(-2)5-(-4)=59,答案为59.9.记集合A={(x ,y )|x 2+y 2≤4}和集合B={(x ,y )|x+y-2≤0,x ≥0,y ≥0}表示的平面区域分别为Ω1和Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2的概率为 .答案:12π解析:作圆O :x 2+y 2=4,区域Ω1就是圆O 内部(含边界),其面积为4π,区域Ω2就是图中△AOB 内部(含边界),其面积为2,因此所求概率为24π=12π.10.在圆C :(x-3)2+y 2=3上任取一点P ,则锐角∠COP<π6(O 为坐标原点)的概率是 .答案:23解析:当∠COP=π6时,直线OP 的方程为x ±√3y=0,圆心C 到直线OP 的距离d=32.又圆C 的半径为√3,此时弦所对的圆心角为π3,所以所求概率P=1-π3×22π=23.能力提升11.在区间[-1,1]上随机取一个数k ,使直线y=kx+√52与圆x 2+y 2=1不相交的概率为( ) A.34 B.23C.12D.13答案:C 解析:要使直线y=kx+√52与圆x 2+y 2=1相交,应满足√52√≥1,解得-12≤k ≤12,所以在区间[-1,1]上随机取一个数k ,使直线y=kx+√52与圆x 2+y 2=1不相交的概率为P=12+121+1=12.故选C .12.如图,“赵爽弦图”是由四个全等的直角三角形(阴影部分)围成一个大正方形,中间空出一个小正方形组成的图形.若在大正方形内随机取一点,该点落在小正方形的概率为15,则图中直角三角形较大锐角的正弦值为( )A.√55B.2√55C.15D.√33答案:B解析:设小正方形的边长为1,直角三角形的直角边长分别为x ,1+x ,√S 2+(1+S )2. 由几何概型可得12S 2+(1+S )2=15,解得x=1(x=-2(舍)),所以直角三角形的边长分别为1,2,√5,直角三角形较大锐角的正弦值为√5=2√55,故选B .13.已知函数f (x )=x 2+bx+c ,其中0≤b ≤4,0≤c ≤4.记函数f (x )满足条件{S (2)≤12,S (-2)≤4为事件A ,则事件A 发生的概率为( ) A.14 B.58 C.12 D.38答案:C 解析:由题意, 得{4+2S +S ≤12,4-2S +S ≤4,0≤S ≤4,0≤S ≤4,即{2S +S -8≤0,2S -S ≥0,0≤S ≤4,0≤S ≤4,表示的区域(阴影部分)如图所示,可知阴影部分的面积为8, 所以所求概率为12,故选C .14.设点(a ,b )是区域{S +S -4≤0,S >0,S >0内的任意一点,则使函数f (x )=ax 2-2bx+3在区间[12,+∞)内是增函数的概率为 . 答案:13解析:作出不等式组{S +S -4≤0,S >0,S >0所对应的平面区域如图△AOB 区域,可知符合条件的点所构成的区域面积为S △AOB =12×4×4=8. 若f (x )=ax 2-2bx+3在区间[12,+∞)内是增函数,则{S >0,--2S 2S=S S ≤12,即{S >0,S -2S ≥0.则A (0,4),B (4,0), 由{S +S -4=0,S -2S =0得{S =83,S =43.即C (83,43). 则使函数f (x )=ax 2-2bx+3在区间[12,+∞)内为增函数的点(a ,b )所构成的区域为△OBC ,其面积为12×4×43=83.故所求的概率为838=13.15.如图,在Rt △ABC 中,∠BAC=90°,AB=1,BC=2.在边BC 上任取一点M ,则∠AMB ≥90°的概率为 .答案:14解析:如图,在Rt △ABC 中,作AD ⊥BC ,D 为垂足,由题意可得BD=12,且点M 在BD 上时,满足∠AMB ≥90°,故所求概率为SSSS=122=14.16.张先生订了一份报纸,送报人在早上6:30~7:30之间把报纸送到他家,张先生离开家去上班的时间在早上7:00~8:00之间,则张先生在离开家之前能得到报纸的概率是 . 答案:78解析:以横坐标x 表示报纸送到时间,纵坐标y 表示张先生离家时间,建立如图所示的平面直角坐标系.因为随机试验落在正方形区域内任何一点是等可能的,所以符合几何概型.根据题意只要点落到阴影部分,就表示张先生在离开家前能得到报纸,故所求的概率为1×1-12×12×121×1=78.高考预测17.若不等式x 2+y 2≤2所表示的平面区域为M ,不等式组{S -S ≥0,S +S ≥0,S ≥2S -6表示的平面区域为N ,现随机向区域N 内抛一粒豆子,则豆子落在区域M 内的概率为 . 答案:π24解析:分别作出平面区域M 和平面区域N 如图所示,可知平面区域M 与平面区域N 重叠部分的面积为14π(√2)2=π2,平面区域N 的面积为12×3×2+12×3×6=12,故所求的概率为12π12=π24.。
2021高考数学(理)人教A版一轮复习学案+作业:第六章 6.1 数列的概念与简单表示法 Word
姓名,年级:时间:§6。
1 数列的概念与简单表示法最新考纲考情考向分析1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2。
了解数列是自变量为正整数的一类特殊函数.以考查S n与a n的关系为主,简单的递推关系也是考查的热点.本节内容在高考中以选择、填空的形式进行考查,难度为低档。
1.数列的有关概念概念含义数列按照一定顺序排列的一列数数列的项数列中的每一个数数列的通项数列{a n}的第n项a n通项公式如果数列{a n}的第n项a n与序号n之间的关系能用公式a n =f (n)表示,这个公式叫做数列的通项公式前n项和数列{a n}中,S n=a1+a2+…+a n叫做数列的前n项和2。
数列的表示方法列表法列表格表示n与a n的对应关系图象法把点(n,a n)画在平面直角坐标系中公式法通项公式把数列的通项用公式表示递推公式使用初始值a1和a n+1=f (a n)或a1,a2和a n+1=f (a n,a n-1)等表示数列的方法n n若数列{a n}的前n项和为S n,则a n=错误!4.数列的分类分类标准类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列a n+1>a n其中n∈N*递减数列a n+1〈a n常数列a n+1=a n概念方法微思考1.数列的项与项数是一个概念吗?提示不是,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.2.数列的通项公式a n=3n+5与函数y=3x+5有何区别与联系?提示数列的通项公式a n=3n+5是特殊的函数,其定义域为N*,而函数y=3x+5的定义域是R,a n=3n+5的图象是离散的点,且排列在y=3x+5的图象上.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( ×)(2)所有数列的第n项都能使用公式表达.(×)(3)根据数列的前几项归纳出数列的通项公式可能不止一个.(√)(4)1,1,1,1,…不能构成一个数列.(×)题组二教材改编2.在数列{a n}中,已知a1=1,a n+1=4a n+1,则a3=________。
2021版高考化学一轮复习 核心素养测评五 氧化还原反应概念和规律 (含解析)新人教版
氧化还原反应概念和规律一、选择题(本题包括4小题,每题6分,共24分)1。
(2019·佛山模拟)中国科学技术大学的钱逸泰教授等以CCl4和金属钠为原料,在700 ℃时反应制造出纳米级金刚石粉末和另一种化合物。
该成果发表在世界权威的《科学》杂志上,立即被科学家们高度评价为“稻草变黄金".同学们对此有下列一些“理解",你认为其中错误的是( )A.这个反应是氧化还原反应B。
金刚石属于金属单质C。
另一种化合物为NaClD.制造过程中元素种类没有改变【解析】选B。
CCl4和金属钠反应生成金刚石(碳单质),碳元素的化合价降低,有元素的化合价变化,属于氧化还原反应,A项正确;金刚石的构成元素为碳,属于非金属单质,B项错误;根据原子守恒,CCl4和金属钠反应得到金刚石(碳单质),另一种化合物包括Na和Cl元素,为NaCl,C项正确;根据元素守恒定律可知制造过程中元素种类没有改变,D项正确。
2.相同物质的量的KClO3分别发生下述反应:①有催化剂MnO2存在时,受热分解得到氧气;②若不使用催化剂,加热至470 ℃左右,得到KClO4(高氯酸钾)和KCl。
下列关于①和②的说法不正确的是( )A.都属于氧化还原反应B.发生还原反应的元素相同C。
发生氧化反应的元素不同D。
生成KCl的物质的量相同【解析】选D。
有MnO2作催化剂时发生反应:2KClO32KCl+3O2↑,被氧化的元素为O,被还原的元素为Cl;若不用MnO2作催化剂时发生反应:4KClO33KClO4+KCl,被氧化与被还原的元素都是Cl,由两种条件下反应的化学方程式可推知等物质的量的KClO3参加反应时,生成KCl的物质的量不同。
【加固训练】(2020·滁州模拟)制取新型水处理剂ClO2的化学方程式为2KClO3+H2C2O4+H2SO42ClO2↑+K2SO4+2CO2↑+2H2O。
下列说法错误的是( )A.KClO3在反应中得到电子B。
高考数学(理)一轮复习人教A版-第六章 第3节 (2)
...第3节等比数列及其前n项和最新考纲 1.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式;2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题;3.了解等比数列与指数函数的关系.知识梳理1.等比数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列.数学语言表达式:a na n-1=q(n≥2,q为非零常数).(2)如果三个数a,G,b成等比数列,那么G叫做a与b的等比中项,其中G=±ab.2. 等比数列的通项公式及前n项和公式(1)若等比数列{a n}的首项为a1,公比是q,则其通项公式为a n=a1q n-1;通项公式的推广:a n=a m q n-m.(2)等比数列的前n项和公式:当q=1时,S n=na1;当q ≠1时,S n =a 1(1-q n ) 1-q =a 1-a n q1-q .3.等比数列的性质已知{a n }是等比数列,S n 是数列{a n }的前n 项和. (1)若k +l =m +n (k ,l ,m ,n ∈N *),则有a k ·a l =a m ·a n . (2)相隔等距离的项组成的数列仍是等比数列,即a k , a k +m ,a k +2m ,…仍是等比数列,公比为q m .(3)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n .[常用结论与微点提醒]1.若数列{a n }为等比数列,则数列{c ·a n }(c ≠0),{|a n |},{a 2n},⎩⎨⎧⎭⎬⎫1an 也是等比数列. 2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.诊 断 自 测1.思考辨析(在括号内打“√”或“×”)(1)等比数列公比q 是一个常数,它可以是任意实数.( ) (2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(3)数列{a n }的通项公式是a n =a n ,则其前n 项和为S n =a (1-a n)1-a.( )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) 解析 (1)在等比数列中,q ≠0.(2)若a =0,b =0,c =0满足b 2=ac ,但a ,b ,c 不成等比数列. (3)当a =1时,S n =na .(4)若a 1=1,q =-1,则S 4=0,S 8-S 4=0,S 12-S 8=0,不成等比数列. 答案 (1)× (2)× (3)× (4)×2.(必修5P53AT1(2)改编)已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( )A .-12B .-2C .2 D.12解析 由题意知q 3=a 5a 2=18,即q =12.3.(2018·湖北省七市联考)公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( ) A .8B .9C .10D .11解析 由题意得,2a 5a 6=18,a 5a 6=9,∴a 1a m =a 5a 6=9, ∴m =10. 答案 C4.(2015·全国Ⅰ卷)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.解析 由a n +1=2a n ,知数列{a n }是以a 1=2为首项,公比q =2的等比数列,由S n =2(1-2n )1-2=126,解得n =6.答案 65.(2017·北京卷)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解析 {a n }为等差数列,a 1=-1,a 4=8=a 1+3d =-1+3d ,∴d =3,∴a 2=a 1+d =-1+3=2.{b n }为等比数列,b 1=-1,b 4=8=b 1·q 3=-q 3,∴q =-2, ∴b 2=b 1·q =2,则a 2b 2=22=1.答案 1考点一 等比数列基本量的运算【例1】 (1)(2017·全国Ⅲ卷)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=(2)(2017·江苏卷)等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________.解析 (1)由{a n }为等比数列,设公比为q . 由⎩⎨⎧a 1+a 2=-1,a 1-a 3=-3,得⎩⎨⎧a 1+a 1q =-1,①a 1-a 1q 2=-3,② 显然q ≠1,a 1≠0,②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.(2)设数列{a n }首项为a 1,公比为q (q ≠1), 则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q =74,S 6=a 1(1-q 6)1-q =634,解得⎩⎪⎨⎪⎧a 1=14,q =2, 所以a 8=a 1q 7=14×27=32. 答案 (1)-8 (2)32规律方法 1.等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解. 2.等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q1-q.【训练1】 (1)(2018·武昌调研)设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则a 1=( ) A .-2B .-1C.12D.23(2)(2016·全国Ⅰ卷)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析 (1)由S 2=3a 2+2,S 4=3a 4+2得a 3+a 4=3a 4-3a 2,即q +q 2=3q 2-3,解得q =-1(舍)或q =32,将q =32代入S 2=3a 2+2中得a 1+32a 1=3×32a 1+2,解得a 1=-1,故选B.(2)设等比数列{a n }的公比为q ,∴⎩⎨⎧a 1+a 3=10,a 2+a 4=5⇒⎩⎨⎧a 1+a 1q 2=10,a 1q +a 1q 3=5,解得⎩⎪⎨⎪⎧a 1=8,q =12, ∴a 1a 2…a n =a n 1q1+2+…+(n -1)=2-n 22+7n2.记t =-n 22+7n 2=-12(n 2-7n ),结合n ∈N *,可知n =3或4时,t 有最大值6.又y =2t 为增函数.所以a 1a 2…a n 的最大值为64. 答案 (1)B (2)64考点二 等比数列的性质及应用【例2】 (1)(必修5P68BT1(1))等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( ) A .12B .10C .8D .2+log 35(2)(2018·云南11校调研)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( ) A .40B .60C .32D .50解析 (1)由等比数列的性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,所以a 5a 6=9,则原式=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=10.(2)由数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是首项为4,公比为2的等比数列,则S 9-S 6=a 7+a 8+a 9=16,S 12-S 9=a 10+a 11+a 12=32,因此S 12=4+8+16+32=60. 答案 (1)B (2)B规律方法 1.在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度. 2.在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.【训练2】 (1)(2018·西安八校联考)已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=-33,b 1+b 6+b 11=7π,则tan b 3+b 91-a 4·a 8的值是( )A .- 3B .-1C .-33D. 3(2)(一题多解)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=________.解析 (1)依题意得,a 36=(-3)3,a 6=-3,3b 6=7π,b 6=7π3,b 3+b 91-a 4·a 8=2b 61-a 26=-7π3,故tan b 3+b 91-a 4·a 8=tan ⎝⎛⎭⎪⎫-7π3=-tan π3=- 3.(2)法一 由等比数列的性质S 3,S 6-S 3,S 9-S 6仍成等比数列,由已知得S 6=3S 3, ∴S 6-S 3S 3=S 9-S 6S 6-S 3,即S 9-S 6=4S 3,S 9=7S 3,∴S 9S 6=73.法二 因为{a n }为等比数列,由S 6S 3=3,设S 6=3a ,S 3=a ,所以S 3,S 6-S 3,S 9-S 6为等比数列,即a ,2a ,S 9-S 6成等比数列,所以S 9-S 6=4a ,解得S 9=7a ,所以S 9S 6=7a3a=73.答案 (1)A (2)73考点三 等比数列的判定与证明【例3】 (2016·全国Ⅲ卷)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明 由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1,得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n ,由a 1≠0,λ≠0得a n ≠0,所以a n +1a n=λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1. (2)解 由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n.由S 5=3132得1-⎝⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132. 解得λ=-1.规律方法 证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.【训练3】 (2017·安徽“江南十校”联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4.(1)证明:{S n -n +2}为等比数列; (2)求数列{S n }的前n 项和T n . (1)证明 因为a n =S n -S n -1(n ≥2), 所以S n -2(S n -S n -1)=n -4(n ≥2), 即S n =2S n -1-n +4(n ≥2),所以S n -n +2=2[S n -1-(n -1)+2](n ≥2),又由题意知a 1-2a 1=-3,所以a 1=3,则S 1-1+2=4, 所以{S n -n +2}是首项为4,公比为2等比数列. (2)解 由(1)知S n -n +2=2n +1,所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n =4(1-2n )1-2+n (n +1)2-2n =2n +3+n 2-3n -82.基础巩固题组(建议用时:40分钟)一、选择题1.已知{a n },{b n }都是等比数列,那么( ) A .{a n +b n },{a n ·b n }都一定是等比数列B .{a n +b n }一定是等比数列,但{a n ·b n }不一定是等比数列C .{a n +b n }不一定是等比数列,但{a n ·b n }一定是等比数列D .{a n +b n },{a n ·b n }都不一定是等比数列 解析 两个等比数列的积仍是一个等比数列. 答案 C2.(2018·太原模拟)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( ) A .2B .4C. 2D .2 2解析 在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q 2=a 4a 2=14,所以q =12,a 1=a 2q =4.答案 B3.(2017·全国Ⅱ卷)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏B .3盏C .5盏D .9盏解析 设塔的顶层的灯数为a 1,七层塔的总灯数为S 7,公比为q ,则依题意S 7=381,公比q =2.∴a 1(1-27)1-2=381,解得a 1=3.答案 B4.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18B .-18C.578D.558解析 因为a 7+a 8+a 9=S 9-S 6,且公比不等于-1,在等比数列中,S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以有8(S 9-S 6)=(-1)2,S 9-S 6=18,即a 7+a 8+a 9=18. 答案 A5.(2018·昆明诊断)在等比数列{a n }中,若a 3,a 7是方程x 2+4x +2=0的两根,则a 5的A .-2B .- 2C .± 2D. 2解析 根据根与系数之间的关系得a 3+a 7=-4, a 3a 7=2,由a 3+a 7=-4<0,a 3a 7>0, 所以a 3<0,a 7<0,即a 5<0, 由a 3a 7=a 25,得a 5=-a 3a 7=- 2. 答案 B 二、填空题6.(2018·河南百校联盟联考改编)若等比数列{a n }的前n 项和为S n ,a 5=40,且S 6+3a 7=S 8,则a 2等于________.解析 由S 6+3a 7=S 8,得2a 7=a 8,则公比q 为2,所以a 2=a 523=4023=5. 答案 57.已知数列{a n }的前n 项和为S n ,且满足a n +S n =1(n ∈N *),则通项a n =________. 解析 ∵a n +S n =1,①∴a 1=12,a n -1+S n -1=1(n ≥2),②由①-②,得a n -a n -1+a n =0,即a n a n -1=12(n ≥2),∴数列{a n }是首项为12,公比为12的等比数列, 则a n =12×⎝ ⎛⎭⎪⎫12n -1=12n .答案 12n8.(2018·成都诊断)已知数列{a n }中,a 1=2,且a 2n +1a n =4(a n +1-a n )(n ∈N *),则其前9项的和S 9=________.解析 由a 2n +1a n=4(a n +1-a n )得,a 2n +1-4a n +1a n +4a 2n =0,∴(a n +1-2a n )2=0,a n +1a n =2,∴数列{a n }是首项a 1=2,公比为2的等比数列,∴S 9=2(1-29)1-2=1 022.答案 1 0229.(2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解 (1)设{a n }的公比为q ,由题设可得 ⎩⎨⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎨⎧q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n .(2)由(1)得S n =a 1(1-q n )1-q =-2[1-(-2)n ]1-(-2)=23[(-2)n -1],则S n +1=23[(-2)n +1-1],S n +2=23[(-2)n +2-1],所以S n +1+S n +2=23[(-2)n +1-1]+23[(-2)n +2-1]=23[2(-2)n-2]=43[(-2)n -1]=2S n , ∴S n +1,S n ,S n +2成等差数列.10.(2018·惠州调研)已知数列{a n }中,点(a n ,a n +1)在直线y =x +2上,且首项a 1=1. (1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值. 解 (1)根据已知a 1=1,a n +1=a n +2, 即a n +1-a n =2=d ,所以数列{a n }是一个等差数列,a n =a 1+(n -1)d =2n -1. (2)数列{a n }的前n 项和S n =n 2.等比数列{b n }中,b 1=a 1=1,b 2=a 2=3, 所以q =3,b n =3n -1.数列{b n }的前n 项和T n =1-3n 1-3=3n -12.T n ≤S n 即3n -12≤n 2,又n ∈N *,所以n =1或2.能力提升题组 (建议用时:20分钟)11.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( )A .(3n -1)2B.12(9n -1) C .9n -1 D.14(3n -1) 解析 ∵a 1+a 2+…+a n =3n -1,n ∈N *,n ≥2时,a 1+a 2+…+a n -1=3n -1-1, ∴当n ≥2时,a n =3n -3n -1=2·3n -1,又n =1时,a 1=2适合上式,∴a n =2·3n -1,故数列{a 2n }是首项为4,公比为9的等比数列.因此a 21+a 22+…+a 2n =4(1-9n )1-9=12(9n -1). 答案 B12.(2018·东北三省三校联考)各项均为正数的数列{a n }和{b n }满足:a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列,且a 1=1,a 2=3,则数列{a n }的通项公式为________.解析 由题意知2b n =a n +a n +1,a 2n +1=b n ·b n +1,∴a n +1=b n b n +1,当n ≥2时,2b n =b n -1b n +b n b n +1,∵b n >0,∴2b n =b n -1+b n +1,∴{b n }成等差数列,由a 1=1,a 2=3,得b 1=2,b 2=92,∴b 1=2,b 2=322,∴公差d =22,∴b n =n +122,∴b n =(n +1)22, ∴a n =b n -1b n =n (n +1)2. 答案 a n =n (n +1)213.(2017·合肥模拟)设{a n }是公比为q 的等比数列.(1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列.(1)解 设{a n }的前n 项和为S n ,当q =1时,S n =a 1+a 1+…+a 1=na 1;当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n ,∴S n =a 1(1-q n)1-q ,∴S n =⎩⎨⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1. (2)证明 假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1), a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1. ∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾. 故数列{a n +1}不是等比数列.。
2021届高考数学总复习(人教A版,理科)配套题库: 两角和与差的正弦、余弦和正切(含答案解析)
4.已知sinθ+cosθ= ,则sinθ-cosθ的值为( ).
A. B.- C. D.-
解析∵sinθ+cosθ= ,∴(sinθ+cosθ)2=1+sin 2θ= ,∴sin 2θ= ,又0<θ< ,∴sinθ<cosθ.∴sinθ-cosθ=- =- =- .
答案B
5.若tanα=lg(10a),tanβ=lg ,且α+β= ,则实数a的值为( ).
S(α+β):sin(α+β)=sinαcosβ+cosαsinβ.
(2)已知cosα=- ,α∈ ,tanβ=- ,β∈ ,
求cos(α+β).
解(1)证明①如图,在直角坐标系xOy内作单位圆O,并作出角α,β与-β,使角α的始边为Ox轴非负半轴,交⊙O于点P1,终边交⊙O于点P2;角β的始边为OP2,终边交⊙O于点P3,角-β的始边为OP1,终边交⊙O于点P4.
答案C
二、填空题
7.已知cos = ,α∈ ,则cosα=________.
解析∵α∈ ,∴α+ ∈ ,
∴sin = .
故cosα=cos [ - ]
=cos cos +sin sin
= × + × = .
答案
8.设α为锐角,若cos = ,则
sin 的值为________.
解析∵α为锐角且cos = ,
∴α+ ∈ ,∴sin = .
∴sin =sin
=sin 2 cos -cos 2 sin
= sin cos -
= × × - = - = .
答案
9.函数f(x)=2cos2x+sin 2x的最小值是________.
解析∵f(x)=2cos2x+sin 2x=1+cos 2x+sin 2x=1+ sin ,∴f(x)min=1- .
高考数学总复习“素养立意”的解读与典例分析理新人教A版
“素养立意”的解读与典例分析一、核心素养1.“核心素养”的内涵核心素养是学生在接受相应学段的教育过程中,逐步形成的适应个人终身发展和社会发展需要的必备品格与关键能力.“核心素养”之“核心”应当是基础,是起着奠基作用的品格和能力,聚集的是思维素养.核心素养强调的不是知识和技能,而是获取知识的能力.2.核心素养的基本特点(1)核心素养是知识、能力和态度等的综合表现.(2)核心素养可以通过接受教育、训练来形成和发展.(3)核心素养具有发展连续性和阶段性.(4)核心素养兼具个人价值和社会价值.(5)核心素养的作用发挥具有整合性.二、数学核心素养数学核心素养是学生在接受相应学段的教育过程中,逐步形成的适应个人终身发展和社会发展需要的数学思维品质与关键能力.高中阶段数学核心素养包括:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析.这些数学核心素养既有独立性,又相互交融,形成一个有机整体.三、如何认识和理解数学的核心素养数学核心素养是学生通过数学的学习、反思、积累、升华、孕育出来的,面对复杂的、不确定的现实情境和问题时,能够综合运用特定的数学观念、知识、技能、思维模式、探究技能等,用积极的态度、科学的精神去提出问题、分析问题、解决问题、交流结果的过程中表现出来的综合品质.四、在教学中培育学生核心素养的措施1.树立以发展学生数学核心素养为导向的教学意识.2.教师在教学实践中要结合情境不断探索和创新教学方式,以有效提升学生的数学基本能力.3.以学生发展为本,充分发挥数学在培养学生的科学精神、思维品质的重要作用.4.帮助学生理解和掌握数学的基础知识和基本技能,体会数学内容中所蕴含的基本思想和文化价值,积累学习数学和解决实际问题的基本经验,提升数学基本能力,特别是抽象能力、推理能力、建模能力、运算能力、直观想象能力、数据分析能力.5.坚持并加强问题导向,重视创设合适的教学情境,特别是实际情境,发展学生的创新意识和应用能力.6.把教学活动的重心放在促进学生学会学习数学上,要加强“学法”指导,帮助学生养成良好的数学学习习惯;充分运用信息技术手段,积极探索有利于学生学习的多样化教学方式.五、数学学科的各项核心素养1.数学抽象数学抽象是指舍去事物的一切物理属性,得到数学研究对象的思维过程.主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并且用数学符号或者数学术语予以表征.在数学抽象核心素养的形成过程中,积累从具体到抽象的活动经验.学生能更好地理解数学概念、命题、方法和体系,能通过抽象、概括去认识、理解、把握事物的数学本质,能逐渐养成一般性思考问题的习惯,能在其他学科的学习中主动运用数学抽象的思维方式解决问题.2.逻辑推理逻辑推理是指从一些事实和命题出发,依据逻辑规则推出一个问题的思维过程.主要包括两类:一类是从特殊到一般的推理,推理形式主要有归纳、类比;一类是从一般到特殊的推理,推理形式主要有演绎.在逻辑推理核心素养的形成过程中,学生能够发现问题和提出问题;能掌握推理的基本形式,表述论证的过程;能理解数学知识之间的联系,建构知识框架;形成有论据、有条理、合乎逻辑的思维品质,增强数学交流能力.3.数学建模数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程.主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,求解结论,验证结果并改进模型,最终解决实际问题.在数学建模核心素养的形成过程中,积累用数学解决实际问题的经验.学生能够在实际情境中发现和提出问题;能够针对问题建立数学模型;能够运用数学知识求解模型,并尝试基于现实背景验证模型和完善模型;能够提升应用能力,增强创新意识.4.直观想象直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用图形理解和解决数学问题的过程.主要包括:借助空间认识事物的位置关系、形态变化与运动规律;利用图形描述、分析数学问题;建立形与数的联系;构建数学问题的直观模型,探索解决问题的思路.在直观想象核心素养的形成过程中,学生能够进一步发展几何直观和空间想象能力,增强运用图形和空间想象思考问题的意识,提升数形结合的能力,感悟事物的本质,培养创新思维.5.数学运算数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的过程.主要包括:理解运算对象,掌握运算法则,探究运算方向,选择运算方法,设计运算程序,求得运算结果等.在数学运算核心素养的形成过程中,学生能够进一步发展数学运算能力;能有效借助运算方法解决实际问题;能够通过运算促进数学思维发展,养成程序化思考问题的习惯;形成一丝不苟、严谨求实的科学精神.6.数据分析数据分析是指针对研究对象获得相关数据,运用统计方法对数据中的有用信息进行分析和推断,形成知识的过程.主要包括:收集数据,整理数据,提取信息,构建模型对信息进行分析、推断,获得结论.在数据分析核心素养的形成过程中,学生能够提升数据处理的能力,增强基于数据表达现实问题的意识,养成通过数据思考问题的习惯,积累依托数据探索事物本质、关联和规律的活动经验.六、“素养立意”的典例剖析【例1】已知圆C:x2+y2-2x+4y=0关于直线3x-ay-11=0对称,则圆C中以为中点的弦长为()B.2C.3D.4答案D解析∵圆C:x2+y2-2x+4y=0关于直线3x-ay-11=0对称,3x-ay-11=0过圆心C(1,-2),∴3+2a-11=0, 直观想象解得a=4,∴=(1,-1), 数学运算点(1,-1)到圆心C(1,-2)的距离d==1, 数学运算圆C:x2+y2-2x+4y=0的半径r=, 数学运算∴圆C中以为中点的弦长为2=2=4.故选D.直观想象和数学运算【例2】已知矩形ABCD,AB=6,BC=4,E,F分别是AB,CD上两动点,且AE=DF,把四边形BCFE沿EF 折起,使平面BCFE⊥平面ABCD,若折得的几何体的体积最大,则该几何体外接球的体积为.答案解析画出折得的几何体(直三棱柱)如图所示, 直观想象设DF=x,FC=6-x,则DC=, 数学抽象和数学运算由题设底面面积S△DFC=(6-x)(6-x), 数学抽象和数学运算因为高为4,所以当g(x)=(6-x)的最大值时,折得的几何体的体积最大.逻辑推理令=t⇒x=t2+3,6-x=3-t2, 数学抽象则g(x)=f(t)=t(3-t2)=-t3+3t, 数学建模求导可得f'(t)=-3(t2-1)=-3(t+1)(t-1),故当t=1⇒x=4时, 数学运算即DC==2时,几何体的体积最大,此时底面外接圆的半径为r=2.设外接球的球心为O,则点O到底面的距离d=2, 直观想象所以球的半径R==2,则外接球的体积V=π(2)3=.数学运算【例3】从某校随机抽取200名学生,获得了他们一周课外阅读时间(单位:h)的数据,整理得到编号分组频数1 [0,2) 122 [2,4) 163 [4,6) 344 [6,8) 445 [8,10) 506 [10,12) 247 [12,14) 128 [14,16) 49 [16,18] 4合计200(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12 h的概率;(2)求频率分布直方图中的a,b的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的200名学生该周课外阅读时间的平均数在第几组.解(1)由频率分布表,得该周课外阅读时间不少于12 h的频数为12+4+4=20, 数据分析故可估计该周课外阅读时间少于12 h的概率为1-=0.9.数学运算(2)由频率分布表可知数据在[4,6)的频数为34,故这一组的频率为0.17,即a=0.085,数据在[8,10)的频数为50,故这一组的频率为0.25,即b=0.125.数据分析(3)数据的平均数为(12×1+3×16+5×34+7×44+9×50+11×24+13×12+15×4+17×4)=7.68(h), 数学运算故样本中的200名学生该周课外阅读时间的平均数在第四组.数据分析【例4】(2017全国Ⅰ,理20)已知椭圆C:=1(a>b>0),四点P1(1,1),P2(0,1),P3,P4中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:.解(1)由于P3,P4两点关于y轴对称,故由题设知C经过P3,P4两点.直观想象又由知,C不经过点P1,所以点P2在C上.逻辑推理因此解得故C的方程为+y2=1.数学运算(2)设直线P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知t≠0,且|t|<2,可得A,B的坐标分别为.则k1+k2==-1,得t=2,不符合题设.数学抽象及数学运算从而可设l:y=kx+m(m≠1).将y=kx+m代入+y2=1, 直观想象得(4k2+1)x2+8kmx+4m2-4=0.由题设可知Δ=16(4k2-m2+1)>0.数学运算设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.而k1+k2==.由题设k1+k2=-1,故(2k+1)x1x2+(m-1)(x1+x2)=0.即(2k+1)·+(m-1)·=0.解得k=-.当且仅当m>-1时,Δ>0,于是l:y=-x+m, 逻辑推理即y+1=-(x-2),所以l过定点(2,-1).数学抽象。
2021高考数学一轮复习第三章导数及其应用强化训练导数在函数中的应用理新人教A版
强化训练 导数在函数中的应用1.函数f (x )=e x-e x ,x ∈R 的单调递增区间是( ) A.(0,+∞) B.(-∞,0) C.(-∞,1) D.(1,+∞)答案 D解析 由题意知,f ′(x )=e x-e ,令f ′(x )>0,解得x >1,故选D. 2.函数f (x )=1+x -sin x 在(0,2π)上是( ) A.增函数 B.减函数C.在(0,π)上增,在(π,2π)上减D.在(0,π)上减,在(π,2π)上增 答案 A解析 ∵f ′(x )=1-cos x >0,∴f (x )在(0,2π)上是增函数.3.f (x )为定义在R 上的可导函数,且f ′(x )>f (x ),对任意正实数a ,则下列式子成立的是( )A.f (a )<e af (0) B.f (a )>e af (0) C.f (a )<f 0eaD.f (a )>f 0ea答案 B 解析 令g (x )=f xex,∴g ′(x )=f ′x e x -f x e x ex2=f ′x -f xex>0.∴g (x )在R 上为增函数,又∵a >0, ∴g (a )>g (0),即f aea>f 0e,即f (a )>e af (0).4.函数y =xe x 在[0,2]上的最大值是( )A.1eB.2e 2C.0D.12e 答案 A解析 易知y ′=1-xex ,x ∈[0,2],令y ′>0,得0≤x <1,令y ′<0,得1<x ≤2,所以函数y=x e x 在[0,1)上单调递增,在(1,2]上单调递减,所以y =x e x 在[0,2]上的最大值是1e,故选A. 5.直线y =a 与函数y =x 3-3x 的图象有三个相异的交点,则实数a 的取值范围为( ) A.(-2,2) B.[-2,2] C.[2,+∞) D.(-∞,-2]答案 A解析 考虑数形结合,y =x 3-3x 的导数y ′=3x 2-3=3(x -1)·(x +1),令y ′>0可解得x <-1或x >1,故y =x 3-3x 在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减,函数的极大值为f (-1)=2,极小值为f (1)=-2,大致图象如图所示.而y =a 为一条水平直线,通过图象可得,y =a 介于极大值与极小值之间,则有三个相异交点.可得a ∈(-2,2).6.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (0)=12,则不等式f (x )-12e x<0的解集为( ) A.⎝⎛⎭⎪⎫-∞,12B.(0,+∞)C.⎝ ⎛⎭⎪⎫12,+∞D.(-∞,0)答案 B解析 构造函数g (x )=f xex, 则g ′(x )=f ′x -f xex,因为f ′(x )<f (x ),所以g ′(x )<0, 故函数g (x )在R 上为减函数,又f (0)=12,所以g (0)=f 0e 0=12, 则不等式f (x )-12e x <0可化为f x e x<12, 即g (x )<12=g (0),所以x >0,即所求不等式的解集为(0,+∞).7.若函数f (x )=x 33-a 2x 2+x +1在区间⎝ ⎛⎭⎪⎫12,3上单调递减,则实数a 的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫103,+∞解析 f ′(x )=x 2-ax +1,因为函数f (x )在区间⎝ ⎛⎭⎪⎫12,3上单调递减,所以f ′(x )≤0在区间⎝ ⎛⎭⎪⎫12,3上恒成立,所以⎩⎪⎨⎪⎧f ′⎝ ⎛⎭⎪⎫12≤0,f ′3≤0,即⎩⎪⎨⎪⎧14-a 2+1≤0,9-3a +1≤0,解得a ≥103,所以实数a 的取值范围为⎣⎢⎡⎭⎪⎫103,+∞.8.若函数f (x )=x ln x -a2x 2-x +1(a >0)有两个极值点,则实数a 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫0,1e 解析 因为f (x )=x ln x -a2x 2-x +1(x >0),所以f ′(x )=ln x -ax ,令h (x )=f ′(x ),则h ′(x )=1x-a =0,得f ′(x )有极大值点x =1a,由于x →0时f ′(x )→-∞;当x →+∞时,f ′(x )→-∞, 因此f (x )要有两个极值点, 只要f ′⎝ ⎛⎭⎪⎫1a =ln 1a -1>0,解得0<a <1e . 9.若函数 f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是________. 答案 [-3,0)解析 由题意,得f ′(x )=x 2+2x =x (x +2), 故f (x )在(-∞,-2),(0,+∞)上是增函数, 在(-2,0)上是减函数,作出其图象如图所示,令13x 3+x 2-23=-23,得x =0或x =-3,则结合图象可知,⎩⎪⎨⎪⎧-3≤a <0,a +5>0,解得a ∈[-3,0).10.已知函数f (x )=e x-2x +a 有零点,则实数a 的取值范围是________________. 答案 (-∞,2ln2-2]解析 由原函数有零点,可将问题转化为方程e x-2x +a =0有解问题,即方程a =2x -e x有解.令函数g (x )=2x -e x,则g ′(x )=2-e x, 令g ′(x )=0,得x =ln2,所以g (x )在(-∞,ln2)上是增函数,在(ln2,+∞)上是减函数, 所以g (x )的最大值为g (ln2)=2ln2-2, 因此,a 的取值范围就是函数g (x )的值域, 所以a ∈(-∞,2ln2-2].11.已知函数f (x )=ln x +a (1-x )在(2,+∞)上为单调函数,求实数a 的取值范围. 解 方法一 f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;若a >0,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )<0,所以f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减,所以当a ≤0时,f (x )在(0,+∞)上单调递增,符合要求;当a >0时,f (x )在⎝ ⎛⎭⎪⎫1a,+∞上单调递减,则2≥1a ,即a ≥12.所以实数a 的取值范围是(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞. 方法二 f (x )的定义域为(0,+∞),f ′(x )=1x-a .由题意得,当x ∈(2,+∞)时,f ′(x )≥0恒成立或f ′(x )≤0恒成立,即a ≤1x 恒成立或a ≥1x恒成立.∵x ∈(2,+∞),∴0<1x <12,∴a ≤0或a ≥12,∴实数a 的取值范围是(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞.12.(2020·东北四校联考)已知f (x )=1x +e xe -3,F (x )=ln x +exe -3x +2.(1)判断f (x )在(0,+∞)上的单调性; (2)判断函数F (x )在(0,+∞)上零点的个数.解 (1)f ′(x )=-1x 2+e x e =x 2e x-ee x2, 令g (x )=x 2e x-e ,x >0, 则g ′(x )=e x(x 2+2x )>0, 即g (x )在(0,+∞)上单调递增,又g (1)=0,所以当0<x <1时,g (x )<g (1)=0,则f ′(x )<0,当x >1时,g (x )>0,则f ′(x )>0, 所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增. (2)F ′(x )=f (x )=1x +exe -3,且f (1)=-1<0,由(1)得∃x 1,x 2,满足0<x 1<1<x 2,使得f (x )在(0,x 1)上大于0,在(x 1,x 2)上小于0,在(x 2,+∞)上大于0, 即F (x )在(0,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增, 而F (1)=0,x →0时,F (x )→-∞,x →+∞时,F (x )→+∞,画出函数F (x )图象的草图,如图所示.故F (x )在(0,+∞)上的零点有3个.13.已知函数f (x )=sin x -13x ,x ∈[0,π],cos x 0=13,x 0∈[0,π].①f (x )的最大值为f (x 0); ②f (x )的最小值为f (x 0); ③f (x )在[0,x 0]上是减函数; ④f (x )在[x 0,π]上是减函数.那么上面命题中真命题的序号是________. 答案 ①④解析 f ′(x )=cos x -13,由f ′(x )=0,得cos x =13,即x =x 0,因为x 0∈[0,π],当0<x <x 0时,f ′(x )>0;当x 0<x <π时,f ′(x )<0,所以f (x )的最大值为f (x 0),f (x )在[x 0,π]上是减函数.14.(2019·泰安模拟)已知函数f (x )=12e 2x +(a -e)e x-a e x +b (其中e 为自然对数的底数)在x =1处取得极大值,则实数a 的取值范围是________. 答案 (-∞,-e)解析 由题意可知f ′(x )=e 2x+(a -e)e x -a e =(e x +a )·(e x-e),当a ≥0时,若x >1,则f ′(x )>0,若x <1,则f ′(x )<0,所以f (x )在x =1处取得极小值,不符合题意.当a <0时,令f ′(x )=0,得x =1或x =ln(-a ),为使f (x )在x =1处取极大值,则ln(-a )>1,即a <-e.15.(2019·贵阳、安顺模拟)不等式kx ≥sin x2+cos x (x >0)恒成立,则k 的最小值为( )A.13B.23C.14D.1 答案 A解析 令h (x )=kx -sin x2+cos x (x >0),则h ′(x )=k -1+2cos x2+cos x2,令t =cos x ,则t ∈[-1,1], 令g (t )=1+2t 2+t 2,则g ′(t )=-2t -12+t3≥0,∴g (t )在[-1,1]上单调递增, ∴g (t )的值域为⎣⎢⎡⎦⎥⎤-1,13,∴①当k ≥13时,h ′(x )≥0,此时h (x )单调递增,∴h (x )>h (0)=0,符合条件;②当k ≤0时,因为h ⎝ ⎛⎭⎪⎫π2=k ·π2-12<0,不符合条件; ③当0<k <13时,对于0<x <π2,h (x )<kx -sin x3,令F (x )=kx -sin x 3,则F ′(x )=k -cos x3,存在x 0∈⎝⎛⎭⎪⎫0,π2,使得x ∈(0,x 0)时,F ′(x )<0, ∴F (x )在(0,x 0)上单调递减, ∴F (x 0)<F (0)=0,即当x ∈(0,x 0)时,h (x )<0,不符合条件,综上,k 的取值范围为⎣⎢⎡⎭⎪⎫13,+∞, ∴k 的最小值为13.16.(2019·辽宁沈阳三校联考)已知函数f (x )=ax -ln xx,a ∈R .(1)若f (x )≥0,求a 的取值范围;(2)若y =f (x )的图象与直线y =a 相切,求a 的值. 解 (1)由题意知,函数f (x )的定义域为(0,+∞). 由f (x )≥0,得ax -ln xx≥0,所以ax ≥ln x x ,又x >0,所以a ≥ln x x2.令g (x )=ln x x 2,则g ′(x )=1-2ln x x3. 令g ′(x )>0,得0<x <e ,令g ′(x )<0,得x > e. 所以当0<x <e 时,g (x )单调递增,当x >e 时,g (x )单调递减.所以当x =e 时,g (x )取得最大值g (e)=12e ,所以a ≥12e ,即a 的取值范围是⎣⎢⎡⎭⎪⎫12e ,+∞. (2)设y =f (x )的图象与直线y =a 相切于点(t ,a ),依题意可得⎩⎪⎨⎪⎧f t=a ,f ′t =0.因为f ′(x )=a -1-ln xx2,所以⎩⎪⎨⎪⎧at -ln tt=a ,a -1-ln t t 2=0,消去a 可得t -1-(2t -1)ln t =0.(*)令h (t )=t -1-(2t -1)ln t ,则h ′(t )=1t-2ln t -1,易知h ′(t )在(0,+∞)上单调递减,且h ′(1)=0, 所以当0<t <1时,h ′(t )>0,h (t )单调递增, 当t >1时,h ′(t )<0,h (t )单调递减,所以当且仅当t =1时,h (t )=0,即(*)式成立,所以a =1-ln 112=1.。
高考数学一轮复习第6章数列第4节数列求和课件理新人教A版
(2)由(1)得 bn=3n+2n-1,
所以
Sn
=
(3
+
32
+
33
+
…
+
3n)
+
(1
+
3
+
5
+
…
+
2n
-
1)
=
3(1-3n) 1-3
+
n(1+2n-1) 2
=32(3n-1)+n2
=3n2+1+n2-32.
考点二 裂项相消法求和问题 【例 2】 (2020 届合肥调研)已知在等差数列{an}中,a2=12,a5=24,数列{bn}满 足 b1=4,bn+1-bn=an(n∈N*). (1)求数列{an},{bn}的通项公式; (2)求使得b11+b12+b13+…+b1n>187成立的最小正整数 n 的值.
(2)由(1)得b1n=2n2+1 2n=2n(n1+1)=121n-n+1 1, ∴b11+b12+b13+…+b1n=121-12+12-13+…+1n-n+1 1=121-n+1 1=2(nn+1),即 2(nn+1)>187,解得 n>16, ∴满足条件的最小正整数 n 的值为 17.
►名师点津 利用裂项相消法求和的注意事项
|跟踪训练| 2.(2019 届安徽模拟)已知数列{an}满足 a1=1,an+1=2an+1. (1)证明:{an+1}是等比数列,并求{an}的通项公式; (2)求证:aa1+1a21+aa2+2a31+…+aanna+n+11<1._________
证明:(1)由 an+1=2an+1,得 an+1+1=2(an+1). 又 a1+1=2,所以{an+1}是首项为 2,公比为 2 的等比数列. 所以 an+1=2n,因此{an}的通项公式为 an=2n-1. (2)由(1)知aanna+n+11=(2n-1)2(n 2n+1-1)=2n-1 1-2n+11-1,于是aa1+1a21+aa2+2a31+…+ aanna+n+11=21-1 1-22-1 1+22-1 1-23-1 1+…+2n-1 1-2n+11-1=1-2n+11-1,所以aa1+1a21+ aa2+2a31+…+aanna+n+11<1.
人教A版高考总复习一轮数学精品课件 第三章 函数与基本初等函数 第六节 对数与对数函数 (2)
.
答案 (1)A (2)(1, 10)∪(100,+∞)
解析
(1)因为
x+≥2
x+≥2
,当且仅当
>2,故 f(x)=loga
+
x=时,等号成立,又因为
a>1,所以
>loga1=0,所以只有 A 正确,故选 A.
(2)如图,画出 f(x)=|lg x|的大致图象,易知 f
单调区间、值域、零点等问题时,可利用数形结合的思想.
(3)对于一些对数型方程、不等式等问题,通常转化为相应的函数图象问题,
利用数形结合进行求解.
对点训练2(1)(2021浙江绍兴高三二模)函数f(x)=loga
能是(
+ (a>1)的图象可
)
(2)(2021山东德州高三月考)已知函数f(x)=|lg x|,若f(lg m)>f(2),则实数m的
7
7
当 a>1 时,f(x)max=loga4=2,得 a=2;当 0<a<1 时,f(x)max=loga4=2,得 a= 2 (舍去),
故 a=2.
考向3.对数函数性质的综合问题
典例突破
例5.已知函数f(x)=log2(mx2+4x+8)(m∈R),则下列说法正确的是(
)
1
A.若函数 f(x)的定义域为(-∞,+∞),则实数 m 的取值范围是[2,+∞)
log 15
log 2
x=log2k,y=log3k,z=log5k, +
=log215≈4,故选 C.
高考数学(人教A版理科)一轮复习核心素养测评八十证明不等式的基本方法
核心素养测评八十证明不等式的基本方法(20分钟40分)1.(10分)已知a,b都是正实数,且a+b=2,求证:+≥1. 【证明】因为a>0,b>0,a+b=2,所以+ 1====== .因为a+b=2≥2,所以ab≤1.所以≥0.所以+≥1.2.(10分)(2020·桂林模拟)已知正数a,b满足+=1.(1)证明:≤ab.(2)若存在实数x,使得=a+b,求a,b.【解析】(1)因为4a+b=(4a+b)=4+++≥4+2+=,≤1,又1=+≥2⇒ab≥1,所以≤ab.(2)因为|x+2||x|≤|(x+2)(x)|=,当且仅当,即x≥时,等号成立;又a+b=(a+b)=1+++≥1++2=,当且仅当=即a=2b时,等号成立,所以⇒a=,b=.3.(10分)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+.(2)+>+是|ab|<|cd|的充要条件.【证明】(1)因为a,b,c,d为正数,且a+b=c+d,欲证+>+,只需证明(+)2>(+)2,也就是证明a+b+2>c+d+2,只需证明>,即证ab>cd.由于ab>cd成立,因此+>+.(2)①若|ab|<|cd|,则(ab)2<(cd)2,即(a+b)24ab<(c+d)24cd.因为a+b=c+d,所以ab>cd.由(1)得+>+.②若+>+,则(+)2>(+)2,所以a+b+2>c+d+2.因为a+b=c+d,所以ab>cd.于是(ab)2=(a+b)24ab<(c+d)24cd=(cd)2.因此|ab|<|cd|.综上,+>+是|ab|<|cd|的充要条件.4.(10分)设函数f(x)=|x2|+2x3,记f(x)≤1的解集为M.(1)求M.(2)当x∈M时,求证:x[f(x)]2x2f(x)≤0.【解析】(1)由已知,得f(x)=当x≤2时,由f(x)=x1≤1,解得x≤0,此时x≤0;当x>2时,由f(x)=3x5≤1,解得x≤,显然不成立.故f(x)≤1的解集为M={x|x≤0}.(2)当x∈M时,f(x)=x1,于是x[f(x)]2x2f(x)=x(x1)2x2(x1)=x2+x=+.令g(x)=+,则函数g(x)在(∞,0]上是增函数, 所以g(x)≤g(0)=0.故x[f(x)]2x2f(x)≤0.。
2021版高考数学(人教A版理科)一轮复习攻略2021版高考数学(人教A版理科)一轮复习:核心素养测评 四十
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
核心素养测评四十数列求和(30分钟60分)一、选择题(每小题5分,共25分)1.数列{a n}的通项公式是a n=,若前n项和为10,则项数n为( )A.120B.99C.11D.121【解析】选A.a n===-,所以a1+a2+…+a n=(-1)+(-)+…+(-)=-1=10.即=11,所以n+1=121,n=120.2.已知数列{a n}的通项公式是a n=2n-3,则其前20项和为 ( )A.380-B.400-C.420-D.440-【解析】选C.令数列{a n}的前n项和为S n,则S20=a1+a2+…+a20=2(1+2+…+20)-3=2×-3×=420-.3.在数列{a n}中,a n=,若{a n}的前n项和S n=,则n= ( )A.3B.4C.5D.6【解析】选D.由a n==1-得:S n=n-=n-,则S n==n-,将各选项中的值代入验证得n=6.4.S n=+++…+= ( )A. B.C. D.【解析】选B.由S n=+++…+,①得S n=++…++, ②①-②得S n=+++…+-=-,所以S n=.5.已知数列{a n}满足a1=1,a n+1·a n=2n(n∈N*),S n是数列{a n}的前n项和,则S2 020=( )A.22 020-1B.3×21 010-3C.3×21 010-1D.3×22 020-2【解析】选B.依题意得a n·a n+1=2n,a n+1·a n+2=2n+1,于是有=2,即=2,数列a1,a3,a5,…,a2n-1,…是以a1=1为首项,2为公比的等比数列;数列a2,a4,a6,…,a2n,…是以a2=2为首项,2为公比的等比数列,于是有S2+a3+a5+…+a2 019)+(a2+a4+a6+…+a2 020)020=(a1=+=3×21 010-3.二、填空题(每小题5分,共15分)6.在数列{a n}中,若a n+1+(-1)n a n=2n-1,则数列{a n}的前12项和等于______________.【解析】由已知a n+1+(-1)n a n=2n-1,得a n+2+(-1)n+1·a n+1=2n+1,得a n+2+a n=(-1)n(2n-1)+(2n+1),取n=1,5,9及n=2,6,10,结果相加可得S12=a1+a2+a3+a4+…+a11+a12=78.答案:787.已知数列{a n},{b n},若b1=0,a n=,当n≥2时,有b n=b n-1+a n-1,则b10=________.【解析】由b n=b n-1+a n-1得b n-b n-1=a n-1,所以b2-b1=a1,b3-b2=a2,…,b n-b n-1=a n-1,所以b2-b1+b3-b2+…+b n-b n-1=a1+a2+…+a n-1=++…+,即b n-b1=a1+a2+…+a n-1=++…+=-+-+…+-=1-=,又因为b1=0,所以b n=,所以b10=.答案:【变式备选】已知数列{a n}中,a1=1,a n+1=(-1)n(a n+1),记S n为{a n}的前n项和,则S2 021=________.【解析】由a1=1,a n+1=(-1)n(a n+1)可得,a2=-2,a3=-1,a4=0,a5=1,a6=-2,a7=-1,…,故该数列为周期是4的数列,所以S2 021=505(a1+a2+a3+a4)+a1=505×(-2)+1=-1 009.答案:-1 0098.设数列{a n}的通项公式为a n=,令b n=na n,则数列{b n}的前n项和S n为________.【解析】由b n=na n=n·知,S n=1×2+2×23+3×25+…+n×, ①从而22×S n=1×23+2×25+3×27+…+n·,②①-②得(1-22)·S n=2+23+25+…+-n·,即S n=[(3n-1)+2].答案:[(3n-1)+2]三、解答题(每小题10分,共20分)9.(2020·兰州模拟)已知数列的前n项和S n满足2S n=,且a n>0.(1)求数列的通项公式.(2)若b n=,记数列的前n项和为T n,证明:T n≥.【解析】(1)当n=1时,2S1==2a1,因为a1>0,所以a1=2,当n≥2时,2a n=2=-,所以=0,因为a n>0,所以a n-a n-1-1=0,所以a n-a n-1=1,所以是以a1=2为首项,d=1为公差的等差数列,所以a n=n+1. (2)由(1)得a n=n+1,所以b n==-,所以T n=b1+b2+…+b n-1+b n=++…++=-3, 因为T n+1-T n=-=>0,所以是递增数列,所以T n≥T1=-3=.10.已知数列{a n}的各项均为正数,且-2na n-(2n+1)=0,n∈N*.(1)求数列{a n}的通项公式.(2)若b n=2n·a n,求数列{b n}的前n项和T n.【解析】(1)由-2na n-(2n+1)=0得[a n-(2n+1)]·(a n+1)=0,所以a n=2n+1或a n=-1,又数列{a n}的各项均为正数,负值应舍去,所以a n=2n+1,n∈N*.(2)因为b n=2n·a n=2n·(2n+1),所以T n=2×3+22×5+23×7+…+2n×(2n+1),①2T n=22×3+23×5+…+2n×(2n-1)+2n+1×(2n+1),②由①-②得-T n=6+2×(22+23+…+2n)-2n+1×(2n+1)=6+2×-2n+1×(2n+1) =-2+2n+1(1-2n).所以T n=(2n-1)·2n+1+2.(15分钟35分)1.(5分)若数列{a n}的通项公式是a n=(-1)n(3n-2),则a1+a2+a3+…+a10= ( )A.15B.12C.-12D.-15【解析】选A.因为a n=(-1)n(3n-2),所以a1+a2+…+a10=-1+4-7+10-13+16-19+22-25 +28=(-1+4)+(-7+10)+(-13+16)+(-19+22)+(-25+28)=3×5=15.【变式备选】已知数列{a n}的前n项和为S n,通项公式a n=n·(-1)n+1,则S17= ( )A.10B.9C.8D.7【解析】选B.S17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+…+(-14+15)+ (-16+17)=1+1+1+…+1=9.【一题多解】解决本题还可以采用以下方法:选B.S17=1-2+3-4+5-6+…+15-16+17=(1+3+…+17)-(2+4+…+16)=81-72=9.2.(5分)已知等比数列{a n}的首项为,公比为-,其前n项和为S n,则S n的最大值为 ( )A. B. C. D.【解析】选D.因为等比数列{a n}的首项为,公比为-,所以S n==1-,当n取偶数时,S n=1-<1;当n取奇数时,S n=1+≤1+=.所以S n的最大值为.【变式备选】已知数列{a n}满足a n+1=+,且a1=,则该数列的前20项的和等于________.【解析】因为a1=,又a n+1=+,所以a2=1,从而a3=,a4=1,即得a n=故数列的前20项的和等于S20=10×=15.答案:153.(5分)3×2-1+4×2-2+5×2-3+…+(n+2)·2-n=________.【解析】设S n=3×2-1+4×2-2+5×2-3+…+(n+2)·2-n,S n=3×2-2+4×2-3+5×2-4+…+(n+2)·2-(n+1),则S n=3×2-1+2-2+2-3+…+2-n-(n+2)·2-(n+1)=1+-(n+2)·2-n-1=2--(n+2)·2-n-1,S n=4--,S n=4-.答案:4-4.(10分)已知等差数列{a n}的公差为d,且方程a1x2-dx-3=0的两个根分别为-1,3.(1)求数列{a n}的通项公式.(2)若b n=+2a n,求数列{b n}的前n项和S n.【解析】(1)由题知,解得故数列{a n}的通项公式为a n=a1+(n-1)d=1+(n-1)×2=2n-1.(2)由(1)知b n=+2a n=22n-1+2(2n-1)=+4n-2,则S n=×(4+42+43+…+4n)+(2+6+10+…+4n-2)=×+=+2n2-.【变式备选】已知数列{a n}的前n项和为S n,满足a1=2,a n+1=2S n+2.(1)求数列{a n}的通项公式.(2)若数列{b n}满足:b n=a n+log3a n,求数列{b n}的前2n项和S2n.【解析】(1)因为a n+1=2S n+2,①所以当n≥2时, a n=2S n-1+2,②①-②得:a n+1-a n=2a n⇒a n+1=3a n,又a1=2,由①得a2=2a1+2=6,所以a2=3a1,所以{a n}是以2为首项,3为公比的等比数列,所以a n=2×3n-1.(2)因为b n=a n+(-1)n log3a n=2×3n-1+(-1)n log3(2×3n-1)=2×3n-1+(-1)n[log32+(n-1)log33]=2×3n-1+(-1)n(-1+log32)+(-1)n n所以S2n=b1+b2+…+b2n=2(1+3+32+…+32n-1)+0+n=32n+n-1.5.(10分)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式.(2)求数列{a2n b n}的前n项和(n∈N*).【解析】(1)因为b2+b3=12,且b1=2,所以q2+q-6=0.又因为q>0,解得q=2,所以b n=2n.设等差数列{a n}的公差为d,由b3=a4-2a1可得3d-a1=8,①由S11=11b4可得a1+5d=16,②联立①②解得a1=1,d=3,由此可得a n=3n-2.所以{a n}的通项公式为a n=3n-2,{b n}的通项公式为b n=2n.(2)设数列{a2n b n}的前n项和为T n,由a2n=6n-2得T n=4×2+10×22+16×23+…+(6n-2)×2n,2T n=4×22+10×23+16×24+…+(6n-8)×2n+(6n-2)×2n+1,上述两式相减得:-T n=4×2+6×22+6×23+…+6×2n-(6n-2)×2n+1=-4-(6n-2)×2n+1=-(3n-4)2n+2-16.所以T n=(3n-4)2n+2+16.所以数列{a2n b n}的前n项和为(3n-4)2n+2+16.【拓广探索练】1.已知数列的前n项积为T n,若对∀n≥2,n∈N*,都有T n+1·T n-1=2成立,且a1=1,a2=2,则数列的前10项和为____________.【解析】因为T n+1·T n-1=2,故=2,即=2(n≥2),而=2,所以是首项为1,公比为2的等比数列,故a n=2n-1,所以S10==1 023. 答案:1 0232.已知正项数列{a n}中,a1=1,a2=2,2=+(n≥2),b n=,数列{b n}的前n项和为S n,则S33的值是________.【解析】因为2=+(n≥2),所以数列{}是首项为1,公差为22-1=3的等差数列,所以=1+3(n-1)=3n-2. 所以a n=,所以b n===(-),所以数列{b n}的前n项和S n=[(-1)+(-)+…+(-)]=(-1).则S33=(10-1)=3.答案:3关闭Word文档返回原板块。
2021版高考数学(人教A版理科)一轮复习攻略2021版高考数学(人教A版理科)一轮复习:核心素养测评 七十七
温馨提示:此套题为Word版,请按住Ctr l,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
核心素养测评七十七坐标系(20分钟40分)1.(10分)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得到曲线C.(1)求曲线C的标准方程.(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与直线l垂直的直线的极坐标方程.【解析】(1)设(x1,y1)为圆上的点,在已知变换下变为曲线C上的点(x,y),依题意,得由+=1,得x2+=1,即曲线C的标准方程为x2+=1.(2)由解得或不妨设P1(1,0),P2(0,2),则线段P1P2的中点坐标为,所求直线的斜率为k=,于是所求直线的方程为y-1=,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,故所求直线的极坐标方程为ρ=.2.(10分)(2019·洛阳模拟)已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2-2ρcos=2.(1)将圆O1和圆O2的极坐标方程化为直角坐标方程.(2)求经过两圆交点的直线的极坐标方程.【解析】(1)由ρ=2知ρ2=4,由坐标变换公式,得x2+y2=4.因为ρ2-2ρcos=2,所以ρ2-2ρ=2.由坐标变换公式,得x2+y2-2x-2y-2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x+y=1.化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin=.3.(10分)(2018·全国卷Ⅰ)在直角坐标系xOy中,曲线C1的方程为y=k+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+ 2ρcosθ-3=0.(1)求C2的直角坐标方程.(2)若C1与C2有且仅有三个公共点,求C1的方程.【解析】(1)由x=ρcos θ,y=ρsin θ,x2+y2=ρ2得C2的直角坐标方程为(x+1)2+y2=4.(2)由(1)知C2是圆心为A(-1,0),半径为2的圆.由题设知,C1是过点B(0,2)且关于y轴对称的两条射线.记y轴右边的射线为l1,y 轴左边的射线为l2.由于点B在圆C2的外面,故C1与C2有且仅有三个公共点等价于l1与C2只有一个公共点且l2与C2有两个公共点,或l2与C2只有一个公共点且l1与C2有两个公共点.当l1与C2只有一个公共点时,A到l1所在直线的距离为2,所以=2,故k=-或k=0.经检验,当k=0时,l1与C2没有公共点;当k=-时,l1与C2只有一个公共点,l2与C2有两个公共点.当l2与C2只有一个公共点时,A到l2所在直线的距离为2,所以=2,故k=0或k=.经检验,当k=0时,l1与C2没有公共点;当k=时,l2与C2没有公共点.综上可得,k=-,C1的方程为:y=-|x|+2.4.(10分)已知曲线C的极坐标方程为ρ2-2ρcosθ+-2=0.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy.(1)若直线l过原点,且被曲线C截得的弦长最小,求直线l的直角坐标方程.(2)若M是曲线C上的动点,且点M的直角坐标为(x,y),求x+y的最大值.【解析】(1)ρ2-2ρcos-2=0,即ρ2-2ρcos θ+2ρsin θ-2=0,将代入上式,得曲线C的直角坐标方程为(x-1)2+(y+1)2=4,圆心C(1,-1),若直线l被曲线C截得的弦长最小,则直线l与OC垂直,即k l·k OC=-1,k OC=-1,因而k l=1,故直线l的直角坐标方程为y=x.(2)因为M是曲线C上的动点,因而利用圆的参数方程可设(φ为参数),则x+y=2sin φ+2cos φ=2sin,当sin=1时,x+y取得最大值2.关闭Word文档返回原板块。
2021版高考数学(人教A版理科)一轮复习攻略2021版高考数学(人教A版理科)一轮复习:核心素养测评 四十三
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
核心素养测评四十三数列建模问题(30分钟60分)一、选择题(每小题5分,共20分)1.70周年国庆阅兵活动向全世界展示了我军威武文明之师的良好形象,展示了科技强军的伟大成就以及维护世界和平的坚定决心,在阅兵活动的训练工作中,不仅使用了北斗导航、电子沙盘、仿真系统、激光测距机、迈速表和高清摄像头等新技术装备,还通过管理中心对每天产生的大数据进行存储、分析,有效保证了阅兵活动的顺利进行,假如训练过程中第一天产生的数据量为a,其后每天产生的数据量都是前一天的q(q>1)倍,那么训练n天产生的总数据量为( ) A.aq n-1 B.aq nC. D.【解析】选D.训练过程中第一天产生的数据量为a,其后每天产生的数据量都是前一天的q(q>1)倍,那么训练n天产生的总数据量为:S n=a+aq+aq2+…+aq n-1=.2.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于30,该女子所需的天数至少为( )A.10B.9C.8D.7【解析】选C.设该女子第一天织布x尺,则=5,解得x=,所以前n天织布的尺数为(2n-1),由(2n-1)≥30,得2n≥187,解得n的最小值为8.3.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:第一步:构造数列1,,,,…,.①第二步:将数列①的各项乘以,得到一个新数列a1,a2,a3,…,a n.则a1a2+a2a3+a3a4+…+a n-1a n= ( )A. B.C. D.【解析】选C.由题意知所得新数列为1×,×,×,…,×,所以a1a2+a2a3+a3a4+…+a n-1a n=+++…+=+++…+-==.4.中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言.”题意是:把996斤绵分给8个儿子做盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多分17斤绵,那么第8个儿子分到的绵是( )A.174斤B.184斤C.191斤D.201斤【解析】选B.设8个儿子从大至小分得的绵构成的数列是{a n},设大儿子分到的绵是x斤,依题意知8个儿子分到的绵构成以a1=x为首项,d=17为公差的等差数列,记其前n项和为S n,则有S n=8x+×17=996,即8x+476=996,解得x=65.故第8个儿子分到的绵a8=65+7×17=65+119=184(斤).二、填空题(每小题5分,共20分)5.如图所示,正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,…,如此继续下去得到一个树形图形,称为“勾股树”.若某勾股树含有1 023个正方形,且其最大的正方形的边长为,则其最小正方形的边长为________.【解析】由题意,得正方形的边长构成以为首项,以为公比的等比数列,现已知共得到1 023个正方形,则有1+2+…+2n-1=1 023,所以n=10,所以最小正方形的边长为×=.答案:6.一种专门占据内存的计算机病毒开机时占据内存1 MB,然后每3秒自身复制一次,复制后所占内存是原来的2倍,那么开机________秒,该病毒占据内存8 GB.(1 GB=210 MB)【解析】由题意可知,病毒每复制一次所占内存的大小构成一等比数列{a n},且a1=2,q=2,所以a n=2n,则2n=8×210=213,所以n=13.即病毒共复制了13次,所以所需时间为13×3=39(秒).答案:397.从盛满2升纯酒精的容器里倒出1升纯酒精,然后填满水,再倒出1升混合溶液后又用水填满,以此继续下去,则至少应倒________次后才能使纯酒精体积与总溶液的体积之比低于10%.【解析】设倒n次后纯酒精与总溶液的体积比为a n,则a n=,由题意知<10%,所以n≥4.答案:48.定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”的个数为________.【解析】由题意可得a1=0,a8=1,a2,a3,…,a7中有3个0,3个1,且满足对任意k≤8,都有a1,a2,…,a k中0的个数不少于1的个数,利用列举法可得不同的“规范01数列”有00 001 111,00 010 111,00 011 011,00 011 101,00 100 111,00 101 011,00 101 101,00 110 011,00 110 101,01 000 111,01 001 011,01 001 101,01 010 011,01 010 101,共14个.答案:14三、解答题(每小题10分,共20分)9.某企业的资金每一年都比上一年分红后的资金增加一倍,并且每年年底固定给股东们分红500万元.该企业2018年年底分红后的资金为1 000万元.(1)求该企业2022年年底分红后的资金.(2)求该企业从哪一年开始年底分红后的资金超过32 500万元.【解析】设a n为(2018+n)年年底分红后的资金,其中n∈N*,则a1=2×1 000-500=1 500,a2=2×1 500-500=2 500,…,a n=2a n-1-500(n≥2).所以a n-500=2(a n-1-500)(n≥2), 即数列{a n-500}是首项为a1-500=1 000,公比为2的等比数列.所以a n-500=1 000×2n-1,所以a n=1 000×2n-1+500.(1)a4=1 000×24-1+500=8 500,所以该企业2022年年底分红后的资金为8 500万元.(2)由a n>32 500,即2n-1>32,得n>6,所以该企业从2025年开始年底分红后的资金超过32 500万元.10.科学研究证实,二氧化碳等温室气体的排放(简称碳排放)对全球气候和生态环境产生了负面影响,环境部门对A市每年的碳排放总量规定不能超过550万吨,否则将采取紧急限排措施.已知A市2018年的碳排放总量为400万吨,通过技术改造和倡导低碳生活等措施,此后每年的碳排放量比上一年的碳排放总量减少10%.同时,因经济发展和人口增加等因素,每年又新增加碳排放量m万吨(m>0).(1)求A市2020年的碳排放总量(用含m的式子表示).(2)若A市永远不需要采取紧急限排措施,求m的取值范围.【解析】设2019年的碳排放总量为a1,2020年的碳排放总量为a2,(1)由已知a1=400×0.9+m,a2=0.9×(400×0.9+m)+m=400×0.92+0.9m+m=324+1.9m.(2)a3=0.9×(400×0.92+0.9m+m)+m=400×0.93+0.92m+0.9m+m,…,a n=400×0.9n+0.9n-1m+0.9n-2m+…+0.9m+m=400×0.9n+m=400×0.9n+10m(1-0.9n)=(400-10m)·0.9n+10m.由已知有∀n∈N*,a n≤550,当400-10m=0即m=40时,显然满足题意;当400-10m>0即m<40时,由指数函数的性质可得:(400-10m)×0.9+10m≤550,解得m≤190.综合得m<40;当400-10m<0即m>40时,由指数函数的性质可得10m≤550,解得m≤55,综合得40<m≤55.综上可得所求范围是m∈(0,55].关闭Word文档返回原板块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
核心素养测评十五利用导数研究函数的极值、最值(30分钟60分)一、选择题(每小题5分,共25分)1.设函数f(x)=+ln x则( )A.x=为f(x)的极大值点B.x=为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为 f(x)的极小值点【解析】选D.f′(x)=-+=,由f′(x)>0,得x>2,所以f(x)的增区间为,f(x)的减区间为(0,2),所以f(x)只有极小值,极小值点为x=2.2.已知函数f(x)是R上的可导函数,f(x)的导函数f′(x)的图象如图,则下列结论正确的是( )A.a,c分别是极大值点和极小值点B.b,c分别是极大值点和极小值点C.f(x)在区间(a,c)上是增函数D.f(x)在区间(b,c)上是减函数【解析】选C.由极值点的定义可知,a是极小值点,无极大值点;由导函数的图象可知,函数f(x)在区间(a,+∞)上是增函数.3.已知x=是函数f(x)=x(ln ax+1)的极值点,则实数a的值为()A. B. C.1 D.e【解析】选B.因为函数f(x)=x(ln ax+1)有极值点,所以f′(x)=(ln ax+1)+1=2+ln ax;因为x=是函数f(x)=x(ln ax+1)的极值点,所以f′=2+ln a=0;所以ln a=-2;解得:a=.4.(2020·湘潭模拟)某莲藕种植塘每年的固定成本是1万元,每年最大规模的种植是8万斤,每种植一斤藕,成本增加0.5元,销售额函数是f(x)=-x3+ax2+x, x是莲藕种植量,单位:万斤;销售额的单位:万元,a是常数,若种植2万斤,利润是2.5万元,则要使利润最大,每年种植莲藕 ( )A.8万斤B.6万斤C.3万斤D.5万斤【解析】选B.设销售利润为g(x),得g(x)=-x3+ax2+x-1-x=-x3+ax2-1,当x=2时,g(2)=-×23+a×22-1=2.5,解得a=2.所以g(x)=-x3+x2-1,g′(x)=-x2+x=-x(x-6),所以函数g(x)在(0,6)上单调递增,在(6,8)上单调递减.所以当x=6时,函数g(x)取得极大值即最大值.5.若函数f(x)=ax-ln x在区间(0,e]上的最小值为3,则实数a的值为( )A.e2B.2eC.D.【解题指南】(1)判断单调区间,把a分为a≤0与a>0两种情况来确定单调区间,而a>0时又要将与区间(0,e]进行比较讨论;(2)根据各种情况的单调区间确定各种情况下的最小值,每计算一个a的值都要记得检验是否满足前提范围.【解析】选A.因为f(x)=ax-ln x,(x>0),所以f′(x)=a-=(x>0).①当a≤0时,f′(x)<0,则f(x)在(0,e]上为减函数,此时f(x)min=f(e)=ae-1=3,解得a=>0(舍去).②当a>0时,当0<x<时,f′(x)<0,f(x)在上为减函数,当x≥时,f′(x)≥0,f(x)在上为增函数.所以当0<≤e 时,即a≥时,x=为f(x)在(0,e]上的极小值点也是最小值点且最小值为f=1-ln =3,解得a=e2.当>e时,即a<时,f(x)在(0,e]上为减函数,f(x)min=f(e)=ae-1=3,解得a=>(舍去),综上所述:a=e2.二、填空题(每小题5分,共15分)6.(2019·濮阳模拟)函数f(x)=e x-2x的最小值为________.【解析】f′(x)=e x-2,令f′(x)=e x-2=0,解得x=ln 2.可得:函数f(x)在(-∞,ln 2)上单调递减,在(ln 2,+∞)上单调递增.所以x=ln 2时,函数f(x)取得极小值也是最小值,f(ln 2)=2-2ln 2.答案:2-2ln 27.(2020·河南十校联考)已知函数f(x)=axcos x+在区间上有最大值,则实数a=________.【解析】因为f(x)=axcos x+⇒f′(x)=a(cos x-xsin x),因为x∈⇒cos x-xsin x<0,所以当a<0时,f′(x)>0⇒f(x)为增函数⇒f(x)max=f(π)=⇒a=-,当a>0时,f′(x)<0⇒f(x)为减函数⇒f(x)max=f=≠(舍去),所以a=-. 答案:-8.已知函数f(x)=当x∈(-∞,m]时,函数f(x)的取值范围为[-16,+∞),则实数m的取值范围是________.【解析】当x≤0时,f′(x)=3(2+x)(2-x),所以当x<-2时,f′(x)<0,函数f(x)单调递减;当-2<x≤0时,f′(x)>0,函数f(x)单调递增,所以函数f(x)在x=-2处取最小值f(-2)=-16.画出函数的图象,结合函数的图象得-2≤m≤8时,函数f(x)总能取到最小值-16,故m的取值范围是[-2,8].答案: [-2,8]三、解答题(每小题10分,共20分)9.若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.(1) 求a,b的值.(2) 设函数g(x)的导数g′(x)=f(x)+2,求g(x)的极值点.【解析】(1) 由题设知f′(x)=3x2+2ax+b,且f′(-1)=3-2a+b=0,f′(1)=3+2a+b =0,解得a=0,b=-3.(2) 由(1) 知f(x)=x3-3x,则g′(x)=f(x)+2=(x-1)2(x+2),所以g′(x)=0的根为x1=x2=1,x3=-2,即函数g(x)的极值点只可能是1或-2.当x<-2时,g′(x)<0,当-2<x<1时,g′(x)>0,当x>1时,g′(x)>0,所以-2是g(x)的极值点,1不是g(x)的极值点.10.已知函数f(x)=ax+ln x,其中a为常数.(1)当a=-1时,求f(x)的最大值.(2)若f(x)在区间(0,e]上的最大值为-3,求a的值.【解析】(1)易知f(x)的定义域为(0,+∞),当a=-1 时,f(x)=-x+ln x,f′(x)=-1+=,令f′(x)=0,得x=1.当0<x<1时,f′(x)>0;当x>1时,f′(x)<0.所以f(x)在(0,1)上是增函数,在(1,+∞)上是减函数.所以f(x)max=f(1)=-1.所以当a=-1时,函数f(x)在(0,+∞)上的最大值为-1.(2) f′(x)=a+,x∈,∈.①若a≥-,则f′(x)≥0,从而f(x)在上单调递增,所以f(x)max=f(e)=ae+1≥0,不符合题意.②若a<-,令f′(x)>0得a+>0,结合x∈,解得0<x<-;令f′(x)<0得a+<0,结合x∈,解得-<x≤e.从而f(x)在上单调递增,在上单调递减,所以f(x)max=f=-1+ln,令-1+ln=-3,得ln=-2,所以a=-e2,因为-e2<-,所以a=-e2为所求,故实数a的值为-e2.(15分钟35分)1.(5分)设函数f(x)=(x+1)e x+1,则( )A.x=2为f(x)的极大值点B.x=2为f(x)的极小值点C.x=-2为f(x)的极大值点D.x=-2为f(x)的极小值点【解析】选D.函数f(x)=(x+1)e x+1,所以f′(x)=(x+2)e x,令(x+2)e x=0,可得x=-2,当x<-2时,f′(x)<0,函数是减函数;当x>-2时,f′(x)>0,函数是增函数,所以x=-2是函数的极小值点.2.(5分)用长为30 m的钢条围成一个长方体形状的框架(即12条棱长总和为30 m),要求长方体的长与宽之比为3∶2,则该长方体最大体积是( )A.24 m3B.15 m3C.12 m3D.6 m3【解析】选B.设该长方体的宽是x m,由题意知,其长是 m,高是=m(0<x<3),则该长方体的体积V(x)= x··=-x3+x2,V′(x)=-x2+x,由V′(x)=0,得到x=2(x=0舍去),且当0<x<2时, V′(x)>0;当2<x<3时,V′(x)<0,即体积函数V(x)在x=2处取得极大值V(2)=15,也是函数V(x)在定义域上的最大值.所以该长方体体积的最大值是15 m3.【变式备选】用边长为120 cm的正方形铁皮做一个无盖水箱,先在四周分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱,则水箱的最大容积为( )A.120 000 cm3B.128 000 cm3C.150 000 cm3D.158 000 cm3【解析】选B.设水箱底长为x cm,则高为 cm.由得0<x<120.设水箱的容积为y cm3,则有y=-x3+60x2.求导数,有y′=-x2+120x.令y′=0,解得x=80(x=0舍去).当x∈(0,80)时,y′>0;当x∈(80,120)时,y′<0.因此,x=80是函数y=-x3+60x2的极大值点,也是最大值点,此时y=128 000. 3.(5分)(2020·昆明模拟)已知函数f(x)=ax2+bx+cln x(a>0)在x=1和x=2处取得极值,且极大值为-,则函数f(x)在区间(0,4]上的最大值为( )A.0B.-C.2ln 2-4D.4ln 2-4【解析】选D.函数的导数为f′(x)=2ax+b+=.因为f(x)在x=1和x=2处取得极值,所以f′(1)=2a+b+c=0 ①,f′(2)=4a+b+=0 ②,因为f(x)极大值为-,a>0,所以由函数性质知当x=1时,函数取得极大值为-,则f(1)=a+b+cln 1=a+b=-③,由①②③得a=,b=-3,c=2,即f(x)=x2-3x+2ln x,f′(x)=x-3+==,由f′(x)>0得2<x≤4或0<x<1,此时为增函数,由f′(x)<0得1<x<2,此时f(x)为减函数,则当x=1时,f(x)取得极大值,极大值为-,又f(4)=8-12+2ln 4=4ln 2-4>-,即函数在区间(0,4]上的最大值为4ln 2-4.4.(10分)(2019·成都模拟)已知函数f(x)=aln x-x2+x-.(1)当曲线f(x)在x=3时的切线与直线y=-4x+1平行,求曲线f(x)在处的切线方程.(2)求函数f(x)的极值,并求当f(x)有极大值且极大值为正数时,实数a的取值范围.【解析】(1)f′(x)=-2x+a-2.由题意得f′(3)=-2×3+a-2=-4,得a=3.当x=1时,f(1)=-12+×1-=-,f′(1)=-2×1+3-2=2,故曲线f(x)在处的切线方程为y+=2,即8x-4y-17=0.(2)f′(x)=-2x+a-2=(x>0),①当a≤0时,f′(x)≤0,所以f(x)在上单调递减,f(x)无极值.②当a>0时,由f′(x)=0得x=,随x的变化,f′(x)、f(x)的变化情况如下:xf′(x) + 0 -f(x) ↗极大值↘故f(x)有极大值,无极小值,极大值为f=aln-+×-=aln-a,由aln-a>0,结合a>0可得a>2e,所以当f(x)有极大值且极大值为正数时,实数a的取值范围是.5.(10分)(2020·济宁模拟)已知函数f(x)=ln x-xe x+ax(a∈R).(1)若函数f(x)在[1,+∞)上单调递减,求实数a的取值范围.(2)若a=1,求f(x)的最大值.【解题指南】(1)由题意分离参数,将原问题转化为函数求最值的问题,然后利用导函数即可确定实数a的取值范围.(2)结合函数的解析式求导函数,将其分解因式,利用导函数研究函数的单调性,最后利用函数的单调性结合函数的解析式即可确定函数的最大值.【解析】(1)由题意知,f′(x)=-(e x+xe x)+a=-(x+1)e x+a≤0 在[1,+∞)上恒成立,所以a≤(x+1)e x-在[1,+∞)上恒成立.令g(x)=-+(x+1)e x,则g′(x)=(x+2)e x+>0,所以g(x)在[1,+∞)上单调递增,所以g(x)min=g(1)=2e-1,所以a≤2e-1.(2)当a=1时,f(x)=ln x-xe x+x(x>0),则f′(x)=-(x+1)e x+1=(x+1),令m(x)=-e x,则m′(x)=--e x<0,所以m(x)在(0,+∞)上单调递减.由于m>0,m(1)<0,所以存在x0>0满足m(x0)=0,即=.当x∈(0,x0),m(x)>0,f′(x)>0;当x∈(x0,+∞)时,m(x)<0,f′(x)<0.所以f(x)在(0,x0)上单调递增,在(x0,+∞)上单调递减.所以f(x)max=f(x0)=ln x0-x0+x0,因为=,所以x0=-ln x0,所以f(x0)=-x0-1+x0=-1,所以f(x)max=-1.【拓广探索练】(2019·新乡模拟)已知函数f(x)=x2-(a+1)x+aln x.(1)当a=-4时,求f(x)的单调区间.(2)已知a∈(1,2],b∈R,函数g(x)=x3+bx2-(2b+4)x+ln x,若f(x)的极小值点与g(x)的极小值点相等,证明:g(x)的极大值不大于.【解析】 (1)当a=-4时,f(x)=x2+3x-4ln x,定义域为(0,+∞),f′(x)=x+3-==,当x>1时,f′(x)>0,f(x)单调递增,则f(x)的单调递增区间为(1,+∞);当0<x<1时,f′(x)<0,f(x)单调递减,则f(x)的单调递减区间为(0,1).(2)f′(x)==,g′(x)=3x2+2bx-(2b+4)+=.令p(x)=3x2+(2b+3)x-1.因为a∈(1,2],所以f(x)的极小值点为a,则g(x)的极小值点为a.所以p(a)=0,即3a2+(2b+3)a-1=0,即b=,此时g(x)的极大值为g(1)=1+b-(2b+4)=-3-b=-3-=a--.因为a∈(1,2],所以a--≤×2--=.故g(x)的极大值不大于.关闭Word文档返回原板块。