2018学年七年级数学上册第一章有理数1.4有理数的大小
(完整版)人教版七年级数学上册一至四章知识点归纳
第一章有理数(一)正数和负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
)2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
(四)有理数的加减法1.先定符号,再算绝对值。
2.加法运算法则:同号相加,到相同符号,并把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
一个数同0相加减,仍得这个数。
3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5.a-b=a+(-b)减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:ab=ba 4.乘法结合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。
2.除以一个不等于0的数,等于乘这个数的倒数。
沪科版-数学-七年级上册-第一章《有理数》第3节《有理数的大小》例题与讲解
1.3 有理数的大小1.利用数轴进行有理数的大小比较(1)数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大.(2)正数大于零,零大于负数,正数大于负数.(3)因为正数都大于0,反过来,大于0的数都是正数,所以可以用a >0表示a 是正数;反之,a 是正数也可以表示为a >0.同理,a <0表示a 是负数;反之,a 是负数也可以表示为a <0.另外可以用a ≥0表示a 是非负数,用a ≤0表示a 是非正数.谈重点 利用数轴判断正数的大小(1)利用数轴比较两个正数的大小,离原点越远,表示的数就越大,离原点越近,表示的数就越小.(2)利用数轴比较两个负数的大小,离原点越近,表示的数就越大,离原点越远,表示的数就越小.【例1-1】 有理数a ,b 在数轴上的位置如图所示,试用“=”“>”或“<”填空: a ________0,b ________0,a ________b .解析:a 在原点的左边,是负数,负数小于0;b 在原点的右边,是正数,正数大于0;数b 的对应点在数a 的对应点的右边,数轴上右边的数总是大于左边的数.答案:< > <【例1-2】 比较下列各数的大小:(1)-|-1|__________-(-1);(2)-(-3)__________0;(3)-⎝⎛⎭⎫-16__________-⎪⎪⎪⎪-17; (4)-(-|-3.4|)________-(+|3.4|).解析:(1)化简-|-1|=-1,-(-1)=1,因为负数小于正数,所以-|-1|<-(-1);(2)化简-(-3)=3,因为正数都大于0,所以-(-3)>0;(3)分别化简两数,得-⎝⎛⎭⎫-16=16,-⎪⎪⎪⎪-17=-17,因为正数大于负数,所以-⎝⎛⎭⎫-16>-⎪⎪⎪⎪-17;(4)同时化简两数,得-(-|-3.4|)=3.4,-(+|3.4|)=-3.4,所以-(-|-3.4|)>-(+|3.4|).在比较大小时,有时可能出现含有负数的绝对值或负数的相反数的形式给出的数,这种形式给出的数不容易直接观察出大小,我们要先化简,然后再选择适当的方法进行大小比较.答案:(1)< (2)> (3)> (4)>2.两个负数的大小比较(1)利用绝对值比较两个负数的大小的法则两个负数比较大小,绝对值大的反而小,即在数轴上绝对值较大的负数一定在绝对值较小的负数的左边.例如:|-3|=3,|-5|=5,而3<5,所以-3>-5.(2)利用绝对值比较两个负数大小的步骤①分别求出两个负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”作出正确的判断.解技巧 正确比较两个分数的大小在比较两个分数大小时,一般不要改变两数原来的顺序,以免最后判断时失误.例如比较-12与-13的大小时,先求得-12的绝对值是12,-13的绝对值是13,然后比较12与13的大小得12>13,从而-12<-13,在整个解答过程中,-12与-13的顺序不变. 【例2】 比较-23与-34的大小. 分析:两个负数比较大小,要先求出它们的绝对值,再根据绝对值的大小和两个负数大小比较的法则,确定出原数的大小.两个负分数化成同分母分数之后,分子越大,分数值越小.解:因为⎪⎪⎪⎪-23=23=812,⎪⎪⎪⎪-34=34=912,而812<912,所以-23>-34. 3.有理数的大小比较几个有理数的大小比较主要有以下几条法则:(1)正数都大于零,负数都小于零,正数大于一切负数;(2)绝对值越大的正数就越大,绝对值越大的负数反而越小;(3)在数轴上表示的有理数,右边的数总比左边的数大.“数无形时少直观,形无数时难入微”,利用数形结合思想解题,可以化难为易,化繁为简.利用数轴能揭示点的位置关系与数的大小关系的联系,所以较好地体现了数形结合的思想,利用它能方便地解决多个有理数(或其绝对值、相反数等)大小比较的问题.【例3】 在数轴上表示出下列各数,并把它们按从小到大的顺序用“<”号连接起来:-4,3,0,-0.5,+412,-212. 分析:在数轴上表示上述数时,关键是:+412应在4的右边,-212应在-2的左边;-0.5应在原点的左边、-1的右边.本题解题时的一般步骤:①画数轴;②描点;③有序排列;④不等号连接.利用数轴比较有理数的大小时,关键是每个数的位置必须正确确定.解:如图所示,-4<-212<-0.5<0<3<+412. 4.利用数轴比较含有字母的有理数的大小“数”可准确澄清“形”的模糊,“形”能直观启迪“数”的计算,利用数轴这一工具,加强数形结合的训练可沟通知识间的联系,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.含有字母的有理数的大小本来是不确定的,例如字母a 可以表示任意有理数,但是只要把字母的位置确定在数轴上,它们的大小关系就能确定.【例4】 有理数a ,b ,c 在数轴上的位置如图所示,试比较a ,-a ,b ,-b ,c ,-c,0的大小,并用“<”连接.分析:观察数轴知a <0,b <0,c >0;根据绝对值的意义,得|a |>|b |>|c |;根据相反数的几何意义,可以把a ,-a ,b ,-b ,c ,-c,0都表示在数轴上,从而利用数轴比较大小.解:把a ,-a ,b ,-b ,c ,-c,0表示在数轴上,如图所示:所以a <b <-c <0<c <-b <-a .5.有理数大小比较的拓展 有理数的大小比较是初中数学的一个重要内容.有理数的大小比较常规的方法有很多,这里再介绍两种常用的方法.(1)差值比较法:设a ,b 是任意两数,则a -b >0⇔a >b ;a -b <0⇔a <b ;a -b =0⇔a =b .(2)商值比较法:设a ,b 是任意两个正数,则a b >1⇔a >b ;a b =1⇔a =b ;a b<1⇔a <b .【例5-1】 比较5251与2627的大小. 分析:计算5251与2627的商,再用商与1进行比较.若大于1则被除数大于除数;若小于1则被除数小于除数.解:因为5251÷2627=5251×2726=5451>1,所以5251>2627. 【例5-2】 比较13与0.3的大小. 分析:计算13与0.3的差.若大于零,则被减数大于减数;若小于零,则被减数小于减数;若等于零,则两数相等.解:因为13-0.3=1030-930=130>0,所以13>0.3.。
冀教版七年级数学上册 1.4 有理数的大小 教学设计
冀教版七年级数学上册 1.4有理数的大小教学设计一. 教材分析冀教版七年级数学上册1.4节“有理数的大小”是学生在学习了有理数的概念、加减法、乘除法的基础上,进一步探讨有理数的大小比较。
这一节内容的重要性在于,它是进一步学习函数、方程等数学知识的基础,同时也是解决实际问题的重要工具。
教材通过简单的实例引入有理数的大小比较,然后通过例题和练习使学生掌握有理数大小比较的方法和规则。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的概念、加减法、乘除法有一定的了解。
但学生在学习这一节内容时,可能会对有理数大小比较的规则感到困惑,特别是正负数的大小比较。
因此,在教学过程中,需要帮助学生理解和掌握有理数大小比较的规则,并能够运用到实际问题中。
三. 教学目标1.了解有理数大小比较的概念和意义。
2.掌握有理数大小比较的规则和方法。
3.能够运用有理数大小比较解决实际问题。
四. 教学重难点1.教学重点:有理数大小比较的规则和方法。
2.教学难点:正负数的大小比较,以及有理数大小比较在实际问题中的应用。
五. 教学方法采用讲授法、案例教学法、讨论法、练习法等多种教学方法,以激发学生的学习兴趣,帮助学生理解和掌握有理数大小比较的规则,提高学生的数学素养。
六. 教学准备1.教材、教案。
2.教学多媒体设备。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过简单的实例,如身高、体重等,引导学生了解有理数大小比较的概念和意义。
2.呈现(10分钟)讲解有理数大小比较的规则,如:(1)同号比较:正数比负数大,负数比正数小。
(2)异号比较:正数比负数大,负数比正数小。
(3)同号比较:绝对值大的数大。
3.操练(10分钟)让学生通过练习题,运用有理数大小比较的规则,巩固所学知识。
4.巩固(5分钟)让学生通过练习题,进一步巩固有理数大小比较的规则。
5.拓展(5分钟)讨论有理数大小比较在实际问题中的应用,如:购物时比较价格、比赛时比较成绩等。
冀教版数学七年级上册《1.4 有理数的大小》教学设计1
冀教版数学七年级上册《1.4 有理数的大小》教学设计1一. 教材分析《1.4 有理数的大小》是冀教版数学七年级上册的一个重要章节,主要介绍了有理数的大小比较方法。
本章节内容紧密联系学生的生活实际,有助于激发学生学习数学的兴趣。
通过本章节的学习,学生能够理解有理数的大小概念,掌握有理数大小比较的方法,并为后续的数学学习打下基础。
二. 学情分析七年级的学生已经掌握了整数和分数的基本知识,具备一定的逻辑思维能力。
但部分学生对有理数的大小概念可能还存在模糊的认识,需要通过具体实例和实际操作来加深理解。
此外,学生对数学符号和表达式的书写还需要加强训练。
三. 教学目标1.理解有理数的大小概念,掌握有理数大小比较的方法。
2.能够运用有理数大小比较的方法解决实际问题。
3.培养学生的逻辑思维能力和数学表达能力。
四. 教学重难点1.有理数的大小概念。
2.有理数大小比较的方法。
3.运用有理数大小比较的方法解决实际问题。
五. 教学方法1.采用情境教学法,联系生活实际,激发学生学习兴趣。
2.采用小组合作学习法,培养学生团队合作精神。
3.采用启发式教学法,引导学生主动探究,培养逻辑思维能力。
4.采用巩固练习法,及时检查学生学习效果。
六. 教学准备1.准备相关的生活实例和图片,用于导入和新课呈现。
2.准备PPT课件,展示有理数大小比较的方法。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例引入有理数大小的概念,如比较身高、体重等。
引导学生观察和思考,初步认识有理数的大小。
2.呈现(10分钟)通过PPT课件,展示有理数大小比较的方法,如数轴、绝对值等。
引导学生理解和掌握有理数的大小比较方法。
3.操练(10分钟)学生分组进行练习,运用有理数大小比较的方法,解决实际问题。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)出示巩固练习题,全班学生一起完成。
教师及时批改,反馈学习效果。
5.拓展(10分钟)引导学生思考:有理数大小比较的方法在生活中有哪些应用?学生分组讨论,分享自己的观点。
2018年秋七年级数学上册第1章有理数1.4有理数的加减1.4.3加、减混合运算导学课件(新版)沪科版
1.4.3
加、减混合运算
【归纳总结】 有理数加、减混合运算解决实际问题时常用的思路: 通过正负数的实际意义将问题数学化,并列式计算,然后结合计算 结果确定实际问题的答案.
1.4.3
总结反思
加、减混合运算
知识点一
加法的运算律
1.加法交换律:两个数相加,交换加数的位置,和不变. 公式:a+b=b+a. 2.加法结合律:三个数相加,先把前两个数相加,或者先把后两 个数相加,和不变. 公式:(a+b)+c=a+(b+c).
升 30 降 20 升 17 升 18 降 20 单位 单位 单位 单位 单位
1.4.3
加、减混合运算
解:根据题意,得 160+(+30)+(-20)+(+17)+(+18)+(-20)=(160+ 30+17+18)+(-20-20)=225+(-40)=185(单位). 答:星期五该病人的收缩压为 185 单位.
1.4.3
目标突破
目标一
加、减混合运算
会运用加法运算律计算
例1
教材补充例题
计算:
(1)(-1.5)+20+(-8.5); (2)(-46)+(-18)+(-12).
1.4.3
加、减混合运算
解:(1)(-1.5)+20+(-8.5) =(-1.5)+(-8.5)+20 =-(1.5+8.5)+20 =-10+20 =10. (2)(-46)+(-18)+(-12) =(-46)+[(-18)+(-12)] =(-46)+(-30) =-76.
1.4.3
加、减混合运算
1 1 1 2 (2)(+ )-(+5)+(- )-(+ )+(+5 ) 2 3 4 3 1 1 1 2 =(+ )+(-5)+(- )+(- )+(+5 ) 2 3 4 3 1 1 1 2 =[(+ )+(- )]+[(- )+(+5 )+(-5)] 2 4 3 3 1 1 = + 4 3 7 = . 12
2018年秋七年级数学上册第1章有理数1.3有理数大小的比较教案2
1.3 有理数大小的比较
教学目标:会比较两个有理数的大小
重点难点:
重点:有理数大小比较的方法;
难点:比较两个负数的大小
教学过程
一 激情引趣,导入新课
1 什么叫一个数数的绝对值?(在数轴上,表示一个数的点离开原点的_____________ )
2 (1)比较大小:5__3, 0.01___0, -1___0 ,
(2)怎样比较下列每对对数的大小? 3与-4,1-2与2-3
下面就让我们通过具体的问题来感受正数与正数、负数与负数的大小比较。
二 合作交流,探究新知
1 观察与思考(1)
(1)如图,珠穆朗玛峰海拔高度是8844.43
米,吐鲁番盆地的海拔高度是-155米,哪个地方
高?因此8844.43与-155那个大?
(2)今天的气温是30度,我冰箱里的气温
调节为-1度,室外温度和我冰箱里的温度谁高?
你是怎么知道的呢?因此30与-1哪个大?
(3)某一天,老师对小亮和小明两位同学
进行量化评估,老师给小亮记-3分,给小明记1
分,,这天哪位同学表现好一些?因此-3与1哪个大?
从上面几个问题,你发现了什么?把结论填入下表 _______负数做一做:比较大小:-1000___0.001, 11000__-10,-
2___ 3,0___-1,5___0
观察与思考(2)
(1)设海平面高度为0米,潜水员甲潜入海平面下方10米,记作-10米,潜水员乙潜入海平面下方20米,记作-2米,哪位潜水员的位置低?由此看出:-10与-20哪个大?
8844.43米 -155米 吐鲁番盆地 珠穆朗玛峰。
2018年七年级数学上册 第1章 有理数 1.4 有理数的乘除法 1.4.2 第2课时 有理数的四则混合运算讲义 (新版)
秒,后以12米/秒的速度垂直下降100秒,这时飞机所在的高度为 600米 .
5.计算下列各题.
(1)-1÷21÷3-(-4)×(-5);
(2)-15×23+(-34)÷0.125;
(3)-5+4÷(-2)-2×2÷(-21);
(4)112×75-(-57)×221+(-12)÷152.
解:(1)原式=-2023;
易错点 忽略运算顺序导致错误. 自我诊断4. 计算15÷(51-13)= -11212 .
1.(陕西中考)下列计算正确的是( B ) A.-3×4÷31=-4 B.(-32)×(-65)-32=-91 C.-5÷(51-1)=4 D.2÷(12-13)=-2
2.下列各式的计算结果是负数的是( D )
11.现有四个有理数2、-4、6、-9,将这四个数进行加、减、乘、除四 则混合运算,使其结果为24,请写出一个算式为 (-9+6)×(-4)×2=24(答案不唯一) . 12.计算: (1)-1+6×(-16)÷(-6); (2)-12÷[-20-40÷(-8)]; (3)[0-(-3)]×(-6)-12÷[(-3)+(-8)÷6]; (4)(-310)÷(32-110+16-25). 解:(1)原式=-65; (2)原式=54; (3)原式=-15133; (4)原式=-110.
A.-2×3×(-2)×5
B.3÷(-3)×2.6×(-1.5)
C.|-3|×4×(-2)÷(-12)
D.(-2-5)×(-3+55)÷|-10|
3.用带有符号键 - 的计算器计算-8×2+6÷(-3)-1的按键顺序是
- 8 × 2 + 6 ÷ - 3 - 1
.
4.一架直升机从高度为600米的位置开始,先以20米/秒的速度垂直上升60
2018-2019学年度 人教版七年级上册第一章《有理数》第2课时 有理数的大小比较(教案)
第2课时有理数的大小比较回顾1.将数-5,2.5,2,-4,3.25,,-4,0,1用数轴上的点表示出来.2.如图1-2-30,数轴上的点A,B,C,D,E分别表示什么数?图1-2-303.用“<”或“>”填空:的学习做好铺垫活动二: 实践探究交流新知【探究1】在数轴上比较数的大小把温度计向上的方向视为正方向,再加上箭头,然后横放,这时我们发现温度计上的这条刻度线就像是一条数轴,在此刻度线上,有7在2的右边,1在-2的右边,0在-1的右边.而7>2,1>-2,0>-1.所以,我们得到结论:在数轴上表示的两个数,右边的数总比左边的数大.即图1-2-31又由于正数在零的右边,负数在零的左边,由此得到以下的比较法则:正数都大于零,负数都小于零,正数大于负数.化学生的视觉感受得出有理数大小比较的方法一步渗透了数形结合的思想活动三: 开放训练体现应用变式三比较下列各数的大小:-1.3,0.3,-3,-5.解:将这些数分别在数轴上表示出来:图1-2-32所以-5<-3<-1.3<0.3.例2比较下列各对数的大小:(1)-1与-0.01;(2)-|-2|与0;(3)-0.3与-;(4)--与--.解:(1)这是两个负数比较大小,因为|-1|=1,|-0.01|=0.01,且1>0.01,所以-1<-0.01.(2)化简:-|-2|=-2,因为负数小于0,所以-|-2|<0.(3)这是两个负数比较大小,因为|-0.3|=0.3,-==0.,且0.3<0.,所以-0.3>-.(4)分别化简两数,得--=,--=-.因为正数大于负数,所以-->--.说明:①要求学生严格按此格式书写,训练学生的逻辑推理能力;②对于两个负数的大小比较,可以不必再借助于数轴而直接进行;③异分母分数比较大小时,要先通分化为同分母分数.例3用“>”号连接下列各数:2.6,-4.5,,0,-2.分析:多个有理数比较大小时,应根据“正数大于一切负数和0,题学习题、解决问题的能力过用绝对值或数轴对两个负数进行大小比较学生学会尝试从不同的角度思考解决问题的方法的差异维定式的影响主要内容:进一步体会数轴上的点与有理数的对应关系,利用数轴比较有理数的大小,体会“数形结合”的思想方法。
七年级数学上册1.4有理数的大小比较教案
有理数的大小比较教学目标知识目标:掌握利用数轴和绝对值来比较有理数的大小的方法,初步学会数形结合的思想方法。
过程目标:经历从现实问题中来探索有理数的大小比较,从数形两个侧面理解与解决问题,使学生体会到数形结合数学思想方法的美。
情感目标:从学生熟悉的现实环境中学习有理数的大小比较,体会数学知识与现实世界的联系;通过自主探索、归纳来发现知识,使学生体验成功的乐趣。
教学重点与难点教学重点:利用数轴和绝对值来比较有理数的大小。
教学难点:比较两个负有理数的大小。
教学过程一、创设情境,引出新课下面是一组图片,表示某一天我国5个城市的最低气温。
(如P21 图1-11)请同学当天气播报员并体会这几个城市气温的高低。
再请同学们填写:(1)比较这一天下列各城市间的最低气温的高低(填“高于”或“低于”)广州-----上海上海-----北京北京-----哈尔滨哈尔滨-----武汉武汉-----广州10℃比0℃高0℃比-10℃高 -10℃比-20℃高 -10℃比-20℃高-20℃比5℃低话音刚落学生很快就说出结果,兴趣很高。
[师问]:如果任意给出两个有理数,如:4与-5,-99与-100,同学们怎麽来比较它们的大小?[生]:学生思考1分钟后,有些答出但不明确,有些学生根据气温的比较发现一点规律。
[师]:这节课我们就来讨论如何比较有理数的大小。
引入并揭示课题。
二、师生互动,讲授新课1、利用数轴比较有理数大小问题:把表示上述5个城市的最低气温的数表示在数轴上,观察这5个数在数轴上的位置,温度的高低与相应的数在数轴上的位置有什么关系?-20 -15 -10 -5 0 5 10 15[生]:画数轴并表示,观察、思考、总结数轴上数的特点。
学生讨论:联想温度计显示的温度,上边的温度比下边的温度高,如-5℃比-7℃高;同样,在数轴上右边的点表示的数总比左边的点表示的数大,如-5>-7。
[师]:请同学们思考一下:正数,0和负数三者的大小关系?[生]:请个别学生回答其他学生补充[学生总结]:数轴上的两个点表示的数,右边的数总比左边的大,正数大于0,负数小于0,正数大于负数。
【人教版 七年级数学 上册 第一章】1.2.4 第2课时《 有理数大小的比较》教学设计1
【人教版七年级数学上册第一章】1.2.4 第2课时《有理数大小的比较》教学设计1一. 教材分析人教版七年级数学上册第一章《有理数》是学生学习初中数学的基础,而1.2.4节《有理数大小的比较》则是理解有理数概念的关键。
本节内容主要让学生掌握有理数大小比较的方法,包括:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小。
这些知识点有助于培养学生对有理数概念的深入理解,为学生后续学习数学知识打下坚实基础。
二. 学情分析七年级的学生已经掌握了小学数学的基本知识,对数的概念有了一定的了解。
但他们在面对有理数大小比较时,可能还存在着一定的困难。
因此,在教学过程中,教师需要关注学生的认知水平,用生动形象的语言、直观的教具,帮助学生理解和掌握有理数大小的比较方法。
三. 教学目标1.知识与技能目标:使学生掌握有理数大小比较的方法,能够熟练地对有理数进行大小比较。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生自主学习的能力和合作意识。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探究、积极思考的精神。
四. 教学重难点1.教学重点:有理数大小比较的方法。
2.教学难点:理解有理数大小比较的规律,能够灵活运用。
五. 教学方法1.情境教学法:通过生活实例,引导学生进入学习情境,提高学生的学习兴趣。
2.启发式教学法:教师提问,引导学生思考,激发学生的求知欲。
3.合作学习法:学生分组讨论,培养学生的团队协作能力。
4.实践操作法:让学生动手操作,提高学生的实践能力。
六. 教学准备1.教学课件:制作生动形象的教学课件,帮助学生更好地理解知识。
2.教学道具:准备一些直观的教具,如小卡片、图片等,以便在课堂上进行演示。
3.练习题:准备一些有关有理数大小比较的练习题,以便进行课堂巩固和课后作业。
七. 教学过程1.导入(5分钟)利用生活实例,如气温、身高等,引导学生进入学习情境。
七年级数学第一章有理数1.2有理数1.2.4绝对值2第2课时有理数的大小比较导学案
绝对值一、新课导入1.课题导入:看教材第12页未来一周天气预报图,你能将这一周的温度按从低到高的顺序排列吗?这节课我们学习有理数的大小比较。
2.学习目标:(1)进一步理解绝对值的意义。
(2)会进行有理数的大小比较.3。
学习重、难点:重点:进一步理解绝对值的意义;掌握有理数的大小比较方法.难点:两个负数的大小比较方法。
二、分层学习1。
自学指导:(1)自学内容:教材第12页“思考”到教材第13页第4行的内容.(2)自学时间:8分钟.(3)自学要求:借助数轴来归纳比较两个数大小的方法,看数轴上的点表示的数的大小有什么规律.(4)自学参考提纲:①说出数轴上各点所表示的数的大小顺序。
a。
把温度按从低到高的顺序排列后,在温度计上所对应的点是从下到上的;按照这个顺序把这些数表示在数轴上,表示它们的各点的顺序应该是从左到右的。
b。
数学中规定,在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数.②根据数轴上的点表示数的特征(原点右边的数表示正数,原点左边的数表示负数)和上述规定(即左边的数小于右边的数),可得到有理数的大小比较法则一:正数大于0,0大于负数,正数大于负数.对于两个负数,在数轴上的对应点离原点越远,说明这个数的绝对值越大(填“大”或“小”),表示该数的点越往左(填“左"或“右”),因此可以得到有理数的大小比较法则二:两个负数,绝对值大的反而小。
③填空:(填“>”或“<”)—100<0 -50<120<0。
0001④-78和—89这两个负数谁大?怎样来比较?解:∵-|78|<|—89|,∴—78>—89⑤你能总结两个有理数的大小比较的基本思路和方法吗?相互交流一下。
2。
自学:同学们可结合自学指导进行自学和交流探讨.3.助学:(1)师助生:①明了学情:巡视课堂、关注学生的自学过程,了解学生的学习方法和进度,收集自学中存在的问题。
②差异指导:a。
指导部分未找到有理数的大小比较方法的学生观察数轴上两个点表示的数的位置与它们的大小关系。
【人教版 七年级数学 上册 第一章】1.2.4 第2课时《 有理数大小的比较》教学设计2
【人教版七年级数学上册第一章】1.2.4 第2课时《有理数大小的比较》教学设计2一. 教材分析人教版七年级数学上册第一章第2节第4课时《有理数大小的比较》主要介绍了有理数大小比较的方法和规则。
教材通过实例和问题,引导学生理解和掌握有理数大小比较的规律,培养学生解决实际问题的能力。
本节课的内容是学生进一步学习数学的基础,对于培养学生的数学思维和逻辑推理能力具有重要意义。
二. 学情分析七年级的学生已经掌握了整数和分数的基本知识,对数学概念和运算规则有一定的理解。
但部分学生在解决实际问题时,对于有理数大小比较的方法和规则仍然感到困惑。
因此,在教学过程中,需要关注学生的学习需求,针对学生的薄弱环节进行有针对性的教学。
三. 教学目标1.让学生理解有理数大小比较的方法和规则。
2.培养学生解决实际问题的能力。
3.提高学生的数学思维和逻辑推理能力。
四. 教学重难点1.有理数大小比较的方法和规则。
2.运用有理数大小比较解决实际问题。
五. 教学方法采用问题驱动法、案例分析法和小组合作法进行教学。
通过设置问题引导学生思考,分析案例让学生理解有理数大小比较的规律,小组合作讨论解决问题,提高学生的学习兴趣和参与度。
六. 教学准备1.准备相关案例和问题,用于引导学生思考和分析。
2.准备PPT,用于展示问题和案例。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引出本节课的主题:如何比较两个有理数的大小?让学生思考并发表自己的观点。
2.呈现(10分钟)呈现PPT,展示几个有关有理数大小比较的案例。
让学生观察和分析这些案例,引导学生发现有理数大小比较的规律。
3.操练(10分钟)让学生分组讨论,每组选取一个案例,尝试运用所学的规律进行有理数大小比较。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)呈现一组练习题,让学生独立完成。
教师选取部分学生的作业进行点评,巩固所学知识。
5.拓展(10分钟)让学生尝试解决一个实际问题:已知两个有理数,如何比较它们的大小?引导学生运用所学知识解决实际问题。
初中数学冀教版七年级上册第一章 有理数1.4 有理数的大小-章节测试习题(6)
章节测试题1.【题文】请把0,-2.5,,-,8,0.75这六个数按从小到大,从左到右串成糖葫芦.依次应填:____________________.【答案】-2.5,-,0,,0.75,8【分析】先画出数轴,再在数轴上表示出各数,根据数轴上左边的数总比右边的小,写出各数即可.【解答】解:如图所示:从左到右串成糖葫芦状,依次为-2.5,-,0,,0.75,82.【题文】(本题8分)请你把这五个数按从小到大顺序,从左到右串个糖葫芦,把数填在“○”内。
【答案】+(- 4)< -(+2.5) < 0 < |-3.5| < (-3)2【分析】把每一个数化简,然后比较大小.【解答】解:所以+(- 4)< -(+2.5) < 0 < |-3.5| < (-3)2.3.【题文】在数轴上表示下列各数,并用“>”连接起来.3,-4,-2,0,-1,1.【答案】3>1>0>-1>-2>-4【分析】正数大于0和负数,0大于负数,两个负数绝对值大的反而小.【解答】3>1>0>-1>-2>-4.在数轴上表示为:4.【题文】画出数轴,在数轴上表示下列各数,并用“>”把它们连接起来.-,-2,0,(-1)2,|-3|,-3.【答案】图见解析;->|-3|>(-1)2>0>-2>-3.【分析】先化简,再描点,比较大小.【解答】解:-=,-2,0,(-1)2=1,|-3|=3,-3.如图所示.由数轴得->|-3|>(-1)2>0>-2>-3.5.【题文】比较下列各组效的大小.(1)-8与-7 (2) -与-(3) -0.618与-6.18(4)0.5与︱-8︱ (5) -1与-l (6) -︱-0.1︱与-【答案】 (1) -8<-7;(2);(3) -0.618<-6.18;(4)0.5<︱-8︱;(5);(6) -︱-0.1︱=-.【分析】把各组数中的两个数按有理数大小比较的方法进行比较即可.【解答】解:(1)∵,而8>7,∴;(2)∵,而,∴;(3)∵,而6.18>0.618,∴;(4)∵,而8>0.5,∴;(5)∵,而,∴;(6)∵,∴.方法总结:比较两个有理数大小的方法:(1)在数轴上,右边的点表示的数总大于左边的点表示的数;(2)两个有理数,正数大于0,0大于一切负数;两个负数,绝对值大的反而小.6.【题文】已知下列各数:4,0,-2,,-.(1)用“<”将各数连接起来.(2)写出上面各数的相反数.(3)将各数的相反数按从大到小重新排列.【答案】(1);(2) -4,0,2,; (3).【分析】(1)按有理数大小的比较方法,确定好各数的大小关系,然后按从小到大的顺序排列即可;(2)按要求写出各数的相反数即可;(3)将(2)中所得各数按有理数比较大小的方法确定好大小关系,再按从大到小的顺序排列即可.【解答】解:(1)根据有理数大小的比较方法“在有理数中,正数都大于0,0大于一切负数,两个负数,绝对值大的反而小”可得:;(2)4,0,-2,,的相反数分别是:;(3)把按从大到小的顺序排列为:.7.【题文】比较大小:(1)-(-4)和|-5|;(2)-和-.【答案】解:(1)-(-4)<|-5|;(2)->-.【分析】(1)先化简,再比较大小;(2)根据负数的绝对值越大负数越小,可得答案.【解答】解:(1)-(-4)=4,|-5|=5,∵4<5,∴-(-4)<|-5|;(2)|-|==,|-|==,∵<,∴->-.8.【题文】比较下列各组数的大小:(1)-与-;(2)-0.5与-;(3)与-|-|;(4)-与-0.6.【答案】见解析【分析】这4个小题都是两个分数的大小比较问题,我们只需把它们化成同分母的分数,再按有理数大小比较的法则就可判断它们的大小关系.【解答】解:(1)∵,,而,∴.(2)∵,,而,∴.(3)∵,而,∴.(4)∵,,而,∴.9.【题文】在数轴上标出下列各数:-1.5,2,+(-1),0,并用“<”连接起来.【答案】−1.5<+(−1)<0<2<|−3|.【分析】在数轴上表示出各数,再从左到右用“<”连接起来即可.【解答】如图所示,,故−1.5<+(−1)<0<2<|−3|.10.【题文】比较大小:(1) -3.14;(2)【答案】(1)<;(2)>【分析】(1)负数比较大小,根据绝对值大的反而小,进行比较即可;(2)负数比较大小,根据绝对值大的反而小,进行比较即可.【解答】解:(1)∵|−π|=π,|−3.14|=3.14,π>3.14,∴−π<−3.14.(2)∵|−|==,|−|=,且<,∴−>−.11.【题文】(1)在数轴上表示下列各数:,,,,-(-4),,并用“<”号把这些数连接起来.【答案】见解析【分析】先在数轴上表示各个数,再比较即可.【解答】解:如数轴所示,﹣5<﹣3.5<﹣<0<<﹣(﹣4).12.【题文】已知有理数a,b,其中数a在下图的数轴上对应的点为M,b是负数,且b在数轴上对应的点与原点的距离为3.5,(1)a=______,b=_______.(2)将所对应的点在上图的数轴上表示出来,并用“﹤”连接这些数.【答案】 a=2, b=-3.5【分析】(1)根据M点的位置可直接写出a表示的数,再由b到原点的距离为3.5且b为负数可得出b的值;(2)在数轴上表示出各点,从左到右用“<”连接起来即可.【解答】解:(1)∵由图可知,点M在2处,∴a=2;∵b在数轴上对应的点与原点的距离为3.5且b为负数,∴b=﹣.3.5.故答案为:2,﹣3.5;(2)如图所示.,故-3.5<﹣2<﹣<0.13.【题文】﹣4,|﹣2|,﹣2,﹣(﹣3.5),0,﹣1(1)在如图1所示的数轴上表示出以上各数;(2)比较以上各数的大小,用“<”号连接起来;(3)在以上各数中选择恰当的数填在图2这两个圈的重叠部分.【答案】(1)见解析;(2)﹣4<﹣2<﹣1<0<|﹣2|<﹣(﹣3.5);(3)见解析.【分析】(1)根据题目中的数据可以在数轴上表示出来,本题得以解决;(2)根据数轴,可以将各个数据按照从小到大的顺序排列在一起;(3)根据题目中的数据可以解答本题.【解答】解:(1)在数轴上表示题目中的各数据,如下图所示,(2)题目中各个数据按照从小到大排列是:-4<-2<-1<0<|-2|<-(-3.5);(3)如下图所示,14.【题文】下表是在一次乒乓球质量检测中,7只乒乓球的质量检验结果(用正数表示超过标准质量的克数,用负数表示不足标准质量的克数)序号 1 2 3 4 5 6 7检测结果/克-0.02 0.0l 0.0l5 -0.02l 0.03 -0.026 -0.0l9(1)这7只乒乓球中质量最好的是哪一只?质量最不好的是哪一只?为什么?(2)将这7只乒乓球的质量按由好到坏的顺序排列.【答案】(1)质量最好的是2号乒乓球,质量最不好的是5号乒乓球;(2)2号,3号,7号,l号,4号,6号,5号.【分析】(1)比较各只乒乓球检测结果的绝对值的大小关系,即可得到质量最好的和质量最差的乒乓球;(2)按检测结果的绝对值按从小到大排列即可.【解答】解:(1) ∵|0.01|<|0.015|<|-0.019|<|-0.02|<|-0.021|<|-0.026|<|0.03|,∴质量最好的是2号乒乓球,质量最不好的是5号乒乓球;(2)∵|0.01|<|0.015|<|-0.019|<|-0.02|<|-0.021|<|-0.026|<|0.03|,∴这7只乒乓球按质量从好到坏排列为:2号,3号,7号,l号,4号,6号,5号.15.【答题】比较大小:-3.13______-3.12(填“”、“”或“”)【答案】<【分析】本题考查了有理数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.【解答】∵,∴<.16.【答题】比较两数的大小:-1______0(填“<”,“>”,“=”).【答案】<【分析】本题考查了有理数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.【解答】∵负数小于零,∴-1<0.17.【答题】大于-1.5小于2.5的整数共有______个.【答案】4【分析】根据取值范围,找出整数即可.【解答】解:∵大于−1.5小于2.5的整数为:−1,0,1,2,∴大于-1.5小于2.5的整数共有4个.故答案为4.18.【答题】比较大小:______【答案】>【分析】本题考查了有理数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.【解答】∵||=,||=,,∴>.故答案是:>.19.【答题】在0、﹣3、1、4这四个数中,最小的数是()A.0B.﹣3C.1D.4【答案】B【分析】本题考查了有理数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.【解答】∵-3<0<1<4,∴在0、﹣3、1、4这四个数中,最小的数是﹣3,选B.20.【答题】若0<x<1,则x,x2的大小关系是()A.0<x<x2B.x<x2C.x2<xD.0<x2<x【答案】D【分析】利用绝对值的定义求解即可.【解答】取x=,则x2=,即0<x2<x,选D.。
1.4有理数的大小(3大题型提分练)2024-2025学年七年级数学上册同步精品课堂「含答案」
第一章 有理数1.4 有理数的大小(3大题型提分练)知识点01::有理数的大小比较(1)正数大于0,0大于负数,正数大于负数(2)两个负数,绝对值大的反而小(3)数轴上两个点表示的数,右边的数大于左边的数、比较大小 1.数轴比较法:在数轴上,右边的数总比左边的数大2.代数比较法:正数大于零,负数小于零,正数大于一切负数.两个负数比较大小时,绝对值大的反而小题型一 利用数轴比较有理数的大小1.如图,下列四个数中,比数轴上点A 表示的数小的数是( )A .2-B .1-C .0D .12.实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( )A .1a >-B .1b >C .a b -<D .b a->3.有理数a ,b 在数轴上的对应点的位置如图所示,把a ,a -,b 按照从小到大的顺序排列,正确的是( )A .a a b <-<B .a b a -<<C .a a b -<<D .b a a<-<4.实数a ,b 在数轴上对应点的位置如图所示.若0a b +=,则下列结论中正确的是( )A .a b<B .22a b >C .0ab >D .1a <-5.如图,比较大小:a b .(填“>”“<”“=”)6.,a b 两数在数轴上的位置如图所示,则b a -(用“<”“>”“=”填空).7.实数a 、b 在数轴上对应点的位置如图所示,则a - b .(填“>”“=”或“<”)8.比较大小:有理数a 在数轴上的位置如下图所示,则a0.9.画出数轴,并在数轴上表示下列各数,再用“<”连接起来.133,3, 2.5-,()1.6--,0,2--10.把下列各数在数轴上表示出来,再按大小顺序用“>”号连接起来. ()543 1.52---+-,,,题型二 有理数大小比较11.下列比1-小的数是( )A .0.5-B .2-C .0D .312.不是4-与2-之间的数是( )A .3-B .52-C .1-D . 3.5-13.直线上点A 表示0.6-,点B 表示23-,则( )A .点A 在点B 右边B .点A 在点B 左边C .点A 与点B 重合D .无法确定14.还记得你曾经做过的那些简单题吗?还记得老师们说一定不能错吗?匆匆那三年,我们相爱又相杀,现在却如倒数和相反数一样难舍难分.下列有理数中最小的是( ).A .12023-B .12023C .12024D .12024-15.写一个比1-大的数 .16.比 2.99-小的最大整数是 .17.在5-、0、1-、4+、2.5中,最小数是 ,最大的数是 .18.比较大小:(填“>”或“<”).(1)78- 34-,(2)45- 34-;(3)56--23-.19.比较大小:20052004-和20042003-20.比较下列各对数的大小:(1)3和7-.(2) 5.3-和( 5.4)-+.(3)45-和23-.(4)(7)--和1-.题型三 有理数大小比较的实际应用21.已知某物品的保存温度要求为1C ~4C -°°,则下列温度符合要求的是( )A .0C°B . 1.1C-°C .4.1C°D .5C°22.沈阳某天4个时刻的气温(单位:℃)分别为5012---,,,,其中最低的气温是( )A .5-℃B .0℃C .1-℃D .2-℃23.某一天,温州、杭州、哈尔滨、北京四个城市的最低气温分别是502210--℃,℃,℃,℃,其中最低气温是 ( )A .5℃B .0℃C .22-℃D .10-℃24.下列材料在20℃时的电阻率如下表所示.材料银铜铝钨电阻率(/m W )81.610-´81.710-´82.910-´85.310-´已知电阻率越高,导电能力越差,则在20℃时,导电能力最强的是( )A .铝B .铜C .钨D .银25.2024年1月1日,我市某地4个时刻的气温(单位:C °)分别为4-,0,1,3-,其中最低的气温是.26.小明、小李和小凯三人读同一篇文章,小明用了215小时,小李用了16小时,小凯用了0.2小时,的阅读速度最快.27.已知里海、艾尔湖、死谷的海拔高度分别是28m 15m 85m ---,,,则海拔最低的是.(填“里海”“艾尔湖”或“死谷”)28.有研究表明,动物的小腿骨与大腿骨长度的比值越大,该动物跑得越快.根据表格提供的数据,可以判断出下面两种动物中, 跑得快.动物马羚羊小腿骨与大腿骨长度的比12∶135∶329.下面是我国几个城市某年一月份的平均气温,把它们按从高到低的顺序排列.北京武汉广州哈尔滨南京4.6-℃3.8℃13.1℃19.4-℃2.4℃30.希望小学要买60个足球,现有甲、乙、丙三个商店可以选择,三个商店足球单价都是30元,但各个商店的优惠办法不同: 甲店:全部打八折销售;乙店:当购买足球不超过20个时,不打折;购买超过20个时,超过部分打六折;丙店:买10个足球免费赠送2个,不足10个不赠送;为了节省费用,希望小学应到哪个商店购买合算?为什么?31.下列有理数中最小的数是( )A .2-B .0C .2D .432.下列说法正确的是( )A .数0是最小的整数B .若a b =,则a b=C .互为相反数的两数之和为零D .两个有理数,大的离原点远33.a ,b ,c ,d 四个数在数轴上的位置如图所示,则最小的数是( )A.a B.b C.c D.d34.下列说法中,正确的是()A.如果a为有理数,那么a-是负数B.0和负数称为非负数C.在数轴上,左边的点所表示的数比右边的点所表示的数大D.正分数大于负分数35.下表是我国几个城市某年一月份的平均气温.其中气温最低的城市是( )城市北京武汉广州哈尔滨平均气温(单位:℃) 4.6- 3.813.119.4-A.北京B.武汉C.广州D.哈尔滨36.比较大小:23-0.75-.37.比较大小:(1) 1.5-0;(2)34-45-(填“>”或“<”).38.在数轴上表示的两个数中,的数总比的数大.39.如图所示,有理数a,b在数轴上对应的点分别为A,B,则a,-a,b,-b按由小到大的顺序排列是.40.下表是我市四个景区今年2 月份某天6 时的气温,其中气温最低的景区是.景区大洋湾黄海森林公园大纵湖荷兰花海气温0℃-0.8℃-0.6℃0.2℃41.在数轴上表示下列数,并用“<”号把这些数连接起来.2.5,4--,122-,()3--,0.42.用数轴上的点表示下列各有理数,并比较大小.12-, 3.5-,4,92-,5-43.在数轴上表示下列各数,并按从大到小的顺序用“>”连接.22-, 213,3+,32æö--ç÷èø,0, 2.5- 44.比较下列各组数的大小.(1)0.02-与0.2--;(2)914-与58-;(3)3-与()3--;(4)215-与113-.45.一种圆形的机器零件规定直径为200毫米,为检测它们的质量,从中抽取6件进行检测,比规定直径大的毫米数记作正数,比规定直径小的毫米数记作负数.检查记录如下:1234560.2-0.1-0.30.1-0.2(1)第几号的机器零件直径最大?第几号最小?并求出最大直径和最小直径的长度;(2)质量最好的是哪个?质量最差的呢?1.A【分析】本题考查了数轴,有理数的大小比较,据数轴得出点A 表示的数,再根据有理数的大小比较方法即可得出答案.【详解】解:由数轴可得点A 表示的数是1-,∴比数轴上点A 表示的数小的数是2-,故选:A .2.D【分析】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.根据数轴上的点的特征即可判断.【详解】解:A :Q 点a 在1-的左边,\ 1a <-,故该选项不符合题意;B :Q 点b 在1的左边,\ 1b <,故该选项不符合题意;C :Q 1a <-,\ 1a ->,又Q 1b <,\ a b ->,故该选项不符合题意;D :Q 1b <,\ 1b ->-,又Q 1a <-,\ b a ->,故该选项符合题意;故选:D .3.A【分析】本题考查了数轴与有理数大小的比较,正确理解数轴与有理数大小的比较的方法是解题的关键.在数轴上标出有理数a 的相反数a -所表示的点,再根据“在数轴上表示的两个数,右边的数总比左边的数大”,即可判断答案.【详解】在数轴上标出有理数a 的相反数a -所表示的点,则a ,a -,b 按照从小到大的顺序排列为a a b <-<.故选:A .4.D【分析】根据数轴上有理数的位置,计算判断即可.本题考查了数轴上表示有理数,借助数轴进行数或式子的大小比较,符号确定,熟练掌握数轴上大小比较的原则是解题的关键.【详解】∵101a b <-<<<,0a b +=,∴A. a b =,错误,不符合题意;B. 22a b <,错误,不符合题意; C. 0ab <,错误,不符合题意;D. 1a <-,正确,符合题意;故选D .5.<【分析】本题考查了利用数轴进行比较大小,根据越在数轴的右边的数越大,即可作答.【详解】解:由数轴可知0a b<<∴a b <故答案为:<6.>【分析】本题主要考查数轴上比较大小,熟练掌握数轴的性质是解题的关键.根据数轴上比较大小即可得到答案.【详解】解:根据在数轴的位置可知,b a >-,故答案为:>.7.>【分析】本题考查了利用数轴比较大小,熟记数轴上右边的点表示的数总比左边的大是解题关键.根据在数轴上,右边的点表示的数总比左边的大即可得到答案.【详解】解:由数轴可知,202a b <-<<<,∴a b ->故答案为:>.8.<【分析】本题主要考查了利用数轴比较有理数的大小,根据有理数a 在数轴上的位置可以直接判断.【详解】解:根据有理数a 在数轴上的位置,可知a<0,故答案为:<.9.数轴见解析,()120 1.63.5332--<<--<<-<【分析】本题考查了在数轴上表示有理数,根据数轴比较有理数的大小,数形结合是解题的关键.【详解】解:()1.6 1.6--=,22--=-,如图所示:用“<”连接起来为:()12.520 1.6333-<--<<--<<.10.()53 1.542-->+>->-,数轴见解析【分析】本题考查利用数轴比较有理数的大小.从左往右,数轴上的数依次增大.化简各数后,表示在数轴上,即可比较大小.【详解】解:()33--=,数轴如下:∴()53 1.542-->+>->-11.B【分析】本题考查了有理数比较大小,掌握绝对值的计算是关键.根据题意,结合有理数大小的比较,从符号和绝对值两个方面分析可得答案.【详解】解:210.503-<-<-<<Q ,\下列比1-小的数是2-,故选:B .12.C【分析】本题考查了有理数大小的比较,两个负数,绝对值大的反而小,比较出这几个数的大小即可判断.【详解】解:由于54 3.53212>>>>>,则54 3.53212-<-<-<-<-<-,表明1-不是4-与2-之间的数,故选:C .13.A【分析】本题考查的是两个负数的大小比较,根据两个负数,绝对值大的反而小可得答案;【详解】解:∵390.6515-==,22103315-==,而9101515<,∴20.63->-,∴点A在点B右边,故选:A.14.A【分析】该题主要考查了有理数大小比较,解题的关键是掌握有理数大小比较方法.根据有理数大小比较方法:正数大于负数,负数中绝对值越大的越小比较即可.【详解】解:1111 2023202420242023 -<-<<,∴最小的是1 2023 -.故选:A.15.0【分析】本题考查了有理数比较大小.根据有理数比较大小的方法即可求解.【详解】解:10-<.故答案为:0(答案不唯一).16.3-【分析】此题主要考查了有理数大小比较,正确理解最大整数定义是解题关键.根据有理数大小比较即可得比 2.99-小的最大整数是3-.【详解】解:比 2.99-小的最大整数是3-.故答案为:3-.17.5-4【分析】本题考查了有理数大小比较,掌握有理数大小比较方法是解答本题的关键.根据“正数0>>负数,两个负数比较大小,绝对值大的反而小”可得答案.【详解】解:510 2.54-<-<<<+Q,\在5-、0、1-、4+、2.5中,最小数是5-,最大的数是4+.故答案为:5-,4.18.<<<【分析】本题主要考查了有理数比较大小,根据正数大于0,0大于负数,两个负数比较大小,绝对值越大其值越小进行求解即可.【详解】解:(1)∵77336 88448-=>-==,∴73 84 -<-(2)Q 416520-=-,315420-=-,\16152020-<-,即4354-<-,(3)∵5566--=-,2436-=-,∴54—66<-,∴5263--<-故答案为:<,<,<.19.2005200420042003->-【分析】本题考查了有理数的大小比较,解题的关键是先将其拆分成整数加或减一个分数,然后再进行比较.先变形200511()20042004-=-+-,200411()20032023-=-+-,再比较大小.【详解】解:200511()20042024-=-+-Q ,200411(20032023-=-+-,1120042003->-\2005200420042003->-20.(1)37>-(2) 5.3( 5.4)->-+(3)4253-<-(4)(7)1-->-【分析】本题考查了有理数大小比较、相反数以及绝对值,掌握有理数大小比较的法则是解答本题的关键.(1)正数大于负数;(2)根据相反数的定义化简后,再根据两个负数比较大小,绝对值大的其值反而小判断即可;(3)根据两个负数比较大小,绝对值大的其值反而小判断即可;(4)根据相反数和绝对值的性质化简后,再比较大小即可.【详解】(1)解:37>-(2)解:()5.4 5.4-+=-5.3 5.3-=Q , 5.4 5.4-=,5.3 5.4<5.3( 5.4)->-+\(3)解:4455-=Q ,2233-=,4253>4253\-<-;(4)解:(7)7--=Q ,11-=(7)1\-->-21.A【分析】本题考查了有理数比较大小,根据有理数比较大小的方法“负数小于零,零小于正数,负数小于正数”即可求解,掌握有理数比较大小的方法是解题的关键.【详解】解:根据题意, 1.1104 4.15-<-<<<<,∴符合的是0℃,故选:A .22.A【分析】本题考查了有理数的大小比较,熟练掌握有理数的大小比较方法是解题的关键.根据两个负数比较,绝对值大的反而小比较1-与2-,然后根据0大于负数即可得出最低的气温.【详解】解:∵551122---=,=,=,又∵521>>,∴5210-<-<-<,∴最低的气温是5C -°,故选:A .23.C【分析】本题考查了有理数大小比较,熟练掌握有理数大小比较的方法是解题的关键.根据正数大于0,0大于负数,两个负数比较,绝对值大的反而小即可得出答案.【详解】解:∵221005-<-<<,∴最低气温是22-℃,故选:C24.D【分析】本题考查比较有理数大小的应用,掌握比较有理数大小的方法是解题的关键.比较电阻率大小,根据电阻率越高,导电能力越差,所以电阻率最小的,导电能力最强解答即可.【详解】解:∵888819.61011.710 2.0 5.310----<´´´<´<∴导电能力最强的是银.故选:D .25.4-【分析】本题主要考查有理数的大小比较;由题意可根据有理数的大小比较进行求解.【详解】解:∵4301-<-<<,∴最低的气温是4C -°;故答案为:4-.26.小明【分析】把各数化成分子相同的分数,比较分母的大小确定原分数的大小.【详解】解:Q 12612=,20.210=,\222151210<<,\小明用时最少,即小明的阅读速度最快.故答案为:小明.【点睛】本题考查有理数的大小比较,解答本题的关键是明确分数和小数的转化,以及大小比较的方法.27.死谷【分析】根据有理数大小比较的法则判断即可.【详解】解:因为852815-<-<-,所以海拔最低的是死谷.故答案为:死谷.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.28.羚羊【分析】根据题意,动物的小腿骨与大腿骨长度的比值越大,该动物跑得越快,由表格中的数据,马小腿骨与大腿骨比为1213,羚羊小腿骨与大腿骨比为53,根据1251133<<,得到羚羊跑的快.【详解】解:Q1213351131333<==<,且动物的小腿骨与大腿骨长度的比值越大,该动物跑得越快,\羚羊跑得快,故答案为:羚羊.【点睛】本题考查有理数大小比较解决实际问题,掌握分数比较大小的方法是解决问题的关键.29.13.1℃,3.8℃,2.4℃, 4.6-℃,19.4-℃【分析】根据有理数比较大小的方法进行判断即可.【详解】解:∵13.1>3.8>2.4>﹣4.6>﹣19.4∴按从高到低的顺序排列为:13.1℃,3.8℃,2.4℃,﹣4.6℃,﹣19.4℃【点睛】本题考查了有理数比较大小的方法,熟练掌握该知识点是解决本题的关键.30.为了节省费用,希望小学应到乙商店购买合算,理由见解析【分析】根据题意和题目中的数据,可以计算出三家商店需要花费的情况,然后比较大小即可.【详解】解:为了节省费用,希望小学应到乙商店购买合算.理由:由题意可得,在甲店购买需要花费为:30×60×0.8=1440(元),在乙店购买需要花费为:30×20+30×(60﹣20)×0.6=1320(元),在丙店购买需要花费为:30×50=1500(元),∵1320<1440<1500,∴为了节省费用,希望小学应到乙商店购买合算.【点睛】本题考查了有理数比较大小,解答本题的关键是明确题意,求出三个商店的花费情况.31.A【分析】本题考查有理数的大小比较,解题的关键是掌握比较有理数大小的方法.根据有理数的大小比较选出最小的数.【详解】解:∵2024-<<<,∴最小的数是2-,故选:A .32.C【分析】本题考查了有理数、绝对值、相反数、数轴,根据有理数的定义、绝对值、相反数和数轴的性质解答即可求解,掌握有理数的定义、绝对值、相反数和数轴的性质是解题的关键.【详解】解:A 、数0不是最小的整数,该选项错误,没有最小的整数;B 、若a b =,则a b =±,故该选项错误;C 、互为相反数的两数之和为零,该选项正确;D 、两个有理数,只有当它们都是正数时,较大的离原点远,该选项错误;故选:C .33.A【分析】本题考查了根据数轴比较大小,根据右边的数比坐标的大,即可求解.【详解】解:根据数轴可得:0a d b c <<<<,则最小的数是a ,故选:A .34.D【分析】本题考查了有理数,数轴,有理数的大小比较等知识.熟练掌握有理数,数轴,有理数的大小比较是解题的关键.【详解】解:A 、如果a 为有理数,那么a -可正可负可为0,错误,故不符合要求;B 、0和负数称为非正数,错误,故不符合要求;C 、在数轴上,左边的点所表示的数比右边的点所表示的数小,错误,故不符合要求;D 、正分数大于负分数,正确,故符合要求;故选:D .35.D【分析】本题考查了有理数的大小比较,熟练掌握有理数大小比较的法则是解本题的关键.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的反而小.【详解】解:∵19.4 4.6 3.813.1-<-<<,∴平均气温最低的城市是哈尔滨.故选:D.36.>【分析】本题主要考查了有理数的大小比较,掌握负数的绝对值越大、自身越小成为解题的关键.先把23-化成小数,然后再比较绝对值,最后根据负数的绝对值越大、自身越小即可解答.【详解】解:∵20.673-»-,∴0.670.670.750.75-=<=-,∴20.75 3->-.故答案为:>.37.> >【分析】本题考查了有理数大小比较,掌握两个负数大小比较方法是解答本题的关键.(1)根据绝对值的性质化简后,再根据正数大于0填空即可;(2)两个负数比较大小,绝对值大的反而小,据此解答即可.【详解】(1)∵ 1.5 1.5-=,且1.50>,∴ 1.50->;故答案为:>(2)∵3344-=,4455-=,且3445<,∴34 45 ->-.故答案为:>38.右边左边【分析】根据数轴上的点的性质即可得出结果.【详解】解:数轴上表示的两个数,右边的数总是大于左边的数所以右边的数总比左边的大,故答案为:①右边;②左边.【点睛】题目主要考查数轴上的点的性质,理解右边的数总是大于左边的数是解题关键.39.-a <b <-b <a【分析】先根据数轴上互为相反数的两点关于原点对称,找出-a ,-b 表示的点,然后根据数轴上表示的数从左到右的顺序得出从小到大的顺序进行解答即可.【详解】解:在数轴上表示出-a ,-b ,如图所示:所以-a <b <-b <a .故答案为-a <b <-b <a .【点睛】本题考查了数轴和相反数,根据相反数的意义表示出-a ,-b 的位置,然后根据数轴上表示的数的大小顺序即可得出答案.注意数形结合思想的应用.40.黄海森林公园【分析】根据正数大于0,负数小于0,正数大于任何负数,两个负数绝对值大的反而小比较即可.【详解】解:∵-0.8<-0.6<0<0.2∴其中气温最低的景区是:黄海森林公园故答案为黄海森林公园【点睛】本题考查了有理数大小比较的实际应用,解答本题的关键是熟练掌握有理数的大小比较方法,特别是两个负数的大小比较.41.见详解【分析】根据绝对值和相反数的定义得到各个数的具体值,进而在数轴上表示出原数,根据数轴右边的数总比左边的数大可得所给数的大小关系.【详解】解:|4|4--=-,()33--=在数轴上表示各数得:用“<”号把这些数连接起来:()|4| 2.50 2.53--<-<<<--.【点睛】本题考查了有理数比较大小以及绝对值、相反数,利用数轴比较有理数的大小:数轴上的点表示的数右边的总比左边的大.42.图见解析,915 3.5422-<-<-<-<【分析】本题考查了在数轴上表示有理数、利用数轴表示数的大小,先将各数表示在数轴上,再结合数轴即可得出答案.【详解】解:将各数表示在数轴上如图所示:,由图可得:915 3.5422-<-<-<-<.43.作图见解析,22310 2.23325æö+-->çø>>÷è>->-【分析】本题主要考查了在数轴上表示有理数、有理数的大小比较等知识点,在数轴上表示出各数是解题的关键.先根据乘方、相反数的定义化简,然后在数轴上表示各数,最后沿数轴从右到左排列,并用“>”接即可.【详解】解:由2332=4=22æö----ç÷èø,,则在数轴上表示如下:223310 2.5232æö+>>-->>->-ç÷èø.44.(1)0.020.2->--(2)95148-<-(3)()33-=--(4)211153-<-【分析】(1)先去绝对值,再比较大小;(2)比较两个负数绝对值的大小,绝对值大的反而小;(3)先去绝对值、多重符号,再比较大小;(4)比较两个负数绝对值的大小,绝对值大的反而小.【详解】(1)解:Q 0.020.02-=,0.20.2--=-,\0.020.2->--;(2)解:Q 95148->-,\95148-<-;(3)解:Q 33-=,()33--=,\()33-=--;(4)解:Q 215-113>-,\211153-<-.【点睛】本题考查比较有理数的大小,去绝对值,去多重符号等,解题的关键是掌握“两个负数比较大小时,绝对值大的反而小” .45.(1)1号的直径最大,最大直径是200.2(mm );3号的直径最小,最小直径是199.7(mm );(2)质量最好的是5号,质量最差的是3号.【分析】(1)先比较表格中6个数据的大小,然后根据最大的数据和最小的数据即为直径最大和最小解答即可;(2)与规定质量差的绝对值最小的就是质量最好的,与规定质量差的绝对值最大的就是质量最差的,据此解答即可.【详解】解:(1)由﹣0.3<﹣0.2<﹣0.1<0<0.1<0.2知:1号的直径最大,最大直径是200+0.2=200.2(mm );3号的直径最小,最小直径是200﹣0.3=199.7(mm );(2)由于00.10.10.20.20.3<-=<-=<-,所以质量最好的是5号,质量最差的是3号.【点睛】本题考查了正负数在实际中的应用、有理数的大小比较以及绝对值的实际应用,正确理解题意、熟练掌握基本知识是解题的关键.。
1.4 有理数的大小(课件)七年级数学上册(冀教版2024) (2)
(2)-(+3)和0;
(2)解:-(+3)=-3.
因为负数小于0,
所以-3<0,
所以-(+3)<0.
讲授新课
(3)-2.5和-|-2.25 |;
(3)解:-|-2.25 |=-2.25,
-2.25小于0,-2.5小于0
因为|-2.5 |=2.5,|-2.25 |=2.25
-1~6℃
-2~5℃
-4~3℃
-3~4℃
2~9℃
-4℃
最低气温是_______
9℃
最高气温是_______
讲授新课
问题2:你能将这七天每天的最低气温按照从低到高排列吗?
周一
周二
周三
周四
周五
周六
周日
0~8℃
1~7℃
-1~6℃
-2~5℃
-4~3℃
-3~4℃
2~9℃
-4
-3
-2
-1
0
1
2
讲授新课
问题3:回想一下,我们认识了哪些数?
数学(冀教版)
七年级 上册
第一章 有理数
1.4 有理数的大小
学习目标
1、通过探究得出有理数大小的比较方法.
2、学会利用数轴及绝对值的知识,比较两个有理数的大小.
温故知新
相反数
数轴上表示互为相反数的两个点位
于原点的两侧,且到原点距离相等
正数的绝对值是它本身
绝对值
绝对值
的性质
负数的绝对值是它的相反数
-4
-3
-1
-2
0
1
按照这个顺序排列的温度,在温度计上所对应的点是从下到上的.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4 有理数的大小
【教学整体设计】
【教学目标】
1.通过探索有理数大小比较法则的过程,理解并掌握有理数大小比较法则.
2.会利用数轴比较有理数的大小;能利用数轴对多个有理数进行有序排列;会利用绝对值比较两个负数的大小.
3.能正确运用符号“<”“>”“因为”“所以”写出表示推理过程中简单的因果关系.
【重难点】
重点:利用数轴比较有理数的大小,利用绝对值比较两个负数的大小.
难点:利用绝对值比较两个异分母负分数的大小.
【教学过程设计】
例1:比较3.5,-1,0的大小.
在数轴上表示各数,并将它们按从小到大的顺序用“<”连接. 例2:比较下列各组中两个数的大小: (1)0与-6;(2)3与-4.4;(3)-34与-4
5.
师生共同完成,要求学生说明理由. 学生不至于偏离既定目标.
【教学小结】
【板书设计】
1.4 有理数的大小
1.规律发现
(1)正数大于0,0大于负数,正数大于负数;
(2)两个负数,绝对值大的反而小.
2.例题教学。