直线射线线段2

合集下载

直线、射线、线段(基础)知识讲解

直线、射线、线段(基础)知识讲解

直线、射线、线段(基础)知识讲解责编:杜少波【学习目标】1.理解直线、射线、线段的概念,掌握它们的区别和联系;2. 利用直线、线段的性质解决相关实际问题;3.利用线段的和差倍分解决相关计算问题.【要点梳理】要点一、直线1.概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始概念,直线常用“一根拉得紧的细线”、“一张纸的折痕”等实际事物进行形象描述.2. 表示方法:(1)可以用直线上的表示两个点的大写英文字母表示,如图1所示,可表示为直线AB(或直线BA).(2)也可以用一个小写英文字母表示,如图2所示,可以表示为直线l.3.基本性质:经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.要点诠释:直线的特征:(1)直线没有长短,向两方无限延伸.(2)直线没有粗细.(3)两点确定一条直线.(4)两条直线相交有唯一一个交点.4.点与直线的位置关系:(1)点在直线上,如图3所示,点A在直线m上,也可以说:直线m经过点A.(2)点在直线外,如图4,点B在直线n外,也可以说:直线n不经过点B.要点二、线段1.概念:直线上两点和它们之间的部分叫做线段.2.表示方法:(1)线段可用表示它两个端点的两个大写英文字母来表示,如图所示,记作:线段AB或线段BA.(2)线段也可用一个小写英文字母来表示,如图5所示,记作:线段a.3. “作一条线段等于已知线段”的两种方法:法一:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.法二:用刻度尺作一条线段等于已知线段.例如:可以先量出线段a的长度,再画一条等于这个长度的线段.4.基本性质:两点的所有连线中,线段最短.简记为:两点之间,线段最短.如图6所示,在A ,B 两点所连的线中,线段AB 的长度是最短的.要点诠释:(1)线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短.(2)连接两点间的线段的长度,叫做这两点的距离. (3)线段的比较:①度量法:用刻度尺量出两条线段的长度,再比较长短.②叠合法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.5.线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如图7所示,点C 是线段AB 的中点,则12AC CB AB ==,或AB =2AC =2BC .要点诠释:若点C 是线段AB 的中点,则点C 一定在线段AB 上.要点三、射线1.概念:直线上一点和它一侧的部分叫射线,这个点叫射线的端点.如图8所示,直线l 上点O 和它一旁的部分是一条射线,点O 是端点.l2.特征:是直的,有一个端点,不可以度量,不可以比较长短,无限长.3.表示方法:(1)可以用两个大写英文字母表示,其中一个是射线的端点,另一个是射线上除端点外的任意一点,端点写在前面,如图8所示,可记为射线OA .(2)也可以用一个小写英文字母表示,如图8所示,射线OA 可记为射线l . 要点诠释:(1)端点相同,而延伸方向不同,表示不同的射线.如图9中射线OA ,射线OB 是不同的射线.(2)端点相同且延伸方向也相同的射线,表示同一条射线.如图10中射线OA 、射线OB 、射线OC 都表示同一条射线.要点四、直线、射线、线段的区别与联系1.直线、射线、线段之间的联系(1)射线和线段都是直线上的一部分,即整体与部分的关系.在直线上任取一点,则可将直线分成两条射线;在直线上取两点,则可将直线分为一条线段和四条射线.(2)将射线反向延伸就可得到直线;将线段一方延伸就得到射线;将线段向两方延伸就得到直线. 图6 图7图8 图9 图102.三者的区别如下表要点诠释:(1)联系与区别可表示如下:(2)在表示直线、射线与线段时,勿忘在字母的前面写上“直线”“射线”“线段”字样.【典型例题】类型一、相关概念1.下列说法中,正确的是( )A.射线OA与射线AO是同一条射线B.线段AB与线段BA是同一条线段C.过一点只能画一条直线D.三条直线两两相交,必有三个交点【答案】B【解析】射线OA的端点是O,射线AO的端点是A,所以射线OA与射线AO不是同一条射线,故A 错误;过一点能画无数条直线,所以C错误;三条直线两两相交,有三个交点或一个交点(三条直线相交于一点时),所以D错误;线段AB与线段BA是同一条线段,所以B正确.【总结升华】直线和线段用两个大写字母表示时,与字母的前后顺序无关,但射线必须是表示端点的字母写在前面,不能互换.举一反三:【变式1】以下说法中正确的是()A.延长线段AB到C B.延长射线ABC.直线AB的端点之一是A D.延长射线OA到C【答案】A【变式2】如图所示,请分别指出图中的线段、射线和直线的条数,并把它们分别表示出来.【答案】解:如下图所示,在直线上点A左侧和点C右侧分别任取点X和Y.图中有6条射线:射线AX、射线AY、射线BX、射线BY、射线CX、射线CY.有3条线段:线段AB(或BA)、线段BC(或CB)、线段AC(或CA)有1条直线:直线AC(或AB,BC).类型二、有关作图2.如图所示,线段a,b,且a>b.用圆规和直尺画线段:(1)a+b;(2)a-b.【答案与解析】解:(1) 画法如图(1),画直线AF,在直线AF上画线段AB=a,再在AB的延长线上画线段BC=b,线段AC就是a与b的和,记作AC=a+b.(2) 画法如图(2),画直线AF,在直线AF上画线段AB=a,再在线段AB上画线段BD=b,线段AD 就是a与b的差,记作AD=a-b.【总结升华】在画线段时,为使结果更准确,一般用直尺画直线,用圆规量取线段的长度.举一反三:【变式1】如图,C是线段AB外一点,按要求画图:(1)画射线CB;(2)反向延长线段AB;(3)连接AC,并延长AC至点D,使CD=AC.【答案】解:【高清课堂:直线、射线、线段397363 按语句画图3(3)】【变式2】用直尺作图:P 是直线a 外一点,过点P 有一条线段b 与直线a 不相交.【答案】解:类型三、有关条数及长度的计算3.如图,A 、B 、C 、D 为平面内任意三点都不在同一条直线上的四点,那么过其中两点,可画出 条直线.【思路点拨】根据两点确定一条直线即可计算出直线的条数.【答案】6条直线【解析】由两点确定一条直线知,点A 与B,C,D 三点各确定一条直线,同理点B 与C 、D 各确定一条直线,C 与D 确定一条直线,综上:共有直线:3+2+1=6(条).【总结升华】平面上有n 个点,其中任意三点不在一条直线上,则最多确定的直线条数为:(1)123...(1)2n n n -++++-=. 举一反三:【变式1】如图所示,已知线段AB 上有三个定点C 、D 、E .(1)图中共有几条线段?(2)如果在线段CD 上增加一点,则增加了几条线段?你能从中发现什么规律吗?【答案】解:(1)线段的条数:4+3+2+1=10(条);(2)如果在线段CD 上增加一点P ,则P 与其它五个点各组成一条线段,因此,增加了5条线段. (注解:若在线段AB 上增加一点,则增加2条线段,此时线段总条数为1+2;若再增加一点,则又增加了3条线段,此时线段总条数为1+2+3;…;当线段AB 上增加到n 个点(即增加n -2个点)时,线段的总条数为1+2+……+(n -1)=21n(n -1) .) 【变式2】)如图直线m 上有4个点A 、B 、C 、D ,则图中共有________条射线.【答案】84.(2016春•启东市月考)已知点C 在线段AB 上,线段AC=7cm ,BC=5cm ,点M 、N 分别是AC 、BC 的中点,求MN 的长度.【思路点拨】根据M 、N 分别为AC 、BC 的中点,根据AC 、BC 的长求出MC 与CN 的长,由MC+CN 求出MN 的长即可.【答案与解析】解:∵AC=7cm ,BC=5cm ,点M 、N 分别是AC 、BC 的中点,∴MC=AC=3.5cm ,CN=BC=2.5cm ,则MN=MC+CN=3.5+2.5=6(cm ).【总结升华】此题考查了线段的和差,熟练掌握线段中点定义是解本题的关键.【高清课堂:直线、射线、线段397363画图计算例2】举一反三:【变式】在直线l 上按指定方向依次取点A 、B 、C 、D ,且使AB :BC :CD=2:3:4,如图所示,若AB 的中点M 与CD 的中点N 的距离是15cm ,求AB 的长.【答案】解:依题意,设AB =2x cm ,那么BC =3x cm ,CD =4x cm .则有:MN=BM+BC+CN= x+3x+2x=15 解得:52x = 所以AB=2x =5252⨯=cm. 类型四、最短问题5.(2015•新疆)如图所示,某同学的家在A 处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线( )A .A →C →D →B B . A →C →F →BC . A →C →E →F →BD .A →C →M →B【答案】B .【解析】根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.【总结升华】“两点之间线段最短”在实际生活中有广泛的应用,此类问题要与线段的性质联系起来,这里线段最短是指线段的长度最短,连接两点的线段的长度叫做两点间的距离,线段是图形,线段长度是数值.举一反三:【变式】 (1)如图1所示,把原来弯曲的河道改直,A、B两地间的河道长度有什么变化?(2)如图2,公园里设计了曲折迂回的桥,这样做对游人观赏湖面风光有什么影响?与修一座直的桥相比,这样做是否增加了游人在桥上行走的路程?说出上述问题中的道理.【答案】解:(1)河道的长度变小了.(2)由于“两点之间,线段最短”,这样做增加了游人在桥上行走的路程,有利于游人更好地观赏湖面风光,起到“休闲”的作用.。

直线、射线、线段的表示方法

直线、射线、线段的表示方法

直线、射线、线段的表示方法
直线、射线、线段的表示方法
直线有两种表示法:一是用两个大写英文字母表示,读作直线AB或直线BA二是用一个小写字母表示,直线AB也可记作直线I。

—A --------------- B表示:直线AB(或直线BA)
_____________ L 表示:直线1
XX射出的光线给我们以射线的形象,可从中抽象出射线概念:直线上某一点一旁的部分叫做射线。

射线有一个端点,可以向一方无限延伸。

射线也没有XX。

射线用两个大写英文字母表示,第一个字母表示端点,第二个字母表示射线上任意一点,字母顺序不能颠倒。

如图,射线0A不能记作射线AO
A
•-------- --------- 表示:射线OA
射线可以向一方作反向xx (如图3),延长射线AO或反向延长射线OA延长部分不属于射线,常用虚线表示。

线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段XX,记作线段AB或线段BA线段a。

线XX可以向两方无限延长,即XXXX AB或反向xxxxBA。

A B
°---------- ° 表示:线段AB(或线段BA)
表示:线段a
直线、射线、线段的表示方法。

直线、射线、线段(知识点总结、例题解析)

直线、射线、线段(知识点总结、例题解析)

第四章 几何图形初步4.2 直线、射线、线段一、知识考点知识点1【直线】1、直线:把线段向两端无限延伸形成的图形叫做直线。

2、特点:是直的;无粗细之分;无端点;不可以度量;不可以比较长短,无限长。

3、基本性质:经过两点有且只有一条直线(两点确定一条直线);4、直线有两种表示方法:(1)用直线上任意两点的大写字母,如:表示为直线AB 或直线BA 。

(2)也可以用一个小写字母表示,如:直线l5、直线和点的位置关系:(1)在直线上:点O 在直线l 上,或者说说直线l 经过点O(2)点在直线外:点P 在直线l 外,或者说说直线l 不经过点P6、交点:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做他们的交点。

O Pl知识点2【射线】1、射线:将线段向一个方向无限延长,就形成了射线,射线有一个端点。

2、特点:是直的,有一个端点,不可以度量,不可以比较长短,无限长。

3、射线有两种表示方法:(1)可以用两个大写英文字母表示,其中一个是射线的端点,另一个是射线上除端点外的任意的一点,端点写在前面。

(如图:可以记作射线OM,但不能记作射线MO) (2)可以用一个小写英文字母表示,比如:射线OM也可以记为射线l。

4、射线的画法:画射线一要画出射线端点,二要画出射线经过一点,并向一旁延伸的情况。

知识点3【线段】1、线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。

2、特点:线段是直的,它有两个端点,他的长度是有限的,可以度量的,可以比较长短。

3、基本性质:(1) 线段公理:两点之间的所有连线中,线段最短(两点之间,线段最短)(2) 两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

注意:两点间的距离是指线段的长度,是一个数值,而不是指线段本身。

(3) 线段的中点到两端点的距离相等。

(4) 线段的大小关系和它们的长度的大小关系是一致的4、线段有两种表示方法:(1)可以用它的两个端点的大写英文字母来表示,如线段AB(或线段BA)(2)可以用一个小写字母来表示,如线段a5、线段的画法:用直尺和尺规作图(尺规作图)已知:线段a(如图所示),用直尺和圆规画一条线段,使它等于已知线段a第一步:任意画一条射线AC第二步:用圆规量取已知线段a的长度。

七年级上册数学教案设计4.2第1课时直线、射线、线段2

七年级上册数学教案设计4.2第1课时直线、射线、线段2

4.2 直线、射线、线段第1课时直线、射线、线段教学目标:1.进一步认识直线、射线、线段的联系和区别,逐步掌握它们的表示方法.2.结合实例,了解两点确定一条直线的性质,并能初步应用这一性质表述点与直线的关系.3.会画一条等于已知线段的线段.4.能根据语句画出相应的图形,会用语句描述简单的图形.在图形的基础上发展数学语言.教学重点:认识直线、射线、线段的区别与联系;学会正确表示直线、射线、线段,能够判断点与直线的关系,逐步使学生懂得几何语句的意义,并能建立几何语句与图形之间的联系.教学难点:能够把几何图形与语句表示、符号书写很好地联系起来.教学过程:一、创设情境1.观察课本P125图4.2-1.2.学校总务处为解决下雨天学生雨伞的存放问题,决定在每个班级教室外钉一根2米长的装有挂钩的木条.本校三个年级,每个年级八个班,问至少需要买几颗钉子?你能帮总务处的师傅算一算吗?二、探索实践,自主归纳学生利用打好小洞的10 cm长,1 cm宽的硬纸条和撒扣进行实践活动.小组之间交流实践成果,相互补充完善,并解决课本P127思考,得到直线性质:两点确定一条直线.由直线性质推导出表示直线的方法,进而引出点与直线的位置关系,如课本P125图4.2-3,同时提出交点的概念.你画我说要求学生分别画一条直线、射线、线段,教师给出规范表示方法.要求一组学生随意画出一点与一条直线,另一组学生判断点与直线的关系,教师加以指正.三、议一议结合自己所画图形,寻找直线、射线、线段的特征,说说它们之间的区别与联系并交流.思考:怎样由一条线段得到一条射线或一条直线?举出生活中一些可以看成直线、射线、线段的例子.设计意图:在自己动手画好直线、射线和线段的基础上,要求学生说出它们的区别与联系,目的是使学生进一步认识线段、射线、直线.四、我说你画完成课本P128练习,使学生逐步懂得几何语句的意义并能建立几何语句与图形之间的联系.五、数学活动独立探究:画一条线段等于已知线段a,说说你的想法.小组交流补充.教师边说边示范尺规作图并要求学生写好结论.设计意图:慢慢让学生读清题意,并学会按照要求正确画出图形,并让学生自己说出想法,培养学生独立操作、自主探索的数学实践能力.六、课时小结七、课堂作业课本P129习题4.2第2、3、4题.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,∠1=15︒,∠AOC=90︒,点O、D在同一直线上,则∠2的度数为()A.5°B.15°C.105°D.165°2.如图,两块三角尺的直角顶点O重合在一起,且OB平分∠COD,则∠AOD的度数为( )A.45°B.120°C.135°D.150°3.如图,长宽高分别为3,2,1的长方体木块上有一只小虫从顶点A出发沿着长方体的外表面亮到现点B,则它爬行的最短路程是( )A B.C.D.54.如果x=m是方程12x-m=1的根,那么m的值是( )A.0 B.2 C.-2 D.-65.某校七年级所有学生参加元旦联欢晚会,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位,则下列方程正确的是( )A.30x-8=31x+26 B.30x+8=31x+26C.30x-8=31x-26 D.30x+8=31x-266.如图所示,a、b是有理数,则式子a b a b b a++++-化简的结果为()A.3a+bB.3a-bC.3b+aD.3b-a7.已知整式25 2x x-的值为6,则整式2x2-5x+6的值为()A.9 B.12 C.18 D.248.下列运算正确的是()A.a2+a3=a5B.a2•a3=a5C.(-a2)3=a6D.-2a3b÷ab=-2a2b9.如图,正方形ABCD的边长为1,电子蚂蚁P从点A分别以1个单位/秒的速度顺时针绕正方形运动,电子蚂蚁Q 从点A 以3个单位/秒的速度逆时针绕正方形运动,则第2017次相遇在( )A.点 AB.点BC.点CD.点D10.用“☆”定义一种新运算:对于任意有理数 a 和 b ,规定 a ☆b=ab2+a .如:1☆3=1×32+1=10.则(﹣2)☆3 的值为( )A .10B .﹣15C .﹣16D .﹣2011,0,12π-13-,0.3131131113…(相邻两个3之间依次多一个1),其中有理数的个数是( )A.4B.3C.2D.1 12.若实数a 、b 互为相反数,则下列等式中成立的是( )A .a ﹣b =0B .a+b =0C .ab =1D .ab =﹣1二、填空题13.如图,把一张长方形纸片沿AB 折叠后,若∠1=50°,则∠2的度数为______.14.若一个角比它的补角大36°48',则这个角为______°_____'.15.一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是_____.16.如图,在第1个1ABA ∆中,B ∠=40°,11BAA BA A ∠=∠,在1A B 上取一点C ,延长1AA 到2A ,使得在第2个12A CA ∆中,1212A CA A A C ∠=∠;在2A C 上取一点D ,延长12A A 到3A ,使得在第3个23A DA ∆中,2323A DA A A D ∠=∠;…,按此做法进行下去,第3个三角形中以3A 为顶点的内角的度数为_____; 第n 个三角形中以n A 为顶点的内角的度数为_____度.17.如果x m+1与x n是同类项,那么m ﹣n =_____.18.如图,A 点的初始位置位于数轴上表示1的点,现对A 点做如下移动:第1次向左移动3个单位长度至B 点,第2次从B 点向右移动6个单位长度至C 点,第3次从C 点向左移动9个单位长度至D 点,第4次从D 点向右移动12个单位长度至E 点,…,依此类推.这样第_____次移动到的点到原点的距离为2018.19.方程8x=16两边同时________ 得到另一个方程4x=8,8x=16与4x=8的解________ .像这样,两个方程的解相同,我们称这两个方程为________ .20.2的相反数是______.三、解答题21.如图,OA ⊥OB ,引射线OC (点C 在∠AOB 外),OD 平分∠BOC ,OE 平分∠AOD .(1)若∠BOC=40°,请依题意补全图,并求∠BOE 的度数;(2)若∠BOC=α(0°<α<180°),请直接写出∠BOE 的度数(用含α的代数式表示).22.按要求画图:直线l 经过A ,B ,C 三点,且C 点在A ,B 之间,点P 是直线l 外一点,画直线BP ,射线PC ,线段AP .23.为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?24.在一列车上的乘客中,47是成年男性,13是成年女性,剩余的是儿童,若儿童的人数的52,求: (1)乘客的总人数.(2)乘客中成年男性比成年女性多少人.25.先化简下式,再求值: 22113122323x x y x y ⎛⎫⎛⎫--++ ⎪ ⎪⎝⎭⎝⎭,其中3x =,2y =. 26.先化简再求值:(3x 2﹣xy+y)﹣2(5xy ﹣4x 2+y),其中x=2,y=﹣1.27.已知|x+1|+(y+2)2=0,求x+y 的值.(1)|-3|-5×(-35)+(-4); (2)(-2)2-4÷(-23)+(-1)2017.【参考答案】***一、选择题1.C2.C3.C4.C5.D6.D7.C8.B9.D10.D11.B12.B二、填空题13.65°14.2415.1516. SKIPIF 1 < 0 SKIPIF 1 < 0解析:017.51702n 17.-118.134519.除以2 x=2 同解方程20.﹣2.三、解答题21.(1)∠BOE=35°;(2)∠BOE=45°-14α. 22.见解析.23.1024.(1)乘客总人数为546人;(2)成年男性比成年女性多130人.25.-526.11x 2-11xy-y ;67.28.(1)2;(2)9.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,一副三角尺按不同的位置摆放,摆放位置中∠α=∠β的图形个数共有( )A.4个B.3个C.2个D.1个2.题目文件丢失!3.如图,数轴上A 、B 、C 三点所表示的数分别是a 、6、c.已知AB =8,a +c =0,且c 是关于x 的方程(m -4)x +16=0的一个解,则m 的值为( )A.-4B.2C.4D.64.若关于x 的方程(m ﹣2)x |m ﹣1|+5m+1=0是一元一次方程,则m 的值是( )A.0B.1C.2D.2或05.下列计算正确的是( )A.x 3·x 2=x 6B.(2x)2=2x 2C.()23x =x 6D.5x -x =46.当x=4时,式子5(x +b)-10与bx +4的值相等,则b 的值为( ).A.-7B.-6C.6D.77.下列计算正确的是( )A .x 2﹣2xy 2=﹣x 2yB .2a ﹣3b =﹣abC .a 2+a 3=a 5D .﹣3ab ﹣3ab =﹣6ab8.若x 1=时,3ax bx 7++式子的值为2033,则当x 1=-时,式子3ax bx 7++的值为( )A .2018B .2019C .2019-D .2018-9.下列各式从左到右的变形错误的是( )A .(y ﹣x )2=(x ﹣y )2B .﹣a ﹣b=﹣(a+b )C .(a ﹣b )3=﹣(b ﹣a )3D .﹣m+n=﹣(m+n )10.下列说法:①任何有理数都可以用数轴上的点表示;②|-5|与-(-5)互为相反数;③m+1一定比m 大;④近似数1.21×104精确到百分位.其中正确的有( )A.4个B.3个C.2个D.1个 11.实数a ,b 在数轴上对应的点的位置如图所示,计算||-a b 的结果为( )A.+a bB.-a bC. b a -D.a b -- 12.如图是一个正方体的表面展开图,则这个正方体是( )A. B. C. D.二、填空题13.两根直木条,一根长60cm ,另一根长100cm ,将他们的一端重合,顺才放在同一条直线上,则两根木条的中点间的距离是_____14.如图,是的平分线,是内的一条射线,已知比大,则的度数为__________.15.某玩具标价100元,打8折出售,仍盈利25%,这件玩具的进价是______元.16.已知关于x 的一元一次方程2019x +5=2019x+m 的解为x =2018,那么关于y 的一元一次方程52019y -﹣5=2019(5﹣y )﹣m 的解为_____.17.已知a ,b ,c 在数轴上的位置如图所示,化简:|a ﹣b|+|b+c|+|c ﹣a|=_____.18.把四张大小相同的长方形卡片(如图①)按图②、图③两种放法放在一个底面为长方形(长比宽多6)的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图②中阴影部分的周长为C 2,图③中阴影部分的周长为C 3,则C 2-C 3=______.19.22015×(12)2016=________ 20.已知a=-2,b=1,则 a b +-的值为________.三、解答题21.如图,O 为直线AB 上一点,∠AOC =50°20′,OD 平分∠AOC ,∠DOE =90°.(1)求∠DOB 的度数;(2)请你通过计算说明OE 是否平分∠COB .22.为实施“学讲计划”,某班学生计划分成若干个学习小组,若每组5人,则多出4人,若每组6人,则有一组只有2人,该班共有多少名学生?23.学校准确添置一批课桌椅原订购60套,每套72元,店方表示:如果多购可以优惠,结果校方购了72套,每套减价3元,但商店获得同样多的利润,求每套课桌椅成本.24.如图,∠AOC 与∠BOC 互余,OD 平分∠BOC ,∠EOC =2∠AOE .(1)若∠AOD =75°,求∠AOE 的度数.(2)若∠DOE =54°,求∠EOC 的度数.25.化简求值:(1)3(2x+1)+(3﹣x),其中x =﹣1;(2)(2a 2﹣ab+4)﹣2(5ab ﹣4a 2+2),其中a =﹣1,b =﹣2.26.先化简,再求值.()()22222a b ab 3a b l 2ab 1---++,其中a 1=,b 2=.27.(-357)+(15.5)+(-627)+(-512) 28.计算: (1) 16÷(﹣2)3﹣(18-)×(﹣4) (2) 221211()[2(3)]233---÷⨯-+-【参考答案】***一、选择题1.B2.B3.A4.A5.C6.B7.D8.C9.D10.C11.C12.C二、填空题13.80cm或20cm14.15°15.6416.202317.-2a18.1219. SKIPIF 1 < 0解析:1 220.3三、解答题21.(1) 154°50′;(2)见解析22.4423.每套课桌椅成本54元.24.(1)20°;(2)36°.25.(1)5x+6, 1;(2)10a2﹣11ab,﹣12. 26.227.028.(1)﹣212;(2)52.。

直线、射线、线段(第2课时)线段长短的比较与计算- (人教版)

直线、射线、线段(第2课时)线段长短的比较与计算- (人教版)

B. AB = 2 AC 1
D. CB = AB 2
A
C
B
当堂巩固 3. 判断正误:
(1)若P是线段AB的中点,则AP=BP. (2)若AP=BP,则P是线段AB的中点.
4. 给你一根绳,不量取,你能找到它的中点吗? 对折即可.
当堂巩固 5. 已知,如图AC=CD=DE=EF=FB
A C D EF B
能力提升
2. 已知,如图,B,C两点把线段AD分成2:5:3三部分, M为AD的中点,BM=6,求CM和AD的长.
AB
MC
D
解:设AB=2x,BC=5x,CD=3x,
所以AD=AB+BC+CD=10x.
因为M是AD的中点,
所以AM=MD=5x,所以BM=AM-AB=3x. 因为BM=6,即3x=6,所以x=2. 故CM=MD-CD=2x=4, AD=10x=20 .
合作探究
A
MB
如图,点 M 把线段 AB 分成相等的两条线段 AM 与 BM,点 M 叫做线段 AB 的中点. 类似地, 还有线段的三等分点、四等分点等.
线段的三等分点
线段的四等分点
新知讲解
M 是线段 AB 的中点
a
a
A
M
B
几何语言:∵ M 是线段 AB 的中点
∴ AM = MB = 1 AB 2
无图时求线段的长,应注意分类讨论,一般分以下两种情况: ①点在某一线段上;②点在该线段的延长线.
变式训练
已知A,B,C三点共线,线段AB=25cm,BC=16cm,点E,F
分别是线段AB,BC的中点,则线段EF的长为( D )
A.21cm或4cm
B.20.5cm

人教版数学七年级上《4.2直线、射线、线段》同步练习(含答案)

人教版数学七年级上《4.2直线、射线、线段》同步练习(含答案)

4.2 直线射线线段2一、单选题1.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为( )A.3 B.7 C.3或7D.以上都不对2.A,B,C三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在( )A.在A的左侧B.在AB之间C.在BC之间D.B处3.如果线段AB=5cm,BC=4cm,且A,B,C在同一条直线上,那么A,C两点的距离是()A.1cm B.9cmC.1cm或9cm D.以上答案都不正确4.如果一条直线上得到10条不同的线段,那么在这条直线上至少有点()A.20个B.10个C.7个D.5个5.下列说法错误的是()A.两点之间的所有连线中,线段最短B.经过一点有且只有一条直线与已知直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.经过一点有且只有一条直线与已知直线垂直6.在图中,线段的条数为( )A.9B.10 C.13D.157.如图,C 是AB 的中点,D 是BC 的中点,则下列等式不成立的是( ,A . CD,AD -ACB . CD,21AB,BDC . CD,41ABD . CD=31AB 8.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A . 171B . 190C . 210D . 3809.如图,从A 地到B 地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是( )A . 两点确定一条直线B . 垂线段最短C . 两点之间,线段最短D . 两点之间,直线最短10.如图所示的图形表示正确的有( )A . 3个B . 4个C . 5个D . 6个11.下列说法:,两点之间的所有连线中,线段最短;,在数轴上与表示﹣1的点距离是3的点表示的数是2,,连接两点的线段叫做两点间的距离;,射线AB和射线BA是同一条射线;,若AC=BC,则点C是线段AB的中点;,一条射线把一个角分成两个相等的角,这条射线是这个角的平分线,其中错误的有()A.2个B.3个C.4个D.5个二、填空题12.点C在线段AB上,下列条件中:①AC=BC②AC=2AB③AB=2BC④AC=0.5AB。

4.2直线、射线、线段

4.2直线、射线、线段

4.2 直线、射线、线段
栏目索引
例4 已知,如图4-2-4,B、C两点把线段AD分成2∶4∶3的三部分,M是 AD的中点,CD=6,求线段MC的长. 图4-2-4
解析 设AB=2k,则BC=4k,CD=3k, AD=2k+3k+4k=9k. 因为CD=6,即3k=6,所以k=2, 所以AB=4,BC=8,AD=18. 因为M为AD的中点,
4.2 直线、射线、线段
例1 根据图4-2-1填空:
栏目索引
图4-2-1 (1)点B在直线AD (2)点E是直线 直线CD的交点; (3)过A点的直线有
;点C在直线AD
,直线CD过点
;
与直线
的交点,点
是直线AD与
条,分别是 .
解析 根据图形进行分析,即可完成各题,同一直线的表示方法不唯一.
答案 (1)上;外;E (2)AE;CD;D (3)3;直线AD、直线AE、直线AC
知识点三 线段
定义
表示 方法 线段的 中点
4.2 直线、射线、线段
栏目索引
内容
图例
直线上两点及两点间的部分
(1)用表示端点的两个大写字母表示; (2)用一个小写字母表示
线段AB或线段BA或线段a
把一条线段分成两条相等线段的点,叫做这条
线段的中点
点M是线段AB的中点,
AM=BM= 1 AB,即AB=2AM=2BM
重要 解读
(1)对直线的基本事实的理解,应抓住其中的“有”“只有”两个关键词,“有”表示存在,“只有”表示唯一,即 过两点一定能画出一条直线,并且这样的直线只有一条. (2)用两个大写字母表示直线时,这两个字母的位置可以交换,如直线AB和直线BA表示的是同一条直线;用小写字 母表示直线时,只能用一个小写字母表示,如“直线a”或“直线b”. (3)两条不同的直线不能有两个或两个以上的公共点,如果有两个公共点,那么这两条直线重合. (4)直线没有长短,不能说直线AB长为5 cm,直线也没有粗细

4.2.2 直线、射线、线段(2)尺规作图,相关概念,关于线段的基本事实PPT课件

4.2.2   直线、射线、线段(2)尺规作图,相关概念,关于线段的基本事实PPT课件

A 图1
如图2,点M 把线段AB 分成相等的两条线段AM 与 MB,
点M 叫做线段AB 的中点.
由形到数:若点M是线段AB的中
图2 A
M
B
因为点M是线段AB的中点,
所以 AM=BM=
1 2
AB.
点,则AM=BM=
1 2
AB.
由数到形:若点M在线段AB上,
且AM=BM=
1 2
AB,
则点M是线段AB的中点.
A.AM+BM=AB C.AB=2BM
B.AM=BM D.AB=2AM
3.如果线段AB=3厘米,BC=5厘米,那么A,C两点间的距
离是( D )
A.8厘米
B.2厘米
C.4厘米 D.无法确定
4.在直线l上顺次取A,B,C三点,使得AB=5 cm,BC=3 cm, 如果O是线段AC的中点,那么线段OB的长度是 1 .
小试牛刀
1.下列说法正确的个数为( D )
①线段的长短比较可以由刻度尺测量;②线段的长短比较
可以在同一条直线上,把一端点重合,再比较另一端点是
否重合;③线段的长实质是两点间的距离;④连接两点间
的所有线中,线段最短.
A.1个
B.2个
C.3个 D.4个
2.M是线段AB上的一点,其中不能判定点M是线段AB中点 的是( A )
A
B
C(A)
②线段AB大于线段CD,记作AB>CD
DB
A
B
C(A)
③线段AB等于线段CD,记作AB=CD
D(B)
利用尺规作线段的和、差
已知:线段a,b.(如图)
a
求作:(1)线段AC,使AC =a + b;

直线、射线、线段(二)

直线、射线、线段(二)

4.2直线、射线、线段(二)一【学法指导】自学教材p130—132页,会用尺规画一条线段等于已知线段,会比较两条线段的长短。

理解线段等分点的意义,理解两点间距离的意义,了解“两点之间,线段最短”的线段性质。

二【学习目标】1、线段的中点:点M把线段AB分成相等的两条线段AM与MB,我们把M点叫做线段AB的中点。

AM=BM= AB;AB=2AM=2BM2、线段性质:。

简单说成:。

3、两点之间的距离:两点之间线段的长度叫做两点之间的距离。

三【探索新知】1、如何比较线段AB与线段CD的长短?2、画一条线段AB等于已知线段a。

3、如图:① M为线段AB的中点,②M、N为线段AB的三等分点,即AM=BM= AB,AB=2AM=2BM 即AM=MN=NB= AB;AB=3AM=3MN=3NB③M、N、P为线段AB的四等分点即AN=MN=MP=PB= AB;AB=4AN=4MN=4NP=4PB★试一试:①如图,点C是线段AB的中点,(1)若AB=6cm,则AC= cm。

(2)若AC=6cm,则AB= cm。

②已知:AD=4cm,BD=2cm,C为AB的中点,则BC=_____cm.。

4、从甲地到乙地能否修一条最近的路?如果能,你认为这条路应该怎样修?在图上画出来。

由此你可以得到什么结论?四【例题赏析】如图,线段AB=8cm,点C是AB的中点,点D在CB上且DB=1.5cm,求线段CD的长度。

解:CB= AB=4cm,CD=CB-DB=4cm-1.5cm=2.5cm.五【巩固练习】1、判断题:(1)一条直线长100米。

………… ()(2)线段是直线的一部分。

……… ()(3)直线比射线长。

……………… ()(4)在射线上可以截取2厘米长的线段。

()(5)过一个点只可以画一条射线。

… ( )2、(1)如图 AB=6cm,点C是AB的中点,点D是CB的中点,则AD=____cm(2)如图,下列说法,不能判断点C是线段AB的中点的是( )A、AC=CBB、AB=2ACC、AC+CB=ABD、CB=AB(3)如图,AD=AB—____=AC+ _____3、点A、B、C 、 D是直线上顺次四个点,且AB:BC:CD=2:3:4,如果AC=10cm,那么BC=__________4、在同一条直线上依次有A、B、C三点,取AB中点 M,取BC中点N,如果AC=6cm,则MN=______cm5、点C是AB延长线上的一点,点D是AB中点,如果点B 恰好是DC的中点,设AB=2cm,则 AC=______cm6、如图,线段AB=8cm,点C是AB的中点,点D是AC的中点,点E是CB的中点,求线段DE的长度。

直线射线线段

直线射线线段

A
B
表示为:线段 l
o
A
l
表示为:射线 OA
表示为: 射线 l
精品课件
生活中线段的长短的比较
怎样比较两个同学的高矮?
叠合法
度量法
精品课件
第一种:
叠合法
先把两根绳子的一端重合,另一端落在同侧,
根据另一端落下的位置来比较.
试比较绳子AB与绳子CD、绳子EF、绳子MN的大小?
A
BC
E
FM
D N
①C ②E ③M

生活常识告诉我们:
甲地
结论:两点之间的所有连线中,线段最
定短义. :两点之间线段的长度叫做两点之间的距离.
精品课件
1、如图,点C是线段AB的中点
(1)若AB=6cm,则AC=
3
cm.
(2)若AC=6cm,则AB=
12 cm.
AC B
精品课件
2、已知:AD=4cm,BD=2cm,C为AB的中点, 则BC=_____c3m.
类型 线段 射线 直线
端点数 延伸
度量
2个

可度量
1个
向一个方向无限 延伸
不可度量
无端点
向两个方向无限 不可度量
延伸
联系:线段向一端无限延长形成射线,向两端无限延长形
成直线 精品课件
二、直线、线段、射线的表示法
A
B l 表示为:直线 AB (或直线BA)
表示为:直线 l
l
表示为:线段 AB(或线段BA)
精品课件
5、某班的同学在操场上站成笔直的一排, 确定两个同学的位置,这一排的位置就确 定下来了,这是因为 __经__过__两__点__有__且__只__有__一_条__直__线_________.

直线、射线和线段有什么联系和区别

直线、射线和线段有什么联系和区别

直线、射线和线段有什么联系和区别?
【联系】:将线段向一端延长得到射线,向两端延长得到直线,将射线向另一方向延长得到直线,即线段是射线的一部分,线段、射线是直线的一部分。

【区别】:直线没有端点,射线有一个端点,线段有两个端点;线段不向任何方向延伸,射线可以向一个方向延伸,直线向两边无限延伸;表示直线和线段的两个字母可以交换位置,而表示射线的两个字母不能交换位置。

直线、射线、线段是几何中三个最基本的概念,它们既有区别又有联系.直线的特征是向两个方向无限延伸;射线是直线上某一点一旁的部分;线段是直线上两点间的部分.从有限性和无限性考虑,直线是向两个方向无限延伸的,没有端点,不能度量,没有方向性;射线是向一个方向无限延伸的,只有一个端点,不能度量,有方向性;线段是直线上的有限部分,有两个端点,能够度量,没有方向性.这是直线、射线、线段的主要区别.直线、射线、线段都可以用两个大写字母表示.直线可以用直线上任意两点的字母表示,与字母的顺序无关,如直线AB,也可记作直线BA.射线只能用第一个字母表示端点,第二个字母表示射线上除端点外的任意一点,如射线AB,不能记作射线BA.线段用两个端点的字母表示,与字母顺序无关,如线段AB,也可记作线段BA.直线、射线和线段又能用一个小写字母表示,如直线a,射线l,线段m.作图时,过两个已知点A、B既可以作直线,也可以作射线和线段.但对作图的叙述,三者有明显的区别.作直
线,应叙述为“过A、B两点作直线AB”;作射线AB,应叙述为“以A为端点作射线AB”或“过点B作射线AB”;作线段,应叙述为连接两个端点作线段AB或线段BA。

直线、射线、线段的概念(2)

直线、射线、线段的概念(2)

直线、射线和线段教学设计袁三红一.教材分析:地位和作用。

直线、射线和线段是初中数学几何的起始局部的内容,是我们在了解了多姿多彩的图形后系统学习几何的开始。

直线和点一样是几何的根本概念之一。

对于根本概念,是用来定义其他几何概念的根底,只能形象的描述。

因此本节课需要一些形象直观的图形引导学生想象,归纳概念的本质。

本节课旨在培养学生学习几何的兴趣,感受几何与生活的密切联系,并能正确使用几何语言表达。

逐步使学生懂得几何语句的意义,并能建立几何语句与图形之间的联系.〔两个首次:首次出现公理,首次出现用符号表示图形〕二.学情分析:虽然学生在小学阶段已经接触过直线、射线和线段,对于直线、射线和线段已经有了初步的感性认识,但都是形象化的,比较粗浅的,需要通过进一步学习提高理性认识。

其中,直线、射线和线段的表示方法是首次用符号来表示几何图形,学生没有相关经验,再加上直线、射线和线段的表示方法比较多,容易混淆,学生会感到困难。

几何语言的学习,学生要经历“几何模型→图形→文字→符号〞逐步加深的抽象过程,尤其是符号语言,是对文字语言的简化和再次抽象,是七年级学生未曾经历过的体验。

除此之外,本节课学生还会经历“符号语言→文字语言→图形语言〞的转换,既要理解几何语句的意义并能建立几何语句和图形之间的联系,又要将他们用图形直观地表示出来,也是比较困难的学习任务。

因此,教学中,教师通过讲解、示范并安排形式多样的练习,帮助学生在解决问题的过程中,到达“符号语言→文字语言→图形语言〞三种数学语言的自然转换,融会贯穿。

三.内容和内容解析1.内容:两点确定一条直线;直线、射线、线段的表示方法。

2.内容解析:“两点确定一条直线〞是人们在长期的生产生活实践中总结出了的根本领实,这个事实很好地刻画了直线的特性,是数学知识抽象性与实用性的典型表达。

“两点确定一条直线〞是图形与几何领域首次用“公理〞的方式确定一个结论,是公理化思想的起点。

直线、射线和线段都是重要而根本的几何图形,他们之间既有密切的联系,又有着本质的区别。

4.2直线、射线、线段(二)

4.2直线、射线、线段(二)

用刻度尺或圆规检验你的估计.
C
C
C
A
(1)
B A
(2)
BA
B
(3)
练习3:如图,已知线段a、b,画一条线段使它
等于2a-b.
a
b
问题6: 如图,从A地到B地有四条道路,除它们之外能 否再修一条从A地到B地的最短道路?如果能,请联 系你以前所学的知识,在图上画出最短路线.
A
B
1. 两点的所有连线中,线段最短. 简单地说:两点之间,线段最短.
2. 连接两点间的线段的长度,叫做这两点的距离.
这节课你学到了什么? 画一条线段等于已知线段 线段比较大小 线段的和、差、分点(中点、三等分点等) 两点之间线段最短 两点的距离定义
练习1:如图,B、C为线段AD上的两点,点C为 线段AD的中点,AC=5cm,BD=6cm,求线段AB的长度?
A
BC
D
解:∵ 点C是线段AD的中点
∴AD=2AC=10
∴AB=AD-BD =10-6 =4cm
即 线段AB的长是4cm
练习2:已知线段AB=80cm,M为AB的中点,P在MB 上,N为PB的中点,且NB=14cm。
A
MPN Bห้องสมุดไป่ตู้
线段PB=__2_8_c_m___.AM=___4_0_c_m_.BM=___4_0_c_m_
线段PM=___1_2_c_m__.AP=__5_2_c_m__.AN=__6_6_c_m__
学习从来无捷径, 循序渐进登高峰。 ———— 高永祚
a
a
b
b a
A
B CP A
CB
P
AC=a+b
b CB=a-b
问题5: 如图,已知线段a,求作线段AB=2a.

4.2线段射线直线 (2)

4.2线段射线直线 (2)

.. A B
. C
解:直线有( 1 )条;射线有( 6 )条 线段有( 3 )条。 2、指出下图中直线、射线、线段分别有多少条? B . . A . C 解:直线有( 1 )条; 射线有( 4 )条; 线段有( 3 )条。
Page 17
衷心感谢各位老师 光临指导
作业:练习册72、 73页
O
A
B
A、点O在直线AB上
B、点B是直线AB的一个端点
C、点O 在射线AB上
D、射线AO和射线OA是同一条射线
2、植树时,只要定出 2 个树坑的位置,就能够
使同一行树坑在一条直线上了。其中的道理 是 两点确定一条直线 。
Page 13
谈谈你的收获:
在生活中,像直线一样 自由自在,无拘无束;
在遇到困难时,向射线一 样,一经出发就勇往直前; 在做事情时,像线段一样 有始有终。
4.2 线段、射线和直线
Pageቤተ መጻሕፍቲ ባይዱ1
湘潭凤凰实验中学: 冯雅文
通过课前预习课本,请认真解答下 列问题:
1、分别画下列图形,并说说你是如何区分 它们的;再用字母表示它们。 (1)线段 (2)射线 (3)直线
2、(1)分别画出点O和直线m的两种位 置关系。 (2)画出两条直线a、b相交于点O。
Page 2
Page 7


端点数 两个
延伸方向 不无限延 伸


线 段
有限长,可度量
射 线
一个
向 一 个 方 向 无限长,不可度 无限延伸 量 向两个方向 无限长,不可度 无限延伸 量
Page 8
直 线
没有
下列说法是否正确? (1)延长直线AB (2)延长射线OP (3)延长线段AB

直线射线线段的表示方法

直线射线线段的表示方法

直线射线线段的表示方法
一、直线、射线、线段的表示方法:
1、直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB。

2、射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边。

3、线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。

二、点与直线的位置关系:
1、点经过直线,说明点在直线上.
2、点不经过直线,说明点在直线外。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B
C
砸金蛋
点M是线段AB的中点, AM=6cm,则
AB= ___ 12 cm .
A M
B
砸金蛋
心有多高 眼界就有多宽 全身心地投入 你会发现一个全新的自我 原来我是最棒的! 送你一颗星!
砸金蛋
点M是线段AB的中点,点N是线段AM 的中点,AN=3cm, 则 BN= ___ 9 cm.
A N M B
2 MB 2 AM= __ AB= __
点M 、 N叫线段AB的三等分点
1 AM=MN=NB= AB 3
AB=3AM=3MN=3NB
点M 、 N、P叫线段AB的四等分点 AM=MN=NP=PB=
AB=4AM=4MN=4NP=4PB
1 AB 4
度量法 比长短 叠合法 画等线 画和差 倍与分
2.如图已知线段a,b,画一条线段, 使它等于2a-b. a
C A B A B A B
C
C
AB<CD
A
B
(3.8㎝)
D
C
(3.9㎝)
例1:用刻度尺画一条线段等于 已知线段a.
a
例1:画一条线段等于已知线段a
度 量 法
利用a+b. a
b
M在线段AB上,且平分线段AB, 则点M 叫线段AB的中点(二等分点). 1 = 2 AB =____ AM____MB
4.2直线射线线段(2)
我们一起比身高
学习目标
1.学会比较线段的长短; 2.理解中点的含义,并会运用; 3.会按要求画线段. 本节课的学习需要我们一起冲四 个知识关,在学习过程中回答正确 给本小组加一颗星,别的小组回答 错误你可以举手指出并回答正确 也给你所在小组加一颗星.
1.估计下图中线段AB与线段AC的大 小关系,再验证你的估计.
A M C N B
必做题:1.课本134页第9题; 2.预习课本P131-132,并完成相应的 《同步学习》上的预习题.
砸金蛋
作业
砸金蛋
如果线段PA=PB,那么点P是线段AB的 中点.这句话对吗?
P
A
B
砸金蛋
选做题:如图,点C在线段AB上,AC=8cm, CB=6cm, 点M、N分别是AC,BC的中点. (1)求线段MN的长. (2)若C为线段AB上任一点,满足AC+BC=acm,其 他条件不变,你能猜想MN的长度吗?你能用一句 简洁的话描述你发现的结论吗?
b
1
2
3
4
5
6
每组任选一个金蛋,每个金蛋对应一个数学 问题或幸运星.小组内可以合作,想好后本 组谁都可以答题,答对奖1颗星,如果答错别 的小组可以抢答且答对奖2颗星!
作业
根据图形填空 AB BD DC 如图,AC=____+____+____
A B D C
砸金蛋
根据图形填空
AC - ____ BC AB=___
相关文档
最新文档