Signaling Effects of Nitric Oxide, Salicylic Acid
东北林业大学植物生理学9-植物细胞信号转导
胞内信号转导
膜上信号转换
胞间信号传递
植物体内的胞间信号可分为两类,即化学信号和物理信号。
一、胞间信号
(一) 化学信号 (chemical signals )
细胞感受刺激后合成并传递到作用部位引起生 理反应的化学物质。 植物激素是植物体主要的胞间化学信号。 如当植物根系受到水分亏缺胁迫时,根系细胞 迅速合成脱落酸 (ABA) ,ABA 再通过木质部蒸腾流 输送到地上部分,引起叶片生长受抑和气孔导度的 下降。而且ABA的合成和输出量也随水分胁迫程度 的加剧而显著增加。 这种随着刺激强度的增加,细胞合成量及向作 用位点输出量也随之增加的化学信号物质称之为正 化学信号(positive chemical signal)。 ABA 然而在水分胁迫时,根系合成和输出细胞分裂 素 (CTK) 的量显著减少,这样的随着刺激强度的增 干旱 CTK 加,细胞合成量及向作用位点输出量随之减少的化 学信号物质称为负化学信号(negative chemical signal)。
植物细胞信号转导
第一节 植物体内的信号传导
生长发育是基因在一定时间、 重力 空间上顺序表达的过程,而基因表达 Fig.1 各种 外 除受遗传信息支配外,还受环境的调 光合作用的光 部信号影响植 控。 光周期 光形态建成的光 物的生长发育 植物在整个生长发育过程中, 湿度 温度 受到各种内外因素的影响,这就需要 草食动物 风 植物体正确地辨别各种信息并作出相 应的反应,以确保正常的生长和发育。 乙烯 例如植物的向光性能促使植物 病原体 向光线充足的方向生长,在这个过程 中,首先植物体要能感受到光线,然 寄生虫 后把相关的信息传递到有关的靶细胞, 土壤微生物 土壤质地 并诱发胞内信号转导,调节基因的表 水分状况 有毒物质 矿质营养 达或改变酶的活性 光质→光受体→信号转导组分 →光调节基因→向光性反应 各种外部信号影响植物的生长发育
一氧化氮对园艺植物的生理作用及其应用前景
2021年第10期现代园艺一氧化氮对园艺植物的生理作用及其应用前景胡书明,吴春燕*,冉胜祥,王洪伟(吉林农业大学园艺学院,吉林长春130118)摘要:综述了植物NO的来源、NO对园艺植物的生理作用和外源NO对缓解蔬菜作物低温胁迫的研究,并对今后的研究利用外源NO气体缓解蔬菜作物冷害和冻害,提高蔬菜作物产量做出了展望。
关键词:外源NO;低温胁迫;抗逆性;园艺植物;缓解效应一氧化氮是一种气体小分子,在动植物体内常常作为信号分子参与到许多重要的生理过程中,广泛参与植物的生长发育、抗逆、信号转导及抗病防御反应等生理过程中。
近年来,由于分子生物学的发展,NO作为调节植物生命活动和信号转导的重要元素成为生物学领域的研究热点之一。
有研究表明,NO与园艺作物生长发育过程中的种子萌发、根系发育、气孔运动、果实的成熟等生理过程具有显著影响,以及在生理指标中超氧化物歧化酶(superoxide dismutase,SOD)、过氧化物酶(peroxidase,POD)、过氧化氢酶(catalase,CAT)的活性以及叶绿素[1]的合成也发挥着积极作用。
园艺作物在极端温度、盐害、干旱、重金属和弱光等非生物胁迫的作用下,NO作为作物体内的内源信号分子,进行调节与反馈,发挥着信号分子的作用。
1植物NO的来源NO在植物体内的合成是一个复杂的生理生化的变化。
植物体内NO的来源途径多样,目前已知的NO 在植物体内的合成途径主要包含酶促反应(enzymatic reaction)和非酶促反应(no-enzymatic reaction)2种途径,其中酶促反应途径主要包含一氧化氮合酶(nitric oxide synthase,NOS)途径、硝酸还原酶(nitrate reductase,NR)途径,以及近年来发现的黄腺嘌呤氧化还原酶(XOR)途径和亚硝酸还原酶(NiR)途径。
由NOS介导的NO合成途径,最早在动物细胞内发现,近年来,在植物中也证实了NOS的存在,有研究发现,利用动物NOS 抑制剂能够显著抑制植物细胞质中的NO的产生[2]。
支气管激发试验与舒张试验对支气管哮喘患者呼出气一氧化氮测定值的影响和意义(新)
准:(1)患者除哮喘外合并有其他呼吸系统疾病; (2)有其他系统的严重疾病(如心肌梗死、恶性肿瘤 等);(3)在测试前服用过相关药物者。本研究方案 已获得本单位伦理委员会批准(伦理号:2015.
on a
of
methacholine(Mch)bronchial
between November
and salbutamol bronchial dilation test This was
measurements
of fractional exhaled nitric oxide
(FeNO)in patients with asthma.Methotis
操作及结果判断标准符合中华医学会呼吸病学分会
肺功能专业组制定的支气管激发试验指南中
Mch支气管激发试验及沙丁胺醇支气管舒张试验前 后FeNO测定值的变化,以明确检查对哮喘患者 FeNO测定的影响。
对象与方法
Astograph法Mch支气管激发试验要求‘5 J。 6.APS法Meh支气管激发试验:采用德国
patients with negative provocation results.the differences between Pre.FeNO
DOI:10,3760/cma.j,issn.1001-0939.2016.03.010
作者单位:510280广州,南方医科大学珠江医院呼吸科 通信作者:于化鹏,Email:hБайду номын сангаасapengyu@aliyun.tom
group
0.1 17).The geometric mean of Pre—FeNO was 36.74 ppb and that of Post.FeNO was 34.79 ppb in the Dilation group;the difference being not significant(Z=一1.281,P=0.200).Conclusions Our results confirm that salbutamoI bronchial dilation test has minor effeet Oil the measurement of FeNO.but Mch bronchial provocation tests
到9月9日
到9月9日,社保基金正式进入股市整整3个月,按照有关规定,社保基金必须通过基金管理公司在三个月内完成建仓,并且其持仓市值要达到投资组合总市值80%的水平。
与此前大受追捧的QFII概念相比,社保基金及其所持有的股票显然低调得多,但是在西南证券分析师田磊看来,至少就目前来看,社保基金无论是在资金规模,还是在持股数量上明显都强于境外投资者,其投资理念和行为更可能给市场带来影响。
基金操作的社保基金的选股思路并不侧重某个行业,而更看重企业本身的发展和成长性,并且现阶段的企业经营业绩和走势也不是基金重点考虑的方面。
目前入市的社保基金都是委托南方、博时、华夏、鹏华、长盛、嘉实6家基金管理公司管理。
社保基金大致是被分为14个组合由以上6家管理公司分别管理,每个组合都有一个三位数的代码,第一位代表投资方向,其中“1”指股票投资、“2”指债券投资;第三位数字则代表基金公司名称,其中“1”为南方、“2”为博时、“3”为华夏、“4”为鹏华、“5”为长盛、“6”为嘉实;另有107、108组合主要运作社保基金此前一直持有的中石化股票,分别由博时与华夏基金公司管理。
在许多社保基金介入的股票中经常可以看到开放式基金的身影,例如在被社保基金大量持有的安阳钢铁(600569)的前10大股东中,其第2、6、7、8、9大股东均为开放式基金,而社保基金则以持股500多万股位列第3大股东。
类似的情况也出现在社保基金103组合所持有的华菱管线(000932)上,其第二大股东即为鹏华行业成长证券投资基金,社保基金则以200多万股的持仓量位列第7大股东,此外,在其前10大股东中还有5家是封闭式基金。
对此,某基金公司人士解释说,在获得社保基金管理人资格后,6家基金公司成立了专门的机构理财部门负责社保基金的投资管理,但是其研究、交易系统等则与公募基金共用一个平台,因此社保基金和开放式基金在选股时才会如此一致。
针对“社保概念股”的走势,国盛证券的分析师王剑认为,虽然社保基金此次委托入市资金超过百亿元,但大部分投向是债券,而且由于社保基金的特殊地位,因此基金管理公司对社保基金的操纵策略应该是以“集中持股,稳定股价”为主,不大可能博取太高的收益。
《分子药理学》第二章 自由基与疾病
二、自由基对蛋白的损伤
1. 蛋白质活性部位的修饰 2. 蛋白质结构的破坏
休克时中性粒细胞被激活,此过程中出现呼吸爆发 (respiratory burst),在细胞膜NADPH氧化酶催化 下,O2从NADPH获得电子,产生超氧阴离子 。在上 述反应中,NADPH氧化酶的激活起重要作用。正常状 态下,该酶处于静止状态,休克时多种体液因子如补 体、细菌、内毒素、PAF、LT等均可起激活作用。呼 吸爆发产生 后,又可经一系列反应生成H2O2、 OH• 等多种氧代谢产物,但它们的半衰期很短,在细胞外 参与邻近靶分子的反应。因此细胞膜被认为是主要的 损伤部位,而H2O2还能通过靶细胞膜上的阴离子通道, 扩散进入靶细胞,参与细胞内的分子反应,引起细胞 损伤。
2. 脂自由基对蛋白质分子的进攻
在自由基的作用下,胞浆与膜蛋白以及某些酶的分子 可发生交联、聚合或肽腱断裂,使蛋白质和酶结构破 坏、活性丧失。前面已述及,膜的脂质微环境改变, 也影响膜蛋白和酶的功能,如Na+ -K+-ATP酶失活, 使Na+ 内流增多;Na+-Ca2+ 交换增强,使细胞内钙 超负荷。近年来特别注意到,在缺血/再灌注使微粒体 及质膜上的脂加氧酶(lipooxygenase)及环加氧酶 (cyclooxygenase)激活,催化花生四烯酸代谢, 在增加自由基产生及脂质过氧化的同时,还形成具有 高度活性的物质,如前列腺素、血栓素、白三烯等。 许多实验证明,缺血特别是再灌注时血栓素形成增加, 前列环素形成减少,从而产生微循环障碍,与无复流 现象有关。
(3)破坏核酸和染色体 自由基可以导致碱基改变、DNA断裂和染色体畸变,
这些改变80%由OH•引起。OH•易与脱氧核糖及碱基 起反应并使其改变。
丹参对急性脊髓损伤患者血液流变学的影响
中国微循环2004年4月第8卷第2期・101・丹参对急性脊髓损伤患者血液流变学的影响王钢,刘世清,王志林【摘要】目的研究经静脉注射丹参液对急性脊髓损伤(ASCI )患者血液流变学的影响。
方法20例ASCI 患者随机分为甲基强的松龙(MP )治疗组,丹参治疗组。
治疗前和治疗后2、12、24h 检测患者血液流变学指标:全血黏度低、中、高切变值、纤维蛋白原(F ib )、红细胞聚集指数(RAI )、红细胞变形指数(RDI )结果经丹参治疗后,ASCI 患者血液流变学指标明显改善,并有显著性差异。
结论静注丹参液可改善ASCI 患者微循环,对ASCI 起保护作用。
【关键词】急性脊髓损伤;丹参;血液流变学中图分类号:R282.71;R651.2;R364.1文献标识码:B文章编号:1007-8568(2004)02-0101-02・临床研究・基金项目:湖北省卫生厅科研基金资助课题(w99001)作者单位:430060湖北武汉,武汉大学人民医院骨科第一作者简介:王钢(1971-),男,汉族,武汉人,主治医师,博士。
专业:骨科。
主要研究方向:脊柱外科的基础与临床。
脊髓损伤后,脊髓继发性损伤机制对脊髓的进一步损害及其在脊髓功能恢复中的作用越来越受到重视。
本研究旨在探讨急性脊髓损伤(ASCI )后,脊髓继发性损伤应用丹参针剂治疗改善微循环对急性脊髓损伤的保护作用。
资料与方法1临床资料1991年8月至2003年2月住院治疗的符合下列条件的急性脊髓损伤患者20例为研究对象:(1)伤后3h 急诊入院;(2)同时在感觉,运动等临床脊髓功能有障碍表现,脊髓损伤Frankel 分级为A ~C 级;(3)MRI 均证实有脊髓挫裂伤;(4)无其它部位合并伤,无心、肺、肝、肾等器质性疾病及血液病史;(5)闭合性脊髓损伤且不需要手术治疗。
其中颈髓损伤12例,胸髓损伤8例,男11例,女9例。
年龄18~58岁,平均36岁。
2治疗方法10例健康献血员组成A 组,为正常对照组;20例ASCI 患者随机分为两组:B 组10例,入院即行甲基强的松龙(MP )30m g /k g 静脉滴注,1次/d ,两周为一疗程;C 组10例,入院即行丹参注射液0.5m l/k g 静脉滴注,1次/d ,两周为一疗程。
红景天苷调控骨关节炎相关信号通路的研究进展
红景天苷调控骨关节炎相关信号通路的研究进展陈权,周金依,肖鲁伟,童培建,吴承亮,阮红峰(浙江中医药大学第一临床医学院,浙江杭州310053)摘 要 因骨关节炎(osteoarthritis,OA)的发生发展机制尚不清楚,有效药物的开发和应用受到制约。
越来越多的基础和临床研究表明,软骨细胞凋亡、炎性反应是OA发生发展的关键,而Toll样受体4(Toll-likereceptor,TLR4)/核因子-κB(nuclearfactor-kappaB,NF-κB)信号通路与OA软骨细胞凋亡、炎性反应相关。
红景天苷可通过调控上述信号通路而发挥抗炎、抗细胞凋亡作用,减少OA带来的损伤。
本文对红景天苷调控与OA相关的TLR4/NF-κB、低氧诱导因子信号通路的研究进展进行了综述,为OA的药物研究提供新的思路。
关键词 骨关节炎;红景天;红景天苷;信号传导;Toll样受体4;NF-κB;低氧诱导因子;综述 骨关节炎(osteoarthritis,OA)作为一种退行性骨关节病,已经成为一个全球性的公共健康问题,其临床主要表现为缓慢发展的关节疼痛、肿胀、畸形等。
目前有关该病的发病机理尚未明确,仍有待进一步研究。
学者们普遍认为OA是由衰老、环境、力学与生物学等因素共同作用所致,其中软骨细胞凋亡、炎性反应等是OA发病的关键因素[1]。
最新研究表明,Toll样受体4(Toll-likereceptor,TLR4)/核因子-κB(nuclearfactor-kappaB,NF-κB)、低氧诱导因子(hypoxia-induciblefactor,HIF)等信号通路与OA的发生发展密切相关,这些信号通路通过影响关节组织局部炎性反应的发生,以及细胞外基质的降解和软骨细胞的增殖、分化和凋亡等细胞生物学行为,共同参与调控OA的进展[2-3]。
但目前尚未发现一种能有效阻断OA病理进程的方法。
大量药理学研究表明,红景天苷(salidroside,SAL)可通过介导相关通路发挥调控软骨细胞凋亡、减少炎性介质产生的作用,因此其具备成为OA治疗药物的潜能。
诱导型一氧化氮合酶作用机理
诱导型一氧化氮合酶作用机理英文回答:The mechanism of action of inducible nitric oxide synthase (iNOS) involves the production of nitric oxide (NO) through the conversion of L-arginine to L-citrulline. iNOSis an enzyme that is expressed in response to various stimuli, such as inflammation or infection. It is different from the other isoforms of nitric oxide synthase (NOS) in terms of its expression pattern and regulation.When iNOS is activated, it undergoes a process called dimerization, where two iNOS molecules come together toform a functional enzyme. This dimerization is crucial for the catalytic activity of iNOS. Once the dimer is formed, each iNOS monomer binds to a molecule of L-arginine and oxygen. The binding of L-arginine and oxygen induces a conformational change in the enzyme, leading to the formation of a heme-iron intermediate.The heme-iron intermediate then reacts with NADPH (nicotinamide adenine dinucleotide phosphate) and oxygen to produce a highly reactive intermediate called a superoxide radical. This superoxide radical rapidly reacts withanother superoxide radical to form hydrogen peroxide (H2O2). The hydrogen peroxide then reacts with a second molecule of iNOS-bound L-arginine, resulting in the release of nitric oxide (NO) and L-citrulline.Nitric oxide is a highly reactive molecule that plays a crucial role in various physiological and pathological processes. It acts as a signaling molecule in the immune system, regulating inflammation and immune responses. Italso plays a role in the relaxation of smooth muscles, such as those found in blood vessels, leading to vasodilationand increased blood flow.One example of the role of iNOS and nitric oxide is in the immune response to bacterial infection. When bacteria invade the body, immune cells, such as macrophages, are activated and produce nitric oxide through iNOS. The nitric oxide helps to kill the bacteria by damaging their DNA andproteins. Additionally, nitric oxide also acts as asignaling molecule to recruit other immune cells to thesite of infection.中文回答:诱导型一氧化氮合酶(iNOS)的作用机制涉及通过将L-精氨酸转化为L-瓜氨酸来产生一氧化氮(NO)。
一氧化氮在心力衰竭中的作用 - 北京大学医学图书馆
04临床4班BJMU一氧化氮在心力衰竭中的作用90401415 梁军鑫90401416 吴芸90401417 郑夏90401418 杨欣90401419 曹白丹90401420 耿茉摘要:一氧化氮是心血管疾病相关的重要分子。
它在心力衰竭的发生与进展当中的作用不可忽视。
本文总结了国内外研究一氧化氮在血管与冠脉循环、心肌细胞和肾交感神经活性与外周化学反射三个方面的作用。
关键词:一氧化氮,心力衰竭NO是在人体生命活动中起到重要作用的一种小分子物质。
除了最初发现的扩张血管作用,它对肌肉等多个器官都有影响,且包括心肌细胞在内的多种细胞都能产生NO。
NO合酶有内皮型(eNOS),神经型(nNOS)和诱导型(iNOS)三种。
NO在抵抗缺血/再灌注损伤,调节心衰时心肌收缩性,交感神经活性和心肌梗死后重构中起着重要的作用。
1NO对血管和冠脉循环的作用NO的血管依赖性调节作用包括:改变血管包括冠状动脉平滑肌张力[1,2],保护血管壁,抗凝血[3],通过细胞增殖,炎症反应和交汇通路致血管新生。
大量NO的扩血管作用是经NO-cGMP-PKG通路和抑制磷酯酰肌醇水解产生的,能够拮抗心衰时RAAS系统以及内皮素的缩血管作用[4]。
有实验表明,在心衰病人的离体心肌细胞内,nNOS的mRNA和蛋白表达明显增加,在caveolin3的作用下转移到肌膜,使通过nNOS途径产生的NO增多,同时eNOS的mRNA表达和活动减少,磷酸化eNOS含量,总蛋白量显著下降,这可能对心肌的正性肌力有所影响[5]。
在心脏恢复过程中,磷酸化eNOS水平完全恢复至正常水平。
由此推知,在CHF恢复中内皮依赖性的冠状血管舒张功能的完全恢复是由以下途径所介导:1)磷酸化eNOS的恢复促进了NO含量的部分恢复;2)NO含量的恢复使cGMP含量增加,cGMP依赖性蛋白激酶I通路的信号活动得到了增强,从而加强了冠状血管平滑肌舒张[6]。
近来对高血压,左心衰和冠脉血管造影正常的病人的临床观察表明,在快速性心律失常时,冠脉循环中内源性的NO能够减轻心肌缺血。
支气管激发试验与舒张试验对支气管哮喘患者呼出气一氧化氮测定值的影响和意义重点
by using Astograph
Jupiter一21(Astograh group)or
dilation test was
APS—Pro airway reaction testing
and salbutamol bronchial
performed
by using Jaeger spirometer(Dilation group).We
及舒张试验所涉及的肺通气功能检查及Mch、沙丁
FeNO测定是否有影响。 3.FeNO测定方法:采用瑞典Aerocrine公司
NIOX
MINO便携仪,操作符合ATS关于FeNO测定
质控标准要求’3 J。 4.肺功能测定:采用德国Jaeger公司
MasterScreen
IOS肺功能仪,操作步骤参照ATS及
University,Guangzhou 510280,China
Corresponding author:Yu Huapeng,Email:huapengyu@aliyun.com
【Abstract】0bjective
provocation tests
To study
and significance
patients with negative provocation results.the differences between Pre.FeNO
DOI:10,3760/cma.j,issn.1001-0939.2016.03.010
作者单位:510280广州,南方医科大学珠江医院呼吸科 通信作者:于化鹏,Email:huapengyu@aliyun.tom
【关键词】
呼出气一氧化氮;支气管激发试验;支气管舒张试验;哮喘
NO在体内的作用十分广泛,概括起来主要 - 北京大
NO对心肌的保护作用及临床应用新进展临床五班90401534 钱敏90401540 宋颖90401541 杨菁90401543 张佳琪90401548 杨夕樱90401549 段宁波AbstractNitric oxide (NO) is a physiologically important modulator for heart. NO has numerous functions in vasodilation, inhibition of platelet aggregation,anti-inflammation, anti-apoptosis and anti-proliferation, which all together play an important role in modulating the normal function of the heart. These effects of NO are predominantly mediated by cGMP. However, in patients with heart failure, platelets and coronary/peripheral arteries are hyporesponsive to the antiaggregatory and vasodilator effects of NO donors. NO resistance results largely from the reduction of NO bioavailability. NO resistance constitutes an impaired physiological response to endogenous NO and may contribute to the increased risk of ischemic events. Impairment in responsiveness to NO in patients with heart failure implies a potential problem that those patients, in greatest need of nitrate therapy, may be least likely to respond. However, the recent researches have shown that a number of agents ameliorate this anomaly.摘要NO是调节心肌正常生理活动的重要分子。
NO信号通路
Microorganisms have developed several mechanisms to survive in their hosts' environments(寄生环境). These include competition with their hosts for metal acquisition and resistance to host defenses such as NO (Nitric Oxide), a cytotoxic weapon (细胞毒素武器)generated by macrophages(巨噬细胞). In eukaryotic cells, NO is metabolically produced by NOS (NO Synthase) from L-Arginine, O2 (Molecular Oxygen), and NADPH (Nicotinamide Adenine Dinucleotide, Reduced). In macrophages, an inducible NO synthase (诱导型NO合酶,iNOS or NOS2) is produced after activation by endotoxins or cytokines and generates copious amounts of NO presumably to help kill or inhibit the growth of invading microorganisms or neoplastic(肿瘤)tissue (Ref.1 & 2). Although iNOS was originally identified and characterized in macrophages, it is present in numerous cell types including endothelial cells(内皮细胞), fibroblasts, vascular smooth muscle cells(血管平滑肌细胞)and cardiac myocytes(心肌细胞). Catalytic activity of iNOS is regulated by the availability of the substrate, Calm (Calmodulin,钙调蛋白), L-Arginine, and of the cofactors(辅酶因子), NADPH and tetrahydrobiopterin. NOS2 utilizes oxygen and electrons from NADPH to oxidize the substrate(底物)L-Arginine into the intermediate OH-L-Arginine, which is then oxidized into NO and L-Citrulline. NO and superoxide (O2-) are radical effectors of the innate immune system that can directly inhibit pathogen replication.Although NOS2 activity is independent of calcium concentrations, a variety of extracellular stimuli can activate distinct signaling pathways that converge to initiate expression of iNOS. Cell wall components of bacteria and fungi trigger the innate immune signaling cascade, leading to expression of iNOS. LPS (内毒素脂多糖,毒性成分为类脂质A,Lipopolysaccharide), a component of the wall of Gram-negative bacteria(革兰氏阴性菌), binds to LBP (LPS-Binding Protein), which delivers LPS to CD14(内毒素受体抗体), a high-affinity LPS receptor. TLR4 (Toll-Like Receptor-4) in conjunction with the small extracellular protein MD2 interacts with the CD14-LPS complex, and then activates an intracellular signaling cascade via adaptors that include IRAK (Interleukin-1 Receptor-Associated Kinase,白介素-1受体偶联激酶) and MyD88 (Myeloid Differentiation Primary Response Gene-88). These adaptors in turn activate downstream molecules including TRAF6 (TNF Receptor-Associated Factor-6), TAB1 (TAK1-Binding Protein-1) and p38. LPS activation of TLR4 leads to phosphorylation of IKK (Inhibitor of KappaB Kinase), which phosphorylates the I-kappaB and releases the transcription factor NF-kappaB (Nuclear Factor-KappaB). NF-kappaB translocates from the cytoplasm to the nucleus, where it interacts with kappaB elements in the NOS2 5' flanking region, triggering NOS2 transcription (Ref.2, 3 & 8). Cytokines released from infected host cells also activate NO production, including TNF-Alpha (Tumor Necrosis Factor-Alpha) and IL-1Beta (Interleukin-1Beta). IFN-Gamma (Interferon-Gamma) interacts with the IFNR1 (Interferon Receptor-1) and IFNR2 complex, which activates kinases of the JAK (Janus Kinase) family and STAT (Signal Transducers and Activators of Transcription) pathways leading to synthesis of the transcription factor IRF1 (Interferon Response Factor-1) and stimulation of NOS2 mRNA transcription. IFN-Gamma also provides a synergistic boost to LPS induction of NOS2 transcription because IRF1 interacts with NF-kappaB, altering the conformation of the NOS2 promoter. Nuclear proteins that interact with members of the NF-kappaB family include the nonhistone chromosomal proteins, HMGI/Y (High Mobility Group Family). They enhance the binding of transcription factors, such as NF-kappaB and AP-1 (Activating Protein-1), to their binding sites by DNA-protein and protein-protein interactions (Ref.3 & 5). Other transcription factors, including STAT1Alpha and HIF1 (Hypoxia Inducible Factor-1) also regulate NOS2 expression.NO is an anti-bacterial effector and can inhibit bacterial DNA synthesis by inhibiting bacterial Ribonucleotide Reductase1/2 and causing DSBs (Double-Stranded Breaks) in bacterial DNA. It can also increase the susceptibility of bacteria to oxidative DNA damage by blocking respiration. NO combines with O2- to form ONOO- (peroxynitrite anion) and oxidize bacterial lipids to produce nitrotyrosine, but the biological significance of these modifications is still unclear. Some bacteria contain low concentrations of GSH (Glutathione), and are susceptible to NO. The bacterial protein SoxRS (Superoxide Regulon) serves as a sensor for NO, and can activate transcription of a set of bacterial genes whose products defend the pathogen from oxidant damage by bacterial SOD (Superoxide Dismutase). OxyR (Peroxide Regulon), a transcription factor involved in stimulation of peroxide detoxification genes, is directly modified by H2O2 (Hydrogen Peroxide) or NO via S-nitrosylation and assists inprotecting the bacterium from the NO donor S-nitrosocysteine. It also directs the transcription of bacterial genes such as AHP (Alkyl Hydroperoxide Reductase), which confers resistance, to peroxynitrite, and Catalase, which deactivates H2O2 (Ref.4 & 9). The bacterial protein FUR (Ferric Uptake Regulatory protein) also serves as an NO sensor. NO inactivates FUR by interacting with its iron cofactor, permitting expression of genes protective against oxidative stress. One bacterial gene regulated by FUR encodes a flavohemoglobin that can detoxify NO, protecting pathogens from NO. Thus multiple signaling pathways defend bacteria against NO. NO is also an anti-viral effector of the innate immune system. It can inhibit replication of Herpes viruses, Picornaviruses, Flaviviruses and Corona viruses by targeting viral proteases. Many RNA viruses depend on viral proteases to cleave large viral polyproteins into smaller viral polypeptides. In Toxoplasma gondii infection, the induction of iNOS serves as a nonspecific immune response that prevents parasite invasion.While iNOS induction can protect brain from certain infectious diseases, excessive levels of NO can also be toxic to neurons. Increased NO production via induction of iNOS has been suggested as a major mechanism by which cytokines mediate cardiac contractile dysfunction and development of cardiovascular disease. Over-expression of iNOS, a common phenomenon during chronic inflammatory conditions, generates sustainable amounts of NO, and its reactive intermediates are mutagenic, causing DNA damage or impairment of DNA repair. Recent studies also implicate NO as having a key signaling molecule that regulates processes of tumorigenesis. Increased expression of iNOS has been involved in tumors of the colon, lung, oropharynx, reproductive organs, breast, and CNS (Central Nervous System) besides its occurrence in chronic inflammatory diseases. Development of selective inhibitors of iNOS and NO-releasing agents may lead to important strategies for chemoprevention of cancer (Ref.6, 7 & 9).References:1. Petruson K, Stalfors J, Jacobsson KE, Ny L, Petruson BNitric oxide production in the sphenoidal sinus by the inducible and constitutive isozymes of nitric oxide synthase.Rhinology. 2005 Mar; 43(1):18-23.2. Kadowaki S, Chikumi H, Yamamoto H, Yoneda K, Yamasaki A, Sato K, Shimizu EDown-regulation of inducible nitric oxide synthase by lysophosphatidic acid in human respiratory epithelial cells.Mol. Cell Biochem. 2004 Jul; 262(1-2):51-9.3. Davis RL, Sanchez AC, Lindley DJ, Williams SC, Syapin PJEffects of mechanistically distinct NF-kappaB inhibitors on glial inducible nitric-oxide synthase expression.Nitric Oxide. 2005 Jun; 12(4):200-9.4. Saldeen J, Welsh Np38 MAPK inhibits JNK2 and mediates cytokine-activated iNOS induction and apoptosis independently of NF-KBtranslocation in insulin-producing cells.Eur Cytokine Netw. 2004 Jan-Mar; 15(1):47-52.5. Jang BC, Paik JH, Kim SP, Bae JH, Mun KC, Song DK, Cho CH, Shin DH, Kwon TK, Park JW, Park JG, Baek WK,Suh MH, Lee SH, Baek SH, Lee IS, Suh SICatalase induces the expression of inducible nitric oxide synthase through activation of NF-kappaB and PI3Ksignaling pathway in Raw 264.7 cells.Biochem Pharmacol. 2004 Dec 1; 68(11):2167-76.6. Gavrilescu LC, Butcher BA, Del Rio L, Taylor GA, Denkers EYSTAT1 is essential for antimicrobial effector function but dispensable for gamma interferon production duringToxoplasma gondii infection.Infect Immun. 2004 Mar; 72(3):1257-64.7. Lala PK, Chakraborty CRole of nitric oxide in carcinogenesis and tumour progression.Lancet Oncol. 2001 Mar; 2(3):149-56. Review.8. Mizel SB, Honko AN, Moors MA, Smith PS, West APInduction of macrophage nitric oxide production by Gram-negative flagellin involves signaling via heteromeric Toll-like receptor 5/Toll-like receptor 4 complexes.J. Immunol. 2003 Jun 15; 170(12):6217-23.9. Bafica A, Scanga CA, Serhan C, Machado F, White S, Sher A, Aliberti JHost control of Mycobacterium tuberculosis is regulated by 5-lipoxygenase-dependent lipoxin production.J. Clin Invest. 2005 Jun 1; 115(6):1601-1606.。
在神经退行性疾病中Nrf2对线粒体功能的调节
王家怡等在神经退行性疾病中NP0对线粒体功能的调节第7期•237•在神经退行性疾病中n_u对线粒体功能的调节王家怡、聂政4(成都医学院1学员2队,四川成都619500;2人体解剖与组织胚胎学教研室发育与再生四川省重点实验室)〔关键词〕核因子E2相关因子0;线粒体;神经退行性疾病〔中图分类号〕R774〔文献标识码〕A〔文章编号〕1055-9252(2021)57-9557-54;doi:10.3969/j.issn.155-9252.2521.57.559氧化应激是由活性氧(ROS)自由基介导的,包括超氧阴离子、过氧化氢(HO)和羟基自由基等。
在正常生理条件下,ROS生成水平与机体抗氧化能力处于动态平衡状态,当ROS的产生超过细胞抗氧化能力则会发生氧化应激反应,而大脑对氧化应激尤为敏感〔〕,神经退行性疾病其发病机制可能与氧化应激及相应的损伤有关。
线粒体作为细胞的动力工厂,细胞所需总能量的90%都由线粒体产生。
而神经元进行糖酵解的能力十分有限,所以需高度依赖氧的氧化磷酸化作用供能。
线粒体供能障碍主要体现在ROS的生成增多,腺嘌吟核苷三磷酸(ATP)生成减少和Ca2+稳态平衡的打破等〔〕。
因此,如何调节线粒体功能,有可能成为治疗神经退行性疾病的新靶点,核因子E2相关因子(NU)2是一种细胞氧化还原稳态的主要调节因子,其在调节线粒体功能方面发挥着重要作用。
1Nrf2的结构及调控机制NU2是cap'/co/ar(CNC-家族中最具活力的诱导型转录因子〔〕。
NUO有Nedl~NeP6六个结构域,在细胞核内,Nehl与Maf蛋白结合形成二聚体, Neh4、Neh5结构域与CREB结合蛋白结合可促使核内的NU2-Mnf与抗氧化反应元件(ARE)上游启动子结合,进而启动下游基因转录,Neh2可与胞浆蛋白kedh样环氧氯丙烷相关蛋白(Keap)1结合并被其负性调节。
Keapl是一种存在于细胞质内的NP2抑制蛋白,可阻止NU2进入细胞核,介导泛素将其基金项目:四川省教育厅科研项目(19ZB2077-;发育与再生四川省重点实验室项目(__5AH);四川省大学生创新实验项目(2022705065)通信作者:聂政(3806,男,硕士,高级实验师,主要从事气体信号分子在神经退行性疾病帕金森病中的研究。
SIRT1调控氧化应激的研究进展
[收稿日期]㊀2020-09-11[修回日期]㊀2021-02-28[基金项目]㊀湖南省卫生计生委科研基金(A2017012)[作者简介]㊀刘旺,硕士研究生,研究方向为胃肠道及消化性疾病,E-mail 为1377621039@㊂通信作者李峰,硕士,主任医师,副教授,硕士研究生导师,研究方向为胃肠道及消化性疾病,E-mail 为LiFeng8448@㊂DOI :10.15972/ki.43-1509/r.2021.02.025㊃文献综述㊃SIRT1调控氧化应激的研究进展刘旺,周琴怡,莫志勇,李峰(南华大学附属南华医院,湖南省衡阳市421002)[关键词]㊀沉默信息调节因子1;㊀氧化应激;㊀去乙酰化[摘㊀要]㊀氧化应激损伤是指人体处于氧化应激环境下,体内产生活性氧自由基超过氧化抗氧化系统平衡,导致人体的损伤㊂沉默信息调节因子1(SIRT1)属于沉默信息调节因子家族成员,具有去乙酰化酶作用,在许多生物过程中发挥重要作用,包括氧化应激㊁细胞凋亡和衰老㊁基因转录㊁新陈代谢等㊂近来研究发现,SIRT1可通过去乙酰化作用调控不同靶基因㊁靶蛋白,在氧化应激相关疾病中发挥重要作用㊂本文就SIRT1对氧化应激的调控进行综述㊂[中图分类号]㊀R364.5[文献标识码]㊀AResearch progress on the regulation of oxidative stress by SIRT 1LIU Wang,ZHOU Qinyi,MO Zhiyong,LI Feng(Nanhua Affiliated Hospital ,University of South China ,Hengyang ,Hunan 421002,China )[KEY WORDS ]㊀SIRT1;㊀oxidative stress;㊀deacetylation[ABSTRACT ]㊀Oxidative stress damage means that the human body is in an oxidative stress environment,and the active oxygen free radicals produced in the body exceed the balance of the oxidative and antioxidant,resulting in damage to the human body.㊀silent information regulator of transcription 1(SIRT1),a member of the family of silent transcriptional reg-ulators,has the role of deacetylase and plays an important role in many biological processes,including oxidative stress,ap-optosis and senescence,gene transcription,metabolism and so on.㊀Recent studies have found that SIRT1can regulatedifferent target genes and target proteins through deacetylation and play an important role in oxidative stress-related diseases.This article reviews the regulation of oxidative stress by SIRT1.㊀㊀氧化应激被认为是损伤细胞的重要因素,通常是由活性氧(reactive oxygen species,ROS)过度生成所致㊂在生理情况下,ROS 产生水平很低,并可被内源性抗氧化系统清除,而当人体暴露在氧化应激环境下,体内产生ROS 超过内源性抗氧化系统能力时,随后导致细胞氧化应激损伤,诱导细胞凋亡,从而表现为各种临床疾病,包括:认知障碍㊁精神障碍㊁退行性疾病以及心㊁脑㊁肺㊁肝等脏器疾病㊂沉默信息调节因子1(silent information regulator of transcription 1,SIRT1)是一种保守的㊁烟酰胺腺嘌呤二核苷酸(NAD +)依赖的Ⅲ类组蛋白去乙酰化酶㊂近年来研究表明,SIRT1在抗氧化应激损伤中发挥重要作用,其机制可能与其去乙酰化作用于不同靶基因㊁靶蛋白有关㊂本文从SIRT1的生物学功能㊁SIRT1调控不同靶基因㊁靶蛋白抗氧化应激损伤方面进行综述,了解SIRT1在抗氧化应激损伤机制的作用,更好地将SIRT1作为一个靶点服务于临床氧化应激相关疾病㊂1㊀SIRT1的生物学功能Sirtuin 家族于2000年首次在哺乳动物中发现,由于其可调控原核及真核生物的重要代谢途径,从而参与了细胞存活㊁衰老㊁增殖㊁凋亡㊁DNA 修复㊁细胞代谢和氧化应激等多种生物学过程[1]㊂目前公认的家族成员包括:SIRT1~7,其中SIRT1最具有代表性,因而研究最多㊂SIRT1是一种去乙酰化酶,基因主要定位于染色体10q22.1,全长为33660bp,可编码相对分子质量约为120kDa 的蛋白,其结构主要由N-末端㊁催化核心㊁别构部位㊁C-末端四部分组成,其中别构部位和催化核心构成了SIRT1的活性中心,具有去乙酰化作用㊂目前多项研究表明,SIRT1可通过调控细胞核因子(nuclear factor-κB,NF-κB)[2]㊁叉头转录因子1(forkhead box class O1,FOXO1)[3]㊁P53[4]㊁过氧化物酶体增殖活化受体γ辅助活化因子(peroxisome proliferator-activated receptor γcoactivator 1α,PGC-1α)[5]㊁核转录因子E2相关因子2(nuclear factor erythroid 2-related factor 2,Nrf2)[6]㊁缺氧诱导因子-1α(hypoxia-inducible factor-1α,HIF-1α)[7]㊁腺苷酸活化蛋白激酶(adenosine 5ᶄ-monophosphate (AMP)-activated protein kinase,AMPK)[8]㊁内皮型一氧化氮合酶(endothelial nitric synthase,eNOS)[9]㊁Ku70[10]㊁P66Shc [11]等多种靶基因㊁靶蛋白(图1),进而在氧化应激损伤中发挥重要作用㊂SIRT1也参与了细胞凋亡和衰老㊁基因转录㊁新陈代谢等多种生理功能的调节㊂图1㊀SIRT1抗氧化应激损伤的作用示意图SIRT1通过作用于不同靶基因㊁靶蛋白,从而发挥抗氧化应激损伤的作用㊂2㊀SIRT1调控不同靶基因、靶蛋白抗氧化应激损伤2.1㊀SIRT1调控NF-κBNF-κB 是一种核转录因子,由p50,p52,RelA/p65,cRel 和RelB 五个亚基组成,与DNA 特异序列的结合来调节相关基因转录[12],从而在调控氧化应激㊁炎症反应㊁细胞周期㊁凋亡中发挥重要作用㊂活化的NF-κB 因子可激活炎症因子,对人体造成损伤,同时又可促进ROS 的产生,损伤组织器官且进一步促进炎症因子的表达㊂在正常情况下,NF-κB 与其抑制性蛋白(inhibitor of nuclear factor-κB,IκBα)在胞质结合形成无活性复合物,当受到刺激时,IκB 激酶使IκBα磷酸化而释放NF-κB,然后活化的NF-κB 进入细胞核,与相应的启动子基因靶点结合促进转录㊂Li 等[2]研究表明,SIRT1可去乙酰化RelA /p65,使NF-κB 与IκBα结合,抑制NF-κB 的转录活性,从而减少炎症因子的表达㊂因此,本文认为SIRT1可通过去乙酰化抑制NF-κB 的转录活性,从而抗氧化应激损伤㊂2.2㊀SIRT1调控FOXO1叉头转录因子家族(forkhead box class Os,FOX-Os)在哺乳动物内主要有四种,分别为:FOXO1㊁FOXO3㊁FOXO4㊁FOXO6㊂其结构由高度保守的叉头DNA结合区㊁DNA结合区下游核定位信号区㊁N 端的核输出序列叉头区及高度无序区四个部分组成,其活性受到磷酸化㊁乙酰化㊁泛素化等多种方式调节㊂研究表明FOXO1可通过调控下游靶基因如:锰超氧歧化物酶(Mn-superoxide dismutase,Mn-SOD)㊁过氧化氢酶等,清除过量的ROS,从而减轻细胞氧化应激损伤[13]㊂Yao等[3]研究表明,SIRT1可通过去乙酰化激活FOXO1,减轻H2O2所致的细胞氧化应激损伤,抑制成骨细胞凋亡㊂因此,本文认为SIRT1可通过去乙酰化激活FOXO1而抗氧化应激损伤㊂此外,在Xiong等[14]的研究中表明FOXO1亦可提高SIRT1的表达水平㊂可见其自身反馈可能参与了FOXO1依赖的SIRT1转录和SIRT1介导的FOXO1去乙酰化㊂2.3㊀SIRT1调控P53P53是一种应激反应转录因子,同时也是一种重要肿瘤抑制因子,在细胞周期㊁凋亡㊁自噬㊁氧化应激㊁DNA复制等方面发挥重要作用㊂P53可通过调节不同靶蛋白如:P53诱导蛋白㊁还原型烟酰胺腺嘌呤双核苷酸磷酸(nicotinamide)的胞质亚单位NCF2/p67phox㊁p66Shc㊁Bax等促进氧化应激损伤,诱导细胞凋亡[15]㊂Kim等[16]研究发现,H2O2诱导的氧化应激环境增加了P53基因的表达和积累,而SIRT1的激活降低了P53的活性㊂Lin等[4]的研究证实,SIRT1可通过去乙酰化P53,抑制P53活化,从而保护肾小管细胞免受氧化应激损伤,减少细胞凋亡㊂因此,SIRT1可通过去乙酰化抑制P53活性,减少氧化应激损伤所致的细胞凋亡,从而抗氧化应激损伤㊂2.4㊀SIRT1调控PGC-1αPGC-1α是过氧化物酶体增殖活化受体γ(per-oxisome proliferator-activated receptorγ,PPAR-γ)的辅助活化因子,其结构主要由N-末端㊁活性区域㊁调节结构域㊁C-末端四部分组成㊂PGC-1α在抗氧化应激系统中起关键作用,其活性受到磷酸化㊁乙酰化㊁泛素化等多种方式调节[17]㊂研究表明,PGC-1α可能通过清除过量ROS㊁诱导抗氧化酶的表达㊁以及维持线粒体功能等发挥抗氧化应激损伤[18]㊂Tang[5]的研究发现SIRT1可通过去乙酰化PGC-1α而发挥调节代谢紊乱作用,减轻外界刺激所致的细胞损伤㊂Liang等[19]研究表明,SIRT1通过去乙酰化激活PGC-1α,清除氧化应激导致的ROS,减轻肠道氧化应激损伤㊂因此,SIRT1可通过去乙酰化激活PGC-1α的表达,从而抗氧化应激损伤㊂2.5㊀SIRT1调控Nrf2Nrf2是一种亮氨酸转录因子,由Neh1-6六个结构域组成,在抗氧化反应元件(antioxidant response element,ARE)依赖的防御基因的转录调控中起着极其重要的作用㊂在生理情况下,Nrf2在胞质与抑制蛋白Keap1结合并以无活性的Nrf2-Keap1复合物形式存在,而当受到刺激时,Nrf2与Keap1解离进入细胞核内,与ARE相互作用,调节抗氧化基因如:谷胱甘肽S转移酶(glutathione stransferase, GST)㊁葡萄糖醛酸转移酶㊁血红素氧合酶等的表达,从而抗氧化应激损伤[20]㊂Tang等[6]研究表明, SIRT1可通过去改变Keap1的结构来激活Nrf2,导致Nrf2核转移,从而促进抗氧化基因的表达㊂此外,Huang等[21]的研究发现,白藜芦醇通过增加SIRT1的表达,可直接促进Nrf2的去乙酰化和随后的激活,最终导致Nrf2靶基因的上调以及更高的抗氧化能力㊂因此,SIRT1可通过直接或间接作用激活Nrf2,调节抗氧化基因表达,进而抗氧化应激损伤㊂2.6㊀SIRT1调控HIF-1α缺氧诱导因子家族(hypoxia induceble factor, HIF)包括HIF1㊁HIF2㊁HIF3三种,当组织缺氧处于氧化应激㊁炎症状态时,HIF表达增高㊂HIF可调节多种靶基因如:促红细胞生成素㊁血管内皮生长因子以及各种糖酵解酶,从而在血管形成㊁能量代谢㊁细胞存活㊁凋亡㊁维持细胞在缺氧条件的稳定性上发挥重要作用[22]㊂研究表明,HIF-1α的激活与氧化应激有关,可通过直接或间接作用调节ROS的形成[23]㊂目前,SIRT1调控HIF1在缺血再灌注诱导的氧化应激中研究较多㊂Shin等[7]在研究中发现, SIRT1升高后HIF-1α乙酰化水平降低,且当敲低SIRT1后,HIF-1α乙酰化水平明显升高,说明SIRT1通过调控HIF-1α乙酰化水平来抗肝脏缺血再灌注损伤㊂因此,SIRT1可通过调控HIF-1α,在氧化应激中发挥调节作用㊂2.7㊀SIRT1调控AMPKAMPK即AMP活化蛋白激酶,其活性是代谢动态平衡的主要调节因子,常在缺血㊁缺氧等氧化应激条件下被激活㊂AMPK可被肝脏激酶B1(liver kinase B1,LKB1)激活,激活后的AMPK可通过促进胰岛素敏感性㊁脂肪酸氧化和线粒体生物合成,产生ATP,从而减轻氧化应激损伤㊂研究表明SIRT1的过表达可导致LKB1的去乙酰化,从细胞核转移到细胞质,从而激活AMPK[24]㊂Wang等[8]的实验表明SIRT1激动剂SRT1720通过上调SIRT1可增加AMPK的表达,提高2型糖尿病大鼠抗氧化能力㊂由此可见,SIRT1可通过调控LKB1进而激活AMPK,从而抗氧化应激损伤,促进细胞存活㊂此外,有研究表明,SIRT1与AMPK是可以相互调节的,而且两者可分别通过乙酰化和磷酸化直接影响PGC-1α的活性[25],从而发挥抗氧化应激损伤作用㊂2.8㊀SIRT1调控eNOSeNOS主要在内皮细胞中表达,在心脏㊁血管氧化应激中发挥重要作用,其机制主要是通过产生一氧化氮(nitric oxide,NO)和抑制ROS的生成㊂而在氧化应激环境中eNOS功能发生障碍,导致ROS的生成增多,抑制NO的生物活性且不再产生NO㊂研究发现SIRT1在调节eNOS活性中起重要作用,通过上调SIRT1可以降低eNOS乙酰化(失活状态),增强eNOS磷酸化(激活状态)[9]㊂而且在目前各种缺血再灌注模型中,SIRT1/eNOS通路的激活已被证明能抑制氧化应激反应,从而改善缺血再灌注损伤㊂如:Li等[26]的体内外实验表明,通过激活SIRT1/eNOS通路可减少ROS的产生,抑制氧化应激反应,改善心肌缺血再灌注损伤㊂此外,在Guo 等[27]的研究中发现激活SIRT1/eNOS通路可抑制H2O2诱导的氧化应激损伤,保护内皮细胞㊂因此, SIRT1可通过去乙酰化激活eNOS,从而抗氧化应激损伤㊂2.9㊀SIRT1调控Ku70Ku70是一种DNA修复蛋白,参与各种刺激所致的DNA损伤修复㊁细胞凋亡等㊂各种氧化应激损伤都可能导致DNA损伤㊂Takata等[28]研究表明,在通过辐射直接或间接氧化应激导致的DNA损伤后,Ku70蛋白表达明显升高,表明Ku70在辐射所致的DNA损伤过程中密切相关㊂Jeong等[10]在对辐射诱导的DNA损伤研究中发现,SIRT1通过去乙酰化Ku70,增强了辐射后DNA修复活性㊂此外,在生理条件下,促凋亡蛋白Bax与Ku70相结合,当受到氧化刺激时,Ku70发生乙酰化,两者发生解离,然后解离后的Bax定位线粒体膜,促进细胞凋亡㊂研究表明[29],SIRT1可使Ku70去乙酰化,使其与Bax的相互作用加强,进而减少Bax转移到线粒体膜上而减少大鼠生殖细胞凋亡,从而减轻细胞氧化应激损伤㊂因此,SIRT1可通过去乙酰化调控Ku70,从而抗氧化应激损伤㊂2.10㊀SIRT1调控p66Shcp66Shc是哺乳动物原癌基因ShcA蛋白家族一员,由于具有发挥氧化还原酶作用的胶原增殖学结构,因而在线粒体ROS的产生和对氧化应激信号的凋亡反应中发挥重要作用㊂研究发现p66Shc可通过激活NADPH氧化酶㊁下调抗氧化酶表达以及促进线粒体产生ROS等机制来增加细胞ROS水平,从而导致细胞氧化应激损伤[30]㊂Chen等[31]发现当SIRT1被抑制或敲除时,在氧化应激条件下,p66Shc 的mRNA及蛋白表达升高,而SIRT1过表达时则抑制了p66Shc的上调㊂Zhou等[32]发现,SIRT1对P66Shc表达的调控主要是通过去乙酰化P66Shc启动子区域,从而抑制P66Shc的转录和表达㊂此外, Yan等[11]发现P66Shc的表达与SIRT1的表达呈负相关,且SIRT1介导的P66Shc表达抑制可以减轻肝脏缺血再灌注损伤㊂这些实验结果表明,P66Shc是SIRT1的靶点,其表达可以通过SIRT1的上调而降低㊂因此,SIRT1可通过去乙酰化调控P66Shc,从而抗氧化应激损伤㊂3㊀总结与展望综上所述,SIRT1可通过调控多种不同靶基因㊁靶蛋白,减轻各种氧化应激导致的细胞㊁组织损伤,从而参与机体的多种生理病理过程,在多种生物学过程中发挥重要作用㊂但氧化应激损伤是一个复杂的病理过程,其机制庞大而复杂,除了受到SIRT1影响之外,还受到其他因素的影响,各种抗氧化应激损伤机制间相互联系,相互调节,且目前已知的激活SIRT1表达的化合物较少㊂因此,未来应该更加深入了解SIRT1抗氧化应激损伤的具体分子机制,完全阐明SIRT1的作用,并开发能够调节其作用的药物,这对于治疗临床氧化应激所致相关疾病具有重要的意义㊂[参考文献][1]CARAFA V,ROTILI D,FORGIONE M,et al.Sirtuin functions and modulation:from chemistry to the clinic[J].Clin Epigenetics, 2016,8:61.[2]LI G,XIA Z,LIU Y,et al.SIRT1inhibits rheumatoid arthritis fi-broblast-like synoviocyte aggressiveness and inflammatory response via suppressing NF-κB pathway[J].Biosci Rep,2018,38 (3):BSR20180541.[3]YAO H,YAO Z,ZHANG S,et al.Upregulation of SIRT1inhibits H2O2induced osteoblast apoptosis via FoxO1/βcatenin pathway [J].Mol Med Rep,2018,17(5):6681-6690.[4]LIN Y,SHENG M,DING Y,et al.Berberine protects renal tubular cells against hypoxia/reoxygenation injury via the Sirt1/p53pathway [J].J Nat Med,2018,72(3):715-723.[5]TANG B L.Sirt1and the Mitochondria[J].Mol Cells,2016,39 (2):87-95.[6]TANG W,JIANG Y F,PONNUSAMY M,et al.Role of Nrf2in chronic liver disease[J].World J Gastroenterol,2014,20(36): 13079-13087.[7]SHIN J K,LEE S M.Genipin protects the liver from ischemia/ reperfusion injury by modulating mitochondrial quality control[J]. Toxicol Appl Pharmacol,2017,328:25-33.[8]WANG F,SHANG Y,ZHANG R,et al.A SIRT1agonist reduces cognitive decline in type2diabetic rats through antioxidative and anti inflammatory mechanisms[J].Mol Med Rep,2019,19(2): 1040-1048.[9]DING M,LEI J,HAN H,et al.SIRT1protects against myocardial ischemia-reperfusion injury via activating eNOS in diabetic rats[J]. Cardiovasc Diabetol,2015,14:143.[10]JEONG J,JUHN K,LEE H,et al.SIRT1promotes DNA repairactivity and deacetylation of Ku70[J].Exp Mol Med,2007,39(1):8-13.[11]YAN H,JIHONG Y,FENG Z,et al.Sirtuin1-mediated inhibitionof p66Shc expression alleviates liver ischemia/reperfusion injury [J].Crit Care Med,2014,42(5):e373-e381. [12]MULERO M C,HUANG D B,NGUYEN H T,et al.DNA-binding affinity and transcriptional activity of the RelA homodimer of nuclear factorκB are not correlated[J].J Biol Chem,2017, 292(46):18821-18830.[13]MENG X,TAN J,LI M,et al.Sirt1:role under the condition ofischemia/hypoxia[J].Cell Mol Neurobiol,2017,37(1):17-28.[14]XIONG S,SALAZAR G,PATRUSHEV N,et al.FoxO1mediatesan autofeedback loop regulating SIRT1expression[J].J Biol Chem,2011,286(7):5289-5299.[15]LIU X,FAN L,LU C,et al.Functional role of p53in the regula-tion of chemical-induced oxidative stress[J].Oxid Med Cell Lon-gev,2020,2020:6039769.[16]KIM H J,JOE Y,YU J K,et al.Carbon monoxide protectsagainst hepatic ischemia/reperfusion injury by modulating the miR-34a/SIRT1pathway[J].Biochim Biophys Acta,2015,1852(7): 1550-1559.[17]RIUS-PÉREZ S,TORRES-CUEVAS I,MILLÁN I,et al.PGC-1α,inflammation,and oxidative stress:an integrative view in me-tabolism[J].Oxid Med Cell Longev,2020,2020:1452696.[18]IACOVELLI J,ROWE G C,KHADKA A,et al.PGC-1αinduceshuman RPE oxidative metabolism and antioxidant capacity[J].In-vest Ophthalmol Vis Sci,2016,57(3):1038-1051. [19]LIANG D,ZHUO Y,GUO Z,et al.SIRT1/PGC-1pathway acti-vation triggers autophagy/mitophagy and attenuates oxidative damage in intestinal epithelial cells[J].Biochimie,2020,170: 10-20.[20]ZHANG Y K,WU K C,KLAASSEN C D.Genetic activation ofNrf2protects against fasting-induced oxidative stress in livers of mice[J].PLoS One,2013,8(3):e59122.[21]HUANG K,CHEN C,HAO J,et al.Polydatin promotes Nrf2-ARE anti-oxidative pathway through activating Sirt1to resist AGEs-induced upregulation of fibronetin and transforming growth factor-β1in rat glomerular messangial cells[J].Mol Cell Endocrinol, 2015,399:178-189.[22]CHOUDHRY H,HARRIS A L.Advances in hypoxia-induciblefactor biology[J].Cell Metab,2018,27(2):281-298. [23]STUART J A,AIBUEKU O,BAGSHAW O,et al.Hypoxia induc-ible factors as mediators of reactive oxygen/nitrogen species homeo-stasis in physiological normoxia[J].Med Hypotheses,2019, 129:109249.[24]VANCURA A,NAGAR S,KAUR P,et al.Reciprocal regulationof AMPK/SNF1and protein acetylation[J].Int J Mol Sci,2018, 19(11):3314.[25]CANTÓC,AUWERX J.PGC-1alpha,SIRT1and AMPK,an en-ergy sensing network that controls energy expenditure[J].Curr Opin Lipidol,2009,20(2):98-105.[26]LI D,WANG X,HUANG Q,et al.Cardioprotection of CAPE-oNO2against myocardial ischemia/reperfusion induced ROS gener-ation via regulating the SIRT1/eNOS/NF-κB pathway in vivo and in vitro[J].Redox Biol,2018,15:62-73.[27]GUO Y,CHAO L,CHAO J.Kallistatin attenuates endothelial se-nescence by modulating Let-7g-mediated miR-34a-SIRT1-eNOS pathway[J].J Cell Mol Med,2018,22(9):4387-4398. [28]TAKATA M,SASAKI M S,SONODA E,et al.Homologous re-combination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells[J].EMBO J,1998,17(18):5497-5508.[29]LIU H,ZHANG S,LIU C,et al.Resveratrol ameliorates micro-cystin-LR-induced testis germ cell apoptosis in rats via SIRT1sig-naling pathway activation[J].Toxins(Basel),2018,10(6):235.[30]KONG X,GUAN J,LI J,et al.P66Shc-SIRT1regulation of oxi-dative stress protects against cardio-cerebral vascular disease[J].Mol Neurobiol,2017,54(7):5277-5285.[31]CHEN H Z,WAN Y Z,LIU D P.Cross-talk between SIRT1andp66Shc in vascular diseases[J].Trends Cardiovasc Med,2013, 23(7):237-241.[32]ZHOU S,CHEN H Z,WAN Y Z,et al.Repression of P66Shc ex-pression by SIRT1contributes to the prevention of hyperglycemia-induced endothelial dysfunction[J].Circ Res,2011,109(6): 639-648.(此文编辑㊀蒋湘莲)。
棕榈酸诱导小鼠骨髓来源巨噬细胞M1 型极化
doi:10.3969/j.issn.1000⁃484X.2020.20.001㊃基础免疫学㊃棕榈酸诱导小鼠骨髓来源巨噬细胞M1型极化①张焱皓 刘芊伊 冯继红② 李 茂 刘利萍 秦 欢 罗军敏(遵义医科大学免疫学教研室,贵州省免疫分子应用研究工程中心,遵义563003) 中图分类号 R392.9 文献标志码 A 文章编号 1000⁃484X (2020)20⁃2433⁃05①本文为国家自然科学基金地区项目(No.81860291)和浙江省中医药管理局课题项目(2020ZB292)㊂②丽水市人民医院肿瘤科,丽水323000㊂作者简介:张焱皓,男,在读硕士,主要从事感染免疫学方面的研究,E⁃mail:zyh_777163@㊂通讯作者及指导教师:罗军敏,女,硕士,教授,硕士生导师,主要从事感染免疫学方面的研究,E⁃mail:luojm 16128@㊂[摘 要] 目的:探讨棕榈酸(PA)对小鼠骨髓来源巨噬细胞(BMDM)极化的影响及机制㊂方法:提取BALB /c 小鼠骨髓细胞,于含有10%胎牛血清和20ng /ml GM⁃CSF 的DMEM 低糖培养基中诱导7d 后得到BMDM,给予不同浓度PA,CCK8检测巨噬细胞活性变化,确定最佳诱导浓度㊂倒置显微镜观察诱导后巨噬细胞形态㊂RT⁃PCR 检测TNF⁃α㊁IL⁃6㊁IL⁃12㊁诱导型一氧化氮合酶(iNOS)㊁转化生长因子⁃β(TGF⁃β)㊁IL⁃10㊁Fizz1及YM⁃1mRNA 表达,流式细胞术检测NOS2㊁CD206表达,Western blot 检测MAPK 信号通路相关蛋白表达㊂结果:PA 诱导巨噬细胞的最佳浓度为400μmol /ml,巨噬细胞呈现M1型极化样的长梭形,与未处理组相比,PA 诱导组炎症细胞因子TNF⁃α㊁IL⁃6㊁IL⁃12及iNOS mRNA 水平在诱导后12~72h 表达升高,而抑炎细胞因子TGF⁃β㊁IL⁃10㊁Fizz1及YM⁃1的转录水平受到抑制,48h 时,巨噬细胞高表达NOS2,而CD206表达一直处于较低水平㊂PA 诱导巨噬细胞MAPK 信号通路相关蛋白p⁃ERK㊁p⁃JNK 及p⁃p38高表达,p⁃65入核㊂结论:PA 可诱导小鼠BMDM M1型极化,可能通过MAPK 信号通路传导信号给NF⁃κB 影响巨噬细胞极化㊂[关键词] 巨噬细胞;棕榈酸;极化;MAPK 信号通路Palmitic acid induces mouse bone marrow⁃derived macrophages M1polarizationZHANG Yan⁃Hao ,LIU Qian⁃Yi ,FENG Ji⁃Hong ,LI Mao ,LIU Li⁃Ping ,QIN Huan ,LUO Jun⁃Min .Department of Im⁃munology ,Zunyi Medical University ,Immune Molecules Application Research Center of Guizhou Province ,Zunyi 563003,China[Abstract ] Objective :To investigate effect of palmitic acid(PA)on polarization of mouse bone marrow⁃derived macrophages (BMDM)and its mechanism.Methods :Mouse BMDM were harvested and cultured in DMEM low glucose medium containing 10%fetal bovine serum with 20ng /ml GM⁃CSF for 7d to obtain BMDM.BMDMs were treated with different concentrations of PA and CCK8was used to detect cell viability of macrophages and determined optimal concentration for induction.Morphology of macrophages was observed after induction by inverted microscope.Relative mRNA expression levels of TNF⁃α,IL⁃6,IL⁃12,inducible nitric oxide synthase (iNOS),transforming growth factor⁃β(TGF⁃β),IL⁃10,Fizz1,YM⁃1were determined by RT⁃PCR.Expression levels of NOS2and CD206were determined by flow cytometry.MAPK signaling pathway⁃related proteins were detected by Western blot.Results :Optimal concentration of PA⁃induced macrophages was 400μmol /ml.Macrophages showed a long fusiform shape like pared with untreated group,PA induced groups mRNA expression levels of flammatory cytokines TNF⁃α,IL⁃6,IL⁃12and iNOS were increased at 12-72h,while transcription levels of anti⁃inflammatory cytokines TGF⁃β,IL⁃10,Fizz1,YM⁃1were inhibited;macrophage incubated with PA expressed NOS2at 48h,while expression of CD206was always at a low level.PA induced high expressions of p⁃ERK,p⁃JNK,p⁃p38that related to JNK /P38MAPK signaling pathway,and p⁃65was transferred to nucleus.Conclusion :PA induces expressions of macrophage inflammatory cytokines and signals to NF⁃κB via MAPK signaling pathway,which induces M1polarization of BMDM.[Key words ] Macrophages;Palmitic acid;Polarization;MAPK signaling pathway 巨噬细胞是组织动态平衡和炎症反应中的关键细胞,发挥基本的组织特异性功能并保护机体免受感染㊂巨噬细胞因所处微环境中细胞因子㊁微生物及其产物和其他刺激物极化为特定表型,根据刺激物的不同,IFN⁃γ激活的巨噬细胞被定义为经典激活型巨噬细胞(M1),IL⁃4激活为替代激活型巨噬细胞(M2),且M2型巨噬细胞可细分为M2a㊁b㊁c [1⁃3]㊂M1型巨噬细胞具有促炎特性,高表达炎症细胞因子如TNF⁃α㊁IL⁃6㊁IL⁃12㊁诱导型一氧化氮合酶(inducible nitric oxide synthase2,iNOS或NOS2)等,具有杀灭病原体及抗肿瘤功能;而M2型巨噬细胞膜表面高表达CD206,分泌大量转化生长因子⁃β(transforming growth factor⁃β,TGF⁃β)㊁IL⁃10㊁炎症区域分子1(found in inflammatory zone1,Fizz1)㊁类几丁质酶3样分子3(chitinase3⁃like3,Chi3L3或YM⁃1)等细胞因子,可促进细胞增殖和组织修复[4]㊂受病原体及肿瘤微环境影响,巨噬细胞以M2型为主,分泌抑炎细胞因子,发挥免疫抑制作用,导致病原菌感染或肿瘤进展㊂因此,调控免疫抑制状态下巨噬细胞的极化表型尤其重要㊂棕榈酸(palmitic acid, PA)是脂肪生成过程中产生的脂肪酸㊂研究表明中草药中也含有PA,在昆仑雪菊花中PA占比达9.71%,在黄蜀葵子中占比约为5.88%,在猫爪草中占比为2.64%[5⁃7]㊂陈冬梅等[8]发现党参中提取的PA具有免疫活性,作用于TNF及IL⁃10发挥免疫调节作用㊂大量研究表明,PA是一种致炎能力极强的脂肪酸,常用于构建体外脂毒性损伤模型[9⁃11]㊂因此作为中草药中常见的单体成分,有必要了解PA 对机体免疫细胞的功能影响,明确其作用机制㊂本研究通过将PA配制为水溶液,将其直接加入细胞培养基中,检测巨噬细胞极化相关标志物的动态变化,观察BMDM受诱导后的极化表型,并探讨PA诱导巨噬细胞M1型极化的机制㊂1 材料与方法1.1 材料 6~10周龄雌性BALB/c小鼠购于重庆市第三军医大学医学实验动物中心,并饲养于本实验室清洁级动物房㊂PA购于Sigma公司,纯度≥99%㊂小鼠重组GM⁃CSF购于NOVUS㊂RNAiso TM Plus㊁PrimeScript TM RT Reagent Kit(RR037A)㊁SYBR Premix Ex Taq Real⁃time PCR购于TaKaRa㊂Cell Counting Kit⁃8购于东仁化学科技(上海)有限公司㊂分析纯氯仿㊁异丙醇㊁无水乙醇等购于重庆川东化工公司㊂DMEM低糖培养基购于Gibco,胎牛血清购于MRC㊂引物购于上海生物工程有限公司㊂APC 标记的抗小鼠CD11b抗体(cat.no.17⁃0112⁃82, eBioscience)㊁FITC标记的抗小鼠F4/80抗体(cat.no.11⁃4801⁃82,eBioscience)㊁APC标记的抗小鼠CD206抗体(cat.no.17⁃2061⁃82,eBioscience)和PE标记的抗小鼠Nos2抗体(cat.no.25⁃5920⁃82, eBioscience)购于赛默飞㊂Anti⁃JNK(No.9252s)㊁Anti⁃p⁃JNK(No.4668s)㊁Anti⁃NF⁃κB(No.8242s)㊁Anti⁃p⁃NF⁃κB(No.3033s)一抗购于CST㊂anti⁃p38 MAPK(No.ab197348)㊁anti⁃ERK(No.196883)㊁anti⁃AKT(No.ab8805)㊁anti⁃phospho ERK(No. ab50011)㊁anti⁃phospho AKT(No.ab81283)㊁anti⁃phospho p38⁃MAPK(No.ab47363)㊁anti⁃GAPDH(No. ab181602)㊁Anti⁃Lamin B1(No.ab16048)及anti⁃IKBα(No.ab32518)一抗购于Abcam㊂Anti⁃rabbit Ab conjugated to HRP(No.7074s)二抗购于CST㊂1.2 方法1.2.1 小鼠骨髓来源巨噬细胞(BMDM)的获取 无菌条件下取BALB/c小鼠胫骨和腓骨细胞置于含有10%胎牛血清㊁20ng/ml GM⁃CSF的DMEM低糖培养基中,37℃㊁5%CO2条件下培养7d,流式细胞术检测骨髓细胞F4/80和CD11b双阳性比率㊂1.2.2 PA脂性培养基配置 称取0.04g NaOH溶于10ml ddH2O配置成浓度为0.1mol/ml的NaOH 溶液用于后续实验,称取0.1g PA置于9ml NaOH溶液中,75℃水浴加热30min㊂称取1.2g BSA于55℃预热的3ml PBS中,8000r/min离心20min㊂向75℃的PA㊁NaOH混合液中加入BSA溶液,摇匀后55℃助溶30min㊂细菌过滤器过滤后紫外照射30min灭菌㊂1.2.3 CCK8检测巨噬细胞活性 将PA以100㊁300㊁400和500μmol/ml刺激小鼠BMDM24h后,收集培育7d的BMDM于离心管,计数,以1∶2比例依次采用DMEM等比稀释为至少3个细胞浓度梯度,接种于96孔板,每组设3~6个复孔㊂孵育箱培养24h使细胞贴壁,10μl/孔加入CCK8试剂,孵育4h 后于450nm处测定OD值,并绘制标准曲线㊂1.2.4 RT⁃PCR检测细胞因子表达 收集样品, TRIzol提取RNA,按照TaKaRa说明书构建10μl逆转录体系,反应条件为37℃15min,85℃5s,逆转录为cDNA㊂构建20μl反应体系,95℃10min,95℃15s;60℃30s,39个循环㊂引物序列见表1㊂1.2.5 流式细胞术检测巨噬细胞NOS2和CD206表达 收集细胞于EP管,加入流式抗体4℃避光孵育30min㊂洗去未结合的抗体后流式细胞术检测㊂1.2.6 Western blot检测MAPK通路相关蛋白表达 提取细胞核蛋白㊂全蛋白提取按照如下操作:加入含有蛋白酶抑制剂㊁磷酸酶抑制剂和PMSF的Lysis Buffer于细胞培养板中,细胞刮刀刮取细胞并制备蛋白;测定各组总蛋白浓度后,加入上样缓冲液制备样品,电泳㊁转膜㊁脱脂奶粉封闭㊁洗膜,加入一抗孵育过夜,加入二抗,ECL化学发光试剂曝光㊂1.3 统计学处理 采用Garphpad进行数据正态性检验,正态性分布样本行t检验,非态分布样本采用秩和检验,数据以x±s表示,以P<0.05为差异有统计学意义㊂2 结果2.1 PA对小鼠BMDM的影响 与未处理组相比,当PA浓度为400μmol/ml时,对小鼠BMDM活性无影响,且为诱导巨噬细胞的最大浓度㊂以此浓度作为诱导巨噬细胞极化的浓度进行后续实验,见图1㊂2.2 PA对小鼠BMDM形态的影响 M0细胞呈椭圆形,400μmol/L PA诱导24h后,细胞呈长梭形且伪足细长,与M1巨噬细胞形态一致㊂表明PA可能诱导巨噬细胞M1型极化,见图2㊂2.3 PA对小鼠BMDM细胞因子表达的影响 与未处理组相比,PA诱导巨噬细胞后,M1型相关细胞因子mRNA水平在0~72h上调,其中IL⁃6mRNA水平在诱导36h后达到峰值,IL⁃12mRNA水平在12h后达到峰值,iNOS mRNA水平在48h后达到峰值,而TNF⁃αmRNA水平在24h后达到峰值㊂PA诱导后M2型相关细胞因子表达下调,且YM⁃1㊁IL⁃10在被诱导后12h出现低转录状态,TGF⁃β出现于24h,而Fizz1出现于36h㊂表明在PA诱导后,小鼠BMDM 上调M1型相关细胞因子转录,同时下调M2型相关细胞因子转录,提示PA可能具有诱导巨噬细胞M1型极化的作用,见图3㊂2.4 PA对小鼠BMDM NOS2及CD206表达的影响 PA诱导后,F4/80+NOS2+细胞占比明显上升,且于36h达到峰值㊂PA诱导组F4/80+CD206+细胞比表1 引物序列Tab.1 Primer sequencesGenes Primer sequences(5′⁃3′) GAPDH F:GAGCCAAACGGGTCATCATCTR:GAGGGGCCATCCACAGTCTT TNF⁃αF:CAGGGGCCACCACG CTCTTCR:TTTGTGAGTGTGAGGGTCTGGIL⁃10F:TACAGCCGGGAAGACAATAAR:AGGAGTCGGTTAGCAGTATG TGF⁃βF:GGCGGTGCTCGCTTTGTAR:TCCCGAATGTCTGACGTATTGA iNOS F:CTGCAGCACTTGGATCAGGAACCTGR:GGAGT AGCCTGTGTGTGCACCTGGAA Arg⁃1F:CAGAAGAATGGAAGAGTCAGR:CAGATATGCAGGGAGTCACCYM⁃1F:GCAGAAGCTCTCCAATCCTGR:ATTGGCCTGTCCTTAGCCCAACTG Fizz1F:GCTGATGGTCCCAGTGAATACR:CCAGTAGCAGTCATCCCAGC 例虽然在24h时显著上升,但诱导48h后,CD206表达恢复至未处理组水平,表明在PA诱导后,巨噬细胞向M1型极化,见图4㊂图1 PA对小鼠BMDM活性的影响Fig.1 Effect of PA on mice BMDM viability Note:Compared with control group,*.P<0.05.图2 PA对小鼠BMDM形态的影响Fig.2 Effect of PA on BMDM morphology ofmice图3 PA对小鼠BMDM促炎细胞因子和抑炎细胞因子转录水平的影响Fig.3 Effect of PA on transcriptional levels of pro⁃inflammatory cytokines and anti⁃inflammatorycytokines in BMDM of miceNote:Compared with control group,*.P<0.05,**.P<0.01,***.P<0.001.图4 PA对小鼠BMDM NOS2和CD206表达的影响Fig.4 Effect of PA on expression of NOS2and CD206in BMDM of miceNote:Compared with untreated group,*.P<0.05,**.P<0.01,***.P<0.001.2.5 Western blot检测MAPK信号通路相关蛋白的表达 诱导后15min胞质中呈现p⁃ERK㊁p⁃JNK及p⁃p38表达,胞核中呈现p⁃NF⁃κB表达,30min时达到峰值,而IKBα相比于其15min时表达降低, 60min时p⁃ERK㊁p⁃JNK㊁p⁃p38及p⁃NF⁃κB有少量表达,而无IKBα表达㊂说明PA通过MAPK信号通路诱导巨噬细胞M1型极化,见图5㊂3 讨论巨噬细胞具有极强的可塑性,可极化为不同表型㊂M1型巨噬细胞可产生促炎细胞因子,促进炎症发展,杀伤病原体及肿瘤细胞㊂而M2型巨噬细胞释放抑炎细胞因子,抑制炎症反应,参与组织修复,介导肿瘤免疫逃逸㊂因此调控巨噬细胞极化在疾病防治中具有重要意义㊂近年大量研究报道了中草药对巨噬细胞极化的影响,中草药活性成分通过诱导巨噬细胞极化治疗疾病㊂PA是大部分中草药的主要成分㊂虽然已有研究报道PA可作为巨噬细胞TLR4的配体诱导机体产生炎症细胞因子,但其诱导巨噬细胞极化后表型的鉴定及相关机制研究尚未明确[12]㊂本研究从形态学出发观察到PA诱导后巨噬细胞形状呈梭型,形似M1型巨噬细胞㊂为验证其表型变化,检测巨噬细胞极化相关标志物的表达情况,发现相较于未处理组,PA诱导后M1型相关细胞因子TNF⁃α㊁IL⁃6㊁IL⁃12和iNOS在0~72h的转录水平升高数十倍,而M2型相关细胞因子TGF⁃β㊁IL⁃图5 PA对小鼠BMDM JNK/P38MAPK信号通路的影响Fig.5 Effect of PA on JNK/P38MAPK signaling pathway in mouse BMDMNote:Compared with0min group,*.P<0.05,**.P<0.01,***.P<0.001.10㊁Fizz1和YM⁃1的转录表达受到抑制,说明巨噬细胞转变为促炎表型㊂研究表明NOS2可作为巨噬细胞M1型极化的标志物[13]㊂本研究检测F4/80+ NOS2+巨噬细胞双阳性细胞比例结果显示,相较于未处理组,PA诱导6h后,NOS2表达上调,72h时F4/80+NOS2+双阳性细胞比例为16.3%,处于较高水平㊂为进一步验证巨噬细胞的极化表型,本研究检测了M2型极化标志物CD206表达[14]㊂结果显示,虽然F4/80+CD206+双阳性细胞比例在PA诱导24㊁36h时明显上升,但随着诱导时间推移,F4/80+ CD206+双阳性比例下降至未处理组水平,因此推测CD206表达上调的原因可能是在PA的刺激下所激活的通路引发CD206表达,但随着PA诱导时间推移,引发促炎细胞因子的正反馈刺激,巨噬细胞逐渐向M1型转化,CD206表达也随之下降,说明PA具有诱导巨噬细胞M1型极化的能力㊂巨噬细胞的极化过程涉及多种经典的信号通路,而MAPK信号通路尤其重要[15]㊂MAPK信号通路可将信号传导给核因子κB(nuclear factor⁃κB,NF⁃κB),导致巨噬细胞M1型极化[16]㊂本研究检测了PA对该信号通路的影响,加入PA后15min,检测到p⁃ERK㊁p⁃JNK,p⁃p⁃38表达,并通过提取核蛋白发现p⁃65入核㊂在诱导后30min,p⁃ERK㊁p⁃JNK及p⁃p⁃38表达明显上调,p⁃65在核蛋白中高表达㊂诱导后60min仍然可观察到MAPK信号通路的信号传递㊂大量研究表明只有当NF⁃κB和IKBα解聚后,其核定位序列暴露,才能被转运至细胞核内促进NF⁃κB依赖的基因转录,因此检测IKBα表达作为验证,结果显示IKBα的表达与NF⁃κB相反,进一步证明PA通过MAPK信号通路导致p⁃65入核,激活NF⁃κB,诱导巨噬细胞M1型极化㊂PA是中草药中的主要组成部分,但其对机体细胞功能的影响常常被忽略㊂目前研究发现,PA可通过激活库普弗细胞炎症小体导致非酒精性脂肪性肝炎进展[17]㊂此外,PA可作用于迁移抑制因子导致胰岛细胞功能紊乱和凋亡[18,19]㊂但Boubaker等[20]发现PA可阻碍可移植肿瘤发展,并提高荷瘤小鼠的脾细胞增殖率及宿主巨噬细胞溶酶体活性,发挥抗肿瘤作用㊂总之,在不同疾病中PA可能对疾病的转归发挥不同的作用㊂近年来中草药的活性成分在疾病治疗中发挥重要作用,而巨噬细胞的极化是疾病治疗的切入点,因此了解PA对巨噬细胞极化的影响将有助于中草药的开发和利用㊂参考文献:[1] Nathan CF,Murray HW,Wiebe ME,et al.Identification of interfer⁃ongamma as the lymphokine that activates human macrophage oxi⁃dativemetabolism and antimicrobial activity[J].J Exp Med,1983, 158:670⁃689.[2] Stein M,Keshav S,Harris N,et al.Interleukin4potentlyenhancesmurine macrophage mannose receptor activity:A marker of alternative immunologic macrophage activation[J].J Exp Med, 1992,176:287⁃292.[3] Mantovani A,Sica A,Sozzani S,et al.The chemokine system indiverse forms of macrophageactivation and polarization[J].Trends Immunol,2004,25:677⁃686.[4] Climaco⁃Arvizu S,Domínguez⁃Acosta O,Cabañas⁃Cortés MA,etal.Aryl hydrocarbon receptor influences nitric oxide and arginine production and alters M1/M2macrophage polarization[J].Life Sci,2016,155:76⁃84.[5] 卢四平,何家卓.昆仑雪菊花脂溶性成分研究[J].新疆中医药,2019,37(4):49⁃51.Lu SP,He JZ.Study on the fat⁃soluble constituents of Kunlun Snow Flower[J].Xinjiang Tradit Chin Med,2019,37(4):49⁃51. [6] 武晶芳,梁 茜,江 帆,等.黄蜀葵子脂肪酸鉴定及3种成分测定[J].中成药,2020,42(4):955⁃959.Wu JF,Liang Q,Jiang F,et al.Identification of fatty acids and de⁃termination of three components in hollyhock seeds[J/OL].Chin Tradit Patent Med,2020,42(4):955⁃959.[7] 刘芊伊.猫爪草醇类提取物对小鼠骨髓来源巨噬细胞极化的影响[D].遵义:遵义医学院,2018.Liu QY.Effect of cat′s claw alcohol extracts on polarization of mouse bone marrow⁃derived macrophages[D].Zunyi:Zunyi Med Coll,2018.[8] 陈冬梅,蒙 洁,刘佳佳,等.基于网络药理学的党参增强免疫功能机制研究[J/OL].中华中医药学刊.http:///kcms/detail/21.1546.R.20190912.1544.029.html.Chen DM,Meng J,Liu JJ,et al.Study on the mechanism of Codonopsis enhanced immune function based on network pharmacology[J/OL].Chin J Tradit Chin Med.ki.net/kcms/detail/21.1546.R.20190912.1544.029.html. [9] 胡兰兰,陈佳君,陈君第霞,等.黄芪多糖对棕榈酸损伤的人脐静脉内皮细胞内一氧化氮水平的影响[J].温州医科大学学报,2018.doi:10.3969/j.issn.2095⁃9400.Hu LL,Chen JJ,Chen JDX,et al.Effect of astragalus polysaccharide on nitric oxide level in human umbilical vein endothelial cells injured by palmitic acid[J].J Wenzhou Med Univ,2018.doi:10.3969/j.issn.2095⁃9400.2018.12.004. [10] 柴利杰,辛 莹,李静怡,等.艾塞那肽对棕榈酸诱导成骨细胞凋亡的影响[J].中华骨质疏松和骨矿盐疾病杂志,2018,11(6):56⁃62.Chai LJ,Xin Y,Li JY,et al.Effect of exenatide on palmitic acid⁃induced apoptosis of osteoblasts[J].Chin J Osteop Bone MineralSalt Dis,2018,11(6):56⁃62.[11] 孙 洁,马 旗,王 璐,等.翻白草水提液对大鼠胰岛细胞脂毒性损伤的保护作用[J].中成药,2019,41(6):1242⁃1247.Sun J,Ma Q,Wang L,et al.Protective effect of water extract ofPakchoi grass on lipotoxicity of rat islet cells[J].Chin TraditPatent Med,2019,41(6):1242⁃1247.[12] Song MJ,Kim KH,Yoon JM,et al.Activation of toll⁃like receptor4is associated with insulin resistance in adipocytes[J].BiochemBiophys Res Commun,2006,346(3):739⁃745. [13] Brüne B,Courtial N,Dehne N,et al.Macrophage NOS2in tumorleukocytes[J].Antioxid Redox Sig,2016,26(18):1023⁃1043.[14] Chistiakov DA,Bobryshev YV,Orekhov AN.Changes intranscriptome of macrophages in atherosclerosis[J].J Cell MolMed,2015,19(6):1163⁃1173.[15] Chan ED,Riches DW.IFN⁃gamma+LPS induction of iNOS ismodulated by ERK,JNK/SAPK,and p38(MAPK)in a mousemacrophage cell line[J].Am J Physiol Cell Physiol,2001,280(3):C441.[16] Yu X,Xu M,Li N,et al.β⁃elemene inhibits tumor⁃promotingeffect of M2macrophages in lung cancer[J].Biochem BiophysRes Commun,2017,490(2):514⁃520.[17] Miura K,Yang L,Rooijen NV,et al.Toll⁃like receptor2andpalmitic acid cooperatively contribute to the development ofnonalcoholic steatohepatitis through inflammasome activation inmice[J].Hepatology,2013,57(2):577⁃589.[18] Stojanovic I,Saksida T,Timotijevic G,et al.Macrophage migrationinhibitory factor(MIF)enhances palmitic acid⁃and glucose⁃induced murine beta cell dysfunction and destruction in vitro[J].Growth Factors,2012,30(6):9.[19] Saksida T,Stosic⁃Grujicic S,Timotijevic G,et al.Macrophagemigration inhibitory factor deficiency protects pancreatic isletsfrom palmitic acid⁃induced apoptosis[J].Immunol Cell Biol,2012,90(7):688⁃698.[20] Boubaker J,Toumia IB,Sassi A,et al.Antitumoral potency by im⁃munomodulation of chloroform extract from leaves ofnitrariaretusa,tunisian medicinal plant,via its major compoundsβ⁃sitosterol and palmitic acid in BALB/c mice bearing inducedtumor[J].Nutr Cancer,2018,70(4):650⁃662.[收稿2019⁃10⁃14 修回2020⁃01⁃02](编辑 周文瑜)。
纳米氧化锌对大鼠血脂和血清炎症因子水平的影响
纳米氧化锌对大鼠血脂和血清炎症因子水平的影响梁宁;李冰;燕贞;王威;吴逸明;吴卫东【摘要】Aim: To detect the levels of serum lipid metabolic and inflammation mediator in rats intratracheally instilled with zinc oxide nanoparticles. Methods: A total of 40 male Wistar rats were randomly divided into four groups: the control group,and zinc oxide nanoparticles low,medium,high dose groups. The rats of zinc oxide nanoparticles low, medium, high dose groups were instilled with 1. 25,2. 50,5. 00 mg/kg zinc oxide nanoparticles, respectively. And the control group were given PBS. Rats were intratracheally instilled with zinc oxide nanoparticles once a week. After 12 weeks, body weight and the levels of serum TC, LDL, HDL, TNF-ct and HO-1 were determined. Results:With exposure continued, rats in the experimental groups presented rough fur, inactive, poorer mental state, and slow growth. The levels of serum HDL, LDL, TNF-α, HO-1 and TC among the 4 groups were different(F = 32. 410,34. 600,23. 957,38. 519,32. 652,P < 0. 001 ). Levels of serum TC, TNF-α, LDL a nd HO-1 in zinc oxide nanoparticles medium, high dose groups were higher than those in the control group ( P <0. 05 ). Levels of serum HDL in zinc oxide nanoparticles low, medium, high dose groups were lower than those in the control group( P < 0. 05 ). Conclusion: Intratracheal instillation of zinc oxide nanoparticles could induce lipid metabolic disorders and inflammation mediator release, and these changes in serum have certain effects on atherosclerosis.%目的:探讨纳米氧化锌对动脉粥样硬化发生发展的影响机制.方法:40只雄性Wistar大鼠随机分为对照组和纳米氧化锌低、中、高剂量组,每组10只.纳米氧化锌低、中、高剂量组大鼠分别用1.25、2.50、5.00 mg/kg的纳米氧化锌悬浮液气管灌注染毒,对照组大鼠同法灌注PBS溶液(1 mL/kg),每周1次,共12周;染毒结束后测定各组大鼠体质量、血清总胆固醇(TC)、低密度脂蛋白(LDL)、高密度脂蛋白(HDL)、肿瘤坏死因子α(TNF-α)和血红素加氧酶-1(HO-1)水平.结果:随染毒时间延长,染毒大鼠逐渐出现毛发蓬松,活动减少,精神状态差,生长缓慢等体征.各组大鼠血清HDL、LDL、TNF-α、HO-1、TC水平比较差异有统计学意义(F=32.410、34.600、23.957、38.519、32.652,P<0.001).纳米氧化锌中、高剂量组大鼠血清TC、LDL、HO-1、TNF-α水平均高于对照组(P<0.05);纳米氧化锌低、中、高剂量组大鼠血清HDL水平均低于对照组(P<0.05).结论:纳米氧化锌可引起大鼠血清脂代谢紊乱和炎症因子释放,可能导致动脉粥样硬化的发生发展.【期刊名称】《郑州大学学报(医学版)》【年(卷),期】2012(047)005【总页数】3页(P626-628)【关键词】纳米氧化锌;动脉粥样硬化;脂蛋白;炎症因子;大鼠【作者】梁宁;李冰;燕贞;王威;吴逸明;吴卫东【作者单位】郑州大学公共卫生学院劳动卫生学教研室,郑州,450001;郑州大学公共卫生学院劳动卫生学教研室,郑州,450001;郑州大学公共卫生学院劳动卫生学教研室,郑州,450001;郑州大学公共卫生学院劳动卫生学教研室,郑州,450001;郑州大学公共卫生学院劳动卫生学教研室,郑州,450001;郑州大学公共卫生学院劳动卫生学教研室,郑州,450001【正文语种】中文【中图分类】R136.3纳米氧化锌是一种纳米材料,直径介于1~100 nm之间,广泛应用于涂料、油漆、橡胶轮胎工业、化妆品的生产中[1]。
nf-κbp65抗体
NF-κB p65抗体H, human; M, mouse; R, rat.本NF-κB p65抗体(NF-κB p65 antibody)为进口分装,用人工合成的人NF-κB p65氨基端(N-terminal)的一段多肽进行适当修饰后免疫rabbit,然后用protein A和抗原多肽亲和柱经过两步纯化而得到的高纯度抗体。
NF-κB是一种常见的转录因子,可以被炎症因子、生长因子或趋化因子等激活。
常见的炎症因子(包括Interleukin-1 和TNF-α等)都可以激活NF-κB。
NF-κB由两类亚基形成同源或异源二聚体。
一类亚基包括p65(也称RelA)、RelB和C-Rel;另一类亚基包括p50和p52。
最常见的NF-κB亚基组成形式为p65/p50或p65/p65。
NF-κB未被激活时和IκB-α形成一个复合物,分布在细胞浆中。
在炎症因子、生长因子或趋化因子等可以激活NF-κB的刺激存在的情况下,IκB-α会在Ser32和Ser36被磷酸化,随后被泛素-蛋白酶体途径降解。
NF-κB和IκB-α解聚后,其核定位序列被暴露,从而被转运到细胞核内促进NF-κB依赖的基因转录。
通过免疫染色检测NF-κB的主要亚基p65是否被转移到细胞核内,就可以判断NF-κB是否被激活。
或者提取细胞核蛋白通过Western检测细胞核内p65是否增加,也可以判断NF-κB 是否被激活。
本NF-κB p65抗体仅识别p65,不识别RelB、C-Rel、p50和p52。
配套提供了Western一抗稀释液,可以用于Western检测时的一抗稀释。
):保存条件:NF-κB p65抗体-20℃保存,Western一抗稀释液-20℃或4℃保存,一年有效。
注意事项:对于本抗体,Western检测时一抗要4℃缓慢摇动过夜,如果仅短时间与一抗孵育检测效果较差。
在Western实验后,请注意回收稀释的抗体。
回收的抗体在进行Western实验时至少可以重复使用10次。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Signaling Effects of Nitric Oxide,Salicylic Acid,and Reactive Oxygen Species on Isoeuphpekinensin Accumulation in Euphorbia pekinensis Suspension Cells Induced by an Endophytic Fungal ElicitorFu-Kang Gao •Cheng-Gang Ren •Chuan-Chao DaiReceived:14July 2011/Accepted:12December 2011ÓSpringer Science+Business Media,LLC 2012Abstract Nitric oxide (NO),salicylic acid (SA),and reactive oxygen species (ROS)are important signal mole-cules that mediate plant resistance reactions and play important roles in secondary metabolism.To research the signal transduction pathway of the endophytic fungal elicitor from Fusarium sp.E5promoting secondary metabolism in Euphorbia pekinensis suspension cells,the changes in NO,SA,ROS,and isoeuphpekinensin contents in the cells were investigated after elicitor addition to the cell suspension culture.The elicitor did not change H 2O 2or O 2-contents notably,whereas NO and SA contents were enhanced.Both the NO donator sodium nitroprusside (SNP)and SA enhanced isoeuphpekinensin content in the absence of the fungal elicitor,whereas the NO scavenger cPTIO and SA biosynthesis inhibitor cinnamic acid (CA)inhibited isoeuphpekinensin accumulation in the presence of the elicitor.In addition,cPTIO inhibited SA production induced by the fungal elicitor.CA did not inhibit NO production,but it significantly inhibited isoeuphpekinensin accumulation.The results demonstrated that in Euphorbia pekinensis suspension cells the endophytic fungal elicitor induced increased NO content and SA production,which promoted isoeuphpekinensin accumulation.ROS are clearly not involved in the endophytic fungus–host interaction sig-naling pathway.Keywords Euphorbia pekinensis ÁEndophytic fungi ÁIsoeuphpekinensin ÁNitric oxide ÁSalicylic acid ÁReactive oxygen speciesIntroductionSynthesis pathways of important medicinal secondary metabolites in plants have been studied extensively in recent years because they often have some efficacy in treating human diseases,such as paclitaxel for cancer (Wang and others 2001)and shikonin for the human immunodeficiency virus (Li and others 2009;Wu and others 2009).Traditional cultivation methods struggle to meet the demand for medicinal herbs because of increasingly serious environ-mental pollution.Consequently,many studies have focused on methods to improve the yield of plant secondary metab-olites in cell suspensions,because the environmental con-ditions can be precisely and easily controlled,and they show high yield potential and trait stability.Existing methods are changing medium conditions,precursor feeding,and two-phase cultivation,but addition of a pathogenic fungal elicitor is the most rapidly effective and induces the steepest increase in production.A downside of this method is that the elicitor leads to premature aging of the plant cells and a consequent decline in biomass (Petrini 1991;Yuan and others 2002),and consequently overall secondary metabolite production clearly is not increased.Endophytic fungi are an intriguing group of organisms that live within tissues and organs of higher plants for part of their life cycle without causing obvious symptoms of infection (Dai and others 2008).These fungi can stimulate a variety of secondary metabolic processes,promote plant growth (Lewis 2004),and indirectly increase plant resis-tance to protect plants against environmental stressF.-K.Gao and C.-G.Ren contributed equally to this study.F.-K.Gao ÁC.-G.Ren ÁC.-C.Dai (&)Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources,Jiangsu KeyLaboratory for Microbes and Functional Genomics,College of Life Science,Nanjing Normal University,No.1Wenyuan Street,Nanjing 210046,People’s Republic of China e-mail:daichuanchao@J Plant Growth RegulDOI 10.1007/s00344-012-9258-8(Tanaka and others2005;Vega and others2008;Hao and others2010).Our previous study showed the endophytic fungus Fusarium sp.E5,isolated from endothelial stem cells of Euphorbia pekinensis,which is a Chinese medic-inal herb used to treat dropsy,hepatocirrhosis,and ascite infections,improved the survival rate of E.pekinensis tis-sue cultures and increased diterpene and triterpene contents in1-year-old roots of E.pekinensis transplanted to a greenhouse(Yong and others2009).In addition,an elicitor isolated from E5mycelium and added to E.pekinensis suspension cell cultures significantly increased diterpene and triterpene contents,and the cells did not age prema-turely but remained stable for a longer period of time (unpublished data).Similar reports are rare;therefore,the internal mechanisms by which endophytic fungi promote the synthesis of secondary metabolites in E.pekinensis are worthy of further study.Nitric oxide(NO)is a small water-soluble and fat-sol-uble molecule whose role in human and animal nervous, cardiovascular,and immune systems has been studied extensively.In recent years there has been much progress in research into NO in plants,with reports that NO is a signaling molecule regulating plant growth,development, and defense responses(Delledonne and others1998;Neill and others2002;Zhang and others2008).Many reports indicate that NO plays a key regulatory role in promotion by fungal elicitors of the accumulation of plant secondary metabolites.Fang and others(2009)proved that NO is a signaling molecule of the endophytic fungal Cunning-hamella sp.AL4elicitor which induces volatile oil syn-thesis in Atractylodes lancea suspension cells.Salicylic acid(SA)is an inducer of plant systemic acquired resistance(SAR)in plant–pathogen interactions and rapidly accumulates at the site of pathogen invasion and spreads to other parts of the plant,causing a general defen-sive reaction.Fungal elicitors can also stimulate SA accu-mulation in plant cells,but many studies indicate that the accumulation of many secondary metabolites is not depen-dent on SA,which might suggest the accumulation of plant secondary metabolites is a local but systemic reaction(Zhao and others2005).However,in some plants,SA can indeed induce synthesis of secondary metabolites related to gene expression.SA can stimulate tropane alkaloid synthesis in Scopolia parviflora and induce expression of related genes (Kanga and others2004).Penicillium citrinum Thom elici-tor stimulates puerarin synthesis in lobed kudzuvine sus-pension cells,and the elicitor-induced biosynthesis of puerarin increases are dependent on the intermediate sig-naling molecule SA(Xu and Dong2005).In addition,an ‘‘oxidative burst’’always occurred in plant cells under pathogen and elicitor treatment(Baker and Orlandi1995), and reactive oxygen species(ROS)act as signaling mole-cules in fungal elicitor-induced synthesis of secondary metabolites(Srivastava and others2009).To study the function and relationship of NO,SA,and H2O2signaling molecules,we added an elicitor prepared from the fungal endophyte Fusarium sp.E5to E.pekinensis cell suspen-sion cultures to investigate the signaling pathway of isoeuphpekinensin synthesis in E.pekinensis.Materials and MethodsCell Suspension Culture and TreatmentsEuphorbia pekinensis plants were collected from Langya Mountain,Anhui,China.The suspension cell line was obtained from the procedures described in our previous report(Dai and others2005a).The culture medium was MS medium(Murashige and Skoog1962)supplemented with 0.4mg l-1naphthalene acetic acid(NAA), 2.0mg l-1 6-benzyladenine(6-BA),and30g l-1sucrose.The med-ium’s pH was adjusted to5.8before autoclaving.Cultures were shaken at120rpm in darkness at25°C in100-ml Erlenmeyerflasks and subcultured every2weeks.All exogenous signaling molecules and inhibitors were filtered using a0.22-l m-diameter microporous membrane. Unless stated otherwise,inhibitors were applied30min before application of signaling molecules.Endophytic Fungal Elicitor Preparation and TreatmentThe endophytic fungus Fusarium sp.E5was isolated from E.pekinensis(Dai and others2005b),cultured on potato dextrose agar,and incubated at28°C.From7-day-old cul-tures,1cm2of mycelia was transferred to a250-ml Erlen-meyerflask containing80ml potato dextrose medium,and the mycelia were maintained in the medium at150rpm at 28°C until harvest.When harvesting,the mycelia werefil-tered and ground with a mortar and a pestle.The homogenate was diluted in water(10g l-1)and autoclaved for20min at 121°C.The autoclaved fungal suspension was used as the elicitor(Yu and others2001).The amount of fungal extract was determined by the phenol-sulfuric acid method using glucose as a standard(Dubois and others1956).Elicitor treatments of the14-day-old E.pekinensis cul-tures were at the rate of7.85mg l-1carbohydrate equiv-alents.In the meantime,a control was inoculated with an equal volume of sterile double-distilled water.Measurement of H2O2Active oxygen species in the medium of suspension-cul-tured E.pekinensis cells were measured by chemilumi-nescence in a ferricyanide-catalyzed oxidation of luminol. A100-l l aliquot of the medium(cells had been removedJ Plant Growth Regulbyfiltration through a nylon net or a column),50l l luminol(5-amino-2,3-dihydro-l,4-phthalazinedione) (1.1mM in KPi buffer,50mM,pH7.9),and800l l KPi buffer(50mM,pH7.9)were mixed in a cuvette.The reaction was initiated with100l l K3[Fe(CN)6](14mM in H2O,freshly prepared).The assay method was according to Schwacke and Hager(1992).To compare independent experiments we used an internal standard of H2O2.Fifty l l of H2O2(1l M,freshly prepared)was added to the assay mixture containing750l l KPi buffer.One U of H2O2 concentration was defined as the chemiluminescence caused by the internal standard of1l M H2O2.Superoxide Anion AssayThe amount of superoxide anion in leaves was detected using the nitro blue tetrazolium(NBT)colorimetric method.The basic principle was to use NBT transformed in the presence of O2-into NBT formazan,which shows a maximum absorption peak at530nm.Euphorbia pekin-ensis cells were washed with10mM PBS(pH7.8)three times,then resuspended in10mM PBS containing1% (w/v)sucrose and0.5mM CaCl2(0.1g FW cells ml-1)for 3h,after which20l M NBT and elicitor were added. Five ml of suspension-cultured cellfiltrate after different treatment times were used to measure absorbance at 530nm.The untreatedfiltrate was used as the control. Measurement of NOThe amount of NO in the suspension cells of the different treatments was measured spectrophotometrically.Suspen-sion-cultured cells werefiltered with a microporous membrane at4°C.A mixture of1mlfiltrate and1ml Greiss reagent was incubated at room temperature for 30min.Absorbance was determined at550nm.The NO content was calculated by comparison to a standard curve for NaNO2.Measurements were recorded forfive indi-vidual plants as biological replicates.Measurement of SAExtraction and analysis of SA followed the method of Verberne and others(2002)with some modifications. One g of cells was ground in liquid nitrogen and extracted with2ml methanol using sonication.After centrifugation at14,0009g for5min,the supernatant was collected for rotary evaporation,and the residue was resuspended with 250l l of5%trichloroacetic acid.The mixture was re-extracted with800l l acetic acid ester:cyclohexane(1:1 v/v)and mixed well;then the organic phase was rotary evaporated until dry,dissolved with600l l organic phase, andfiltered with a0.2-l m microporous membrane.SA was quantified by high-performance liquid chroma-tography(HPLC)using a reverse-phase column(Hedera Packing Material Lichrospher5-C18, 4.69200mm2, 5l m).The mobile phase was methanol:H2O(80:20v/v)at 1ml min-1and detected at217nm at25°C.Phenylalanine Ammonia-Lyase ActivityPhenylalanine ammonia-lyase(PAL)activity was analyzed following the method of Modafar and others(2001)with some modifications.Cells(500mg)were homogenized for 2min in5ml of0.1M borate buffer(pH8.8)containing 600mg polyvinylpyrrolidone,5mM b-mercaptoethanol, and2mM EDTA.The homogenate was centrifuged for 15min at14,0009g and the supernatant was collected for enzyme activity determination.The PAL activity was mea-sured by incubating0.5ml supernatant with2ml of0.1M borate buffer(pH8.0)containing3mM L-phenylalanine for 1h at30°C.The increase in absorbance at290nm because of the formation of trans-cinnamate was measured spectro-photometrically.The PAL activity was expressed as the change in OD290per hour per gram of fresh weight.One U is equivalent to a0.01increase in absorbance in OD290.The cells in the suspension cultures werefiltered under vacuum.The dry weight(DW)was obtained by drying the fresh cell mass at50°C in an oven until constant weight, and both the DW and the fresh weight(FW)were recorded with a physical balance.All the experiments were repeated three times.Extraction and Analysis of IsoeuphpekinensinDried cells(500mg)were ground to a powder,then soni-cated for30min in30ml methanol.The extract solution was filtered and evaporated,and the residue was dissolved in 1ml methanol.The solution samples were transferred to an Eppendorf tube and centrifuged at12,0009g for5min.The supernatant wasfiltered through a0.45-l m membrane and transferred to clean glass vials for high-performance liquid chromatography(HPLC)analysis.The isoeuphpekinensin content was determined by HPLC using a reverse-phase column(Hedera Packing Material Lichrospher5-C18, 4.69200mm2,5l m).The mobile phase was metha-nol:H2O(80:20v/v)at1ml min-1for isoeuphpekinensin. Isoeuphpekinensin was detected at268nm at30°C.The isoeuphpekinensin and euphol standards were obtained from Dr.Qiao-Li Liang(Liang and others2008).Statistical AnalysisThe mean and standard error were calculated for each biochemical measurement.All data were analyzed byJ Plant Growth Regulrepeated analysis of variance(ANOVA)to compare the differences between treatments using SPSS v13.0(IBM Corporation,Somers,NY,USA).ResultsEffect of Elicitor on NO Production,PAL Activity,and SA and Isoeuphpekinensin AccumulationThe NO content of E.pekinensis cells increased following elicitor addition and peaked after7.5h,the value of which was2.9-fold that of the control,then decreased gradually to the control level after20h(Fig.1a).The NO content of the same culture without elicitor remained at a low level throughout the experimental period(Fig.1a).Catalysis of PAL is thefirst step in the phenylpropanoid metabolic pathway and is thefirst rate-limiting enzyme of SA biosynthesis.PAL activity is considered to be the major source of SA in plant cells(Mauch-Mani and Slusarenko 1996).Activity of PAL increased in response to elicitor addition and peaked after10h,the value of which was 3.2-fold that of the control,then decreased gradually but remained slightly higher than that of the control(Fig.1b).The SA levelfirst increased after12.5h,then decreased and returned to the control level after20h(Fig.1c).Thus,NO production wasfirst stimulated by the endophytic fungal elicitor,then activation of PAL,followed by SA accumulation.Isoeuphpekinensin content peaked on the fourth day of elicitor treatment and was 2.4-fold that of the control (Fig.1d).Subsequently,the isoeuphpekinensin content decreased gradually to be more similar to that of the con-trol after7days.The isoeuphpekinensin content of the control peaked at 5.19g g-1DW on the sixth day (Fig.1d).In sum,endophytic fungal elicitor improved the isoeuphpekinensin accumulation of E.pekinensis suspen-sion culture significantly,and it also made the peak con-centration emerge2days ahead of control;this is important for industrial production.Effect of ROS on Isoeuphpekinensin AccumulationTo understand the role of ROS in the host reaction to the endophytic fungal elicitor,wefirst measured the H2O2and O2-contents of E.pekinensis suspension cultures with elicitor applied on day14.The H2O2and O2-levels did not change significantly within25h(Fig.2a,b).Then we determined the isoeuphpekinensin content of E.pekinensisJ Plant Growth Regulsuspension cultures with ROS applied on day14.The H2O2 and O2-(flavin oxidase andflavin)contents did not affect isoeuphpekinensin content compared to the control (Fig.2c).Isoeuphpekinensin accumulation was unaffected by addition of diphenyleneiodonium(DPI),a NADPH oxidase inhibitor(Rosenwasser and others2010),and the H2O2 scavenger catalase(CAT)to E.pekinensis suspension cultures.In addition,DPI and CAT plus elicitor individu-ally did not change isoeuphpekinensin content(Fig.2d). Thus,ROS were not involved in isoeuphpekinensin bio-synthesis in E.pekinensis.Effects of cPITO and CA on NO Production,PAL Activation,and SA AccumulationTo determine the relationship between the signal molecules NO and SA,we investigated NO and SA contents of E.pekinensis suspension cultures after addition of2,4-car-boxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO)(a NO scavenger)and CA(a SA inhibitor).CPTIO significantly reduced the elicitor-induced stimulation of NO,but CA did not have the same effect(Fig.3a).This result implied that SA does not mediate NO production. However,cPTIO reduced elicitor-induced PAL activation and SA accumulation(Fig.3b),which indicates that NO production is located upstream of SA signaling,PAL activation,and induction of SA accumulation.Effects of NO and SA on Isoeuphpekinensin BiosynthesisTo confirm the role of NO and SA in isoeuphpekinensin biosynthesis induced by the endophytic fungal elicitor,we investigated the impact of these signaling molecules and inhibitors of their synthesis on isoeuphpekinensin biosyn-thesis.The elicitor,SNP,and SA significantly increased isoeuphpekinensin biosynthesis,whereas cPTIO and CA inhibited isoeuphpekinensin biosynthesis(Fig.4),which indicated that NO and SA play a key role in isoeuphpeki-nensin biosynthesis induced by the endophytic fungal elicitor.Furthermore,CA suppressed stimulation ofJ Plant Growth Regulisoeuphpekinensin biosynthesis induced by SNP,exoge-nous SA reversed the inhibition of isoeuphpekinensin biosynthesis by cPTIO and CA,and cPTIO did not inhibit the promotion of isoeuphpekinensin biosynthesis induced by SA(Fig.4).These results proved that SA is located downstream of the signaling pathway of isoeuphpekinensin biosynthesis.Collectively,our results implied that the signaling pathway of isoeuphpekinensin biosynthesis in E. pekinensis suspension cells induced by the endophytic fungal elicitor was as follows:the endophytic fungal elic-itor induced NO production,which mediated iso-euphpekinensin biosynthesis dependent on SA(Fig.5).DiscussionFungal components can be used as an elicitor,which can evoke multiple responses in plant cells,including produc-tion of a variety of secondary metabolites(Modafar and others2001).However,the mechanisms of signal trans-duction in the fungal elicitor-evoked synthesis of secondary metabolites in plant cells are unclear.Generally,it is believed that a fungal elicitor applied as an extracellular stimulusfirst recognizes and binds to a specific receptor on the plant cell membrane,thus stimulating the cells to pro-duce a specific intracellular messenger and regulate the expression of nuclear genes through the corresponding signal transduction pathways(Nu¨rnberger and others1994), and ultimately activate defensive secondary metabolic systems for synthesis of secondary metabolites.Under biotic stress such as fungal infection,plant cells sense and transmit stress signals by a variety of signaling molecules and signaling pathways(Ligterink and others1997).Cross-talk between signaling molecules has been reported.Xu and others(2005)found that hypericin biosynthesis from hy-pericum cells mediated by the NO pathway depended on JA. In the present study,we showed that an endophytic fungal elicitor induces NO production,and NO-mediated iso-euphpekinensin biosynthesis in E.pekinensis suspension cells is dependent on SA.ROS is not involved in the mediation process,which is notably different from the host response to pathogenic fungal infection associated with the ROS production phenomenon(Fig.5).In addition,NO and SA levels peaked at7.5and12.5h,respectively,after addition of the fungal elicitor,while isoeuphpekinensin accumulation peaked on day4.These results implied that NO and SA act as signals to initiate continuous biosynthesis of secondary metabolites in the host plant.Many studies have focused on pathogen elicitor-induced plant secondary metabolite accumulation and the signalingFig.5Signaling model of isoeuphpekinensin accumulation inducedby endophytic fungal elicitorJ Plant Growth Regultransduction pathway(for example,Schwacke and Hager 1992).Wu and others(2009)demonstrated that NO induced expression of the shikonin biosynthesis genes PAL,HMGR, and PGT,and shikonin synthesis.SA enhanced accumula-tion of secondary metabolites and expression of defense genes in Scopolia parviflora(Kang and others2004;Wang and others2004;Chen and others2006).A pathogen elicitor initially induces the synthesis of tar-get compounds,of which the accumulation quickly peaks, but also leads to accelerated aging of plant cells,which prematurely enter the decline phase.Consequently,the synthesis of target compounds is not significantly increased (Petrini1991;Yuan and others2002).However,endophytes, as microorganisms that colonize plants in the long term, formed a mutually beneficial symbiotic relationship with host plants in the long-term evolution of the ecosystem,so it is different from the pathogen–host interaction.Our previous studies showed that the endophytic fungus Fusarium sp.E5, isolated from endothelial stem cells of E.pekinensis, increases isoeuphpekinensin production and promotes pro-liferation of E.pekinensis suspension cells,but the mecha-nisms underlying both the increasing phenomenon of isoeuphpekinensin production and cell proliferation are not yet clear.This research indicates that the endogenous fungal elicitor does not cause the oxidative burst in E.pekinensis cells and ROS do not play a role in the signaling pathway of elicitor-induced isoeuphpekinensin synthesis;this differs markedly from other host plant responses to pathogen elic-itors.ROS are an important signal that mediates some plant defense responses and phytoalexin accumulation,promotes generation of other signaling molecules(Mehdy1994),and induces the hypersensitive response and other defense responses in plants.However,the mechanism by which ROS regulate fungal elicitor-induced production of plant sec-ondary metabolites is unclear.ROS are believed to induce expression of defense genes and secondary metabolite bio-synthesis genes such as sesquiterpene synthase and PAL (Baker and Orlandi1995).In wheat inoculated with patho-genic and nonpathogenic strains of Puccinia striiformis f.sp. tritici,H2O2and O2-levels were higher in response to the pathogenic strain than the nonpathogenic strain(Neill and others2002).Thisfinding implied that accumulation of H2O2related to programmed cell death was closely associ-ated with pathogen infection.Thus,it is hypothesized that ROS levels showed little change when E.pekinensis cells were incubated with the endophytic fungus Fusarium sp.E5 because the fungus is symbiotic with E.pekinensis and does not cause any disease.On the other hand,Kawano and Muto (1999)found that H2O2content was reduced by SA via peroxidase catalysis in a tobacco cell suspension culture.In the present study,we investigated the signaling pathway of isoeuphpekinensin biosynthesis in E.pekinen-sis.Unraveling the precise relationship between NO and SA and excluding the function of ROS in the process will certainly improve our understanding of endophyte symbi-osis with the host plant to enhance production of plant secondary metabolites.Moreover,the difference in sig-naling between pathogen–host and endophyte–host inter-actions is an intriguing topic for future exploration. Acknowledgments The authors are grateful to the National Natural Science Foundation of China(grant Nos.31070443and30500066) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions forfinancial support.We thank Dr.Qiao-li Liang for the gift of the isoeuphpekinensin standard. We also thank the reviewers and editorial staff for their time and editorial assistance.ReferencesBaker CJ,Orlandi EW(1995)Active oxygen in plant pathogenesis.Annu Rev Phytopathol33:299–321Chen JY,Wen PF,Kong WF(2006)Effect of salicylic acid on phenylpropanoids and phenylalanine ammonia-lyase in har-vested grape berries.Postharvest Biol Technol40:64–72Dai CC,Yu BY,Xue F,Jiang JH(2005a)Suspending cell culture of medicinal plant Euphorbia pekinensis.J Nanjing For Univ(Nat Sci Ed)29(2):57–60Dai CC,Yu BY,Zhao YT,Yang QY,Jiang JH(2005b)Correlation between inhibition activity of endophytic fungus from Euphor-bia pekinensis and its host.Chin J Appl Ecol16:1290–1294Dai CC,Yu B,Li X(2008)Screening of endophytic fungi that promote the growth of Euphorbia pekinensis.Afr J Biotechnol 7:3505–3509Delledonne M,Xia Y,Dixon RA,Lamb C(1998)Nitric oxide functions as a signal in plant disease resistance.Nature394:585–588Dubois M,Gilles KA,Hamilton JK,Rebers PA,Smith F(1956) Colorimetric method for determination of sugars and related substances.Anal Chem28:350–356Fang F,Dai CC,Wang Y(2009)Role of nitric oxide and hydrogen peroxide in the essential oil increasing of suspension cells from Atractylodes lancea induced by endophytic fungal Cunningham-ella sp.AL4elicitor.Chin J Biotechnol25:1490–1496Hao GP,Du XH,Zhao FX,Ji HW(2010)Fungal endophytes-induced abscisic acid is required forflavonoid accumulation in suspen-sion cells of Ginkgo biloba.Biotechnol Lett32(2):305–314 Kang SM,Jung HY,Kang YM,Yun DJ,Bahk JD,Yang J(2004) Effects of methyl jasmonate and salicylic acid on the production of tropane alkaloids and the expression of PMT and H6H in adventitious root cultures of Scopolia parviflora.Plant Sci 166:745–751Kawano T,Muto S(1999)Mechanism of peroxidase actions for salicylic acid-induced generation of active oxygen species and an increase in cytosolic calcium in tobacco cell suspension culture.J Exp Bot345:685–693Lewis GC(2004)Effects of biotic and abiotic stress on the growth of three genotypes of Lolium perenne with and without infection by the fungal endophyte Neotyphodium lolii.Ann Appl Biol 144:53–63Li YC,Tao WY,Cheng L(2009)Paclitaxel production using co-culture of Taxus suspension cells and paclitaxel-producing endophytic fungi in a co-bioreactor.Appl Microbiol Biotechnol 83:233–239J Plant Growth RegulLiang QL,Dai CC,Wu QN,Gao Y,Jiang JH(2008)Chemical constituents in roots of Euphorbia pekinensis.Chin Tradit Herbal Drugs39:1779–1781Ligterink W,Kroj T,Zur Nieden U(1997)Receptor-mediated activation of a MAP kinase in pathogen defense of plants.Science276:2054–2057Mauch-Mani B,Slusarenko AJ(1996)Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica.Plant Cell8:203–212Mehdy MC(1994)Active oxygen species in plant defense against pathogens.Plant Physiol105:467–472Modafar CE,Tantaoui A,Boustani ESE(2001)Differential induction of phenylalanine ammonia-lyase activity in date palm roots in response to inoculation with Fusarium oxysporum f.sp.albed-inis and to elicitation with fungal wall elicitor.Plant Physiol 158:715–722Murashige T,Skoog F(1962)A revised medium for rapid growth and bioassays with tobacco tissue culture.Physiol Plant15:473–479 Neill SJ,Desikan R,Clarke A,Hurst RD,Hancock JT(2002) Hydrogen peroxide and nitric oxide as signal molecules in plants.J Exp Bot53:1237–1247Nu¨rnberger T,Colling C,Hahlbrock K,Hahlbrock K,Jabs T,Renelt A,Sacks WR,Scheel D(1994)Perception and transduction of an elicitor signal in cultured parsley cells.Biochem Soc Symp 60:173–182Petrini O(1991)Fungal endophytes of tree leaves.In:Andrews JH, Hirano SS(eds)Microbial ecology of leaves.Springer-Verlag, New York,pp179–197Rosenwasser S,Belausov E,Riov J,Holdengreber V,Friedman H (2010)Gibberellic acid(GA3)inhibits ROS increase in chloro-plasts during dark-induced senescence of Pelargonium cuttings.J Plant Growth Regul29:375–384Schwacke R,Hager A(1992)Fungal elicitors induce a transient release of active oxygen species from cultured spruce cells that is dependent on Ca2?and protein-kinase activity.Planta187: 136–141Srivastava N,Gonugunta VK,Puli MR,Raghavendra AS(2009) Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum.Planta229: 757–765Tanaka A,Tapper BA,Popay A,Parker EJ,Scott B(2005)A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confersprotection to the symbiotum from insect herbivory.Mol Microbiol57:1036–1050Vega FE,Posada F,Aime MC,Pava-Ripoll M,Infante F,Rehner SA (2008)Entomopathogenic fungal endophytes.Biol Control 46:72–82Verberne MC,Brouwer N,Delbianco F,Linthorst HJ,Bol JF, Verpoorte R(2002)Method for the extraction of the volatile compound salicylic acid from tobacco leaf material.Phytochem Anal13:45–50Wang CG,Wu JY,Mei XG(2001)Enhancement of taxol production and excretion in Taxus chinensis cell culture by fungal elicitation and medium renewal.Appl Microbiol Biotechnol55:404–410 Wang YD,Yuan YJ,Wu JC(2004)Induction studies of methyl jasmonate and salicylic acid on taxane production in suspension cultures of Taxus chinensis var.mairei.Biochem Eng J 19:259–265Wu SJ,Qi JL,Zhang WJ,Liu SH,FH X,Zhang MS,Xu GH,Zhao WG,Shi MW,Pang YJ,Shen HG,Yang YH(2009)Nitric oxide regulates shikonin formation in suspension-cultured Onosma paniculatum cells.Plant Cell Physiol50:118–128Xu MJ,Dong JF(2005)O2-from elicitor-induced oxidative burst is necessary for triggering phenylalanine ammonia-lyase activation and catharanthine synthesis in Catharanthus roseus cell cultures.Enzyme Microb Technol36:280–284Xu MJ,Dong JF,Zhu MY(2005)Nitric oxide mediates the fungal elicitor-induced hypericin production of Hypericum perforatum cell suspension cultures through a jasmonic-acid-dependent signal pathway1.Plant Physiol139:991–998Yong YH,Dai CC,Gao FK(2009)Effects of endophytic fungi on growth and two kinds of terpenoids for Euphorbia pekinensis.Chin Tradit Herbal Drugs40:1136–1139Yu LJ,Lan WZ,Qin WM,Xu HB(2001)Effects of salicylic acid on fungal elicitor-induced membrane-lipid peroxidation and taxol production in cell suspension cultures of Taxus chinensis.Process Biochem37:477–482Yuan YJ,Li C,Hu ZD,Wu JC,Zeng AP(2002)Fungal elicitor-induced cell apoptosis in suspension cultures of Taxus chinensis var.mairei for taxol production.Process Biochem38:193–198 Zhang YM,Yang JF,Lu SY,Cai JL,Guo ZF(2008)Overexpressing SgNCED1in tobacco increases ABA level,antioxidant enzyme activities,and stress tolerance.J Plant Growth Regul27:151–158 Zhao J,Davisb LC,Verpoorte R(2005)Elicitor signal transduction leading to production of plant secondary metabolites.Biotechnol Adv23:283–333J Plant Growth Regul。