北京市房山区2018年中考数学二模试题(20200625040527)
北京市房山区中考数学二模试卷 (3)
A.
B.
第1页(共10页)
C.
D.
6.(3 分)为了解游客在十渡、周口店北京人遗址博物馆、圣莲山和石花洞这四
个风景区旅游的满意率,数学小组的同学商议了几个收集数据的方案:
方案一:在多家旅游公司调查 400 名导游;
方案二:在十渡风景区调查 400 名游客;
方案三:在云居寺风景区调查 400 名游客;
(1)小明利用尺规作图作出的直线 MN 是线段 AB 的
;点 O 是线段 AB
的
;
(2)要证明点 A,点 B 到直线 l 的距离相等,需要在图中画出必要的线段,请
在图中作出辅助线,说明作法,并说明线段
的长是点 A 到直线 l 的距
离,线段
的长是点 B 到直线 l 的距离;
(3)证明点 A,B 到直线 l 的距离相等.
24.(5 分)某市政工程队承担着 1200 米长的道路维修任务.为了减少对交通的 影响,在维修了 240 米后通过增加人数和设备提高了工程进度,工作效率是 原来的 4 倍,结果共用了 6 小时就完成了任务.求原来每小时维修多少米?
第6页(共10页)
25.(5 分)如图,△ABC 中,AC=BC=a,AB=b,以 BC 为直径作⊙O 交 AB 于点 D,交 AC 于点 E,过点 D 作⊙O 的切线 MN,交 CB 的延长线于点 M, 交 AC 于点 N.
分打 8 折;满 150 元后,超出部分打 5 折;支出累计达 400 元后,不再打折.
小红妈妈上班时,需要乘坐地铁 15 公里到达公司,每天上下班共乘坐两次,如
果每次乘坐地铁都使用市政交通一卡通,那么每月第 21 次乘坐地铁上下班时,
她刷卡支出的费用是( )
A.2.5 元
2018年北京市房山区高考数学二模试卷(理科)
2018年北京市房山区高考数学二模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 设集合A={x|x≤2},B={x|0<x<3},则A∪B=()A.{x|x≤2}B.{x|x<3}C.{x|2<x<3}D.{x|2≤x<3}2. 若复数iz=−1+i,则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3. 执行如图的程序框图,输出的S值为()A.65B.64C.63D.334. 已知实数x,y满足{x+y−1≥0x≥0y≥0,则√x2+y2的取值范围是()A.(0, 1)B.(0, 1]C.[1, +∞)D.[√22,+∞)5. 已知函数f(x)的图象关于原点对称,且周期为4,若f(−1)=2,则f(2017)=()A.2B.0C.−2D.−46. 已知某几何体的三视图如图所示,则该几何体的最长棱为()A.4B.2√2C.√7D.27. △ABC 的三个内角分别为A ,B ,C ,则“B =π3”是“A ,B ,C 成等差数列”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件8. 定义:若存在常数k ,使得对定义域D 内的任意两个x 1,x 2(x 1≠x 2),均有|f(x 1)−f(x 2)|≤k|x 1−x 2|成立,则称函数f(x)在定义域D 上满足利普希茨条件.若函数f(x)=√x(x ≥1)满足利普希茨条件,则常数k 的最小值为( )A.4B.3C.1D.12二、填空题共6小题,每小题5分,共30分. 设双曲线x 2a 2−y 2b 2=1(a >0,b >0)的一条渐近线方程为x −2y =0,则该双曲线的离心率为________.若平面向量a →=(4,2),b →=(−2,m),且a →⊥(a →+b →),则实数m 的值为________.在(x +m)5的展开式中,含x 2项的系数为−10,则实数m 的值为________.设点A 是曲线{x =√3+cosθy =1+sinθ (θ是参数)上的点,则点A 到坐标原点的最大距离是________.能够说明“e x >x +1恒成立”是假命题的一个x 的值为________.已知函数f(x)=x|2x −a|−1.①当a =0时,不等式f(x)+1>0的解集为________;②若函数f(x)有三个不同的零点,则实数a 的取值范围是________.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.已知函数f(x)=sinx −acosx 的一个零点是π4. (1)求实数a 的值;(2)设g(x)=f(x)⋅f(−x)+2√3sinxcosx ,若x ∈[0,π2],求g(x)的值域.1995年联合国教科文组织宣布每年的4月23日为世界读书日,主旨宣言为“希望散居在全球各地的人们,都能享受阅读带来的乐趣,都能尊重和感谢为人类文明作出巨大贡献的文学、文化、科学思想的大师们,都能保护知识产权.”为了解大学生课外阅读情况,现从某高校随机抽取100名学生,将他们一年课外阅读量(单位:本)的数据,分成7组[20, 30),[30, 40),…,[80, 90),并整理得到如下频率分布直方图:(Ⅰ)估计其阅读量小于60本的人数;(Ⅱ)已知阅读量在[20, 30),[30, 40),[40, 50)内的学生人数比为2:3:5.为了解学生阅读课外书的情况,现从阅读量在[20, 40)内的学生中随机选取3人进行调查座谈,用X表示所选学生阅读量在[20, 30)内的人数,求X的分布列和数学期望;(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计100名学生该年课外阅读量的平均数在第几组(只需写出结论).如图1,正六边形ABCDEF的边长为2,O为中心,G为AB的中点.现将四边形DEFC沿CF折起到四边形D1E1FC的位置,使得平面ABCF⊥平面D1E1FC,如图2.(Ⅰ)证明:D1F⊥平面E1OG;(Ⅱ)求二面角E1−OG−F的大小;(Ⅲ)在线段CD1上是否存在点H,使得BH // 平面E1OG?如果存在,求出D1HD1C的值;如果不存在,请说明理由.设函数f(x)=x(k−ln x),(k为常数),g(x)=1x −1xf(x).曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求k的值;(2)求g(x)的单调区间和最小值;(3)若g(x)−g(x)<1a对任意x>0恒成立,求实数a的取值范围.椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,O为坐标原点,F是椭圆C的右焦点,A为椭圆C上一点,且AF⊥x轴,△AFO的面积为34.(Ⅰ)求椭圆C的方程;(Ⅱ)过C上一点P(x0, y0)(y0≠0)的直线l:x0xa2+y0yb2=1与直线AF相交于点M,与直线x=4相交于点N.证明:当点P在C上移动时,|MF||NF|恒为定值,并求此定值.已知集合A=a1,a2,a3,…,a n,其中a i∈R(1≤i≤n, n>2),l(A)表示和a i+ a j(1≤i<j≤n)中所有不同值的个数.(Ⅰ)设集合P=2,4,6,8,Q=2,4,8,16,分别求l(P)和l(Q);(Ⅱ)若集合A=2,4,8,…,2n,求证:l(A)=n(n−1)2;(Ⅲ)l(A)是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由?参考答案与试题解析2018年北京市房山区高考数学二模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【答案】B【考点】并集及其运算【解析】根据并集的定义写出A∪B.【解答】集合A={x|x≤2},B={x|0<x<3},则A∪B={x|x<3}.2.【答案】A【考点】复数的运算【解析】把已知等式变形,利用复数代数形式的乘除运算化简,求出z的坐标得答案.【解答】由iz=−1+i,得z=−1+ii =(−1+i)(−i)−i2=1+i,∴复数z在复平面内对应的点的坐标为(1, 1),位于第一象限.3.【答案】C【考点】程序框图【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.【解答】第一次执行循环体后,S=3,不满足退出循环的条件,n=2;第二次执行循环体后,S=7,不满足退出循环的条件,n=3;第三次执行循环体后,S=15,不满足退出循环的条件,n=4;第四次执行循环体后,S=31,不满足退出循环的条件,n=5;第五次执行循环体后,S=63,满足退出循环的条件,故输出的S=63,4.【答案】D【考点】简单线性规划【解析】先画出可行域,利用目标函数几何意义转化求解即可.【解答】实数x,y满足{x+y−1≥0 x≥0y≥0表示的可行域如图:√x2+y2的几何意义是可行域内的点与坐标原点的距离,可知P到原点的距离最小,即√2=√22.则√x2+y2的取值范围是:[√22, +∞).5.【答案】C【考点】函数奇偶性的性质【解析】由题意可得f(−x)=−f(x),f(x+4)=f(x),则f(2017)=f(1)=−f(−1),计算可得所求值.【解答】函数f(x)的图象关于原点对称,且周期为4,可得f(−x)=−f(x),f(x+4)=f(x),则f(2017)=f(504×4+1)=f(1)=−f(−1)=−2,故选:C.6.【答案】B【考点】由三视图还原实物图【解析】几何体为四棱锥,作出直观图,计算棱长即可得出答案.【解答】解:由三视图可知几何体为四棱锥S−ABCD,由侧视图可知棱锥底面ABCD是边长为2的正方形,顶点S在底面ABCD上的射影M为CD的中点,由主视图可知SM=√3,∴AM=√5,SA=√AM2+SM2=2√2.由对称性可知SB=SA=2√2.∴几何体最长的棱为2√2.故选B.7.【答案】C【考点】必要条件、充分条件与充要条件的判断【解析】A,B,C成等差数列⇔2B=A+C,A+B+C=π⇔B=π3,即可判断出结论.【解答】A,B,C成等差数列⇔2B=A+C,A+B+C=π⇔B=π3,∴ “B=π3”是“A,B,C成等差数列”的充要条件.8.【答案】D【考点】函数恒成立问题【解析】首先根据函数f(x)=√x(x≥1)满足利普希茨条件,得到k满足不等式k≥√x1−√x2x1−x2|=√x+√x ;然后由x1,x2∈[1, +∞)√x+√x的取值范围,而k√x+√x的最大值即可.【解答】由已知中中利普希茨条件的定义若函数f(x)=√x(x≥1)满足利普希茨条件,所以存在常数k,使得对定义域[1, +∞)内的任意两个x1,x2(x1≠x2),均有|f(x1)−f(x2)|≤k|x1−x2|成立,不妨设x1>x2,则k≥√x1−√x2x1−x2=√x+√x.而0<√x+√x <12,所以k的最小值为12.二、填空题共6小题,每小题5分,共30分.【答案】√52【考点】双曲线的离心率 【解析】根据题意,由双曲线的渐进性方程分析可得b a =12,即a =2b ,进而由双曲线的几何性质可得c =√a 2+b 2=√5b ,由双曲线的离心率公式计算可得答案. 【解答】 根据题意,双曲线x 2a2−y 2b 2=1(a >0,b >0)的渐进性方程为y =±ba x ,又由该双曲线的一条渐近线方程为x −2y =0,即y =12x , 则有ba =12,即a =2b , 则c =√a 2+b 2=√5b ,则该双曲线的离心率e =ca =√5b2b =√52;【答案】−6【考点】平面向量的坐标运算 【解析】可求出a →+b →=(2,m +2),根据a →⊥(a →+b →)便可得出a →⋅(a →+b →)=0,进行数量积的坐标运算即可求出m 的值. 【解答】a →+b →=(2,m +2);∵ a →⊥(a →+b →);∴ a →⋅(a →+b →)=(4,2)⋅(2,m +2)=8+2(m +2)=0;∴ m =−6. 【答案】 −1【考点】二项式定理的应用 【解析】 此题暂无解析 【解答】解:由二项展开式的通项可知,含x 2的项为C 53x 2m 3,则C 53m 3=−10, 解得m =−1. 故答案为:−1. 【答案】 3【考点】参数方程与普通方程的互化【解析】设A(√3+cosθ, 1+sinθ),原点O(0, 0),|AO|=√(√3+cosθ)2+(1+sinθ)2=√5+4sin(θ+π3),由此能求出点A到坐标原点取最大距离.【解答】∵点A是曲线{x=√3+cosθy=1+sinθ(θ是参数)上的点,∴设A(√3+cosθ, 1+sinθ),原点O(0, 0),|AO|=√(√3+cosθ)2+(1+sinθ)2=√3+2√3cosθ+cos2θ+1+2sinθ+sin2θ=√5+4sin(θ+π3),∴当sin(θ+π3)=1时,点A到坐标原点取最大距离(3)【答案】【考点】命题的真假判断与应用【解析】利用反例判断命题的真假即可.【解答】当x=0时,e x>x+1,不成立,【答案】(0, +∞),(2√2, +∞)【考点】函数零点的判定定理【解析】①把a=0代入函数解析式,可得不等式,对x分类求解得答案;②转化方程的根为两个函数的图象的交点,利用数形结合,通过函数的导数求解即可.【解答】①当a=0时,不等式f(x)+1>0⇔x|2x|−1+1>0,即2x|x|>0,若x<0,得−2x2>0,不合题意;若x=0,得0>0,不合题意;若x>0,得2x2>0,则x>(0)综上,当a=0时,不等式f(x)+1>0的解集为(0, +∞);②若函数f(x)有三个不同的零点,即方程x|2x−a|−1=0有3个不同根.即|2x−a|=1x有三个解,令y=|2x−a|,则y=1x {2x−a,x≥a2a−2x,x<a2,画出两个函数的图象,如图:x<a2,y=1x,由y′=−1x2=−2,解得x=√22,x=−√22(舍去),此时切点坐标(√22,√2),代入y=a−2x,可得a=2×√22+√2=2√2,函数f(x)=x|2x−a|−1有三个零点,则实数a的取值范围为(2√2, +∞).三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.【答案】(1)依题意,得f(π4)=0,即sinπ4−acosπ4=√22−√2a2=0,解得a=1.(2)由(1)得f(x)=sinx−cosx.g(x)=f(x)⋅f(−x)+2√3sinxcosx=(sinx−cosx)(−sinx−cosx)+√3sin2x =(cos2x−sin2x)+√3sin2x=cos2x+√3sin2x=2sin(2x+π6).由x∈[0,π2]得π6≤2x+π6≤7π6∴当2x+π6=π2即x=π6时,g(x)取得最大值2,当2x+π6=7π6即x=π2时,g(x)取得最小值−1.所以g(x)的值域是[−1, 2].【考点】三角函数的恒等变换及化简求值函数零点的判定定理【解析】(1)根据f(π4)=0计算a的值;(2)化简f(x)的解析式,再根据这些函数的单调性得出g(x)的最值即可.【解答】(1)依题意,得f(π4)=0,即sinπ4−acosπ4=√22−√2a2=0,解得a=1.(2)由(1)得f(x)=sinx−cosx.g(x)=f(x)⋅f(−x)+2√3sinxcosx=(sinx−cosx)(−sinx−cosx)+√3sin2x =(cos2x−sin2x)+√3sin2x=cos2x+√3sin2x=2sin(2x+π6).由x∈[0,π2]得π6≤2x+π6≤7π6∴当2x+π6=π2即x=π6时,g(x)取得最大值2,当2x+π6=7π6即x=π2时,g(x)取得最小值−1.所以g(x)的值域是[−1, 2].【答案】(Ⅰ)100−100×10×(0.04+0.02×2)=20(人)(Ⅱ)由已知条件可知:[20, 50)内人数为:100−100×10×(0.04+0.02+0.02+ 0.01)=10;[20, 30)人数为2人,[30, 40)人数为3人,[40, 50)人数为5人.X的可能取值为0,1,(2)P(X=0)=C33C20C53=110P(X=1)=C32C21C53=35P(X=2)=C31C22C53=310,所以X的分布列为EX=0×110+1×35+2×310=65.(Ⅲ)第五组.【考点】离散型随机变量的期望与方差【解析】(Ⅰ)利用100−100×10×(0.04+0.02×2)即可得出.(Ⅱ)由已知条件可知:[20, 50)内人数为:100−100×10×(0.04+0.02+0.02+ 0.01)=10;同理可得:[20, 30)人数为2人,[30, 40)人数为3人,[40, 50)人数为5人.X的可能取值为0,1,(2)利用超几何分布列及其数学期望计算公式可得.(Ⅲ)利用平均数的计算公式为:小矩形的面积乘以矩形底边中点的横坐标之和即可得出结论.【解答】(Ⅰ)100−100×10×(0.04+0.02×2)=20(人)(Ⅱ)由已知条件可知:[20, 50)内人数为:100−100×10×(0.04+0.02+0.02+ 0.01)=10;[20, 30)人数为2人,[30, 40)人数为3人,[40, 50)人数为5人.X的可能取值为0,1,(2)P(X=0)=C33C20C53=110P(X=1)=C32C21C53=35P(X=2)=C31C22C53=310,所以X的分布列为EX=0×110+1×35+2×310=65.(Ⅲ)第五组. 【答案】证明:(Ⅰ)图(1)中OG ⊥CF ,∴ 图(2)中,OG ⊥CF , 又面CD 1E 1F ⊥面ABCF ,面CD 1E 1F ∩面ABCF =CF ,∴ OG ⊥面CD 1E 1F ,∵ D 1F ⊂面CD 1E 1F ,∴ OG ⊥D 1F , 又O 为CF 的中点,∴ OF // =D 1E 1,又E 1D 1=E 1F , ∴ 四边形E 1D 1OF 为菱形,∴ D 1F ⊥OE 1 ∵ OG ∩OE 1=O ,∴ D 1F ⊥面E 1OG ………(2)取OF 的中点M ,连接E 1M ,MA ,以点M 为坐标原点, 建立空间直角坐标系M −xyz 如图所示. E 1(0,0,√3),O(0,1,0),G(√3,1,0),F(0,−1,0), ∴ OG →=(√3,0,0),OE 1→=(0,−1,√3), 设面OE 1G 的法向量为n →,∴ {n →⋅OG →=0n →⋅OE 1→=0⇒⇒{√3x =0−y +√3z =0⇒⇒{x =0y =√3z ,令z =1,则y =√3,∴ n →=(0,√3,1),设面FOG 的法向量为m →,则m →=(0,0,1), ∴ cos <m →,n →>=m →⋅n→|m →||n →|=12,∴ 二面角E 1−OG −F 的大小为π3.……… (Ⅲ)假设存在,设H(x, y, z),D 1HD1C=λ,λ∈[0,1],∴ D 1H →=λD 1C →D 1(0,2,√3),C(0,3,0),B(√3,2,0), ∴ D 1H →=(x,y −√2,z −√3),D 1C →=(0,1,−√3),∴ {x =0y −2=λz −√3=−λ√3∴ ∴ {x =0y =2+λz =√3−λ√3∴ ∴ H(0,2+λ,√3−λ√3)∴ BH →=(−√3,λ,√3−λ√3),∵ BH →⋅n →=0∴ √3λ+√3−√3λ=0∴ √3=0矛盾,∴ 在线段CD 1上不存在点H ,使得BH // 平面E 1OG .………【考点】二面角的平面角及求法【解析】(Ⅰ)推导出OG ⊥CF 则OG ⊥面CD 1E 1F ,从而OG ⊥D 1F ,再求出D 1F ⊥OE 1,由此能证明D 1F ⊥面E 1OG .(Ⅱ)取OF 的中点M ,连接E 1M ,MA ,以点M 为坐标原点,建立空间直角坐标系M −xyz ,利用向量法能求出二面角E 1−OG −F 的大小. (Ⅲ)假设存在,设H(x, y, z),D 1HD1C=λ,λ∈[0,1],利用向量法能求出在线段CD 1上不存在点H ,使得BH // 平面E 1OG . 【解答】证明:(Ⅰ)图(1)中OG ⊥CF ,∴ 图(2)中,OG ⊥CF , 又面CD 1E 1F ⊥面ABCF ,面CD 1E 1F ∩面ABCF =CF ,∴ OG ⊥面CD 1E 1F ,∵ D 1F ⊂面CD 1E 1F ,∴ OG ⊥D 1F , 又O 为CF 的中点,∴ OF // =D 1E 1,又E 1D 1=E 1F , ∴ 四边形E 1D 1OF 为菱形,∴ D 1F ⊥OE 1 ∵ OG ∩OE 1=O ,∴ D 1F ⊥面E 1OG ………(2)取OF 的中点M ,连接E 1M ,MA ,以点M 为坐标原点, 建立空间直角坐标系M −xyz 如图所示. E 1(0,0,√3),O(0,1,0),G(√3,1,0),F(0,−1,0), ∴ OG →=(√3,0,0),OE 1→=(0,−1,√3), 设面OE 1G 的法向量为n →,∴ {n →⋅OG →=0n →⋅OE 1→=0⇒⇒{√3x =0−y +√3z =0⇒⇒{x =0y =√3z ,令z =1,则y =√3,∴ n →=(0,√3,1),设面FOG 的法向量为m →,则m →=(0,0,1), ∴ cos <m →,n →>=m →⋅n→|m →||n →|=12,∴ 二面角E 1−OG −F 的大小为π3.……… (Ⅲ)假设存在,设H(x, y, z),D 1HD1C=λ,λ∈[0,1],∴ D 1H →=λD 1C →D 1(0,2,√3),C(0,3,0),B(√3,2,0), ∴ D 1H →=(x,y −√2,z −√3),D 1C →=(0,1,−√3),∴ {x =0y −2=λz −√3=−λ√3∴ ∴ {x =0y =2+λz =√3−λ√3∴ ∴ H(0,2+λ,√3−λ√3)∴ BH →=(−√3,λ,√3−λ√3),∵ BH →⋅n →=0∴ √3λ+√3−√3λ=0∴ √3=0矛盾,∴ 在线段CD 1上不存在点H ,使得BH // 平面E 1OG .………【答案】解:(1)因为f(x)=x(k−ln x),所以f′(x)=k−ln x−1,因为曲线y=f(x)在点(1,f(1))处的切线与x轴平行,所以f′(1)=0,所以k=1.(2)因为g(x)=1x −1xf(x)=1x−1+ln x,定义域为{x|x>0},所以g′(x)=−1x2+1 x =x−1x2,令g′(x)=0得x=1,当x变化时,g′(x)和g(x)的变化如下表x(0,1)1(1,+∞)g′(x)−0+g(x)↘0↗由上表可知,g(x)的单调递减区间为(0,1),单调递增区间为(1,+∞),最小值为g(1)= 0.(3)若g(a)−g(x)<1a 对任意x>0恒成立,则g(a)−g(x)min<1a,即lna<1,解得0<a<e.则实数a的取值范围为(0,e).【考点】利用导数研究曲线上某点切线方程【解析】【解答】解:(1)因为f(x)=x(k−ln x),所以f′(x)=k−ln x−1,因为曲线y=f(x)在点(1,f(1))处的切线与x轴平行,所以f′(1)=0,所以k=1.(2)因为g(x)=1x −1xf(x)=1x−1+ln x,定义域为{x|x>0},所以g′(x)=−1x2+1 x =x−1x2,令g′(x)=0得x=1,当x变化时,g′(x)和g(x)的变化如下表x(0,1)1(1,+∞)g′(x)−0+g(x)↘0↗由上表可知,g(x)的单调递减区间为(0,1),单调递增区间为(1,+∞),最小值为g(1)= 0.(3)若g(a)−g(x)<1a 对任意x >0恒成立,则g(a)−g(x)min <1a ,即lna <1,解得0<a <e .则实数a 的取值范围为(0,e). 【答案】(1)设F(c, 0),A(c, d),则c 2a 2+d 2b 2=1 又ca =12,∴ |d|=√32b ,∵ △AFO 的面积为34,∴ 12c|d|=12c ⋅√32b =34,bc =√3.由{a 2−b 2=c 2a =2cbc =√3 ,得{a =2b =√3c =1 ∴ C 的方程为x 24+y 23=1.(2)由(1)知直线l 的方程为x 0x 4+y 0y 3=1(y 0≠0),即y =12−3x 0x 4y 0(y 0≠0).∵ 直线AF 的方程为x =1,∴ 直线l 与AF 的交点为M(1,12−3x 04y 0),直线l 与直线x =4的交点为N(4, 3−3x 0), 则|MF|2|NF|2=(12−3x 04y 0)29+(3−3x 0y 0)2=(4−x 0)216y 02+16(1−x 0)2,又P(x 0, y 0)是C 上一点,则x 024+y 023=1.y 02=3−3x 024代入上式得:|MF|2|NF|2=(4−x 0)248−12x 02+16−32x0+16x 02=(4−x 0)24(x 02−8x 0+16)=14⋅(4−x 0)2(4−x 0)2=14,∴ |MF||NF|=12,为定值. 【考点】椭圆的离心率 【解析】(Ⅰ)设F(c, 0),A(c, d),代入可得c 2a 2+d 2b2=1.又c a =12,|d|=√32b ,根据△AFO 的面积为34,可得12c|d|=12c ⋅√32b =34,bc =√3.由{a 2−b 2=c 2a =2cbc =√3 ,解出即可得出. (Ⅱ)由(1)知直线l 的方程为x 0x 4+y 0y 3=1(y 0≠0),即y =12−3x 0x 4y 0(y 0≠0).由直线AF 的方程为x =1,可得直线l 与AF 的交点为M(1,12−3x 04y 0),直线l 与直线x =4的交点为N(4, 3−3x 0),可得:|MF|2|NF|2=(12−3x 04y 0)29+(3−3x 0y 0)2=(4−x 0)216y 02+16(1−x0)2,又P(x 0, y 0)是C 上一点,则x 024+y 023=1.y 02=3−3x 024,代入化简即可得出.【解答】(1)设F(c, 0),A(c, d),则c 2a 2+d 2b 2=1又ca =12,∴ |d|=√32b ,∵ △AFO 的面积为34,∴ 12c|d|=12c ⋅√32b =34,bc =√3.由{a 2−b 2=c 2a =2cbc =√3 ,得{a =2b =√3c =1 ∴ C 的方程为x 24+y 23=1.(2)由(1)知直线l 的方程为x 0x 4+y 0y 3=1(y 0≠0),即y =12−3x 0x 4y 0(y 0≠0).∵ 直线AF 的方程为x =1,∴ 直线l 与AF 的交点为M(1,12−3x 04y 0),直线l 与直线x =4的交点为N(4, 3−3x 0), 则|MF|2|NF|2=(12−3x 04y 0)29+(3−3x 0y 0)2=(4−x 0)216y 02+16(1−x0)2,又P(x 0, y 0)是C 上一点,则x 024+y 023=1.y 02=3−3x 024代入上式得:|MF|2|NF|=(4−x 0)248−12x 02+16−32x0+16x 02=(4−x 0)24(x 02−8x+16)=14⋅(4−x 0)2(4−x)=14,∴ |MF||NF|=12,为定值.【答案】(Ⅰ)根据题中的定义可知:由2+4=6,2+6=8,2+8=10,4+6=10,4+8=12,6+8=14,得l(P)=(5)由2+4=6,2+8=10,2+16=18,4+8=12,4+16=20,8+16=24,得l(Q)=(6)(Ⅱ)证明:因为a i +a j (1≤i <j ≤n)最多有C n 2=n(n−1)2个值,所以l(A)≤n(n−1)2.又集合A =2,4,8,,2n ,任取a i +a j ,a k +a l (1≤i <j ≤n, 1≤k <l ≤n), 当j ≠l 时,不妨设j <l ,则a i +a j <2a j =2j+1≤a l <a k +a l , 即a i +a j ≠a k +a l .当j =l ,i ≠k 时,a i +a j ≠a k +a l . 因此,当且仅当i =k ,j =l 时,a i +a j =a k +a l . 即所有a i +a j (1≤i <j ≤n)的值两两不同, 所以l(A)=n(n−1)2.(Ⅲ)l(A)存在最小值,且最小值为2n −(3)不妨设a 1<a 2<a 3<...<a n ,可得a 1+a 2<a 1+a 3<...<a 1+a n <a 2+a n <...<a n−1+a n ,所以a i +a j (1≤i <j ≤n)中至少有2n −3个不同的数,即l(A)≥2n −(3) 事实上,设a 1,a 2,a 3,,a n 成等差数列,考虑a i +a j (1≤i <j ≤n),根据等差数列的性质, 当i +j ≤n 时,a i +a j =a 1+a i+j−1; 当i +j >n 时,a i +a j =a i+j−n +a n ;因此每个和a i +a j (1≤i <j ≤n)等于a 1+a k (2≤k ≤n)中的一个, 或者等于a l +a n (2≤l ≤n −1)中的一个.所以对这样的A ,l(A)=2n −3,所以l(A)的最小值为2n −(3)【考点】 数列的应用计数原理的应用 【解析】(Ⅰ)直接利用定义把集合P =2,4,6,8,Q =2,4,8,16中的值代入即可求出l(P)和l(Q);(Ⅱ)先由a i +a j (1≤i <j ≤n)最多有C n 2=n(n−1)2个值,可得l(A)≤n(n−1)2;再利用定义推得所有a i +a j (1≤i <j ≤n)的值两两不同,即可证明结论.(Ⅲ)l(A)存在最小值,设a 1<a 2<<a n ,所以a 1+a 2<a 1+a 3<...<a 1+a n <a 2+a n <...<a n−1+a n .由此即可证明l(A)的最小值2n −(3) 【解答】(Ⅰ)根据题中的定义可知:由2+4=6,2+6=8,2+8=10,4+6=10,4+8=12,6+8=14,得l(P)=(5)由2+4=6,2+8=10,2+16=18,4+8=12,4+16=20,8+16=24,得l(Q)=(6)(Ⅱ)证明:因为a i +a j (1≤i <j ≤n)最多有C n 2=n(n−1)2个值,所以l(A)≤n(n−1)2.又集合A =2,4,8,,2n ,任取a i +a j ,a k +a l (1≤i <j ≤n, 1≤k <l ≤n), 当j ≠l 时,不妨设j <l ,则a i +a j <2a j =2j+1≤a l <a k +a l , 即a i +a j ≠a k +a l .当j =l ,i ≠k 时,a i +a j ≠a k +a l . 因此,当且仅当i =k ,j =l 时,a i +a j =a k +a l . 即所有a i +a j (1≤i <j ≤n)的值两两不同, 所以l(A)=n(n−1)2.(Ⅲ)l(A)存在最小值,且最小值为2n −(3)不妨设a 1<a 2<a 3<...<a n ,可得a 1+a 2<a 1+a 3<...<a 1+a n <a 2+a n <...<a n−1+a n ,所以a i +a j (1≤i <j ≤n)中至少有2n −3个不同的数,即l(A)≥2n −(3) 事实上,设a 1,a 2,a 3,,a n 成等差数列,考虑a i +a j (1≤i <j ≤n),根据等差数列的性质, 当i +j ≤n 时,a i +a j =a 1+a i+j−1; 当i +j >n 时,a i +a j =a i+j−n +a n ;因此每个和a i +a j (1≤i <j ≤n)等于a 1+a k (2≤k ≤n)中的一个, 或者等于a l +a n (2≤l ≤n −1)中的一个.所以对这样的A ,l(A)=2n −3,所以l(A)的最小值为2n −(3)。
房山区2018届高三二模数学试题及答案(官方版)
房山区2018年高考第二次模拟测试试卷数学(文)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回。
第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)设集合{|2},{|03}A x x B x x =≤=<<,则AB =(A ){}2≤x x (B ) {|3}x x < (C ){|23}x x << (D ){|23}x x ≤< (2)设复数 iz 1i =-+,则复数z 在复平面内对应的点位于(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (3)下列函数中,在区间(2,)+∞上为增函数的是(A )3xy =- (B )12y x =- (C ) 2(2)y x =-- (D )12log y x = (4)已知实数,x y 满足10,0,0,+-≥⎧⎪≥⎨⎪≥⎩x y x y的取值范围是(A )()01, (B )(]01, (C )[)1+∞, (D)+⎫∞⎪⎪⎭(5)将函数sin y x =的图象上所有点的横坐标扩大到原来的2倍,纵坐标不变,再把所得的图象上的所有点向右平移2个单位长度,得到的图象所对应的函数解析式为(A)sin(22)=-y x (B) sin(22)=+y x (C) 1sin(1)2=+y x (D) 1sin(1)2=-y x (6)已知某几何体的三视图如图所示,则该几何体的最长棱为俯视图左视图(A )4 (B )22 (C )7 (D )2(7)12+>“”x x是1>“”x 的 (A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件(8)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,11,24AE BF ==.动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P 第一次碰到E 时,P与正方形的边碰撞的次数为(A )3 (B )4 (C )6 (D )8第一部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
北京市2018年中考数学二模试题汇编几何综合题
几何综合题2018昌平二模27.如图,在△ABC 中,AB =AC >BC ,BD 是AC 边上的高,点C 关于直线BD 的对称点为点E ,连接BE .(1) ①依题意补全图形;②若∠BAC =α,求∠DBE 的大小(用含α的式子表示); (2) 若DE =2AE ,点F 是BE 中点,连接AF ,BD =4,求AF 的长.(备用图)2018朝阳二模27.如图,在△ABC 中,AB=AC ,∠BAC =90°,M 是BC 的中点,延长AM 到点D ,AE = AD ,∠EAD =90°,CE 交AB 于点F ,CD =DF . (1)∠CAD = 度; (2)求∠CDF 的度数;(3)用等式表示线段CD 和CE 之间的数量关系,并证明.D CB A D CB A2018东城二模27. 如图所示,点P 位于等边ABC △的内部,且∠ACP =∠CBP . (1) ∠BPC 的度数为________°;(2) 延长BP 至点D ,使得PD =PC ,连接AD ,CD .①依题意,补全图形; ②证明:AD +CD =BD ;(3) 在(2)的条件下,若BD 的长为2,求四边形ABCD 的面积.2018房山二模27. 已知AC =DC ,AC ⊥DC ,直线MN 经过点A ,作DB ⊥MN ,垂足为B ,连接CB . (1)直接写出∠D 与∠MAC 之间的数量关系;(2)① 如图1,猜想AB ,BD 与BC 之间的数量关系,并说明理由;② 如图2,直接写出AB ,BD 与BC 之间的数量关系;(3)在MN 绕点A 旋转的过程中,当∠BCD =30°,BD= 2 时,直接写出BC 的值.图1ADBN图2CADB2018丰台二模27.如图,正方形ABCD 中,点E 是BC 边上的一个动点,连接AE ,将线段AE 绕点A 逆时针旋转90°,得到AF ,连接EF ,交对角线BD 于点G ,连接AG . (1)根据题意补全图形;(2)判定AG 与EF 的位置关系并证明;(3)当AB = 3,BE = 2时,求线段BG 的长.2018海淀二模27.如图,在等边ABC △中, ,D E 分别是边,AC BC 上的点,且CD CE = ,30DBC ∠<︒ ,点C 与点F 关于BD 对称,连接,AF FE ,FE 交BD 于G .(1)连接,DE DF ,则,DE DF 之间的数量关系是 ; (2)若DBC α∠=,求FEC ∠的大小; (用α的式子表示) (2)用等式表示线段,BG GF 和FA 之间的数量关系,并证明.A B CE D GFED CBA2018平谷二模27.正方形ABCD 的对角线AC ,BD 交于点O ,作∠CBD 的角平分线BE ,分别交CD ,OC 于点E ,F .(1)依据题意,补全图形(用尺规作图,保留作图痕迹); (2)求证:CE=CF ; (3)求证:DE =2OF .2018石景山二模27.在△ABC 中,∠ABC =90°,AB =BC =4,点M 是线段BC 的中点,点N 在射线MB 上,连接AN ,平移△ABN ,使点N 移动到点M ,得到△DEM (点D 与点A 对应,点E 与点B 对应),DM交AC 于点P .(1)若点N 是线段MB 的中点,如图1.① 依题意补全图1; ② 求DP 的长;(2)若点N 在线段MB 的延长线上,射线DM 与射线AB 交于点Q ,若MQ =DP ,求CE 的长.DA2018西城二模27. 如图1,在等边三角形ABC 中,CD 为中线,点Q 在线段CD 上运动,将线段QA 绕点Q 顺时针旋转,使得点A 的对应点E 落在射线BC 上,连接BQ ,设∠DAQ =α(0°<α<60°且α≠30°).(1)当0°<α<30°时,①在图1中依题意画出图形,并求∠BQE (用含α的式子表示); ②探究线段CE ,AC ,CQ 之间的数量关系,并加以证明;(2)当30°<α<60°时,直接写出线段CE ,AC ,CQ 之间的数量关系.2018怀柔二模27.在△ABC 中,AB=BC =AC ,点M 为直线BC 上一个动点(不与B ,C 重合),连结AM ,将线段AM 绕点M 顺时针旋转60°,得到线段MN ,连结NC .(1)如果点M 在线段BC 上运动. ①依题意补全图1;②点M 在线段BC 上运动的过程中,∠MCN 的度数是否确定?如果确定,求出∠MCN 的度数;如果不确定,说明理由;(2)如果点M 在线段CB 的延长线上运动,依题意补全图2,在这个过程中,∠MCN 的度数是否确定?如果确定,直接写出∠MCN 的度数;如果不确定,说明理由.BA AB2018顺义二模27.在等边ABC △外侧作直线AM ,点C 关于AM 的对称点为D ,连接BD 交AM 于点E ,连接CE ,CD ,AD .(1)依题意补全图1,并求BEC ∠的度数;(2)如图2 ,当30MAC ∠=︒时,判断线段BE 与DE 之间的数量关系,并加以证明; (3)若0120MAC ︒<∠<︒,当线段2DE BE =时,直接写出MAC ∠的度数.图1MCBA2018门头沟二模27. 如图,在正方形ABCD 中,连接BD ,点E 为CB 边的延长线上一点,点F 是线段AE 的中点,过点F 作AE 的垂线交BD 于点M ,连接ME 、MC .(1)根据题意补全图形,猜想MEC ∠与MCE ∠的数量关系并证明; (2)连接FB ,判断FB 、FM 之间的数量关系并证明.图2MEDCBA。
2018北京市中考数学二模分类26题代数综合
- 让每一个人同等地提高自我2018 北京市中考数学二模分类26 题代数综合题2018 东城二模26.在平面直角坐标系xOy中,抛物线y ax2bx 3 a 0经过点A 1,0和点B 4,5.(1)求该抛物线的表达式;(2)求直线AB对于x轴的对称直线的表达式;(3)点P是x轴上的动点,过点P作垂直于x轴的直线l,直线l与该抛物线交于点M ,与直线 AB 交于点N.当PM<PN时,求点P的横坐标 x P的取值范围.2018 西城二模26. 抛物线 M:y ax 24ax a 1 (a≠0)与x轴交于A,B两点(点A 在点 B 左边),抛物线的极点为 D .(1)抛物线 M 的对称轴是直线 ____________;(2)当 AB=2 时,求抛物线 M 的函数表达式;(3)在( 2)的条件下,直线l:y kx b (k≠0)经过抛物线的极点D,直线y n 与抛物线 M 有两个公共点,它们的横坐标分别记为x1, x2,直线 y n 与直线l 的交点的横坐标- 让每一个人同等地提高自我记为 x3( x30),若当 2 ≤n≤1时,总有x1x3x3x20 ,请联合函数的图象,直接写出 k 的取值范围 .2018 海淀二模26.在平面直角坐标系xOy中,已知点A( 3,1) , B(1,1),C (m, n),此中n 1 ,以点A, B,C为极点的平行四边形有三个,记第四个极点分别为D1, D2 , D3,如下图.(1)若m1,n3,则点12 3 的坐标分别是(),(),();(2)能否存在点 C ,使得点A, B, D1, D 2 , D3在同一条抛物线上?若存在,求出点 C 的坐标;若不存在,说明原因.yD 1C D2A B- 让每一个人同等地提高自我2018 旭日二模26.已知二次函数y ax22ax 2(a0) .(1)该二次函数图象的对称轴是直线;(2)若该二次函数的图象张口向上,当1≤ x≤ 5 时,函数图象的最高点为M,最低点为N,点 M 的纵坐标为11,求点 M 和点 N 的坐标;2(3)对于该二次函数图象上的两点A( x1,y1),B( x2,y2),设 t ≤ x1≤ t+1,当 x2≥3 时,均有y1 ≥y2,请联合图象,直接写出t 的取值范围.- 让每一个人同等地提高自我2018 丰台二模26.在平面直角坐标系xOy 中,二次函数y x22hx h 的图象的极点为点D.(1)当h 1时,求点 D 的坐标;(2)当1≤x≤1时,求函数的最小值m.(用含 h 的代数式表示 m)y43214 3 2 1 O1 2 3 4x12342018 石景山二26.在平面直角坐标系xOy 中,抛物线y ax24x c a0 经过点 A 3, 4 和B0,2.- 让每一个人同等地提高自我(1)求抛物线的表达式和极点坐标;(2)将抛物线在 A、B 之间的部分记为图象M(含 A、B 两点).将图象 M 沿直线x 3 翻折,获得图象 N.若过点 C 9, 4的直线y kx b 与图象M、图象N都订交,且只有两个交点,求 b 的取值范围.2018 门头沟二模26. 在平面直角坐标系xOy 中,有一抛物线其表达式为y x22mx m2 .(1)当该抛物线过原点时,求 m 的值;(2)坐标系内有一矩形 OABC, 此中 A(4 , 0) 、 B (4 , 2) .①直接写出 C 点坐标;②假如抛物线y x22mx m2与该矩形有 2 个交点,求m 的取值范围 .y2018 顺义二模26.在平面直角坐标系中,二次函数y x2ax 2a 1 的图象经过点M ( 2, - 3).(1)求二次函数的表达式;(2)若一次函数y kx b ( k 0) 的图象与二次函数y x2ax 2a 1的图象经过x 轴上同一点,研究实数k, b 知足的关系式;(3)将二次函数y x2ax 2a 1 的图象向右平移2个单位,若点P( x0,m)和 Q( 2, n)在平移后的图象上,且m>n,联合图象求 x0的取值范围.yx2018 房山二模26. 在平面直角坐标系xOy 中,二次函数y ax2bx c ( a0)的图象经过A( 0,4),B( 2, 0),C(- 2, 0)三点 .(1)求二次函数的表达式;(2)在 x 轴上有一点D(- 4,0),将二次函数的图象沿射线DA 方向平移,使图象再次经过点 B.①求平移后图象极点 E 的坐标;②直接写出此二次函数的图象在A, B 两点之间(含A, B 两点)的曲线部分在平移过程中所扫过的面积 .yxO2018 怀柔二模- 让每一个人同等地提高自我26.在平面直角坐标系 xOy 中,二次函数 C 1: y mx 2m 3 x 3 ( m > 0)的图象与 x轴交于 A 、 B 两点(点 A 在点 B 的左边),与 y 轴交于点 C.(1) 求点 A 和点 C 的坐标;(2) 当 AB=4 时,y①求二次函数 C 1 的表达式;②在抛物线的对称轴上能否存在点D ,使 △DAC 的周长最小,若存在,求出点D 的坐标,若不存在,1O 1x请说明原因;(3) 将 (2)中抛物线 C 1 向上平移 n 个单位,获得抛物线 C 25时,抛物线 C 2与 x 轴只有一,若当 0≤ x ≤ 2个公共点,联合函数图象,求出n 的取值范围 .2018 平谷二模26.在平面直角坐标系中,点D 是抛物线y ax 2 2ax 3a a 0 的极点,抛物线与x轴交于点 A , B (点 A 在点 B 的左边).( 1)求点 A , B 的坐标;( 2)若 M 为对称轴与 x 轴交点,且 DM=2AM ,求抛物线表达式;( 3)当 30°<∠ ADM<45°时,求 a 的取值范围.2018 昌平二模26. 在平面直角坐标系xOy中,抛物线y ax 22ax 3a( a、两0) ,与x轴交于 A B点(点 A 在点 B 的左边 ).(1)求点 A 和点 B 的坐标;(2)若点 P(m, n)是抛物线上的一点,过点P 作 x 轴的垂线,垂足为点 D.①在 a 0 的条件下,当 2 m 2 时,n的取值范围是 4 n 5 ,求抛物线的表达式;②若 D 点坐标( 4,0),当PD AD 时,求a的取值范围.。
2018年北京市初三数学二模分类汇编-第4讲:简单几何与三角形及答案
第4讲简单几何与三角形一、选填题【2018·房山二模】1. 右图是某个几何体的三视图,该几何体是A.圆锥B.四棱锥C.圆柱D.四棱柱【答案】B【2018·东城二模】2. 在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能...是多边形的是A. 圆锥B. 圆柱C. 球D. 正方体【答案】C【2018·石景山二模】3.如图是某个几何体的侧面展开图,则该几何体是(A)三棱锥(B)四棱锥(C)三棱柱(D)四棱柱【答案】B【2018·海淀二模】4.下列图形能折叠成三棱柱...的是A BC D【答案】A【2018·朝阳二模】5.如图,左面的平面图形绕直线l 旋转一周,可以得到的立体图形是【答案】B【2018·昌平二模】6.某校九年级(1)班在“迎中考百日誓师”活动中打算制做一个带有正方体挂坠的倒计时牌挂在班级,正方体的每个面上分别书写“成功舍我其谁”六个字.如图是该班同学设计的正方体挂坠的平面展开图,那么“我”字对面的字是( ) A .舍 B .我 C .其 D .谁【答案】D【2018·丰台二模】7.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字一面的相对面上的字是 (A )厉 (B )害 (C )了(D )国【答案】D【2018·石景山二模】8.如图,在ABC △中,BC 边上的高是(A )AF (B )BH (C )CD (D )ECHFE DC BA 成 我 功 其谁舍我厉 害 了 的国【答案】A【2018·房山二模】9.如图,在△ABC 中,过点B 作PB ⊥BC 于B ,交AC 于P ,过点C 作CQ ⊥AB ,交AB 延长线于Q ,则△ABC 的高是 A .线段PB B .线段BC C .线段CQ D .线段AQ【答案】C【2018·西城二模】10. 如图所示,a ∥b ,直线a 与直线b 之间的距离是 A .线段PA 的长度 B .线段PB 的长度 C .线段的长度 D .线段CD 的长度【答案】A【2018·朝阳二模】11.直线AB ,BC ,CA 的位置关系如图所示,则下列语句:①点A 在直线上BC ;②直线AB 经过点C ;③直线AB ,BC ,CA 两两相交;④点B 是直线AB ,BC ,CA 的公共点,正确的有 (只填写序号).【答案】③【2018·东城二模】12. 在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分∠BAC 的是PCABA. 图2B. 图1与图2C. 图1与图3D. 图2与图3 【答案】C【2018·昌平二模】13.将一副直角三角板如图放置,那么∠AOB 的大小为( ) A .150° B .135° C .120°D .90°【答案】B【2018·昌平二模】14.如图,a ∥b ,以直线b 上两点A 和B 为顶点的Rt △ABC (其中∠C =90°)与直线a 相交,若∠1=30°,则∠ABC 的度数为( ) A .30°B .60°C .120°D .150°【答案】B【2018·房山二模】15. 某城市几条道路的位置关系如图所示,已知AB ∥CD ,AE 与AB 的夹角为48°,若CF 与EF 的长度相等,则∠C 的度数为CBAba 1A .48°B .40°C .30°D .24°【答案】D【2018·西城二模】16. 一副直角三角板如图放置,其中∠C =∠DFE = 90︒,∠A = 45︒, ∠E = 60︒,点F 在CB 的延长线上.若DE ∥CF ,则∠BDF 等于A .35︒B .30︒C .25︒D .15︒【答案】D【2018·海淀二模】17.如图,直线DE 经过点A ,DE BC ∥,=45B ∠°,1=65∠°,则2∠等于A .60°B .65°C .70°D .75°【答案】C【2018·昌平二模】18.如图,∠1是五边形ABCDE 的一个外角.若∠1=60°,则∠A +∠B +∠C +∠D 的度数为_________.EDCBA21【答案】420°【2018·丰台二模】19.正六边形每个内角的度数是 .【答案】120°;【2018·朝阳二模】20. 2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m 、n 的式子表示AB 的长为 .【答案】n n m -+33【2018·丰台二模】21.如图,是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB 与墙MN 平行且距离为0.8米,一辆小汽车车门宽AO 为1.2米,当车门打开角度∠AOB 为40°时,车门是否会碰到墙? ;(填“是”或“否”)请简述你的理由. (参考数据:sin40°≈ 0.64,cos40°≈ 0.77,tan40°≈ 0.84)【答案】否,求出点A 与直线OB 的距离d 1,通过计算可得d 1 <0.8,所以车门不会碰到墙;ABCD E1A O BMN【2018·海淀二模】22.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱AC 高为a .已知,冬至时北京的正午日光入射角ABC ∠约为26.5°,则立柱根部与圭表的冬至线的距离(即BC 的长)约为A .sin 26.5a ︒B .tan 26.5a︒C .cos26.5a ︒D .cos 26.5a︒【答案】B【2018·昌平二模】23.为了测量校园水平地面上一棵不可攀爬的树的高度,小文同学做了如下的探索:根据物理学中光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在合适的位置,刚好能在镜子里看到树梢顶点,此时小文与平面镜的水平距离为2.0米,树的底部与平面镜的水平距离为8.0米,若小文的眼睛与地面的距离为1.6米,则树的高度约为______米(注:反射角等于入射角).【答案】6.4【2018·房山二模】24. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米.则小巷的宽度为.A .0.7米B .1.5米C .2.2米D .2.4米立夏立秋春分秋分立春立冬夏至线冬至线南(午)【答案】C【2018·丰台二模】25.如图是小明利用等腰直角三角板测量旗杆高度的示意图. 等腰直角三角板的斜边BD 与地面AF 平行,当小明的视线恰好沿BC 经过旗杆顶部点E 时,测量出此时他所在的位置点A 与旗杆底部点F 的距离为10米. 如果小明的眼睛距离地面1.7米,那么旗杆EF 的高度为 (A )10米 (B )11.7米(C) (D) 1.7)米【答案】B【2018·西城二模】26. 中国古代在利用“计里画方”(比例缩放和直角坐标网格体系)的方法制作地图时,会利用测杆、水准仪和照板来测量距离.在如图所示的测量距离AB 的示意图中,记照板“内芯”的高度为 EF . 观测者的眼睛(图中用点C 表示)与BF 在同一水 平线上,则下列结论中,正确的是A .EF CF AB FB = B .EF CFAB CB=C .CE CFCA FB = D .CE CF EA CB=【答案】B【2018·海淀二模】27.如图,四边形ABCD 与四边形1111A B C D 是以O 为位似中心的位似图形,满足11=OA A A ,E F ,,1E ,1F 分别是AD BC ,,11A D ,11B C 的中点,则11=E F EF.FB C DE【答案】12二、解答题【2018·朝阳二模】1. 如图,△ABC 中,∠C =90°,AC =BC ,∠ABC 的平分线BD 交AC 于点D ,DE ⊥AB 于点E . (1)依题意补全图形;(2)猜想 AE 与 CD 的数量关系,并证明.【答案】(1)如图:……………………………………2分(2)AE 与 CD 的数量关系为AE=CD .…………………………………3分证明: ∵∠C =90°,AC =BC , ∴∠A =45°. ∵DE ⊥AB ,∴∠ADE =∠A =45°.F1E 1F E C 1B 1D 1A 1O A DBC∴AE=DE . …………………………………………………………4分 ∵BD 平分∠ABC ,∴CD=DE . ………………………………………5分 ∴AE=CD【2018·东城二模】2. 如图,在Rt ABC △中,90C ∠=︒,AB 的垂直平分线交AC 于点D ,交AB 于点E . (1)求证:ADE ABC △≌△;(2)当8AC =,6BC =时,求DE 的长.【答案】证明:(1) ∵DE 垂直平分AB , ∴ 90AED ∠=︒. ∴AED C ∠=∠. ∵A A ∠=∠,∴ADE ABC △∽△.------------------------------------------------2分 (2) ABC Rt △中,8AC =,6BC =, ∴10AB =. ∵DE 平分AB , ∴5AE =.∵ADE ABC △∽△,∴DE AEBC AC =. ∴568DE = .∴154DE = .---------------------------------------------------------------------5分 【2018·房山二模】3.如图,四边形ABCD ,AD ∥BC ,DC ⊥BC 于C 点,AE ⊥BD 于E ,且DB =DA .求证:AE=CD .【答案】解:∵AD ∥BC∴∠ADB =∠DBC …………………………………………………………………1′ ∵DC ⊥BC 于点C ,AE ⊥BD 于点E∴∠C =∠AED =90°………………………………………………………………2′ 又∵DB =DA∴△AED ≌△DCB ………………………………………………………………4′ ∴AE =CD …………………………………………………………………………5′【2018·丰台二模】4.如图,E ,C 是线段BF 上的两点,BE = FC ,AB ∥DE ,∠A=∠D ,AC=6,求DF 的长.【答案】证明:∵AB ∥DE ,∴∠ABC =∠DEF . ………………………1分∵BE = FC ,∴BE +EC =FC+EC ,∴BC =EF . ………………………2分又∵∠A=∠D ,∴△ABC ≌△DEF , ………………………3分∴AC=DF . ………………………4分又∵AC=6,∴DF=6. ………………………5分【2018·石景山二模】5.如图,在等边三角形ABC 中,点D ,E 分别在BC ,A D EB AAB 上,且60ADE ∠=︒.求证:△ADC ∽△DEB .【答案】证明:∵△ABC 是等边三角形,∴60B C ∠=∠=︒, ………… 1分∴1160ADB C ∠=∠+∠=∠+︒,………… 2分∵60ADE ∠=︒,∴260ADB ∠=∠+︒, ………… 3分∴12∠=∠, ………… 4分∴△ADC ∽△DEB . ………… 5分【2018·西城二模】6. 如图,在四边形ABCD 中,E 为AB 的中点,DE ⊥AB 于点E , 66A ∠=︒,90ABC ∠=︒,BC= AD ,求∠C 的度数. 【答案】1802==782C ︒-∠∠︒。
2018年北京市房山区中考数学二模试卷(解析版)
2018年北京市房山区中考数学二模试卷一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个是符合题意的.1.(2分)若代数式有意义,则实数x的取值范围是()A.x=0B.x=2C.x≠0D.x≠22.(2分)如图,在△ABC中,过点B作PB⊥BC于B,交AC于P,过点C作CQ⊥AB,交AB延长线于Q,则△ABC的高是()A.线段PB B.线段BC C.线段CQ D.线段AQ3.(2分)某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为()A.48°B.40°C.30°D.24°4.(2分)如图是某个几何体的三视图,该几何体是()A.圆锥B.四棱锥C.圆柱D.四棱柱5.(2分)如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()A.30,28B.26,26C.31,30D.26,226.(2分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米7.(2分)某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x件,乙种奖品y件.依题意,可列方程组为()A.B.C.D.8.(2分)一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.下列叙述错误的是()A.AB两地相距1000千米B.两车出发后3小时相遇C.动车的速度为D.普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地二、填空题(本题共16分,每小题2分)9.(2分)估计无理数在连续整数与之间.10.(2分)若代数式x2﹣6x+b可化为(x+a)2﹣5,则a+b的值为.11.(2分)某校广播台要招聘一批小主持人,对A、B两名小主持人进行了专业素质、创新能力、外语水平和应变能力进行了测试,他们各项的成绩(百分制)如表所示:如果只招一名主持人,该选用;依据是.(答案不唯一,理由支撑选项即可)12.(2分)某校体育室里有球类数量如下表,如果随机拿出一个球(每一个球被拿出来的可能性是一样的),那么拿出一个球是足球的可能性是.13.(2分)某花店有单位为10元、18元、25元三种价格的花卉,如图是该花店某月三种花卉销售量情况的扇形统计图,根据该统计图可算得该花店销售花卉的平均单价为元.14.(2分)如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD =8,则AE=.15.(2分)如图,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段AB得到线段A′B′的过程16.(2分)阅读下面材料:在数学课上,老师提出如下问题:小亮的作法如下:老师说:“小亮的作法正确”请回答:小亮的作图依据是.三、解答题(本题共68分,第17、18题,每小题5分;第19题4分;第20-23题,每小题5分;第24、25题,每小题5分;第26、27题,每小题5分;第28题8分).解答应写出文字说明,演算步骤或证明过程.17.(5分)解不等式组:18.(5分)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.19.(4分)已知x2﹣2x﹣1=2.求代数式(x﹣1)2+x(x﹣4)+(x﹣2)(x+2)的值.20.(5分)已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根都是整数,求k的值.21.(5分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的长.22.(5分)如图,在平面直角坐标系xOy中,直线y=kx+m与双曲线y=﹣相交于点A (m,2).(1)求直线y=kx+m的表达式;(2)直线y=kx+m与双曲线y=﹣的另一个交点为B,点P为x轴上一点,若AB=BP,直接写出P点坐标.23.(5分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.24.(6分)某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:甲7.29.69.67.89.3 4 6.58.59.99.6乙5.89.79.76.89.96.98.26.78.69.7根据上面的数据,将下表补充完整:(说明:月销售额在8.0万元及以上可以获得奖金,7.0~7.9万元为良好,6.0~6.9万元为合格,6.0万元以下为不合格)两组样本数据的平均数、中位数、众数如表所示:结论(1)估计乙业务员能获得奖金的月份有个;(2)可以推断出业务员的销售业绩好,理由为.(至少从两个不同的角度说明推断的合理性)25.(6分)有这样一个问题:探究函数y=﹣2x的图象与性质.小东根据学习函数的经验,对函数y=﹣2x的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=﹣2x的自变量x的取值范围是;(2)如表是y与x的几组对应值﹣则m的值为;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)观察图象,写出该函数的两条性质.26.(7分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的图象经过A(0,4),B(2,0),C(﹣2,0)三点.(1)求二次函数的表达式;(2)在x轴上有一点D(﹣4,0),将二次函数的图象沿射线DA方向平移,使图象再次经过点B.①求平移后图象顶点E的坐标;②直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积.27.(7分)已知AC=DC,AC⊥DC,直线MN经过点A,作DB⊥MN,垂足为B,连接CB.(1)直接写出∠D与∠MAC之间的数量关系;(2)①如图1,猜想AB,BD与BC之间的数量关系,并说明理由;②如图2,直接写出AB,BD与BC之间的数量关系;(3)在MN绕点A旋转的过程中,当∠BCD=30°,BD=时,直接写出BC的值.28.(8分)已知点P,Q为平面直角坐标系xOy中不重合的两点,以点P为圆心且经过点Q作⊙P,则称点Q为⊙P的“关联点”,⊙P为点Q的“关联圆”.(1)已知⊙O的半径为1,在点E(1,1),F(﹣,),M(0,﹣1)中,⊙O的“关联点”为;(2)若点P(2,0),点Q(3,n),⊙Q为点P的“关联圆”,且⊙Q的半径为,求n 的值;(3)已知点D(0,2),点H(m,2),⊙D是点H的“关联圆”,直线y=﹣x+4与x轴,y轴分别交于点A,B.若线段AB上存在⊙D的“关联点”,求m的取值范围.2018年北京市房山区中考数学二模试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个是符合题意的.1.(2分)若代数式有意义,则实数x的取值范围是()A.x=0B.x=2C.x≠0D.x≠2【解答】解:由题意得,x﹣2≠0,解得,x≠2,故选:D.2.(2分)如图,在△ABC中,过点B作PB⊥BC于B,交AC于P,过点C作CQ⊥AB,交AB延长线于Q,则△ABC的高是()A.线段PB B.线段BC C.线段CQ D.线段AQ【解答】解:△ABC的高是线段CQ,故选:C.3.(2分)某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为()A.48°B.40°C.30°D.24°【解答】解:∵AB∥CD,∴∠1=∠BAE=48°,∵∠1=∠C+∠E,∵CF=EF,∴∠C=∠E,∴∠C=∠1=×48°=24°.故选:D.4.(2分)如图是某个几何体的三视图,该几何体是()A.圆锥B.四棱锥C.圆柱D.四棱柱【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是长方形可判断出这个几何体应该是四棱柱.故选:B.5.(2分)如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()A.30,28B.26,26C.31,30D.26,22【解答】解:由图可知,把7个数据从小到大排列为22,22,23,26,28,30,31,中位数是第4位数,第4位是26,所以中位数是26.平均数是(22×2+23+26+28+30+31)÷7=26,所以平均数是26.6.(2分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.7.(2分)某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x件,乙种奖品y件.依题意,可列方程组为()A.B.C.D.【解答】解:设购买甲种奖品x件,乙种奖品y件,由题意得,.8.(2分)一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.下列叙述错误的是()A.AB两地相距1000千米B.两车出发后3小时相遇C.动车的速度为D.普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地【解答】解:由图可得,AB两地相距1000千米,故选项A正确,两车出发3小时相遇,故选项B正确,动车的速度为:1000÷3﹣1000÷12=250千米/时,故选项C错误,普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶×(12﹣)=千米到达A地,故选项D正确,故选:C.二、填空题(本题共16分,每小题2分)9.(2分)估计无理数在连续整数3与4之间.【解答】解:∵<<,即3<<4,∴无理数在连续整数3与4之间.故答案为:3,4.10.(2分)若代数式x2﹣6x+b可化为(x+a)2﹣5,则a+b的值为1.【解答】解:∵代数式x2﹣6x+b可化为(x+a)2﹣5,∴x2﹣6x+b=(x﹣3)2﹣9+b=(x+a)2﹣5,则a=﹣3,﹣9+b=﹣5,解得:b=4,故a+b=﹣3+4=1.故答案为:1.11.(2分)某校广播台要招聘一批小主持人,对A、B两名小主持人进行了专业素质、创新能力、外语水平和应变能力进行了测试,他们各项的成绩(百分制)如表所示:如果只招一名主持人,该选用A;依据是A的平均成绩高于B平均成绩.(答案不唯一,理由支撑选项即可)【解答】解:==80.25、==79.5,∵>,∴选用A,故答案为:A、A的平均成绩高于B平均成绩.12.(2分)某校体育室里有球类数量如下表,如果随机拿出一个球(每一个球被拿出来的可能性是一样的),那么拿出一个球是足球的可能性是.【解答】解:∵共有3+5+4=12个球,其中足球有4个,∴拿出一个球是足球的可能性是=,故答案为:.13.(2分)某花店有单位为10元、18元、25元三种价格的花卉,如图是该花店某月三种花卉销售量情况的扇形统计图,根据该统计图可算得该花店销售花卉的平均单价为17元.【解答】解:根据该统计图可算得该花店销售花卉的平均单价为10×30%+18×50%+25×(1﹣30%﹣50%)=17元,故答案为:17.14.(2分)如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD =8,则AE=2.【解答】解:∵AB为圆O的直径,弦CD⊥AB,垂足为点E.∴CE=CD=4.在直角△OCE中,OE===3.则AE=OA﹣OE=5﹣3=2.故答案为:2.15.(2分)如图,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段AB得到线段A′B′的过程将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度【解答】解:线段A′B′可以看作是由线段AB绕B点顺时针旋转90°,并向右平移2个单位得到线段A′B′.故答案为:将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度16.(2分)阅读下面材料:在数学课上,老师提出如下问题:小亮的作法如下:老师说:“小亮的作法正确”请回答:小亮的作图依据是两点确定一条直线;同圆或等圆中半径相等.【解答】解:根据两点确定一条直线和同圆或等圆中半径相等作出CD=AB.故答案为两点确定一条直线;同圆或等圆中半径相等.三、解答题(本题共68分,第17、18题,每小题5分;第19题4分;第20-23题,每小题5分;第24、25题,每小题5分;第26、27题,每小题5分;第28题8分).解答应写出文字说明,演算步骤或证明过程.17.(5分)解不等式组:【解答】解:解不等式①得,x>5;解不等式②得,x>1;∴不等式组的解集为x>5.18.(5分)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.【解答】解:∵AD∥BC∴∠ADB=∠DBC∵DC⊥BC于点C,AE⊥BD于点E∴∠C=∠AED=90°又∵DB=DA∴△AED≌△DCB(AAS)∴AE=CD19.(4分)已知x2﹣2x﹣1=2.求代数式(x﹣1)2+x(x﹣4)+(x﹣2)(x+2)的值.【解答】解:(x﹣1)2+x(x﹣4)+(x﹣2)(x+2)=x2﹣2x+1+x2﹣4x+x2﹣4=3x2﹣6x﹣3,∵x2﹣2x﹣1=2∴原式=3x2﹣6x﹣3=3(x2﹣2x﹣1)=3×2=6.20.(5分)已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根都是整数,求k的值.【解答】(1)证明:△=[﹣(4k+1)]2﹣4k(3k+3)=(2k﹣1)2.∵k为整数,∴(2k﹣1)2>0,即△>0.∴方程有两个不相等的实数根.(2)解:∵方程kx2﹣(4k+1)x+3k+3=0为一元二次方程,∴k≠0.∵kx2﹣(4k+1)x+3k+3=0,即[kx﹣(k+1)](x﹣3)=0,∴x1=3,.∵方程的两个实数根都是整数,且k为整数,∴k=1或﹣1.21.(5分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的长.【解答】证明:(1)在△ADE与△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)作EF⊥CD于F∵∠BDC=30°,DE=2∴EF=1,DF=,∵CE=3∴CF=2∴CD=2+.22.(5分)如图,在平面直角坐标系xOy中,直线y=kx+m与双曲线y=﹣相交于点A (m,2).(1)求直线y=kx+m的表达式;(2)直线y=kx+m与双曲线y=﹣的另一个交点为B,点P为x轴上一点,若AB=BP,直接写出P点坐标.【解答】解:(1)∵点A(m,2)在双曲线上,∴m=﹣1,∴A(﹣1,2),直线y=kx﹣1,∵点A(﹣1,2)在直线y=kx﹣1上,∴y=﹣3x﹣1.(2),解得或,∴B(,﹣3),∴AB==,设P(m,0),则有(m﹣)2+32=,解得m=5或﹣,∴P1(5,0),.23.(5分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.【解答】(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC⊥BE,∵∠E=∠BAC,∴sin E=sin∠BAC,∴=,∴CE=BC=10,∴BE==8,OA=OE=CE=5,∵AH⊥BC,∴BE∥OA,∴,即=,解得:OD=,∴CD=5+=,∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线,∴OH=BE=4,CH=BC=3,∴AH=5+4=9,在Rt△ACH中,AC===3.24.(6分)某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:甲7.29.69.67.89.3 4 6.58.59.99.6乙5.89.79.76.89.96.98.26.78.69.7根据上面的数据,将下表补充完整:(说明:月销售额在8.0万元及以上可以获得奖金,7.0~7.9万元为良好,6.0~6.9万元为合格,6.0万元以下为不合格)两组样本数据的平均数、中位数、众数如表所示:结论(1)估计乙业务员能获得奖金的月份有6个;(2)可以推断出甲业务员的销售业绩好,理由为甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.(至少从两个不同的角度说明推断的合理性)【解答】解:如图,(1)估计乙业务员能获得奖金的月份有6个;(2)可以推断出甲业务员的销售业绩好,理由为:甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.故答案为0,1,3,0,2,4;6;甲,甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.25.(6分)有这样一个问题:探究函数y=﹣2x的图象与性质.小东根据学习函数的经验,对函数y=﹣2x的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=﹣2x的自变量x的取值范围是任意实数;(2)如表是y与x的几组对应值﹣则m的值为﹣;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)观察图象,写出该函数的两条性质①当x<﹣2时,y随x的增大而增大;②当x>2时,y随x的增大而增大.【解答】解:(1)函数y=﹣2x的自变量x的取值范围是任意实数;故答案为:任意实数;(2)把x=3代入y=﹣2x得,y=;故答案为:﹣;(3)如图所示;(4)根据图象得,①当x<﹣2时,y随x的增大而增大;②当x>2时,y随x的增大而增大.故答案为:①当x<﹣2时,y随x的增大而增大;②当x>2时,y随x的增大而增大.26.(7分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的图象经过A(0,4),B(2,0),C(﹣2,0)三点.(1)求二次函数的表达式;(2)在x轴上有一点D(﹣4,0),将二次函数的图象沿射线DA方向平移,使图象再次经过点B.①求平移后图象顶点E的坐标;②直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积.【解答】解:(1)∵A(0,4),B(2,0),C(﹣2,0)∴二次函数的图象的顶点为A(0,4),∴设二次函数表达式为y=ax2+4,将B(2,0)代入,得4a+4=0,解得,a=﹣1,∴二次函数表达式y=﹣x2+4;(2)①设直线DA:y=kx+b(k≠0),将A(0,4),D(﹣4,0)代入,得,解得,,∴直线DA:y=x+4,由题意可知,平移后的抛物线的顶点E在直线DA上,∴设顶点E(m,m+4),∴平移后的抛物线表达式为y=﹣(x﹣m)2+m+4,又∵平移后的抛物线过点B(2,0),∴将其代入得,﹣(2﹣m)2+m+4=0,解得,m1=5,m2=0(不合题意,舍去),∴顶点E(5,9),②如图,连接AB,过点B作BL∥AD交平移后的抛物线于点G,连结EG,∴四边形ABGE的面积就是图象A,B两点间的部分扫过的面积,过点G作GK⊥x轴于点K,过点E作EI⊥y轴于点I,直线EI,GK交于点H.由点A(0,4)平移至点E(5,9),可知点B先向右平移5个单位,再向上平移5个单位至点G.∵B(2,0),∴点G(7,5),∴GK=5,OB=2,OK=7,∴BK=OK﹣OB=7﹣2=5,∵A(0,4),E(5,9),∴AI=9﹣4=5,EI=5,∴EH=7﹣5=2,HG=9﹣5=4,∴S四边形ABGH=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK=7×9﹣×2×4﹣×5×5﹣×2×4﹣×5×5=63﹣8﹣25=30答:图象A,B两点间的部分扫过的面积为30.27.(7分)已知AC=DC,AC⊥DC,直线MN经过点A,作DB⊥MN,垂足为B,连接CB.(1)直接写出∠D与∠MAC之间的数量关系;(2)①如图1,猜想AB,BD与BC之间的数量关系,并说明理由;②如图2,直接写出AB,BD与BC之间的数量关系;(3)在MN绕点A旋转的过程中,当∠BCD=30°,BD=时,直接写出BC的值.【解答】解:(1)相等或互补;理由:当点C,D在直线MN同侧时,∵AC⊥CD,BD⊥MN,∴∠ACD=∠BDC=90°,在四边形ABDC中,∠BAD+∠D=360°﹣∠ACD﹣∠BDC=180°,∵∠BAC+∠CAM=180°,∴∠CAM=∠D;当点C,D在直线MN两侧时,如图1,∵∠ACD=∠ABD=90°,∠AEC=∠BED,∴∠CAB=∠D,∵∠CAB+∠CAM=180°,∴∠CAM+∠D=180°,即:∠D与∠MAC之间的数量是相等或互补;(2)①猜想:BD+AB=BC如图3,在射线AM上截取AF=BD,连接CF.又∵∠D=∠F AC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=∵AF+AB=BF=∴BD+AB=;②如图2,在射线AM上截取AF=BD,连接CF,又∵∠D=∠F AC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=∵AB﹣AF=BF=∴AB﹣BD=;(3)①当点C,D在直线MN同侧时,如图3﹣1,由(2)①知,△ACF≌△DCB,∴CF=BC,∠ACF=∠ACD=90°,∴∠ABC=45°,∵∠ABD=90°,∴∠CBD=45°,过点D作DG⊥BC于G,在Rt△BDG中,∠CBD=45°,BD=,∴DG=BG=1,在Rt△CGD中,∠BCD=30°,∴CG=DG=,∴BC=CG+BG=+1,②当点C,D在直线MN两侧时,如图2﹣1,过点D作DG⊥CB交CB的延长线于G,同①的方法得,BG=1,CG=,∴BC=CG﹣BG=﹣1即:BC=或,28.(8分)已知点P,Q为平面直角坐标系xOy中不重合的两点,以点P为圆心且经过点Q作⊙P,则称点Q为⊙P的“关联点”,⊙P为点Q的“关联圆”.(1)已知⊙O的半径为1,在点E(1,1),F(﹣,),M(0,﹣1)中,⊙O的“关联点”为F,M;(2)若点P(2,0),点Q(3,n),⊙Q为点P的“关联圆”,且⊙Q的半径为,求n 的值;(3)已知点D(0,2),点H(m,2),⊙D是点H的“关联圆”,直线y=﹣x+4与x轴,y轴分别交于点A,B.若线段AB上存在⊙D的“关联点”,求m的取值范围.【解答】解:(1)∵OF=OM=1,∴点F、点M在⊙上,∴F、M是⊙O的“关联点”,故答案为F,M.(2)如图1,过点Q作QH⊥x轴于H.∵PH=1,QH=n,PQ=∴由勾股定理得,PH2+QH2=PQ2,即解得,n=2或﹣2.(3)由,知A(3,0),B(0,4)∴可得AB=5①如图2(1),当⊙D与线段AB相切于点T时,连接DT.则DT⊥AB,∠DTB=90°∵,∴可得DT=DH1=∴.②如图2(2),当⊙D过点A时,连接AD.由勾股定理得DA==DH2=.综合①②可得:或.。
北京市房山区2018年中考数学二模试题
QCA温度(°C )20时18时16时14时12时10时8时40302010北京市房山区2018年中考数学二模试题一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 若代数式22x x -有意义,则实数x 的取值范围是A. 0x =B .2x =C .0x ≠D .2x ≠2.如图,在△ABC 中,过点B 作PB ⊥BC 于B ,交AC 于P ,过点作CQ ⊥AB ,交AB 延长线于Q ,则△ABC 的高是 A .线段PB B .线段BC C .线段CQ D .线段AQ3. 某城市几条道路的位置关系如图所示,已知AB ∥CD ,AE 与AB 的夹角为48°,若CF 与EF 的长度相等,则∠C 的度数为A .48°B .40°C .30°D .24°4. 右图是某个几何体的三视图,该几何体是A .圆锥B .四棱锥C .圆柱D .四棱柱5. 如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是A .30,28B .26,26C .31,30D .26,226. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米.则小巷的宽度为.A .0.7米B .1.5米C .2.2米D .2.4米7. 某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x 件,乙种奖品y 件.依题意,可列方程组为A . 20,4030650x y x y +=⎧⎨+=⎩B . 20,4020650x y x y +=⎧⎨+=⎩C . 20,3040650x y x y +=⎧⎨+=⎩D . 70,4030650x y x y +=⎧⎨+=⎩8.一列动车从A 地开往B 地,一列普通列车从B 地开往A 地,两车同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y 与x 之间的函数关系.下列叙述错误..的是A .AB 两地相距1000千米B .两车出发后3小时相遇C .动车的速度为D .普通列车行驶t 小时后,动车到达终点B 地,此时普通列车还需行驶20003千米到达A 地二、填空题(本题共16分,每小题2分)9. 估计无理数11在连续整数__________与__________之间.10. 若代数式26x x b -+可化为2()5x a +-,则a b +的值为 .11. 某校广播台要招聘一批小主持人,对A 、B 两名小主持人进行了专业素质、创新能力、外语水平和应变能力进行了测试,他们各项的成绩(百分制)如下表所示:10003BC 25元10元18元30%50%如果只招一名主持人,该选用 ;依据是 .12. 某校体育室里有球类数量如下表,如果随机拿出一个球(每一个球被拿出来的可能性是一样的),那么拿出一个球是足球的可能性是__________.13. 某花店有单位为10元、18元、25元三种价格的花卉,如图是该花店某月三种花卉销售量情况的扇形统计图,根据该统计图可算得该花店销售花卉的平均单价为__________元.14. 如图,AB 为⊙O 的直径,弦CD AB ,垂足为点E ,连结OC ,若OC =5,CD =8,则AE = .15. 如图,在正方形网格中,线段A′B′可以看作是线段AB 经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段AB 得到线段A′B′的过程: . 16.阅读下面材料:在数学课上,老师提出如下问题:老师说:“小亮的作法正确”请回答:小亮的作图依据是_________________________________________________.三、解答题(本题共68分,第17、18题,每小题5分;第19题4分;第20-23题,每小题5分;第24、25题,每小题6分;第26、27题,每小题7分;第28题8分). 解答应写出文字说明,演算步骤或证明过程.17.解不等式组:⎪⎩⎪⎨⎧<++>-.529),2(213x x x x18.如图,四边形ABCD ,AD ∥BC ,DC ⊥BC 于C 点,AE ⊥BD 于E ,且DB =DA .求证:AE=CD .19. 已知2212x x --=. 求代数式2(1)(4)(2)(2)x x x x x -+-+-+的值.20.已知:关于x 的一元二次方程错误!未找到引用源。
【精品中考数学】2018-2019学年北京市房山区初三数学二模试卷+答案
2 1DCBA O2019北京房山区初三二模数学一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的.1.右图是某个几何体的展开图,该几何体是A.圆锥B.圆柱C.三棱柱 D.四棱锥2.实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是A.0bc>B.0a d+< C.a c<D.2b<-3.方程组326x yx y-=⎧⎨=⎩-+,的解为A.15xy=⎧⎨=⎩,B.-17xy=⎧⎨=⎩,C.24xy=⎧⎨=⎩,D.-28xy=⎧⎨=⎩,4. 如图,点O为直线AB上一点,OC⊥OD. 如果∠1=35°,那么∠2的度数是A.B.C.D.5. 下列图形中,既是轴对称图形又是中心对称图形的是A.B.C.D.6. 北京故宫博物院成立于1925年10月10日,是在明朝、清朝两代皇宫及其宫廷收藏的基础上建立起来的中国综合性博物馆,每年吸引着大批游客参观游览.下图是从2012年到2017年每年参观总人次的折线图.根据图中信息,下列结论中正确的是A. 2012年以来,每年参观总人次逐年递增B. 2014年比2013年增加的参观人次不超过...50万C. 2012年到2017年这六年间,2017年参观总人次最多D. 2012年到2017年这六年间,平均每年参观总人次超过1600万7. 如图,△DEF是△ABC经过某种变换后得到的图形.△ABC内任意一点M的35°45°55°65°dcba12345–1–2–3–4–50坐标为 ( x , y ),点 M 经过这种变换后得到点 N ,点N 的坐标是A .B . x,y --()C . x,y -()D .x,y -() 8. 如图,以40m /s 的速度将小球沿与地面成 30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t ( 单位:s )之间具有函数关系2205h t t =-.下列叙述正确的是A .小球的飞行高度不能达到15mB .小球的飞行高度可以达到25mC .小球从飞出到落地要用时4sD .小球飞出1s 时的飞行高度为10m 二、填空题(本题共16分,每小题2分)9. 若正多边形的一个外角是45°,则该正多边形的内角和为 °. 10. 若1x -在实数范围内有意义,那么实数x 的取值范围是 . 11. 比较大小:51- 1.(填“>”“=”或“<”)12. 如图 , 在⊙O 中,,50OA BC AOB ⊥∠=°,则ADC ∠= °. 13. 右图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后, 其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的 交线时,当作指向右边的扇形). 转动一次转盘后,指针指向 颜 色的可能性大.14. 如图,在矩形ABCD 中,M 为BC 边上一点,连接AM ,过点D 作DE ⊥ AM ,垂足为E .若DE =DC =1,AE =2EM ,则BM 的长为 .黄红红绿黄红CAOBDxy–5–4–3–2–112345–4–3–2–11234NFDE ACBO M15. 某校进行篮球联赛,每场比赛都要分出胜负,每胜1场得2 分,负1场得1分.如果某队在比赛中得到16分,那么这个队胜负场数可以是 .(写出一种情况即可)16. 在1~7月份,某种水果的每斤进价与每斤售价的信息如图所示,则出售该种水果每斤利润最大的月份是月份.三、解答题(本题共68分,第17-22题,每小题5分,第23-267分)解答应写出文字说明、演算步骤或证明过程.17. 阅读下面材料:小明遇到一个问题:如图,∠MON,点A在射线OM上,点B在∠MON P同时满足下列两个条件(要求保留作图痕迹, 不必写出作法):a.点P到A,B两点的距离相等;b.点P到∠MON的两边的距离相等.小明的作法是:①连接AB,作线段AB的垂直平分线交AB于E,交ON于F;②作∠MON的平分线交EF于点P.所以点P即为所求.根据小明的尺规作图过程,(1)使用直尺和圆规,补全图形;(2)证明:∵EF垂直平分线段AB ,点P在直线EF上,O∴PA = . ∵OP 平分∠MON ,∴点P 到∠MON 的两边的距离相等( )(填推理的依据). 所以点P 即为所求.112cos 4513-⎛⎫-︒+ ⎪⎝⎭19. 已知43x y =,求代数式22(2)()()2x y x y x y y ---+-的值.20. 已知关于x 的一元二次方程mx 2+nx -2=0.(1)当n =m -2时,利用根的判别式判断方程根的情况;(2)若方程有两个不相等的实数根,写出一组满足条件的m ,n 的值,并求出此时方程的根.21. 如图,菱形ABCD 的对角线交于点O ,DF ∥AC ,CF ∥BD .(1)求证:四边形OCFD 是矩形;(2)若AD =5,BD =8,计算tan ∠DCF 的值.22. 如图,△ABC 是⊙O 的内接三角形,∠ACB =45°,∠AOC =150°,过点C 作⊙O 的切线交AB 的延长线于点D. (1)求证:CD =CB ;(2)如果⊙O 2,求AC 的长.23. 在平面直角坐标系xOy 中,函数(0)ky x x=>的图象G 与直线l :7y x =-+交于A (1,a ),B 两点. (1)求k 的值;(2)记图象G 在点A ,B 之间的部分与线段AB 围成的区域(不含边界)为W. 点P 在区域W 内,若点P 的横纵坐标都为整数,直接写出点P的坐标.24. 如图,在△ABC中,∠ABC=90°,∠C AB=30°, AB=4.5cm. D是线段AB上的一个动点,连接CD,过点D 作CD的垂线交CA于点E. 设AD=x cm,CE=y cm. (当点D与点A或点B重合时,y的值为5.2)探究函数y 随自变量x 的变化而变化的规律.(1) 通过取点、画图、测量,得到了x 与y 的几组对应值,如下表:(2) 建立平面直角坐标系xOy ,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3) 结合画出的函数图象,解决问题:当CE=2AD 时,AD 的长度约为 cm (结果保留一位小数).25. 某校要从小明和小亮两名运动员中挑出一人参加立定跳远比赛,学校记录了二人在最近的6次立定跳远选拔赛中的成绩(单位:cm),并进行整理、描述和分析. 下面给出了部分信息.a.ADb.小亮最近6次选拔赛成绩如下:250 254 260 271 255 240c.小明和小亮最近6次选拔赛中成绩的平均数、中位数、方差如下:平均数中位数方差小明252 252.5 129.7小亮255 m 88.7(1)m= ;(2)历届比赛表明:成绩达到266cm就有可能夺冠,成绩达到270cm就能打破纪录(积分加倍),根据这6次选拔赛成绩,你认为应选(填“小明”或“小亮”)参加这项比赛,理由是 . (至少从两个不同的角度说明推断的合理性)26. 在平面直角坐标系xOy中,已知点A(0,2),B(2,2),抛物线F:22=-+-.22y x mx m(1)求抛物线F的顶点坐标(用含m的式子表示);(2)当抛物线F与线段AB有公共点时,直接写出m的取值范围.27. 如图,在△ABC中,∠ACB=90°,∠B=4∠BAC. 延长BC到点D,使CD=CB,连接AD,过点D作DE⊥AB于点E,交AC于点F.(1) 依题意补全图形;(2) 求证:∠B=2∠BAD;(3) 用等式表示线段EA,EB和DB之间的数量关系,并证明.28.对于平面直角坐标系x O y中的点P和⊙C,给出如下定义:若⊙C上存在点A,使得∠APC=30°,则称P为⊙C的半角关联点.当⊙O的半径为1时,(1)在点D(12,-12),E(2,0),F(0,32)中,⊙O的半角关联点是__________;A B(2)直线l :23y x =--交x 轴于点M ,交y 轴于点N ,若直线l 上的点P (m ,n )是⊙O 的半角关联点,求m 的取值范围.数学试题答案一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9. 1080 ; 10.1x ≤ ; 11.> ; 12. 25 ;13. 红;15. 略 ; 16. 4 .三、解答题(本题共68分,第17-22题,每小题5分,第23-分17. (1) ………………………………………………2分(2)PB ………………………………………………3分角平分线上的点到角两边的距离相等………………………………………………5分 18. 原式=2=3√2+2 19. 原式=x 2-4xy +4y 2- x 2+ y 2-2 y 2=3 y 2-4xy 当4x =3y 时O原式=3 y 2-3 y 2=0 ………………………………………………5分 20. (1)∵∆=n 2+8m ………………………………………………1分 当n =m -2时,∆=(m +2)2≥0 ……………………………………………2分∴方程有两个实根 ……………………………………………3分 (2)略 ………………………………………………5分 21.(1)证明: ∵DF ∥AC,CF ∥BD∴四边形OCFD 是平行四边形 ………………………………………………1分 ∵四边形ABCD 是菱形 ∴AC ⊥BD ∴∠DOC =90°∴四边形OCFD 是矩形 …………………………………………………2分 (2)∵四边形ABCD 是菱形 ∴AD=CD ∵AD =5∴CD =5 ……………………………………………………………3分 ∵菱形ABCD 两条对角线交于O ∴OD =OB =12BD∴OD =4∵四边形OCFD 是矩形 ∴OD =CF∴在Rt △CFD 中,CF ²+DF ²=CD ²∴DF =3 ……………………………………………………………………4分 ∵tan ∠DCF =DF CF∴tan ∠DCF =34………………………………………………………5分22. (1)证明:连结OB .∵»»AB AB =,∠ACB =45°, ∴290AOB ACB ∠=∠=︒, ………………… 1分∵OA=OB ,∴45OAB OBA ∠=∠=︒∵∠AOC =150°,∴60COB ∠=︒ ∵OC=OB ,∴△OCB 是等边三角形, ………………… 2分 ∴60OCB OBC ∠=∠=︒, ∴75CBD ∠=︒, ∵CD 是⊙O 的切线,∴90OCD OCB BCD ∠=∠+∠=︒, ∴30BCD ∠=︒, ∴75D CBD ∠=∠=︒,∴CD =CB . ………………… 3分(2)解:过点B 作BE ⊥AC 于点E ,∵△OCB 是等边三角形,∴BC OC ==∵∠ACB =45°,∴1CE BE ==, ………………… 4分∵»»BCBC =,∠BOC =60°, ∴1302EAB BOC ∠=∠=︒, ∴tan BEEAB AE∠=,1AE=,∴AE =∴1AC AE CE =+=, ………………… 5分23. (1)6k = ………………… 3分(2)(2,4),(3,3),(4,2) ………………… 6分 24. 答案不唯一,如:(1)(2)略.…………………………………………………………………4分 (3) 1.9 ……………………………………………………………6分 25. (1)254.5 …………………………………………………………2分 (2)略 …………………………………………………………6分26. (1)(m , -2) …………………………………………………2分(2)-22m m ≤≤0, ≤≤4 ……………………………………6分 27.(1)补全图形如图; ………………………………………………2分 (2)证明:∵∠ACB =90°,CD =CB , ∴AD =AB .∴∠BAD =2∠BAC . ∵∠B =4∠BAC , ∴∠B =2∠BAD .………………………………………………4分(3)解: EA =EB +DB . ………………………………………………5分 证明:在EA 上截取EG =EB ,连接DG . ∵DE ⊥AB , ∴DG =DB . ∴∠DGB =∠B . ∵∠B =2∠BAD , ∴∠DGB =2∠BAD .∵∠DGB =∠BAD +∠ADG , ∴∠BAD =∠ADG . ∴GA =GD . ∴GA =DB .∴EA =EG +AG =EB +DB .………………………………………………7分28. (1) D 、E ………………………………………………2分(2) ((0,2)M N - ………………………………………3分 以O 为圆心,ON 长为半径画圆,交直线MN 于点G ,可得 m ≤0 ………………………………………………4分 设小圆⊙O 与y 轴负半轴的交点为H , 连接OG ∵ M (∴ OM =G EDA Btan∠OMN =3∴ ∠OMN =30°,∠ONM =60° ∴ △ OGN 是等边三角形 ∴ GH ⊥ y 轴,∴ 点G 的纵坐标为-1,代入2y x =-可得,横坐标为,∴ m ≥………………………………………………6分∴m ≤0 ………………………………………………7分。
北京市房山区2018年中考一模数学试卷(含答案)
北京市房山区2018年中考一模数学试卷一、选择题(本题共16分,每小题2分)1.用量角器度量∠MON ,下列操作正确的是( )2.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A. b a >B.a b <C. 0>b a +D. b a <- 3.如图,直线m ∥n ,点A 在直线m 上,点B 、C 在直线n 上,AB=CB ,∠1=70°,则∠BAC 等于( )A. 40°B. 55°C.70°D. 110°4.下列图形中,既是轴对称图形又是中心对称图形的是( )5.如图,在⊙O 中,AC 为⊙O 直径,B 为圆上一点,若∠OBC =26°,则∠AOB 的度数为( )6.某班体育委员对本班所有学生一周锻炼时间(单位:小时)进行了统计,绘制了统计图,如图所示,根据统计图提供的信息,下列推断正确的是( )A.该班学生一周锻炼时间的中位数是11B.该班学生共有44人C.该班学生一周锻炼时间的众数是10D.该班学生一周锻炼12小时的有9人7.如果03=-b a ,那么代数式ab a a b ab a 222)2(-÷-- 的值是( ) A.21 错误!未找到引用源。
B.21- C.41错误!未找到引用源。
D.错误!未找到引用源。
18.小宇在周日上午8:00从家出发,乘车1小时到达某活动中心参加实践活动,11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家,他即刻按照来活动中心时的路线,以5千米/时的平均速度快步返回,同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回,设小宇离家x 小时后,到达离家y 千米的地方,图中折线OABCD 表示y 与x 之间的函数关系,下列叙述错误的是( )A.活动中心与小宇家相距22千米B.小宇在活动中心活动时间为2小时C.他从活动中心返家时,步行用了0.4小时D.小宇不能在12:00前回到家 二、填空题(本题共16分,每小题2分)9.如果二次根式4+x 错误!未找到引用源。
北京市2018年中考数学二模试题汇编代几综合题
代几综合题2018昌平二模28.在平面直角坐标系中,对于任意三点A 、B 、C 我们给出如xOy 下定义:“横长”a :三点中横坐标的最大值与最小值的差,“纵长”b :三点中纵坐标的最大值与最小值的差,若三点的横长与纵长相等,我们称这三点为正方点.例如:点 (,0) ,点 (1,1) ,点 (, ),则、A 2-BC 1-2-A 、三点的 “横长”=||=3,、、三点的“纵B C a 1(2)--A B C 长”=||=3. 因为=,所以、、三点为正方点.b 1(2)--a b A B C (1)在点 (3,5) ,(3,) , (,)中,与点、R S 2-T 4-3-A 为正方点的是 ;B (2)点P (0,t )为轴上一动点,若,,三点为正方点,的值为 ;y A B P t (3)已知点 (1,0).D ①平面直角坐标系中的点满足以下条件:点,,三点为正方点,在图中画出所有符合条件的E A D E 点组成的图形;E ②若直线:上存在点,使得,,三点为正方点,直接写出m 的取值范围. l 12y x m =+N A D N 2018朝阳二模28. 对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于,则称1P 为直线m 的平行点.(1)当直线m 的表达式为y =x 时,①在点P 1(1,1),P 2(0,),P 3(,)中,直线m 的平行点是 ;222-22②⊙O 的半径为,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标.10y xxyyx(2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线的平行点,直接写出n 的x y 3=取值范围.2018东城二模28. 研究发现,抛物线上的点到点F (0,1)的距离与到直线l :的距离相等.如图1所214y x =1y =-示,若点P 是抛物线上任意一点,PH ⊥l 于点H ,则PH PF =.214y x =基于上述发现,对于平面直角坐标系x O y 中的点M ,记点到点的距离与点到点的距离之M P P F 和的最小值为d ,称d 为点M 关于抛物线的关联距离;当时,称点M 为抛物线214y x =24d ≤≤的关联点.214y x=(1)在点,,,中,抛物线的关联点是______ ;1(20)M ,2(12)M ,3(45)M ,4(04)M -,214y x =(2)如图2,在矩形ABCD 中,点,点(1)A t ,(13)C t +,①若t =4,点M 在矩形ABCD 上,求点M 关于抛物线的关联距离d 的取值范围;214y x =②若矩形ABCD 上的所有点都是抛物线的关联点,则t 的取值范围是__________.214y x =2018房山二模28. 已知点P ,Q 为平面直角坐标系xOy 中不重合的两点,以点P 为圆心且经过点Q 作⊙P ,则称点Q 为⊙P 的“关联点”,⊙P 为点Q 的“关联圆”.(1)已知⊙O 的半径为1,在点E (1,1),F (,),M (0,-1)中,⊙O 的“关联点”为-1232;(2)若点P (2,0),点Q (3,n ),⊙Q 为点P 的“关联圆”,且⊙Q 的半径为,求n 的值;5(3)已知点D (0,2),点H (m ,2),⊙D 是点H 的“关联圆”,直线与x 轴,y 轴分别443y x =-+交于点A ,B . 若线段AB 上存在⊙D 的“关联点”,求m 的取值范围.2018丰台二模28.在平面直角坐标系xOy 中,将任意两点与之间的“直距”定义为:()11,y x P ()22y x Q ,.2121y y x x D PQ -+-=例如:点M (1,),点N (3,),则.2-5-132(5)5MN D =-+---=已知点A (1,0)、点B (-1,4).(1)则,;_______=AO D _______=BO D (2)如果直线AB 上存在点C ,使得为2,请你求出点C 的坐标;CO D (3)如果⊙B 的半径为3,点E 为⊙B 上一点,请你直接写出的取值范围.EO D2018海淀二模28.对某一个函数给出如下定义:若存在实数,对于函数图象上横坐标之差为1的任意两点,k 1(,)a b ,都成立,则称这个函数是限减函数,在所有满足条件的中,其最大值称为这2(1,)a b +21b b k -≥k 个函数的限减系数.例如,函数,当取值和时,函数值分别为,2y x =-+x a 1a +12b a =-+,故,因此函数是限减函数,它的限减系数为.21b a =-+211b b k -=-≥2y x =-+1-(1)写出函数的限减系数;21y x =-(2),已知()是限减函数,且限减系数,求的取值范围.0m >1y x=1,0x m x -≤≤≠4k =m (3)已知函数的图象上一点,过点作直线垂直于轴,将函数的图象在点2y x =-P P l y 2y x =-右侧的部分关于直线翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减P l 函数,且限减系数,直接写出点横坐标的取值范围.1k ≥-P n2018平谷二模28.对于平面直角坐标系xOy 中的点P 和⊙,给出如下定义:若⊙上存在两个点A ,B ,使M M AB =2PM ,则称点P 为⊙的“美好点”. M (1)当⊙半径为2,点M 和点O 重合时, M 点 ,,中,⊙的“美好点”是 ;○1()120P -,()211P ,()322P ,O 点P 为直线y=x+b 上一动点,点P 为⊙○2的“美O 好点”,求b 的取值范围;(2)点M 为直线y=x 上一动点,以2为半径作⊙,M 点P 为直线y =4上一动点,点P 为⊙的M “美好点”,求点M 的横坐标m 的取值范围.442018石景山二模28.在平面直角坐标系中,对于任意点P ,给出如下定义:若⊙P 的半径为1,则称⊙P 为点P 的xOy “伴随圆”.(1)已知,点,()1,0P ①点在点P 的“伴随圆” (填“上”或“内”或“外”);13,2A ⎛⎝②点在点P 的“伴随圆” (填“上”或“内”或“外”);()1,0B -(2)若点P 在轴上,且点P 的“伴随圆”与直线相切,求点P 的坐标;x x y 33=(3)已知直线与、轴分别交于点A ,B ,直线与、轴分别交于点C ,D ,点2+=x y x y 2-=x y x y P 在四边形的边上并沿的方向移动,直接写出点P 的“伴随圆”经ABCD DA CD BC AB →→→过的平面区域的面积.2018西城二模28. 对于平面直角坐标系xOy 中的点(x ≠0),将它的纵坐标y 与横坐标x 的比 称为点Q (,)Q x y yx的“理想值”,记作.如的“理想值”.Q L (1,2)Q -221Q L ==--(1)①若点在直线上,则点Q 的“理想值”等于_________;(1,)Q a 4y x =-Q L ②如图,,⊙C 的半径为1. 若点Q 在⊙C 上,则点Q 的“理想值”的取值范围是 .(3,1)C Q L (2)点D 在直线上,⊙D 的半径为1,点Q 在⊙D 上运动时都有0≤L Q ,求点D 的3+3y x =3横坐标的取值范围;D x (3)(m >0),Q 是以r 为半径的⊙M 上任意一点,当0≤L Q ≤(2,)M m 22圆,并直接写出相应的半径r 的值.(要求画图位置准确,但不必尺规作图)2018怀柔二模28. A 为⊙C 上一点,过点A 作弦AB ,取弦AB 上一点P ,若满足,则称P 为点A 关于131<≤ABAP⊙C 的黄金点.已知⊙C 的半径为3,点A 的坐标为(1,0).(1)当点C 的坐标为(4,0)时,①在点D (3,0),E (4,1),F (7,0)中,点A 关于⊙C 的黄金点是 ;②直线上存在点A 关于⊙C 的黄金点P ,求点P 的横坐标的取值范围;3333-=x y (2)若y 轴上存在点A 关于⊙C 的黄金点,直接写出点C 横坐标的取值范围.2018门头沟二模28.在平面直角坐标系xOy 中的某圆上,有弦MN ,取MN 的中点P ,我们规定:点P 到某点(直线)的距离叫做“弦中距”,用符号“”表示.d 中以为圆心,半径为2的圆上.(3,0)W -(1)已知弦MN 长度为2.①如图1:当MN ∥x 轴时,直接写出到原点O 的的长度;d 中 ②如果MN 在圆上运动时,在图2中画出示意图,并直接写出到点O 的的取值范围.d 中(2)已知点,点N 为⊙W 上的一动点,有直线,求到直线的(5,0)M -2y x =-2y x =-d 中备用图2018顺义二模28.已知边长为2a 的正方形ABCD ,对角线AC 、BD 交于点Q ,对于平面内的点P 与正方形ABCD ,给出xyWO如下定义:如果≤,则称点P 为正方形ABCD 的“关联点”.a PQ 在平面直角坐标系xOy 中,若A (-1,1),B (-1,-1),C (1,-1),D (1,1) .(1)在,,中,正方形ABCD 的“关联点”有;11(,0)2-P 21(2P 3P (2)已知点E 的横坐标是m,若点E 在直线上,并且E 是正方形ABCD 的“关联点”,求m 的=y 取值范围;(3)若将正方形ABCD 沿x 轴平移,设该正方形对角线交点Q 的横坐标是n ,直线与x 轴、1=+y y 轴分别相交于M 、N 两点.如果线段MN 上的每一个点都是正方形ABCD 的“关联点”,求n 的取值范围.y xO。
北京市2018年中考数学二模试题汇编代几综合题
代几综合题2018昌平二模28.在平面直角坐标系xOy 中,对于任意三点A 、B 、C 我们给出如下定义:“横长”a :三点中横坐标的最大值与最小值的差,“纵长”b :三点中纵坐标的最大值与最小值的差,若三点的横长与纵长相等,我们称这三点为正方点.例如:点A (2-,0),点B (1,1),点C (1-,2-),则A 、B 、C 三点的“横长”a =|1(2)--|=3,A 、B 、C 三点的“纵长”b =|1(2)--|=3.因为a =b ,所以A 、B 、C 三点为正方点.(1)在点R (3,5),S (3,2-),T (4-,3-)中,与点A 、B 为正方点的是;(2)点P (0,t )为y 轴上一动点,若A ,B ,P 三点为正方点,t 的值为;(3)已知点D (1,0).①平面直角坐标系中的点E 满足以下条件:点A ,D ,E 三点为正方点,在图中画出所有符合条件的点E 组成的图形;②若直线l :12y x m =+上存在点N ,使得A ,D ,N 三点为正方点,直接写出m 的取值范围.2018朝阳二模28.对于平面直角坐标系xOy中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于,则称P 为直线m 的平行点.(1)当直线m 的表达式为y =x 时,①在点P 1(1,1),P 2(0,2),P 3(22-,22)中,直线m 的平行点是;②⊙O 的半径为10,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标.(2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线x y 3=的平行点,直接写出n 的取值范围.2018东城二模28.研究发现,抛物线214y x =上的点到点F (0,1)的距离与到直线l :1y =-的距离相等.如图1所示,若点P 是抛物线214y x =上任意一点,PH ⊥l 于点H ,则PH PF =.基于上述发现,对于平面直角坐标系x O y 中的点M ,记点M 到点P 的距离与点P 到点F 的距离之和的最小值为d,称d 为点M 关于抛物线214y x =的关联距离;当24d ≤≤时,称点M 为抛物线214y x =的关联点.。
2018届北京市中考数学二模试题汇编(Word版,20份)
代数综合题2018昌平二模26.在平面直角坐标系xOy 中,抛物线223(0)y ax ax a a =--≠,与x 轴交于A 、B 两点(点A 在点B 的左侧). (1)求点A 和点B 的坐标;(2)若点P (m ,n )是抛物线上的一点,过点P 作x 轴的垂线,垂足为点D .①在0a >的条件下,当22m -≤≤时,n 的取值范围是45n -≤≤,求抛物线的表达式; ②若D 点坐标(4,0),当PD AD >时,求a 的取值范围.2018朝阳二模26.已知二次函数)0(222≠--=a ax ax y . (1)该二次函数图象的对称轴是直线 ;(2)若该二次函数的图象开口向上,当-1≤x ≤5时,函数图象的最高点为M ,最低点为N ,点M 的纵坐标为211,求点M 和点N 的坐标;(3)对于该二次函数图象上的两点A (x 1,y 1),B (x 2,y 2),设t ≤ x 1 ≤ t +1,当x 2≥3时,均有y 1 ≥ y 2,请结合图象,直接写出t 的取值范围.2018东城二模26.在平面直角坐标系xOy 中,抛物线()230y ax bx a =+-≠经过点()1,0A -和点()45B ,. (1)求该抛物线的表达式;(2)求直线AB 关于x 轴的对称直线的表达式;(3)点P 是x 轴上的动点,过点P 作垂直于x 轴的直线l ,直线l 与该抛物线交于点M ,与直线AB 交于点N .当PM PN <时,求点P 的横坐标P x 的取值范围.2018房山二模26. 在平面直角坐标系xOy 中,二次函数2y ax bx c =++(0a ≠)的图象经过A (0,4),B (2,0),C (-2,0)三点.(1)求二次函数的表达式;(2)在x 轴上有一点D (-4,0),将二次函数的图象沿射线DA 方向平移,使图象再次经过点B .①求平移后图象顶点E 的坐标;②直接写出此二次函数的图象在A ,B 两点之间(含A ,B 两点)的曲线部分在平移过程中所扫过的面积.2018丰台二模26.在平面直角坐标系xOy 中,二次函数22y x hx h =-+的图象的顶点为点D . (1)当1h =-时,求点D 的坐标;(2)当x ≤≤11-≤≤时,求函数的最小值m . (用含h 的代数式表示m )2018海淀二模26.在平面直角坐标系xOy 中,已知点(3,1)A -,(1,1)B -,(,)C m n ,其中1n >,以点,,A B C 为顶点的平行四边形有三个,记第四个顶点分别为123,,D D D ,如图所示.(1)若1,3m n =-=,则点123,,D D D 的坐标分别是( ),( ),( ); (2)是否存在点C ,使得点123,,,,A B D D D 在同一条抛物线上?若存在,求出点C 的坐标;若不存在,说明理由.2018平谷二模26.在平面直角坐标系中,点D是抛物线223y ax ax a =--()0a >的顶点,抛物线与x 轴交于点A ,B (点A 在点B 的左侧).(1)求点A ,B 的坐标;(2)若M 为对称轴与x 轴交点,且DM =2AM ,求抛物线表达式; (3)当30°<∠ADM <45°时,求a 的取值范围.2018石景山二26.在平面直角坐标系xOy 中,抛物线()240y ax x c a =++≠经过点()34,A -和()02,B .(1)求抛物线的表达式和顶点坐标;(2)将抛物线在A 、B 之间的部分记为图象M (含A 、B 两点).将图象M 沿直线3x =翻折,得到图象N .若过点()94,C 的直线y kx b =+与图象M 、图象N 都相交,且只有两个交点,求b 的取值范围.2018西城二模26. 抛物线M :241y ax ax a =-+- (a ≠0)与x 轴交于A ,B 两点(点A 在点B 左侧),抛物线的顶点为D .(1)抛物线M 的对称轴是直线____________; (2)当AB =2时,求抛物线M 的函数表达式;(3)在(2)的条件下,直线l :y kx b =+(k ≠0)经过抛物线的顶点D ,直线y n =与抛物线M 有两个公共点,它们的横坐标分别记为1x ,2x ,直线y n =与直线l 的交点的横坐标记为3x (30x >),若当2-≤n ≤1-时,总有13320x x x x ->->,请结合函数的图象,直接写出k 的取值范围.2018怀柔二模26.在平面直角坐标系xOy 中,二次函数C 1:()332--+=x m mx y (m >0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 和点C 的坐标; (2)当AB =4时,①求二次函数C 1的表达式;②在抛物线的对称轴上是否存在点D ,使△DAC 的周长最小,若存在,求出点D 的坐标,若不存在,请说明理由;(3)将(2)中抛物线C 1向上平移n 个单位,得到抛物线C 2,若当0≤x ≤25时,抛物线C 2与x 轴只有一个公共点,结合函数图象,求出n 的取值范围.2018门头沟二模26.在平面直角坐标系xOy 中,有一抛物线其表达式为222y x mx m =-+. (1)当该抛物线过原点时,求m 的值;(2)坐标系内有一矩形OABC ,其中(4,0)A 、(4,2)B . ①直接写出C 点坐标;②如果抛物线222y x mx m =-+与该矩形有2个交点,求m 的取值范围.x2018顺义二模26.在平面直角坐标系中,二次函数221y x ax a =+++的图象经过点 M (2,-3). (1)求二次函数的表达式;(2)若一次函数(0)y kx b k =+≠的图象与二次函数221y x ax a =+++的图象经过x 轴上同一点,探究实数k ,b 满足的关系式;(3)将二次函数221y x ax a =+++的图象向右平移2个单位,若点P (x 0,m )和Q (2,n )在平移后的图象上,且m >n ,结合图象求x 0的取值范围.反比例综合题2018昌平二模22.如图,在平面直角坐标系xOy 中,一次函数+(0)y ax b a =≠与反比例函数ky k x=≠(0)的图象交于点A (4,1)和B (1-,n ).(1)求n 的值和直线+y ax b =的表达式;(2)根据这两个函数的图象,直接写出不等式0kax b x+-<的解集.2018朝阳二模21. 如图,在平面直角坐标系xOy 中,直线61+=x k y 与函数)0(2>=x xk y 的图象的两个交点分别为A (1,5),B . (1)求21,k k 的值;(2)过点P (n ,0)作x 轴的垂线,与直线61+=x k y 和函数)0(2>=x xk y 的图象的交点分别为点M ,N ,当点M 在点N 下方时,写出n 的取值范围.x2018东城二模 22. 已知函数1y x=的图象与函数()0y kx k =≠的图象交于点(),P m n . (1)若2m n =,求k 的值和点P 的坐标;(2)当m n ≤时,结合函数图象,直接写出实数k 的取值范围.2018房山二模22. 如图,在平面直角坐标系xOy 中,直线y kx m =+与双曲线2y x=-相交于 点A (m ,2).(1)求直线y kx m =+的表达式;(2)直线y kx m =+与双曲线2y x=-的另一个交点为B ,点P 为x 轴上一点,若AB BP =,直接写出P 点坐标 .2018丰台二模22.在平面直角坐标系xOy 中,直线l :21(0)y mx m m =-+≠. (1)判断直线l 是否经过点M (2,1),并说明理由; (2)直线l 与反比例函数ky x=的图象的交点分别为点M ,N ,当OM =ON 时,直接写出点N 的坐标.2018海淀二模22.已知直线l 过点(2,2)P ,且与函数(0)ky x x=>的图象相交于,A B 两点,与x 轴、y 轴分别交于点,C D ,如图所示,四边形,ONAE OFBM 均为矩形,且矩形OFBM 的面积为3. (1)求k 的值;(2)当点B 的横坐标为3时,求直线l 的解析式及线段BC 的长; (3)如图是小芳同学对线段,AD BC 的长度关系的思考示意图.记点B 的横坐标为s ,已知当23s <<时,线段BC 的长随s 的增大而减小,请你参考小芳的示意图判断:当3s ≥时,线段BC 的长随s 的增大而 . (填“增大”、“减小”或“不变”)2018平谷二模21.如图,在平面直角坐标系xOy 中,函数()0ky k x=≠的图象与直线y =x -2交于 点A (a ,1). (1)求a ,k 的值;(2)已知点P (m ,0)(1≤m < 4),过点P 作平行于y 轴的直线,交直线y =x -2于点M (x 1,y 1),交函数()0ky k x=≠的图象于点N (x 1,y 2),结合函数的图象,直接写出12y y -的取值范围.NMFCBO2018石景山二模22.在平面直角坐标系xOy 中,直线1:2l y x b =-+与x 轴,y 轴分别交于点1(,0)2A ,B ,与反比例函数图象的一个交点为(),3M a . (1)求反比例函数的表达式;(2)设直线2:2l y x m =-+与x 轴,y 轴分别交于点C ,D ,且3OCD OAB S S ∆∆=,直接写出m 的值 .2018西城二模23. 如图,在平面直角坐标系xOy 中,函数my x=(0x <)的图象经过点(4,)A n -,AB ⊥x 轴于点B ,点C 与点A 关于原点O 对称, CD ⊥x 轴于点D ,△ABD 的面积为8. (1)求m ,n 的值;(2)若直线y kx b =+(k ≠0)经过点C ,且与x 轴,y 轴的交点分别为点E ,F ,当2CF CE =时,求点F 的坐标.2018怀柔二模23.在平面直角坐标系xOy 中,直线y =kx +b (k ≠0)与双曲线)0(≠=m xmy 相交于A ,B 两点,A 点坐标为(-3,2),B 点坐标为(n ,-3). (1)求一次函数和反比例函数表达式;(2)如果点P 是x 轴上一点,且△ABP 的面积是5,直接写出点P 的坐标.2018门头沟二模20. 如图,在平面直角坐标系xOy 中,一次函数y x =与反比例函数k y x=(k ≠0)的图象相交于点(2,2)M . (1)求k 的值;(2)点(0,)P a 是y 轴上一点,过点P 且平行于x 轴的直线分别与一次函数y x =、反比例函数k y x=的图象相交于点1(,)A x b 、2(,)B x b ,当12x x <时,画出示意图并直接写出a 的取值范围.2018顺义二模20.如图,在平面直角坐标系xOy 中,函数ky x=(x >0)的图象与直线21y x =+交于点A (1,m ).(1)求k 、m 的值;(2)已知点P (n ,0)(n ≥1),过点P 作平行于y 轴的直线,交直线21y x =+于点B ,交函数ky x=(x >0)的图象于点C .横、纵坐标都是整数的点叫做整点. ①当3n =时,求线段AB 上的整点个数;②若k y x=(x >0)的图象在点A 、C 之间的部分与线段AB 、BC 所围成的区域内(包括边界)恰有5个整点,直接写出n 的取值范围.函数操作题2018昌平二模25.有这样一个问题:探究函数3126y x x =-的图象与性质.小彤根据学习函数的经验,对函数3126y x x =-的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:的值为 ;(2)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象; (3)方程31226x x -=-实数根的个数为 ; (4)观察图象,写出该函数的一条性质 ; (5)在第(2)问的平面直角坐标系中画出直线12y x =,根据图象写出方程311262x x x -=的一个正数根约为 (精确到0.1).2018朝阳二模25. 在数学活动课上,老师提出了一个问题:把一副三角尺如图1摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整: (1)画出几何图形,明确条件和探究对象;如图2,在Rt △ABC 中,∠C =90°,AC =BC =6cm ,D 是线段AB 上一动点,射线DE ⊥BC 于点E ,∠EDF = °,射线DF 与射线AC 交于点F .设B ,E 两点间的距离为x cm ,E ,F 两点间的距离为y cm .(2)通过取点、画图、测量,得到了x 与y 的几组值,如下表:(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;图1图2(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为 cm.2018东城二模25. 小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究. 下面是小强的探究过程,请补充完整:建立函数模型:设矩形小花园的一边长为x米,篱笆长为y米.则y关于x的函数表达式为 ;列表(相关数据保留一位小数):根据函数的表达式,得到了x与y的几组值,如下表:描点、画函数图象:如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;观察分析、得出结论:根据以上信息可得,当x= 时,y有最小值.由此,小强确定篱笆长至少为米.2018房山二模25. 有这样一个问题:探究函数3126y x x =-的图象与性质. 小东根据学习函数的经验,对函数3126y x x =-的图象与性质进行了探究. 下面是小东的探究过程,请补充完整: (1)函数3126y x x =-的自变量x 的取值范围是 ; (2) 下表是y 与x 的几组对应值的值为 ;(3) 如下图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)观察图象,写出该函数的两条性质 .2018丰台二模25.数学活动课上,老师提出问题:如图,有一张长4dm,宽3dm的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.下面是探究过程,请补充完整:Array(1)设小正方形的边长为x dm,体积为y dm3,根据长方体的体积公式得到y和x的关系式:;(2)确定自变量x的取值范围是;(3)列出y与x的几组对应值.(说明:表格中相关数值保留一位小数)(4)在下面的平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(5)结合画出的函数图象,解决问题:当小正方形的边长约为 dm时,盒子的体积最大,最大值约为 dm3.2018海淀二模25.小明对某市出租汽车的计费问题进行研究,他搜集了一些资料,部分信息如下:小明首先简化模型,从简单情形开始研究:①只考虑白天正常行驶(无低速和等候);②行驶路程3公里以上时,计价器每500米计价1次,且每1公里中前500米计价1.2元,后500米计价1.1元.下面是小明的探究过程,请补充完整:记一次运营出租车行驶的里程数为x(单位:公里),相应的实付车费为y(单位:元). (1)下表是y随x的变化情况(3)一次运营行驶x 公里(0x >)的平均单价记为w (单位:元/公里),其中yw x=. ①当3,3.4x =和3.5时,平均单价依次为123,,w w w ,则123,,w w w 的大小关系是____________;(用“<”连接)②若一次运营行驶x 公里的平均单价w 不大于行驶任意s (s x ≤)公里的平均单价s w ,则称这次行驶的里程数为幸运里程数.请在上图中x 轴上表示出34(不包括端点)之间的幸运里程数x 的取值范围.2018平谷二模25.如图,△ABC中,∠ACB=90°,∠A=30°,AB=6,点P是斜边AB上一点(点P不与点A,B重合),过点P作PQ⊥AB于P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y.小明根据学习函数的经验,对函数y随自变量xP的变换而变化的规律进行了探究. 下面是小明的探究过程,请补充完整:(1)通过取点、画图、测量、计算,得到了x 与y 的几组值,如下表:的值是 (保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合几何图形和函数图象直接写出,当QP =CQ 时,x 的值是 .2018石景山二模25.如图,在ABC △中,8cm AB ,点D 是AC 边的中点,点P 是边AB 上的一个动点,过点P 作射线BC 的垂线,垂足为点E ,连接DE .设cm PA x =,cm ED y =.小石根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:点E 是BC 边的中点时,PA 的长度约为 cm .2018西城二模 25.阅读下面材料:已知:如图,在正方形ABCD 中,边1AB a .按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小.请解决以下问题: (1)完成表格中的填空:① ;② ; ③ ;④ ;(2)根据以上第三步、第四步的作法画出第三个正方形CHIJ (不要求尺规作图).2018怀柔二模25.如图,在△ABC 中,∠ACB =90°,∠A =30°,AB =6cm ,点D 是线段AB 上一动点,将线段CD 绕点C 逆时针旋转50°至CD ′,连接BD ′.设AD 为xcm ,BD ′为ycm .小夏根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.BCAD'下面是小夏的探究过程,请补充完整.(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BD=BD'时,线段AD 的长度约为_________cm .2018门头沟二模25. 如图,55MAN ∠=︒,在射线AN 上取一点B ,使6AB cm =,过点B 作BC AM ⊥于点C ,点D 是线段AB 上的一个动点,E 是BC 边上一点,且30CDE ∠=︒,设AD=x cm ,BE=y cm ,探究函数y 随自变量x 的变化而变化的规律.(1)取指定点作图.根据下面表格预填结果,先通过作图确定AD=2cm 时,点E 的位置,测量BE 的长度。
北京市2018年中考数学二模试题汇编代几综合题无答案
代几综合题2018昌平二模28.在平面直角坐标系xOy 中,对于任意三点A 、B 、C 我们给出如下定义:“横长”a :三点中横坐标的最大值与最小值的差,“纵长”b :三点中纵坐标的最大值与最小值的差,若三点的横长与纵长相等,我们称这三点为正方点.例如:点A (2-,0) ,点 B (1,1) ,点 C (1-, 2-),则A 、B 、C 三点的 “横长”a =|1(2)--|=3,A 、B 、C 三点的“纵长”b =|1(2)--|=3. 因为a =b ,所以A 、B 、C 三点为正方点.(1)在点R (3,5) ,S (3,2-) ,T (4-,3-)中,与点A 、B 为正方点的是 ; (2)点P (0,t )为y 轴上一动点,若A ,B ,P 三点为正方点,t 的值为 ; (3)已知点D (1,0).①平面直角坐标系中的点E 满足以下条件:点A ,D ,E 三点为正方点,在图中画出所有符合条件的点E 组成的图形; ②若直线l :12y x m =+上存在点N ,使得A ,D ,N 三点为正方点,直接写出m 的取值范围.y xxy yx2018朝阳二模28. 对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于,则称P 为直线m 的平行点. (1)当直线m 的表达式为y =x 时, ①在点P 1(1,1),P 2(0,2),P 3(22-,22)中,直线m 的平行点是 ; ②⊙O 的半径为10,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标. (2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线x y 3=的平行点,直接写出n 的取值范围.2018东城二模28. 研究发现,抛物线214y x =上的点到点F (0,1)的距离与到直线l :1y =-的距离相等.如图1所示,若点P 是抛物线214y x =上任意一点,PH ⊥l 于点H ,则PH PF =.基于上述发现,对于平面直角坐标系x O y 中的点M ,记点M 到点P 的距离与点P 到点F 的距离之和的最小值为d ,称d 为点M 关于抛物线214y x =的关联距离;当24d ≤≤时,称点M 为抛物线214y x =的关联点.(1)在点1(20)M ,,2(12)M ,,3(45)M ,,4(04)M -,中,抛物线214y x =的关联点是______ ;(2)如图2,在矩形ABCD 中,点(1)A t ,,点(13)C t +, ①若t =4,点M 在矩形ABCD 上,求点M 关于抛物线214y x =的关联距离d 的取值范围; ②若矩形ABCD 上的所有点都是抛物线214y x =的关联点,则t 的取值范围是__________.2018房山二模28. 已知点P,Q为平面直角坐标系xOy中不重合的两点,以点P为圆心且经过点Q作⊙P,则称点Q为⊙P的“关联点”,⊙P为点Q的“关联圆”.(1)已知⊙O的半径为1,在点E(1,1),F(-12,32),M(0,-1)中,⊙O的“关联点”为;(2)若点P(2,0),点Q(3,n),⊙Q为点P的“关联圆”,且⊙Q的半径为 5 ,求n的值;(3)已知点D(0,2),点H(m,2),⊙D是点H的“关联圆”,直线443y x=-+与x轴,y轴分别交于点A,B. 若线段AB上存在⊙D的“关联点”,求m的取值范围.2018丰台二模28.在平面直角坐标系xOy 中,将任意两点()11,y x P 与()22y x Q ,之间的“直距”定义为:2121y y x x D PQ -+-=.例如:点M (1,2-),点N (3,5-),则132(5)5MN D =-+---=. 已知点A (1,0)、点B (-1,4).(1)则_______=AO D ,_______=BO D ;(2)如果直线AB 上存在点C ,使得CO D 为2,请你求出点C 的坐标; (3)如果⊙B 的半径为3,点E 为⊙B 上一点,请你直接写出EO D 的取值范围.2018海淀二模28.对某一个函数给出如下定义:若存在实数k ,对于函数图象上横坐标之差为1的任意两点1(,)a b ,2(1,)a b +,21b b k -≥都成立,则称这个函数是限减函数,在所有满足条件的k 中,其最大值称为这个函数的限减系数.例如,函数2y x =-+,当x 取值a 和1a +时,函数值分别为12b a =-+,21b a =-+,故211b b k -=-≥,因此函数2y x =-+是限减函数,它的限减系数为1-.(1)写出函数21y x =-的限减系数; (2)0m >,已知1y x=(1,0x m x -≤≤≠)是限减函数,且限减系数4k =,求m 的取值范围.(3)已知函数2y x =-的图象上一点P ,过点P 作直线l 垂直于y 轴,将函数2y x =-的图象在点P 右侧的部分关于直线l 翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减函数,且限减系数1k ≥-,直接写出P 点横坐标n 的取值范围.2018平谷二模28.对于平面直角坐标系xOy中的点P和⊙M,给出如下定义:若⊙M上存在两个点A,B,使AB=2PM,则称点P为⊙M的“美好点”.(1)当⊙M半径为2,点M和点O重合时,○1点()120P-,,()211P,,()322P,中,⊙O的“美好点”是;○2点P为直线y=x+b上一动点,点P为⊙O的“美好点”,求b的取值范围;(2)点M为直线y=x上一动点,以2为半径作⊙M,点P为直线y=4上一动点,点P为⊙M的“美好点”,求点M的横坐标m的取值范围.2018石景山二模28.在平面直角坐标系xOy 中,对于任意点P ,给出如下定义:若⊙P 的半径为1,则称⊙P 为点P 的“伴随圆”. (1)已知,点()1,0P ,①点1,2A ⎛⎝⎭在点P 的“伴随圆” (填“上”或“内”或“外”); ②点()1,0B -在点P 的“伴随圆” (填“上”或“内”或“外”);(2)若点P 在x 轴上,且点P 的“伴随圆”与直线x y 33=相切,求点P 的坐标; (3)已知直线2+=x y 与x 、y 轴分别交于点A ,B ,直线2-=x y 与x 、y 轴分别交于点C ,D ,点P 在四边形ABCD 的边上并沿DA CD BC AB →→→的方向移动,直接写出点P 的“伴随圆”经过的平面区域的面积.2018西城二模28. 对于平面直角坐标系xOy 中的点(,)Q x y (x ≠0),将它的纵坐标y 与横坐标x 的比yx称为点Q 的“理想值”,记作Q L .如(1,2)Q -的“理想值”221Q L ==--. (1)①若点(1,)Q a 在直线4y x =-上,则点Q 的“理想值”Q L 等于_________;②如图,C ,⊙C 的半径为1. 若点Q 在⊙C 上,则点Q 的“理想值”Q L 的取值范围是 .(2)点D 在直线+3y =上,⊙D 的半径为1,点Q 在⊙D 上运动时都有0≤L Q ,求点D 的横坐标D x 的取值范围;(3)(2,)M m (m >0),Q 是以r 为半径的⊙M 上任意一点,当0≤L Q ≤件的最大圆,并直接写出相应的半径r 的值.(要求画图位置准确,但不必尺规作图)2018怀柔二模28. A 为⊙C 上一点,过点A 作弦AB ,取弦AB 上一点P ,若满足131<≤ABAP ,则称P 为点A 关于⊙C 的黄金点.已知⊙C 的半径为3,点A 的坐标为(1,0). (1)当点C 的坐标为(4,0)时,①在点D (3,0),E (4,1),F (7,0)中,点A 关于⊙C 的黄金点是 ; ②直线3333-=x y 上存在点A 关于⊙C 的黄金点P ,求点P 的横坐标的取值范围; (2)若y 轴上存在..点A 关于⊙C 的黄金点,直接写出点C 横坐标的取值范围.2018门头沟二模28.在平面直角坐标系xOy中的某圆上,有弦MN,取MN的中点P,我们规定:点P到某点(直”表示.线)的距离叫做“弦中距”,用符号“d中以(3,0)W-为圆心,半径为2的圆上.(1)已知弦MN长度为2.①如图1:当MN∥x轴时,直接写出到原点O的d的长度;中的取值范围.②如果MN在圆上运动时,在图2中画出示意图,并直接写出到点O的d中(2)已知点(5,0)y x=-,求到直线2=-的dy xM-,点N为⊙W上的一动点,有直线2中备用图2018顺义二模28.已知边长为2a 的正方形ABCD ,对角线AC 、BD 交于点Q ,对于平面内的点P 与正方形ABCD ,给出如下定义:如果a ≤PQ ,则称点P 为正方形ABCD 的“关联点”. 在平面直角坐标系xOy 中,若A (-1,1),B (-1,-1),C (1,-1),D (1,1) .(1)在11(,0)2-P ,21(2P ,3P 中,正方形ABCD 的“关联点”有 ;(2)已知点E 的横坐标是m ,若点E 在直线y 上,并且E 是正方形ABCD 的“关联点”,求m 的取值范围;(3)若将正方形ABCD 沿x 轴平移,设该正方形对角线交点Q 的横坐标是n ,直线1+y 与x 轴、y 轴分别相交于M 、N 两点.如果线段MN 上的每一个点都是正方形ABCD 的“关联点”,求n 的取值范围.。
最新北京市房山区中考数学二模试题(有配套答案)
北京市房山区中考数学二模试卷一、选择题(本大题共30分,每小题3分):下列各题均有四个选项,其中只有一个使符合题意的,请把正确答案的字母在答题卡相应位置涂黑.1.小星同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数约为61700000,这个数用科学记数法表示为()A.617×105B.6.17×106C.6.17×107D.0.617×1082.实数a,b,c,d在数轴上对应点的位置如图所示,这四个数中,倒数最大的是()A.b B.d C.a D.c3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.小明掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,那么向上一面的点数大于4的概率为()A.B.C.D.5.如果一个正多边形的每个外角为72°,那么这个正多边形的边数为()A.5 B.6 C.7 D.86.如图,AB是⊙O的直径,C、D两点在⊙O上,如果∠C=40°,那么∠ABD的度数为()A.40° B.90° C.80° D.50°7.国家气象局监测2015年某日24小时PM2.5的值,其中6个时刻的数值如表:时刻4时5时6时7时8时9时PM2.5(毫克∕立方米)342 342 333 329 325 324则这组数据的中位数和平均数分别是()A.331;332.5 B.329;332.5 C.331;332 D.333;3328.函数y=kx﹣k与在同一坐标系中的大致图象是()A .B .C .D .9.在科技迅猛发展的今天,移动电话成为了人们生活中非常普及的通讯工具,选择经济实惠的计费方式成为了人们所关心的具有实际意义的问题.下表是两种移动电话的计费方式:月使用费(元) 主叫限定时间(分钟)主叫超时费/(元/分) 被叫方式一 58 150 0.25 免费 方式二883500.19免费 若小明的爸爸每月打电话的时间在300分钟,请问选择哪种方式省钱( ) A .方式一 B .方式二 C .两种方式一样 D .无法确定 10.如图,正方形ABCD 的顶点A (0,),B (,0),顶点C ,D 位于第一象限,直线x=t ,(0≤t≤),将正方形ABCD 分成两部分,设位于直线l 左侧部分(阴影部分)的面积为S ,则函数S 与t 的图象大致是( )A .B .C .D .二、填空题(本大题共18分,每小题3分): 11.分解因式y 3﹣2y 2+y= .12.如图,公园内有一小湖,为了测量湖边B、C 两点间的距离,小明设计如下方案,选取一个合适的A 点,分别找到AB 、AC 的中点D 、E ,若测得DE 的长为35米,则B 、C 两点间的距离为 米.13.随着北京公交票制票价调整,公交集团更换了新版公交站牌,乘客在乘车时可以通过新版公交站牌计算乘车费用.新版站牌每一个站名上方都有一个对应的数字,将上下车站站名所对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参照票制规则计算票价.具体来说:乘车路程计价区段0﹣10 11﹣15 16﹣20 …对应票价(元) 2 3 4 …另外,一卡通普通卡刷卡实行5折优惠,学生卡刷卡实行2.5折优惠.一位家住十渡地区的张老师持卡乘车,上车时站名上对应的数字是6,下车时站名上对应的数字是24,那么,张老师乘车的费用是元.14.如图,在正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在格点上,则△ABC的面积为.15.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:已知:如图1,Rt△ABC,∠C=90°.求作:Rt△DEF,使∠DFE=90°,DE=AB,FE=CB.小芸的作图步骤如下:如图2:(1)作线段FE=CB;(2)过点F作GF⊥FE于点F;(3)以点E为圆心、AB的长为半径作弧,交射线FG于点D,连接DE,所以△DEF即为所求作的直角三角形.老师说:“小芸的作图步骤正确,且可以得到DF=AC”.请回答:得到DF=AC的依据是.16.如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点O出发,第一次跳跃到点P1,使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P5的坐标为,点P2016的坐标为.三、解答题(本大题共72分,其中第17-26题,每小题5分,第27题7分,第28题7分,第29题8分):17.计算:.18.已知4a2﹣a﹣1=0.求代数式(3a+1)(3a﹣1)﹣a(a+2)﹣1的值.19.解不等式x+1<6(x﹣2)﹣2,并把它的解集在数轴上表示出来.20.已知:如图,在△ABC中,点D、E分别在边AB,AC上,且∠AED=∠ABC,DE=3,BC=5,AC=12.求AD 的长.21.为帮助灾区人民重建家园,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元,两次人均捐款额相等,但第二次捐款人数比第一次多50人.求该校第二次捐款的人数.22.已知:如图,▱ABCD,延长边AB到点E,使BE=AB,连接DE、BD和EC,设DE交BC于点O,∠BOD=2∠A,求证:四边形BECD是矩形.23.当雾霾出现红色预警时,全市中小学就随即展开“停课不停学”的活动,这一活动倍受家长们的关注.为此某媒体记者随机调查了某市城区若干名中学生家长对“停课不停学”的态度(态度分为:A:无所谓;B:赞成;C:反对),并将调査结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调査中,共调査了名中学生家长;(2)将图①补充完整;(3)请就雾霾期间如何学习的问题说说你的看法.24.我们定义:关于x的一次函数y=ax+b与y=bx+a叫做一对交换函数,例如y=3x+4与y=4x+3就是一对交换函数(1)写出一次函数y=﹣2x+b的交换函数.(2)当b≠﹣2时,写出(1)中两函数图象的交点的横坐标.(3)如果(1)中两函数图象与y轴围成三角形的面积为3,求b的值.25.在平面直角坐标系xOy中,函数y=(k≠0,x>0)的图象如图所示.已知此图象经过A(m,n),B (2,2)两点.过点B作BD⊥y轴于点D,过点A作AC⊥x轴于点C,AC与BD交于点F.一次函数y=ax+b (a≠0)的图象经过点A、D,与x轴的负半轴交于点E.(1)如果AC=OD,求a、b的值;(2)如果BC∥AE,求BC的长.26.如图,△ABC 中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作⊙O的切线交AC于点F.(1)求证:DF⊥AC;(2)如果sinC=,AE的长为2.求⊙O的半径.27.如图,在平面直角坐标系xOy中,已知点P(﹣1,0),C(﹣1,1),D(0,﹣3),A,B在x轴上,且P为AB中点,S△CAP=1.(1)求经过A、D、B三点的抛物线的表达式.(2)把抛物线在x轴下方的部分沿x轴向上翻折,得到一个新的图象G,点Q在此新图象G上,且S△APQ=S,求点Q坐标.△APC(3)若一个动点M自点N(0,﹣1)出发,先到达x轴上某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点D,求使点M运动的总路程最短的点E、点F的坐标.28.在△ABC中,BD平分∠ABC(∠ABC<60°)(1)如图1,当点D在AC边上时,若∠ABC=42°,∠ACB=32°,请直接写出AB,DC和BC之间的数量关系.(2)如图2,当点D在△ABC内部,且∠ACD=30°时,①若∠BDC=150°,直接写出AB,AD和BC之间的数量关系,并写出结论成立的思路.②若∠ABC=2α,∠ACB=60°﹣α,请直接写出∠ADB的度数(用含α的式子表示).29.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)如图1,在四边形ABCD中添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)问题探究小红提出了一个猜想:对角线互相平分且相等的“等邻边四边形”是正方形.她的猜想正确吗?请说明理由.(3)如图2,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD为对角线,.试探究线段BC,CD,BD之间的数量关系,并证明你的结论.北京市房山区中考数学二模试卷参考答案与试题解析一、选择题(本大题共30分,每小题3分):下列各题均有四个选项,其中只有一个使符合题意的,请把正确答案的字母在答题卡相应位置涂黑.1.小星同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数约为61700000,这个数用科学记数法表示为()A.617×105B.6.17×106C.6.17×107D.0.617×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将61700000用科学记数法表示为6.17×107.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.2.实数a,b,c,d在数轴上对应点的位置如图所示,这四个数中,倒数最大的是()A.b B.d C.a D.c【考点】实数与数轴.【分析】首先根据数轴的特征,判断出实数a,b,c,d的取值范围,然后再根据倒数比较大小.【解答】解:由数轴可得:a=﹣3,﹣2<b<﹣1,0<c<1,d=4,故这四个数中,倒数最大的是c,故选:D.【点评】本题考查了实数与数轴,解决本题的关键是根据数轴判断出实数a,b,c,d的取值范围.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.【点评】本题主要考查的是轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的特点是解题的关键.4.小明掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,那么向上一面的点数大于4的概率为()A.B.C.D.【考点】概率公式.【分析】先求出点数大于4的数,再根据概率公式求解即可.【解答】解:∵点数大于4的数为:5,6,∴向上一面的点数大于4的概率==.故选C.【点评】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.5.如果一个正多边形的每个外角为72°,那么这个正多边形的边数为()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【分析】正多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以外角的个数,就得到外角和中外角的个数,外角的个数就是多边形的边数.【解答】解:∵多边形的外角和为360°,∴边数=360°÷72°=5,故这个正多边形的边数是5.故选:A.【点评】考查了多边形内角与外角,根据正多边形的外角和求多边形的边数是常用的一种方法,需要熟记.6.如图,AB是⊙O的直径,C、D两点在⊙O上,如果∠C=40°,那么∠ABD的度数为()A.40° B.90° C.80° D.50°【考点】圆周角定理.【分析】由在同圆或等圆中,同弧或等弧所对的圆周角相等,求得∠DAB的度数.由AB是⊙O的直径,根据直径所对的圆周角是直角求得∠ADB的度数,进而即可求得∠ABD的度数.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠C=40°,∴∠DAB=∠C=40°,∴∠ABD=90°﹣∠DAB=50°.故选D.【点评】此题考查了圆周角定理.此题难度不大,注意掌握直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用是解此题的关键.7.国家气象局监测2015年某日24小时PM2.5的值,其中6个时刻的数值如表:时刻4时5时6时7时8时9时PM2.5(毫克∕立方米)342 342 333 329 325 324则这组数据的中位数和平均数分别是()A.331;332.5 B.329;332.5 C.331;332 D.333;332【考点】中位数;算术平均数.【分析】根据中位数和平均数的定义结合选项选出正确答案即可.【解答】解:这组数据按从小到大的顺序排列为:324,325,329,333,342,342,所以这组数据的中位数是=331,平均数==332.5,故选A.【点评】本题考查了中位数和平均数的知识,属于基础题,解题的关键是熟练掌握其概念.8.函数y=kx﹣k与在同一坐标系中的大致图象是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【专题】压轴题.【分析】比例系数相等,那么这两个函数图象必有交点,进而根据一次函数与y轴的交点判断正确选项即可.【解答】解:当k>0时,一次函数过一三四象限,反比例函数过一三象限,符合选项C,故选C.【点评】本题考查反比例函数与一次函数的图象性质:比例系数相等,必有交点;一次函数与y轴的交点是一次函数的常数项.9.在科技迅猛发展的今天,移动电话成为了人们生活中非常普及的通讯工具,选择经济实惠的计费方式成为了人们所关心的具有实际意义的问题.下表是两种移动电话的计费方式:月使用费(元)主叫限定时间(分钟)主叫超时费/(元/分)被叫方式一58 150 0.25 免费方式二88 350 0.19 免费若小明的爸爸每月打电话的时间在300分钟,请问选择哪种方式省钱()A.方式一B.方式二C.两种方式一样 D.无法确定【考点】有理数的混合运算.【专题】应用题;实数.【分析】根据表格中的数据求出两种方式的费用,比较即可.【解答】解:方式一费用为:58+0.25×150=95.5元;方式二费用为:88元,则方式二省钱.故选B【点评】此题考查了有理数的混合运算,弄清两种方式计费方法是解本题的关键.10.如图,正方形ABCD的顶点A(0,),B(,0),顶点C,D位于第一象限,直线x=t,(0≤t ≤),将正方形ABCD分成两部分,设位于直线l左侧部分(阴影部分)的面积为S,则函数S与t的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.【解答】解:根据图形知道,当直线x=t在BD的左侧时,如果直线匀速向右运动,左边的图形是三角形;因而面积应是t的二次函数,并且面积增加的速度随t的增大而增大;直线x=t在B点左侧时,S=t2,t在B点右侧时S=﹣(t﹣)2+1,显然D是错误的.故选C.【点评】读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程.二、填空题(本大题共18分,每小题3分):11.分解因式y3﹣2y2+y= y(y﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式y,再对余下的多项式利用完全平方公式继续分解.【解答】解:y3﹣2y2+y,=y(y2﹣2y+1),=y(y﹣1)2.故答案为:y(y﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.如图,公园内有一小湖,为了测量湖边B、C两点间的距离,小明设计如下方案,选取一个合适的A点,分别找到AB、AC的中点D、E,若测得DE的长为35米,则B、C两点间的距离为70 米.【考点】三角形中位线定理.【分析】根据三角形中位线定理可知DE=BC,由此即可解决问题.【解答】解:∵AD=DB,AE=EC,∴DE=BC,∵DE=35m,∴BC=70m,故答案为70.【点评】本题考查三角形中位线性质,解题的关键是灵活应用三角形中位定理识解决问题,属于中考常考题型.13.随着北京公交票制票价调整,公交集团更换了新版公交站牌,乘客在乘车时可以通过新版公交站牌计算乘车费用.新版站牌每一个站名上方都有一个对应的数字,将上下车站站名所对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参照票制规则计算票价.具体来说:乘车路程计价区段0﹣10 11﹣15 16﹣20 …对应票价(元) 2 3 4 …另外,一卡通普通卡刷卡实行5折优惠,学生卡刷卡实行2.5折优惠.一位家住十渡地区的张老师持卡乘车,上车时站名上对应的数字是6,下车时站名上对应的数字是24,那么,张老师乘车的费用是 2 元.【考点】有理数的减法;绝对值.【分析】先求得上下车站站名所对应数字之差的绝对值,然后根据表格可得到对应的票价,然后再打5折即可.【解答】解:|24﹣6|=18,∵16<18<20,∴对应票价为4元.∵一卡通普通卡刷卡实行5折优惠,∴张老师乘车的费用=4×0.5=2元.故答案为:2.【点评】本题主要考查的是有理数的减法、绝对值,求得张老师本题乘车对应的票价是解题的关键.14.如图,在正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在格点上,则△ABC的面积为.【考点】三角形的面积.【专题】推理填空题.【分析】根据图象可以利用割补法,得到△ABC的面积等于大正方形的面积减去三个直角三角形的面积.【解答】解:∵在正方形网格中,每个小正方形的边长均为1,∴△ABC的面积为:3×3﹣﹣﹣=,故答案为:.【点评】本题考查三角形的面积,解题的关键是明确三角形面积的计算公式,会运用割补法求三角形的面积.15.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:已知:如图1,Rt△ABC,∠C=90°.求作:Rt△DEF,使∠DFE=90°,DE=AB,FE=CB.小芸的作图步骤如下:如图2:(1)作线段FE=CB;(2)过点F作GF⊥FE于点F;(3)以点E为圆心、AB的长为半径作弧,交射线FG于点D,连接DE,所以△DEF即为所求作的直角三角形.老师说:“小芸的作图步骤正确,且可以得到DF=AC”.请回答:得到DF=AC的依据是斜边、直角边(基本事实),全等三角形对应边相等,或全等三角形对应边相等,勾股定理.【考点】作图—复杂作图.【分析】由作法直接得到判断Rt△ACB≌Rt△DFE的条件即可.【解答】解:由作法得,FE=CB,DE=AB,GF⊥FE,∴∠DFE=∠ACB=90°,在Rt△ACB和Rt△DFE中,∴Rt△ACB≌Rt△DFE,∴AC=DF,故答案为:斜边、直角边(基本事实),全等三角形对应边相等,或全等三角形对应边相等,勾股定理.【点评】此题是作图﹣﹣﹣复杂作图,主要考查了全等三角形的判定和性质,勾股定理,解本题的关键是读懂作法,也是本题的难点.16.如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点O出发,第一次跳跃到点P1,使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P5的坐标为(﹣2,0),点P2016的坐标为(0,0).【考点】规律型:点的坐标.【分析】根据中心对称的性质找出部分P n的坐标,根据坐标的变化找出变化规律“P6n(0,0),P6n+1(2,0),P6n+2(﹣2,2),P6n+3(0,﹣2),P6n+4(2,2),P6n+5(﹣2,0)(n为自然数)”,依此规律即可得出结论.【解答】解:观察,发现规律:P0(0,0),P1(2,0),P2(﹣2,2),P3(0,﹣2),P4(2,2),P5(﹣2,0),P6(0,0),P7(2,0),…,∴P6n(0,0),P6n+1(2,0),P6n+2(﹣2,2),P6n+3(0,﹣2),P6n+4(2,2),P6n+5(﹣2,0)(n为自然数).当n=5时,P5(﹣2,0);∵2016=6×336,∴P2016(0,0).故答案为:(﹣2,0);(0,0).【点评】本题考查了规律型中的点的坐标以及中心对称的性质,解题的关键是找出变化规律“P6n(0,0),P6n+1(2,0),P6n+2(﹣2,2),P6n+3(0,﹣2),P6n+4(2,2),P6n+5(﹣2,0)(n为自然数)”.本题属于基础题,难度不大,解决该题型题目时,根据题意列出部分P n点的坐标,根据坐标的变化找出变化规律是关键.三、解答题(本大题共72分,其中第17-26题,每小题5分,第27题7分,第28题7分,第29题8分):17.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果.【解答】解:原式=9+2+1﹣3=10﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.已知4a2﹣a﹣1=0.求代数式(3a+1)(3a﹣1)﹣a(a+2)﹣1的值.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用平方差公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把已知等式代入计算即可求出值.【解答】解:(3a+1)(3a﹣1)﹣a(a+2)﹣1=9a2﹣1﹣a2﹣2a﹣1=8a2﹣2a﹣2=2(4a2﹣a﹣1),∵4a2﹣a﹣1=0,∴原式=0.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.解不等式x+1<6(x﹣2)﹣2,并把它的解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】首先去掉括号,然后移项、合并同类项,最后化系数为1即可求解.【解答】解:x+1<6x﹣12﹣2,x﹣6x<﹣12﹣2﹣1,﹣5x<﹣15,∴x>3,这个不等式的解集在数轴上表示为:【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.20.已知:如图,在△ABC中,点D、E分别在边AB,AC上,且∠AED=∠ABC,DE=3,BC=5,AC=12.求AD 的长.【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定和性质即可得到结论.【解答】解:∵∠AED=∠ABC,∠A=∠A,∴△AED∽△ABC,∴,∵DE=3,BC=5,AC=12,∴.∴AD=.【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.21.为帮助灾区人民重建家园,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元,两次人均捐款额相等,但第二次捐款人数比第一次多50人.求该校第二次捐款的人数.【考点】分式方程的应用.【专题】应用题.【分析】求的是数量,捐款总额明显,一定是根据人均捐款数来列等量关系,本题的关键描述语是:提两次人均捐款额相等.等量关系为:第一次人均捐款钱数=第二次捐款人均捐款钱数.【解答】解:设第二次捐款人数为x人,则第一次捐款人数为(x﹣50)人,根据题意,得解这个方程,得x=200(4分)经检验,x=200是所列方程的根答:该校第二次捐款人数为200人.(6分)【点评】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.已知:如图,▱ABCD,延长边AB到点E,使BE=AB,连接DE、BD和EC,设DE交BC于点O,∠BOD=2∠A,求证:四边形BECD是矩形.【考点】矩形的判定;平行四边形的性质.【专题】证明题.【分析】根据平行四边形的判定与性质得到四边形BECD为平行四边形,再由已知条件证出BC=ED,即可得出结论.【解答】证明:在平行四边形ABCD中,AD=BC,AB=CD,AB∥CD,则BE∥CD.又∵AB=BE,∴BE=DC,∴四边形BECD为平行四边形,∴OD=OE,OC=OB.∵四边形ABCD为平行四边形,∴∠A=∠BCD,即∠A=∠OCD.又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,∴∠OCD=∠ODC,∴OC=OD,∴OC+OB=OD+OE,即BC=ED,∴平行四边形BECD为矩形.【点评】本题考查了平行四边形的性质和判定,矩形的判定,三角形的外角性质等知识点的综合运用;熟练掌握平行四边形的判定与性质是解决问题的关键.23.当雾霾出现红色预警时,全市中小学就随即展开“停课不停学”的活动,这一活动倍受家长们的关注.为此某媒体记者随机调查了某市城区若干名中学生家长对“停课不停学”的态度(态度分为:A:无所谓;B:赞成;C:反对),并将调査结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调査中,共调査了200 名中学生家长;(2)将图①补充完整;(3)请就雾霾期间如何学习的问题说说你的看法.【考点】条形统计图;扇形统计图.【分析】(1)用无所谓的人数除以其所占的百分比即可得到调查的总数;(2)总数减去A、B两种态度的人数即可得到C态度的人数;(3)只要合情合理即可.【解答】解:(1)调查家长总数为:50÷25%=200人;(2)持反对态度的学生家长有200﹣50﹣120=30人,补全统计图如图:(3)如:饮食清淡,多吃蔬菜,少开门窗,减少出门,口罩要戴.故答案为:(1)200.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.我们定义:关于x的一次函数y=ax+b与y=bx+a叫做一对交换函数,例如y=3x+4与y=4x+3就是一对交换函数(1)写出一次函数y=﹣2x+b的交换函数y=bx﹣2 .(2)当b≠﹣2时,写出(1)中两函数图象的交点的横坐标 1 .(3)如果(1)中两函数图象与y轴围成三角形的面积为3,求b的值.【考点】两条直线相交或平行问题.【分析】(1)根据交换函数的定义即可求解;(2)将y=﹣2x+b代入y=bx﹣2,解关于x的方程即可求出x的值;(3)根据(1)中两函数图象与y轴围成三角形的面积为3,结合三角形的面积公式的求法即可得出答案.【解答】解:(1)一次函数y=﹣2x+b的交换函数为y=bx﹣2.故答案为y=bx﹣2;(2)将y=﹣2x+b代入y=bx﹣2,得﹣2x+b=bx﹣2,整理得,(b+2)x=b+2,∵b≠﹣2,∴b+2≠0,方程两边同时除以b+2,得x=1,故(1)中两函数图象的交点的横坐标为1.故答案为1;(3)设函数y=﹣2x+b与y轴的交点A的坐标为(0,b),函数y=bx﹣2与y轴的交点B的坐标为(0,﹣2).∵两函数图象与y围成三角形的面积为3,两直线交点到y轴的距离为1,∴AB×1=3,∴AB=6,∴b﹣(﹣2)=6或﹣2﹣b=6,∴b=4或b=﹣8.【点评】此题考查了两条直线相交的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.理解交换函数的意义是解题的关键.也考查了三角形面积的计算.25.在平面直角坐标系xOy中,函数y=(k≠0,x>0)的图象如图所示.已知此图象经过A(m,n),B (2,2)两点.过点B作BD⊥y轴于点D,过点A作AC⊥x轴于点C,AC与BD交于点F.一次函数y=ax+b (a≠0)的图象经过点A、D,与x轴的负半轴交于点E.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市房山区2018年中考数学二模试题、选择题(本题共16分,每小题2 分)F面各题均有四个选项,其中只有一个是符合题意的.21.若代数式—有意义,则实数x的取值范围是x—2B.B作PB丄BC于B,交AC于P,过点2.如图,在△ ABC中,过点作CQL AB交AB延长线于Q则厶ABC的高是A.线段PB B C.线段CQ D •线段BC•线段AQD.C48°,若CF与3.某城市几条道路的位置关系如图所示,已知AB// CD AE与AB的夹角为EF的长度相等,则/ C的度数为A. 48° B . 40C. 30° D . 24°B D4.右图是某个几何体的三视图,该几何体是A.圆锥C.圆柱B.四棱锥D.四棱柱5.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是A. 30, 28 B . 26, 26C. 31, 30 D . 26, 226.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面 2米•则小巷的宽度为.A. 0.7 米 B • 1.5 米 C • 2.2 米 D • 2.4 米7.某班为奖励在学校运动会上取得好成绩的同学, 计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件•设购买甲种奖品 x 件,乙种奖品y 件.依题意,可列方程组为A X "2°,40x 30y = 650 BX “2°,、40x + 20y = 650驶的时间为x (小时),两车之间的距离为 y (千米),如图中的折线表示 y 与x 之间的函数关系.下列叙述错误的是A. AB 两地相距1000千米B. 两车出发后3小时相遇1000C.动车的速度为 c二、填空题(本题共16分,每小题2分)9. 估计无理数 v'11在连续整数 __________ 与 __________ 之间.2 210. 若代数式x -6x b 可化为(x a ) -5,则a b 的值为 ______________________________ 11. 某校广播台要招聘一批小主持人,对A 、B 两名小主持人进行了专业素质、创新能力、外语水平和应变能力进行了测试,他们各项的成绩(百分制)如下表所示:CX y =20,30x 40y =650x"7°,40x 30y 二 6508. 一列动车从 A 地开往B 地,一列普通列车从 B 地开往A 地,两车同时出发, 设普通列车行D.普通列车行驶t 小时后,动车到达终点B 地,此时普通列车还需行驶 型0千米到达 A313就小时)列千100012. 某校体育室里有球类数量如下表, 如果随机拿出一个球(每一个球被拿出来的可能性是 一样的),那么拿出一个球是足球的可能性是 _________________ •应聘者 专业素质 创新能力 外语水平 应变能力 A 73 85 78 85 B81828075最大最全最精的教育资源网 如果只招一名主持人,该选用 ______________ ;依据是球类篮球 排球 足球 数量35410元13.某花店有单位为10元、18元、25元三种价格的花卉,如图是 该花店某月三种花卉销售量情况的扇形统计图, 根据该统计图可算得该 花店销售花卉的平均单价为 ____________ 元.14.如图,AB 为O O 的直径,弦 CDAB 垂足为点E,连结OC 若0(=5, 01=8,贝U AE=.15. 如图,在正方形网格中,线段 A B 可以看作是线段 AB 经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段 到线段A B 的过程: 16. 阅读下面材料:在数学课上,老师提出如下问题:AB 得小亮的作法如下:尺规作图:作一条线段等于已知线段 已知:线段AB.A ------------------------- B求作:线段CD,使CD=AB.如图:(1)作射线CE(2)以C 为圆心, AB 长为 半径作弧交 CE 于 D.则线段CD 就是所求作的线段-D ------- E !老师说:“小亮的作法正确”请回答:小亮的作图依据是 _______________________________________________________25元30% 18元50%CBA E OD题5分;第24、25题,每小题6分;第26、27题,每小题 解答应写出文字说明,演算步骤或证明过程.'3x_1 >2(x+2),17. 解不等式组:」x+95x.2求证:AE=CD19.已知 X 2-2X -1=2.求代数式(x-1)2 • x(x -4) • (x -2)(x • 2)的值.20.已知:关于x 的一元二次方程 错误!未找到引用源。
(错误!未找到引用源。
是整数)(1) 求证:方程有两个不相等的实数根; (2 )若方程的两个实数根都是整数,求k 的值.21.已知:如图,四边形 ABCDK AD// BC AD=CQ E 是对角线BD 上一点,且E A F EC(1) 求证:四边形 ABCD 是菱形;(2) 如果/ BDC 30°, DE=2, EC=3,求 CD 的长.22.如图,在平面直角坐标系 xOy 中,直线y=kx+m 与双2曲线y =- 相交于点xA (m 2).(1)求直线y = kx • m 的表达式;2(2)直线y 二kx • m 与双曲线y =-的另一个交点为xB ,点P 为x 轴上一点,若 AB = BP ,直接写出 点坐标 .最大最全最精的教育资源网 解答题(本题共68分,第17、18题,每小题5分;第19题4分;第20-23题,每小7分;第28题8分).18.如图,四边形ABCD AD// BC, DCL BC 于 C 点, AE! BD 于 E ,且 DB=DA23.如图,△ ABC内接于O O AB=AC CO勺延长线交AE于点D(1)求证:AC平分/ BAC3(2) 若BC=6, sin / BA(=-,求AC和CD的长.524.某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:甲7.2 9.6 9.6 7.8 9.3 4 6. 5 8.5 9.9 9.6乙 5.8 9.7 9.7 6.8 9.9 6.9 8.2 6.7 8.6 9.7、数量X销售额人员7 X4.0 < x W4.95. 0< x<5.96. 0W x<6.97. 0W x<7.98. 0W x<8.99. 0W x<10.0甲101215乙元为合格,6.0万元以下为不合格)两组样本数据的平均数、中位数、众数如下表所示:人员平均数(万元)中位数(万元)众数(万元)甲8.28.99.6乙8.28.49.7结论(1)估计乙业务员能获得奖金的月份有________________ 个;(2)可以推断出 ____ 业务员的销售业绩好,理由为__________________________ •(至少从两个不同的角度说明推断的合理性)最大最全最精的教育资源网最大最全最精的教育资源网1 325.有这样一个问题:探究函数y x-2x的图象与性质.61 3小东根据学习函数的经验,对函数y = x -2x的图象与性质进行了探究6下面是小东的探究过程,请补充完整:1 3(1)函数y x -2x的自变量x的取值范围是;6(2)下表是y与x的几组对应值x -4-3.5-3-2-10123 3.54y8738110118m78 34823663483则的值为_____________________(3) 如下图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点. 根据描出的点, 画出该函数的图象;(4 )观察图象,写出该函数的两条性质 _________________________________________ .26.在平面直角坐标系xOy中,二次函数y二ax2• bx • c( a = 0)的图象经过A( 0, 4),B(2,0),C (-2, 0)三点.(1 )求二次函数的表达式;(2)在x轴上有一点D (-4, 0),将二次函数的图象沿射线DA方向平移,使图象再次经过点 B.①求平移后图象顶点E的坐标;②直接写出此二次函数的图象在A, B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积.27. 已知AC=DC, ACL DC直线MN经过点A,作DBL MN垂足为B,连接CB(1)直接写出/ D与/ MAC之间的数量关系;(2)① 如图1,猜想AB BD与BC之间的数量关系,并说明理由;②如图2,直接写出AB BD与BC之间的数量关系;(3)在MN绕点A旋转的过程中,当/ BCD30° , BD= 2时,直接写出BC 的值.图2 y*最大最全最精的教育资源网28.已知点P, Q为平面直角坐标系xOy中不重合的两点,以点P为圆心且经过点Q作O P, 则称点Q为O P的“关联点”,O P为点Q的“关联圆”.1犬(1)已知O O的半径为1,在点E (1, 1), F (-2, 2 ),M(0, - 1 )中,0 O的“关联点”为______________ ;(2)若点P ( 2, 0),点Q( 3, n), O Q为点P的“关联圆”,且O Q的半径为Q5,求n 的值;4(3)已知点D (0, 2),点H (m2), O D是点H的“关联圆”,直线y x 4与3x轴,y轴分别交于点A B若线段AB上存在O D的“关联点”,求m的取值范围.九年级数学参考答案题号12345678答案D C D B B C A C二、填空题(本题共16分,每小题2分)19. 3 ,4; 10. 1 ;11. 答案不唯一,理由支撑选项即可;12. - ; 13. 17;314. 2 ; 15. 女口:将线段AB绕点B逆时针旋转90°,再向左平移2个单位长度;16.两点确定一条直线;同圆或等圆中半径相等;三、解答题(本题共68分,第17、18题,每小题5分;第19题4分;第20-23题,每小题5分;第24、25题,每小题6分;第26、27题,每小题7分;第28题8分).3x-1 2(x 2)①17•解:口®解不等式①得,2x> 5 ;2 '解不等式②得, x>1 ;4'2•••不等式组的解集为 x >5. (5)18. 解:T AD// BC•••/ ADB/DBC ..................................................................................... 1' •/ DCL BC 于点 C, AEL BD 于点 E•••/ C =/AED 90° ....................................................................................... 2'又••• DB=DAAED^A DCB ............................................................................... 4'• AE=CD ......................................................................................... 5'2 2 219. 原式=x -2x 1 x -4x x -42 =3x -6x-3 • ................................................................................................... 3'2••• x -2x -1=2•原式=3x 2 -6x-3 =3(x 2 -2x-1) =6 • ............................................................. 4'一-2. * 220. 解:(1) . :=[74k 1_4k 3k 3 = 2k -1 (1)•/ k 为整数 2•- 2k -1>0即>0•方程有两个不相等的实数根 .................................... 2'4k +1 ±f 2k _1 \(2)由求根公式得, x 二 ---------------•心,x2—1 1 k k由题意得,k =1或-121. 解:(1)v AD =CDEA =ECDE =DE•••/ ADE/ CDE •/ AD// BC• / ADB / DBC • / DBC / BDC最大最全最精的教育资源网 2k3' 5'最大最全最精的教育资源网 ••• BOCD••• AD=BC又••• AD// BC•四边形ABCD是平行四边形 ........................................ 2'•/ AD=CD•四边形ABCD是菱形 .............................................. 3'(2)作EF丄CD于F•••/ BDC30°, DE=2•EF=1, DF= 3 (4)•/ CE=3•CF=2 2• CD=2 2 + ,3 .......................................................................................... 5'222. 解:(1)v点A(m2)在双曲线y 上,x•m= -1. (1)• A (-1 , 2),直线y=kx -1 ....................................................................... 2'•••点A (-1 , 2)在直线y = kx —1 上,•y = -3x-1 .................................................................................... 3'(11 \(2)R(5,0), £-一,0 1 ......................................................................................... 5'I 3丿23. 解:(1)证明:如图,延长A O交BC于H,连接B O.•/ AB=AC O B=O C•A 0在线段BC的中垂线上•A O丄BC3 (2)2:丄 C O H=Z BAC在 Rt △ COH 中, Z/ OHC 90°, sin Z COI =H|•/ CH=33 3••• sin Z COH CO= 5••• C(=A(=5 .............................................................................................. 3'• CH=3, OH h :【0C 1 2 -HC 2 =4 3• AH=AG0H=9,tan Z COH tan Z DOK-4在 Rt △ ACH 中, Z AHC 90°, AH=9, CH=3• tan Z CAH CH Z 1 , AC =『AH 2 + HC ^ = 3F 'T0 ............................................ 4'由(1 )知/ 00-=Z B O H tan Z BAH= tan Z1 3 设 DK=3a ,在 Rt △ ADK K tan Z BAH 3 ,在 Rt △ DOK 中, tan Z DOK 4 • 0K4 a , DO 5 a , AK=9 a • 0Ad 3 a =55 25 90• a =也,DO 石,C °=O(+OC =^ • AC=3^10 , CD=1°24. 解:、数量費售额4.0 < x W 4.95.0 W x < 5.96.0 W x < 6.97.0 W x < 7.98.0 W x W 8.99.0 W x W 10.0乙 0 1 3 0 2 41 6; .................................................................................................................................. 42 答案不唯一,理由结合数据支撑选项即可 ........................................ 6 25. ( 1)任意实数;最大最全最精的教育资源网5'最大最全最精的教育资源网(3) ............................................................................................................................................略 . (4)(4) ..................................................................................................................................答案不唯一 ................................... 6 26.解:(1 )T A (0, 4), B( 2, 0), C (- 2, 0)•••二次函数的图象的顶点为A( 0,4)设二次函数表达式为y = ax2 4将B (2, 0)代入,得4a - 4=0解得,a = -1•••二次函数表达式y=-x2,4 ...................................... 2,(2[①设直线DA y = kx+b(k^0)将A(0, 4), D (- 4, 0)代入,得b = 4-4k b = 0丄k = 1解得,b =4•直线DA y = x+4 ............................................................................ 3 分由题意可知,平移后的抛物线的顶点E在直线DA上•设顶点E (m m+4 )•平移后的抛物线表达式为y=-x-m2,m・4又•.•平移后的抛物线过点B (2, 0)2 •将其代入得,-:;:2-m 1亠m • 4=0解得,m =5 , m2 =0 (不合题意,舍去)•顶点E ( 5, 9) ........................................... 5分②30. ............................................................................................................. 7分27. 解:(1)相等或互补;(注:每个1 分)即Z ECE =90° • BE= 2BC•/ AEnAB=BE= 2BC• B&AB= 2BC ....................................................................................... 4 分 ② AB — BD = 2BC .......................................................................................... 5 分 (3) BC= 3+1 或.3— 1 ................................................................................................. 7 分28. 解:(1)① F , M.(注:每正确1个得1分) (2)如图1,过点Q 作QH L x 轴于H.•/ PH =1, QH =n , PQ=,5 •••由勾股定理得,P H +Q H =P Q2即 12 n 2 = 5解得,n = 2或—2. ...............4(3)由 y =——x+4,知 A (3, 0) , B (0, 4)3•可得AB=5I.如图2 (1),当O D 与线段AB 相切于点T 时,连接DT最大最全最精的教育资源网 •••/ ACE +Z ECA °图1医Ly| BO A贝U DT L AB Z DTB90 °图2(1)•••可得 DT=DH =656--mi =—5由勾股定理得DA = 0D +0A =DH = 136 6综合I , II 可得:-13< m <——或一 < m W . 135 5最大最全最精的教育资源网 ■/ sin 一/OBA 二 °A AB DTBD y*II.如图2 (2),当O D 过点A 时,连接AD。