2019-2020年高三数学 第27课时 第四章 三角函数 任意角的三角函数专题复习教案

合集下载

2019届高考数学一轮复习第四章三角函数解三角形4-1任意角和蝗制及任意角的三角函数课件文

2019届高考数学一轮复习第四章三角函数解三角形4-1任意角和蝗制及任意角的三角函数课件文

[解析] ∵α 是第二象限角, ∴π2+2kπ<α<π+2kπ,k∈Z, ∴π4+kπ<α2<2π+kπ,k∈Z. 当 k 为偶数时,α2是第一象限角; 当 k 为奇数时,α2是第三象限角. [答案] C
5.一段圆弧的长度等于其圆内接正三角形的边长,则其圆
心角弧度数为( )
π

A.3
B. 3
C. 3
提示:在单位圆中作出正弦线,余弦线,正切线.如图,可 以看出 MP+OM>OP,即 sinα+cosα>1,
由 S 扇形 OAP<S△OAT 得12r2α<12OA·AT,即:α<AT=tanα,又在⊙O 中A︵P>MP,即 α>sinα,故有:tanα>α>sinα.
[小题速练] 1.角-870°的终边所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 [解析] 由-870°=-3×360°+210°,知-870°角和 210°角 的终边相同,在第三象限. [答案] C
(2) 几 何 表 示 : 三 角 函 数 线 可 以 看 作 是 三 角 函 数 的 几 何 表 示.正弦线的起点都在 x 轴上,余弦线的起点都是原点,正切线 的起点都是(1,0).如图中有向线段 MP,OM,AT 分别叫做角 α 的 正弦线,余弦线和正切线.
(3)三角函数值在各象限的符号规律:一全正、二正弦、三正 切、四余弦.
[温馨提示] (1)一个易错点:已知角终边上一点坐标求三角 函数值时,r=|OP|>0.如:已知角 α 终边过点(a,2a)(a≠0),则角 α
的余弦值是
55或-
5 5
.
(2)一个应用:三角函数线在比较大小中的应用.

任意角和弧度制、任意角的三角函数及诱导公式

任意角和弧度制、任意角的三角函数及诱导公式

任意角和弧度制、任意角的三角函数及诱导公式一、任意角1、角的概念的推广:角可以看成是由一条射线(起始边)旋转到一个新的位置(终边)所形成的图形。

(1)按旋转方向不同分为正角(逆时针)、负角(顺时针)、零角.(2)角具有无界性;意思是说任意角的范围是(3)按终边位置不同分为象限角和轴线角.(约定以原点和x的正半轴组成的射线为起始边)(4)角具有周期性: 终边相同的角不一定相等;终边相同的角相差3600 的整数倍。

2、角与角的位置关系的判断(终边相同的角、对称关系的角)★与任意角 终边相同的所有的角构成一个集合,这个集合可表示为:【注意】(1)终边与终边共线(的终边在终边所在直线上) .(2)终边与终边关于轴对称.(3)终边与终边关于轴对称.(4)终边与终边关于原点对称.(5)终边在轴上的角可表示为:;终边在轴上的角可表示为:;终边在坐标轴上的角可表示为:.例1:与角的终边相同,且绝对值最小的角的度数是___。

练习1(1)与1991°终边相同的最小正角是______,绝对值最小的角是_________.(2)-1120°角所在象限是(3)把-1485°转化为α+k·360°(0°≤α<360°, k∈Z)的形式是(4)终边在第二象限的角的集合可以表示为(5)已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是( )A.B=A∩C B.B∪C=C C.AC D.A=B=C(6)下列结论中正确的是( )A.小于90°的角是锐角B.第二象限的角是钝角C.相等的角终边一定相同D.终边相同的角一定相等(7)下列角中终边与330°相同的角是( B )A.30° B.-30° C.630° D.-630°例2:若是第二象限角,则是第_____象限角。

高考数学一轮复习第四章三角函数解三角形4.1任意角蝗制及任意角的三角函数课件理

高考数学一轮复习第四章三角函数解三角形4.1任意角蝗制及任意角的三角函数课件理

(2)已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α 用集合可表示为_(2_k_π_+__π4_,__2_k_π_+__56_π_)_(k_∈__Z__) . 答案 解析
在[0,2π)内,终边落在阴影部分角的集合为π4,56π, ∴所求角的集合为2kπ+4π,2kπ+56π(k∈Z).
弧度数是 答案 解析
π
π
A.3
B.6
C.-π3
D.-π6
将表的分针拨快应按顺时针方向旋转,为负角,故A、B不正确;
又因为拨快10分钟,故应转过的角为圆周的 1 . 6
即为-16×2π=-π3.
(2)若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为
π
π
A.6
B.3
C.3
D. 3
答案
解析
如图,等边三角形ABC是半径为r的圆O的内接三角形,
2.弧度制
(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号
rad表示,读作弧度.正角的弧度数是一个 正数 ,负角的弧度数是一个
负数 ,零角的弧度数是 0 .
π
180
(2)角度制和弧度制的互化:180°= π
rad,1°=180 rad,1 rad=

π

.
1 (3)扇形的弧长公式:l= |α|·r ,扇形的面积公式:S= 2lr =
②若扇形的周长为20,求扇形面积的最大值,并求此时扇形圆心角的 弧度数. 解答
由题意知l+2r=20,即l=20-2r, S=12l·r=12(20-2r)·r=-(r-5)2+25, 当r=5时,S的最大值为25. 当 r=5 时,l=20-2×5=10,α=rl=2(rad). 即扇形面积的最大值为25,此时扇形圆心角的弧度数为2 rad.

高考数学复习:任意角和弧度制及任意角的三角函数

高考数学复习:任意角和弧度制及任意角的三角函数

当m=- 5 时,r=2 2,点P的坐标为 ( 3, 5),
所以cos x 3 6 ,tan y 5 15 ,
r 22 4
x 3 3
综上可知,cos θ=- ,t6an θ=- 或c1o5 s θ=- , 6
2
2.若圆弧长度等于圆内接正方形的边长,则该圆弧所对
圆心角的弧度数为 ( )
A.
B.
C. 2
D. 2
4
2
2
【解析】选D.设圆的直径为2r,则圆内接正方形的边长 为 2r, 因为圆的圆弧长度等于该圆内接正方形的边长, 所以圆弧的长度为 2r, 所以圆心角弧度为 2r 2.
r
考点三 任意角三角函数的定义及应用 【明考点·知考法】
【典例】函数y= sin x 3 的定义域为________.
2
世纪金榜导学号
【解析】由题意可得sin x- ≥30,即sin x≥ .作 3
2
2
直线y= 3交单位圆于A,B两点,连接OA,OB,则OA与OB围
2
成的区域(图中阴影部分含边界)即为角x的终边的范围,
故满足条件的角x的集合为
{x|2k x 2k 2 , k Z}.
2
答案:6π
题组二:走进教材
1.(必修4P5T4改编)下列与 9 的终边相同的角的表达
4
式中正确的是 ( )
A.2kπ+45°(k∈Z) C.k·360°-315°(k∈Z)
B.k·360°+ 9 π(k∈Z)
4
D.kπ+ 5 (k∈Z)
4
【解析】选C.由定义知终边相同的角的表达式中不能
同时出现角度和弧度,应为 +2kπ或k·360°+45°

高考数学一轮复习第四章三角函数与解三角形第一节任意角和蝗制及任意角的三角函数课件理

高考数学一轮复习第四章三角函数与解三角形第一节任意角和蝗制及任意角的三角函数课件理

r=4, (舍),θ=12,
故扇形圆心角为12.
答案:12
[探究 1] 若去掉本例条件“面积为 4”,则当它的半径和圆 心角取何值时,才使扇形面积最大?
解:设圆心角是 θ,半径是 r,则 2r+rθ=10. S=12θ·r2=12r(10-2r)=r(5-r) =-r-522+245≤245, 当且仅当 r=52时,Smax=245,θ=2. 所以当 r=52,θ=2 时,扇形面积最大.
π
180
①180°= π rad;②1°=
180 rad;③1 rad=

π
°

.
(4)弧长、扇形面积的公式
设扇形的弧长为 l,圆心角大小为 α(rad),半径为 r,则 l= |α|r,
1
扇形的面积为 S= 2lr
° = 12|α|·r2 .
3.任意角的三角函数
(1)定义:设 那么 sin α=
[听前试做] (1)sin α= 42+-3-32=-35. (2)设 α 终边上任一点为 P(-4a,3a), 当 a>0 时,r=5a,sin α=35,cos α=-45,tan α=-34; 当 a<0 时,r=-5a,sin α=-35,cos α=45,tan α=-34. 答案:(1)-35
答案:(1)
(2)三
[探究 1] 在本例(2)的条件下,α2是第几象限角? 解:由例题条件可知,α 为第三象限角,所以α2为第二或 第四象限角.
[探究 2] 若将本例(2)的条件换为“α 是第三象限角,且 sinα2=-sinα2”,则α2是第几象限角?
解:由 α 是第三象限角,知 2kπ+π<α<2kπ+32π(k∈Z),kπ +π2<α2<kπ+34π(k∈Z),知α2是第二或第四象限角.再由sin α2= -sinα2,知 sinα2<0.所以α2只能是第四象限角.

高三数学第一轮复习-第二十七课时 任意角的三角函数

高三数学第一轮复习-第二十七课时 任意角的三角函数

1第27课时 任意角的三角函数【考点概述】1.了解任意角的概念;了解弧度制概念,能进行弧度与角度的互化;2.理解任意角三角函数(正弦、余弦、正切)的定义. 【重点难点】理解任意角的概念,能在直角坐标系讨论任意角,判断象限角、轴线角,掌握终边相同角的集合;掌握弧长公式、扇形面积公式并能灵活运用;任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号),能利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用它们的集合形式表示出来. 【知识要点】 1.角有关概念(1)角:角可以看成由 绕着原点从一个位置 到另一个位置所成的,旋转开始时的射线叫做角α的 ,旋转终止时的射线叫做角α的 ,射线的端点叫做角α的(2)角的分类:角分 、 、 (按角的旋转方向分) (3)在直角坐标系里讨论角①象限角:角的顶点在原点,始边在 上,角的终边在第几象限,就说这个角是 ②象限界角:若角的终边在 ,就说这个角不属于任何象限,它叫 ③与角α终边相同的角的集合:(4)弧度制:①1弧度的角: 叫做1弧度的角②弧长公式: ,扇形面积公式:2.任意角的三角函数任意角的三角函数定义:设α是一个任意大小的角,角α的终边上任意一点),(y x P 与原点的距离为r ,(r>0),那么角α的正弦、余弦、正切分别是:=αsin ,=αcos ,=αtan ,它们都是以角为 ,以比值为 的函数。

3.设角α的顶点在原点,始边与x 轴重合,终边与单位圆相交于点P ,过P 做PM 垂直于x 轴与M ,则点M 是点P 在x 轴上的 。

由三角函数的定义知,点P 的坐标为 ,其中=αsin ,=αcos ,单位圆与x 轴正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T()'T ,则=αtan ,我们把有向线段)(,,'AT AT MP OM 叫做α的 、 、2【基础训练】 随 堂 反 思 1.某扇形的面积为12cm ,它的周长是cm 4,那么该扇形圆心角的弧度数为2.已知角α的终边过点)3,4(-P ,则=αsin ,=αcos ,=αtan3.已知α是第二象限角,且54sin =α,则=αtan 4.已知点()ααcos ,tan P在第三象限,则角α的终边在第 象限5.终边在x 轴上的角的集合为 终边在y 轴上的角的集合为终边在坐标轴上的角的集合为 【例题分析】 例1.(1)已知532sin=θ,且542cos -=θ,则角θ的终边落在第 象限(2)函数xx x x x x y tan tan cos cos sin sin ++=的值域为(3)已知扇形的周长为cm 8,则该扇形面积的最大值为 2cm例2. 已知α是第一象限角,问:(1)α2是第几象限的角?(2)2α是第几象限的角例3.在单位圆中画出适合下列角α的终边的范围,并写出角α的集合: (1)21cos ≥α; (2)0sin 22≥+x例 4.如图,B A ,是单位圆α=∠COA(1)当点A 的坐标为53((2)若2πα≤≤针方向移动时,总有∠【感悟高考】1.(2010全国卷)300cos 2.(08四川卷)若α20≤≤3.(07江苏)旋转,当时间0=t时,点()cm d 表示成()s t 的函数【巩固练习】1.若角120的终边上有一点2.中心角是 603.若0cos sin >⋅αα,且4.角βα,的终边关于直线x 5.函数x y sin log 2=6.若sin 3cos 5cos 2sin 4=+-αααα7.已知[]πα2,0∈,且(si P4围是 8.已知xx --=432cos α,又α是第二、三象限角,则x 的取值范围是9.已知角α的终边在直线kx y =上,若52sin -=α,且0cos <α,则=k10.已知⎪⎭⎫⎝⎛∈ππα2,23,化简ααsin 1sin 1++-11.(1)已知角α的终边过点)0)(2,(≠-a a a P ,求αααcos sin ,tan +(2)已知角α的终边上一点()y P ,3-()0≠y ,且y 42sin =α 求ααtan ,cos 的值12.已知方程()01322=++-m x x 的两根分别为θθcos ,sin ,求θθθθt a n 1c o s c o t 1s i n -+-的值。

三角函数知识点归纳

三角函数知识点归纳
单调增区间可由2k - ≤x+≤2k + ,k∈z解得;
单调减区间可由2k + ≤x+≤2k + ,k∈z解得。
在求 的单调区间时,要特别注意A和 的符号,通过诱导公式先将 化正。
如函数 的递减区间是______
(答:
解析:y= ,所以求y的递减区间即是求 的递增区间,由 得
,所以y的递减区间是
四、函数 的图像和三角函数模型的简单应用
终边在 轴上的角的集合为
终边在 轴上的角的集合为
终边在坐标轴上的角的集合为
(2)终边与角α相同的角可写成α+k·360°(k∈Z).终边与角 相同的角的集合为
(3)弧度制
①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.
②弧度与角度的换算:360°=2π弧度;180°=π弧度.
③半径为 的圆的圆心角 所对弧的长为 ,则角 的弧度数的绝对值是
公式二:sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tanα.
公式三:sin(π-α)=sinα,cos(π-α)=-cos_α, .
公式四:sin(-α)=-sin_α,cos(-α)=cos_α, .
公式五:sin =cos_α,cos =sinα.
公式六:sin =cos_α,cos =-sin_α.
(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的异角,可根据角与角之间的和差,倍半,互补,互余的关系,寻找条件与结论中角的关系,运用角的变换,使问题获解,对角的变形如:
① 是 的二倍; 是 的二倍; 是 的二倍; 是 的二倍;
② ;问: ; ;
③ ;④ ;⑤ ;等等.
如[1] . (答案: )
④若扇形的圆心角为 ,半径为 ,弧长为 ,周长为 ,面积为 ,则 , , .

高中 任意角的三角函数 知识点+例题 全面

高中 任意角的三角函数 知识点+例题 全面

辅导讲义――任意角的三角函数教学内容任意角和弧度制及任意角的三角函数1.角的概念(1)分类⎩⎨⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(2)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }.2.弧度的定义和公式(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式:①弧度与角度的换算:360°=2π弧度;180°=π弧度;②弧长公式:l =|α|r ;③扇形面积公式:S 扇形=12lr 和12|α|r 2.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=y x (x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线,余弦线和正切线.1.易混概念:第一象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.利用180°=π rad 进行互化时,易出现度量单位的混用.3.三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=y x,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α=x r ,tan α=y x. [试一试]1.若α=k ·180°+45°(k ∈Z ),则α是第______象限角.2.已知角α的终边经过点(3,-1),则sin α=________.1.三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦;2.对于利用三角函数定义解题的题目,如果含有参数,一定要考虑运用分类讨论,而在求解简单的三角不等式时,可利用单位圆及三角函数线,体现了数形结合的思想.[练一练]若sin α<0且tan α>0,则α是第______象限角.考点一角的集合表示及象限角的判定 1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有______个.2.终边在直线y =3x 上的角的集合为________.3.在-720°~0°范围内找出所有与45°终边相同的角为________.4.设集合M =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =k 2·180°+45°,k ∈Z , N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 4·180°+45°,k ∈Z ,那么集合M ,N 的关系是______.[类题通法]1.利用终边相同角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角.2.已知角α的终边位置,确定形如kα,π±α等形式的角终边的方法:先表示角α的范围,再写出kα,π±α等形式的角范围,然后就k 的可能取值讨论所求角的终边位置.考点二 三角函数的定义[典例] (1)已知角α的终边上一点P 的坐标为⎝⎛⎭⎫sin 2π3,cos 2π3,则角α的最小正值为______. (2)已知α是第二象限角,其终边上一点P (x ,5),且cos α=24x ,则sin ⎝⎛⎭⎫α+π2=________.[类题通法]用定义法求三角函数值的两种情况(1)已知角α终边上一点P的坐标,则可先求出点P到原点的距离r,然后用三角函数的定义求解;(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求相关问题.[针对训练]已知角α的终边在直线y=-3x上,求10sin α+3cos α的值.考点三扇形的弧长及面积公式[典例](1)已知扇形周长为10,面积是4,求扇形的圆心角.(2)已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?若本例(1)中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.[类题通法]弧度制应用的关注点(1)弧度制下l=|α|·r,S=12lr,此时α为弧度.在角度制下,弧长l=nπr180,扇形面积S=nπr2360,此时n为角度,它们之间有着必然的联系.(2)在解决弧长、面积及弓形面积时要注意合理应用圆心角所在的三角形.[针对训练]已知扇形的圆心角是α=120°,弦长AB=12 cm,求弧长l.[课堂练通考点]1.如图所示,在直角坐标系xOy中,射线OP交单位圆O于点P,若∠AOP=θ,则点P的坐标是________.2.已知扇形的周长是6 cm,面积是2 cm2,则扇形的圆心角的弧度数是________.3.已知角α的终边经过点(3a-9,a+2),且cos α≤0,sin α>0,则实数a的取值范围是________.4.在与2 010°终边相同的角中,绝对值最小的角的弧度数为________.5.已知角α 的终边经过点P (x ,-6),且tan α=-35,则x 的值为________. 6.已知sin α=13,且α∈⎝⎛⎭⎫π2,π,则tan α=______.第Ⅰ组:全员必做题1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是______.2.已知cos θ·tan θ<0,那么角θ是第________象限角.3.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=______. 4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为________.5.给出下列各函数值:①sin(-1 000°);②cos(-2 200°);③tan(-10);④sin 7π10cos πtan 17π9,其中符号为负的是________(填写序号).6.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.7.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=________.8.设角α是第三象限角,且⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角.9.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB .10.已知sin α<0,tan α>0.(1)求α角的集合;(2)求α2终边所在的象限;第Ⅱ组:重点选做题巩固基础和能力提升训练1.满足cos α≤-12的角α的集合为________. 2.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为________.。

高中数学第四章三角函数、解三角形第一节任意角和弧度制、任意角的三角函数

高中数学第四章三角函数、解三角形第一节任意角和弧度制、任意角的三角函数

第一节 任意角和弧度制、任意角的三角函数[基本知识]1.角的定义角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 2.角的分类角的分类⎩⎪⎨⎪⎧按旋转方向不同分类⎩⎪⎨⎪⎧正角:按逆时针方向旋转形成的角负角:按顺时针方向旋转形成的角零角:射线没有旋转按终边位置不同分类⎩⎪⎨⎪⎧象限角:角的终边在第几象限,这个角就是第几象限角轴线角:角的终边落在坐标轴上3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合:S ={β|β=α+k ·360°,k ∈Z}或{β|β=α+2k π,k ∈Z}.[基本能力]一、判断题(对的打“√”,错的打“×”) (1)第二象限角大于第一象限角.( )(2)三角形的内角是第一象限角或第二象限角.( ) (3)终边在y =x 上的角构成的集合可表示为{ α| α=π4+k π,k ∈Z }.( ) 答案:(1)× (2)× (3)√ 二、填空题1.与角2 020°的终边相同,且在0°~360°内的角是________.解析:因为2 020°=220°+5×360°,所以在0°~360°内终边与2 020°的终边相同的角是220°. 答案:220°2.已知角α和β的终边关于直线y =x 对称,且β=-π3,则sin α=________.解析:因为角α与β的终边关于直线y =x 对称. 所以α+β=2k π+π2(k ∈Z),则α=2k π+56π,k ∈Z.所以sin α=sin 56π=12.答案:123.已知α是第二象限角,则180°-α是第________象限角.解析:由α是第二象限角可得,90°+k ·360°<α<180°+k ·360°,k ∈Z ,所以180°-(180°+k ·360°)<180°-α<180°-(90°+k ·360°),即-k ·360°<180°-α<90°-k ·360°(k ∈Z).所以180°-α为第一象限角.答案:一象限角及终边相同的角(1)要使角β与角α的终边相同,应使角β为角α与π的偶数倍(不是整数倍)的和.(2)注意锐角(集合为{α|0°<α<90°})与第一象限角(集合为{α|k·360°<α<90°+k·360°,k∈Z})的区别,锐角是第一象限角,仅是第一象限角中的一部分,但第一象限角不一定是锐角.[典例感悟]1.(2019·长春普通高中一模)若角α的顶点为坐标原点,始边在x轴的非负半轴上,终边在直线y=-3x上,则角α的取值集合是()A.{}α|α=2kπ-π3,k∈ZB.{}α|α=2kπ+2π3,k∈ZC.{}α|α=kπ-2π3,k∈ZD.{}α|α=kπ-π3,k∈Z解析:选D因为直线y=-3x x的倾斜角是2π3,所以终边落在直线y=-3x x上的角的取值集合为{α|α=kπ-π3,k∈Z }.故选D.2.在-720°~0°范围内所有与45°终边相同的角为________________.解析:所有与45°终边相同的角可表示为:β=45°+k×360°(k∈Z),则令-720°≤45°+k×360°<0°(k∈Z),得-765°≤k×360°<-45°(k∈Z),解得-765360≤k<-45360(k∈Z),从而k=-2或k=-1,代入得β=-675°或β=-315°.答案:-675°或-315°3.若角α是第二象限角,则α2是第________象限角.解析:∵α是第二象限角,∴π2+2kπ<α<π+2kπ,k∈Z,∴π4+kπ<α2<π2+kπ,k∈Z.当k为偶数时,α2是第一象限角;当k为奇数时,α2是第三象限角.答案:一或三[方法技巧]1.象限角的两种判断方法(1)图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角.(2)转化法:先将已知角化为k·360°+α(0°≤α<360°,k∈Z)的形式,即找出与已知角终边相同的角α,再由角α终边所在的象限判断已知角是第几象限角.2.求θn或nθ(n∈N*)所在象限的方法(1)将θ的范围用不等式(含有k,且k∈Z)表示.(2)两边同除以n或乘以n.(3)对k进行讨论,得到θn或nθ(n∈N*)所在的象限.[针对训练]1.若α=k ·360°+θ,β=m ·360°-θ(k ,m ∈Z),则角α与角β的终边的位置关系是( ) A .重合 B .关于原点对称 C .关于x 轴对称D .关于y 轴对称解析:选C 由题意知角α与角θ的终边相同,角β与角-θ的终边相同,又角θ与角-θ的终边关于x 轴对称,所以角α与角β的终边关于x 轴对称.2.设θ是第三象限角,且||cos θ2=-cos θ2,则θ2是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角解析:选B 由θ是第三象限角,知θ2为第二或第四象限角,∵||cos θ2=-cos θ2,∴cos θ2≤0,综上知θ2为第二象限角.突破点二 弧度制及应用[基本知识]1.弧度制的定义把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. 2.弧度制下的有关公式一、判断题(对的打“√”,错的打“×”)(1)不论是用角度制还是用弧度制度量一个角,它们与扇形半径的大小无关.( ) (2)1弧度是长度等于半径长的弦所对圆心角的大小.( ) (3)60°=π6 rad.( )答案:(1)√ (2)× (3)× 二、填空题1.一条弦的长度等于半径,这条弦所对圆心角大小为________弧度. 解析:弦与两条半径构成等边三角形,圆心角为π3.答案:π32.已知扇形的圆心角为π6,面积为π3,则扇形的弧长等于________.解析:设扇形半径为r ,弧长为l , 则⎩⎪⎨⎪⎧l r =π6,12lr =π3,解得⎩⎨⎧l =π3,r =2.答案:π3[典例感悟]1.已知扇形弧长为20 cm ,圆心角为100°,则该扇形的面积为________cm 2. 解析:由弧长公式l =|α|r ,得r =20100π180=36π, ∴S 扇形=12lr =12×20×36π=360π.答案:360π2.一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为________.解析:设圆的半径为r ,则扇形的半径为2r3,记扇形的圆心角为α,则12α()2r32πr 2=527,所以α=5π6,所以扇形的弧长与圆周长之比为l C =5π6·23r2πr =518.答案:518[方法技巧]弧度制下有关弧长、扇形面积问题的解题策略(1)明确弧度制下弧长及扇形面积公式,在使用公式时,要注意角的单位必须是弧度.(2)分析题目已知哪些量、要求哪些量,然后灵活地运用弧长公式、扇形面积公式直接求解,或合理地利用圆心角所在三角形列方程(组)求解.[针对训练]1.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是( ) A .1 B .4 C .1或4D .2或4解析:选C设扇形的半径为r ,弧长为l ,则⎩⎨⎧2r +l =6,12rl =2,解得⎩⎨⎧ r =1,l =4或⎩⎨⎧r =2,l =2.从而α=l r =41=4或α=l r =22=1.2.(2019·平罗月考)已知扇形的周长为20 cm ,当它的面积最大时,它的圆心角的弧度数为________.解析:因为扇形的周长为20,所以l +2r =20,即l =20-2r ,所以扇形的面积S =12lr =12(20-2r )·r =-r 2+10r =-(r -5)2+25,所以当半径r =5时,扇形的面积最大为25,此时α=2(rad).答案:23.(2018·湖北黄石三中阶段性检测)分别以边长为1的正方形ABCD 的顶点B ,C 为圆心,1为半径作圆弧AC ,BD ,两弧交于点E ,则曲边三角形ABE 的周长为________.解析:连接BE ,CE .因为两圆弧所在圆的半径都是1,正方形边长也是1,所以△BCE 为正三角形,所以圆心角∠EBC ,∠ECB 都是π3,∠EBA =π2-π3=π6.所以弧BE 的长为π3×1=π3,弧AE 的长为π6×1=π6,所以曲边三角形ABE 的周长是1+π3+π6=1+π2.答案:1+π2突破点三 任意角的三角函数[基本知识]有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT 为正切线一、判断题(对的打“√”,错的打“×”)(1)若角θ的终边在直线y =2x 上,则tan α=2.( ) (2)若sin θcos θ>0,则θ在第一象限内.( ) (3)0<α<π2,则sin α<tan α.( )答案:(1)√ (2)× (3)√ 二、填空题1.已知角α的终边过点P (-1,2),则sin α=________. 解析:因为|OP |=(-1)2+22=5(O 为坐标原点), 所以sin α=25=255.答案:2552.在平面直角坐标系xOy 中,角α的终边与以原点为圆心的单位圆交于点A ,点A 的纵坐标为45,且点A 在第二象限,则cos α=________.解析:因为A 点纵坐标y A =45,且A 点在第二象限,又因为圆O 为单位圆,所以A 点横坐标x A =-35,由三角函数的定义可得cos α=-35.答案:-353.比较大小.(填“>”、“<”或“=”) (1)sin π4________cos π4;(2)sin π5________cos π5;(3)sin2π3________tan 2π3.答案:(1)= (2)< (3)>[全析考法]考法一 三角函数值的符号判断[例1] (1)若sin αtan α<0,且cos αtan α<0,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角(2)(2019·沈阳重点高中期末联考)设a =sin 33°,b =cos 55°,c =tan 35°,则( ) A .c >b >a B .b >c >a C .a >b >c D .c >a >b[解析] (1)由sin αtan α<0可知sin α,tan α异号,则α为第二象限角或第三象限角.由cos αtan α<0可知cos α,tan α异号,则α为第三象限角或第四象限角.综上可知,α为第三象限角.(2)b =cos 55°=sin 35°>sin 33°=a ,c =tan 35°>sin 35°=b ,∴c >b >a .故选A. [答案] (1)C (2)A [方法技巧]1.三角函数值符号及角的位置判断已知一角的三角函数值(sin α,cos α,tan α)中任意两个的符号,可分别确定出角终边所在的可能位置,二者的交集即为该角的终边位置,注意终边在坐标轴上的特殊情况.2.三角函数值的符号规律三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦. 考法二 三角函数的定义[例2] (1)(2018·榆林第一次测试)已知角α的顶点为坐标原点,始边为x 轴的正半轴.若角α的终边经过点P ( 35,-45),则cos α·tan α的值是( )A .-45B.45 C .-35D.35(2)如图,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,cos α=-35,则点A的坐标为________.[解析] (1)因为角α的终边经过点P ()35,-45,所以cos α=35,tan α=-43,所以cos α·tan α=35×()-43=-45.(2)∵cos α=-35,∴sin α=1-cos 2α=45,∴A ()-35,45.[答案] (1)A (2)()-35,45 [方法技巧]三角函数定义应用策略(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解.(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义求解.(3)已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值. (4)已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标. 考法三 三角函数线的应用[例3] 函数y =lg(3-4sin 2x )的定义域为________. [解析] ∵3-4sin 2x >0,∴sin 2x <34,∴-32<sin x <32.利用三角函数线画出x 满足条件的终边范围(如图阴影部分所示), ∴x ∈()k π-π3,k π+π3(k ∈Z). [答案]()k π-π3,k π+π3(k ∈Z) [方法技巧]利用三角函数线求解三角不等式的方法对于较为简单的三角不等式,在单位圆中,利用三角函数线先作出使其相等的角(称为临界状态,注意实线与虚线),再通过大小找到其所满足的角的区域,由此写出不等式的解集.[集训冲关]1.[考法一]设角α的顶点为坐标原点,始边为x 轴的正半轴,则“α的终边在第一、二象限”是“sin α>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A α的终边在第一、二象限能推出sin α>0,sin α>0成立能推出α的终边在第一、二象限或y 轴的正半轴上,故“α的终边在第一、二象限”是“sin α>0”的充分不必要条件.故选A.2.[考法二]已知角α(0°≤α<360°)终边上一点的坐标为(sin 150°,cos 150°),则α=( ) A .150° B .135° C .300°D .60°解析:选C sin 150°=12>0,cos 150°=-32<0,角α终边上一点的坐标为()12,-32,故该点在第四象限,由三角函数的定义得sin α=-32,又0°≤α<360°,所以角α为300°,故选C. 3.[考法二]在平面直角坐标系xOy 中,60°角终边上一点P 的坐标为(1,m ),则实数m 的值为________. 解析:60°角终边上一点P 的坐标为(1,m ),∴tan 60°=m1,∵tan 60°=3,∴m = 3.答案:34.[考法三]在(0,2π)内,使sin x >cos x 成立的x 的取值范围为____________________.解析:如图所示,找出在(0,2π)内,使sin x =cos x 的x 值,sin π4=cos π4=22,sin 5π4=cos 5π4=-22.根据三角函数线的变化规律标出满足题中条件的角x ∈()π4,5π4.答案:()π4,5π4[课时跟踪检测][A 级 基础题——基稳才能楼高]1.2弧度的角所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B ∵π2<2<π,∴2弧度的角在第二象限.2.点P (cos 2 019°,sin 2 019°)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 解析:选C 2 019°=5×360°+219°,即角2 019°与角219°的终边相同,219°=180°+39°,所以角219°在第三象限,即角2 019°也在第三象限.所以cos 2 019°<0,sin 2 019°<0,所以点P 在第三象限.3.已知角α的终边与单位圆交于点()-32,-12,则sin α的值为( ) A .-32B .-12C.32D.12解析:选B 根据三角函数的定义,角α的终边与单位圆交点的纵坐标为角α的正弦值. 4.半径为1 cm ,圆心角为150°的角所对的弧长为( ) A.23 cm B.2π3 cm C.56cm D.5π6cm 解析:选D ∵α=150°=56π rad ,∴l =α·r =56π cm.5.(2018·四川石室中学期中)已知角α的终边经过点(3,-4),则sin α+1cos α=( ) A .-15B.3715C.3720D.1315解析:选D ∵角α的终边经过点(3,-4),∴sin α=-45,cos α=35,∴sin α+1cos α=-45+53=1315.故选D.[B 级 保分题——准做快做达标]1.已知点P (tan α,cos α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B 因为点P (tan α,cos α)在第三象限,所以⎩⎨⎧tan α<0,cos α<0,所以α为第二象限角.2.(2019·南昌二中模拟)已知角α终边上一点P 的坐标是(2sin 2,-2cos 2),则sin α等于( ) A .sin 2 B .-sin 2 C .cos 2D .-cos 2解析:选D 因为r =(2sin 2)2+(-2cos 2)2=2, 由任意角的三角函数的定义,得sin α=yr=-cos 2.3.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3解析:选B 由α=2k π-π5(k ∈Z)及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1.4.(2019·长春模拟)已知α,β是第一象限角,且sin α>sin β,则( ) A .α>β B .α<β C .cos α>cos βD .tan α>tan β解析:选D 因为α,β是第一象限角,所以sin α>0,sin β>0,又sin α>sin β,所以sin 2α>sin 2β>0,所以1-cos 2α>1-cos 2β,所以cos 2α<cos 2β,所以1cos 2α>1cos 2β>0,所以tan 2α>tan 2β,因为tan α>0,tan β>0,所以tan α>tan β.故选D.5.(2019·洛阳阶段性测试)在平面直角坐标系xOy 中,角α的顶点为坐标原点,始边在x 轴的非负半轴上,终边经过点P (3,4),则sin ()α-2 019π2=( ) A .-45B .-35C.35D.45解析:选C ∵角α的终边经过点P (3,4),∴sin α=45,cos α=35.∴sin ()α-2 019π2=sin ( α-2 020π2+π2 )=sin ( α+π2 )=cos α=35.故选C. 6.(2018·莆田二十四中月考)一个扇形的弧长与面积的数值都是6,则这个扇形的圆心角的弧度数是( ) A .1 B .2 C .3D .4解析:选C 设扇形的圆心角的弧度数为θ,半径为R .由题意得⎩⎨⎧θR =6,12θR 2=6.解得θ=3,即扇形的圆心角的弧度数是3.故选C.7.终边在坐标轴上的角的集合是( ) A .{φ|φ=k ·360°,k ∈Z} B .{φ|φ=k ·180°,k ∈Z} C .{φ|φ=k ·90°,k ∈Z} D .{φ|φ=k ·180°+90°,k ∈Z}解析:选C 令k =4m ,k =4m +1,k =4m +2,k =4m +3,k ,m ∈Z. 分别代入选项C 进行检验:(1)若k =4m ,则φ=4m ·90°=m ·360°;(2)若k =4m +1,则φ=(4m +1)·90°=m ·360°+90°; (3)若k =4m +2,则φ=(4m +2)·90°=m ·360°+180°; (4)若k =4m +3,则φ=(4m +3)·90°=m ·360°+270°.综上可得,终边在坐标轴上的角的集合是{φ|φ=k ·90°,k ∈Z}.8.若角α的终边与角π6的终边关于直线y =x 对称,且α∈(-4π,4π),则α=________________________.解析:如图所示,设角π6的终边为OA ,OA 关于直线y =x 对称的射线为OB ,则以OB 为终边且在0~2π范围内的角为π3,故以OB 为终边的角的集合为{ α| α=2k π+π3,k ∈Z }. ∵α∈(-4π,4π),∴-4π<2k π+π3<4π,∴-136<k <116.∵k ∈Z ,∴k =-2,-1,0,1. ∴α=-11π3,-5π3,π3,7π3. 答案:-11π3,-5π3,π3,7π39.若角θ的终边过点P (-4a,3a )(a ≠0),则sin θ+cos θ等于________. 解析:∵角θ的终边过点P (-4a,3a )(a ≠0), ∴x =-4a ,y =3a ,r =5|a |.当a >0时,r =5a ,sin θ+cos θ=y r +xr =-15.当a <0时,r =-5a ,sin θ+cos θ=y r +x r =15.故sin θ+cos θ=±15.答案:±1510.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是________. 解析:∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎨⎧3a -9≤0,a +2>0,∴-2<a ≤3. 答案:(-2,3]11.(2019·齐齐哈尔八中月考)已知角α的顶点在坐标原点,始边为x 轴的非负半轴,终边上有一点P (3a,4a ),其中a ≠0,求sin α,cos α,tan α.解:设r =|OP |=(3a )2+(4a )2=5|a |.当a >0时,r =5a ,∴sin α=4a 5a =45,cos α=3a 5a =35,tan α=4a 3a =43;当a <0时,r =-5a ,∴sin α=-45,cos α=-35,tan α=43.综上可知,sin α=45,cos α=35,tan α=43或sin α=-45,cos α=-35,tan α=43.12.如图,在平面直角坐标系xOy 中,角α的始边与x 轴的非负半轴重合且与单位圆相交于A 点,它的终边与单位圆相交于x 轴上方一点B ,始边不动,终边在运动.(1)若点B 的横坐标为-45,求tan α的值;(2)若△AOB 为等边三角形,写出与角α终边相同的角β的集合; (3)若α∈(]0,23π,请写出弓形AB 的面积S 与α的函数关系式. 解:(1)由题意可得B ()-45,35,根据三角函数的定义得tan α=yx =-34.(2)若△AOB 为等边三角形,则B ()12,32,可得tan ∠AOB =y x =3,故∠AOB =π3;故与角α终边相同的角β的集合为{ β|β=π3+2k π,k ∈Z }.(3)若α∈(]0,23π,则S 扇形OAB =12αr 2=12α, 而S △AOB =12×1×1×sin α=12sin α, 故弓形AB 的面积S =S 扇形OAB -S △AOB =12α-12sin α,α∈(]0,23π.。

高三理数一轮复习 第四章 三角函数、解三角形4.1 任意角、弧度制及任意角的三角函数

高三理数一轮复习 第四章 三角函数、解三角形4.1 任意角、弧度制及任意角的三角函数

-23-
(2)由题意,得 sin x≥√23,作直线 y=√23交单位圆于 A,B 两点,连 接 OA,OB,则 OA 与 OB 围成的区域(图中阴影部分)即为角 x 的终
Байду номын сангаас
边的范围,故满足条件的角 x 的集合为
������
2������π
+
π 3

������
≤ 2������π +
2π 3
,������∈Z
考点1
考点2
考点3
-18-
(3)方法一(角的集合表示):
∵2kπ+π<α<2kπ+32π(k∈Z),
∴kπ+π2
<
������ 2
<kπ+34π
(k∈Z).

k=2n(n∈Z)时,2nπ+π2
<
������ 2
<2nπ+34π
,
������ 2
是第二象限角;
当 k=2n+1(n∈Z)时,2nπ+3π < ������<2nπ+7π , ������是第四象限角.
-12-
知识梳理 双基自测
12345
5.(教材例题改编P13例3)若角θ同时满足sin θ<0,且tan θ<0,则角θ
的终边一定落在第
象限.
关闭
由sin θ<0,可知θ的终边可能位于第三或第四象限,也可能与y轴的非正半 轴重合.由tan θ<0,可知θ的终边可能位于第二象限或第四象限,故θ的终边
.
思考角的终边在一条直线上与在一条射线上有什么不同?已知角

2024年高考数学总复习第四章《三角函数解三角形》任意角弧度制及任意角的三角函数

2024年高考数学总复习第四章《三角函数解三角形》任意角弧度制及任意角的三角函数

2024年高考数学总复习第四章《三角函数、解三角形》§4.1任意角、弧度制及任意角的三角函数最新考纲1.了解任意角的概念和弧度制,能进行弧度与角度的互化.2.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }.(3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:180°=πrad,1°=π180rad ,1rad(3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,则sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的性质如下表:三角函数定义域第一象限符号第二象限符号第三象限符号第四象限符号sin αR++--cos αR+--+tan α{α|α≠k π+π2,k ∈Z }+-+-4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函数线有向线段MP 为正弦线;有向线段OM 为余弦线;有向线段AT 为正切线概念方法微思考1.总结一下三角函数值在各象限的符号规律.提示一全正、二正弦、三正切、四余弦.2.三角函数坐标法定义中,若取点P (x ,y )是角α终边上异于顶点的任一点,怎样定义角α的三角函数?提示设点P 到原点O 的距离为r ,则sin α=y r ,cos α=x r ,tan α=yx(x ≠0).题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.(×)(2)角α的三角函数值与其终边上点P 的位置无关.(√)(3)不相等的角终边一定不相同.(×)(4)若α为第一象限角,则sin α+cos α>1.(√)题组二教材改编2.角-225°=弧度,这个角在第象限.答案-5π4二3.若角α的终边经过点-22,sin α=,cos α=.答案22-224.一条弦的长等于半径,这条弦所对的圆心角大小为弧度.答案π3题组三易错自纠5|k π+π4≤α≤k π+π2,k ∈Z(阴影部分)是()答案C解析当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,故选C.6.已知点Pθ的终边上,且θ∈[0,2π),则θ的值为()A.5π6B.2π3C.11π6D.5π3答案C解析因为点P所以根据三角函数的定义可知tan θ=-1232=-33,又θθ=11π6.7.在0到2π范围内,与角-4π3终边相同的角是.答案2π3解析与角-4π3终边相同的角是2k πk ∈Z ),令k =1,可得与角-4π3终边相同的角是2π3.8.(2018·济宁模拟)函数y =2cos x -1的定义域为.答案2k π-π3,2k π+π3(k ∈Z )解析∵2cos x -1≥0,∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴x ∈2k π-π3,2k π+π3(k ∈Z ).题型一角及其表示1.下列与角9π4的终边相同的角的表达式中正确的是()A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案C解析与角9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确.2.设集合M |x =k2·180°+45°,k ∈ZN |x =k4·180°+45°,k ∈Z()A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅答案B解析由于M 中,x =k2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N ,故选B.3.(2018·宁夏质检)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为.答案-53π,-23π,π3,43π解析如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为-53,-23π,π3,43π4.若角α是第二象限角,则α2是第象限角.答案一或三解析∵α是第二象限角,∴π2+2k π<α<π+2k π,k ∈Z ,∴π4+k π<α2<π2+k π,k ∈Z .当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.综上,α2是第一或第三象限角.思维升华(1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k (k ∈Z )赋值来求得所需的角.(2)确定kα,αkk ∈N *)的终边位置的方法先写出kα或αk 的范围,然后根据k 的可能取值确定kα或αk的终边所在位置.题型二弧度制及其应用例1已知一扇形的圆心角为α,半径为R ,弧长为l .若α=π3,R =10cm ,求扇形的面积.解由已知得α=π3,R =10cm ,∴S 扇形=12α·R 2=12·π3·102=50π3(cm 2).引申探究1.若例题条件不变,求扇形的弧长及该弧所在弓形的面积.解l =α·R =π3×10=10π3(cm),S 弓形=S 扇形-S 三角形=12·l ·R -12·R 2·sin π3=12·10π3·10-12·102·32=50π-7533(cm 2).2.若例题条件改为:“若扇形周长为20cm ”,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?解由已知得,l +2R =20,则l =20-2R (0<R <10).所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5cm 时,S 取得最大值25cm 2,此时l =10cm ,α=2rad.思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.跟踪训练1(1)(2018·湖北七校联考)若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为()A.π6B.π3C .3D.3答案D解析如图,等边三角形ABC 是半径为r 的圆O 的内接三角形,则线段AB 所对的圆心角∠AOB =2π3,作OM ⊥AB ,垂足为M ,在Rt △AOM 中,AO =r ,∠AOM =π3,∴AM =32r ,AB =3r ,∴l =3r ,由弧长公式得α=l r =3rr= 3.(2)一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为.答案518解析设圆的半径为r ,则扇形的半径为2r3,记扇形的圆心角为α,由扇形面积等于圆面积的527,可得12α2r 3πr 2=527,解得α=5π6.所以扇形的弧长与圆周长之比为l C =5π6·2r 32πr =518.题型三三角函数的概念命题点1三角函数定义的应用例2(1)(2018·青岛模拟)已知角α的终边与单位圆的交点为-12,sin α·tan α等于()A .-33B .±33C .-32D .±32答案C解析由OP 2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3,此时,sin α·tan α=-32.当y =-32时,sin α=-32,tan α=3,此时,sin α·tan α=-32.所以sin α·tan α=-32.(2)设θ是第三象限角,且|cosθ2|=-cos θ2,则θ2是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案B解析由θ是第三象限角知,θ2为第二或第四象限角,∵|cos θ2|=-cos θ2,∴cos θ2<0,综上可知,θ2为第二象限角.命题点2三角函数线例3(1)满足cos α≤-12的角的集合是.答案|2k π+23π≤α≤2k π+43π,k ∈Z 解析作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为|2k π+23π≤α≤2k π+43π,k ∈Z(2)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小关系是.答案sin α<cos α<tan α解析如图,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可知sin α<cos α<tan α.思维升华(1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围.跟踪训练2(1)(2018·济南模拟)已知角α的终边经过点(m ,-2m ),其中m ≠0,则sin α+cosα等于()A .-55B .±55C .-35D .±35答案B解析∵角α的终边经过点(m ,-2m ),其中m ≠0,∴m >0时,sin α=-2m 5m =-25cos α=m 5m =15,∴sin α+cos α=-55;m <0时,sin α=-2m -5m =25,cos α=m -5m =-15,∴sin α+cos α=55;∴sin α+cos α=±55,故选B.(2)在(0,2π)内,使得sin x >cos x 成立的x 的取值范围是()答案C解析当x ∈π2,sin x >0,cos x ≤0,显然sin x >cos x 成立;当x ,π4时,如图,OA 为x 的终边,此时sin x =|MA |,cos x =|OM |,sin x ≤cos x ;当xOB 为x 的终边,此时sin x =|NB |,cos x =|ON |,sin x >cos x .同理当x ∈πsin x >cosx ;当x ∈5π4,sin x ≤cos x ,故选C.1.下列说法中正确的是()A .第一象限角一定不是负角B .不相等的角,它们的终边必不相同C .钝角一定是第二象限角D .终边与始边均相同的两个角一定相等答案C解析因为-330°=-360°+30°,所以-330°角是第一象限角,且是负角,所以A 错误;同理-330°角和30°角不相等,但它们终边相同,所以B 错误;因为钝角的取值范围为(90°,180°),所以C 正确;0°角和360°角的终边与始边均相同,但它们不相等,所以D 错误.2.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是()A .1B .4C .1或4D .2或4答案C解析设扇形的半径为r ,弧长为l ,+l =6,=2,=1,4=2,2.从而α=l r =41=4或α=l r =22=1.3.(2018·石家庄调研)已知角θ的终边经过点P (4,m ),且sin θ=35,则m 等于()A .-3B .3C.163D .±3答案B 解析sin θ=m16+m 2=35,且m >0,解得m =3.4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为()-12,-32,--12,--32,答案A解析点P 旋转的弧度数也为2π3,由三角函数定义可知Q 点的坐标(x ,y )满足x =cos 2π3=-12,y =sin 2π3=32.5.若sin θ·cos θ>0,sin θ+cos θ<0,则θ在()A .第一象限B .第二象限C .第三象限D .第四象限答案C解析∵sin θ·cos θ>0,∴sin θ>0,cos θ>0或sin θ<0,cos θ<0.当sin θ>0,cos θ>0时,θ为第一象限角,当sin θ<0,cos θ<0时,θ为第三象限角.∵sin θ+cos θ<0,∴θ为第三象限角.故选C.6.sin 2·cos 3·tan 4的值()A .小于0B .大于0C .等于0D .不存在答案A解析∵sin 2>0,cos 3<0,tan 4>0,∴sin 2·cos 3·tan 4<0.7.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为()A .-12B .-32C.12D.32答案C解析由题意得点P (-8m ,-3),r =64m 2+9,所以cos α=-8m64m 2+9=-45,解得m =±12,又cos α=-45<0,所以-8m <0,即m >0,所以m =12.8.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是()A .1B .2C .3D .4答案A解析举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sinπ6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时,其既不是第二象限角,也不是第三象限角,故⑤错.综上可知,只有③正确.9.若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是.答案2解析设圆半径为r ,则圆内接正方形的对角线长为2r ,∴正方形边长为2r ,∴圆心角的弧度数是2rr= 2.10.若角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是角α终边上一点,且|OP |=10,则m -n =.答案2解析由已知tan α=3,∴n =3m ,又m 2+n 2=10,∴m 2=1.又sin α<0,∴m =-1,n =-3.故m -n =2.11.已知角α的终边上一点P 2π3,cos α的最小正值为.答案11π6解析由题意知,点r =1,所以点P 在第四象限,根据三角函数的定义得cos α=sin2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6.12.函数y =sin x -32的定义域为.答案2k π+π3,2k π+23π,k ∈Z 解析利用三角函数线(如图),由sin x ≥32,可知2k π+π3≤x ≤2k π+23π,k ∈Z .13.已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α用集合可表示为.答案α|2k π+π4<α<2k π+56π,k ∈Z 解析∵在[0,2π)内,终边落在阴影部分角的集合为π4,56π∴α|2k π+π4<α<2k π+56π,k ∈Z14.若角α的终边落在直线y =3x 上,角β的终边与单位圆交于点12,m,且sin α·cos β<0,则cos α·sin β=.答案±34解析由角β12,m cos β=12sin α·cos β<0知,sin α<0,因为角α的终边落在直线y =3x 上,所以角α只能是第三象限角.记P 为角α的终边与单位圆的交点,设P (x ,y )(x <0,y <0),则|OP |=1(O 为坐标原点),即x 2+y 2=1,又由y =3x 得x =-12,y =-32,所以cos α=x =-12,因为点12,m 12+m 2=1,解得m =±32,所以sin β=±32,所以cos α·sin β=±34.15.《九章算术》是我国古代数学成就的杰出代表作,其中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=12×(弦×矢+矢2).弧田(如图1)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为2π3,半径为3米的弧田,如图2所示.按照上述经验公式计算所得弧田面积大约是平方米.(结果保留整数,3≈1.73)答案5解析如题图2,由题意可得∠AOB =2π3,OA =3,所以在Rt △AOD 中,∠AOD =π3,∠DAO =π6,OD =12AO =12×3=32,可得CD =3-32=32,由AD =AO ·sin π3=3×32=332,可得AB =2AD =2×332=3 3.所以弧田面积S =12(弦×矢+矢2)=12×33×32+=943+98≈5(平方米).16.如图,A ,B 是单位圆上的两个质点,点B 的坐标为(1,0),∠BOA =60°.质点A 以1rad /s 的角速度按逆时针方向在单位圆上运动,质点B 以2rad/s 的角速度按顺时针方向在单位圆上运动.(1)求经过1s 后,∠BOA 的弧度;(2)求质点A ,B 在单位圆上第一次相遇所用的时间.解(1)经过1s 后,质点A 运动1rad ,质点B 运动2rad ,此时∠BOA 的弧度为π3+3.(2)设经过t s 后质点A ,B 在单位圆上第一次相遇,则t (1+2)+π3=2π,解得t =5π9,即经过5π9s后质点A ,B 在单位圆上第一次相遇.。

三角函数知识点总结

三角函数知识点总结

高中数学第四章-三角函数考试内容:角的概念的推广.弧度制.任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式.正弦、余弦的诱导公式.两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角. 正弦定理.余弦定理.斜三角形解法.考试要求:(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义. (3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式. (4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义.(6)会由已知三角函数值求角,并会用符号arcsinx\arc-cosx\arctanx 表示. (7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形. (8)“同角三角函数基本关系式:sin2α+cos2α=1,sin α/cos α=tan α,tan α•cos α=1”.§04. 三角函数 知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββο②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|οββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|οοββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90|οββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180|οοββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180|οοββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180 ⑩角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαkSIN \COS 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57.30°=57°18ˊ. 1°=180π≈0.01745(rad )3、弧长公式:r l ⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则=αsin rx=αcos ; x y =αtan ; yx =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.7. 三角函数的定义域:8、同角三角函数的基本关系式:αααtan cos sin =αααcot sin cos =1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为: (3) 若 o<x<2,则sinx<x<tanx16. 几个重要结论:“奇变偶不变,符号看象限”三角函数的公式:(一)基本关系公式组二 公式组三x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=-公式组四 公式组五 公式组六x x x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ x x x x x x x x cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二 βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan2sin 2ααα+= 2tan 12tan1cos 22ααα+-= 2tan 12tan2tan 2ααα-=42675cos 15sin -==οο,42615cos 75sin +==οο,3275cot 15tan -==οο,3215cot 75tan +==οο.公式组一sin x ·csc x =1tan x =xx cos sin sin 2x +cos 2x =1cos x ·sec x x =xx sin cos 1+tan 2x =sec 2x tan x ·cot x =11+cot 2x =csc 2x=1()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2cos 2sin 2sin sin βαβαβα-+=+2sin 2cos 2sin sin βαβαβα-+=-2cos 2cos 2cos cos βαβαβα-+=+2sin 2sin 2cos cos βαβαβα-+-=-αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=ααπsin )21cos(-=+ααπcos )21sin(=+ααπcot )21tan(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-反.一般地,若)(x f y =在],[b a 上递增(减),则)(x f y -=在],[b a 上递减(增).②x y sin =与x y cos =的周期是π.③)sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期ωπ2=T .2tan xy =的周期为2π(πωπ2=⇒=T T ,如图,翻折无效).④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心(0,πk );)cos(ϕω+=x y 的对称轴方程是πk x =(Z k ∈),对称中心(0,21ππ+k );)tan(ϕω+=x y 的对称中心(0,2πk ). x x y x y 2cos )2cos(2cos -=--=−−−→−=原点对称⑤当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα.⑥x y cos =与⎪⎭⎫ ⎝⎛++=ππk x y 22sin 是同一函数,而)(ϕω+=x y 是偶函数,则)cos()21sin()(x k x x y ωππωϕω±=++=+=.⑦函数x y tan =在R 上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的].⑧定义域关于原点对称是)(x f 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-)奇偶性的单调性:奇同偶反. 例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .(x ∉0的定义域,则无此性质)⑨x y sin =不是周期函数;x y sin =为周期函数(π=T )x y cos =是周期函数(如图);x y cos =为周期函数(=T 212cos +=x y 的周期为π(如图),并非所有周期函数都有最小正周期,例如: R k k x f x f y ∈+===),(5)(.⑩abb a b a y =+++=+=ϕϕαβαcos )sin(sin cos 22 有y b a ≥+22. 11、三角函数图象的作法: 1)、几何法:2)、描点法及其特例——五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).3)、利用图象变换作三角函数图象.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y =Asin (ωx +φ)的振幅|A|,周期2||T πω=,频率1||2f T ωπ==,相位;x ωϕ+初相ϕ(即当x =0时的相位).(当A >0,ω>0 时以上公式可去绝对值符号),由y =sinx 的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y =Asinx 的图象,叫做振幅变换或叫沿y 轴的伸缩变换.(用y/A 替换y )由y =sinx 的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的1||ω倍,得到y =sin ω x 的图象,叫做周期变换或叫做沿x 轴的伸缩变换.(用ωx替换x)由y =sinx 的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y =sin (x +φ)的图象,叫做相位变换或叫做沿x 轴方向的平移.(用x +φ替换x)由y =sinx 的图象上所有的点向上(当b >0)或向下(当b <0)平行移动|b |个单位,得到y =sinx +b 的图象叫做沿y 轴方向的平移.(用y+(-b)替换y )y=|cos2x +1/2|图象由y =sinx 的图象利用图象变换作函数y =Asin (ωx +φ)(A >0,ω>0)(x ∈R )的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x 轴量伸缩量的区别。

高中数学三角函数知识点归纳总结

高中数学三角函数知识点归纳总结

高中数学三角函数知识点归纳总结三角函数任意角的概念与弧度制角是指沿着x轴正向旋转所形成的图形。

逆时针旋转为正角,顺时针旋转为负角,不旋转为零角。

同终边的角可以表示为α = β + k360°(k ∈ Z)。

第一象限角、第二象限角、第三象限角和第四象限角分别为α + k360°,90° - α + k180°,α + k180°,270° - α + k360°(k ∈ Z)。

区分第一象限角、锐角以及小于90°的角,第一象限角为α + k360°,锐角为α < 90°,小于90°的角为α < 90°。

若α为第二象限角,则π/2 + 2kπ ≤ α ≤ π + 2kπ,其中k为整数。

弧度制弧度制是指弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad。

角度与弧度的转化:1° = π/180 rad。

角度与弧度对应表:角度弧度30° π/645° π/460° π/390° π/2120° 2π/3135° 3π/4150° 5π/6180° π360° 2π弧长与面积计算公式弧长:l = α × R;面积:S = α × R²,注意:这里的α均为弧度制。

任意角的三角函数正弦:sinα = y/r,余弦:cosα = x/r,正切:tanα = y/x,其中(x,y)为角α终边上任意点坐标,r为半径。

三角函数值对应表:角度弧度sinα cosα tanα30° π/6 1/2 √3/2 √3/345° π/4 √2/2 √2/2 160° π/3 √3/2 1/2 √390° π/2 1 0 无定义弧度制下的三角函数值可通过计算得出。

高中数学必修4《任意角的三角函数》 课件2

高中数学必修4《任意角的三角函数》 课件2

A、 1 B、 5 C、 2 5 D、 1
5
5
5
2
3、的终边经过P(-b,4),且cos 3,则b的值为_3____
5
4、已知角的终边在y x上,则sin cos ____2___
5、若sin tan 0,则的终边在( D )
A、第一象限
B、第四象限
C、第二或第三象限 D、第一或第四象限
A、直角三角形 B、锐角三角形 C、钝角三角形 C、不能确定
9.若为第二象限角, 则 sin cos 的值为:
sin cos
2
10. 求证:当且仅当下列不等式成立时,
角θ为第三象限角. sinθ < 0 tanθ > 0
变式:若sinθ·tanθ<0 ,那么角 θ是第几象限的角?
三.新课 三角函数线
线,设它与 的终边或其反向延
长线相交于点T,则:
sin MP
-1
y P(x,y)
1
的终边
T
A(1,0)
o
M1 x
cos OM
tan AT
-1
这里MP叫正弦线,OM叫余弦线,AT叫正切线, 它们都是有向线段。
意义:三角函数线是三角函数的几何表示
注:1. 当角ɑ的终边落在x轴上时 正弦线,正切线变 成一 个 点
又如,若角 表示第二象限角,
仍过点A(1,0)作单位圆的切线,
设它与 终边的反向延长线交于点T,y
Q tan y MP
x OM
的终边
P(x,y)
MP AT AT OM OA
-1 M O
A(1,0) 1x
tan AT
TT
如图,角 的终边与单位圆交于

2020版高考数学大一轮复习第四章三角函数、解三角形第1讲任意角和弧度制及任意角的三角函数课件理新人教A版

2020版高考数学大一轮复习第四章三角函数、解三角形第1讲任意角和弧度制及任意角的三角函数课件理新人教A版
5π 2 所以 α=56π.所以扇形的弧长与圆周长之比为Cl = 62π·3rr=158. 答案:158
三角函数的定义(高频考点) 三角函数的定义是高考的常考内容,多以选择题、填空题 的形式考查,难度较小,主要有以下四个命题角度: (1)利用三角函数定义求值; (2)判断三角函数值的符号; (3)利用三角函数线解三角不等式; (4)三角函数定义中的创新.
第四章 三角函数、解三角形
知识点
考纲下载
任意角的概念 与弧度制、任
了解任意角的概念. 了解弧度制的概念,能进行弧度与角度的互
意角的三角函 数
化. 理解任意角三角函数(正弦、余弦、正切)的
定义.
理解同角三角函数的基本关系式:sin2x+
同角三角函数 的基本关系式
cos2x=1,csions xx=tan x.
(2)求nθ或 nθ(n∈N*)所在象限(位置)的方法 ①将 θ 的范围用不等式(含有 k)表示. ②两边同除以 n 或乘以 n. ③对 k 进行讨论,得到nθ或 nθ(n∈N*)所在的象限(位置).
[通关练习] 1 . 在 - 720° ~ 0° 范 围 内 所 有 与 45° 终 边 相 同 的 角 为 ________. 解析:所有与 45°有相同终边的角可表示为: β=45°+k×360°(k∈Z), 则令-720°≤45°+k×360°<0°, 得-765°≤k×360°<-45°,解得-736650≤k<-34650, 从而 k=-2 或 k=-1, 代入得 β=-675°或 β=-315°. 答案:-675°或-315°
与诱导公式
能利用单位圆中的三角函数线推导出π2±α,
π±α 的正弦、余弦、正切的诱导公式.
第四章 三角函数、解三角形

高考数学第四章三角函数平面向量与复数第19讲任意角和蝗制及任意角的三角函数文人教A版

高考数学第四章三角函数平面向量与复数第19讲任意角和蝗制及任意角的三角函数文人教A版

吸引学生的注意力, 调动学生的思维主动性, 增强他们
学好数学、用好数学的意识和能力.
例如, 在“三角函数的积化和差”的教学中, 一位教
# $ 师提出这样一个问题: 当 x 为何值时,
y= 2sin
x+π 3
·cos x
取得最大值? 并且声称这是“一位物理学家在研究质子
位移与时间的关系时遇到的一个难题, 请大家充分发
25
2008.5
▲ ▲
〈 〈
挥聪明才智 , 帮助解决这一难 题. ”教 师 用 富 有 感 染 性
的语言激励学生走上了尝试探究之路. 有的说把问题
转化为 y = Asin( ωx+φ) +B 来 处 理 ; 还 有 的 利 用 描 点 作
图的方法求最大值等. 在思维火花的不断碰撞中, 学生
的个性得到发展, 创新的欲望被唤起. 而面对学生的
不 能 读 成 “x 大 于 等 于 0”. 另 外 , 在 通 过 语 言 传 授 数 学
ห้องสมุดไป่ตู้
知识时, 要严格按照教材的逻辑系统, 防止将后续知识
随意提前, 影响学生系统理解和掌握知识. 例如: 在教
学 有 理 数 a( a≥0) 时, 要回避引入“a < 0”, 以防干扰学生
的思维.
二、挑战提问, 激发学生的创造性
“失败”, 教师却用艺术家的眼光欣赏学生, 用春雨般的
语言滋润学生求知的心田.
三、恰当评价, 着眼学生的发展性
教学评价的出发点和着眼点是要有利于学生的发
展. 有效的评价是一种立体式的三维评价, 包括对学生
的 “知识与能力”、“学习过程与方法”、“情感态度与价 值观”的肯定或否定. 三维 评 价 既 关 心 结 果 , 更 注 重 过 程. 评价的重点是学生学习的主动性、积极性、探究性和 创造性, 关注的是学生学习的态度、兴趣、行为等方面.

2019-2020学年高中数学人教A版必修4课件:1.2.1.2 任意角的三角函数

2019-2020学年高中数学人教A版必修4课件:1.2.1.2 任意角的三角函数

[小试身手] 1.判断下列命题是否正确. (正确的打“√”,错误的打“×”) (1)角的三角函数线是直线.( × ) (2)角的三角函数值等于三角函数线的长度.( × ) (3)第二象限的角没有正切线.( × )
第五页,编辑于星期日:点 十四分。
2.有下列四个说法: ①α 一定时,单位圆中的正弦线一定; ②单位圆中,有相同正弦线的角相等; ③α 和 α+π 有相同的正切线; ④具有相同正切线的两个角终边相同. 不正确说法的个数是( ) A.0 个 B.1 个 C.2 个 D.3 个 解析:①正确.当 α 确定时其 sin α 是确定的. ②不正确.例如π6和56π.③正确,④不正确. 答案:C
状元随笔 (1)三角函数线的方向. 正弦线由垂足指向角 α 的终边与单位圆的交点,余弦线由原点 指向垂足,正切线由切点指向切线与角 α 的终边或其反向延长线的 交点. (2)三角函数线的正负:三条有向线段凡与 x 轴或 y 轴同向的, 为正值,与 x 轴或 y 轴反向的,为负值.
第四页,编辑于星期日:点 十四分。
第一页,编辑于星期日:点 十四分。
1.相关概念 (1)单位圆: 以原点 O 为圆心,以单位长度为半径的圆. (2)有向线段: 带有_方__向__ (规定了起点和终点)的线段. 规定:方向与 x 轴或 y 轴的正方向一致的为正值,反之为负值.
第二页,编辑于星期日:点 十四分。
2.三角函数线
第三页,编辑于星期日:点 十四分。
第六页,编辑于星期日:点 十四分。
3.如图所示,在单位圆中角 α 的正弦线、正切线完全正确的 是( )
A.正弦线 PM,正切线 A′T′ B.正弦线 MP,正切线 A′T′ C.正弦线 MP,正切线 AT D.正弦线 PM,正切线 AT
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高三数学 第27课时 第四章 三角函数 任意角的三角函数专
题复习教案
一.课题:任意角的三角函数
二.教学目标:1.掌握角的概念的推广、正角、负角、象限角,终边相同的角的表示,
2.掌握弧度制、弧度与角度的转化关系,扇形面积及弧长公式.
三.教学重点:与角终边相同的角的公式、弧长公式、扇形面积公式的运用.
四.教学过程:
(一)主要知识:
1.角的概念的推广;象限角、轴线角;与角终边相同的角为;
2.角的度量;角度制、弧度制及其换算关系;弧长公式、扇形面积公式;
3.任意角的三角函数.
(二)主要方法:
1.本节内容大多以选择、填空题形式出现,要重视一些特殊的解题方法,如数形结合法、代入检验法、特殊值法、待定系数法、排除法、另外还需掌握和运用一些基本结论.
(三)例题分析:
例1.若,且, 则 ( )
例2.(1)如果是第一象限的角,那么是第几象限的角?
(2)如果是第二象限的角,判断的符号.
解:(1)∵22,2k k k Z π
παπ<<+∈, ∴22,3336
k k k Z παππ<<+∈, 当时,22,36n n n Z α
π
ππ<<+∈,是第一象限的角, 当时,2522,336
n n n Z παπππ+<<+∈,是第二象限的角, 当时,4322,332n n n Z παπππ+
<<+∈,是第三象限的角. ∴是第一,二,三象限的角.
(2)是第二象限的角,,,
,,∴.
例3.(《高考计划》考点24“智能训练第6题”) 已知锐角终边上的一点坐标是,则 ( )
例4.扇形的中心角为,半径为 ,在扇形中作内切圆及与圆外切,与相切的圆,问为何值时,
圆的面积最大?最大值是多少?
解:设圆及与圆的半径分别为, 则111212()sin ()cos()2r r r r r r r θπθ-=⎧⎪⎨+-=-⎪⎩,得112sin 1sin (1sin )1sin r r r r θθθθ⎧=⎪⎪+⎨-⎪=⎪+⎩
, ∴1
22(1sin )sin (1sin )
1sin (1sin )r r r θθθ
θθ--==++,
∵,∴,令,
222232131
2()48t t r t t -+-==--+,当,即时, 圆的半径最大,圆的面积最大,最大面积为.
(四)巩固练习:
1.设,如果且,则的取值范围是( )
2.已知的终边经过点,且 ,则的取值范围是.
3.若sin tan cot ()22π
π
αααα>>-<<,则
( )。

相关文档
最新文档